WorldWideScience

Sample records for multilayer silk biomaterial

  1. Silk-based biomaterials.

    Science.gov (United States)

    Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L

    2003-02-01

    Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

  2. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  3. Thromboelastometric and platelet responses to silk biomaterials.

    Science.gov (United States)

    Kundu, Banani; Schlimp, Christoph J; Nürnberger, Sylvia; Redl, Heinz; Kundu, S C

    2014-05-13

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls.

  4. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  5. [Engineered spider silk: the intelligent biomaterial of the future. Part I].

    Science.gov (United States)

    Florczak, Anna; Piekoś, Konrad; Kaźmierska, Katarzyna; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna

    2011-06-17

    The unique properties of spider silk such as strength, extensibility, toughness, biocompatibility and biodegradability are the reasons for the recent development in silk biomaterial technology. For a long time scientific progress was impeded by limited access to spider silk. However, the development of the molecular biology strategy was a breaking point in synthetic spider silk protein design. The sequences of engineered spider silk are based on the consensus motives of the corresponding natural equivalents. Moreover, the engineered silk proteins may be modified in order to gain a new function. The strategy of the hybrid proteins constructed on the DNA level combines the sequence of engineered silk, which is responsible for the biomaterial structure, with the sequence of polypeptide which allows functionalization of the silk biomaterial. The functional domains may comprise receptor binding sites, enzymes, metal or sugar binding sites and others. Currently, advanced research is being conducted, which on the one hand focuses on establishing the particular silk structure and understanding the process of silk thread formation in nature. On the other hand, there are attempts to improve methods of engineered spider silk protein production. Due to acquired knowledge and recent progress in synthetic protein technology, the engineered silk will turn into intelligent biomaterial of the future, while its industrial production scale will trigger a biotechnological revolution.

  6. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior.

    Science.gov (United States)

    An, Bo; DesRochers, Teresa M; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David L

    2013-01-01

    Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in Escherichia coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Biomaterials Derived from Silk-Tropoelastin Protein Systems

    Science.gov (United States)

    Hu, Xiao; Wang, Xiuli; Rnjak, Jelena; Weiss, Anthony S.; Kaplan, David L.

    2010-01-01

    A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from ~68% to ~97%, and elastic modulus between 2~9Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs. PMID:20674969

  8. Structural analysis and application to biomaterials of the silk fibroins

    International Nuclear Information System (INIS)

    Nakazawa, Yasumoto

    2010-01-01

    Silk fibroin from Bombyx mori silkworm has outstanding mechanical properties despite being spun from aqueous solution. I have clarified two distinct structures in the solid state; silk I and silk II, which mean the structures before and after spinning, by using solid state NMR. Moreover, I have been developing several kinds of biomaterials, such as bone regeneration materials and vascular grafts. In this paper, I present two topics: one is the structural analyses of the silk fibroin in detail, the other is applications of silk fibroins to tissue engineering. In the case of vascular regeneration, I have developed the small diameter vascular grafts made by silk fibroins. The new grafts from silk fibroins have good patency, and these grafts were commonly covered with cells and platelets at 4 weeks after implantation. For bone tissue engineering, I performed structural analyses of a new silk-like peptide, E n (AGSGAG) 4 , in order to consider the molecular design of biomaterials for bone regeneration. (author)

  9. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.

    Science.gov (United States)

    Dutta, Saranga; Talukdar, Bijit; Bharali, Rupjyoti; Rajkhowa, Rangam; Devi, Dipali

    2013-05-01

    This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk-based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  10. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study.

    Science.gov (United States)

    Brown, Joseph E; Partlow, Benjamin P; Berman, Alison M; House, Michael D; Kaplan, David L

    2016-01-01

    Cerclage therapy is an important treatment option for preterm birth prevention. Several patient populations benefit from cerclage therapy including patients with a classic history of cervical insufficiency; patients who present with advanced cervical dilation prior to viability; and patients with a history of preterm birth and cervical shortening. Although cerclage is an effective treatment option in some patients, it can be associated with limited efficacy and procedure complications. Development of an alternative to cerclage therapy would be an important clinical development. Here we report on an injectable, silk protein-based biomaterial for cervical tissue augmentation. The rationale for the development of an injectable biomaterial is to restore the native properties of cervical tissue. While cerclage provides support to the tissue, it does not address excessive tissue softening, which is a central feature of the pathogenesis of cervical insufficiency. Silk protein-based hydrogels, which are biocompatible and naturally degrade in vivo, are suggested as a platform for restoring the native properties of cervical tissue and improving cervical function. We sought to study the properties of an injectable, silk-based biomaterial for potential use as an alternative treatment for cervical insufficiency. These biomaterials were evaluated for mechanical tunability, biocompatibility, facile injection, and in vitro degradation. Silk protein solutions were cross-linked by an enzyme catalyzed reaction to form elastic biomaterials. Biomaterials were formulated to match the native physical properties of cervical tissue during pregnancy. The cell compatibility of the materials was assessed in vitro using cervical fibroblasts, and biodegradation was evaluated using concentrated protease solution. Tissue augmentation or bulking was demonstrated using human cervical tissue from nonpregnant hysterectomy specimens. Mechanical compression tests measured the tissue stiffness as a

  11. Silk fibroin as biomaterial for bone tissue engineering.

    Science.gov (United States)

    Melke, Johanna; Midha, Swati; Ghosh, Sourabh; Ito, Keita; Hofmann, Sandra

    2016-02-01

    Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Enhancing analysis of cells and proteins by fluorescence imaging on silk-based biomaterials: modulating the autofluorescence of silk.

    Science.gov (United States)

    Neo, Puay Yong; Tan, Daryl Jian-An; Shi, Pujiang; Toh, Siew Lok; Goh, James Cho-Hong

    2015-02-01

    Silk is a versatile and established biomaterial for various tissue engineering purposes. However, it also exhibits strong autofluorescence signals-thereby hindering fluorescence imaging analysis of cells and proteins on silk-derived biomaterials. Sudan Black B (SB) is a lysochrome dye commonly used to stain lipids in histology. It has also been reported to be able to quench autofluorescence of tissues in histology and has been tested on artificial biomedical polymers in recent years. It was hypothesized that SB would exert similar quenching effects on silk, modulating the autofluorescence signals, and thereby enabling improved imaging analysis of cells and molecules of interests. The quenching effect of SB on the intrinsic fluorescence properties of silk and on commercial fluorescent dyes were first investigated in this study. SB was then incorporated into typical fluorescence-based staining protocols to study its effectiveness in improving fluorescence-based imaging of the cells and proteins residing with the silk-based biomaterials. Silk processed into various forms of biomaterials (e.g., films, sponges, fibers, and electrospun mats) was seeded with cells and cultured in vitro. At sacrificial time points, specimens were harvested, fixed, and prepared for fluorescence staining. SB, available commercially as a powder, was dissolved in 70% ethanol (0.3% [w/v]) to form staining solutions. SB treatment was introduced at the last step of typical immunofluorescence staining protocols for 15-120 min. For actin staining protocols by phalloidin toxin, SB staining solutions were added before and after permeabilization with Triton-X for 15-30 min. Results showed that ideal SB treatment duration is about 15 min. Apart from being able to suppress the autofluorescence of silk, this treatment duration was also not too long to adversely affect the fluorescent labeling probes used. The relative improvement brought about by SB treatment was most evident in the blue and green

  13. Binding Quantum Dots to Silk Biomaterials for Optical Sensing

    Directory of Open Access Journals (Sweden)

    Disi Lu

    2015-01-01

    Full Text Available Quantum dots (QDs, have great potential for fabricating optical sensing devices and imaging biomaterial degradation in vivo. In the present study, 2-mercaptoethylamine- (MEA- and mercaptopropionic acid- (MPA- capped CdTe-QDs were physically incorporated in silk films that contained a high content (>30% of crystalline beta-sheet structure. The beta-sheets were induced by the addition of glycerol, water annealing, glycerol/annealing, or treatment with methanol. Incorporation of QDs did not influence the formation of beta-sheets. When the films were extracted with water, most QDs remained associated with the silk, based on the retention of photoluminescence in the silk films and negligible photoluminescence in the extracts. Compared to the solution state, photoluminescence intensity significantly decreased for MEA-QDs but not for MPA-QDs in the silk films, while the emission maximum blue shifted (≈4 nm slightly for both. Further film digestion using protease XIV, alpha-chymotrypsin, and the combination of the two proteases suggested that QDs may be bound to the silk beta-sheet regions but not the amorphous regions. QDs photoluminescence in silk films was quenched when the concentration of hydrogen peroxide (H2O2 was above 0.2-0.3 mM, indicating the QDs-incorporated silk films can be used to report oxidation potential in solution.

  14. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    International Nuclear Information System (INIS)

    Johnson, W L; Frank, D J; Nast, T C; Fesmire, J E

    2015-01-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system. (paper)

  15. Controlled release of cytokines using silk-biomaterials for macrophage polarization.

    Science.gov (United States)

    Reeves, Andrew R D; Spiller, Kara L; Freytes, Donald O; Vunjak-Novakovic, Gordana; Kaplan, David L

    2015-12-01

    Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion.

    Science.gov (United States)

    Pereira, Ana Margarida; Machado, Raul; da Costa, André; Ribeiro, Artur; Collins, Tony; Gomes, Andreia C; Leonor, Isabel B; Kaplan, David L; Reis, Rui L; Casal, Margarida

    2017-01-01

    The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment

    OpenAIRE

    Pritchard, Eleanor M.; Valentin, Thomas; Panilaitis, Bruce; Omenetto, Fiorenzo; Kaplan, David L.

    2012-01-01

    Effective treatment of infections in avascular and necrotic tissues can be challenging due to limited penetration into the target tissue and systemic toxicities. Controlled release polymer implants have the potential to achieve the high local concentrations needed while also minimizing systemic exposure. Silk biomaterials possess unique characteristics for antibiotic delivery including biocompatibility, tunable biodegradation, stabilizing effects, water-based processing and diverse material f...

  18. Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging

    OpenAIRE

    Roy, Manas; Kusurkar, Tejas Sanjeev; Maurya, Sandeep Kumar; Meena, Sunil Kumar; Singh, Sushil Kumar; Sethy, Niroj; Bhargava, Kalpana; Sharma, Raj Kishore; Goswami, Debabrata; Sarkar, Sabyasachi; Das, Mainak

    2013-01-01

    In this work, we synthesized graphene oxide from silk cocoon embarking its new dimension as a magnetic fluorophore when compared with its present technical status, which at best is for extracting silk as a biomaterial for tissue engineering applications. We produced graphene oxide by pyrolysing the silk cocoon in an inert atmosphere. The collected raw carbon is oxidized by nitric acid that readily produces multilayer graphene oxide with nano carbon particulates. Structural properties of the g...

  19. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  20. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  1. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.

    Science.gov (United States)

    Wang, Fang; Jyothirmayee Aravind, S S; Wu, Hao; Forys, Joseph; Venkataraman, Venkat; Ramanujachary, Kandalam; Hu, Xiao

    2017-10-01

    Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous-based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nanocomposite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1wt% to 10wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5wt% of graphene gives the highest Young's modulus of 1.65GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar-polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials.

    Science.gov (United States)

    Bhattacharjee, Maumita; Schultz-Thater, Elke; Trella, Emanuele; Miot, Sylvie; Das, Sanskrita; Loparic, Marko; Ray, Alok R; Martin, Ivan; Spagnoli, Giulio C; Ghosh, Sourabh

    2013-11-01

    We have investigated monocyte and T cell responsiveness to silk based biomaterials of different physico-chemical characteristics. Here we report that untransformed CD14+ human monocytes respond to overnight exposure to silk fibroin-based biomaterials in tridimensional form by IL-1β and IL-6, but not IL-10 gene expression and protein production. In contrast, fibroin based materials in bidimensional form are unable to stimulate monocyte responsiveness. The elicitation of these effects critically requires contact between biomaterials and responding cells, is not sustained and becomes undetectable in longer term cultures. We also observed that NF-κβ and p38 MAP kinase play key roles in monocyte activation by silk-based biomaterials. On the other hand, fibroin based materials, irrespective of their physico-chemical characteristics appeared to be unable to induce the activation of peripheral blood T cells from healthy donors, as evaluated by the expression of activation markers and IFN-γ gene. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Conducting polymer-based multilayer films for instructive biomaterial coatings

    OpenAIRE

    Hardy, John G; Li, Hetian; Chow, Jacqueline K; Geissler, Sydney A; McElroy, Austin B; Nguy, Lindsey; Hernandez, Derek S; Schmidt, Christine E

    2015-01-01

    Aim: To demonstrate the design, fabrication and testing of conformable conducting biomaterials that encourage cell alignment. Materials & methods: Thin conducting composite biomaterials based on multilayer films of poly (3,4-ethylenedioxythiophene) derivatives, chitosan and gelatin were prepared in a layer-by-layer fashion. Fibroblasts were observed with fluorescence microscopy and their alignment (relative to the dipping direction and direction of electrical current passed through the films)...

  4. In Vitro Evaluation of Spider Silk Meshes as a Potential Biomaterial for Bladder Reconstruction

    NARCIS (Netherlands)

    Steins, A.; Dik, P.; Müller, W.H.; Vervoort, S.J.; Reimers, K.; Kubhier, J.W.; Vogt, P.M.; van Apeldoorn, Aart A.; Coffer, P.J.; Schepers, K.

    2015-01-01

    Reconstruction of the bladder by means of both natural and synthetic materials remains a challenge due to severe adverse effects such as mechanical failure. Here we investigate the application of spider major ampullate gland-derived dragline silk from the Nephila edulis spider, a natural biomaterial

  5. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang Hao

    2012-06-01

    Full Text Available Abstract Background Degummed silk fibroin from Bombyx mori (silkworm has potential carrier capabilities for drug delivery in humans; however, the processing methods have yet to be comparatively analyzed to determine the differential effects on the silk protein properties, including crystalline structure and activity. Methods In this study, we treated degummed silk with four kinds of calcium-alcohol solutions, and performed secondary structure measurements and enzyme activity test to distinguish the differences between the regenerated fibroins and degummed silk fibroin. Results Gel electrophoresis analysis revealed that Ca(NO32-methanol, Ca(NO32-ethanol, or CaCl2-methanol treatments produced more lower molecular weights of silk fibroin than CaCl2-ethanol. X-ray diffraction and Fourier-transform infrared spectroscopy showed that CaCl2-ethanol produced a crystalline structure with more silk I (α-form, type II β-turn, while the other treatments produced more silk II (β-form, anti-parallel β-pleated sheet. Solid-State 13C cross polarization and magic angle spinning-nuclear magnetic resonance measurements suggested that regenerated fibroins from CaCl2-ethanol were nearly identical to degummed silk fibroin, while the other treatments produced fibroins with significantly different chemical shifts. Finally, enzyme activity test indicated that silk fibroins from CaCl2-ethanol had higher activity when linked to a known chemotherapeutic drug, L-asparaginase, than the fibroins from other treatments. Conclusions Collectively, these results suggest that the CaCl2-ethanol processing method produces silk fibroin with biomaterial properties that are appropriate for drug delivery.

  6. Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-08-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific properties. Urea self-assembles via hydrogen bonding interactions into crystalline supracolloidal assemblies that can be used to impart macroscopic pores to polymer-based tissue scaffolds. In this communication, we explain the solvent interactions governing the solubility of urea and thereby the scope of compatible polymers. We also highlight the role of solvent interactions on the morphology of the resulting supracolloidal crystals. We elucidate the role of polymer-urea interactions on the morphology of the pores in the resulting biomaterials. Finally, we demonstrate that it is possible to use our urea templating methodology to prepare Bombyx mori silk protein-based biomaterials with pores that human dermal fibroblasts respond to by aligning with the long axis of the pores. This methodology has potential for application in a variety of different tissue engineering niches in which cell alignment is observed, including skin, bone, muscle and nerve.

  7. Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers.

    Science.gov (United States)

    Muiznieks, Lisa D; Keeley, Fred W

    2016-10-01

    Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin-like sequences as a strategy to rationally increase the strength of elastin-based materials while maintaining extensibility. We demonstrate a thermo-responsive phase separation and spontaneous colloid-like droplet formation from silk-elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross-linked materials. Silk-elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin-only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693-703, 2016. © 2016 Wiley Periodicals, Inc.

  8. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.

    Science.gov (United States)

    McGill, Meghan; Coburn, Jeannine M; Partlow, Benjamin P; Mu, Xuan; Kaplan, David L

    2017-11-01

    Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods

  9. The Use of Silk in Nanomedicine Applications

    DEFF Research Database (Denmark)

    Chiasson, Raymond; Hasan, Moaraj; Al Nazer, Q.

    2016-01-01

    Biopolymers made up of silk proteins have been used in numerous drug delivery applications and represent an excellent source of natural biomaterials. In particular silk fibroin has proved valuable as a building block for nanomedicines and drug delivery implants, owing to its favorable...... biocompatibility, degradation, stabilization and controllability. In this chapter we will discuss the various sources of silk biomaterial and how this naturally occurring biopolymer has been utilized in the development of nanomedicines and implantable drug delivery systems, demonstrating how silk is a unique...

  10. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2017-03-01

    Full Text Available The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF, extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.

  11. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.

    Science.gov (United States)

    Bäcker, Anne; Erhardt, Olga; Wietbrock, Lukas; Schel, Natalia; Göppert, Bettina; Dirschka, Marian; Abaffy, Paul; Sollich, Thomas; Cecilia, Angelica; Gruhl, Friederike J

    2017-02-01

    In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze-drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers. © 2016 Wiley Periodicals, Inc.

  12. Curcumin-functionalized silk biomaterials for anti-aging utility.

    Science.gov (United States)

    Yang, Lei; Zheng, Zhaozhu; Qian, Cheng; Wu, Jianbing; Liu, Yawen; Guo, Shaozhe; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David L

    2017-06-15

    Curcumin is a natural antioxidant that is isolated from turmeric (Curcuma longa) and exhibits strong free radical scavenging activity, thus functional for anti-aging. However, poor stability and low solubility of curcumin in aqueous conditions limit its biomedical applications. Previous studies have shown that the anti-oxidation activity of curcumin embedded in silk fibroin films could be well preserved, resulting in the promoted adipogenesis from human mesenchymal stem cells (hMSCs) cultured on the surface of the films. In the present study, curcumin was encapsulated in both silk fibroin films (silk/cur films) and nanoparticles (silk/cur NPs), and their anti-aging effects were compared with free curcumin in solution, with an aim to elucidate the mechanism of anti-aging of silk-associated curcumin and to better serve biomedical applications in the future. The morphology and structure of silk/cur film and silk/cur NP were characterized using SEM, FTIR and DSC, indicating characteristic stable beta-sheet structure formation in the materials. Strong binding of curcumin molecules to the beta-sheet domains of silk fibroin resulted in the slow release of curcumin with well-preserved activity from the materials. For cell aging studies, rat bone marrow mesenchymal stem cells (rBMSCs) were cultured in the presence of free curcumin (FC), silk/cur film and silk/cur NP, and cell proliferation and markers of aging (P53, P16, HSP70 gene expression and β-Galactosidase activity) were examined. The results indicated that cell aging was retarded in all FC, silk/cur NP and silk/cur film samples, with the silk-associated curcumin superior to the FC. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells.

    Science.gov (United States)

    Dai, Bingyan; Pan, Qunwen; Li, Zhanghua; Zhao, Mingyan; Liao, Xiaorong; Wu, Keng; Ma, Xiaotang

    2016-01-01

    Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment.

  14. A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices

    Science.gov (United States)

    Bucciarelli, A.; Mulloni, V.; Maniglio, D.; Pal, R. K.; Yadavalli, V. K.; Motta, A.; Quaranta, A.

    2018-04-01

    Over the last two decades, silk fibroin has been exploited as a versatile optical material in biological applications due to a combination of unique properties. Recently, protocols have been developed to produce a silk fibroin negative tone resist that is UV crosslinkable, thereby allowing micro and nanoscale patterning of the protein using traditional photolithographic tools. The same protocol has been applied to the silk protein sericin to develop a sericin resist. Despite the immense potential of these biomaterials to develop micro optical patterns on silicon and glass surfaces, as well as self-standing components, their refractive indexes are not well characterized. In this work, optimizing a method to obtain extremely smooth, thin films, the refractive index (RI) of fibroin and sericin proteins and resists were characterized using ellipsometry. The parameters of the Sellmeier and Cauchy dispersion laws have been determined to obtain the RI over a large wavelength range. A complete morphological study of the films has been conducted. In addition, the effect of solvent on the optical properties of silk fibroin and sericin thin films are reported, with differences in values explained by examining the change in the protein secondary structure.

  15. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    Science.gov (United States)

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  16. Silk: a potential medium for tissue engineering.

    Science.gov (United States)

    Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir

    2008-01-01

    Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal constructs fulfilling this criterion. Silk produced by the domestic silkworm, Bombyx mori, has a long history of use in medicine. It has recently been increasingly investigated as a promising biomaterial for dermal constructs. Silk contains 2 fibrous proteins, sericin and fibroin. Each one exhibits unique mechanical and biological properties. Comprehensive review of randomized-controlled trials investigating current dermal constructs and the structures and properties of silk-based constructs on wound healing. This review revealed that silk-fibroin is regarded as the most promising biomaterial, providing options for the construction of tissue-engineered skin. The research available indicates that silk fibroin is a suitable biomaterial scaffold for the provision of adequate dermal constructs.

  17. Functional regeneration of ligament-bone interface using a triphasic silk-based graft.

    Science.gov (United States)

    Li, Hongguo; Fan, Jiabing; Sun, Liguo; Liu, Xincheng; Cheng, Pengzhen; Fan, Hongbin

    2016-11-01

    The biodegradable silk-based scaffold with unique mechanical property and biocompatibility represents a favorable ligamentous graft for tissue-engineering anterior cruciate ligament (ACL) reconstruction. However, the low efficiency of ligament-bone interface restoration barriers the isotropic silk graft to common ACL therapeutics. To enhance the regeneration of the silk-mediated interface, we developed a specialized stratification approach implementing a sequential modification on isotropic silk to constitute a triphasic silk-based graft in which three regions respectively referring to ligament, cartilage and bone layers of interface were divided, followed by respective biomaterial coating. Furthermore, three types of cells including bone marrow mesenchymal stem cells (BMSCs), chondrocytes and osteoblasts were respectively seeded on the ligament, cartilage and bone region of the triphasic silk graft, and the cell/scaffold complex was rolled up as a multilayered graft mimicking the stratified structure of native ligament-bone interface. In vitro, the trilineage cells loaded on the triphasic silk scaffold revealed a high proliferative capacity as well as enhanced differentiation ability into their corresponding cell lineage. 24 weeks postoperatively after the construct was implanted to repair the ACL defect in rabbit model, the silk-based ligamentous graft exhibited the enhancement of osseointegration detected by a robust pullout force and formation of three-layered structure along with conspicuously corresponding matrix deposition via micro-CT and histological analysis. These findings potentially broaden the application of silk-based ligamentous graft for ACL reconstruction and further large animal study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development of advanced antimicrobial and sterilized plasma polypropylene grafted muga (Antheraea assama) silk as suture biomaterial.

    Science.gov (United States)

    Gogoi, Dolly; Choudhury, Arup Jyoti; Chutia, Joyanti; Pal, Arup Ratan; Khan, Mojibur; Choudhury, Manash; Pathak, Pallabi; Das, Gouranga; Patil, Dinkar S

    2014-04-01

    Surface modification of silk fibroin (SF) materials using environmentally friendly and non-hazardous process to tailor them for specific application as biomaterials has drawn a great deal of interest in the field of biomedical research. To further explore this area of research, in this report, polypropylene (PP) grafted muga (Antheraea assama) SF (PP-AASF) suture is developed using plasma treatment and plasma graft polymerization process. For this purpose, AASF is first sterilized in argon (Ar) plasma treatment followed by grafting PP onto its surface. AASF is a non-mulberry variety having superior qualities to mulberry SF and is still unexplored in the context of suture biomaterial. AASF, Ar plasma treated AASF (AASFAr) and PP-AASF are subjected to various characterization techniques for better comparison and the results are attempted to correlate with their observed properties. Excellent mechanical strength, hydrophobicity, antibacterial behavior, and remarkable wound healing activity of PP-AASF over AASF and AASFAr make it a promising candidate for application as sterilized suture biomaterial. Copyright © 2013 Wiley Periodicals, Inc.

  19. Spider Silk as Guiding Biomaterial for Human Model Neurons

    Directory of Open Access Journals (Sweden)

    Frank Roloff

    2014-01-01

    Full Text Available Over the last years, a number of therapeutic strategies have emerged to promote axonal regeneration. An attractive strategy is the implantation of biodegradable and nonimmunogenic artificial scaffolds into injured peripheral nerves. In previous studies, transplantation of decellularized veins filled with spider silk for bridging critical size nerve defects resulted in axonal regeneration and remyelination by invading endogenous Schwann cells. Detailed interaction of elongating neurons and the spider silk as guidance material is unknown. To visualize direct cellular interactions between spider silk and neurons in vitro, we developed an in vitro crossed silk fiber array. Here, we describe in detail for the first time that human (NT2 model neurons attach to silk scaffolds. Extending neurites can bridge gaps between single silk fibers and elongate afterwards on the neighboring fiber. Culturing human neurons on the silk arrays led to an increasing migration and adhesion of neuronal cell bodies to the spider silk fibers. Within three to four weeks, clustered somata and extending neurites formed ganglion-like cell structures. Microscopic imaging of human neurons on the crossed fiber arrays in vitro will allow for a more efficient development of methods to maximize cell adhesion and neurite growth on spider silk prior to transplantation studies.

  20. Invited review nonmulberry silk biopolymers.

    Science.gov (United States)

    Kundu, S C; Kundu, Banani; Talukdar, Sarmistha; Bano, Subia; Nayak, Sunita; Kundu, Joydip; Mandal, Biman B; Bhardwaj, Nandana; Botlagunta, Mahendran; Dash, Biraja C; Acharya, Chitrangada; Ghosh, Ananta K

    2012-06-01

    The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  1. Water-insoluble Silk Films with Silk I Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  2. Silk I and Silk II studied by fast scanning calorimetry.

    Science.gov (United States)

    Cebe, Peggy; Partlow, Benjamin P; Kaplan, David L; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    2017-06-01

    Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000K/s using the Mettler Flash DSC1 on fibroin films with masses around 130-270ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50%MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25°C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50%MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37°C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature T m (II)=351±2.6°C, compared to Silk I crystals which melt at T m (I)=292±3.8°C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065s between onset and end of melting) of the FSC experiment. Silkworm silk is a naturally occurring biomaterial. The fibroin component of silk forms two types of crystals. Silk properties depend upon the

  3. Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging.

    Science.gov (United States)

    Roy, Manas; Kusurkar, Tejas Sanjeev; Maurya, Sandeep Kumar; Meena, Sunil Kumar; Singh, Sushil Kumar; Sethy, Niroj; Bhargava, Kalpana; Sharma, Raj Kishore; Goswami, Debabrata; Sarkar, Sabyasachi; Das, Mainak

    2014-02-01

    In this work, we synthesized graphene oxide from silk cocoon embarking its new dimension as a magnetic fluorophore when compared with its present technical status, which at best is for extracting silk as a biomaterial for tissue engineering applications. We produced graphene oxide by pyrolysing the silk cocoon in an inert atmosphere. The collected raw carbon is oxidized by nitric acid that readily produces multilayer graphene oxide with nano carbon particulates. Structural properties of the graphene oxide were analyzed using scanning electron microscopy, transmission electron microscopy, Fourier transform infra-red spectroscopy, and Raman spectroscopy. The oxidized sample shows remarkable fluorescence, multi-photon imaging and magnetic properties. On increasing the excitation wavelength, the fluorescence emission intensity of the graphene oxide also increases and found maximum emission at 380 nm excitation wavelength. On studying the two photon absorption (TPA) property of aqueous graphene oxide using Z-scan technique, we found significant TPA activity at near infrared wavelength. In addition, the graphene oxide shows ferromagnetic behavior at room temperature. The observed fluorescence and magnetic property were attributed to the defects caused in the graphene oxide structure by introducing oxygen containing hydrophilic groups during the oxidation process. Previously silk cocoon has been used extensively in deriving silk-based tissue engineering materials and as gas filter. Here we show a novel application of silk cocoon by synthesizing graphene oxide based magnetic-fluorophore for bio-imaging applications.

  4. Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2016-10-01

    Full Text Available Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites. The silk fibers are secreted by the labial gland of the larvae of some orders of Holometabola (insects with pupa or the spinnerets of spiders. The majority of studies using silks for biomedical applications use materials from silkworms or spiders, mostly of the genus Nephila clavipes. Silk is one of the most promising biomaterials with effects not only in nerve regeneration, but in a number of regenerative applications. The development of silks for human biomedical applications is of high scientific and clinical interest. Biomaterials in use for biomedical applications have to meet a number of requirements such as biocompatibility and elicitation of no more than a minor inflammatory response, biodegradability in a reasonable time and specific structural properties. Here we present the current status in the field of silk-based conduit development for nerve repair and discuss current advances with regard to potential clinical transfer of an implantable nerve conduit for enhancement of nerve regeneration.

  5. Recombinant protein blends: silk beyond natural design.

    Science.gov (United States)

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. Copyright © 2016. Published by Elsevier Ltd.

  6. Silk-Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials.

    Science.gov (United States)

    Nilebäck, Linnea; Chouhan, Dimple; Jansson, Ronnie; Widhe, Mona; Mandal, Biman B; Hedhammar, My

    2017-09-20

    Natural silk is easily accessible from silkworms and can be processed into different formats suitable as biomaterials and cell culture matrixes. Recombinant DNA technology enables chemical-free functionalization of partial silk proteins through fusion with peptide motifs and protein domains, but this constitutes a less cost-effective production process. Herein, we show that natural silk fibroin (SF) can be used as a bulk material that can be top-coated with a thin layer of the recombinant spider silk protein 4RepCT in fusion with various bioactive motifs and domains. The coating process is based on a silk assembly to achieve stable interactions between the silk types under mild buffer conditions. The assembly process was studied in real time by quartz crystal microbalance with dissipation. Coatings, electrospun mats, and microporous scaffolds were constructed from Antheraea assama and Bombyx mori SFs. The morphology of the fibroin materials before and after coating with recombinant silk proteins was analyzed by scanning electron microscopy and atomic force microscopy. SF materials coated with various bioactive 4RepCT fusion proteins resulted in directed antibody capture, enzymatic activity, and improved cell attachment and spreading, respectively, compared to pristine SF materials. The herein-described procedure allows a fast and easy route for the construction of bioactive materials.

  7. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  8. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    International Nuclear Information System (INIS)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A; Hedhammar, My; Johansson, Jan; Blom, Tobias; Leifer, Klaus

    2010-01-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  9. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    NARCIS (Netherlands)

    Yang, Liang; Hedhammar, My; Blom, Tobias; Leifer, Klaus; Johansson, Jan; Habibovic, Pamela; van Blitterswijk, Clemens

    2010-01-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently,

  10. Effect of polyamines on mechanical and structural properties of Bombyx mori silk.

    Science.gov (United States)

    Yerra, Aparna; Mysarla, Danti Kumari; Siripurapu, Prasanthi; Jha, Anjali; Valluri, Satyavathi V; Mamillapalli, Anitha

    2017-01-01

    Silkworm, Bombyx mori (B. mori) belongs to the Lepidoptera family. The silk produced from this insect, mulberry silk, gained lot of importance as a fabric. Silk is being exploited as a biomaterial due to its surprising strength and biocompatibility. Polyamines (PA) are important cell growth regulators. In the present work the effect of treatment of polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm) on the quantity and quality of silk produced was assessed. Results showed that exogenous feeding of Spd at a concentration of 50 µM increased fiber length significantly. Analysis by Fourier transform infrared (FTIR) on the properties of silk obtained from Spd treated silkworms revealed an increase in percentage of absorption with no difference in peak positions of amide I and amide III groups. Scanning electron microscopy (SEM) revealed an increase in diameter of silk. Further, analysis at molecular level showed an increase in fibroin expression in Spd treated silk glands. However, the Spd treatment showed no significant difference with respect to fibroin to sericin ratio per unit weight of cocoon, silk tenacity, and percent elongation. Thus, the present results show that polyamine treatment would influence silk quality at structural, mechanical, and molecular level in the Bombyx mori, which can be exploited in silk biomaterial production. © 2016 Wiley Periodicals, Inc.

  11. Silk scaffolds in bone tissue engineering: An overview.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2017-11-01

    Bone tissue plays multiple roles in our day-to-day functionality. The frequency of accidental bone damage and disorder is increasing worldwide. Moreover, as the world population continues to grow, the percentage of the elderly population continues to grow, which results in an increased number of bone degenerative diseases. This increased elderly population pushes the need for artificial bone implants that specifically employ biocompatible materials. A vast body of literature is available on the use of silk in bone tissue engineering. The current work presents an overview of this literature from materials and fabrication perspective. As silk is an easy-to-process biopolymer; this allows silk-based biomaterials to be molded into diverse forms and architectures, which further affects the degradability. This makes silk-based scaffolds suitable for treating a variety of bone reconstruction and regeneration objectives. Silk surfaces offer active sites that aid the mineralization and/or bonding of bioactive molecules that facilitate bone regeneration. Silk has also been blended with a variety of polymers and minerals to enhance its advantageous properties or introduce new ones. Several successful works, both in vitro and in vivo, have been reported using silk-based scaffolds to regenerate bone tissues or other parts of the skeletal system such as cartilage and ligament. A growing trend is observed toward the use of mineralized and nanofibrous scaffolds along with the development of technology that allows to control scaffold architecture, its biodegradability and the sustained releasing property of scaffolds. Further development of silk-based scaffolds for bone tissue engineering, taking them up to and beyond the stage of human trials, is hoped to be achieved in the near future through a cross-disciplinary coalition of tissue engineers, material scientists and manufacturing engineers. The state-of-art of silk biomaterials in bone tissue engineering, covering their wide

  12. Gel spinning of silk tubes for tissue engineering

    Science.gov (United States)

    Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2011-01-01

    Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570

  13. Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response.

    Science.gov (United States)

    Calabrese, Rossella; Raia, Nicole; Huang, Wenwen; Ghezzi, Chiara E; Simon, Marc; Staii, Cristian; Weiss, Anthony S; Kaplan, David L

    2017-09-01

    The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk-tropoelastin or silk-ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Fabrication of elastomeric silk fibers.

    Science.gov (United States)

    Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L

    2017-09-01

    Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.

  15. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells.

    Science.gov (United States)

    Franck, Debra; Gil, Eun Seok; Adam, Rosalyn M; Kaplan, David L; Chung, Yeun Goo; Estrada, Carlos R; Mauney, Joshua R

    2013-01-01

    Silk-based biomaterials in combination with extracellular matrix (ECM) coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1) or rough, porous lamellar-like sheets (Group 2). Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC) and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC) analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFβ1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These results

  16. The processing and heterostructuring of silk with light

    Science.gov (United States)

    Sidhu, Mehra S.; Kumar, Bhupesh; Singh, Kamal P.

    2017-09-01

    Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.

  17. Structure-function-property-design interplay in biopolymers: spider silk.

    Science.gov (United States)

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L

    2014-04-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits

    OpenAIRE

    Christine Radtke

    2016-01-01

    Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropo...

  19. Viscoelasticity of biomaterials

    International Nuclear Information System (INIS)

    Glasser, W.G.; Hatakeyama, H.

    1992-01-01

    Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately

  20. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    Directory of Open Access Journals (Sweden)

    Dhas SP

    2015-10-01

    Full Text Available Sindhu Priya Dhas, Suruthi Anbarasan, Amitava Mukherjee, Natarajan Chandrasekaran Center for Nanobiotechnology, VIT University, Vellore, India Abstract: Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. Keywords: silk fibers, silver nanoparticles, antibacterial activity, wound infections, cytotoxicity, 3T3 fibroblast cells

  1. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing

    Science.gov (United States)

    Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769

  2. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    Science.gov (United States)

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The processing and heterostructuring of silk with light.

    Science.gov (United States)

    Sidhu, Mehra S; Kumar, Bhupesh; Singh, Kamal P

    2017-09-01

    Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.

  4. Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein.

    Science.gov (United States)

    Zhang, Lin; Bai, Zhitong; Ban, Heng; Liu, Ling

    2015-11-21

    Recent experiments have discovered very different thermal conductivities between the spider silk and the silkworm silk. Decoding the molecular mechanisms underpinning the distinct thermal properties may guide the rational design of synthetic silk materials and other biomaterials for multifunctionality and tunable properties. However, such an understanding is lacking, mainly due to the complex structure and phonon physics associated with the silk materials. Here, using non-equilibrium molecular dynamics, we demonstrate that the amino acid sequence plays a key role in the thermal conduction process through β-sheets, essential building blocks of natural silks and a variety of other biomaterials. Three representative β-sheet types, i.e. poly-A, poly-(GA), and poly-G, are shown to have distinct structural features and phonon dynamics leading to different thermal conductivities. A fundamental understanding of the sequence effects may stimulate the design and engineering of polymers and biopolymers for desired thermal properties.

  5. Spider Silk Processing for Spidroin Recovery from Crossopriza Lyoni Web

    Science.gov (United States)

    Mohtar, J. A.; Ooi, W. L.; Yusuf, F.

    2018-03-01

    Spider silk is a potential biomaterial that can be used in various applications for its outstanding physicomechanical properties attributed by the spidroin composition. Efforts for commercializing spider silks have been mainly focused on the characterization of spidroins from the Entelegyne spiders for exceptional fibre construction. Hence, studies on silk proteins from the Haplogyne species remain neglected. The aim of this study is to isolate spidroin from Crossopriza lyoni web. Silk processing involved the pretreatment of fibres for the shell layer removal from the surface. A screening study was conducted to analyze the effect of temperature, incubation time and agitation speed on spidroin extraction using Ajisawa’s reagent by OFAT analysis followed by statistical optimization of the extraction process via RSM for maximal protein recovery. All parameters exerted significant effect on spidroin recovery (pspider silk to meet the demand for a variety of silk-based products in the near future.

  6. Plasticity in Major Ampullate Silk Production in Relation to Spider Phylogeny and Ecology

    Science.gov (United States)

    Boutry, Cecilia; Řezáč, Milan; Blackledge, Todd Alan

    2011-01-01

    Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve. PMID:21818328

  7. Plasticity in major ampullate silk production in relation to spider phylogeny and ecology.

    Directory of Open Access Journals (Sweden)

    Cecilia Boutry

    Full Text Available Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve.

  8. Osteoinductive recombinant silk fusion proteins for bone regeneration.

    Science.gov (United States)

    Dinjaski, Nina; Plowright, Robyn; Zhou, Shun; Belton, David J; Perry, Carole C; Kaplan, David L

    2017-02-01

    Protein polymers provide a unique opportunity for tunable designs of material systems due to the genetic basis of sequence control. To address the challenge of biomineralization interfaces with protein based materials, we genetically engineered spider silks to design organic-inorganic hybrid systems. The spider silk inspired domain (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT) 15 served as an organic scaffold to control material stability and to allow multiple modes of processing, whereas the hydroxyapatite binding domain VTKHLNQISQSY (VTK), provided control over osteogenesis. The VTK domain was fused either to the N-, C- or both terminals of the spider silk domain to understand the effect of position on material properties and mineralization. The addition of the VTK domain to silk did not affect the physical properties of the silk recombinant constructs, but it had a critical role in the induction of biomineralization. When the VTK domain was placed on both the C- and N-termini the formation of crystalline hydroxyapatite was significantly increased. In addition, all of the recombinant proteins in film format supported the growth and proliferation of human mesenchymal stem cells (hMSCs). Importantly, the presence of the VTK domain enhanced osteoinductive properties up to 3-fold compared to the control (silk alone without VTK). Therefore, silk-VTK fusion proteins have been shown suitable for mineralization and functionalization for specific biomedical applications. Organic-inorganic interfaces are integral to biomaterial functions in many areas of repair and regeneration. Several protein polymers have been investigated for this purpose. Despite their success the limited options to fine-tune their material properties, degradation patterns and functionalize them for each specific biomedical application limits their application. Various studies have shown that the biological performance of such proteins can be improved by genetic engineering. The present study provides data

  9. Invited review current progress and limitations of spider silk for biomedical applications.

    Science.gov (United States)

    Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna

    2012-06-01

    Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. Copyright © 2011 Wiley Periodicals, Inc.

  10. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    Directory of Open Access Journals (Sweden)

    Ick-Soo Kim

    2011-10-01

    Full Text Available Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM. The water contact angle of silk/tetramethoxysilane (TMOS composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA biocomposites is prepared by means of an effective calcium and phosphate (Ca–P alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering.

  11. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  12. Dissolution and regeneration of non-mulberry Eriogyna Pyretorum silk fibroin

    Science.gov (United States)

    Guo, Yuhang; Li, Xiufang; Zhang, Qiang; Yan, Shuqin; You, Renchuan

    2017-10-01

    Protein-based materials have been actively pursued as biomaterials because of their nontoxicity, biocompatibility and biodegradability. In this work, we demonstrated the potential of Eriogyna pyretorum silk fibroin (ESF), a non-mulberry silk protein, as biomaterials. The degummed ESF fibers could be dissolved completely by Ca(NO3)2/H2O/C2H5OH solution to produce regenerated ESF. The solubility was strongly dependent on the addition of C2H5OH, heating temperature and dissolving time. α-helix and random coil are main molecular conformation in aqueous ESF solution. The sol-gel transition behavior of regenerated ESF was also studied, indicating that the conformational transition of regenerated ESF from random coil/α-helix to β-sheet during gelation. Especially, ESF showed more rapid gelation than mulberry silk fibroin (BSF). Consequently, the gelation rate of BSF could be controlled ranging from tens of minutes to days by changing the ESF ratio, providing useful options for the fabrication of silk hydrogels. Water-stable regenerated ESF film could be achieved by using aqueous ethanol to induce structural transition. Tensile tests showed that the ESF films have a dry strength of approximate 31.0 MPa and a wet strength of approximate 3.3 MPa. This study provides new opportunities as an alternative natural protein material for biomedical applications.

  13. The osteogenic potential of mesoporous bioglasses/silk and non-mesoporous bioglasses/silk scaffolds in ovariectomized rats: in vitro and in vivo evaluation.

    Directory of Open Access Journals (Sweden)

    Ning Cheng

    Full Text Available Silk-based scaffolds have been introduced to bone tissue regeneration for years, however, their local therapeutic efficiency in bone metabolic disease condition has been seldom reported. According to our previous report, mesoporous bioactive glass (MBG/silk scaffolds exhibits superior in vitro bioactivity and in vivo osteogenic properties compared to non-mesoporous bioactive glass (BG/silk scaffolds, but no information could be found about their efficiency in osteoporotic (OVX environment. This study investigated a biomaterial-based approach for improving MSCs behavior in vitro, and accelerating OVX defect healing by using 3D BG/silk and MBG/silk scaffolds, and pure silk scaffolds as control. The results of SEM, CCK-8 assay and quantitative ALP activity showed that MBG/silk scaffolds can improve attachment, proliferation and osteogenic differentiation of both O-MSCs and sham control. In vivo therapeutic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, safranin O staining and tartrate-resistant acid phosphatase, indicating accelerated bone formation with compatible scaffold degradation and reduced osteoclastic response of defect healing in OVX rats after 2 and 4 weeks treatment, with a rank order of MBG/silk > BG/silk > silk group. Immunohistochemical markers of COL I, OPN, BSP and OCN also revealed that MBG/silk scaffolds can better induce accelerated collagen and non-collagen matrix production. The findings of this study suggest that MBG/silk scaffolds provide a better environment for cell attachment, proliferation and differentiation, and act as potential substitute for treating local osteoporotic defects.

  14. Differential scanning fluorimetry illuminates silk feedstock stability and processability

    Czech Academy of Sciences Publication Activity Database

    Dicko, C.; Kasoju, Naresh; Hawkins, N.; Vollrath, F.

    2016-01-01

    Roč. 12, č. 1 (2016), s. 255-262 ISSN 1744-683X R&D Projects: GA MŠk(CZ) EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : differential scanning fluorimetry * biomaterials * silk fibroin Subject RIV: CE - Biochemistry Impact factor: 3.889, year: 2016

  15. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials.

    Science.gov (United States)

    Huang, Wenwen; Ebrahimi, Davoud; Dinjaski, Nina; Tarakanova, Anna; Buehler, Markus J; Wong, Joyce Y; Kaplan, David L

    2017-04-18

    Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of

  16. Spider genomes provide insight into composition and evolution of venom and silk

    Science.gov (United States)

    Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  17. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  18. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials.

    Science.gov (United States)

    Vu, Trang; Xue, Ye; Vuong, Trinh; Erbe, Matthew; Bennet, Christopher; Palazzo, Ben; Popielski, Lucas; Rodriguez, Nelson; Hu, Xiao

    2016-09-07

    This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples' characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the

  19. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials

    Directory of Open Access Journals (Sweden)

    Trang Vu

    2016-09-01

    Full Text Available This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt % for the first group (ultrasonication, and 10 wt % for the second group (natural gel. Differential scanning calorimetry (DSC and temperature modulated DSC (TMDSC were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications

  20. Improved human tenocyte proliferation and differentiation in vitro by optimized silk degumming

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiao; Qiu Yiwei; Carr, Andrew J; Triffitt, James T; Sabokbar, Afsie; Xia Zhidao, E-mail: z.xia@swansea.ac.uk [Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford (United Kingdom)

    2011-06-15

    Tendon disorders are common clinical conditions. Tendon tissue engineering provides a new approach for tendon repair by integrating engineered substitutes with their native counterparts. Silk is considered to be a promising candidate for tendon engineering because of its biological and mechanical properties. However, a major concern with using silk for biomedical applications is the immune responses generated by sericin, a glue-like protein that coats the silk fibres. This study improves the existing protocols for silk 'degumming' which removes sericin and enables preparation of silk that is suitable for tendon regeneration. Bombyx mori silks were treated by sequential treatments with different proteases. The efficiency of degumming was determined by measuring weight loss, picric acid and carmine staining and scanning electron microscopy. To evaluate the cellular responses after degumming, the growth and differentiation of human tenocytes on silks were examined. The results showed that sequential protease treatment effectively degummed raw silks. The sequentially degummed silks showed enhanced tenocyte proliferation and upregulated mRNA levels of tendon markers. Thick cell multilayers formed on the treated silks, with cells and collagen fibres penetrating into the spaces in individual silk filaments, resulting in a structure resembling human tendon.

  1. Improved human tenocyte proliferation and differentiation in vitro by optimized silk degumming

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Wang; Yiwei, Qiu; Carr, Andrew J; Triffitt, James T; Sabokbar, Afsie; Xia Zhidao, E-mail: z.xia@swansea.ac.uk [Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford (United Kingdom)

    2011-06-15

    Tendon disorders are common clinical conditions. Tendon tissue engineering provides a new approach for tendon repair by integrating engineered substitutes with their native counterparts. Silk is considered to be a promising candidate for tendon engineering because of its biological and mechanical properties. However, a major concern with using silk for biomedical applications is the immune responses generated by sericin, a glue-like protein that coats the silk fibres. This study improves the existing protocols for silk 'degumming' which removes sericin and enables preparation of silk that is suitable for tendon regeneration. Bombyx mori silks were treated by sequential treatments with different proteases. The efficiency of degumming was determined by measuring weight loss, picric acid and carmine staining and scanning electron microscopy. To evaluate the cellular responses after degumming, the growth and differentiation of human tenocytes on silks were examined. The results showed that sequential protease treatment effectively degummed raw silks. The sequentially degummed silks showed enhanced tenocyte proliferation and upregulated mRNA levels of tendon markers. Thick cell multilayers formed on the treated silks, with cells and collagen fibres penetrating into the spaces in individual silk filaments, resulting in a structure resembling human tendon.

  2. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers

    International Nuclear Information System (INIS)

    Ming, Jinfa; Zuo, Baoqi

    2012-01-01

    A novel electrospinning of silk fibroin/hydroxyapatite hybrid nanofibers with different composition ratios was performed with methanoic acid as a spinning solvent. The silk fibroin/hydroxyapatite hybrids containing up to 30% hydroxyapatite nanoparticles could be electrospun into the continuous fibrous structure. The electrospun silk fibroin/hydroxyapatite hybrid nanofibers showed bigger diameter and wider diameter distribution than pure silk fibroin nanofibers, and the average diameter gradually increased from 95 to 582 nm. At the same time, the secondary structure of silk fibroin/hydroxyapatite nanofibers was characterized by X-ray diffraction, Fourier transform infrared analysis, and DSC measurement. Comparing with the pure silk fibroin nanofibers, the crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. X-ray diffraction results demonstrated the hydroxyapatite crystalline nature remained as evidenced from the diffraction planes (002), (211), (300), and (202) of the hydroxyapatite crystallites, which was also confirmed by Fourier transform infrared analysis. The thermal behavior of hybrid nanofibers exhibited the endothermic peak of moisture evaporation ranging from 86 to 113 °C, and the degradation peak at 286 °C appeared. The SF/HAp nanofibers mats containing 30% HAp nanoparticles showed higher breaking tenacity and extension at break for 1.1688 ± 0.0398 MPa and 6.55 ± 1.95%, respectively. Therefore, the electrospun silk fibroin/hydroxyapatite hybrid nanofibers should be provided potentially useful options for the fabrication of biomaterial scaffolds for bone tissue engineering. -- Highlights: ► The novel SF/HAp nanofibers were directly prepared by electrospinning method. ► The nanofiber diameter had significant related to the content of HAp. ► The crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. ► The HAp crystals existing in the hybrid nanofibers were characterized

  3. Recombinant spider silk genetically functionalized with affinity domains.

    Science.gov (United States)

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  4. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    Science.gov (United States)

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  5. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages.

    Science.gov (United States)

    Ghezzi, Chiara E; Marelli, Benedetto; Donelli, Ilaria; Alessandrino, Antonio; Freddi, Giuliano; Nazhat, Showan N

    2017-07-01

    Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure.

    Science.gov (United States)

    Shen, Tingting; Wang, Tao; Cheng, Guotao; Huang, Lan; Chen, Lei; Wu, Dayang

    2018-02-05

    Regenerated Silk biomaterials are usually pre-formed from silk fibroin solutions. However, the dissolution of silk fibroin in proper solvents by a simple and low cost way is still a challenge. Here, we employed a CaCl 2 -methanol solvent system with a very low CaCl 2 concentration of 6wt% to dissolve silk fibroin. During the dissolution process, the evaporation of methanol cause the changing of solvation sheath of ions in the solvent. The remaining solvent with the incomplete solvation sheath is absorbed by the silk fiber and interacts with fibroin chains to complete the solvation sheath, which accounts for the dissolution of silk fibroin. Silk fibroin dissolution stops as all the solvation sheaths are complete. The final CaCl 2 concentration is ca. 26% and silk fibroin is completely dissolved with a yield of about 90%. Silk fibroin is dissolved into multi-scale nanofibrils solution which is potential for producing regenerated silk fibroin materials for functional applications. Copyright © 2018. Published by Elsevier B.V.

  7. Synthetic Spider Silk Production on a Laboratory Scale

    Science.gov (United States)

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  8. Structure to function: Spider silk and human collagen

    Science.gov (United States)

    Rabotyagova, Olena S.

    , morphological features and assembly. Aside from fundamental perspectives, we anticipate that these results will provide a blueprint for the design of precise materials for a range of potential applications such as controlled release devices, functional coatings, components of tissue regeneration materials and environmentally friendly polymers in future studies. In the second part of this work, human collagen type I was studied as another representative of the family of fibrous proteins. Collagen type I is the most abundant extracellular matrix protein in the human body, providing the basis for tissue structure and directing cellular functions. Collagen has a complex structural hierarchy, organized at different length scales, including the characteristic triple helical feature. In the present study we assessed the relationship between collagen structure (native vs. denatured) and sensitivity to UV radiation with a focus on changes in the primary structure, conformation, microstructure and material properties. Free radical reactions are involved in collagen degradation and a mechanism for UV-induced collagen degradation related to structure was proposed. The results from this study demonstrated the role of collagen supramolecular organization (triple helix) in the context of the effects of electromagnetic radiation on extracellular matrices. Owing to the fact that both silks and collagens are proteins that have found widespread interest for biomaterial related needs, we anticipate that the current studies will serve as a foundation for future biomaterial designs with controlled properties. Furthermore, fundamental insight into self-assembly and environmentally-2mediated degradation, will build a foundation for fundamental understanding of the remodeling and functions of these types of fibrous proteins in vivo and in vitro. This type of insight is essential for many areas of scientific inquiry, from drug delivery, to scaffolds for tissue engineering, and to the stability of

  9. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Science.gov (United States)

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.

  10. Novel two-step method to form silk fibroin fibrous hydrogel

    International Nuclear Information System (INIS)

    Ming, Jinfa; Li, Mengmeng; Han, Yuhui; Chen, Ying; Li, Han; Zuo, Baoqi; Pan, Fukui

    2016-01-01

    Hydrogels prepared by silk fibroin solution have been studied. However, mimicking the nanofibrous structures of extracellular matrix for fabricating biomaterials remains a challenge. Here, a novel two-step method was applied to prepare fibrous hydrogels using regenerated silk fibroin solution containing nanofibrils in a range of tens to hundreds of nanometers. When the gelation process of silk solution occurred, it showed a top-down type gel within 30 min. After gelation, silk fibroin fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. Moreover, the compressive stress and modulus of fibrous hydrogels were 31.9 ± 2.6 and 2.8 ± 0.8 kPa, respectively, which was formed using 2.0 wt.% concentration solutions. In addition, fibrous hydrogels supported BMSCs attachment and proliferation over 12 days. This study provides important insight in the in vitro processing of silk fibroin into useful new materials. - Highlights: • SF fibrous hydrogel was prepared by a novel two-step method. • SF solution containing nanofibrils in a range of tens to hundreds of nanometers was prepared. • Gelation process was top-down type gel with several minutes. • SF fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. • Fibrous hydrogels had higher compressive stresses superior to porous hydrogels.

  11. In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds

    Directory of Open Access Journals (Sweden)

    Hyeon Joo Kim

    2012-12-01

    Full Text Available Human adipose-derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with natural and synthetic biomaterials. In the present study, we hypothesized that porous aqueous-derived silk protein scaffolds would be suitable for chondrogenic differentiation of human adipose-derived stem cells. Human adipose-derived stem cells were cultured up to 6 weeks, and cell proliferation and chondrogenic differentiation were investigated and compared with those in conventional micromass culture. Cell proliferation, glycosaminoglycan, and collagen levels in aqueous-derived silk scaffolds were significantly higher than in micromass culture. Transcript levels of SOX9 and type II collagen were also upregulated in the cell–silk constructs at 6 weeks. Histological examination revealed that the pores of the silk scaffolds were filled with cells uniformly distributed. In addition, chondrocyte-specific lacunae formation was evident and distributed in the both groups. The results suggest the biodegradable and biocompatible three-dimensional aqueous-derived silk scaffolds provided an improved environment for chondrogenic differentiation compared to micromass culture.

  12. Comparative Study of Silk-Silk Alloy Materials

    Science.gov (United States)

    Xue, Ye; Jao, Dave; Hu, Wenbing; Wolf, Nathan; Rocks, Eva-Marie; Hu, Xiao

    Silk fibroin materials can be used for various kinds of biomedical applications. We report a comparative study of silk-silk blend materials using thermal analysis and infrared spectroscopy. Four groups of silk-silk blend films: Mori-Tussah, Mori-Muga, Mori-Eri and Mori-Thai, were fabricated from aqueous solutions and blended at different weight ratios, respectively. These silk-silk blend systems exploit the beneficial material properties of both silks. DSC and temperature-modulated DSC were used to measure the transition temperatures and heat capacity of these water-based silk-silk blend films. Fourier transform infrared spectrometer was used to characterize secondary structures of silk-silk blends. This study demonstrates that Mori silk are fully miscible with Tussah, Muga, Eri and Thai silk at different weight ratios without phase separation. Glass transition temperatures, degradation temperatures and the contents of alpha-helix and random coils of those silk-silk blend films can be controlled by changing the contents of different silks in the blend system. The features of Mori silk combined with the attributes of Tussah, Muga, Eri and Thai silk offer a useful suite of materials for a variety of applications in the future.

  13. Effect of Sodium Carbonate Concentrations on the Formation and Mechanism of Regenerated Silk Fibroin Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Hao Dou

    2014-01-01

    Full Text Available Degumming is the first process for the preparation of all silk-based products. In this paper, effect of sodium carbonate concentrations for silk degumming on the formation of electrospun silk fibroin nanofibers was investigated and the reason for the silk electrospinning process was explained for the first time by differences from the microstructure of regenerated silk fibroin. With increasing the sodium carbonate concentration, microstructure both in the aqueous solutions and in the electrospinning solutions transformed from nanofibrils to nanoparticles, leading to obvious changes on rheological property; electrospinning solutions with nanofibrils behaved like the native silk dope and owned remarkably higher viscosity than the solutions with nanoparticles showing very low viscosity. More interestingly, nanofibrils favored the formation of silk nanofibers with ease, and even nanofibers could be electrospun at concentration 2%. However, nanoparticles were completely unable to generate nanofibers at high spinning concentration 8%. Importance of sodium carbonate concentrations is heavily emphasized for impacting the microstructure types and further influencing the electrospinning performance of regenerated silk. Hence, sodium carbonate concentrations provide a controllable choice for the preparation of silk-based electrospun biomaterials with desired properties.

  14. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    International Nuclear Information System (INIS)

    Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2014-01-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties

  15. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Liu, Zhi; Bie, Shiyu [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zhang, Feng [Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties.

  16. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    Science.gov (United States)

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  17. Review of biomaterials for electronics and photonics

    Science.gov (United States)

    Ouchen, Fahima; Rau, Ileana; Kajzar, François; Heckman, Emily; Grote, James G.

    2018-03-01

    Much work has been done developing and utilizing biomaterials over the last decade. Biomaterials not only includes deoxyribonucleic acid (DNA), but nucleobases and silk. These materials are abundant, inexpensive, non-fossil fuel-based and green. Researchers have demonstrated their potential to enhance the performance of organic and inorganic electronic and photonic devices, such as light emitting diodes, thin film transistors, capacitors, electromagnetic interference shielding and electro-optic modulators. Starting around the year 2000, with only a hand full of researchers, including researchers at the Air Force Research Laboratory (AFRL) and researchers at the Chitose Institute of Technology (CIST), it has grown into a large US, Asia and European consortium, producing over 3400 papers, three books, many book chapters and multiple patents. Presented here is a short overview of the progress in this exciting field of nano bio-engineering.

  18. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  19. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.

    Science.gov (United States)

    Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-08-22

    Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.

  20. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.

    Science.gov (United States)

    Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong

    2016-04-01

    Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.

  1. Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres.

    Directory of Open Access Journals (Sweden)

    Hanna Wendt

    Full Text Available BACKGROUND: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. METHODOLOGY/PRINCIPAL FINDINGS: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E for microscopic analyses. CONCLUSION/SIGNIFICANCE: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

  2. Water-based preparation of spider silk films as drug delivery matrices.

    Science.gov (United States)

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2015-09-10

    The main focus of this work was to obtain a drug delivery matrix characterized by biocompatibility, water insolubility and good mechanical properties. Moreover the preparation process has to be compatible with protein encapsulation and the obtained matrix should be able to sustain release a model protein. Spider silk proteins represent exceptional natural polymers due to their mechanical properties in combination with biocompatibility. As both hydrophobic and slowly biodegrading biopolymers, recombinant spider silk proteins fulfill the required properties for a drug delivery system. In this work, we present the preparation of eADF4(C16) films as drug delivery matrices without the use of any organic solvent. Water-based spider silk films were characterized in terms of protein secondary structure, thermal stability, zeta-potential, solubility, mechanical properties, and water absorption and desorption. Additionally, this study includes an evaluation of their application as a drug delivery system for both small molecular weight drugs and high molecular weight molecules such as proteins. Our investigation focused on possible improvements in the film's mechanical properties including plasticizers in the film matrix. Furthermore, different film designs were prepared, such as: monolayer, coated monolayer, multilayer (sandwich), and coated multilayer. The release of the model protein BSA from these new systems was studied. Results indicated that spider silk films are a promising protein drug delivery matrix, capable of releasing the model protein over 90 days with a release profile close to zero order kinetic. Such films could be used for several pharmaceutical and medical purposes, especially when mechanical strength of a drug eluting matrix is of high importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.

    Science.gov (United States)

    Humenik, Martin; Mohrand, Madeleine; Scheibel, Thomas

    2018-04-18

    The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate. Particles, however, showed significantly lower activity of the EST and GFP domains likely caused by a steric hindrance. However, upon self-assembly of EST-eADF4(C16) and GFP-eADF4(C16) into fibrils the protein activities were retained. In general, the fusion of globular enzymes with the spider silk domain allows the generation of fibrous biomaterials with catalytic or light emitting properties.

  4. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.

    Directory of Open Access Journals (Sweden)

    Ingi Agnarsson

    Full Text Available BACKGROUND: Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41,000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200,000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila or simply from researchers' backyards. Are we limited to 'blindly fishing' in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? METHODOLOGY: We examined the biomechanical properties of silk produced by the remarkable Malagasy 'Darwin's bark spider' (Caerostris darwini, which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m(2 suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m(3, with some samples reaching 520 MJ/m(3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. CONCLUSIONS: Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web

  5. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    Science.gov (United States)

    Zhang, Yu-Qing; Shen, Wei-De; Xiang, Ru-Li; Zhuge, Lan-Jian; Gao, Wei-Jian; Wang, Wen-Bao

    2007-10-01

    fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle.

  6. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    International Nuclear Information System (INIS)

    Zhang Yuqing; Shen Weide; Xiang Ruli; Zhuge Lanjian; Gao Weijian; Wang Wenbao

    2007-01-01

    fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle

  7. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuqing, E-mail: yqzhang@public1.sz.js.cn; Shen Weide; Xiang Ruli [Soochow University, Silk Biotechnol. Lab., School of Life Science (China); Zhuge Lanjian; Gao Weijian; Wang Wenbao [Soochow University, Analytical Center (China)

    2007-10-15

    substructure of the degraded silk fibroin in aqueous solution. It is possible that the silk protein nanoparticles are potentially useful in biomaterials such as cosmetics, anti-UV skincare products, industrial materials and surface improving materials, especially in enzyme/drug delivery system as vehicle.

  8. Silk Film Topography Directs Collective Epithelial Cell Migration

    Science.gov (United States)

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  9. Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama.

    Science.gov (United States)

    Gupta, Adarsh K; Mita, Kazuei; Arunkumar, Kallare P; Nagaraju, Javaregowda

    2015-08-03

    The golden silk spun by Indian golden silkmoth Antheraea assama, is regarded for its shimmering golden luster, tenacity and value as biomaterial. This report describes the gene coding for golden silk H-fibroin (AaFhc), its expression, full-length sequence and structurally important motifs discerning the underlying genetic and biochemical factors responsible for its much sought-after properties. The coding region, with biased isocodons, encodes highly repetitious crystalline core, flanked by a pair of 5' and 3' non-repetitious ends. AaFhc mRNA expression is strictly territorial, confined to the posterior silk gland, encoding a protein of size 230 kDa, which makes homodimers making the elementary structural units of the fibrous core of the golden silk. Characteristic polyalanine repeats that make tight β-sheet crystals alternate with non-polyalanine repeats that make less orderly antiparallel β-sheets, β-turns and partial α-helices. Phylogenetic analysis of the conserved N-terminal amorphous motif and the comparative analysis of the crystalline region with other saturniid H-fibroins reveal that AaFhc has longer, numerous and relatively uniform repeat motifs with lower serine content that assume tighter β-crystals and denser packing, which are speculated to be responsible for its acclaimed properties of higher tensile strength and higher refractive index responsible for golden luster.

  10. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  11. [Application of silk-based tissue engineering scaffold for tendon / ligament regeneration].

    Science.gov (United States)

    Hu, Yejun; Le, Huihui; Jin, Zhangchu; Chen, Xiao; Yin, Zi; Shen, Weiliang; Ouyang, Hongwei

    2016-03-01

    Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.

  12. The study of the elasticity of spider dragline silk with liquid crystal model

    International Nuclear Information System (INIS)

    Cui Linying; Liu Fei; Ouyang Zhongcan

    2009-01-01

    Spider dragline silk is an optimal biomaterial with a combination of high tensile strength and high elasticity, and it has long been suggested to belong to liquid crystalline materials. However, a satisfactory liquid crystal description for the mechanical properties of the dragline is still missing. To solve the long existing problem, we generalized the Maier-Saupe theory of nematics to construct a liquid crystal model of the deformation mechanism of the dragline silk. We show that the remarkable elasticity of the dragline can be understood as the isotropic-nematic phase transition of the chain network with the beginning of the transition corresponding to the yield point. The calculated curve fits well with the measurements and the yield point is obtained self-consistently within our framework. The present theory can also qualitatively account for the drop of stress in supercontracted spider silk. All these comprehensive agreements between theory and experiments strongly indicate the dragline to belong to liquid crystal materials.

  13. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres

    Science.gov (United States)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-03-01

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a sensitivity of 0.56 mA mM-1 cm-2, a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM-1 cm-2 and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a

  14. Characterization and Schwann Cell Seeding of up to 15.0 cm Long Spider Silk Nerve Conduits for Reconstruction of Peripheral Nerve Defects

    Directory of Open Access Journals (Sweden)

    Tim Kornfeld

    2016-11-01

    Full Text Available Nerve reconstruction of extended nerve defect injuries still remains challenging with respect to therapeutic options. The gold standard in nerve surgery is the autologous nerve graft. Due to the limitation of adequate donor nerves, surgical alternatives are needed. Nerve grafts made out of either natural or artificial materials represent this alternative. Several biomaterials are being explored and preclinical and clinical applications are ongoing. Unfortunately, nerve conduits with successful enhancement of axonal regeneration for nerve defects measuring over 4.0 cm are sparse and no conduits are available for nerve defects extending to 10.0 cm. In this study, spider silk nerve conduits seeded with Schwann cells were investigated for in vitro regeneration on defects measuring 4.0 cm, 10.0 cm and 15.0 cm in length. Schwann cells (SCs were isolated, cultured and purified. Cell purity was determined by immunofluorescence. Nerve grafts were constructed out of spider silk from Nephila edulis and decellularized ovine vessels. Finally, spider silk implants were seeded with purified Schwann cells. Cell attachment was observed within the first hour. After 7 and 21 days of culture, immunofluorescence for viability and determination of Schwann cell proliferation and migration throughout the conduits was performed. Analyses revealed that SCs maintained viable (>95% throughout the conduits independent of construct length. SC proliferation on the spider silk was determined from day 7 to day 21 with a proliferation index of 49.42% arithmetically averaged over all conduits. This indicates that spider silk nerve conduits represent a favorable environment for SC attachment, proliferation and distribution over a distance of least 15.0 cm in vitro. Thus spider silk nerve implants are a highly adequate biomaterial for nerve reconstruction.

  15. SPIDER SILK

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2014-05-01

    Full Text Available The strengthness and toughness of spider fiber and its multifunctional nature is only surpassed in some cases by synthetic high performance fibers. In the world of natural fibers, spider silk has been long time recognized as a wonder fiber for its unique combination of high strength and rupture elongation. Scientists in civil military engineering reveal that the power of biological material (spider silk lies in the geometric configuration of structural protein, and the small cluster of week hydrogen bonds that works together to resist force and dissipate energy. Each spider and each type of silk has a set of mechanical properties optimized for their biological function. Most silks, in particular deagline silk, have exceptional mechanical properties. They exhibit a unique combination of high tensile strength and extensibility (ductility. This enables a silk fiber to absorb a lot of energy before breaking (toughness, the area under a stress- strain curve. A frequent mistake made in the mainstream media is to confuse strength and toughness when comparing silk to other materials. As shown below in detail, weight for weight, silk is stronger than steel, but not as strong as Kevlar. Silk is,however, tougher than both.This paper inform about overview on the today trend in the world of spider silk.

  16. A Novel Nanocomposite Particle of Hydroxyapatite and Silk Fibroin: Biomimetic Synthesis and Its Biocompatibility

    Directory of Open Access Journals (Sweden)

    Lin Niu

    2010-01-01

    Full Text Available A novel bone-like biomaterial of hydroxyapatite (HAP and silk fibroin (SF composite was developed by biomimetic synthesis. The composite was precipitated from drops of Ca(OH2 suspension and H3PO4 solution with SF. With this method, the HAP nanocrystals were obtained by self-assembling on a SF surface whose c-axis was aligned with the long-axis direction of SF in microstructures; this shares the same misconstrues of collagen and HAP with that in the natural bone. The HAP/SF composite then demonstrated that it could promote osteoblast proliferation in vitro and new bone formation in vivo. The novel biomaterial is a promising material for bone replacement and regeneration.

  17. Identification and quantification and antioxidant activity of flavonoids in different strains of silk cocoon, Bombyx mori.

    Science.gov (United States)

    Napavichayanun, Supamas; Lutz, Oliver; Fischnaller, Martin; Jakschitz, Thomas; Bonn, Günther; Aramwit, Pornanong

    2017-10-01

    Silk cocoon is produced from silkworm (Bombyx mori) to protect itself from outer environment. Various strains of cocoon contain different forms and amounts of flavonoids, which may affect on their antioxidant activity. Moreover, the extraction method would influence the amount of flavonoids extracted. Therefore, the objectives of this study were to identify and quantify the flavonoids in 3 strains of bivoltine Bombyx mori silk cocoon (Chul 1/1; white cocoon, Chul 3/2; greenish cocoon, and Chul 4/2; yellow cocoon) extracted by 6 different solvents including acetone, ethyl acetate, dimethyl sulfoxide (DMSO), ethanol, methanol, and purified water. The flavonoids extracted were identified and quantified by liquid chromatography-mass spectrometry (LC-MS). The antioxidant activity of flavonoids extracted was also investigated by visible spectroscopy at 517 nm. The results showed that Chul 3/2 silk cocoon contained the highest amount of flavonoids. Purified water seemed to be the best solvent that preserved most antioxidant activity of the flavonoids extracted. Flavonoids in Chul 1/1 and Chul 4/2 silk cocoon were rarely found, however they contained some antioxidant activities. The data from this study can provide basic information for flavonoid extraction from silk cocoon which can also apply for other flavonoid-containing natural biomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Silk I and Silk II studied by fast scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cebe, Peggy; Partlow, Benjamin P.; Kaplan, David L.; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    2017-06-01

    Using fast scanning calorimetry (FSC), we investigated the glass transition and crystal melting of samples of B. mori silk fibroin containing Silk I and/or Silk II crystals. Due to the very short residence times at high temperatures during such measurements, thermal decomposition of silk protein can be significantly suppressed. FSC was performed at 2000 K/s using the Mettler Flash DSC1 on fibroin films with masses around 130–270 ng. Films were prepared with different crystalline fractions (ranging from 0.26 to 0.50) and with different crystal structures (Silk I, Silk II, or mixed) by varying the processing conditions. These included water annealing at different temperatures, exposure to 50% MeOH in water, or autoclaving. The resulting crystal structure was examined using wide angle X-ray scattering. Degree of crystallinity was evaluated from Fourier transform infrared (FTIR) spectroscopy and from analysis of the heat capacity increment at the glass transition temperature. Silk fibroin films prepared by water annealing at 25 °C were the least crystalline and had Silk I structure. FTIR and FSC studies showed that films prepared by autoclaving or 50% MeOH exposure were the most crystalline and had Silk II structure. Intermediate crystalline fraction and mixed Silk I/Silk II structures were found in films prepared by water annealing at 37 °C. FSC results indicate that Silk II crystals exhibit endotherms of narrower width and have higher mean melting temperature Tm(II) = 351 ± 2.6 °C, compared to Silk I crystals which melt at Tm(I) = 292 ± 3.8 °C. Films containing mixed Silk I/Silk II structure showed two clearly separated endothermic peaks. Evidence suggests that the two types of crystals melt separately and do not thermally interconvert on the extremely short time scale (0.065 s between onset and end of melting) of the FSC experiment.

  19. Hybrid scaffolds based on PLGA and silk for bone tissue engineering.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum

    2016-03-01

    Porous silk scaffolds, which are considered to be natural polymers, cannot be used alone because they have a long degradation rate, which makes it difficult for them to be replaced by the surrounding tissue. Scaffolds composed of synthetic polymers, such as PLGA, have a short degradation rate, lack hydrophilicity and their release of toxic by-products makes them difficult to use. The present investigations aimed to study hybrid scaffolds fabricated from PLGA, silk and hydroxyapatite nanoparticles (Hap NPs) for optimized bone tissue engineering. The results from variable-pressure field emission scanning electron microscopy (VP-FE-SEM), equipped with EDS, confirmed that the fabricated scaffolds had a porous architecture, and the location of each component present in the scaffolds was examined. Contact angle measurements confirmed that the introduction of silk and HAp NPs helped to change the hydrophobic nature of PLGA to hydrophilic, which is the main constraint for PLGA used as a biomaterial. Thermo-gravimetric analysis (TGA) and FT-IR spectroscopy confirmed thermal decomposition and different vibrations caused in functional groups of compounds used to fabricate the scaffolds, which reflected improvement in their mechanical properties. After culturing osteoblasts for 1, 7 and 14 days in the presence of scaffolds, their viability was checked by MTT assay. The fluorescent microscopy results revealed that the introduction of silk and HAp NPs had a favourable impact on the infiltration of osteoblasts. In vivo experiments were conducted by implanting scaffolds in rat calvariae for 4 weeks. Histological examinations and micro-CT scans from these experiments revealed beneficial attributes offered by silk fibroin and HAp NPs to PLGA-based scaffolds for bone induction. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Novel fabrication of fluorescent silk utilized in biotechnological and medical applications.

    Science.gov (United States)

    Kim, Dong Wook; Lee, Ok Joo; Kim, Seong-Wan; Ki, Chang Seok; Chao, Janet Ren; Yoo, Hyojong; Yoon, Sung-Il; Lee, Jeong Eun; Park, Ye Ri; Kweon, HaeYong; Lee, Kwang Gill; Kaplan, David L; Park, Chan Hum

    2015-11-01

    Silk fibroin (SF) is a natural polymer widely used and studied for diverse applications in the biomedical field. Recently, genetically modified silks, particularly fluorescent SF fibers, were reported to have been produced from transgenic silkworms. However, they are currently limited to textile manufacturing. To expand the use of transgenic silkworms for biomedical applications, a solution form of fluorescent SF needed to be developed. Here, we describe a novel method of preparing a fluorescent SF solution and demonstrate long-term fluorescent function up to one year after subcutaneous insertion. We also show that fluorescent SF labeled p53 antibodies clearly identify HeLa cells, indicating the applicability of fluorescent SF to cancer detection and bio-imaging. Furthermore, we demonstrate the intraoperative use of fluorescent SF in an animal model to detect a small esophageal perforation (0.5 mm). This study suggests how fluorescent SF biomaterials can be applied in biotechnology and clinical medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.

    Science.gov (United States)

    Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y

    2017-08-14

    Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.

  3. Electrospun silk-elastin-like fibre mats for tissue engineering applications

    International Nuclear Information System (INIS)

    Machado, Raul; Da Costa, André; Padrão, Jorge; Gomes, Andreia; Casal, Margarida; Sencadas, Vitor; Costa, Carlos M; Lanceros-Méndez, Senentxu; Garcia-Arévalo, Carmen; Rodríguez-Cabello, José Carlos

    2013-01-01

    Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing its dependence on the concentration and solvent used. Treatment with methanol-saturated air was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570–720%), water vapour transmission rate (1083 g/m 2 /day) and mechanical properties (modulus of elasticity ∼126 MPa). Furthermore, the methanol-treated SELP fibre mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fibre mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications. (paper)

  4. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    International Nuclear Information System (INIS)

    Bai Liqiang; Zhu Liangjun; Min Sijia; Liu Lin; Cai Yurong; Yao Juming

    2008-01-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH 2 )-NGIVKAGPAIAVLGEAAL-CONH 2 , using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  5. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  6. Synthetic spider silk sustainability verification by techno-economic and life cycle analysis

    Science.gov (United States)

    Edlund, Alan

    Major ampullate spider silk represents a promising biomaterial with diverse commercial potential ranging from textiles to medical devices due to the excellent physical and thermal properties from the protein structure. Recent advancements in synthetic biology have facilitated the development of recombinant spider silk proteins from Escherichia coli (E. coli), alfalfa, and goats. This study specifically investigates the economic feasibility and environmental impact of synthetic spider silk manufacturing. Pilot scale data was used to validate an engineering process model that includes all of the required sub-processing steps for synthetic fiber manufacture: production, harvesting, purification, drying, and spinning. Modeling was constructed modularly to support assessment of alternative protein production methods (alfalfa and goats) as well as alternative down-stream processing technologies. The techno-economic analysis indicates a minimum sale price from pioneer and optimized E. coli plants at 761 kg-1 and 23 kg-1 with greenhouse gas emissions of 572 kg CO2-eq. kg-1 and 55 kg CO2-eq. kg-1, respectively. Spider silk sale price estimates from goat pioneer and optimized results are 730 kg-1 and 54 kg-1, respectively, with pioneer and optimized alfalfa plants are 207 kg-1 and 9.22 kg-1 respectively. Elevated costs and emissions from the pioneer plant can be directly tied to the high material consumption and low protein yield. Decreased production costs associated with the optimized plants include improved protein yield, process optimization, and an Nth plant assumption. Discussion focuses on the commercial potential of spider silk, the production performance requirements for commercialization, and impact of alternative technologies on the sustainability of the system.

  7. Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Dajiang Kuang

    2018-02-01

    Full Text Available Silk fibroin hydrogel is an ideal model as biomaterial matrix due to its excellent biocompatibility and used in the field of medical polymer materials. Nevertheless, native fibroin hydrogels show poor transparency and resilience. To settle these drawbacks, an interpenetrating network (IPN of hydrogels are synthesized with changing ratios of silk fibroin/N-Vinyl-2-pyrrolidonemixtures that crosslink by H2O2 and horseradish peroxidase. Interpenetrating polymer network structure can shorten the gel time and the pure fibroin solution gel time for more than a week. This is mainly due to conformation from the random coil to the β-sheet structure changes of fibroin. Moreover, the light transmittance of IPN hydrogel can be as high as more than 97% and maintain a level of 90% within a week. The hydrogel, which mainly consists of random coil, the apertures inside can be up to 200 μm. Elastic modulus increases during the process of gelation. The gel has nearly 95% resilience under the compression of 70% eventually, which is much higher than native fibroin gel. The results suggest that the present IPN hydrogels have excellent mechanical properties and excellent transparency.

  8. Trends in World Silk Cocoons and Silk Production and Trade, 2007-2010

    Directory of Open Access Journals (Sweden)

    AGATHA AGATHA POPESCU

    2013-10-01

    Full Text Available The paper aimed to analyze world production and trade for fresh silk cocoons and raw silk using FAO Stat data for  the  period 2007-2010. The use of index, share and comparison methods allowed to identify the major trends in the analyzed period. Silk decline was determined by the increased importance of cotton and artificial fibres in textile and clothing industry. Important changes are taking place on silk cocoons and silk market. While, the European market decreased, the Asian market has mainly developed fresh cocoons and raw silk, while the European market became more interested of clothes. Silk consumption declined because of consumer’s preference for synthetic fibres, except traditional consumers from Asia.  China is the main producer and exporter of fresh and dry cocoons, while raw silk is produced and exported by China, Brazil and Italy and imported by India, Japan and Italy. In Europe, Bulgaria is the top producer of fresh cocoons and raw silk and Italy is the main raw silk importer and the top producer and exporter of textile and fashion clothes. Silk will remain an important raw material for producing high quality and luxury clothes.

  9. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    Science.gov (United States)

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  10. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats.

    Science.gov (United States)

    Huang, W; Begum, R; Barber, T; Ibba, V; Tee, N C H; Hussain, M; Arastoo, M; Yang, Q; Robson, L G; Lesage, S; Gheysens, T; Skaer, Nicholas J V; Knight, D P; Priestley, J V

    2012-01-01

    Various attempts have been made to develop artificial conduits for nerve repair, but with limited success. We describe here conduits made from Bombyx mori regenerated silk protein, and containing luminal fibres of Spidrex(®), a silk-based biomaterial with properties similar to those of spider silk. Assessment in vitro demonstrated that Spidrex(®) fibres support neurite outgrowth. For evaluation in vivo, silk conduits 10 mm in length and containing 0, 100, 200 or 300 luminal Spidrex(®) fibres, were implanted to bridge an 8 mm gap in the rat sciatic nerve. At 4 weeks, conduits containing 200 luminal Spidrex(®) fibres (PN200) supported 62% and 59% as much axon growth as autologous nerve graft controls at mid-conduit and distal nerve respectively. Furthermore, Spidrex(®) conduits displayed similar Schwann cell support and macrophage response to controls. At 12 weeks, animals implanted with PN200 conduits showed similar numbers of myelinated axons (81%) to controls, similar gastrocnemius muscle innervation, and similar hindpaw stance assessed by Catwalk footprint analysis. Plantar skin innervation was 73% of that of controls. PN200 Spidrex(®) conduits were also effective at bridging longer (11 and 13 mm) gaps. Our results show that Spidrex(®) conduits promote excellent axonal regeneration and function recovery, and may have potential for clinical application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.

    Science.gov (United States)

    Lee, Dae Hoon; Tripathy, Nirmalya; Shin, Jae Hun; Song, Jeong Eun; Cha, Jae Geun; Min, Kyung Dan; Park, Chan Hum; Khang, Gilson

    2017-02-01

    Scaffolds, used for tissue regeneration are important to preserve their function and morphology during tissue healing. Especially, scaffolds for bone tissue engineering should have high mechanical properties to endure load of bone. Silk fibroin (SF) from Bombyx mori silk cocoon has potency as a type of biomaterials in the tissue engineering. β-tricalcium phosphate (β-TCP) as a type of bioceramics is also critical as biomaterials for bone regeneration because of its biocompatibility, osteoconductivity, and mechanical strength. The aim of this study was to fabricate three-dimensional SF/β-TCP scaffolds and access its availability for bone grafts through in vitro and in vivo test. The scaffolds were fabricated in each different ratios of SF and β-TCP (100:0, 75:25, 50:50, 25:75). The characterizations of scaffolds were conducted by FT-IR, compressive strength, porosity, and SEM. The in vitro and in vivo tests were carried out by MTT, ALP, RT-PCR, SEM, μ-CT, and histological staining. We found that the SF/β-TCP scaffolds have high mechanical strength and appropriate porosity for bone tissue engineering. The study showed that SF/β-TCP (75:25) scaffold exhibited the highest osteogenesis compared with other scaffolds. The results suggested that SF/β-TCP (75:25) scaffold can be applied as one of potential bone grafts for bone tissue engineering. Copyright © 2016. Published by Elsevier B.V.

  12. Radiation degradation of silk

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  13. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2015-01-01

    Full Text Available Silk fibroin (SF is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP, a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation.

  14. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

    Science.gov (United States)

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.

    2002-01-01

    Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.

  15. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels

    Directory of Open Access Journals (Sweden)

    Anna eWoloszyk

    2016-04-01

    Full Text Available Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration.

  16. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Science.gov (United States)

    Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity.

  17. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    of this study demonstrate that bi-layer silk fibroin scaffolds represent promising biomaterials for onlay urethroplasty, capable of promoting similar degrees of tissue regeneration in comparison to conventional SIS scaffolds, but with reduced immunogenicity.

  18. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.

    Science.gov (United States)

    Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2017-09-11

    The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.

  19. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  20. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.

    Science.gov (United States)

    Bosetti, M; Boccafoschi, F; Calarco, A; Leigheb, M; Gatti, S; Piffanelli, V; Peluso, G; Cannas, M

    2008-01-01

    The aim of this study was to design a functional bio-engineered material to be used as scaffold for autologous mesenchymal stem cells in ligament tissue engineering. Polyelectrolyte modified HEMA hydrogel (HEMA-co-METAC), applied as coating on silk fibroin fibres, has been formulated in order to take advantage of the biocompatibility of the polyelectrolyte by increasing its mechanical properties with silk fibres. Human bone marrow mesenchymal stem cells behaviour on such reinforced polyelectrolyte has been studied by evaluating cell morphology, cell number, attachment, spreading and proliferation together with collagen matrix production and its mRNA expression. Silk fibroin fibres matrices with HEMA-co-METAC coating exhibited acceptable mechanical behaviour compared to the natural ligament, good human mesenchymal stem cell adhesion and with mRNA expression studies higher levels of collagen types I and III expression when compared to control cells on polystyrene. These data indicate high expression of mRNA for proteins responsible for the functional characteristics of the ligaments and suggest a potential for use of this biomaterial in ligament tissue-engineering applications.

  1. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    International Nuclear Information System (INIS)

    Luan Xiying; Wang Yong; Duan Xiang; Duan Qiaoyan; Li Mingzhong; Lu Shenzhou; Zhang Huanxiang; Zhang Xueguang

    2006-01-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture

  2. New application of silk protein

    International Nuclear Information System (INIS)

    Kamiishi, Youichi

    2000-01-01

    Gunma prefecture is famous for sericulture and silk textile industry district in Japan. In Gunma prefecture, some kinds of new generation silk as high performance and high quality silk were developed. These silk are used not only for the new textile materials but also for new industrial materials. New application of silk protein, fibroin and sericin, is considered. (author)

  3. New application of silk protein

    Energy Technology Data Exchange (ETDEWEB)

    Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan)

    2000-03-01

    Gunma prefecture is famous for sericulture and silk textile industry district in Japan. In Gunma prefecture, some kinds of new generation silk as high performance and high quality silk were developed. These silk are used not only for the new textile materials but also for new industrial materials. New application of silk protein, fibroin and sericin, is considered. (author)

  4. Applicability of biotechnologically produced insect silks.

    Science.gov (United States)

    Herold, Heike M; Scheibel, Thomas

    2017-09-26

    Silks are structural proteins produced by arthropods. Besides the well-known cocoon silk, which is produced by larvae of the silk moth Bombyx mori to undergo metamorphosis inside their silken shelter (and which is also used for textile production by men since millennia), numerous further less known silk-producing animals exist. The ability to produce silk evolved multiple independent times during evolution, and the fact that silk was subject to convergent evolution gave rise to an abundant natural diversity of silk proteins. Silks are used in air, under water, or like honey bee silk in the hydrophobic, waxen environment of the bee hive. The good mechanical properties of insect silk fibres together with their non-toxic, biocompatible, and biodegradable nature renders these materials appealing for both technical and biomedical applications. Although nature provides a great diversity of material properties, the variation in quality inherent in materials from natural sources together with low availability (except from silkworm silk) impeded the development of applications of silks. To overcome these two drawbacks, in recent years, recombinant silks gained more and more interest, as the biotechnological production of silk proteins allows for a scalable production at constant quality. This review summarises recent developments in recombinant silk production as well as technical procedures to process recombinant silk proteins into fibres, films, and hydrogels.

  5. Buyid Silk and the Tale of Bibi Shahrbanu: Identification of Biomarkers of Artificial Aging (Forgery) of Silk.

    Science.gov (United States)

    Moini, Mehdi; Rollman, Christopher M

    2017-10-03

    Buyid silk forgery is one of the most famous silk forgeries in the world. In 1924-1925, excavation of the Bibi Shahrbanu site in Iran unearthed several silk textiles. The silks were thought to be of the Buyid period (934-1062 BCE) of the Persian Empire and have since been known as the "Buyid silks". In the 1930s, more silk appeared and was reported as being from the Buyid period as well. Controversy over the authenticity of these silks escalated after the purchase of the silks by museums throughout the world. Extensive investigations of several of these silks have been conducted over the years with respect to iconography, weaving patterns, dyes/mordant, style, and even radiocarbon dating. It was found that most of the silks are not from Buyid period. To test the authenticity of these silk fabrics, the recently developed silk dating technique using amino acid racemization (AAR) in conjunction with capillary electrophoresis mass spectrometry was applied to 13 Buyid silk specimens from the Textile Museum collections. Among these silk specimens, the AAR ratios of only one specimen were consistent with authentic silk fabrics collected from various museums. In addition, the aspartic acid racemization ratio of this specimen was also consistent with its 14 C dating. The other "Buyid silks" showed excessive levels of amino acid racemization not only for aspartic acid, but also for phenylalanine and tyrosine, inconsistent with racemization rates of these amino acids in authentic historical silk fabrics. Treatment of modern silk with a base at different pH and temperature reproduced the AAR pattern of the Buyid silks, implying that chemical treatment with a base at relatively high temperatures was perhaps the method used to artificially age these fabrics. The results imply that the racemization ratios of aspartic acid, phenylalanine, and tyrosine can be used as biomarkers for identification of naturally versus artificially aged silk.

  6. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  7. Effect of. gamma. -irradiation on the crystalline structure of silk fibroin and silk sericin

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Masuhiro; Aoki, Akira

    1985-02-01

    Changes in the crystalline structure of silk sericin and silk fibroin induced by gamma-irradiation in the atmosphere described. The crystalline structure of silk sericin which had been subjected to gamma-irradiation remained unchanged. However the decomposition temperature of the specimen decreased to about 230 deg C, when the total dose of ..gamma.. rays exceeded 4.6 Mrad. The structure of the silk 1 type crystal of silk fibroin in the solid state, with a low degree of molecular orientation, changed into the silk 2 type crystal, when the total dose of ..gamma.. rays exceeded 4.6 Mrad. No changes in the crystalline structure were observed in the solid state of the silk 2 type crystal regardless of gamma-irradiation. The decrease in the decomposition temperature of the specimen was attributed to the decrease in the molecular orientation. However, the molecular conformation of silk fibroin with a randomly coiled structure remained unchanged even after gamma-irradiation.

  8. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk

    Science.gov (United States)

    Piorkowski, Dakota; Blackledge, Todd A.

    2017-08-01

    The origin of viscid capture silk in orb webs, from cribellate silk-spinning ancestors, is a key innovation correlated with significant diversification of web-building spiders. Ancestral cribellate silk consists of dry nanofibrils surrounding a stiff, axial fiber that adheres to prey through van der Waals interactions, capillary forces, and physical entanglement. In contrast, viscid silk uses chemically adhesive aqueous glue coated onto a highly compliant and extensible flagelliform core silk. The extensibility of the flagelliform fiber accounts for half of the total work of adhesion for viscid silk and is enabled by water in the aqueous coating. Recent cDNA libraries revealed the expression of flagelliform silk proteins in cribellate orb-weaving spiders. We hypothesized that the presence of flagelliform proteins in cribellate silk could have allowed for a gradual shift in mechanical performance of cribellate axial silk, whose effect was masked by the dry nature of its adhesive. We measured supercontraction and mechanical performance of cribellate axial silk, in wet and dry states, for two species of cribellate orb web-weaving spiders to see if water enabled flagelliform silk-like performance. We found that compliance and extensibility of wet cribellate silk increased compared to dry state as expected. However, when compared to other silk types, the response to water was more similar to other web silks, like major and minor ampullate silk, than to viscid silk. These findings support the punctuated evolution of viscid silk mechanical performance.

  9. In vitro evaluation of chondrosarcoma cells and canine chondrocytes on layer-by-layer (LbL) self-assembled multilayer nanofilms

    International Nuclear Information System (INIS)

    Shaik, J; Mohammed, J Shaikh; McShane, M J; Mills, D K

    2013-01-01

    Short-term cell–substrate interactions of two secondary chondrocyte cell lines (human chondrosarcoma cells, canine chondrocytes) with layer-by-layer self-assembled multilayer nanofilms were investigated for a better understanding of cellular-behaviour dependence on a number of nanofilm layers. Cell–substrate interactions were studied on polyelectrolyte multilayer nanofilms (PMNs) of eleven different biomaterials. Surface characterization of PMNs performed using AFM showed increasing surface roughness with increasing number of layers for most of the biomaterials. LDH-L and MTT assays were performed on chondrosarcoma cells and canine chondrocytes, respectively. A major observation was that 10-bilayer nanofilms exhibited lesser cytotoxicity towards human chondrosarcoma cells than their 5-bilayer counterparts. In the case of canine chondrocytes, BSA enhanced cell metabolic activity with increasing number of layers, underscoring the importance of the multilayer nanofilm architecture on cellular behaviour. (paper)

  10. Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration

    Science.gov (United States)

    Jeon, Hayan; Oliveira, Joaquim Miguel; Reis, Rui Luis; Khang, Gilson

    2018-01-01

    Cornea endothelial cells (CEnCs) tissue engineering is a great challenge to repair diseased or damaged CEnCs and require an appropriate biomaterial to support cell proliferation and differentiation. Biomaterials for CEnCs tissue engineering require biocompatibility, tunable biodegradability, transparency, and suitable mechanical properties. Silk fibroin-based film (SF) is known to meet these factors, but construction of functionalized graft for bioengineering of cornea is still a challenge. Herein, lysophosphatidic acid (LPA) is used to maintain and increase the specific function of CEnCs. The LPA and SF composite film (LPA/SF) was fabricated in this study. Mechanical properties and in vitro studies were performed using a rabbit model to demonstrate the characters of LPA/SF. ATR-FTIR was characterized to identify chemical composition of the films. The morphological and physical properties were performed by SEM, AFM, transparency, and contact angle. Initial cell density and MTT were performed for adhesion and cell viability in the SF and LPA/SF film. Reverse transcription polymerase chain reactions (RT-PCR) and immunofluorescence were performed to examine gene and protein expression. The results showed that films were designed appropriately for CEnCs delivery. Compared to pristine SF, LPA/SF showed higher biocompatibility, cell viability, and expression of CEnCs specific genes and proteins. These indicate that LPA/SF, a new biomaterial, offers potential benefits for CEnCs tissue engineering for regeneration. PMID:29710848

  11. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  12. Structural Origins of Silk Piezoelectricity.

    Science.gov (United States)

    Yucel, Tuna; Cebe, Peggy; Kaplan, David L

    2011-02-22

    Uniaxially oriented, piezoelectric silk films were prepared by a two-step method that involved: (1) air drying aqueous, regenerated silk fibroin solutions into films, and (2) drawing the silk films to a desired draw ratio. The utility of two different drawing techniques, zone drawing and water immersion drawing were investigated for processing the silk for piezoelectric studies. Silk films zone drawn to a ratio of λ= 2.7 displayed relatively high dynamic shear piezoelectric coefficients of d(14) = -1.5 pC/N, corresponding to over two orders of magnitude increase in d(14) due to film drawing. A strong correlation was observed between the increase in the silk II, β-sheet content with increasing draw ratio measured by FTIR spectroscopy (C(β)∝ e(2.5) (λ)), the concomitant increasing degree of orientation of β-sheet crystals detected via WAXD (FWHM = 0.22° for λ= 2.7), and the improvement in silk piezoelectricity (d(14)∝ e(2.4) (λ)). Water immersion drawing led to a predominantly silk I structure with a low degree of orientation (FWHM = 75°) and a much weaker piezoelectric response compared to zone drawing. Similarly, increasing the β-sheet crystallinity without inducing crystal alignment, e.g. by methanol treatment, did not result in a significant enhancement of silk piezoelectricity. Overall, a combination of a high degree of silk II, β-sheet crystallinity and crystalline orientation are prerequisites for a strong piezoelectric effect in silk. Further understanding of the structural origins of silk piezoelectricity will provide important options for future biotechnological and biomedical applications of this protein.

  13. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong

    2016-01-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  14. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Han, Qiming [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan provincial key laboratory of functional textile materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); and others

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65 MPa and tensile strength 180.36 MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. - Highlights: • A novel strategy to mimic the hierarchical collagen fibril in bone is proposed by electrospinning and conventional textile technology. • The tensile strength of the woven scaffold was nearly 4-fold larger than that of nonwoven mats. • The nanofiber woven scaffolds show excellent cytocompatibility and accelerate osteoblast differentiation. • The composite scaffold significantly enhanced formation of new bone in damaged condyles in rabbit femur.

  15. Biomechanics of Spider Silks

    Science.gov (United States)

    2006-03-02

    water and deformation conditions. Such fibres [Nexia ’ biosteel ’ silk ] were spun from recombinant silk ’cloned’ from Spidroin II and indeed show 67...SUBTITLE 5. FUNDING NUMBERS Biomechanics of Spider Silks F49620-03-1-0111 6. AUTHOR(S) Fritz Vollrath 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Perform Pro, WHSIDIOR, Oct 94 COVER SHEET FINAL (3rd Year) Report to AFOSR on: BIOMECHANICS OF SPIDER SILKS Fritz Vollrath, Oxford University, England

  16. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR.

    Science.gov (United States)

    Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S

    2017-03-01

    The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and

  17. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    Science.gov (United States)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  18. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    International Nuclear Information System (INIS)

    Gogurla, Narendar; Mondal, Suvra P; Sinha, Arun K; Katiyar, Ajit K; Banerjee, Writam; Ray, Samit K; Kundu, Subhas C

    2013-01-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems. (paper)

  19. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Science.gov (United States)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  20. Silk fibers and silk-producing organs of Harpactea rubicunda (C. L. Koch 1838) (Araneae, Dysderidae).

    Science.gov (United States)

    Hajer, Jaromír; Malý, Jan; Reháková, Dana

    2013-01-01

    Scanning electron microscopy and atomic force microscopy were used to study the silk spinning apparatus and silks of Harpactea rubicunda spiders. Three types of silk secretions that are produced by three kinds of silk spinning glands (ampullate, piriform, and pseudaciniform) and released through three types of spigots, were confirmed for both adult and juvenile spiders. Silk secretions for the construction of spider webs for shelter or retreat are produced by the pseudaciniform silk glands. Silk secretions that are released from spigots in the course of web construction are not processed by the legs during the subsequent process of hardening. Pairs of nanofibril bundles seemed to be part of the basic microarchitecture of the web silk fibers as revealed by AFM. These fiber bundles frequently not only overlap one another, but occasionally also interweave. This structural variability may strengthen the spider web. High-resolution AFM scans of individual nanofibrils show a distinctly segmented nanostructure. Each globular segment is ∼30-40 nm long along the longitudinal axis of the fiber, and resembles a nanosegment of artificial fibroin described by Perez-Rigueiro et al. (2007). Copyright © 2012 Wiley Periodicals, Inc.

  1. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a

  2. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    Science.gov (United States)

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.

  3. Optically probing torsional superelasticity in spider silks

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P. [Department of Physical Sciences, IISER Mohali, Sector 81, Manauli, Mohali 140306 (India)

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  4. Optically probing torsional superelasticity in spider silks

    International Nuclear Information System (INIS)

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-01-01

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10 2−3 rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices

  5. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    Science.gov (United States)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  6. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  7. Biodegradable materials based on silk fibroin and keratin.

    Science.gov (United States)

    Vasconcelos, Andreia; Freddi, Giuliano; Cavaco-Paulo, Artur

    2008-04-01

    Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds

  8. Study of the effects of different sterilization methods on the properties of dense and porous silk fibroin membranes

    International Nuclear Information System (INIS)

    Weska, Raquel F.; Moraes, Mariana A. de; Beppu, Marisa M.

    2009-01-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing, and it must not alter in a negative way the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical and chemical characteristics of dense silk fibroin membranes. Dense fibroin membranes were sterilized by ultraviolet radiation, 70% ethanol, autoclave, ethylene oxide and gamma radiation, and were analyzed by SEM, FTIR-ATR and XRD. The results for sterilization indicated that the methods didn't cause degradation of the membranes, but the methods that used organic solvent, or increase of humidity and/or temperature (70% ethanol, autoclave and ethylene oxide) altered the molecular conformation of fibroin, increasing the proportion of β-sheet structure, what indicates an increase of crystallinity. This effect may be positive when a slower degradation of the membranes is desired, depending on the application as a bio material. (author)

  9. Polymorphic regenerated silk fibers assembled through bioinspired spinning.

    Science.gov (United States)

    Ling, Shengjie; Qin, Zhao; Li, Chunmei; Huang, Wenwen; Kaplan, David L; Buehler, Markus J

    2017-11-09

    A variety of artificial spinning methods have been applied to produce regenerated silk fibers; however, how to spin regenerated silk fibers that retain the advantages of natural silks in terms of structural hierarchy and mechanical properties remains challenging. Here, we show a bioinspired approach to spin regenerated silk fibers. First, we develop a nematic silk microfibril solution, highly viscous and stable, by partially dissolving silk fibers into microfibrils. This solution maintains the hierarchical structures in natural silks and serves as spinning dope. It is then spun into regenerated silk fibers by direct extrusion in the air, offering a useful route to generate polymorphic and hierarchical regenerated silk fibers with physical properties beyond natural fiber construction. The materials maintain the structural hierarchy and mechanical properties of natural silks, including a modulus of 11 ± 4 GPa, even higher than natural spider silk. It can further be functionalized with a conductive silk/carbon nanotube coating, responsive to changes in humidity and temperature.

  10. Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment.

    Science.gov (United States)

    Kozlowska, Anna Karolina; Florczak, Anna; Smialek, Maciej; Dondajewska, Ewelina; Mackiewicz, Andrzej; Kortylewski, Marcin; Dams-Kozlowska, Hanna

    2017-09-01

    Cell-selective delivery and sensitivity to serum nucleases remain major hurdles to the clinical application of RNA-based oligonucleotide therapeutics, such as siRNA. Spider silk shows great potential as a biomaterial due to its biocompatibility and biodegradability. Self-assembling properties of silk proteins allow for processing into several different morphologies such as fibers, scaffolds, films, hydrogels, capsules and spheres. Moreover, bioengineering of spider silk protein sequences can functionalize silk by adding peptide moieties with specific features including binding or cell recognition domains. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics, such as CpG-siRNA. The MS2 bioengineered silk was functionalized with poly-lysine domain (KN) to generate hybrid silk MS2KN. CpG-siRNA efficiently bound to MS2KN in contrary to control MS2. Both MS2KN complexes and spheres protected CpG-siRNA from degradation by serum nucleases. CpG-siRNA molecules encapsulated into MS2KN spheres were efficiently internalized and processed by TLR9-positive macrophages. Importantly, CpG-STAT3siRNA loaded in silk spheres showed delayed and extended target gene silencing compared to naked oligonucleotides. The prolonged Stat3 silencing resulted in the more pronounced downregulation of interleukin 6 (IL-6), a proinflammatory cytokine and upstream activator of STAT3, which limits the efficacy of TLR9 immunostimulation. Our results demonstrate the feasibility of using spider silk spheres as a carrier of therapeutic nucleic acids. Moreover, the modified kinetic and activity of the CpG-STAT3siRNA embedded into silk spheres is likely to improve immunotherapeutic effects in vivo. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel

  11. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    International Nuclear Information System (INIS)

    Mandal, Biman B; Kundu, S C

    2009-01-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  12. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Biman B; Kundu, S C, E-mail: kundu@hijli.iitkgp.ernet.i [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-02

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  13. Potential applications of silk sericin, a natural protein from textile industry by-products.

    Science.gov (United States)

    Aramwit, Pornanong; Siritientong, Tippawan; Srichana, Teerapol

    2012-03-01

    Silk is composed of two major proteins, fibroin (fibrous protein) and sericin (globular, gumming protein). Fibroin has been used in textile manufacturing and for several biomaterial applications, whereas sericin is considered a waste material in the textile industry. Sericin has recently been found to activate the proliferation of several cell-lines and has also shown various biological activities. Sericin can form a gel by itself; however, after mixing with other polymers and cross-linking it can form a film or a scaffold with good characteristics that can be used in the cosmetic and pharmaceutical industries. Sericin is proven to cause no immunological responses, which has resulted in a more acceptable material for biological applications.

  14. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants.

    Science.gov (United States)

    Costa, João B; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L

    2017-11-01

    The pursuit for the "perfect" biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Manufacture and Drug Delivery Applications of Silk Nanoparticles.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Johnston, Blair F; Seib, F Philipp

    2016-10-08

    Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.

  16. Intermolecular interactions between B. mori silk fibroin and poly(L-lactic acid) in electrospun composite nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Taddei, Paola, E-mail: paola.taddei@unibo.it [Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna (Italy); Tozzi, Silvia [Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna (Italy); Zuccheri, Giampaolo [Dipartimento di Farmacia e Biotecnologie e Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Centro S3, Istituto Nanoscienze, Consiglio Nazionale delle Ricerche, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (Italy); Martinotti, Simona; Ranzato, Elia [Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria (Italy); Chiono, Valeria; Carmagnola, Irene [Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Tsukada, Masuhiro [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567 (Japan)

    2017-01-01

    In this study, composite nanofibrous scaffolds were obtained by electrospinning a trifluoroacetic acid solution containing B. mori silk fibroin (SF) and poly(L-lactic acid) (PLLA) in a 1:1 weight ratio. SF, PLLA and SF/PLLA nanofibres were prepared with average diameter sizes of 360 ± 90 nm, 470 ± 240 nm and 580 ± 220 nm, respectively, as assessed by SEM analysis. Vibrational and thermal analyses showed that upon blending in the SF/PLLA nanofibres, the crystallisation of PLLA was hindered by the presence of SF, which crystallized preferentially and underwent conformational changes that did not significantly change its prevailing β-sheet structure. The two components were thermodynamically compatible and the intermolecular interactions between them were revealed for the first time. Human keratinocytes were cultured on nanofibres and their viability and proliferation were determined. Preliminary in vitro tests showed that the incorporation of SF into the PLLA component enhanced cell adhesion and proliferation with respect to the unfunctionalised material. SF has been successfully used to modify the biomaterial properties and confirmed to be an efficient bioactive protein to mediate cell-biomaterial interaction. - Highlights: • Composite silk fibroin-poly(L-lactic acid) scaffolds were obtained by electrospinning. • Intermolecular interactions between SF and PLLA were revealed for the first time. • Upon blending, the crystallisation of PLLA was hindered by the presence of SF. • SF crystallized preferentially and maintained its prevailing β-sheet structure. • The incorporation of SF into PLLA enhanced human keratinocytes adhesion and proliferation.

  17. Silk nanoparticles—an emerging anticancer nanomedicine

    Directory of Open Access Journals (Sweden)

    F. Philipp Seib

    2017-03-01

    Full Text Available Silk is a sustainable and ecologically friendly biopolymer with a robust clinical track record in humans for load bearing applications, in part due to its excellent mechanical properties and biocompatibility. Our ability to take bottom-up and top-down approaches for the generation of silk (inspired biopolymers has been critical in supporting the evolution of silk materials and formats, including silk nanoparticles for drug delivery. Silk nanoparticles are emerging as interesting contenders for drug delivery and are well placed to advance the nanomedicine field. This review covers the use of Bombyx mori and recombinant silks as an anticancer nanomedicine, highlighting the emerging trends and developments as well as critically assessing the current opportunities and challenges by providing a context specific assessment of this multidisciplinary field.

  18. Biomaterials based on photosynthetic membranes as potential sensors for herbicides.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Placido, Tiziana; Longobardi, Francesco; Agostiano, Angela

    2011-08-15

    In this study, ultrathin film multilayers of Photosystem II-enriched photosynthetic membranes (BBY) were prepared and immobilized on quartz substrates by means of a Layer by Layer procedure exploiting electrostatic interactions with poly(ethylenimine) as polyelectrolyte. The biomaterials thus obtained were characterized by means of optical techniques and Atomic Force Microscopy, highlighting the fact that the Layer by Layer approach allowed the BBYs to be immobilized with satisfactory results. The activity of these hybrid materials was evaluated by means of optical assays based on the Hill Reaction, indicating that the biosamples, which preserved about 65% of their original activity even ten weeks after preparation, were both stable and active. Furthermore, an investigation of the biochips' sensitivity to the herbicide terbutryn, as a model analyte, gave interesting results: inhibition of photosynthetic activity was observed at terbutryn concentrations higher than 10(-7)M, thus evidencing the potential of such biomaterials in the environmental biosensor field. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. 21 CFR 184.1262 - Corn silk and corn silk extract.

    Science.gov (United States)

    2010-04-01

    ... specific limitations: Category of food Maximum level of use in food (as served) 1 Functional use Baked... chapter 10 Do. Soft candy, § 170.3(n)(38) of this chapter 20 Do. All other food categories 4 Do. 1 Parts... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Corn silk and corn silk extract. 184.1262 Section...

  20. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori

    Science.gov (United States)

    Takiya, Shigeharu; Tsubota, Takuya; Kimoto, Mai

    2016-01-01

    The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP) axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp) directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM)-homeodomain transcriptional factor Arrowhead (Awh) regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins. PMID:29615585

  1. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Shigeharu Takiya

    2016-05-01

    Full Text Available The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM-homeodomain transcriptional factor Arrowhead (Awh regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins.

  2. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  3. Engineering of biomaterials

    CERN Document Server

    dos Santos, Venina; Savaris, Michele

    2017-01-01

    This book focuses on biomaterials of different forms used for medical implants. The authors introduce the characteristics and properties of biomaterials and then dedicate special chapters to metallic, ceramic, polymeric and composite biomaterials. Case studies on sterilization methods by biomaterials are also presented. Finally, the authors describe the degradation and effects of biomaterials in living tissue.

  4. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery.

    Science.gov (United States)

    Brooks, Amanda E

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  5. Characterization of biomaterials

    CERN Document Server

    Jaffe, M; Tolias, P; Arinzeh, T

    2012-01-01

    Biomaterials and medical devices must be rigorously tested in the laboratory before they can be implanted. Testing requires the right analytical techniques. Characterization of biomaterials reviews the latest methods for analyzing the structure, properties and behaviour of biomaterials. Beginning with an introduction to microscopy techniques for analyzing the phase nature and morphology of biomaterials, Characterization of biomaterials goes on to discuss scattering techniques for structural analysis, quantitative assays for measuring cell adhesion, motility and differentiation, and the evaluation of cell infiltration and tissue formation using bioreactors. Further topics considered include studying molecular-scale protein-surface interactions in biomaterials, analysis of the cellular genome and abnormalities, and the use of microarrays to measure cellular changes induced by biomaterials. Finally, the book concludes by outlining standards and methods for assessing the safety and biocompatibility of biomaterial...

  6. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  7. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  8. Silk fibroin membranes from solvent-crystallized silk fibroin/gelatin blends: Effects of blend and solvent composition

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Eun S. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Frankowski, David J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Hudson, Samuel M. [Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695 (United States); Spontak, Richard J. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 (United States) and Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)]. E-mail: Rich_Spontak@ncsu.edu

    2007-04-15

    Protein membranes have been prepared by mixing gelatin (G) with Bombyx mori silk fibroin (SF) and using aqueous methanol (MeOH) to induce SF crystallization. Amorphous blends of these polymers appear quasi-homogeneous, as discerned from visual observation, electron microscopy and Fourier-transform infrared (FTIR) spectroscopy. Upon subsequent exposure to aqueous MeOH, SF undergoes a conformational change from random-coil to {beta}-sheet. This transformation occurs in pure SF, as well as in each of the G/SF blends, as discerned from FTIR spectroscopy and thermal calorimetry. The influence of MeOH-induced SF crystallization on structure and property development has been measured as functions of blend and solvent composition. By preserving a support scaffold above the G helix-to-coil transition temperature, the formation of crystalline SF networks in G/SF blends can be used to stabilize G-based hydrogels or generate SF membranes for biomaterial, pharmaceutical and gas-separation purposes. The present study not only examines the properties of G/SF blends before and after SF crystallization, but also establishes the foundation for future research into thermally-responsive G/SF bioconjugates.

  9. Silk Spinning in Silkworms and Spiders.

    Science.gov (United States)

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-08-09

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.

  10. Uncovering the structure-function relationship in spider silk

    Science.gov (United States)

    Yarger, Jeffery L.; Cherry, Brian R.; van der Vaart, Arjan

    2018-03-01

    All spiders produce protein-based biopolymer fibres that we call silk. The most studied of these silks is spider dragline silk, which is very tough and relatively abundant compared with other types of spider silks. Considerable research has been devoted to understanding the relationship between the molecular structure and mechanical properties of spider dragline silks. In this Review, we overview experimental and computational studies that have provided a wealth of detail at the molecular level on the highly conserved repetitive core and terminal regions of spider dragline silk. We also discuss the role of the nanocrystalline β-sheets and amorphous regions in determining the properties of spider silk fibres, endowing them with strength and elasticity. Additionally, we outline imaging techniques and modelling studies that elucidate the importance of the hierarchical structure of silk fibres at the molecular level. These insights into structure-function relationships can guide the reverse engineering of spider silk to enable the production of superior synthetic fibres.

  11. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Amanda E Brooks

    2015-11-01

    Full Text Available Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1 deliver sensitive biologic molecules, (2 promote intimate contact between the mucosa and the drug, and (3 prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  12. Recombinant DNA production of spider silk proteins.

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. SILK FIBRE DEGRADATION AND ANALYSIS BY PROTEOMICS

    Directory of Open Access Journals (Sweden)

    YUKSELOGLU S.Muge

    2016-05-01

    Full Text Available Silk is one of the promising natural fibres and has a long established history in textile production throughout the centuries. Silk is produced by cultured silk worms, spiders, scorpions, mites and flies. It is extracellular proteinaceous fibres which consist of highly crystalline and insoluble proteins, the fibroins glued with sericin and an amourphous protein. On the other hand, understanding and controlling the degradation of protein materials are important for determining quality and the value of appearance retention in textiles. Hence, for silk textiles, appearance retention is critical value for the quality. And this is one of the key properties directly related to the degree and nature of protein degradation. It is therefore necessary to understand the silk composition and damage to obtain good conservation treatments and long-term preservation especially for the historical silk fabrics. In this study, silk fibre and its properties are briefly introduced along with images on their fibre damages. Additionally, proteomics method which helps to understand the degradation at the molecular level in textiles is introduced. Finally, proteomic evaluation of silk is summarized according to the researchers carried out in the literature.

  14. Transgenic Silk Moths to Produce Spider Silk

    National Research Council Canada - National Science Library

    Herrera, Rene J

    2008-01-01

    .... Other alternatives like production of the protein that yields same or similar mechanical properties of dragline silk in microorganisms or mammalian cells, in spinning fibers from concentrated protein...

  15. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.

    Science.gov (United States)

    Krukiewicz, Katarzyna; Zak, Jerzy K

    2016-05-01

    Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Facts and myths of antibacterial properties of silk.

    Science.gov (United States)

    Kaur, Jasjeet; Rajkhowa, Rangam; Afrin, Tarannum; Tsuzuki, Takuya; Wang, Xungai

    2014-03-01

    Silk cocoons provide protection to silkworm from biotic and abiotic hazards during the immobile pupal phase of the lifecycle of silkworms. Protection is particularly important for the wild silk cocoons reared in an open and harsh environment. To understand whether some of the cocoon components resist growth of microorganisms, in vitro studies were performed using gram negative bacteria Escherichia coli (E. coli) to investigate antibacterial properties of silk fiber, silk gum, and calcium oxalate crystals embedded inside some cocoons. The results show that the previously reported antibacterial properties of silk cocoons are actually due to residues of chemicals used to isolate/purify cocoon elements, and properly isolated silk fiber, gum, and embedded crystals free from such residues do not have inherent resistance to E. coli. This study removes the uncertainty created by previous studies over the presence of antibacterial properties of silk cocoons, particularly the silk gum and sericin. Copyright © 2013 Wiley Periodicals, Inc.

  17. Effects of alkyl polyglycoside (APG) on Bombyx mori silk degumming and the mechanical properties of silk fibroin fibre

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei; Zhang, Yu-Qing, E-mail: sericult@suda.edu.cn

    2017-05-01

    Alkyl polyglycoside (APG), a nonionic surfactant, is often considered to be a green surfactant and is synthesized using glucose and long chain fatty alcohols. It is used as a degumming agent of Bombyx mori silk fibre in this study for the first time. We studied APG systematically in comparison to the traditional degumming methods, such as aqueous solutions of sodium carbonate (Na{sub 2}CO{sub 3}) and neutral soap (NS). After repeatedly boiling silk fibres in an aqueous solution of 0.25% APG three times for 30 min and using a bath ratio of 1:90–120 (g/mL), sericin was completely removed from the fibre. SDS-PAGE showed that the degumming in APG did not induce an evident breakage of the silk fibroin peptide chains, including the light chain and P25 protein. The tensile properties, thermal analysis, and scanning electron microscopic (SEM) observation of the degummed fibroin fibre all show that APG is a degumming agent similar to NS and far superior to Na{sub 2}CO{sub 3}. These results indicate that APG is an environment-friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. - Graphical abstract: APG has potential uses as a green degumming/refining reagent for silkworm cocoons or silk fibres in the silk industry and for sericulture production. Display Omitted.

  18. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati [Drug discovery laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India); Devi, Dipali [Seri biotech laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India); Kalita, Dhaneswar [Government Ayurvedic College and Hospital, Jalukbari, Guwahati, Assam 781014 (India); Kalita, Kasturi [Department of Pathology, Hayat Hospital, Guwahati, Assam 781034 (India); Dash, Suvakanta [Girijananda Chowdhury Institute of pharmaceutical science, Azara, Guwahati, Assam 781017 (India); Kotoky, Jibon, E-mail: jkotoky@gmail.com [Drug discovery laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India)

    2016-05-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  19. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial

    International Nuclear Information System (INIS)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Devi, Dipali; Kalita, Dhaneswar; Kalita, Kasturi; Dash, Suvakanta; Kotoky, Jibon

    2016-01-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  20. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  1. Production of fine powder from silk by radiation

    International Nuclear Information System (INIS)

    Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Silk fine power was prepared directly from silk fiber irradiated with an accelerated electron beam(EB). Irradiated silk fiber was well pulverized only by physical crushing using ball mill without any chemical pretreatment. Raw and degummed silk fibers were irradiated at ambient temperature in the dose range of 250-1000 kGy. Although unirradiated silk fibers were not pulverized at all, irradiated fibers were easily pulverized and showed higher conversion from fiber to powder for higher doses. The presence of oxygen in the irradiation atmosphere enhanced pulverization of silk fiber. Raw silk fibers were less pulverized compared to degummed ones. The electron microscope observation showed that the minimum particle size of silk powder obtained from fiber irradiated by 1000 kGy in oxygen was less than 10 microns. It was found that fibroin powder obtained in this work dissolved remarkably into cold water, thought unirradiated fibroin fiber had little solubility even in hot water. A typical soluble fraction was about 60% for fibroin powder obtained from fiber irradiated by 1000 kGy in oxygen. (author)

  2. Production of fine powder from silk by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Ishida, Kazunari; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan)

    2000-03-01

    Silk fine power was prepared directly from silk fiber irradiated with an accelerated electron beam(EB). Irradiated silk fiber was well pulverized only by physical crushing using ball mill without any chemical pretreatment. Raw and degummed silk fibers were irradiated at ambient temperature in the dose range of 250-1000 kGy. Although unirradiated silk fibers were not pulverized at all, irradiated fibers were easily pulverized and showed higher conversion from fiber to powder for higher doses. The presence of oxygen in the irradiation atmosphere enhanced pulverization of silk fiber. Raw silk fibers were less pulverized compared to degummed ones. The electron microscope observation showed that the minimum particle size of silk powder obtained from fiber irradiated by 1000 kGy in oxygen was less than 10 microns. It was found that fibroin powder obtained in this work dissolved remarkably into cold water, thought unirradiated fibroin fiber had little solubility even in hot water. A typical soluble fraction was about 60% for fibroin powder obtained from fiber irradiated by 1000 kGy in oxygen. (author)

  3. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    Science.gov (United States)

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we

  4. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  5. Silk Electrogel Rheology

    Science.gov (United States)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  6. Silk Electrogel Based Gastroretentive Drug Delivery System

    Science.gov (United States)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  7. Non-Mulberry and Mulberry Silk Protein Sericins as Potential Media Supplement for Animal Cell Culture

    Directory of Open Access Journals (Sweden)

    Neety Sahu

    2016-01-01

    Full Text Available Silk protein sericins, in the recent years, find application in cosmetics and pharmaceuticals and as biomaterials. We investigate the potential of sericin, extracted from both mulberry Bombyx mori and different non-mulberry sources, namely, tropical tasar, Antheraea mylitta; muga, Antheraea assama; and eri, Samia ricini, as growth supplement in serum-free culture medium. Sericin supplemented media containing different concentrations of sericins from the different species are examined for attachment, growth, proliferation, and morphology of fibrosarcoma cells. The optimum sericin supplementation seems to vary with the source of sericins. The results indicate that all the sericins promote the growth of L929 cells in serum-free culture media; however, S. ricini sericin seems to promote better growth of cells amongst other non-mulberry sericins.

  8. The effects of corn silk on glycaemic metabolism.

    Science.gov (United States)

    Guo, Jianyou; Liu, Tongjun; Han, Linna; Liu, Yongmei

    2009-11-23

    Corn silk contains proteins, vitamins, carbohydrates, Ca, K, Mg and Na salts, fixed and volatile oils, steroids such as sitosterol and stigmasterol, alkaloids, saponins, tannins, and flavonoids. Base on folk remedies, corn silk has been used as an oral antidiabetic agent in China for decades. However, the hypoglycemic activity of it has not yet been understood in terms of modern pharmacological concepts. The purpose of this study is to investigate the effects of corn silk on glycaemic metabolism. Alloxan and adrenalin induced hyperglycemic mice were used in the study. The effects of corn silk on blood glucose, glycohemoglobin (HbA1c), insulin secretion, damaged pancreatic beta-cells, hepatic glycogen and gluconeogenesis in hyperglycemic mice were studied respectively. After the mice were orally administered with corn silk extract, the blood glucose and the HbA1c were significantly decreased in alloxan-induced hyperglycemic mice (p corn silk extract 15 days later. Also, the body weight of the alloxan-induced hyperglycemic mice was increased gradually. However, ascension of blood glucose induced by adrenalin and gluconeogenesis induced by L-alanine were not inhibited by corn silk extract treatment (p > 0.05). Although corn silk extract increased the level of hepatic glycogen in the alloxan-induced hyperglycemic mice, there was no significant difference between them and that of the control group(p > 0.05). Corn silk extract markedly reduced hyperglycemia in alloxan-induced diabetic mice. The action of corn silk extract on glycaemic metabolism is not via increasing glycogen and inhibiting gluconeogenesis but through increasing insulin level as well as recovering the injured beta-cells. The results suggest that corn silk extract may be used as a hypoglycemic food or medicine for hyperglycemic people in terms of this modern pharmacological study.

  9. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  10. Inhibitory effect of corn silk on skin pigmentation.

    Science.gov (United States)

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-03-03

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  11. Inhibitory Effect of Corn Silk on Skin Pigmentation

    Directory of Open Access Journals (Sweden)

    Sang Yoon Choi

    2014-03-01

    Full Text Available In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  12. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  13. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  14. The effects of corn silk on glycaemic metabolism

    Directory of Open Access Journals (Sweden)

    Han Linna

    2009-11-01

    Full Text Available Abstract Background Corn silk contains proteins, vitamins, carbohydrates, Ca, K, Mg and Na salts, fixed and volatile oils, steroids such as sitosterol and stigmasterol, alkaloids, saponins, tannins, and flavonoids. Base on folk remedies, corn silk has been used as an oral antidiabetic agent in China for decades. However, the hypoglycemic activity of it has not yet been understood in terms of modern pharmacological concepts. The purpose of this study is to investigate the effects of corn silk on glycaemic metabolism. Methods Alloxan and adrenalin induced hyperglycemic mice were used in the study. The effects of corn silk on blood glucose, glycohemoglobin (HbA1c, insulin secretion, damaged pancreatic β-cells, hepatic glycogen and gluconeogenesis in hyperglycemic mice were studied respectively. Results After the mice were orally administered with corn silk extract, the blood glucose and the HbA1c were significantly decreased in alloxan-induced hyperglycemic mice (p 0.05. Although corn silk extract increased the level of hepatic glycogen in the alloxan-induced hyperglycemic mice, there was no significant difference between them and that of the control group(p > 0.05. Conclusion Corn silk extract markedly reduced hyperglycemia in alloxan-induced diabetic mice. The action of corn silk extract on glycaemic metabolism is not via increasing glycogen and inhibiting gluconeogenesis but through increasing insulin level as well as recovering the injured β-cells. The results suggest that corn silk extract may be used as a hypoglycemic food or medicine for hyperglycemic people in terms of this modern pharmacological study.

  15. The Silk Route from Land to Sea

    Directory of Open Access Journals (Sweden)

    Jack Weatherford

    2018-04-01

    Full Text Available The Silk Route reached its historic and economic apogee under the Mongol Empire (1207–1368, as a direct result of the policies of Chinggis Khan (Genghis Khan and his successors. Because the land network proved inefficient for the amount of goods needing transport from one part of the empire to another, the Mongols expanded the Silk Route to ocean shipping and thus created the first Maritime Silk Route. The sea traffic initially expanded the land routes but soon strangled them. With the expansion of the Maritime Silk Route through the fourteenth century, the land connections reverted to local networks and lost their global importance.

  16. Effects of silk fibroin in murine dry eye

    Science.gov (United States)

    Kim, Chae Eun; Lee, Ji Hyun; Yeon, Yeung Kyu; Park, Chan Hum; Yang, Jaewook

    2017-03-01

    The study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2b mice exposing them to 30-40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye.

  17. Quantitative analysis of allantoin in Iranian corn silk

    OpenAIRE

    E. Khanpour*; M. Modarresi

    2017-01-01

    Background and objectives: Zea mays is cultivated in different parts of Iran and corn silk is used in traditional medicine. Allantoin is one of the major compounds in corn silk. The purpose of this research was the quantitatve analysis of allantoin in corn silks belonging to several regions of Iran. Methods: The samples of corn silk were prepared from three provinces of Iran (Kermanshah, Fars and Razavi Khorasan). The dried plant materials were infused in boiling distilled water with a temper...

  18. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  19. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  20. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  2. Solubilization of silk protein by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sudatis, Boonya; Pongpat, Suchada [Office of Atomic Energy of Peace, Bangkok (Thailand)

    2002-03-01

    Gamma irradiated silk fibroin at doses of 0, 5, 10, 20, 40, 60, 80, 100, 125, 250, 500, 750 and 1000 kGy were soaked in water for 1 hr. Silk fibroin solubilized percentage was investigated from lost weight of sample (dried at 105{sup 0}C), they were 0, 0, 0.7, 0, 0.11, 0.11, 0, 0.73, 0.77, 4.38, 8.32, 10.22 and 18.52 respectively. It showed that at the higher dose up to 250 kGy had direct effect to solubility, and increased with increasing dose. In addition, silk sericin dissolved 77.76, 82.22, 83.55, 84.31, 86.04, 86.67 and 87.37% after gamma irradiation at the doses of 0, 50, 100, 200, 500, 750 and 1000 kGy respectively. It presents that radiation can cause silk protein, fibroin and sericin dissolve because of their degradation. (author)

  3. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    Science.gov (United States)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  4. Evaluation of polyethylenimine/carrageenan multi-layer for antibacterial activity of pathogenic bacteria

    International Nuclear Information System (INIS)

    Briones, Annabelle V.; Bigol, Urcila G.; Sato, Toshinori

    2012-01-01

    The purpose of this study is to investigate the antibacterial activity of multi-layer of polyethylenimine (PEI) and carrageenan (κ,ι, λ) for potential use as coating on biomaterial surface. The multi-layer of PEI/carrageenan was formed using the layer-by-layer assembly absorption technique and was monitored by atomic force microscopy (AFM) and bio molecular interaction analysis. All samples were prepared in phosphate buffer solution and applied to mica disk alternately. The micrographs showed the formation of bi-layer of polyethylenimine and carrageenan (κ, ι, λ) as observed in the change of height of the layer and surface morphology. The bimolecular binding of carrageenan with polyethylenimine was also investigated using a biosensor. The sensorgram showed that PEI interacted molecularly with carrageenan. Results were: 1,916.08 pg/nm 2 for kappa type; 1,844.1 pg/nm 2 for iota type and 6,074.24 pg/nm 2 for lambda type. The multi-layer showed antibacterial activity against Enterobacter cloaceae, Staphylococcus aureus and Enterococcal strains (Enterococcus faecalis (EF) 29212 and 29505). (author)

  5. Formation of different gold nanostructures by silk nanofibrils

    International Nuclear Information System (INIS)

    Fang, Guangqiang; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  6. Formation of different gold nanostructures by silk nanofibrils

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guangqiang [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Yang, Yuhong [Research Centre for Analysis and Measurement, Fudan University, Shanghai 200433 (China); Yao, Jinrong; Shao, Zhengzhong [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Chen, Xin, E-mail: chenx@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China)

    2016-07-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  7. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine.

    Science.gov (United States)

    Aznar-Cervantes, Salvador; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Lozano-Pérez, A Abel; Meseguer-Olmo, Luis; Otero, Toribio F; Cenis, Jose L

    2016-04-01

    Silk fibroin and graphene are both promising biomaterials described in the bibliography. Hybrid scaffolds combining their properties could be attractive for tissue engineering applications. In this work, a new methodology to produce electrospun fibroin scaffolds coated with graphene materials is provided. The mechanical, electrical and electrochemical properties of the materials attained were characterised. The fibre diameters were measured (from 3.9 to 5.2 μm). The samples coated with reduced grapheme were electronic conductors and electroactive in liquid electrolytes, showing maximum oxidation and reduction (around−0.4 V peak). The chronoamperometric responses showed a reduction shoulder, pointing to the entrance of balancing cations from the solution by nucleation–relaxation: the reaction induced structural changes in the graphene. In order to check the biocompatibility of the materials, they were seeded with L929 fibroblasts. The excellent biocompatibility of silk fibroin meshes was maintained after coating with graphene, being the proliferation results equal in all the treatments 7 days after the seeding (Tukey, p N 0.05).The conductive and electroactive properties of meshes coated with reduced graphene allow the potential application of local electric fields or local ionic currents to cell cultures, biological interfaces or animal models without host response.

  8. Second-order nonlinear optical microscopy of spider silk

    Science.gov (United States)

    Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.

    2017-06-01

    Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.

  9. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  10. Characterization of Silk Fibroin Modified Surface: A Proteomic View of Cellular Response Proteins Induced by Biomaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2014-01-01

    Full Text Available The purpose of this study was to develop the pathway of silk fibroin (SF biopolymer surface induced cell membrane protein activation. Fibroblasts were used as an experimental model to evaluate the responses of cellular proteins induced by biopolymer material using a mass spectrometry-based profiling system. The surface was covered by multiwalled carbon nanotubes (CNTs and SF to increase the surface area, enhance the adhesion of biopolymer, and promote the rate of cell proliferation. The amount of adhered fibroblasts on CNTs/SF electrodes of quartz crystal microbalance (QCM greatly exceeded those on other surfaces. Moreover, analyzing differential protein expressions of adhered fibroblasts on the biopolymer surface by proteomic approaches indicated that CD44 may be a key protein. Through this study, utilization of mass spectrometry-based proteomics in evaluation of cell adhesion on biopolymer was proposed.

  11. Study on silk yellowing induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Tsukada, Masuhiro; Aoki, Akira

    1985-01-01

    The changes in the yellow color of silk threads with total dose of irradiation applied were described and studied by a colorimetric method and by monochrome photography. The change into a yellow color of the specimen in the course of irradiation was clearly detected in photographs using filters, 2B and SC 56 under light conditions at the wavelength of 366 nm. The b/L value measured by colorimetry in undegummed and degummed silk fibers sharply increased in the early stage of irradiation. Yellow color indices (b/L) of the specimen subjected to gamma-irradiation continued to increase and the yellow color of the silk threads became more pronounced above a total dose of irradiation of 21 Mrad. The b/L value of the undegummed silk fiber which had deen irradiated was about 2 times that of the degummed silk fiber. (author)

  12. The failure mode of natural silk epoxy triggered composite tubes

    International Nuclear Information System (INIS)

    Eshkour, R A; Ariffin, A K; Zulkifli, R; Sulong, A B; Azhari, C H

    2012-01-01

    In this study the quasi static compression test over natural silk epoxy triggered composite tubes has been carried out, the natural silk epoxy composite tubes consist of 24 layer of woven natural silk as reinforcement and thermoset epoxy resin as matrix which both of them i e natural silk and epoxy have excellent mechanical properties More over the natural silk have better moisture resistance in comparison with other natural reinforcements, the length of tubes are 50, 80 and 120 mm The natural silk epoxy composite tubes are associated with an external trigger which includes 4 steel pieces welded on downside flat plate fixture The hand lay up fabrication method has been used to make the natural silk epoxy composite tubes Instron universal testing machine with 250 KN load capacity has been employed to accomplish this investigation The failure modes of natural silk epoxy triggered composite tubes has been investigated by representative photographs which has been taken by a high resolution camera(12 2 Mp) during the quasi static compression test, from the photographs is observed the failure modes is progressive local buckling

  13. Three-dimensional analysis of micro- and nanostructure of biomaterials and cells by method of scanning probe nanotomography

    Directory of Open Access Journals (Sweden)

    A. E. Efimov

    2017-01-01

    Full Text Available Aim: to perform a three-dimensional analysis of micro- and nanosctucture and quantitative morphological parameters of alginate spherical microcarriers and porous regenerated silk macrocarriers modifi ed by microparticles of decellularized rat liver matrix and human hepatoma HepG2 cells adhered to micro- and macro carriers. Materials and methods. Three-dimensional porous matrices made from regenerated silk by salt leaching technique and alginate spherical microcarriers fabricated by encapsulation were vitalized by human hepatome HepG2 cells. Study of three-dimensional structure of cells and micro- and macro carriers was carried out at –120 °С by scanning probe cryonanotomography technique with use of experimental setup combining cryoultramicrotome and scanning probe microscope.Results. Three-dimensional nanotomographical reconstructions of HepG2 cells adhered to macropore wall of regenerated silk macrocarrier and to spherical alginate microcarrier are obtained. Morphological parameters (mean roughness, effective surface area and autocorrelation length are determined for surfaces of macro and microcarriers and adhered cells. The determined mean roughness of alginate microcarrier surface is 76.4 ± 7.5 nm, while that of surface of macropore wall of regenerated silk macrocarrier is 133.8 ± 16.2 nm. At the same time mean roughness of cells adhered to micro- and macrocarriers are 118.5 ± 9.0 и 158.8 ± 21.6 nm correspondingly. Three-dimensional reconstructions of intracellular compartments with dimensions from 140 to 500 nm are also obtained.Conclusion. Obtained as a result of study quantitative morphology characteristics of surfaces of cell carriers and adhered cells show signifi cant degree of correlation of morphological parameters of cells and their carriers. Use of scanning probe cryonanotomography technique for three-dimensional analysis of structure and characteristics of biomaterials, cells and bio-artifi cial cellular systems

  14. Silk elasticity as a potential constraint on spider body size.

    Science.gov (United States)

    Rodríguez-Gironés, Miguel A; Corcobado, Guadalupe; Moya-Laraño, Jordi

    2010-10-07

    Silk is known for its strength and extensibility and has played a key role in the radiation of spiders. Individual spiders use different glands to produce silk types with unique sets of proteins. Most research has studied the properties of major ampullate and capture spiral silks and their ecological implications, while little is known about minor ampullate silk, the type used by those spider species studied to date for bridging displacements. A biomechanical model parameterised with available data shows that the minimum radius of silk filaments required for efficient bridging grows with the square root of the spider's body mass, faster than the radius of minor ampullate silk filaments actually produced by spiders. Because the morphology of spiders adapted to walking along or under silk threads is ill suited for moving on a solid surface, for these species there is a negative relationship between body mass and displacement ability. As it stands, the model suggests that spiders that use silk for their displacements are prevented from attaining a large body size if they must track their resources in space. In particular, silk elasticity would favour sexual size dimorphism because males that must use bridging lines to search for females cannot grow large. 2010 Elsevier Ltd. All rights reserved.

  15. Co-effect of silk and amniotic membrane for tendon repair.

    Science.gov (United States)

    Seo, Young-Kwon; Kim, Jun-Hyung; Eo, Su-Rak

    2016-08-01

    The objective of the present study was to determine the feasibility and biocompatibility of a silk scaffold and a composite silk scaffold in terms of new tendon generation using a rabbit Achilles tendon model. The silk scaffold was constructed using a weaving machine, then soaked in a 1% collagen-hyaluronan (HA) solution and air-dried, whereas the composite silk scaffold was composed of a silk scaffold containing a lyophilized collagen-HA substrate. Tenocytes were cultured in vitro to compare cell populations in the two groups. The cellular densities on composite silk scaffolds were 40% higher on average than those on silk scaffolds in 30-day tenocyte cultures. The tendon scaffolds had implanted into Achilles tendon defects in 16 white New Zealand rabbits. Rabbits were randomly divided into the following three groups: group I, silk scaffold alone; group II, composite silk scaffold; and group III, composite silk scaffold wrapped by an amniotic membrane. Implants were harvested 2, 8, and 12 weeks post-implantation. Histological examinations were conducted using hematoxylin-eosin (H&E), Masson's trichrome, and by performing immunohistochemical staining for CD34. After 12 weeks, the three groups were distinguishable based on gross examination. The histological examination revealed more organized collagen fibrils in groups III, which showed a dense, parallel, linear organization of collagen bundles. CD34 staining revealed neoangiogenesis in groups III. The results of this research showed that collagen-HA substrates with amniotic membrane accelerate cellular migration and angiogenesis in neotendons.

  16. Determination of Na, Mn and Cu in cocoon, raw silk and degummed silk by nondestructive activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Y; Ishiguro, Y [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan)

    1976-01-01

    The sodium, manganese and copper contained in cocoons, raw silk and degummed silk thread were determined by the nondestructive activation analysis. After each sample was irradiated with the thermal neutron flux of 5 x 10/sup 11/n/cm/sup 2/.sec, its ..gamma..-ray spectrum was measured with a NaI(Tl) detector. With the photoelectric peaks at 511 keV (/sup 64/Cu), 1368 keV (/sup 24/Na) and 847 keV (/sup 56/Mn), each element was quantitatively determined and its content was obtained. The measurement of the ..gamma..-ray spectra of samples with a Ge (Li) detector proved the presence of An, Sb, Fe, Zn, Cr, Sc, Co, etc. Large amounts of Na and Cu were detected in the sericin portion of cocoons, and the adhesion of Cu from a reeling-off machine to raw silk was also observed during the process of degumming cocoons to make raw silk.

  17. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    Science.gov (United States)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  18. Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Jo, Minsik; Kim, Sunghwan

    2018-06-01

    Planar and multilayered photonic devices offer unprecedented opportunities in biological and chemical sensing due to strong light-matter interactions. However, uses of rigid substances such as semiconductors and dielectrics confront photonic devices with issues of biocompatibility and a mechanical mismatch for their application on humid, uneven, and soft biological surfaces. Here, we report that favorable material traits of natural silk protein led to the fabrication of an ultra-thin, conformal, and water-permeable (hydratable) metal-insulator-metal (MIM) color absorber that was mapped on soft, curved, and hydrated biological interfaces. Strong absorption was induced in the MIM structure and could be tuned by hydration and tilting of the sample. The transferred MIM color absorbers reached the exhibition of a very strong resonant absorption in the visible and near infra-red ranges. In addition, we demonstrated that the conformal resonator could function as a refractometric glucose sensor applied on a contact lens.

  19. Effect of degumming ph value on electrospining of silk fibroin

    Directory of Open Access Journals (Sweden)

    Lu Shen-Zhou

    2014-01-01

    Full Text Available Regenerated silk fibroin fibers show properties dependent on the molecular weight of fibroin. The cocoon-degumming approaches had great impact on the degradation of silk fibroin. The effect of degumming pH value to electrospining of fibroin was studied in this paper. The viscosity and molecular weight of regenerated silk fibroin were studied using rheometer and gel electrophoresis. The results showed that the weaker the alkalinity of degumming reagent, there was the milder the effect on silk fibroin molecular. The fibroin fibers can be prepared by electrospining with low concentration of regenerated silk fibroin solution.

  20. Acute and Subacute Toxicity Evaluation of Corn Silk Extract.

    Science.gov (United States)

    Ha, Ae Wha; Kang, Hyeon Jung; Kim, Sun Lim; Kim, Myung Hwan; Kim, Woo Kyoung

    2018-03-01

    Many studies have reported therapeutic efficacy of corn silk extract. However, research on its toxicity and safe dose range is limited. Thus, the objective of this study was to determine the acute and subacute toxicity of corn silk extract in ICR mice. To determine acute toxicity, corn silk extract containing high levels of maysin was orally administered to mice at a dose of 0 or 2,000 mg/kg. Clinical symptoms, mortality, and body weight changes were recorded for 14 days. To determine subacute toxicity, corn silk extract was orally administered to mice over a 4-week period, and then body weight, water and food consumption, and organ weight were determined. In addition, urine and serum analyses were performed. In the acute toxicity study, no death or abnormal symptoms was observed in all treatment groups during the study period. Body weights did not show any significant change compared to those of the control group. Lethal dose of corn silk extract was estimated to be more than 2,000 mg/kg. In the 4-week subacute toxicity study, there was no corn silk extract related toxic effect on body weight, water intake, food consumption, urine parameters, clinical chemistry, or organ weight. Histopathological examination showed no abnormality related to the administration of corn silk extract at 500 mg/kg. The maximum non-toxic dose of corn silk extract containing high levels of maysin was found to be more than 500 mg/kg.

  1. Multiscale mechanisms of nutritionally induced property variation in spider silks

    Science.gov (United States)

    Nobbs, Madeleine; Martens, Penny J.; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn

    2018-01-01

    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider’s silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk’s alanine and proline compositions influenced the alignment of the proteins within the silk’s amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers. PMID:29390013

  2. Characterization and assembly of a GFP-tagged cylindriform silk into hexameric complexes.

    Science.gov (United States)

    Öster, Carl; Svensson Bonde, Johan; Bülow, Leif; Dicko, Cedric

    2014-04-01

    Spider silk has been studied extensively for its attractive mechanical properties and potential applications in medicine and industry. The production of spider silk, however, has been lagging behind for lack of suitable systems. Our approach focuses on solving the production of spider silk by designing, expressing, purifying and characterizing the silk from cylindriform glands. We show that the cylindriform silk protein, in contrast to the commonly used dragline silk protein, is fully folded and stable in solution. With the help of GFP as a fusion tag we enhanced the expression of the silk protein in Escherichia coli and could optimize the downstream processing. Secondary structures analysis by circular dichroism and FTIR shows that the GFP-silk fusion protein is predominantly α-helical, and that pH can trigger a α- to β-transition resulting in aggregation. Structural analysis by small angle X-ray scattering suggests that the GFP-Silk exists in the form of a hexamer in solution. Copyright © 2013 Wiley Periodicals, Inc.

  3. More than a safety line: jump-stabilizing silk of salticids.

    Science.gov (United States)

    Chen, Yung-Kang; Liao, Chen-Pan; Tsai, Feng-Yueh; Chi, Kai-Jung

    2013-10-06

    Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs.

  4. Invited review the coiled coil silk of bees, ants, and hornets.

    Science.gov (United States)

    Sutherland, Tara D; Weisman, Sarah; Walker, Andrew A; Mudie, Stephen T

    2012-06-01

    In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks. Copyright © 2011 Wiley Periodicals, Inc.

  5. The protective ability of Camellia meal extract on the silk protein

    Science.gov (United States)

    Weng, JZ; Cai, C.; Zhang, DY; Dai, BK

    2018-02-01

    With the enhancement of living standards, people pay more and more attention to the health. The edible oil become more and more popular, but also produced a large amount of Camellia meal which can not fully put into utilization. In this study, the extracting liquid of Camellia meal was used on the process of silk degumming. Firstly, tussah silk was treated by degumming in the Na2CO3 solution, and the preliminary condition of tussah silk degumming was obtained by orthogonal experiment: the concentration Na2CO3 was 0.1%, the degumming time was 1 hour, and the ratio of silk/water was 40:1. Then the extract of Camellia meal (GCJSY) was added before the bleaching process of tussah silk to investigate the protective ability of GCJSY on the silk protein basry on the residual ratio of the silk. While the concentration of GYJSY was 0.08%, the residual ratio of silk after degumming in the Na2CO3 solution and bleaching in the 2% H2O2 solution was 87.2%.

  6. Biomaterials for artificial organs

    CERN Document Server

    Lysaght, Michael J

    2010-01-01

    The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and ...

  7. Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells.

    Science.gov (United States)

    Vera-Sánchez, Mar; Aznar-Cervantes, Salvador; Jover, Eva; García-Bernal, David; Oñate-Sánchez, Ricardo E; Hernández-Romero, Diana; Moraleda, Jose M; Collado-González, Mar; Rodríguez-Lozano, Francisco Javier; Cenis, Jose Luis

    2016-11-15

    Graphene represents one of the most interesting additions to the tissue engineering toolbox. Novel graphene-based composites are required to improve the beneficial graphene properties in terms of tridimensional polymeric structure, conferring a higher mechanical strength and favoring the differentiation of human mesenchymal stem cells. Here, we have demonstrated in a wide range of composite combinations, the successful use of graphene and silk-fibroin constructs for future bioengineering applications in the field of clinical regenerative dentistry using human periodontal ligament stem cells. Our results provide exciting new data for the development of suitable scaffolds that allow good cell engrafting, preservation of cell viability and proliferation, promotion of spontaneous osteoblastic differentiation, and importantly, stimulation of a higher cementum physiological synthesis than using other different available biomaterials.

  8. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori

    Science.gov (United States)

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography–tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  9. Biomaterials and their applications

    CERN Document Server

    Reza Rezaie, Hamid; Öchsner, Andreas

    2015-01-01

    This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.

  10. Conductive Au nanowires regulated by silk fibroin nanofibers

    Science.gov (United States)

    Dong, Bo-Ju; Lu, Qiang

    2014-03-01

    Conductive Au-biopolymer composites have promising applications in tissue engineering such as nerve tissue regeneration. In this study, silk fibroin nanofibers were formed in aqueous solution by regulating silk self-assembly process and then used as template for Au nanowire fabrication. We performed the synthesis of Au seeds by repeating the seeding cycles for several times in order to increase the density of Au seeds on the nanofibers. After electroless plating, densely decorated Au seeds grew into irregularly shaped particles following silk nanofiber to fill the gaps between particles and finally form uniform continuous nanowires. The conductive property of the Au-silk fibroin nanowires was studied with current-voltage ( I-V) measurement. A typical ohmic behavior was observed, which highlighted their potential applications in nerve tissue regeneration.

  11. Politics of contemporary "Silk Roads"

    Directory of Open Access Journals (Sweden)

    Andrey I. Litvinov

    2016-01-01

    Full Text Available Recently in mass media we can find the idea about a new Silk Road or the concept of "Silk Road Economic Belt" which has been formulated by the Chinese PresidentXi Jinping on September 7,2013, during his official visit to Kazakhstan. This project is not only the creation of a transport, power and trade corridor, and also the project which will promote development of tourism in the region and to strengthening of cultural exchanges of China with the countries of Central Asia, it also includes construction of a network of high-speed fiber-optical networks. The economic strip of the Silk Road will begin in China and pass across the Central and the Southern Asia, part of branches across the territory of the Russian Federation and to leave to Europe. This international investment project assumes creation of a continental transport way. For implementation of overland part of "A great Silk Road is a three railway corridors (northern, central have to be constructed and southern They have form a basis for development of other means of transport, including automobile subsequently. Construction of these three railway corridors acts as the most important and necessary stage of implementation of the project. The government of China declares that creation of an economic belt of the Silk way is a revival of once prospering trade-transport and cultural corridor from Asia to Europe which will promote activization of a friendly exchange between the people of the different countries. Further all this has to connect trade and economic space of Europe and Asia in a whole that has to serve implementation of deeper economic cooperation, between the countries participating in him, to increase in a trade turnover and expansion of scientific and technical exchanges between them.

  12. Ptychographic X-ray Tomography of Silk Fiber Hydration

    DEFF Research Database (Denmark)

    Esmaeili, Morteza; Fløystad, Jostein B.; Diaz, Ana

    2013-01-01

    Studying noninvasively the internal nanoporous structure of a single Tussah silk fiber under different humidity conditions, we demonstrate for the first time the feasibility of in-situ ptychographic tomography. The resulting 3D images of the silk fiber interior, obtained at both dry and humid con...... normal to the fiber axis. Exploiting quantitative information on the fiber’s electron density, hydration was found to proceed through interaction with the silk protein rather than filling of pores....

  13. The effects of corn silk on glycaemic metabolism

    OpenAIRE

    Han Linna; Liu Tongjun; Guo Jianyou; Liu Yongmei

    2009-01-01

    Abstract Background Corn silk contains proteins, vitamins, carbohydrates, Ca, K, Mg and Na salts, fixed and volatile oils, steroids such as sitosterol and stigmasterol, alkaloids, saponins, tannins, and flavonoids. Base on folk remedies, corn silk has been used as an oral antidiabetic agent in China for decades. However, the hypoglycemic activity of it has not yet been understood in terms of modern pharmacological concepts. The purpose of this study is to investigate the effects of corn silk ...

  14. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery.

    Science.gov (United States)

    Lau, Shinying; Fei, Jie; Liu, Haoran; Chen, Weixing; Liu, Ran

    2017-11-10

    Dissolving microneedles have been employed as a safe and convenient transdermal delivery system for drugs and vaccines. To improve effective drug delivery, a multilayered pyramidal dissolving microneedle patch, composed of silk fibroin tips with the ability of robust mechanical strength, rapid dissolution and drug release supported on a flexible polyvinyl alcohol (PVA) pedestal is reported. To show the utility of this approach the ability of the fabricated microneedles to deliver insulin is demonstrated. The dissolving microneedles have sufficient mechanical strength to be inserted into abdomen skin of mice to a depth of approximately 150μm, and release their encapsulated insulin into the skin to cause a hypoglycemic effect. The fabrication of microneedles avoids high temperature which benefits storage stability at room temperature for 20d. This result indicates >99.4% of insulin remained in the microneedles. In comparison to traditional needle-based administration, the proposed multilayered pyramidal dissolving microneedle patches enable self-administration, miniaturization, pain-free administration, drug delivery and drug stability, all being important features in needle free drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Analysis of the Comprehensive Tensile Relationship in Electrospun Silk Fibroin/Polycaprolactone Nanofiber Membranes.

    Science.gov (United States)

    Yin, Yunlei; Pu, Dandan; Xiong, Jie

    2017-12-07

    The mechanical properties of electrospun nanofiber membranes are critical for their applications. A clear understanding of the mechanical properties that result from the characteristics of the individual fiber and membrane microstructure is vital in the design of fiber composites. In this reported study, silk fibroin (SF)/polycaprolactone (PCL) composite nanofiber membranes were preparedusing an electrostatic spinning technology. The nanofiber orientation distribution (FOD) of the membrane was analyzed using multi-layer image fusion technology, and the results indicated the presence of an approximately uniform distribution of fibers in the electrospun membranes. The relationship between the single nanofiber and the membrane was established by analyzing the geometrical structure of the cell by employing a representative volume element (RVE) analysis method. The mechanical properties of the 272 nm diameter SF/PCL composite fibers were then predicted using the developed model.

  16. SilkDB: a knowledgebase for silkworm biology and genomics

    DEFF Research Database (Denmark)

    Wang, Jing; Xia, Qingyou; He, Ximiao

    2005-01-01

    The Silkworm Knowledgebase (SilkDB) is a web-based repository for the curation, integration and study of silkworm genetic and genomic data. With the recent accomplishment of a approximately 6X draft genome sequence of the domestic silkworm (Bombyx mori), SilkDB provides an integrated representati....... SilkDB is publicly accessible at http://silkworm.genomics.org.cn. Udgivelsesdato: 2005-Jan-1...

  17. Biomaterials and their applications

    Science.gov (United States)

    Sharma, Anu; Sharma, Gayatri

    2018-05-01

    There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.

  18. Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.

    Science.gov (United States)

    Steckel, Sandy; Stewart, S D; Tindall, K V

    2013-10-01

    Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.

  19. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  20. Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs.

    Science.gov (United States)

    Geurts, Paul; Zhao, Liang; Hsia, Yang; Gnesa, Eric; Tang, Simon; Jeffery, Felicia; La Mattina, Coby; Franz, Andreas; Larkin, Leah; Vierra, Craig

    2010-12-13

    Spider attachment disc silk fibers are spun into a viscous liquid that rapidly solidifies, gluing dragline silk fibers to substrates for locomotion or web construction. Here we report the identification and artificial spinning of a novel attachment disc glue silk fibroin, Pyriform Spidroin 2 (PySp2), from the golden orb weaver Nephila clavipes . MS studies support PySp2 is a constituent of the pyriform gland that is spun into attachment discs. Analysis of the PySp2 protein architecture reveals sequence divergence relative to the other silk family members, including the cob weaver glue silk fibroin PySp1. PySp2 contains internal block repeats that consist of two subrepeat units: one dominated by Ser, Gln, and Ala and the other Pro-rich. Artificial spinning of recombinant PySp2 truncations shows that the Ser-Gln-Ala-rich subrepeat is sufficient for the assembly of polymeric subunits and subsequent fiber formation. These studies support that both orb- and cob-weaving spiders have evolved highly polar block-repeat sequences with the ability to self-assemble into fibers, suggesting a strategy to allow fiber fabrication in the liquid environment of the attachment discs.

  1. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    International Nuclear Information System (INIS)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A.

    2015-01-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  2. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A., E-mail: amitb79@gmail.com

    2015-03-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  3. Inhibitory Effect of Corn Silk on Skin Pigmentation

    OpenAIRE

    Sang Yoon Choi; Yeonmi Lee; Sung Soo Kim; Hyun Min Ju; Ji Hwoon Baek; Chul-Soo Park; Dong-Hyuk Lee

    2014-01-01

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin prod...

  4. Untangling spider silk evolution with spidroin terminal domains

    Directory of Open Access Journals (Sweden)

    Garb Jessica E

    2010-08-01

    Full Text Available Abstract Background Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C-terminal domains, though they offer limited character data. The few known spidroin amino (N-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains. Results We report 11 additional spidroin N-termini found by sequencing ~1,900 silk gland cDNAs from nine spider species that shared a common ancestor > 240 million years ago. In contrast to their hyper-variable repetitive regions, spidroin N-terminal domains have retained striking similarities in sequence identity, predicted secondary structure, and hydrophobicity. Through separate and combined phylogenetic analyses of N-terminal domains and their corresponding C-termini, we find that combined analysis produces the most resolved trees and that N-termini contribute more support and less conflict than the C-termini. These analyses show that paralogs largely group by silk gland type, except for the major ampullate spidroins. Moreover, spidroin structural motifs associated with superior tensile strength arose early in the history of this gene family, whereas a motif conferring greater extensibility convergently evolved in two distantly related paralogs. Conclusions A non-repetitive N-terminal domain appears to be a universal attribute of spidroin proteins, likely retained from the origin of spider silk production. Since this time, spidroin N-termini have maintained several features, consistent with this domain playing a key role in silk

  5. Development and Evaluation of Isoniazid Loaded Silk Fibroin Microsphere

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    Full Text Available Aim: Current experimental investigation is dedicated to prepare microspheres with small size and good sphericity by Phase Separation method using Isoniazid (INH as model drug. Silk fibroin has unique intrinsic qualities like biodegradability, biocompatibility or release properties and their tunable drug loading capacity. The delivery loading proficiency of the drug molecules in silk spheres be contingent on their charge, and hydrophobicity or subsequent in altered drug release profiles. Methods: In the present work Isoniazid loaded silk fibroin microsphere was prepared by using phase separation method. Microsphere was evaluated for Ultraviolet-visible spectroscopy, Fourier Transform infrared spectroscopy, Entrapment efficiency, Scanning electron microscopy Studies. Results: Scanning electron microscopy studies revealed that Isoniazid Loaded Silk Fibroin Microspheres were spherical. Entrapment Efficiency of Isoniazid loaded Microspheres of different Formulation from F1 to F5 was in range of 53 to 68 %. F3 showed 68.47 % entrapment Efficiency and the optimized formulation drug release was 93.56 % at 24 hours. Conclusion: Experimental report disclosed a new aqueous based formulation method for silk spheres with controllable shape or size and sphere. Isoniazid loaded silk microspheres may act as ideal nano formulation with elaborated studies.

  6. Corn silk induces nitric oxide synthase in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Choi, Sang Kyu; Choi, Hye Seon

    2004-12-31

    Corn silk has been purified as an anticoagulant previously and the active component is a polysaccharide with a molecular mass of 135 kDa. It activates murine macrophages to induce nitric oxide synthase (NOS) and generate substantial amounts of NO in time and dose-dependent manners. It was detectable first at 15 h after stimulation by corn silk, peaked at 24 h, and undetectable by 48 h. Induction of NOS is inhibited by pyrolidine dithiocarbamate (PDTC) and genistein, an inhibitor of nuclear factor kappa B (NF-kappaB) and tyrosine kinase, respectively, indicating that iNOS stimulated by corn silk is associated with tyrosine kinase and NF-kappaB signaling pathways. IkappaB-alpha degradation was detectible at 10 min, and the level was restored at 120 min after treatment of corn silk. Corn silk induced nuclear translocation of NF-kappaB by phosphorylation and degradation of IkappaB-alpha.

  7. Optical surface profiling of orb-web spider capture silks

    Energy Technology Data Exchange (ETDEWEB)

    Kane, D M; Joyce, A M; Staib, G R [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Herberstein, M E, E-mail: deb.kane@mq.edu.a [Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 (Australia)

    2010-09-15

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  8. Optical surface profiling of orb-web spider capture silks

    International Nuclear Information System (INIS)

    Kane, D M; Joyce, A M; Staib, G R; Herberstein, M E

    2010-01-01

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  9. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.

    Science.gov (United States)

    Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin

    2017-02-01

    Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  12. [Biomaterials in bone repair].

    Science.gov (United States)

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  13. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  14. Transmission Electron Microscopy of Bombyx Mori Silk Fibers

    Science.gov (United States)

    Shen, Y.; Martin, D. C.

    1997-03-01

    The microstructure of B. Mori silk fibers before and after degumming was examined by TEM, selected area electron diffraction (SAED), WAXS and low voltage SEM. SEM micrographs of the neat cocoon revealed a network of pairs of twisting filaments. After degumming, there were only individual filaments showing a surface texture consistent with an oriented fibrillar structure in the fiber interior. WAXS patterns confirmed the oriented beta-sheet crystal structure common to silkworm and spider silks. Low dose SAED results were fully consistent with the WAXS data, and revealed that the crystallographic texture did not vary significantly across the fiber diameter. TEM observations of microtomed fiber cross sections indicated a somewhat irregular shape, and also revealed a 0.5-2 micron sericin coating which was removed by the degumming process. TEM observations of the degummed silk fiber showed banded features with a characteristic spacing of nominally 600 nm along the fiber axis. These bands were oriented in a roughly parabolic or V-shape pointing along one axis within a given fiber. We hypothesize that this orientation is induced by the extrusion during the spinning process. Equatorial DF images revealed that axial and lateral sizes of the β-sheet crystallites in silk fibroin ranged from 20 to 170 nm and from 1 to 24 nm, respectively. Crazes developed in the degummed silk fiber parallel to the fiber direction. The formation of these crazes suggests that there are significant lateral interactions between fibrils in silk fibers.

  15. Physical properties of organic and biomaterials: Fundamentals and applications

    Science.gov (United States)

    Steven, Eden

    Silk materials are natural protein-based materials with an exceptional toughness. In addition to their toughness, silk materials also possess complex physical properties and functions resulting from a particular set of amino-acid arrangement that produces structures with crystalline beta-sheets connected by amorphous chains. Extensive studies have been performed to study their structure-function relationship leading to recent advancements in bio-integrated devices. Applications to fields other than textiles and biomedicine, however, have been scarce. In this dissertation, an investigation of the electronic properties, functionalization, and role of silk materials (spider silk and Bombyx mori cocoon silk) in the field of organic materials research is presented. The investigation is conducted from an experimental physics point of view where correlations with charge transport mechanisms in disordered, semiconducting, and insulating materials are made when appropriate. First, I present the electronic properties of spider silk fibers under ambient, humidified, iodized, polar solvent exposure, and pyrolized conditions. The conductivity is exponentially dependent on relative humidity changes and the solvent polarity. Iodine doping increases the conductivity only slightly but has pronounced effects on the pyrolization process, increasing the yield and flexibility of the pyrolized silk fibers. The iodized samples were further studied using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) revealing non-homogenous iodine doping and I2 induced hydrogenation that are responsible for the minimal conductivity improvement and the pyrolization effects, respectively. Next, I present the investigation of silk fiber functionalization with gold and its role in electrical measurements. The gold functionalized silk fiber (Au-SS) is metallic down to cryogenic temperatures, has a certain amount of flexibility, and possesses

  16. Web building and silk properties functionally covary among species of wolf spider.

    Science.gov (United States)

    Lacava, Mariángeles; Camargo, Arley; Garcia, Luis F; Benamú, Marco A; Santana, Martin; Fang, Jian; Wang, Xungai; Blamires, Sean J

    2018-04-15

    Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2-like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non-web building, but a select few species build webs. We accordingly collected MA silk from two web-building and six non-web-building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2-like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web-building and non-web-building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web-building and non-web-building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2-like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co-evolution and the ecological implications of spider silk properties. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  17. Morus planting and silk production in Oxus civilization (2000 BC), Transoxiana

    Science.gov (United States)

    Zhou, X.; Li, X.; Wang, J.

    2017-12-01

    Silk is the most important luxury in ancient trade, which promoted communications between east and west civilizations that facilitated the development of them. Currently, probably more than 99% of the silk in commerce in the world today comes from a single species called the silkworm or mulberry silk moth, Bombyx mori (L.), of the family Bombycidae. At present, a list of occurrences of unearthed early silk thread, textile and terracotta figures of China suggests that wild silk has been widely used for weave in Yangtze river and Yellow River basin at least 5000 cal yr BP. On the other hand, the earliest silk fabric out China is from the earliest civilization Harappa site (4500-4000 cal a BP) that confirmed the early use of wild silkworms in South Asia.. In addition, in the Egyptian Deir al Medina relics site, the unearthed silk also as old as nearly 3000 cal a BP, and a serials of pre-han silk also unearthed 3000-2500 cal a BP in Europe. But, the appearance of these out-China silk is usually considered to be the result of the early trade or wild silkmoth products. Here we present a synthesis study of chronology, entomology, protein group, the paleoethnobotany form three Bronze Age site (Sapalli, Jarzgudan, Molleli) concerning on the paleo environment, agriculture gardening, and the possible mulberry silkworm utilization in Bronze Age Tensoxiana 4000 cal a BP. Together with archaeobotany and chronology data from Xinjiang, Hexi corridor and the Loess Plateau in China, we analysis the status of the mulberry silk factory in Bronze Age in Transoxiana and it possible connection to ancient China.

  18. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  19. Evaluating drug trafficking on the Tor Network: Silk Road 2, the sequel.

    Science.gov (United States)

    Dolliver, Diana S

    2015-11-01

    Housing an illicit, online drug retail market generating sales in the millions of USD, the Silk Road was a profitable marketplace with a growing and loyal consumer base. Following its FBI-forced shut down in October 2013, the Silk Road enjoyed newfound fame that contributed to an increase in new users downloading and accessing the Tor Network; however, with this particular marketplace out of order, Silk Road 2 was launched to fill the void. The goals of this study were to (1) compare the metrics of Silk Road 2 to the original site, and to (2) determine if there were any indications of the presence of more sophisticated drug trafficking operations. Data were collected from Silk Road 2 during the months of August and September 2014 using webcrawling software. Silk Road 2 was a much smaller marketplace than the original Silk Road. Of the 1834 unique items for sale, 348 were drug items sold by 145 distinct vendors shipping from 19 countries. Of the drug items advertised, most were stimulants and hallucinogens. The United States is both the number one country of origin for drug sales on Silk Road 2 and the number one destination country. Interestingly, 73% of all vendor accounts on Silk Road 2 advertised drug items, even though drugs only constituted 19% of all items advertised. This study was the first to research Silk Road 2, the replacement illicit marketplace to the original virtual Silk Road. This study was also the first to examine indications of the presence of more coordinated drug trafficking efforts in an online setting. The findings indicated that while Silk Road 2 was not primarily a drug market, there were indications that some vendor accounts may have connections reaching beyond a base retail market. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Compliant threads maximize spider silk connection strength and toughness

    Science.gov (United States)

    Meyer, Avery; Pugno, Nicola M.; Cranford, Steven W.

    2014-01-01

    Millions of years of evolution have adapted spider webs to achieve a range of functionalities, including the well-known capture of prey, with efficient use of material. One feature that has escaped extensive investigation is the silk-on-silk connection joints within spider webs, particularly from a structural mechanics perspective. We report a joint theoretical and computational analysis of an idealized silk-on-silk fibre junction. By modifying the theory of multiple peeling, we quantitatively compare the performance of the system while systematically increasing the rigidity of the anchor thread, by both scaling the stress–strain response and the introduction of an applied pre-strain. The results of our study indicate that compliance is a virtue—the more extensible the anchorage, the tougher and stronger the connection becomes. In consideration of the theoretical model, in comparison with rigid substrates, a compliant anchorage enormously increases the effective adhesion strength (work required to detach), independent of the adhered thread itself, attributed to a nonlinear alignment between thread and anchor (contact peeling angle). The results can direct novel engineering design principles to achieve possible load transfer from compliant fibre-to-fibre anchorages, be they silk-on-silk or another, as-yet undeveloped, system. PMID:25008083

  1. Biomaterials a basic introduction

    CERN Document Server

    Chen, Qizhi

    2014-01-01

    Part IBiomaterials ScienceBiomaterials Science and EngineeringLearning ObjectivesMaterials Science and EngineeringMultilevels of Structure and Categorization of MaterialsFour Categories of MaterialsDefinitions of Biomaterials, Biomedical Materials, and Biological MaterialsBiocompatibilityChapter HighlightsActivitiesSimple Questions in ClassProblems and ExercisesBibliographyToxicity and CorrosionLearning ObjectivesElements in the BodyBiological Roles and Toxicities of Trace ElementsSelection of Metallic Elements in Medical-Grade AlloysCorrosion of MetalsEnvironment inside the BodyMinimization of Toxicity of Metal ImplantsChapter HighlightsLaboratory Practice 1Simple Questions in ClassProblems and ExercisesAdvanced Topic: Biological Roles of Alloying ElementsBibliographyMechanical Properties of BiomaterialsLearning ObjectivesRole of Implant BiomaterialsMechanical Properties of General ImportanceHardnessElasticity: Resilience and StrechabilityMechanical Properties Terms Used in the Medical CommunityFailureEssent...

  2. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  3. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    Science.gov (United States)

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  5. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    Science.gov (United States)

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  6. Silk fibroin film from golden-yellow Bombyx mori is a biocomposite that contains lutein and promotes axonal growth of primary neurons.

    Science.gov (United States)

    Pistone, Assunta; Sagnella, Anna; Chieco, Camilla; Bertazza, Gianpaolo; Varchi, Greta; Formaggio, Francesco; Posati, Tamara; Saracino, Emanuela; Caprini, Marco; Bonetti, Simone; Toffanin, Stefano; Di Virgilio, Nicola; Muccini, Michele; Rossi, Federica; Ruani, Giampiero; Zamboni, Roberto; Benfenati, Valentina

    2016-05-01

    The use of doped silk fibroin (SF) films and substrates from Bombyx mori cocoons for green nanotechnology and biomedical applications has been recently highlighted. Cocoons from coloured strains of B. mori, such as Golden-Yellow, contain high levels of pigments that could have a huge potential for the fabrication of SF based biomaterials targeted to photonics, optoelectronics and neuroregenerative medicine. However, the features of extracted and regenerated SF from cocoons of B. mori Golden-Yellow strain have never been reported. Here we provide a chemophysical characterization of regenerated silk fibroin (RSF) fibers, solution, and films obtained from cocoons of a Golden-Yellow strain of B. mori, by SEM, (1) H-NMR, HPLC, FT-IR, Raman and UV-Vis spectroscopy. We found that the extracted solution and films from B. mori Golden-Yellow fibroin displayed typical Raman spectroscopic and optical features of carotenoids. HPLC-analyses revealed that lutein was the carotenoid contained in the fiber and RSF biopolymer from yellow cocoons. Notably, primary neurons cultured on yellow SF displayed a threefold higher neurite length than those grown of white SF films. The results we report pave the way to expand the potential use of yellow SF in the field of neuroregenerative medicine and provide green chemistry approaches in biomedicine. © 2016 Wiley Periodicals, Inc.

  7. Concentration state dependence of the rheological and structural properties of reconstituted silk.

    Science.gov (United States)

    Mo, Chunli; Holland, Chris; Porter, David; Shao, Zhengzhong; Vollrath, Fritz

    2009-10-12

    The ability to control the processing of artificial silk is key to the successful application of this important and high performance biopolymer. Understanding where our current reconstitution process can be improved will not only aid us in the creation of better materials, but will also provide insight into the natural material along the way. This study aims to understand what proportion of reconstituted silk contributes to its rheological properties and what conformational state the silk proteins are in. It shows, for the first time, that a change in rheological properties can be related to a change in silk structures present in solution and reveals a low concentration gel state for silk that may have important implications for future successful artificial processing of silk.

  8. Thin Film Assembly of Spider Silk-like Block Copolymers

    Science.gov (United States)

    2011-01-01

    Shipley, N. H.; Lewis, R. V. Int. J. Biol.Macromol. 1999, 24, 271. (c) Thiel, B. L.; Guess, K. B.; Viney, C. Biopolymers 1997, 41, 703. (13) Silk ...Film Assembly of Spider Silk -like Block Copolymers Sreevidhya T. Krishnaji,†,‡ Wenwen Huang,§ Olena Rabotyagova,†,‡ Eugenia Kharlampieva, ) Ikjun Choi...Received November 26, 2010 We report the self-assembly of monolayers of spider silk -like block copolymers. Langmuir isotherms were obtained for a series of

  9. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    Science.gov (United States)

    Shimizu, Katsuhiko

    2018-05-15

    Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk, resulting in the development of sericulture and the textile industry. Silk is generally white, so dyeing is required to obtain colored fiber. However, the dyeing process involves harsh conditions and generates a large volume of waste water, which have environmentally and economically negative impacts. Although some strains produce cocoons that contain pigments derived from the mulberry leaves that they eat, the pigments are distributed in the sericin layer and are lost during gumming. In trials for production of colored silk by feeding silkworms on diets containing dyes, only limited species of dye molecules were incorporated into the silk threads. A method for the generation of transgenic silkworm was established in conjunction with the discovery of green fluorescent protein (GFP), and silkworms carrying the GFP gene spun silk threads that formed cocoons that glowed bright green and still retained the original properties of silk. A wide range of color variation of silk threads has been obtained by replacing the GFP gene with the genes of other fluorescent proteins chosen from the fluorescent protein palette. The genetically modified silk with photonic properties can be processed to form various products including linear threads, 2D fabrics, and 3D materials. The transgenic colored silk could be economically advantageous due to addition of a new value to silk and reduction of cost for water waste, and environmentally preferable for saving water. Here, I review the literature regarding the production methods of fluorescent silk from transgenic silkworms and present examples of genetically modified color silk.

  10. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  11. Spider silk reinforced by graphene or carbon nanotubes

    Science.gov (United States)

    Lepore, Emiliano; Bosia, Federico; Bonaccorso, Francesco; Bruna, Matteo; Taioli, Simone; Garberoglio, Giovanni; Ferrari, Andrea C.; Pugno, Nicola Maria

    2017-09-01

    Spider silk has promising mechanical properties, since it conjugates high strength (~1.5 GPa) and toughness (~150 J g-1). Here, we report the production of silk incorporating graphene and carbon nanotubes by spider spinning, after feeding spiders with the corresponding aqueous dispersions. We observe an increment of the mechanical properties with respect to pristine silk, up to a fracture strength ~5.4 GPa and a toughness modulus ~1570 J g-1. This approach could be extended to other biological systems and lead to a new class of artificially modified biological, or ‘bionic’, materials.

  12. Subchronic toxicity study of corn silk with rats.

    Science.gov (United States)

    Wang, Cuina; Zhang, Tiehua; Liu, Jun; Lu, Shuang; Zhang, Cheng; Wang, Erlei; Wang, Zuozhao; Zhang, Yan; Liu, Jingbo

    2011-09-01

    Corn silk is a traditional herbal medicine in China, which has been used in many parts of the world for the treatment of edema as well as for cystitis, gout, kidney stones, nephritis, prostatitis and similar ailments. However, there is little scientific evidence about its safety. As a part of its safety assessment, a subchronic toxicity was performed in this paper. The subchronic toxicity was investigated in male and female Wistar rats by dietary administration at concentrations of 0.5%, 2.0% and 8.0% (w/w) for 90 days. Overall health, body weight, food consumption, hematology, blood chemistry, organ weights, gross and microscopic appearance of tissues were compared between test and control groups. A number of significant differences were seen between groups, but none of them was considered to be adverse. Based on the present study, the no-observed-adverse-effect level (NOAEL) of corn silk is at least 8.0% which corresponds to a mean daily corn silk intake of approximately 9.354 and 10.308 g/day/kg body weight for males and females, respectively. The results obtained in the present study suggest that consumption of corn silk has no adverse effects and support the safety of corn silk for humans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Production of silk sericin/silk fibroin blend nanofibers

    Directory of Open Access Journals (Sweden)

    Zhang Xianhua

    2011-01-01

    Full Text Available Abstract Silk sericin (SS/silk fibroin (SF blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75 blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50 blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100 blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  14. The inflammatory responses to silk films in vitro and in vivo

    NARCIS (Netherlands)

    Meinel, L.; Hofmann, S.; Karageorgiou, V.; Kirker-Head, C.; McCool, J.; Gronowicz, G.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D.L.

    2005-01-01

    Silks have a long history of biomedical use as sutures. Silk can be purified, chemically modified to attach RGD sequences and processed into highly porous scaffolds for tissue engineering. We report biocompatibility studies of silk films (with or without covalently bound RGD) that were seeded with

  15. Flexible and wearable electronic silk fabrics for human physiological monitoring

    Science.gov (United States)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  16. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn

    Directory of Open Access Journals (Sweden)

    Nurhanan Abdul Rahman

    2014-04-01

    Full Text Available The silks of immature and mature corn were evaluated for their variations in nutritional compositions, mineral content and antioxidant capacity. Both immature and mature silks were good source of nutritional compositions. Immature silks contained significantly higher moisture (89.31% (fresh basis, lipid (1.27% and protein (12.96% content than the mature silk. Mature silks contained higher composition of ash (5.51%, carbohydrate (29.74% and total dietary fiber (51.25 g/100 g, than the immature silk, but the difference was not significant. In mineral determination, immature silk was rich source of Ca (1087.08 μg/g, Mg (1219.17 μg/g, Cu (5.60 μg/g and Zn (46.37 μg/g than the mature silks. In contrast, other minerals such as K (35671.67 μg/g, Na (266.67 μg/g, Fe (4.50 μg/g and Mn (35.57 μg/g were found higher in the mature silk. The silks were extracted with ethyl acetate, ethanol and water using the Soxhlet extraction method to determine the polyphenol and ABTS radical scavenging capacity. From this study, the highest content of total polyphenol of immature silks was exhibited by ethanol extract (92.21 mg GAE/g while water extract (64.22 mg GAE/g had the highest polyphenol content among mature silk extracts. Total flavonoid content of both immature and mature silks was higher in the water extract at 8.40 mg CAE/g and 2.31 mg CAE/g, respectively. In the ABTS free radical assay method, all immature silk extracts had higher percentage of inhibition compared to the mature silks. Among all three crude extracts, the ethanol extract of immature (EC50 = 0.478 mg/ml and mature silk (EC50 = 0.799 mg/ml exhibited the strongest antioxidant capacity followed by the water and ethyl acetate extract.

  17. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  18. 'Surfing the Silk Road': a study of users' experiences.

    Science.gov (United States)

    Van Hout, Marie Claire; Bingham, Tim

    2013-11-01

    The online drug marketplace called 'Silk Road' has operated anonymously on the 'Deep Web' since 2011. It is accessible through computer encrypting software (Tor) and is supported by online transactions using peer to peer anonymous and untraceable crypto-currency (Bit Coins). The study aimed to describe user motives and realities of accessing, navigating and purchasing on the 'Silk Road' marketplace. Systematic online observations, monitoring of discussion threads on the site during four months of fieldwork and analysis of anonymous online interviews (n=20) with a convenience sample of adult 'Silk Road' users was conducted. The majority of participants were male, in professional employment or in tertiary education. Drug trajectories ranged from 18 months to 25 years, with favourite drugs including MDMA, 2C-B, mephedrone, nitrous oxide, ketamine, cannabis and cocaine. Few reported prior experience of online drug sourcing. Reasons for utilizing 'Silk Road' included curiosity, concerns for street drug quality and personal safety, variety of products, anonymous transactioning, and ease of product delivery. Vendor selection appeared to be based on trust, speed of transaction, stealth modes and quality of product. Forums on the site provided user advice, trip reports, product and transaction reviews. Some users reported solitary drug use for psychonautic and introspective purposes. A minority reported customs seizures, and in general a displacement away from traditional drug sourcing (street and closed markets) was described. Several reported intentions to commence vending on the site. The study provides an insight into 'Silk Road' purchasing motives and processes, the interplay between traditional and 'Silk Road' drug markets, the 'Silk Road' online community and its communication networks. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    Science.gov (United States)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  20. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

    Science.gov (United States)

    Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei

    2017-11-01

    The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature

  1. Mechanism of Stabilization of Labile Compounds by Silk Fibroin Proteins

    Science.gov (United States)

    2017-04-05

    saliva, or urine , and their collection and storage is critical to obtain reliable results. Without proper temperature regulation protein biomarkers in... samples for long-term ambient storage and subsequent on-demand recovery and laboratory analysis. Air dried silks provide a protective barrier that...silk in the stabilization of a range of different analytes, including entrapment, storage and recovery. Here, we successfully used silk fibroin as a

  2. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.

    Science.gov (United States)

    Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat

    2018-01-01

    Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.

  3. Traveling the Silk Road: A Measurement of a Large Anonymous Online Marketplace

    Science.gov (United States)

    2012-11-28

    Silk Road, an anonymous, international online marketplace that operates as a Tor hidden service and uses Bitcoin as its exchange currency. We gather...analysis of Silk Road, an anonymous, international on- line marketplace that operates as a Tor hidden service and uses Bitcoin as its exchange currency. We...anonymity, Silk Road needs to also preserve payment anonymity. To that effect, Silk Road only supports Bitcoin (BTC, [30]) as a trading currency

  4. Quantitative analysis of allantoin in Iranian corn silk

    Directory of Open Access Journals (Sweden)

    E. Khanpour*

    2017-11-01

    Full Text Available Background and objectives: Zea mays is cultivated in different parts of Iran and corn silk is used in traditional medicine. Allantoin is one of the major compounds in corn silk. The purpose of this research was the quantitatve analysis of allantoin in corn silks belonging to several regions of Iran. Methods: The samples of corn silk were prepared from three provinces of Iran (Kermanshah, Fars and Razavi Khorasan. The dried plant materials were infused in boiling distilled water with a temperature of 90-95 °C on magnetic stirrer for 30 min. The levels of allantoin in aqueous extracts were determined by HPLC. Quantification was achieved using an C18 column (250×4.6 mm, 5 µm under isocratic conditions and phosphate buffer solution (pH 3.0 as the mobile phase at a flow rate of 0.5 mL/min. Column effluent was monitored at 210 nm. The calibration curve of allantoin standard was plotted with concentrations from 6.25 to 100 µg/mL. Results: The calibration curve of standard was linear over the concentration range used (R2=0.9999. The results showed that the amount of allantoin in samples was between 205 and 374 mg/100g of dry plant material. The corn silk samples of Razavi Khorasan and Fars provinces showed the lowest and highest amount of allantoin, respectively. Conclusion: The levels of allantoin obtained in this study were higher than the values reported in other studies; therefore, the researchers of this project are investigating the wound healing effect of corn silk.

  5. Cytocompatibility of a silk fibroin tubular scaffold

    International Nuclear Information System (INIS)

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility

  6. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method

    Science.gov (United States)

    Cao, Jiliang; Wang, Chaoxia

    2017-05-01

    Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.

  7. Beneficial Effects of Corn Silk on Metabolic Syndrome.

    Science.gov (United States)

    Wang, Bing; Xiao, Tiegang; Ruan, Jun; Liu, Wensheng

    2017-01-01

    Metabolic syndrome (MS) is a very common medical problem worldwide. It includes obesity, hypertension, hyperglycemia, and abnormal levels of triglycerides and high-density lipoprotein cholesterol. It is closely associated with insulin resistance and may lead to diabetes mellitus, liver diseases, or cardiovascular diseases. Corn silk (CS), a traditional Chinese medicine, has been reported to have multiple beneficial effects, including hypotensive, anti-diabetic, and hypolipidemic properties. This suggests that corn silk could be used to treat or prevent metabolic syndrome. In this review, we will discuss the potential role of corn silk in different components of metabolic syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Silk industry and carbon footprint mitigation

    Science.gov (United States)

    Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.

  9. Extracted sericin from silk waste for film formation

    Directory of Open Access Journals (Sweden)

    Rungsinee Sothornvit

    2010-03-01

    Full Text Available Sericin is the second main component in cocoons, which are removed in the silk reeling process of the raw silk industry and in the silk waste degumming of the spun silk industry. The main amino acid of sericin, serine, exhibits a skin moisturing and antiwrinkle action, which is interesting to use for film formation in this study. The extraction conditions of sericin from two silk wastes, pieced cocoon and inferior knubbs were studied to find the optimum extraction conditions. Boiling water extraction was considered based on the response surface methodology (RSM in order to identify the important factors for the sericin extraction. The two factors considered were time and temperature. Both factors were needed to be independent parameters in the predicted equation in order to improve the model fit with R2 = 0.84. The components ofextracted sericin were 18.24% serine, 9.83% aspatate, and 5.51% glycine with a molecular weight of 132 kDa. Film formationfrom extracted sericin was carried out to find the optimum conditions. Extracted sericin could not form a stand-alonefilm. Therefore, polysaccharide polymers, such as glucomannan, were incorporated with glycerol to form a flexible film.Sericin-based films were characterized for its properties in terms of solubility and permeability before application. It wasfound that sericin-based films showed a film flexibility and solubility without an increasing film water vapor permeability.

  10. Atomistic model of the spider silk nanostructure

    Science.gov (United States)

    Keten, Sinan; Buehler, Markus J.

    2010-04-01

    Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 31-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called "prestretched" molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.

  11. Engagement and contestation: The entangled imagery of the Silk Road

    Directory of Open Access Journals (Sweden)

    Timur Dadabaev

    2018-03-01

    Full Text Available There is considerable debate over how and in what form Central Asian (CA states should conduct relations among each other and with other post-Soviet states. The notion of the “Silk Road” has become one of the symbols of extended economic and political cooperation. Notably, however, Japan (Silk Road Diplomacy, 1996–1999, China (One Belt, One Road [OBOR] or the Belt and Road initiative [BRI] and South Korea (Silk Road Strategy, 2011 have used the rhetoric of reviving the Silk Road to imply closer engagement with the CA region but with different connotations. This paper focuses on the formation of this discourse of engagement with the CA region through the notion of the Silk Road in China, South Korea and Japan and raises the following questions: What are the approaches that facilitate the most effective ways of engaging CA states under this “Silk Road” rhetoric? What are the principles that have detrimental effects on the successes and failures of the engagement of China, Japan and South Korea? The primary objective of this paper is to address these questions and to stimulate debate among both academics and policy makers on the formats of engagement and cooperation in Eurasia.

  12. Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.

    Science.gov (United States)

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L

    2011-12-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.

  13. The Eurasian Silk Road: Its historical roots and the Chinese imagination

    Directory of Open Access Journals (Sweden)

    Sally Church

    2018-02-01

    Full Text Available This article takes a long historical perspective on the Silk Road, attempting to see it from a Chinese point of view. It focuses on five themes that figure in the Chinese imagination of the Silk Road, all rooted in China’s history. These include influences that came to China via the Silk Road in prehistoric and early historic times, patterns of military expansion of Chinese power in the Western regions, the threat of invasion from the northern and north-western frontiers, commercial exchanges and individual travel. Individuals journeyed across the Silk Road for diplomatic, military, commercial and sometimes religious reasons and the various themes overlap to some extent. Some myths are also dispelled: first, the Silk Road was not one route but many; second, other commodities besides silk travelled along it and third, the maritime Silk Road should also be included in the concept. Under Mongol rule, the route was at times an unbroken corridor between East and West on which many people travelled in both directions. When the Mongol empire broke up, travel overland was restricted again, which may have been why China took to the seas in the Ming. At present, China is building a New Silk Road to connect with the rest of the world in a more integrated way than ever before. The focus of this article is on establishing the patterns of the past in the hopes that it will contribute to the discussion of whether these patterns will be repeated in the present or if we are in completely uncharted territory.

  14. Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins.

    Science.gov (United States)

    Maitip, Jakkrawut; Trueman, Holly E; Kaehler, Benjamin D; Huttley, Gavin A; Chantawannakul, Panuwan; Sutherland, Tara D

    2015-04-01

    Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Preparation of Porous Scaffolds from Silk Fibroin Extracted from the Silk Gland of Bombyx mori (B. mori

    Directory of Open Access Journals (Sweden)

    Liangjun Zhu

    2012-06-01

    Full Text Available In order to use a simple and ecofriendly method to prepare porous silk scaffolds, aqueous silk fibroin solution (ASF was extracted from silk gland of 7-day-old fifth instar larvae of Bombyx mori (B. mori. SDS-page analysis indicated that the obtained fibroin had a molecular weight higher than 200 kDa. The fabrication of porous scaffolds from ASF was achieved by using the freeze-drying method. The pore of porous scaffolds is homogenous and tends to become smaller with an increase in the concentration of ASF. Conversely, the porosity is decreased. The porous scaffolds show impressive compressive strength which can be as high as 6.9 ± 0.4 MPa. Furthermore, ASF has high cell adhesion and growth activity. It also exhibits high ALP activity. This implies that porous scaffolds prepared from ASF have biocompatibility. Therefore, the porous scaffolds prepared in this study have potential application in tissue engineering due to the impressive compressive strength and biocompatibility.

  16. ToF-SIMS study of growth behavior in all-nanoparticle multilayer films using a novel indicator layer

    International Nuclear Information System (INIS)

    Chen, B.-J.; Yin, Y.-S.; Ling, Y.-C.

    2008-01-01

    All-nanoparticle multilayer films found novel applications in the areas of photonics, catalysis, sensors, and biomaterials. The assembly of nanoparticles into conformal and uniform films with precise control over chemical and physical properties poses a significant challenge. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), we have investigated the growth behavior in all-nanoparticle multilayer films using a novel indicator layer. The all-nanoparticle multilayer films were prepared by dipping the polyester substrate with electrostatic charges alternatively into solutions containing three different types of nanoparticles (TiO 2 , Al 2 O 3 , and SiO 2 ). Upon the deposition of each layer, ToF-SIMS was employed to determine the surface chemical composition of intermediate products. The intermixing extent of TiO 2 indicator layer was used to reveal the stratification of each layer. Combining with zeta-potential measurements, the solvation and deposition of the under-layer species in the aqueous environment during fresh layer formation was proposed as a plausible cause for mutilayers not stratified into well-defined layers but displaying a nonlinear growth behavior.

  17. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan, E-mail: wangjn@suda.edu.cn

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0 kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8 kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain. - Highlights: • A non-repetitive domain and its multimers of silk fibroin were expressed by E. coli. • The corresponding target polypeptides F(1), F(4) and F(8) were cleaved clearly. • Their

  18. Peptide-Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin.

    Science.gov (United States)

    Cheng, Yuan; Koh, Leng-Duei; Li, Dechang; Ji, Baohua; Zhang, Yingyan; Yeo, Jingjie; Guan, Guijian; Han, Ming-Yong; Zhang, Yong-Wei

    2015-10-07

    Studies reveal that biomolecules can form intriguing molecular structures with fascinating functionalities upon interaction with graphene. Then, interesting questions arise. How does silk fibroin interact with graphene? Does such interaction lead to an enhancement in its mechanical properties? In this study, using large-scale molecular dynamics simulations, we first examine the interaction of graphene with several typical peptide structures of silk fibroin extracted from different domains of silk fibroin, including pure amorphous (P1), pure crystalline (P2), a segment from N-terminal (P3), and a combined amorphous and crystalline segment (P4), aiming to reveal their structural modifications. Our study shows that graphene can have intriguing influences on the structures formed by the peptides with sequences representing different domains of silk fibroin. In general, for protein domains with stable structure and strong intramolecular interaction (e.g., β-sheets), graphene tends to compete with the intramolecular interactions and thus weaken the interchain interaction and reduce the contents of β-sheets. For the silk domains with random or less ordered secondary structures and weak intramolecular interactions, graphene tends to enhance the stability of peptide structures; in particular, it increases the contents of helical structures. Thereafter, tensile simulations were further performed on the representative peptides to investigate how such structure modifications affect their mechanical properties. It was found that the strength and resilience of the peptides are enhanced through their interaction with graphene. The present work reveals interesting insights into the interactions between silk peptides and graphene, and contributes in the efforts to enhance the mechanical properties of silk fibroin.

  19. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  20. DNA replication events during larval silk gland development in the silkworm, Bombyx mori.

    Science.gov (United States)

    Zhang, Chun-Dong; Li, Fang-Fang; Chen, Xiang-Yun; Huang, Mao-Hua; Zhang, Jun; Cui, Hongjuan; Pan, Min-Hui; Lu, Cheng

    2012-07-01

    The silk gland is an important organ in silkworm as it synthesizes silk proteins and is critical to spinning. The genomic DNA content of silk gland cells dramatically increases 200-400 thousand times for the larval life span through the process of endomitosis. Using in vitro culture, DNA synthesis was measured using BrdU labeling during the larval molt and intermolt periods. We found that the cell cycle of endomitosis was activated during the intermolt and was inhibited during the molt phase. The anterior silk gland, middle silk gland, and posterior silk gland cells asynchronously exit the endomitotic cycle after day 6 in 5th instar larvae, which correlated with the reduced expression of the cell cycle-related cdt1, pcna, cyclin E, cdk2 and cdk1 mRNAs in the wandering phase. Additional starvation had no effect on the initiation of silk gland DNA synthesis of the freshly ecdysed larvae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers.

    Science.gov (United States)

    Wang, Qi; Wang, Chunya; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2016-10-12

    Silkworm silk is gaining significant attention from both the textile industry and research society because of its outstanding mechanical properties and lustrous appearance. The possibility of creating tougher silks attracts particular research interest. Carbon nanotubes and graphene are widely studied for their use as reinforcement. In this work, we report mechanically enhanced silk directly collected by feeding Bombyx mori larval silkworms with single-walled carbon nanotubes (SWNTs) and graphene. We found that parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, whereas the others went into the excrement of silkworms. Spectroscopy study indicated that nanocarbon additions hindered the conformation transition of silk fibroin from random coil and α-helix to β-sheet, which may contribute to increased elongation at break and toughness modules. We further investigated the pyrolysis of modified silk, and a highly developed graphitic structure with obviously enhanced electrical conductivity was obtained through the introduction of SWNTs and graphene. The successful generation of these SWNT- or graphene-embedded silks by in vivo feeding is expected to open up possibilities for the large-scale production of high-strength silk fibers.

  2. Timing of autophagy and apoptosis during posterior silk gland degeneration in Bombyx mori.

    Science.gov (United States)

    Montali, Aurora; Romanelli, Davide; Cappellozza, Silvia; Grimaldi, Annalisa; de Eguileor, Magda; Tettamanti, Gianluca

    2017-07-01

    Over the years, the silkworm, Bombyx mori, has been manipulated by means of chemical and genetic approaches to improve silk production both quantitatively and qualitatively. The silk is produced by the silk gland, which degenerates quickly once the larva has finished spinning the cocoon. Thus, interfering with this degeneration process could help develop new technologies aimed at ameliorating silk yield. To this end, in this work we studied the cell death processes that lead to the demise of the posterior silk gland of B. mori, directing in particular our attention to autophagy and apoptosis. We focused on this portion of the gland because it produces fibroin, the main component of the silk thread. By using multiple markers, we provide a morphological, biochemical and molecular characterization of the apoptotic and autophagic processes and define their timing in this biological setting. Our data demonstrate that the activation of both autophagy and apoptosis is preceded by a transcriptional rise in key regulatory genes. Moreover, while autophagy is maintained active for several days and progressively digests silk gland cells, apoptosis is only switched on at a very late stage of silk gland demise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    Science.gov (United States)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  4. Re-Opening the Silk Road to Transform Chinese Trade

    NARCIS (Netherlands)

    M. Ning (Mao); M.J. McAleer (Michael)

    2017-01-01

    textabstractUnder anti-globalization and isolationism, China is seeking to portray itself as a new leader for globalization under the banner of the Silk Road initiative. Meanwhile, China’s traditional and comparatively advantaged industry, silk, has faced dire predicaments and challenges for long

  5. Re-opening the silk road to transform Chinese trade

    NARCIS (Netherlands)

    N. Mao (Ning); M.J. McAleer (Michael)

    2017-01-01

    textabstractUnder anti-globalization and isolationism, China is seeking to portray itself as a new leader for globalization under the banner of the Silk Road initiative. Meanwhile, China's traditional and comparatively advantaged industry, silk, has faced dire predicaments and challenges for long

  6. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  7. Physical characterization of functionalized spider silk: electronic and sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Steven, Eden; Brooks, James S [Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Park, Jin Gyu [FAMU-FSU Department of Industrial and Manufacturing Engineering, High-Performance Materials Institute, Florida State University, 2005 Levy Ave., Tallahassee, FL 32310 (United States); Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G [FAMU-FSU Department of Chemical and Biomedical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, FL 32310 (United States); Branco Lopes, Elsa [Departamento de Quimica, Instituto Tecnologico e Nuclear/CFMC-UL, P-2686-953 Sacavem (Portugal); Englander, Ongi, E-mail: esteven@magnet.fsu.edu [FAMU-FSU Department of Mechanical Engineering and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac, Tallahassee, Florida 32310 (United States)

    2011-10-15

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of {beta}-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and {beta}-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of {beta}-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  8. Physical characterization of functionalized spider silk: electronic and sensing properties

    International Nuclear Information System (INIS)

    Steven, Eden; Brooks, James S; Park, Jin Gyu; Paravastu, Anant; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G; Branco Lopes, Elsa; Englander, Ongi

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 deg. C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  9. On the nature of biomaterials.

    Science.gov (United States)

    Williams, David F

    2009-10-01

    The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.

  10. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  11. Structural study of Bombyx mori silk fibroin during processing for regeneration

    Science.gov (United States)

    Ha, Sung-Won

    Bombyx mori silk fibroin has excellent mechanical properties combined with flexibility, tissue compatibility, and high oxygen permeability in the wet condition. This important material should be dissolved and regenerated to be utilized as useful forms such as gel, film, fiber, powder, or non-woven. However, it has long been a problem that the regenerated fibroin materials show poor mechanical properties and brittleness. These problems were technically solved by improving a fiber processing method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the original silk fibers. This improved technique for the fiber processing of Bombyx mori silk fibroin may be used as a model system for other semi-crystalline fiber forming proteins, becoming available through biotechnology. The physical and chemical properties of the regenerated fibers were characterized by SinTechRTM tensile testing, X-ray diffraction, solid state 13C NMR spectroscopy, and SEM. Unlike synthetic polymers, the molecular weight distribution of Bombyx mori silk fibroin is mono-disperse because silk fibroin is synthesized from DNA template. Genetic studies have revealed the entire amino acid sequence of Bombyx mori silk fibroin. It is known that the crystalline silk II structure is composed of hexa-amino acid sequences, GAGAGS. However, in the amino acid sequence of Bombyx mori silk fibroin heavy chain, there are present 11 chemically irregular but evolutionarily conserved sequences with about 31 amino acid residues (irregular GT˜GT sequences). The structure and role of these irregular sequences have remained unknown. One of the most frequently appearing irregular sequences was synthesized by a peptide synthesizer. The three-dimensional structure of this irregular silk peptide was studied by the high resolution two-dimensional NMR technique. The three-dimensional structure of this peptide shows that it makes a turn or loop structure (distorted O shape), which

  12. Improved strength of silk fibers in Bombyx mori trimolters induced by an anti-juvenile hormone compound.

    Science.gov (United States)

    Guo, Kaiyu; Dong, Zhaoming; Zhang, Yan; Wang, Dandan; Tang, Muya; Zhang, Xiaolu; Xia, Qingyou; Zhao, Ping

    2018-05-01

    Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk. This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk. Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland. We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties. Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrović, Svetlana, E-mail: svetlana8@vin.bg.ac.rs [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia); Nikolić, Marko G.; Jelenković, Branislav [University of Belgrade, Institute of Physics (Serbia); Prekajski, Marija [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia); Rabasović, Mihailo [University of Belgrade, Institute of Physics (Serbia); Zarubica, Aleksandra [University of Niš, Department of Chemistry, Faculty of Science and Mathematics (Serbia); Branković, Goran [University of Belgrade, Institute for Multidisciplinary Research, Department of Material Science (Serbia); Matović, Branko [University of Belgrade, Vinča Institute of Nuclear Sciences (Serbia)

    2017-02-15

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO{sub 3}){sub 3}) and ammonium hydroxide (NH{sub 4}OH). Depending on the relationship between Ce{sup 3+} ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  14. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    International Nuclear Information System (INIS)

    Dmitrović, Svetlana; Nikolić, Marko G.; Jelenković, Branislav; Prekajski, Marija; Rabasović, Mihailo; Zarubica, Aleksandra; Branković, Goran; Matović, Branko

    2017-01-01

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO_3)_3) and ammonium hydroxide (NH_4OH). Depending on the relationship between Ce"3"+ ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  15. Preparation and properties of silk sericin/cellulose cross-linking films

    Directory of Open Access Journals (Sweden)

    Wang Kunyan

    2017-01-01

    Full Text Available Silk sericin/cellulose cross-linked films were successfully prepared using glutaraldehyde as cross-linkinger. FTIR was applied to characterize the chemical structure of films. Cross-linked silk sericin film was found the peak intensity of FTIR for cross-linked film decreased markedly compared to pure silk sericin, which indicating cross-linking reaction has been occurred. The increasing value of swelling ratio also indicated the cross-linking has been happened. The cross-linking reaction increased the thermal decomposition temperature.

  16. Strontium borate glass: potential biomaterial for bone regeneration.

    Science.gov (United States)

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  17. Study on improving antioxidant and antibacterial activities of silk fibroin by irradiation treatment

    International Nuclear Information System (INIS)

    Tran Bang Diep; Nguyen Van Binh; Hoang Phuong Thao; Hoang Dang Sang; Nguyen Thuy Huong Trang

    2014-01-01

    The silk fibroin solutions were prepared in solvent system of CaCl 2 . CH 3 CH 2 OH. H 2 O (mole ratio = 1:2:8) followed dialysis against deionized water. The 3% silk fibroin solutions were irradiated under gamma Co-60 source with dose ranging from 0 to 50 kGy at Hanoi Irradiation Centre and bioactivities of the irradiated silk fibroin solutions were investigated with different radiation doses. The results indicated that the antioxidant and antibacterial activities of fibroin were much improved by gamma irradiation. Maximum value of DPPH radical scavenging activity was 70.4% for the solution of silk fibroin irradiated at 10 kGy. Silk fibroin solutions irradiated at doses higher than 10 kGy also exhibited rather high antibacterial activity against E. coli and S. aureus. In order to estimate the applicability of our irradiated fibroin, the silk fibroin solutions were lyophilized to obtain a pure fibroin powder, then their bio-activities were compared with those of commercial silk fibroin (Proteines De Soie/ Zijdeproteine, Bioflore, Canada). Our fibroin powder revealed higher antioxidant and antibacterial activities. The amino acid compositions of our irradiated fibroin were also higher than that of the commercial product. Thus, the irradiated silk fibroin can be used for further application in cosmetic and other related fields. (author)

  18. The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiongyu; Tu, Fangfang; Liu, Yunfei; Zhang, Yujin; Li, Helei; Kang, Zhao [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China); Yin, Yin [Laboratory Animal Research Center, Soochow University, Suzhou, Jiangsu 215123 (China); Wang, Jiannan, E-mail: wangjn@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123 (China)

    2017-06-01

    Thrombus formation remains a particular challenge for small-diameter vascular grafts. In this study, the direct thrombin inhibitor hirudin (Hir) was used to modify silk fibroin films in an attempt to enhance its antithrombogenic properties. Hir was successfully attached to silk fibroin and uniformly distributed in the regenerative material. Hir-modified films showed good cytocompatibility, and supported adhesion and proliferation of fibroblasts (L929), human umbilical vascular endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs). Proliferation of HAVSMCs was inhibited by increasing Hir concentration. Activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT) of Hir-modified silk fibroin tubular scaffolds (SFTSs) were all increased markedly compared with fresh rabbit blood, ethanol-treated SFTS and unmodified SFTS, demonstrating the improved antithrombogenicity of SFTSs following modification with Hir. - Highlights: • A direct thrombin inhibitor hirudin was used to modify silk fibroin. • Antithrombogenic property of Hir-modified silk fibroin films was improved. • Hir-modified silk fibroin films supported adhesion and proliferation of HUVECs and HAVSMCs. • Proliferation of HAVSMCs on silk fibroin films was inhibited by increasing Hir concentration.

  19. Silk Composite with a Fluoropolymer as a Water-Resistant Protein-Based Material

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2018-04-01

    Full Text Available Silk-based materials are water-sensitive and show different physical properties at different humidities and under wet/dry conditions. To overcome the water sensitivity of silk-based materials, we developed a silk composite material with a fluoropolymer. Blending and coating the silk protein-based materials, such as films and textiles, with the fluoropolymer enhanced the surface hydrophobicity, water vapor barrier properties, and size stability during shrinkage tests. This material design with a protein biopolymer and a fluoropolymer is expected to broaden the applicability of protein-based materials.

  20. Radiation processing of silk protein (Bilateral research cooperation OAEP and JAERI. December 1998 - December 2002)

    International Nuclear Information System (INIS)

    2003-01-01

    Thailand's production of silk, about 1,200 ton per year, also gives about 10% of silk waste which is expected to be recycled into new material (non-textile application) and to avoid environmental pollution. For this purpose, cooperative program 'radiation processing of silk protein' was conducted between OAEP (Thailand) and JAERI. Among the results already obtained are: radiation degradation of silk protein (fibroin) with gamma rays at 160 kGy, production of fine silk milled powder (<90 microns) by electron beam irradiation at 250-1000 kGy (dry method) using electron accelerator (1 MeV, 1 mA), use of antioxidant effect of silk protein on lipid peroxidation and antibacterial activity of irradiated silk protein powder, and wound dressing hydrogel mixed with silk protein and use of antibacterial activity of cross-linked silk protein/PVA hydrogel. Other topics of interest are gamma irradiation of anionic natural polymer solution for use as latex protein scavenger and gamma radiation degradation of chitosan for use as plant growth promoter and fungicide. (S. Ohno)

  1. Silk Film Embossing System

    Science.gov (United States)

    Paquette, Mark S.

    New tools are often required to facilitate new discoveries and test new methods. Commercial offerings can be prohibitively expensive and difficult to customize. The development of ad-hoc tools provides the most flexibility and provides an opportunity to modify and refine a technology. An embossing system was developed for silk film imprinting and stamping in order to facilitate and add versatility to the efforts involving micro- and nanoscale device manufacturing in biopolymers. This system features temperature controlled embossing surfaces, adjustable embossing pressures, and variable embossing times. The device can also be fitted with interchangeable temperature controlled embossing and stamping tools. The design, development, fabrication, applications, and future improvements are explored for the system. This device may facilitate new discoveries in the realm of biopolymer micro- and nanomanufacturing and may provide a path towards high volume production of silk film based technologies.

  2. 3D freeform printing of silk fibroin.

    Science.gov (United States)

    Rodriguez, Maria J; Dixon, Thomas A; Cohen, Eliad; Huang, Wenwen; Omenetto, Fiorenzo G; Kaplan, David L

    2018-04-15

    Freeform fabrication has emerged as a key direction in printing biologically-relevant materials and structures. With this emerging technology, complex structures with microscale resolution can be created in arbitrary geometries and without the limitations found in traditional bottom-up or top-down additive manufacturing methods. Recent advances in freeform printing have used the physical properties of microparticle-based granular gels as a medium for the submerged extrusion of bioinks. However, most of these techniques require post-processing or crosslinking for the removal of the printed structures (Miller et al., 2015; Jin et al., 2016) [1,2]. In this communication, we introduce a novel method for the one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite) and polyethylene glycol (PEG). Silk fibroin has been used as a biopolymer for bioprinting in several contexts, but chemical or enzymatic additives or bulking agents are needed to stabilize 3D structures. Our method requires no post-processing of printed structures and allows for in situ physical crosslinking of pure aqueous silk fibroin into arbitrary geometries produced through freeform 3D printing. 3D bioprinting has emerged as a technology that can produce biologically relevant structures in defined geometries with microscale resolution. Techniques for fabrication of free-standing structures by printing into granular gel media has been demonstrated previously, however, these methods require crosslinking agents and post-processing steps on printed structures. Our method utilizes one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite), with no need for additional crosslinking compounds or post processing of the material. This new method allows for in situ physical crosslinking of pure aqueous silk fibroin into defined geometries produced through freeform 3D printing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  3. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Bhavesh, Neel Sarovar; Ghosh, Sourabh

    2016-04-12

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein-protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs.

  4. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration

    International Nuclear Information System (INIS)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Ghosh, Sourabh; Bhavesh, Neel Sarovar

    2016-01-01

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein–protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs. (paper)

  5. Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity

    International Nuclear Information System (INIS)

    Sarda, Stéphanie; Errassifi, Farid; Marsan, Olivier; Geffre, Anne; Trumel, Catherine; Drouet, Christophe

    2016-01-01

    This work proposes to combine tranexamic acid (TAX), a clinically used antifibrinolytic agent, and hydroxyapatite (HA), widely used in bone replacement, to produce a novel bioactive apatitic biomaterial with intrinsic hemostatic properties. The aim of this study was to investigate adsorptive behavior of the TAX molecule onto HA and to point out its release in near physiological conditions. No other phase was observed by X-ray diffraction or transmission electron microscopy, and no apparent change in crystal size was detected. The presence of TAX on the powders was lightly detected on Raman spectra after adsorption. The adsorption data could be fitted with a Langmuir–Freundlich equation, suggesting a strong interaction between adsorbed molecules and the formation of multilayers. The concentration of calcium and phosphate ions in solution remained low and stable during the adsorption process, thus ion exchange during the adsorption process could be ruled out. The release of TAX was fast during the first hours and was governed by a complex process that likely involved both diffusion and dissolution of HA. Preliminary aPTT (activated partial thromboplastin time) hemostasis tests offered promising results for the development of osteoconductive apatitic biomaterials with intrinsic hemostatic properties, whether for dental or orthopedic applications. - Highlights: • Interaction of tranexamic acid (TAX)/hydroxyapatite was studied. • The adsorption data could be fitted with a Langmuir–Freundlich equation. • The release of TAX, fast during the first hours, was governed by a complex process. • Preliminary aPTT hemostasis tests show promising results. • The aim is to develop biomaterials with local hemostatic activity.

  6. Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sarda, Stéphanie, E-mail: stephanie.sarda@iut-tlse3.fr [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Université Toulouse 3 Paul Sabatier, Toulouse (France); Errassifi, Farid [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Université Toulouse 3 Paul Sabatier, Toulouse (France); Marsan, Olivier [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, Toulouse (France); Geffre, Anne; Trumel, Catherine [Université de Toulouse, INP, ENVT, UMS006, Laboratoire Central de Biologie Médicale, Toulouse (France); INSERM-UPS, UMS 006, Laboratoire Central de Biologie Médicale, Toulouse (France); Drouet, Christophe [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, Toulouse (France)

    2016-09-01

    This work proposes to combine tranexamic acid (TAX), a clinically used antifibrinolytic agent, and hydroxyapatite (HA), widely used in bone replacement, to produce a novel bioactive apatitic biomaterial with intrinsic hemostatic properties. The aim of this study was to investigate adsorptive behavior of the TAX molecule onto HA and to point out its release in near physiological conditions. No other phase was observed by X-ray diffraction or transmission electron microscopy, and no apparent change in crystal size was detected. The presence of TAX on the powders was lightly detected on Raman spectra after adsorption. The adsorption data could be fitted with a Langmuir–Freundlich equation, suggesting a strong interaction between adsorbed molecules and the formation of multilayers. The concentration of calcium and phosphate ions in solution remained low and stable during the adsorption process, thus ion exchange during the adsorption process could be ruled out. The release of TAX was fast during the first hours and was governed by a complex process that likely involved both diffusion and dissolution of HA. Preliminary aPTT (activated partial thromboplastin time) hemostasis tests offered promising results for the development of osteoconductive apatitic biomaterials with intrinsic hemostatic properties, whether for dental or orthopedic applications. - Highlights: • Interaction of tranexamic acid (TAX)/hydroxyapatite was studied. • The adsorption data could be fitted with a Langmuir–Freundlich equation. • The release of TAX, fast during the first hours, was governed by a complex process. • Preliminary aPTT hemostasis tests show promising results. • The aim is to develop biomaterials with local hemostatic activity.

  7. Correlation between fibroin amino acid sequence and physical silk properties.

    Science.gov (United States)

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet.

  8. Structure and interactions in biomaterials based on membrane-biopolymer self-assembly

    Science.gov (United States)

    Koltover, Ilya

    Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.

  9. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Science.gov (United States)

    Coburn, Jeannine M.; Cenis, José L.; Víllora, Gloria; Kaplan, David L.

    2018-01-01

    Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery. PMID:29495296

  10. Comparative Transcriptome Analysis Reveals Different Silk Yields of Two Silkworm Strains.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS and Lan10 (L10 are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes. Nine enriched gene ontology (GO terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield.

  11. Protective effects of flavonoids from corn silk on oxidative stress ...

    African Journals Online (AJOL)

    Protective effects of flavonoids from corn silk on oxidative stress induced by ... The present study aims at exploring the effects of flavonoids from corn silk (FCS) on oxidative stress induced by exhaustive exercise in mice. ... from 32 Countries:.

  12. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2013-01-01

    Full Text Available There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

  13. The Effects of Silk Protein Solution on Quality of Mangosteen

    International Nuclear Information System (INIS)

    Phadvibulya, Valailak; Sudatis, Boonya; Panyarum, Kanyarat; Junsaithong, Mayuree; Kerdchoechuen, Orapin

    2011-06-01

    Full text: Sericin silk protein solution prepared from irradiated silk waste was applied as a wax coating on mangosteen fruits but was found not appropriate. Nonetheless, when the solution was sprayed onto fruits from the setting stage till maturity, it enhanced the fruit quality. Fruits showed a bigger stalk and greener, thicker and larger-angled calyx than untreated ones. They were edible after being kept at 25 C for 3 to 4 weeks. Fruits sprayed with the silk protein solution and untreated fruits were separately harvested and packed for export. A half of them were irradiated with gamma radiation for insect eradication and then kept at 10 C with 80 percents relative humidity. The unirradiated half was stored similarly. Results showed that rind color of irradiated fruits changed slower than unirradiated ones. However, silk protein solution spraying and irradiation did not affect fruit firmness and total soluble solids of mangosteen flesh. For sensory evaluation, it was found that sprayed and irradiated fruits showed no differences from the untreated ones in their physical properties, color, taste and odor. Fruits sprayed with the silk protein solution without irradiation had the longest shelf life of 6 weeks

  14. The Effects of Silk Protein Solution on Quality of Mangosteen

    Energy Technology Data Exchange (ETDEWEB)

    Phadvibulya, Valailak; Sudatis, Boonya; Panyarum, Kanyarat; Junsaithong, Mayuree [Thailand Institute of Nuclear Technology, Nakhon Nayok, (Thailand); Kerdchoechuen, Orapin [School of Bioresources and Technology, King Mongkuts University, Bangkok (Thailand)

    2011-06-15

    Full text: Sericin silk protein solution prepared from irradiated silk waste was applied as a wax coating on mangosteen fruits but was found not appropriate. Nonetheless, when the solution was sprayed onto fruits from the setting stage till maturity, it enhanced the fruit quality. Fruits showed a bigger stalk and greener, thicker and larger-angled calyx than untreated ones. They were edible after being kept at 25{sup C} for 3 to 4 weeks. Fruits sprayed with the silk protein solution and untreated fruits were separately harvested and packed for export. A half of them were irradiated with gamma radiation for insect eradication and then kept at 10{sup C} with 80 percents relative humidity. The unirradiated half was stored similarly. Results showed that rind color of irradiated fruits changed slower than unirradiated ones. However, silk protein solution spraying and irradiation did not affect fruit firmness and total soluble solids of mangosteen flesh. For sensory evaluation, it was found that sprayed and irradiated fruits showed no differences from the untreated ones in their physical properties, color, taste and odor. Fruits sprayed with the silk protein solution without irradiation had the longest shelf life of 6 weeks.

  15. A highly divergent gene cluster in honey bees encodes a novel silk family.

    Science.gov (United States)

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  16. Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics

    Science.gov (United States)

    2010-06-01

    implantation. *A full list of authors and their affiliations appears at the end of the paper. Silk is an appealing biopolymer as a temporary, soluble...18 APR 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Dissolvable films of silk fibroin for ultrathin...10.1038/NMAT2745 Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics Dae-Hyeong Kim and Jonathan Viventi et al

  17. Physico-chemical study of flavonoids from different matureness corn silk material

    OpenAIRE

    Li, Peng; Lapčík, Lubomír; Lapčíková, Barbora; Kalytchuk, Sergii

    2018-01-01

    There was tested a simple extraction procedure of flavonoids separation from the original corn silk (CS) material. It was found, that the total flavonoids content differs with the extraction time and extraction temperature. There were found different flavonoids contents in extracts prepared from different maturity stages of the original corn silk material (silking stage (CS-S), milky stage (CS-M)). Extracted flavonoids content was quantified by the lutin standardization method by means of col...

  18. Silk-Quality, Spinnability and Low Temperature Behavior

    Science.gov (United States)

    2015-12-02

    inert  atmosphere  (N2   gas   flow  rate  of  100  mL/min).  Changes   in  weight  percentage  during   temperature...Performance 3. DATES COVERED (From - To) 01-06-2012 to 31-05-2015 4. TITLE AND SUBTITLE Silk-Quality, Spinnability and Low Temperature Behaviour 5a...deploy the huge range in mechanical behaviour between different silk species and intra-species varieties. In particular, I set out to formulate a

  19. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  20. Biomaterials: An Introduction for Librarians.

    Science.gov (United States)

    Bush, Renee B.

    1996-01-01

    Contains an overview of biomaterials, an interdisciplinary field in which research combines medicine, biological sciences, physical sciences, and engineering. Biomaterials are substances which improve quality of life by augmenting or replacing bodily tissues or functions. Highlights problems associated with collection development and literature…

  1. Introducing biomimetic shear and ion gradients to microfluidic spinning improves silk fiber strength.

    Science.gov (United States)

    Li, David; Jacobsen, Matthew M; Gyune Rim, Nae; Backman, Daniel; Kaplan, David L; Wong, Joyce Y

    2017-05-31

    Silkworm silk is an attractive biopolymer for biomedical applications due to its high mechanical strength and biocompatibility; as a result, there is increasing interest in scalable devices to spin silk and recombinant silk so as to improve and customize their properties for diverse biomedical purposes (Vepari and Kaplan 2007 Prog. Polym. Sci. 32 ). While artificial spinning of regenerated silk fibroins adds tunability to properties such as degradation rate and surface functionalization, the resulting fibers do not yet approach the mechanical strength of native silkworm silk. These drawbacks reduce the applicability and attractiveness of artificial silk (Kinahan et al 2011 Biomacromolecules 12 ). Here, we used computational fluid dynamic simulations to incorporate shear in tandem with biomimetic ion gradients by coupling a modular novel glass microfluidic device to our previous co-axial flow device. Fibers spun with this combined apparatus demonstrated a significant increase in mechanical strength compared to fibers spun with the basic apparatus alone, with a three-fold increase in Young's modulus and extensibility and a twelve-fold increase in toughness. These results thus demonstrate the critical importance of ionic milieu and shear stress in spinning strong fibers from solubilized silk fibroin.

  2. Silk formation mechanisms in the larval salivary glands of Apis ...

    Indian Academy of Sciences (India)

    Unknown

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands .... be used in the silk-manufacture industry. This paper analyses .... (figure 3C); and are highly birefringent (figure 3D).

  3. Biomaterial applications in neural therapy and repair

    Institute of Scientific and Technical Information of China (English)

    Harmanvir Ghuman; Michel Modo

    2017-01-01

    The use of biomaterials,such as hydrogels,as a scaffold to deliver cells and drugs is becoming increasingly common to treat neurological conditions,including stroke.With a limited intrinsic ability to regenerate after injury,innovative tissue engineering strategies have shown the potential of biomaterials in facilitating neural tissue regeneration and functional recovery.Using biomaterials can not only promote the survival and integration of transplanted cells in the existing circuitry,but also support controlled site specific delivery of therapeutic drugs.This review aims to provide the reader an understanding of the brain tissue microenvironment after injury,biomaterial criteria that support tissue repair,commonly used natural and synthetic biomaterials,benefits of incorporating cells and neurotrophic factors,as well as the potential of endogenous neurogenesis in repairing the injured brain.

  4. Coating of Silk Fabric Using PVA/Ciprofloxacin Hcl Nanofibers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Somaye Baghersad

    2016-05-01

    Full Text Available In recent years, fabrication of polymeric antibacterial wound dressing has gained most attention in controlling wound infections. Silk is also a member of the broad family of protein-based polmers. The silk produced by the lepidopteran insect Bombyx mori is a highly accepted material due to its long history as a very valuable textile fiber. Recently, additional applications have been developed for silk, mainly in the field of biotechnology. Regarding its importance in wound healing, silk fabric was incorporated with ciprofloxacin, as an antibiotic, on its surface coated with electro-spun PVA/ciprofloxacin nanofibers. Before coating, degumming was carried out using autoclave technique and properties of the silk fabric, before and after degumming process, was investigated by SEM, FTIR, mechanical properties and moisture absorbance measurement. The results of all analyses showed a reduction in fibers diameter, mechanical strength and moisture absorption after degumming process. Electrospinning condition was optimized and diameter of the nanofibers, with and without drug, was measured before coating. The results showed that addition of the drug increased electrical conductivity of electrospinning solution and resulted in finer nanofibers. Antibacterial test was performed using "disk diffusion method" with Escherichia coli (EC and Staphylococcus aureus (SA bacteria to compare the antibacterial properties of degummed and non-degummed silk fabrics alone and coated with nanofibers. Measurement of bacterial inhibition zone diameter showed no antibacterial activity for degummed and non-degummed silk fabrics alone. However, the sample coated with PVA/ciprofloxacin showed antibacterial activity. The antibacterial property for SA in both cases was the same, but for EC, the antibacterial activity of degummed silk fabric was more than that of non-degummed material.

  5. An optically transparent, flexible, patterned and conductive silk biopolymer film (Conference Presentation)

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan

    2017-02-01

    Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.

  6. The Role of Silk in the Behaviour and Sociality of Spiders

    Directory of Open Access Journals (Sweden)

    Bertrand Krafft

    2012-01-01

    Full Text Available This article describes the links between the production of silk by spiders and their behaviour. Silk allows the spider to change its physical environment, which in turn leads to behavioural changes and impacts in the new environment. The feedback between silk and the animal producer can explain the architecture of spider webs and their adaptation to the environment, by referring only to stereotypic stimulus-response reactions without necessarily resorting to a “representation” by the animal of the structure it builds. Silk can act as a means of protection against environmental stress, a snare for prey, a means of locomotion, and also as support for chemical signals or to act as a vector of vibratory signals. These last two functions have undoubtedly played a key role in spider socialization and explains the phenomena of group cohesion, collective decision making, and the coordination of activities, without resorting to mental “representations” for the overall situation. The bulk of this review describes silk as the chief agent directing the construction of traps, communication, social cohesion, and cooperation amongst its producers.

  7. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  8. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  9. Flame retardancy and ultraviolet resistance of silk fabric coated by graphene oxide

    Directory of Open Access Journals (Sweden)

    Ji Yi-Min

    2017-01-01

    Full Text Available Silk fabrics were coated by graphene oxide hydrosol in order to improve its flame retardancy and ultraviolet resistance. In addition, montmorillonoid was doped into the graphene oxide hydrosol to further improve the flame retardancy of silk fabrics. The flame retardancy and ultraviolet resistance were mainly characterized by limiting oxygen index, vertical flame test, smoke density test, and ultraviolet protection factor. The synergistic effect of graphene oxide and montmorillonoid on the thermal stabilization property of the treated silk fabrics was also investigated. The results show that the treated silk fabrics have excellent flame retardancy, thermal stability, smoke suppression, and ultraviolet resistance simultaneously.

  10. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Mercedes G. Montalbán

    2018-02-01

    Full Text Available Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.

  11. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  12. Mechanical properties of silk of the Australian golden orb weavers Nephila pilipes and Nephilaplumipes.

    Science.gov (United States)

    Kerr, Genevieve G; Nahrung, Helen F; Wiegand, Aaron; Kristoffersen, Joanna; Killen, Peter; Brown, Cameron; Macdonald, Joanne

    2018-02-22

    Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephila plumipes , were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes , the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m -3 , despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes , smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes , there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably. © 2018. Published by The Company of Biologists Ltd.

  13. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  14. A highly divergent gene cluster in honey bees encodes a novel silk family

    OpenAIRE

    Sutherland, Tara D.; Campbell, Peter M.; Weisman, Sarah; Trueman, Holly E.; Sriskantha, Alagacone; Wanjura, Wolfgang J.; Haritos, Victoria S.

    2006-01-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1–4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-r...

  15. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei.

    Science.gov (United States)

    Hilbrant, Maarten; Damen, Wim G M

    2015-05-01

    Silk production in spiders is considered a key innovation, and to have been vital for the diversification of the clade. The evolutionary origin of the organs involved in spider silk production, however, and in particular of the silk glands, is poorly understood. Homologies have been proposed between these and other glands found in arachnids, but lacking knowledge of the embryonic development of spider silk glands hampers an evaluation of hypotheses. This study focuses on the embryonic origin of the largest silk glands of the spider Cupiennius salei, the major and minor ampullate glands. We show how the ampullate glands originate from ectodermal invaginations on the embryonic spinneret limb buds, in relation to morphogenesis of these buds. Moreover, we visualize the subsequent growth of the ampullate glands in sections of the early postembryonic stages. The invaginations are shown to correlate with expression of the proneural gene CsASH2, which is remarkable since it has been proposed that spider silk glands and their nozzles originate from sensory bristles. Hence, by confirming the ectodermal origin of spider silk glands, and by describing the (post-)embryonic morphogenesis of the ampullate glands, this work provides a starting point for further investigating into the genetic program that underlies their development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The effect of thyroxine on silk gland and the effect of two thyroxine ...

    African Journals Online (AJOL)

    The influence of feeding mulberry leaves treated with thyroxine to the growth of the silk gland, and the effect of two different mulberry species, that is, Morus nigra and Morus multicaulis treated with thyroxine on silk quality in the silkworm were studied. The silk glands from thyroxine treated Bombyx mori larvae weighed ...

  17. 2010 Panel on the Biomaterials Grand Challenges

    Science.gov (United States)

    Reichert, William “Monty”; Ratner, Buddy D.; Anderson, James; Coury, Art; Hoffman, Allan S.; Laurencin, Cato T.; Tirrell, David

    2014-01-01

    In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies—Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell—were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities. PMID:21171147

  18. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  19. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  20. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks.

    Science.gov (United States)

    Laity, Peter R; Holland, Chris

    2016-10-29

    The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc.,) were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.

  1. The Rheology behind Stress-Induced Solidification in Native Silk Feedstocks

    Directory of Open Access Journals (Sweden)

    Peter R. Laity

    2016-10-01

    Full Text Available The mechanism by which native silk feedstocks are converted to solid fibres in nature has attracted much interest. To address this question, the present work used rheology to investigate the gelation of Bombyx mori native silk feedstock. Exceeding a critical shear stress appeared to be more important than shear rate, during flow-induced initiation. Compositional changes (salts, pH etc., were not required, although their possible role in vivo is not excluded. Moreover, after successful initiation, gel strength continued to increase over a considerable time under effectively quiescent conditions, without requiring further application of the initial stimulus. Gelation by elevated temperature or freezing was also observed. Prior to gelation, literature suggests that silk protein adopts a random coil configuration, which argued against the conventional explanation of gelation, based on hydrophilic and hydrophobic interactions. Instead, a new hypothesis is presented, based on entropically-driven loss of hydration, which appears to explain the apparently diverse methods by which silk feedstocks can be gelled.

  2. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.

    Science.gov (United States)

    Laity, Peter R; Holland, Chris

    2016-08-08

    Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations.

  3. Spider-silk-like shape memory polymer fiber for vibration damping

    International Nuclear Information System (INIS)

    Yang, Qianxi; Li, Guoqiang

    2014-01-01

    In this study, the static and dynamic properties of shape memory polyurethane (SMPU) fiber are reported and compared to those of spider dragline silk. Although the polymeric fiber has a lower strength compared to spider dragline silks (0.2–0.3 GPa versus 1.1 GPa), it possesses much higher toughness (276–289 MJ m −3 versus 160 MJ m −3 ), due to its excellent extensibility. The dynamic mechanical tests reveal that SMPU fiber has a high damping capacity (tan δ = 0.10–0.35) which is comparable to or even higher than that of spider silks (tan δ = 0.15). In addition, we found that, different programming methods change the shape memory and damping properties of the fiber in different ways and cold-drawing programming is more advocated in structural applications. These results suggest that the SMPU fiber has similar vibration damping and mechanical properties as spider silk, and may find applications in lightweight engineering structures. (paper)

  4. Solubilization of spider silk proteins and its structural analysis using Fourier transform infrared spectroscopy

    Science.gov (United States)

    Osbin, K.; Jayan, Manuel; Bhadrakumari, S.; Predeep, P.

    2017-06-01

    This study investigates the presence of various amide bands present in different spider silk species, which provides extraordinary physical properties. Three different spider silks were collected from Western Ghats region. The collected spider silks samples belonging to the spider Heteropoda venatoria (species 1), Hersilia savignyi (species 2) and Pholcus phalangioides (species 3). Fourier transform infrared (FTIR) spectra reveals the protein peaks in the amide I, II, and III regions in all the three types of spider silk species.

  5. Research on degradation of silk fibroin by combination of electron beam irradiation and hydrothermal processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin samples were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at an appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The soluble silk protein content increased from 0.462 to 0.653 mg protein/mg silk fibroin when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  6. Electrodeposited silk coatings for functionalized implant applications

    Science.gov (United States)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  7. Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity.

    Science.gov (United States)

    Sarda, Stéphanie; Errassifi, Farid; Marsan, Olivier; Geffre, Anne; Trumel, Catherine; Drouet, Christophe

    2016-09-01

    This work proposes to combine tranexamic acid (TAX), a clinically used antifibrinolytic agent, and hydroxyapatite (HA), widely used in bone replacement, to produce a novel bioactive apatitic biomaterial with intrinsic hemostatic properties. The aim of this study was to investigate adsorptive behavior of the TAX molecule onto HA and to point out its release in near physiological conditions. No other phase was observed by X-ray diffraction or transmission electron microscopy, and no apparent change in crystal size was detected. The presence of TAX on the powders was lightly detected on Raman spectra after adsorption. The adsorption data could be fitted with a Langmuir-Freundlich equation, suggesting a strong interaction between adsorbed molecules and the formation of multilayers. The concentration of calcium and phosphate ions in solution remained low and stable during the adsorption process, thus ion exchange during the adsorption process could be ruled out. The release of TAX was fast during the first hours and was governed by a complex process that likely involved both diffusion and dissolution of HA. Preliminary aPTT (activated partial thromboplastin time) hemostasis tests offered promising results for the development of osteoconductive apatitic biomaterials with intrinsic hemostatic properties, whether for dental or orthopedic applications. Copyright © 2016. Published by Elsevier B.V.

  8. China and megaregional integration: the New Maritime Silk Road in Africa

    Directory of Open Access Journals (Sweden)

    Manuel de Jesús Rocha Pino

    2016-12-01

    Full Text Available This article examines the China’s Belt and Road (B&R trade and investment initiative. The B&R concept is formed of two projects: the Silk Road Economic Belt and the New Maritime Silk Road. This study focusses, specifically, on the range of implementation of the New Maritime Silk Road in Africa. For this, two variables are analysed that could be decisive in this process: the current regionalism trend of establishing megaregional free trade agreements and the agenda for domestic economic reform in China.

  9. Mapping domain structures in silks from insects and spiders related to protein assembly.

    Science.gov (United States)

    Bini, Elisabetta; Knight, David P; Kaplan, David L

    2004-01-02

    The exceptional solubility in vivo (20-30%, w/v) of the silk proteins of insects and spiders is dictated by both the need to produce solid fibres with a high packing fraction and the high mesogen concentration required for lyotropic liquid crystalline spinning. A further design requirement for silk proteins is a strong predominance of hydrophobic amino acid residues to provide for the hydrophobic interactions, water exclusion, and beta-crystallite formation required to produce strong insoluble threads. Thus, the domain structure of silk proteins needs to enable nanoscale phase separation to achieve high solubility of hydrophobic proteins in aqueous solutions. Additionally, silk proteins need to avoid premature precipitation as beta-sheets during storage and processing. Here we use mapping of domain types, sizes and distributions in silks to identify consistent design features that have evolved to meet these requirements. We show that silk proteins consist of conspicuously hydrophilic terminal domains flanking a very long central portion constructed from hydrophobic blocks separated by hydrophilic ones, discussing the domain structure in detail. The general rules of construction for silk proteins based on our observations should give a useful guide to the way in which Nature has solved the problem of processing hydrophobic proteins in water and how this can be copied industrially. Following these rules may also help in obtaining adequate expression, soluble products and controllable conformational switches in the production of genetically engineered or chemically synthesized silk analogues. Thus these insights have implications for structural biology and relevance to fundamental and applied questions in material science and engineering.

  10. Calcium-based biomaterials for diagnosis, treatment, and theranostics.

    Science.gov (United States)

    Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng

    2018-01-22

    Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.

  11. Current concepts of regenerative biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Annapurna Ahuja

    2015-01-01

    Full Text Available The primary objective of any implant system is to achieve firm fixation to the bone and this could be influenced by biomechanical as well as biomaterial selection. An array of materials is used in the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants. Thus the clinician needs to have adequate knowledge of the various biomaterials and their properties for their judicious selection and application in his/her clinical practice. The recent materials such as bioceramics and composite biomaterials that are under consideration and investigation have a promising future. For optimal performance, implant biomaterials should have suitable mechanical strength, biocompatibility, and structural biostability in the physiological environment. This article reviews the various implant biomaterials and their ease of use in implant dentistry.

  12. Redoable Tie-Over Dressing Using Multiple Loop Silk Threads

    Directory of Open Access Journals (Sweden)

    Hyeon Jong Jo

    2013-05-01

    Full Text Available After skin grafting, to prevent hematoma or seroma collection at the graft site, a tie-over dressing has been commonly used. However, although the conventional tie-over dressing by suture is a useful method for securing a graft site, refixation is difficult when repeated tie-over dressing is needed. Therefore, we recommend a redoable tie-over dressing technique with multiple loops threads and connecting silk threads. After the raw surface of each of our cases was covered with a skin graft, multiple loop silk thread attached with nylon at the skin graft margin. We applied the ointment gauze and wet cotton/fluffy gauze over the skin graft, then fixed the dressing by connecting cross-counter multiple loop thread with connecting silk threads. When we opened the tie-over dressing by cutting the connecting silk threads, we repeated the tie-over dressing with the same method. The skin graft was taken successfully without hematoma or seroma collection or any other complications. In conclusion, we report a novel tie-over dressing enabling simple fixation of the dressing to maintain proper tension for wounds that require repetitive fixation. Further, with this reliable method, the skin grafts were well taken.

  13. Redoable Tie-Over Dressing Using Multiple Loop Silk Threads

    Directory of Open Access Journals (Sweden)

    Hyeon Jong Jo

    2013-05-01

    Full Text Available After skin grafting, to prevent hematoma or seroma collection at the graft site, a tie-over dressing has been commonly used. However, although the conventional tie-over dressing by suture is a useful method for securing a graft site, refixation is difficult when repeated tieover dressing is needed. Therefore, we recommend a redoable tie-over dressing technique with multiple loops threads and connecting silk threads. After the raw surface of each of our cases was covered with a skin graft, multiple loop silk thread attached with nylon at the skin graft margin. We applied the ointment gauze and wet cotton/fluffy gauze over the skin graft, then fixed the dressing by connecting cross-counter multiple loop thread with connecting silk threads. When we opened the tie-over dressing by cutting the connecting silk threads, we repeated the tie-over dressing with the same method. The skin graft was taken successfully without hematoma or seroma collection or any other complications. In conclusion, we report a novel tie-over dressing enabling simple fixation of the dressing to maintain proper tension for wounds that require repetitive fixation. Further, with this reliable method, the skin grafts were well taken.

  14. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  15. Advanced biomaterials and biodevices

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Biomaterials are the fastest-growing emerging field of  biodevices. Design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. Recently, a variety of scaffolds/carriers have been evaluated for tissue regeneration, drug delivery, sensing and imaging.  Liposomes and microspheres have been developed for sustained delivery. Several anti-cancer drugs have been successfully formulated using biomaterial. The targeting of drugs to certain physiological sites has emerged as a promising tool in the treatment with improved drug bioavailability and reduction of dosing frequency. Biodevices-based targeting of drugs may improve the therapeutic success by limiting the adverse drug effects and resulting in more patient compliance and attaining a higher adherence level. Advanced biodevices hold merit as a drug carrier with high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, high stability, as well as the feasibility...

  16. Structuring of Functional Spider Silk Wires, Coatings, and Sheets by Self-Assembly on Superhydrophobic Pillar Surfaces.

    Science.gov (United States)

    Gustafsson, Linnea; Jansson, Ronnie; Hedhammar, My; van der Wijngaart, Wouter

    2018-01-01

    Spider silk has recently become a material of high interest for a large number of biomedical applications. Previous work on structuring of silk has resulted in particles (0D), fibers (1D), films (2D), and foams, gels, capsules, or microspheres (3D). However, the manufacturing process of these structures is complex and involves posttreatment of chemicals unsuitable for biological applications. In this work, the self-assembly of recombinant spider silk on micropatterned superhydrophobic surfaces is studied. For the first time, structuring of recombinant spider silk is achieved using superhydrophobic surfaces under conditions that retain the bioactivity of the functionalized silk. By tuning the superhydrophobic surface geometry and the silk solution handling parameters, this approach allows controlled generation of silk coatings, nanowires, and sheets. The underlying mechanisms and governing parameters are discussed. It is believed that the results of this work pave the way for fabrication of silk formations for applications including vehicles for drug delivery, optical sensing, antimicrobial coatings, and cell culture scaffolds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  18. Design and Optimization of Resorbable Silk Internal Fixation Devices

    Science.gov (United States)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed

  19. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    International Nuclear Information System (INIS)

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H

    2010-01-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 0 C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 0 C.

  20. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Thomas K H; Toh, Siew-Lok; Goh, James C H, E-mail: dosgohj@nus.edu.s, E-mail: dostkh@nus.edu.s, E-mail: bietohsl@nus.edu.s [Division of Bioengineering, National University of Singapore (Singapore)

    2010-06-01

    In the process of removing sericin (degumming) from a raw silk scaffold, the fibroin structural integrity is often challenged, leading to mechanical depreciation. This study aims to identify the factors and conditions contributing to fibroin degradation during alkaline degumming and to perform an optimization study of the parameters involved to achieve preservation of fibroin structure and properties. The methodology involves degumming knitted silk scaffolds for various durations (5-90 min) and temperatures (60-100 {sup 0}C). Mechanical agitation and use of the refreshed solution during degumming are included to investigate how these factors contribute to degumming efficiency and fibroin preservation. Characterizations of silk fibroin morphology, mechanical properties and protein components are determined by scanning electron microscopy (SEM), single fiber tensile tests and gel electrophoresis (SDS-PAGE), respectively. Sericin removal is ascertained via SEM imaging and a protein fractionation method involving SDS-PAGE. The results show that fibroin fibrillation, leading to reduced mechanical integrity, is mainly caused by prolonged degumming duration. Through a series of optimization, knitted scaffolds are observed to be optimally degummed and experience negligible mechanical and structural degradation when subjected to alkaline degumming with mechanical agitation for 30 min at 100 {sup 0}C.

  1. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  2. Silk formation mechanisms in the larval salivary glands of Apis ...

    Indian Academy of Sciences (India)

    Unknown

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th ...

  3. Proteome identification of the silkworm middle silk gland

    Directory of Open Access Journals (Sweden)

    Jian-ying Li

    2016-03-01

    Full Text Available To investigate the functional differentiation among the anterior (A, middle (M, and posterior (P regions of silkworm middle silk gland (MSG, their proteomes were characterized by shotgun LC–MS/MS analysis with a LTQ-Orbitrap mass spectrometer. To get better proteome identification and quantification, triplicate replicates of mass spectrometry analysis were performed for each sample. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014 [1] via the PRIDE partner repository (Vizcaino, 2013 [2] with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003371. The peptide identifications that were further processed by PeptideProphet program in Trans-Proteomic Pipeline (TPP after database search with Mascot software were also available in .XML format files. Data presented here are related to a research article published in Journal of Proteomics by Li et al. (2015 [3]. Keywords: Bombyx mori, Middle silk gland, Silk protein synthesis, Shotgun proteomics, Label-free

  4. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  5. Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2016-01-01

    Full Text Available Salt-acid system has been proved to be of high efficiency for silk fibroin dissolution. Using salt-acid system to dissolve silk, native silk fibrils can be preserved in the regenerated solution. Increasing experiments indicate that acquirement of silk fibrils in solution is strongly associated with the degumming process. In this study, the effect of sodium carbonate degumming concentration on solution properties based on lithium bromide-formic acid dissolution system was systematically investigated. Results showed that the morphology transformation of silk fibroin in solution from nanospheres to nanofibrils is determined by sodium carbonate concentration during the degumming process. Solutions containing different silk fibroin structure exhibited different rheological behaviors and different electrospinnability, leading to different electrospun nanofibre properties. The results have guiding significance for preparation and application of silk fibroin solutions.

  6. Durable flame retardant finish for silk fabric using boron hybrid silica sol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang-hua; Gu, Jiali; Chen, Guo-qiang [National Engineering Laboratory for Modern Silk, Soochow University (China); Xing, Tie-ling, E-mail: xingtieling@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University (China); Jiangsu HuaJia Group (China)

    2016-11-30

    Highlights: • Highly homogeneous boron hybrid silica sol flame retardant system was prepared through sol-gel method. • The silk samples treated and cross-linked by this hybrid sol and BTCA solution showed a higher limiting oxygen index (LOI) more than 31.0% and a better washing durability for more than 30 times washing. • The smoke suppression, combustion performance and thermal stability properties of the treated samples have a significant improvement. - Abstract: A hybrid silica sol was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor and boric acid (H{sub 3}BO{sub 3}) as flame retardant additive and then applied to silk fabric. In order to endow silk fabric with durable flame retardancy, 1,2,3,4-butanetetracarboxylic acid (BTCA) was used as cross-linking agent for the sake of strong linkage formation between the hybrid silica sol and silk fabric. The FT-IR and XPS analysis demonstrated the Si-O-B formation in the sol system, as well as the linkage between the sol and silk after the treatment. The limiting oxygen index (LOI) and smoke density test indicated good flame retardancy and smoke suppression of the treated silk fabrics. The micro calorimeter combustion (MCC) test and thermo gravimetric (TG) analysis showed that the treated samples had less weight loss in the high temperature and lower heat release rate when burning. The washing durability evaluation results indicated that there was a distinct improvement for the silk samples treated with BTCA even after 30 times washing. In addition, the influence of the processing order of BTCA and silica sol treatment on the limiting oxygen index (LOI) of the finished silk fabric was also investigated. And the results demonstrated that the sample treated with BTCA first and then with the silica sol exhibited better LOI value (32.3%) than that of the sample by the conversed treatment order. Moreover the tensile property of treated samples was nearly unchanged, but the handle of sol treated

  7. Effect of solvents on properties of Bombyx mori silk grafted by methyl methacrylate (MMA and methacrylamide (MAA

    Directory of Open Access Journals (Sweden)

    Wattana Klairatsamee

    2005-11-01

    Full Text Available Mulberry silks were chemically modified in order to increase weight gain, resulting from degumming process using graft copolymerisation technique with vinyl monomers, i.e. MMA, MAA and MMA/MAA. Due to the appearance of PMMA homopolymer granules adhered on the MMA- and MMA/MAA-grafted silk surfaces resulting in surface roughness when silk was grafted by MMA in water, the influence of grafting solvents was examined, using different water/ethanol volume ratios of 100/0, 75/25, 50/50, 25/75 and 0/100. FTIR spectra of the grafted silks presented the absorption bands of the vinyl monomers used for the grafting process. In addition, high values of % polymer add-on were obtained for all of the grafted silks. It was also found that the suitable solvents were 25/75 water/ethanol for the silk grafted by MMA and MMA/MAA, and water for the silk grafted by MAA, in order to get the smooth grafted silk surface and high polymer add-on. Moreover, all the grafted silks showed slightly greater stiffness, as indicated by the increase of Young's modulus and the decrease of elongation.

  8. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  9. Superhydrophobic, Superoleophobic and Antimicrobial Coatings for the Protection of Silk Textiles

    Directory of Open Access Journals (Sweden)

    Dimitra Aslanidou

    2018-03-01

    Full Text Available A method to produce multifunctional coatings for the protection of silk is developed. Aqueous dispersion, free of any organic solvent, containing alkoxy silanes, organic fluoropolymer, silane quaternary ammonium salt, and silica nanoparticles (7 nm in mean diameter is sprayed onto silk which obtains (i superhydrophobic and superoleophobic properties, as evidenced by the high contact angles (>150° of water and oil drops and (ii antimicrobial properties. Potato dextrose agar is used as culture medium for the growth of microorganisms. The protective coating hinders the microbial growth on coated silk which remains almost free of contamination after extensive exposure to the microorganisms. Furthermore, the multifunctional coating induces a moderate reduction in vapor permeability of the treated silk, it shows very good durability against abrasion and has a minor visual effect on the aesthetic appearance of silk. The distinctive roles of the silica nanoparticles and the antimicrobial agent on the aforementioned properties of the coating are investigated. Silica nanoparticles induce surface structures at the micro/nano-meter scale and are therefore responsible for the achieved extreme wetting properties that promote the antimicrobial activity. The latter is further enhanced by adding the silane quaternary ammonium salt in the composition of the protective coating.

  10. Structure, composition and mechanical properties of the silk fibres of ...

    Indian Academy of Sciences (India)

    The silk egg case and orb web of spiders are elaborate structures that are assembled from a number of components. We analysed the structure, the amino acid and fibre compositions, and the tensile properties of the silk fibres of the egg case of Nephila clavata. SEM shows that the outer and inner covers of the egg case ...

  11. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.

    Science.gov (United States)

    Lefèvre, Thierry; Paquet-Mercier, François; Rioux-Dubé, Jean-François; Pézolet, Michel

    2012-06-01

    Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers. Copyright © 2011 Wiley Periodicals, Inc.

  12. Hunting with sticky tape: functional shift in silk glands of araneophagous ground spiders (Gnaphosidae).

    Science.gov (United States)

    Wolff, Jonas O; Řezáč, Milan; Krejčí, Tomáš; Gorb, Stanislav N

    2017-06-15

    Foraging is one of the main evolutionary driving forces shaping the phenotype of organisms. In predators, a significant, though understudied, cost of foraging is the risk of being injured by struggling prey. Hunting spiders that feed on dangerous prey like ants or other spiders are an extreme example of dangerous feeding, risking their own life over a meal. Here, we describe an intriguing example of the use of attachment silk (piriform silk) for prey immobilization that comes with the costs of reduced silk anchorage function, increased piriform silk production and additional modifications of the extrusion structures (spigots) to prevent their clogging. We show that the piriform silk of gnaphosids is very stretchy and tough, which is an outstanding feat for a functional glue. This is gained by the combination of an elastic central fibre and a bi-layered glue coat consisting of aligned nanofibrils. This represents the first tensile test data on the ubiquitous piriform gland silk, adding an important puzzle piece to the mechanical catalogue of silken products in spiders. © 2017. Published by The Company of Biologists Ltd.

  13. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  14. Identification of circular RNA in the Bombyx mori silk gland.

    Science.gov (United States)

    Gan, Huaiyan; Feng, Tieshan; Wu, Yuqian; Liu, Chun; Xia, Qingyou; Cheng, Tingcai

    2017-10-01

    Bombyx mori is an economically important holometabolous lepidopteran insect. In B. mori endogenous noncoding RNAs such as microRNAs (miRNAs) and Piwi-interacting RNAs play crucial biological functions in metamorphosis and sex determination. In addition, circular RNAs (circRNAs) have been recently identified as noncoding RNAs in most common model organisms and show potential as gene regulators. However, to date, there have been few studies on the circRNAs present in the B. mori genome conducted to date. Here, we identified 3916 circRNAs by deep circular transcriptome sequencing using the silk gland of B. mori. 3155 circRNAs were found to be derived from 1727 parental genes. The circRNAs displayed tissue-specific expression between the middle silk gland (MSG) and posterior silk gland (PSG), with 2532 and 880 being upregulated circRNAs in the MSG and PSG, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the parental genes from the MSG and PSG were generally annotated to similar categories and pathways. The interaction network of circRNAs and miRNAs showed that circRNAs might act as miRNA sponges or interact with miRNAs in some other way. Overall, the results revealed the complicated patterns of circRNAs in the B. mori silk gland providing a new angle from which to explore the mechanisms of complex gene regulation and efficient silk protein synthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Silk cocoon drying in forced convection type solar dryer

    International Nuclear Information System (INIS)

    Singh, Panna Lal

    2011-01-01

    The thin layer silk cocoon drying was studied in a forced convection type solar dryer. The drying chamber was provided with several trays on which the cocoons loaded in thin layer. The hot air generated in the solar air heater was forced into drying chamber to avoid the direct exposure of sunlight and UV radiation on cocoons. The drying air temperature varied from 50 to 75 o C. The cocoon was dried from the initial moisture content of about 60-12% (wb). The drying data was fitted to thin layer drying models. Drying behaviour of the silk cocoon was best fitted with the Wang and Singh drying model. Good agreement was obtained between predicted and experimental values. Quality of the cocoons dried in the solar dryer was at par with the cocoons dried in the conventional electrical oven dryer in term of the silk yield and strength of the silk. Saving of electrical energy was about 0.75 kWh/kg cocoons dried. Economic analysis indicated that the NPV of the solar dryer was higher and more stable (against escalation rate of electricity) as compare to the same for electrical oven dryer. Due to simplicity in design and construction and significant saving of operational electrical energy, solar cocoon dryer seems to be a viable option.

  16. Creating biomaterials with spatially organized functionality.

    Science.gov (United States)

    Chow, Lesley W; Fischer, Jacob F

    2016-05-01

    Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.

  17. Bioinspired surface functionalization of metallic biomaterials.

    Science.gov (United States)

    Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan

    2018-01-01

    Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  19. Structure and morphology of regenerated silk nano-fibers produced by electrospinning

    Science.gov (United States)

    Zarkoob, Shahrzad

    The impressive physical and mechanical properties of natural silk fiberssp1 and the possibility of producing these proteins using biotechnology,sp2 have provided the impetus for recent efforts in both the biosynthesissp{3,4} and the spinning of these protein based biopolymers.sp{5,6,7} The question still remains: whether fibers spun from solutions with similar chemical makeup can produce fibers with similar structures and therefore with the possibility of improved properties. Since genetically engineered silk solutions were not readily available, the first objective of this project was to completely dissolve the Bombyx mori cocoon and the Nephila clavipes dragline silk while maintaining the molecular weight integrity of the polymer. The second objective was to develop a system for re-spinning from very small amount of the resulting silk solutions by the process of electrospinning. The third objective was, to produce regenerated silk fibers with diameters that are several orders of magnitude smaller than the original fibers, suitable for direct observation and analysis by transmission electron microscopy and electron diffraction. And finally, to compare these results to structural information obtained from natural (as spun by the organism) fibers to see if the regenerated solutions are able to form the same structure as the original fibers. Both types of silk fibers were successfully dissolved while maintaining the polymer integrity. Small quantities (25-50 mul) of these solutions were used to electrospin fibers with diameters ranging from 8nm-200nm. The fibers were observed by optical, scanning electron, and transmission electron microscopy. These nano fibers showed optical retardation, appeared to have a circular cross-section, and were dimensionally stable at temperatures above 280sp°C. Electron diffraction patterns of annealed electrospun fibers of B. mori and N. clavipes showed reflections, demonstrating orientational and semicrystalline order in the material

  20. Sample selection, preparation methods, and the apparent tensile properties of silkworm (B. mori) cocoon silk.

    Science.gov (United States)

    Reed, Emily J; Bianchini, Lindsay L; Viney, Christopher

    2012-06-01

    Reported literature values of the tensile properties of natural silk cover a wide range. While much of this inconsistency is the result of variability that is intrinsic to silk, some is also a consequence of differences in the way that silk is prepared for tensile tests. Here we explore how measured mechanical properties of Bombyx mori cocoon silk are affected by two intrinsic factors (the location from which the silk is collected within the cocoon, and the color of the silk), and two extrinsic factors (the storage conditions prior to testing, and different styles of reeling the fiber). We find that extrinsic and therefore controllable factors can affect the properties more than the intrinsic ones studied. Our results suggest that enhanced inter-laboratory collaborations, that lead to standardized sample collection, handling, and storage protocols prior to mechanical testing, would help to decrease unnecessary (and complicating) variation in reported tensile properties. Copyright © 2011 Wiley Periodicals, Inc.

  1. Ultra-high Thermal Conductivity of Spider Silk: Protein Function Study with Controlled Structure Change and Comparison

    Science.gov (United States)

    2016-01-23

    induced increase in energy transport capacity of silkworm silks , Biopolymers , (10 2014): 0. doi: 10.1002/bip.22496 Shen Xu, Zaoli Xu, James Starrett...SECURITY CLASSIFICATION OF: In the past three years, we have conducted extensive research to study the structure of spider silks and investigate how the...manually spun spider silks demonstrates that the alignment of the antiparallel beta-sheet crystals in spider silks plays one of the most important

  2. Corn silk aqueous extracts and intraocular pressure of systemic and non-systemic hypertensive subjects.

    Science.gov (United States)

    George, Gladys O; Idu, Faustina K

    2015-03-01

    Hypotensive properties have been attributed to the stigma/style of Zea mays L (corn silk). Although the effect of corn silk extract on blood pressure has been documented in animal studies, we are not aware of any study on its effect on human blood pressure and intraocular pressure. A randomised study was carried out on the effect of water only, masked doses of corn silk aqueous extract (60, 130, 192.5 and 260 mg/kg body weight) on intraocular pressure and blood pressure of 20 systemic and 20 non-systemic hypertensive subjects. Intraocular pressure and blood pressure were measured at baseline and every hour for eight hours after administering water or a masked dose of corn silk aqueous extract. Each dose was administered at two-week intervals to each subject in the two study groups. The results showed that the last three doses of corn silk aqueous extract gave a statistically significant reduction (p Corn silk aqueous extract has a lowering effect on intraocular pressure in systemic and non-systemic hypertensive subjects. This may have resulted from the fall in blood pressure that is due to potassium-induced natriuresis and diuresis caused by the high potassium content in the high doses of the corn silk extract. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  3. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  4. Acylation Modification of Antheraea pernyi Silk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2013-01-01

    Full Text Available The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study, Antheraea pernyi silk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR. In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of the β-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

  5. Preparation and characterization of regenerated fiber from the aqueous solution of Bombyx mori cocoon silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhenghua [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Department of Application Engineering, ZheJiang Vocational College of Economic and Trade, HangZhou, ZheJiang 310018 (China); Imada, Takuzo [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Asakura, Tetsuo, E-mail: asakura@cc.tuat.ac.jp [Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2009-10-15

    The regenerated silk fibers with high strength and high biodegradability were prepared from the aqueous solution of Bombyx mori silk fibroin from cocoons with wet spinning method. Although the tensile strength of the regenerated silk fibroin fiber, 210 MPa is still half of the strength of native silk fiber, the diameter of the fiber is about 100 {mu}m which is suitable for monofilament of suture together with high biodegradability. The high concentration (30%, w/v) of the aqueous solution of the silk fibroin which corresponds to the high concentration in the middle silkgland of silkworm was obtained. This was performed by adjusting the pH of the aqueous solution to 10.4 which corresponds to pK{sub a} value of the OH group of Tyr residues in the silk fibroin. The mixed solvent, methanol/acetic acid (7:3 in volume ratio) was used as coagulant solvent for preparing the regenerated fiber. The structural change of silk fibroin fiber by stretching was monitored with both {sup 13}C solid state NMR and X-ray diffraction methods, indicating that the high strength of the fiber is related with the long-range orientation of the silk fibroin chain with {beta}-sheet structure.

  6. Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology.

    Science.gov (United States)

    Wolff, Jonas O; van der Meijden, Arie; Herberstein, Marie E

    2017-07-26

    Building behaviour in animals extends biological functions beyond bodies. Many studies have emphasized the role of behavioural programmes, physiology and extrinsic factors for the structure and function of buildings. Structure attachments associated with animal constructions offer yet unrealized research opportunities. Spiders build a variety of one- to three-dimensional structures from silk fibres. The evolution of economic web shapes as a key for ecological success in spiders has been related to the emergence of high performance silks and thread coating glues. However, the role of thread anchorages has been widely neglected in those models. Here, we show that orb-web (Araneidae) and hunting spiders (Sparassidae) use different silk application patterns that determine the structure and robustness of the joint in silk thread anchorages. Silk anchorages of orb-web spiders show a greater robustness against different loading situations, whereas the silk anchorages of hunting spiders have their highest pull-off resistance when loaded parallel to the substrate along the direction of dragline spinning. This suggests that the behavioural 'printing' of silk into attachment discs along with spinneret morphology was a prerequisite for the evolution of extended silk use in a three-dimensional space. This highlights the ecological role of attachments in the evolution of animal architectures. © 2017 The Author(s).

  7. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  8. Addition of selenium nanoparticles to electrospun silk scaffolds improves mammalian cell activity while reducing bacterial growth

    Directory of Open Access Journals (Sweden)

    Stanley Chung

    2016-07-01

    Full Text Available Silk possesses many beneficial wound healing properties, and electrospun scaffolds are especially applicable for skin applications, due to their smaller interstices and higher surface areas compared to non-electrospun equivalents. However, purified silk promotes microbial growth. In contrast, selenium nanoparticles have excellent antibacterial properties and are a novel antimicrobial chemistry. Here, electrospun silk scaffolds were doped with selenium nanoparticles to impart antibacterial properties to the silk scaffolds. Results showed significantly improved bacterial inhibition and improvement in human dermal fibroblast metabolic activity. These results suggest that the addition of selenium nanoparticles to electrospun silk is a promising approach to improve wound healing with reduced infection, without relying on antibiotics.

  9. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  10. Metallic Biomaterials: Current Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Karthika Prasad

    2017-07-01

    Full Text Available Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.

  11. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  12. Conization of the cervix uteri. Complications in connection with plain catgut or silk suturing

    DEFF Research Database (Denmark)

    Holmskov, A; Qvist, N; Møller, A

    1984-01-01

    During a retrospective study on postoperative complications in 213 patients who had undergone conization, a (non-significant) reduction in the bleeding rate from 27.9% to 18.6% was found when using silk sutures (102 patients) instead of plain catgut (111 patients) for adaption of the edges...... group and 16.6% in the silk group. On the other hand, more cases of stenosis of the cervical canal were observed, i.e., 25.5% in the silk group and 8.1% in the catgut group (p less than 0.001). The period of hospitalization was reduced on an average by 2 days when using silk (p less than 0.001)....

  13. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    OpenAIRE

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on ...

  14. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    Science.gov (United States)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  15. Biomaterials science an introduction to materials in medicine

    CERN Document Server

    Ratner, Buddy D; Lemons, Jack E; Yaszemski, Michael J; Yaszemski, Michael

    2004-01-01

    The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemi...

  16. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  17. Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process

    Science.gov (United States)

    Ayutsede, Jonathan Eyitouyo

    In recent years, there has been significant interest in the utilization of natural materials for novel nanoproducts such as tissue engineered scaffolds. Silkworm silk fibers represent one of the strongest natural fibers known. Silkworm silk, a protein-based natural biopolymer, has received renewed interest in recent years due to its unique properties (strength, toughness) and potential applications such as smart textiles, protective clothing and tissue engineering. The traditional 10--20 mum diameter, triangular-shaped Bombyx mori fibers have remained unchanged over the years. However, in our study, we examine the scientific implication and potential applications of reducing the diameter to the nanoscale, changing the triangular shape of the fiber and adding nanofillers in the form of single wall carbon nanotubes (SWNT) by the electrospinning process. The electrospinning process preserves the natural conformation of the silk (random and beta-sheet). The feasibility of changing the properties of the electrospun nanofibers by post processing treatments (annealing and chemical treatment) was investigated. B. mori silk fibroin solution (formic acid) was successfully electrospun to produce uniform nanofibers (as small as 12 nm). Response Surface Methodology (RSM) was applied for the first time to experimental results of electrospinning, to develop a processing window that can reproduce regenerated silk nanofibers of a predictable size (d silk multifunctional nanocomposite fibers were fabricated for the first time with anticipated properties (mechanical, thermal and electrically conductive) that may have scientific applications (nerve regeneration, stimulation of cell-scaffold interaction). In order to realize these applications, the following areas need to be addressed: a systematic investigation of the dispersion of the nanotubes in the silk matrix, a determination of new methodologies for characterizing the nanofiber properties and establishing the nature of the silk

  18. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  19. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells

    Science.gov (United States)

    Li, Chunmei; Luo, Tingting; Zheng, Zhaozhu; Murphy, Amanda R.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    Curcumin, a natural phenolic compound derived from the plant Curcuma longa, was physically entrapped and stabilized in silk hydrogel films and its influence on human bone marrow-derived mesenchymal stem cells (hBMSCs) was assessed related to adipogenic differentiation. The presence of curcumin significantly reduced silk gelation time and changed the porous morphology of gel matrix, but did not change the formation of silk beta-sheet structure. Based on spectrofluorimetric analysis, curcumin likely interacted with hydrophobic residues in silk, interacting with the beta-sheet domains formed in the hydrogels. The antioxidant activity of silk film-associated curcumin remained functional over at least one month in both the dry and hydrated state. Negligible curcumin was released from silk hydrogel films over 48 hours incubation in aqueous solution. For hBMSCs cultured on silk films containing more than 0.25 mg/mL curcumin, cell proliferation was inhibited while adipogenesis was significantly promoted based on transcripts as well as oil red O staining. When hBMSCs were cultured in media containing free curcumin, both proliferation and adipogenesis of hBMSCs were inhibited when curcumin concentrations exceeded 5 μM, which is more than 1,000-times higher than the level of curcumin released from the films in aqueous solution. Thus, silk film-associated curcumin exhibited different effects on hBMSC proliferation and differentiation when compared to curcumin in solution. PMID:25132274

  20. Energy absorption and failure response of silk/epoxy composite square tubes: Experimental

    DEFF Research Database (Denmark)

    Oshkovr, Simin Ataollahi; Taher, Siavash Talebi; A. Eshkoor, Rahim

    2012-01-01

    This paper focuses on natural silk/epoxy composite square tubes energy absorption and failure response. The tested specimens were featured by a material combination of different lengths and same numbers of natural silk/epoxy composite layers in form of reinforced woven fabric in thermosetting epoxy...

  1. Drawing-induced changes in morphology and mechanical properties of hornet silk gel films.

    Science.gov (United States)

    Kameda, Tsunenori; Kojima, Katsura; Togawa, Eiji; Sezutsu, Hideki; Zhang, Qiang; Teramoto, Hidetoshi; Tamada, Yasushi

    2010-04-12

    Complete amino acid sequences of the four major proteins (Vssilk 1-4) of silk (hornet silk) obtained from yellow hornet ( Vespa simillima , Vespinae, Vespidae) cocoons have been determined. The native structure of the hornet silk (HS), in which Vssilk 1-4 have an alpha-helix domain with coiled-coil alpha-helices and a beta-sheet domain, is restored when hornet silk gel films (HSGFs) are formed by pressing and drying HS hydrogel. Necking occurs when dry HSGFs are drawn; however, wet HSGFs can be uniaxially drawn with a draw ratio (DR) of 2. Drawing helps obtain high-performance films with a maximum tensile strength and tensile modulus of 170 MPa and 5.5 GPa, respectively. Drawing-induced changes in the orientation and conformation of the coiled-coil structure are investigated.

  2. Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites.

    Science.gov (United States)

    Xie, Wanting; Tadepalli, Sirimuvva; Park, Sang Hyun; Kazemi-Moridani, Amir; Jiang, Qisheng; Singamaneni, Srikanth; Lee, Jae-Hwang

    2018-02-14

    Biological materials have the ability to withstand extreme mechanical forces due to their unique multilevel hierarchical structure. Here, we fabricated a nacre-mimetic nanocomposite comprised of silk fibroin and graphene oxide that exhibits hybridized dynamic responses arising from alternating high-contrast mechanical properties of the components at the nanoscale. Dynamic mechanical behavior of these nanocomposites is assessed through a microscale ballistic characterization using a 7.6 μm diameter silica sphere moving at a speed of approximately 400 m/s. The volume fraction of graphene oxide in these composites is systematically varied from 0 to 32 vol % to quantify the dynamic effects correlating with the structural morphologies of the graphene oxide flakes. Specific penetration energy of the films rapidly increases as the distribution of graphene oxide flakes evolves from noninteracting, isolated sheets to a partially overlapping continuous sheet. The specific penetration energy of the nanocomposite at the highest graphene oxide content tested here is found to be significantly higher than that of Kevlar fabrics and close to that of pure multilayer graphene. This study evidently demonstrates that the morphologies of nanoscale constituents and their interactions are critical to realize scalable high-performance nanocomposites using typical nanomaterial constituents having finite dimensions.

  3. Wear Characteristics of Metallic Biomaterials: A Review

    Science.gov (United States)

    Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser

    2015-01-01

    Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  4. Corn silk induced cyclooxygenase-2 in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  5. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); He, Jianxin, E-mail: hejianxin771117@163.com [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450007 (China); Ding, Bin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li, E-mail: chenli@tjpu.edu.cn [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China)

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering. - Highlights: • A designing scaffold strategy to imitate the mineralized collagen bundles in natural bone was presented. • Aligned nanostructured composite fibers were fabricated by coaxial electrospinning using green water solvent. • Mechanical properties of aligned TSF nanofiber had been significantly improved by embedding with composite nanoparticles. • Composite scaffolds effectively supported proliferation of MG-63 cells and promoted biomineralization.

  7. Investigation of synthetic spider silk crystallinity and alignment via electrothermal, pyroelectric, literature XRD, and tensile techniques.

    Science.gov (United States)

    Munro, Troy; Putzeys, Tristan; Copeland, Cameron G; Xing, Changhu; Lewis, Randolph V; Ban, Heng; Glorieux, Christ; Wubbenhorst, Michael

    2017-04-01

    The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of the natural dragline silk of the N. clavipes spider, and to unprocessed (as-spun) synthetic silk. Structural characterization by scanning pyroelectric microscopy is employed to provide insight into the axial orientation of the crystalline regions of the fiber and is supported by XRD data. The results show that stretching and passage through liquid baths induce crystal formation and axial alignment in synthetic fibers, but with different structural organization than natural silks. Furthermore, an increase in thermal diffusivity and elastic modulus is observed with decreasing fiber diameter, trending towards properties of natural fiber. This effect seems to be related to silk fibers being subjected to a radial gradient during production.

  8. Pro-apoptotic and anti-proliferative effects of corn silk extract on human colon cancer cell lines.

    Science.gov (United States)

    Guo, Hao; Guan, Hong; Yang, Wenqin; Liu, Han; Hou, Huiling; Chen, Xue; Liu, Zhenyan; Zang, Chuangang; Liu, Yuchao; Liu, Jicheng

    2017-02-01

    Corn silk is an economically and nutritionally significant natural product as it represents a staple food for a large proportion of the world population. This study investigated the anticancer activity of corn silk extract in human colon cancer cells and human gastric cancer cells. Following treatment with corn silk extract, certain apoptosis-related events were observed, including inhibition of cell proliferation, loss of mitochondrial membrane potential (ΔΨm), release of Ca2+ and release of cytochrome c from the mitochondria into the cytosol. Our results revealed that corn silk extract inhibited the proliferation of cancer cells and increased the level of apoptosis in a concentration-dependent manner. Western blot analysis revealed that corn silk extract upregulated the levels of Bax, cytochrome c , caspase-3 and caspase-9, but downregulated the levels of B-cell lymphoma 2. These results suggest that corn silk extract may induce apoptosis through the mitochondria-mediated pathway.

  9. Rapid nano impact printing of silk biopolymer thin films

    Science.gov (United States)

    White, Robert D.; Gray, Caprice; Mandelup, Ethan; Amsden, Jason J.; Kaplan, David L.; Omenetto, Fiorenzo G.

    2011-11-01

    In this paper, nano impact printing of silk biopolymer films is described. An indenter is rapidly accelerated and transfers the nanopattern from a silicon master into the silk film during an impact event that occurs in less than 1 ms. Contact stresses of greater than 100 MPa can be achieved during the short impact period with low power and inexpensive hardware. Ring shaped features with a diameter of 2 µm and a ring width of 100-200 nm were successfully transferred into untreated silk films using this method at room temperature. Mechanical modeling was carried out to determine the contact stress distribution, and demonstrates that imprinting can occur for contact stresses of less than 2 MPa. Thermal characterization at the impact location shows that raising the temperature to 70 °C has only a limited effect on pattern transfer. Contact stresses of greater than approximately 100 MPa result in excessive deformation of the film and poor pattern transfer.

  10. Rapid nano impact printing of silk biopolymer thin films

    International Nuclear Information System (INIS)

    White, Robert D; Gray, Caprice; Mandelup, Ethan; Amsden, Jason J; Kaplan, David L; Omenetto, Fiorenzo G

    2011-01-01

    In this paper, nano impact printing of silk biopolymer films is described. An indenter is rapidly accelerated and transfers the nanopattern from a silicon master into the silk film during an impact event that occurs in less than 1 ms. Contact stresses of greater than 100 MPa can be achieved during the short impact period with low power and inexpensive hardware. Ring shaped features with a diameter of 2 µm and a ring width of 100–200 nm were successfully transferred into untreated silk films using this method at room temperature. Mechanical modeling was carried out to determine the contact stress distribution, and demonstrates that imprinting can occur for contact stresses of less than 2 MPa. Thermal characterization at the impact location shows that raising the temperature to 70 °C has only a limited effect on pattern transfer. Contact stresses of greater than approximately 100 MPa result in excessive deformation of the film and poor pattern transfer.

  11. Evaluation of biofouling in stainless microfluidic channels for implantable multilayered dialysis device

    Science.gov (United States)

    Ota, Takashi; To, Naoya; Kanno, Yoshihiko; Miki, Norihisa

    2017-06-01

    An implantable artificial kidney can markedly improve the quality of life of renal disease patients. Our group has developed an implantable multilayered dialysis system consisting of microfluidic channels and dialysis membranes. Long-term evaluation is necessary for implant devices where biofouling is a critical factor, culminating in the deterioration of dialysis performance. Our previous work revealed that surface conditions, which depend on the manufacturing process, determine the amount of biofouling, and that electrolytic etching is the most suitable technique for forming a channel wall free of biofouling. In this study, we investigated the electrolytic etching conditions in detail. We conducted in vitro experiments for 7 d and evaluated the adhesion of biomaterials by scanning electron microscopy. The experiments revealed that a surface mirror-finished by electrolytic etching effectively prevents biofouling.

  12. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  13. In vivo NMR analysis of incorporation of [2-13C] glycine into silk fibroin

    International Nuclear Information System (INIS)

    Asakura, Tetsuo; Nagashima, Mariko; Demura, Makoto; Osanai, Minoru.

    1990-01-01

    The biosynthetic mechanism of silk fibroin in silkworms, Bombyx mori, is unique because this fibrous protein composed mainly of glycine, alanine and serine is produced very rapidly in large quantity in the posterior silk glands. It is very meaningful to investigate into the biosynthesis of silk protein under nondestructive condition by in vivo NMR and C-13 labeling techniques. The sugar metabolism related to the production of silk fibroin was analyzed by monitoring the change in the C-13 labeled peaks in the NMR spectra for silkworms. In this paper, the monitoring of the 2-(C-13) glycine metabolism in Bombyx mori by the C-13 NMR in vivo is reported. In particular, the in vivo transport of glycine from the midgut to the posterior silk gland was measured, and the rate constants were determined with the course of the peak intensity in the C-13 NMR spectra. It is possible to discuss quantitatively the in vivo production of silk fibroin with these rate constants. The experiment and the results are reported. The in vivo C-13 NMR spectra of a 5 day old, 5th instar larva of Bombyx mori after the oral administration of 2-(C-13) glycine are shown. The significant increase of the peak intensity occurred. (K.I.)

  14. Determination of Antimicrobial Activity of the Dyed Silk Fabrics with Some Natural Dyes

    OpenAIRE

    ALKAN, Rezan; TORGAN, Emine; AYDIN, Canan; KARADAG, Recep

    2015-01-01

    In this study, silk fabric is dyed with natural indigo. Dyed silk fabric with natural indigo was cut in the 20x20 cm2 size. Excluding a fabric, all fabrics were mordanted in the same percentage with alum metal (KAl(SO4)2.12H2O). Then, silk fabrics for green color dyeing are dyed separately with weld (Reseda luteola), gall oak (Quercus infectoria Olivier) and together weld (Reseda luteola) and gall oak (Quercus infectoria) in different percentage. Antimicrobial functionality of the twenty seve...

  15. Properties and clinical relevance of osteoinductive biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela

    2005-01-01

    This thesis had two main goals: (¿) to investigate parameters influencing osteoinductive potential of biomaterials in order to unravel the mechanism underlying osteoinduction and (¿¿) to investigate performance of osteoinductive biomaterials orthotopically in order to get insight into their clinical

  16. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption.

    Science.gov (United States)

    Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr

    2018-06-01

    Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Additively manufactured metallic porous biomaterials based on minimal surfaces

    DEFF Research Database (Denmark)

    Bobbert, F. S. L.; Lietaert, K.; Eftekhari, Ali Akbar

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different...... of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass...

  18. Influence of variety and harvest maturity on phytochemical content in corn silk.

    Science.gov (United States)

    Sarepoua, Eakrin; Tangwongchai, Ratchada; Suriharn, Bhalang; Lertrat, Kamol

    2015-02-15

    Corn silk has been used as a traditional herb in Asia. The objective of this study was to evaluate variability in phytochemicals in corn varieties at three maturity stages of corn silk. Ten vegetable corn varieties were evaluated in a completely randomized design with three replications. Data were recorded for total phenolic (TPC), total flavonoids (TFC), total anthocyanin (TAC) and antioxidant activity (AA) by DPPH free-radical-scavenging assays. Differences among corn varieties were observed for all parameters at all maturity stages, and the interactions between maturity stage and corn variety were significant. TPC and TAC were highest at the milky stage, whereas TFC and AA were highest at the silking stage. TPC, TFC and AA were highest in super sweet corn and white corn at the silking stage. PWC5 variety of purple waxy corn at the milky stage had the highest values for all parameters, and it is useful for further development of functional food products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  20. Inspiration and application in the evolution of biomaterials

    OpenAIRE

    Huebsch, Nathaniel; Mooney, David J.

    2009-01-01

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of ...

  1. Inspiration and application in the evolution of biomaterials.

    Science.gov (United States)

    Huebsch, Nathaniel; Mooney, David J

    2009-11-26

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of dynamic behaviour.

  2. Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs.

    Science.gov (United States)

    Zheng, Qin; Wu, Xiaofeng; Zheng, Hailing; Zhou, Yang

    2015-05-01

    We report the preparation of a specific fibroin antibody and its use for the identification of unearthed ancient silk relics. Based on the 12-amino-acid repeat sequence "GAGAGSGAGAGS", which is found in fibroin of the silkworm Bombyx mori, a specific antibody against fibroin was prepared in rabbits through peptide synthesis and carrier-protein coupling. This antibody was highly specific for fibroin found in silk. Using this antibody we have successfully identified four silk samples from different time periods. Our results reveal, for the first time, a method capable of detecting silk from a few milligrams of archaeological fabric that has been buried for thousands of years, confirming that the ancient practice of wearing silk products while praying for rebirth dated back to at least 400 BCE. This method also complements current approaches in silk detection, especially for the characterization of poorly preserved silks, promoting the investigation of silk origins and of ancient clothing cultures.

  3. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-01-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds

  4. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  5. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  6. 'Silk Road', the virtual drug marketplace: a single case study of user experiences.

    Science.gov (United States)

    Van Hout, Marie Claire; Bingham, Tim

    2013-09-01

    The online promotion of 'drug shopping' and user information networks is of increasing public health and law enforcement concern. An online drug marketplace called 'Silk Road' has been operating on the 'Deep Web' since February 2011 and was designed to revolutionise contemporary drug consumerism. A single case study approach explored a 'Silk Road' user's motives for online drug purchasing, experiences of accessing and using the website, drug information sourcing, decision making and purchasing, outcomes and settings for use, and perspectives around security. The participant was recruited following a lengthy relationship building phase on the 'Silk Road' chat forum. The male participant described his motives, experiences of purchasing processes and drugs used from 'Silk Road'. Consumer experiences on 'Silk Road' were described as 'euphoric' due to the wide choice of drugs available, relatively easy once navigating the Tor Browser (encryption software) and using 'Bitcoins' for transactions, and perceived as safer than negotiating illicit drug markets. Online researching of drug outcomes, particularly for new psychoactive substances was reported. Relationships between vendors and consumers were described as based on cyber levels of trust and professionalism, and supported by 'stealth modes', user feedback and resolution modes. The reality of his drug use was described as covert and solitary with psychonautic characteristics, which contrasted with his membership, participation and feelings of safety within the 'Silk Road' community. 'Silk Road' as online drug marketplace presents an interesting displacement away from 'traditional' online and street sources of drug supply. Member support and harm reduction ethos within this virtual community maximises consumer decision-making and positive drug experiences, and minimises potential harms and consumer perceived risks. Future research is necessary to explore experiences and backgrounds of other users. Copyright © 2013

  7. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk

    Science.gov (United States)

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-10-01

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid-soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.

  8. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    Science.gov (United States)

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  9. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2017-06-01

    Full Text Available Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol (PVA composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field.

  10. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  11. Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates

    Directory of Open Access Journals (Sweden)

    Javad Hatami

    2017-09-01

    Full Text Available The construction of multilayered films with tunable properties could offer new routes to produce biomaterials as a platform for 3D cell cultivation. In this study, multilayered films produced with five bilayers of chitosan and alginate (CHT/ALG were built using water-soluble modified mesyl and tosyl–CHT via layer-by-layer (LbL self-assembly. NMR results demonstrated the presences of mesyl (2.83 ppm and tosyl groups (2.39, 7.37 and 7.70 ppm in the chemical structure of modified chitosans. The buildup of multilayered films was monitored by quartz-crystal-microbalance (QCM-D and film thickness was estimated using the Voigt-based viscoelastic model. QCM-D results demonstrated that CHT/ALG films constructed using mesyl or tosyl modifications (mCHT/ALG were significantly thinner in comparison to the CHT/ALG films constructed with unmodified chitosan (p < 0.05. Adhesion analysis demonstrated that human adipose stem cells (hASCs did not adhere to the mCHT/ALG multilayered films and formed aggregates with sizes between ca. 100–200 µm. In vitro studies on cell metabolic activity and live/dead staining suggested that mCHT/ALG multilayered films are nontoxic toward hACSs. Multilayered films produced via LbL assembly of ALG and off-the-shelf, water-soluble modified chitosans could be used as a scaffold for the 3D aggregates formation of hASCs in vitro.

  12. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  13. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films.

    Science.gov (United States)

    Lin, Dianmin; Tao, Hu; Trevino, Jacob; Mondia, Jessica P; Kaplan, David L; Omenetto, Fiorenzo G; Dal Negro, Luca

    2012-11-27

    By a reusable transfer fabrication technique, we demonstrate high-fidelity fabrication of metal nanoparticles, optical nanoantennas, and nanohole arrays directly on a functional silk biopolymer. The ability to reproducibly pattern silk biopolymers with arbitrarily complex plasmonic arrays is of importance for a variety of applications in optical biosensing, tissue engineering, cell biology, and the development of novel bio-optoelectronic medical devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Collagen-based Smart Biomaterials · Smart materials: As smart people see them · Some Biomaterials based on Collagen in Human Health care · Questions of Value to this presentation ... Collagen based biomaterials · COLLAGEN IN VISION CARE · Slide 57 · Bandage lens: A smart device · Work at CLRI: In summary.

  15. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  16. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  17. Biomaterials and therapeutic applications

    Science.gov (United States)

    Ferraro, Angelo

    2016-03-01

    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  18. Influence of spider silk on refugia preferences of the recluse spiders Loxosceles reclusa and Loxosceles laeta (Araneae: Sicariidae).

    Science.gov (United States)

    Vetter, Richard S; Rust, Michael K

    2010-06-01

    In a previous experimental study, recluse spiders Loxosceles reclusa Gertsch and Mulaik and Loxosceles laeta (Nicolet) (Araneae: Sicariidae) preferred small cardboard refugia covered with conspecific silk compared with never-occupied refugia. Herein, we investigated some factors that might be responsible for this preference using similar cardboard refugia. When the two Loxosceles species were given choices between refugia previously occupied by their own and by the congeneric species, neither showed a species-specific preference; however, each chose refugia coated with conspecific silk rather than those previously inhabited by a distantly related cribellate spider, Metaltella simoni (Keyserling). When L. laeta spiders were offered refugia that were freshly removed from silk donors compared with heated, aged refugia from the same silk donor, older refugia were preferred. Solvent extracts of L. laeta silk were chosen approximately as often as control refugia when a range of solvents (methylene chloride:methanol, water, and hexane) were used. However, when acetone was used on similar silk, there was a statistical preference for the control, indicating that there might be a mildly repellent aspect to acetone-washed silk. Considering the inability to show attraction to chemical aspects of fresh silk, it seems that physical attributes may be more important for selection and that there might be repellency to silk of a recently vacated spider. These findings are discussed in regard to pest management strategies to control recluse spiders.

  19. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown t