WorldWideScience

Sample records for multilayer polymer microfluidic

  1. Desktop aligner for fabrication of multilayer microfluidic devices.

    Science.gov (United States)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  2. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  3. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  4. Laser patterning and welding of transparent polymers for microfluidic device fabrication

    Science.gov (United States)

    Pfleging, W.; Baldus, O.

    2006-02-01

    CO II-laser-assisted micro-patterning of polymethylmethacrylate (PMMA) or cyclo-olefin copolymer (COC) has a great potential for the rapid manufacturing of polymeric devices including cutting and structuring. Channel widths of about 50 μm as well as large area patterning of reservoir structures or drilling of vias are established. For this purpose a high quality laser beam is necessary as well as an appropriate beam forming system. In combination with laser transmission welding a fast fabrication of two- and three-dimensional micro-fluidic devices was possible. Welding as well as multilayer welding of transparent polymers was investigated for different polymers such as PMMA, polyvinylidene fluoride (PVDF), COC, and polystyrene (PS). The laser transmission welding process is performed with a high-power diode laser (wavelength 940 nm). An absorption layer with a thickness of several nanometers is deposited onto the polymer surfaces. The welding process has been established for the welding of polymeric parts containing microchannels, if the width of the channels is equal or larger than 100μm. For smaller feature sizes the absorption layer is structured by UV-laser radiation in order to get a highly localized welding seam, e.g., for the limitation of thermal penetration and thermal damaging of functional features such as channels, thin walls or temperature-sensitive substances often contained in micro-fluidic devices. This process strategy was investigated for the welding of capillary electrophoresis chips and capillary blood separation chips, including channel widths of 100 μm and 30 μm. Analysis of the thickness of the absorption layer was carried out with optical transmission spectroscopy.

  5. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  6. Recycling of Polymer-Based Multilayer Packaging: A Review

    Directory of Open Access Journals (Sweden)

    Katharina Kaiser

    2017-12-01

    Full Text Available Polymer-based multilayer packaging materials are commonly used in order to combine the respective performance of different polymers. By this approach, the tailored functionality of packaging concepts is created to sufficiently protect sensitive food products and thus obtain extended shelf life. However, because of their poor recyclability, most multilayers are usually incinerated or landfilled, counteracting the efforts towards a circular economy and crude oil independency. This review depicts the current state of the European multilayer packaging market and sketches the current end-of-life situation of postconsumer multilayer packaging waste in Germany. In the main section, a general overview of the state of research about material recycling of different multilayer packaging systems is provided. It is divided into two subsections, whereby one describes methods to achieve a separation of the different components, either by delamination or the selective dissolution–reprecipitation technique, and the other describes methods to achieve recycling by compatibilization of nonmiscible polymer types. While compatibilization methods and the technique of dissolution–reprecipitation are already extensively studied, the delamination of packaging has not been investigated systematically. All the presented options are able to recycle multilayer packaging, but also have drawbacks like a limited scope or a high expenditure of energy.

  7. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  8. Making the invisible visible: a microfluidic chip using a low refractive index polymer.

    Science.gov (United States)

    Hanada, Yasutaka; Ogawa, Tatsuya; Koike, Kazuhiko; Sugioka, Koji

    2016-07-07

    Microfluidic frameworks known as micro-total-analysis-systems or lab-on-a-chip have become versatile tools in cell biology research, since functional biochips are able to streamline dynamic observations of various cells. Glass or polymers are generally used as the substrate due to their high transparency, chemical stability and cost-effectiveness. However, these materials are not well suited for the microscopic observation of cell migration at the fluid boundary due to the refractive index mismatch between the medium and the biochip material. For this reason, we have developed a new method of fabricating three-dimensional (3D) microfluidic chips made of the low refractive index fluoric polymer CYTOP. This novel fabrication procedure involves the use of a femtosecond laser for direct writing, followed by wet etching with a dilute fluorinated solvent and annealing, to create high-quality 3D microfluidic chips inside a polymer substrate. A microfluidic chip made in this manner enabled us to more clearly observe the flagellum motion of a Dinoflagellate moving in circles near the fluid surface compared to the observations possible using conventional microfluidic chips. We believe that CYTOP microfluidic chips made using this new method may allow more detailed analysis of various cell migrations near solid boundaries.

  9. Tunable photonic multilayer sensors from photo-crosslinkable polymers

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan

    2014-03-01

    The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.

  10. Design, fabrication and characterization of an arrayable all-polymer microfluidic valve employing highly magnetic rare-earth composite polymer

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2016-01-01

    We present a new magnetically actuated microfluidic valve that employs a highly magnetic composite polymer (M-CP) containing rare-earth hard-magnetic powder for its actuating element and for its valve seat. The M-CP offers much higher magnetization compared to the soft-magnetic, ferrite-based composite polymers typically used in microfluidic applications. Each valve consists of a permanently magnetized M-CP flap and valve seat mounted on a microfluidic channel system fabricated in poly(dimethylsiloxane) (PDMS). Each valve is actuated under a relatively small external magnetic field of 80 mT provided by a small permanent magnet mounted on a miniature linear actuator. The performance of the valve with different flap thicknesses is characterized. In addition, the effect of the magnetic valve seat on the valve’s performance is also characterized. It is experimentally shown that a valve with a 2.3 mm flap thickness, actuated under an 80 mT magnetic field, is capable of completely blocking liquid flow at a flow rate of 1 ml min −1 for pressures up to 9.65 kPa in microfluidic channels 200 μ m wide and 200 μ m deep. The valve can also be fabricated into an array for flow switching between multiple microfluidic channels under continuous flow conditions. The performance of arrays of valves for flow routing is demonstrated for flow rates up to 5 ml min −1 with larger microfluidic channels of up to 1 mm wide and 500 μ m deep. The design of the valves is compatible with other commonly used polymeric microfluidic components, as well as other components that use the same novel permanently magnetic composite polymer, such as our previously reported cilia-based mixing devices. (paper)

  11. Multilayer microfluidic systems with indium-tin-oxide microelectrodes for studying biological cells

    International Nuclear Information System (INIS)

    Wu, Hsiang-Chiu; Chen, Hsin; Lyau, Jia-Bo; Lin, Min-Hsuan; Chuang, Yung-Jen

    2017-01-01

    Contemporary semiconductor and micromachining technologies have been exploited to develop lab-on-a-chip microsystems, which enable parallel and efficient experiments in molecular and cellular biology. In these microlab systems, microfluidics play an important role for automatic transportation or immobilization of cells and bio-molecules, as well as for separation or mixing of different chemical reagents. However, seldom microlab systems allow both morphology and electrophysiology of biological cells to be studied in situ . This kind of study is important, for example, for understanding how neuronal networks grow in response to environmental stimuli. To fulfill this application need, this paper investigates the possibility of fabricating multi-layer photoresists as microfluidic systems directly above a glass substrate with indium-tin-oxide (ITO) electrodes. The microfluidic channels are designed to guide and trap biological cells on top of ITO electrodes, through which the electrical activities of cells can be recorded or elicited. As both the microfluidic system and ITO electrodes are transparent, the cellular morphology is observable easily during electrophysiological studies. Two fabrication processes are proposed and compared. One defines the structure and curing depth of each photoresist layer simply by controlling the exposure time in lithography, while the other further utilizes a sacrificial layer to defines the structure of the bottom layer. The fabricated microfluidic system is proved bio-compatible and able to trap blood cells or neurons. Therefore, the proposed microsystem will be useful for studying cultured cells efficiently in applications such as drug-screening. (paper)

  12. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  13. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  14. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte

    2013-01-01

    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...... during bio-operation at elevated temperatures. In contrast, PMMA, PDMS and COP microfluidic devices required specific surface treatment....

  15. Polymer dual ring resonators for label-free optical biosensing using microfluidics.

    Science.gov (United States)

    Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M

    2013-04-18

    We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.

  16. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented ...

  17. Multilayer polymer light-emitting diodes by blade coating method

    Science.gov (United States)

    Tseng, Shin-Rong; Meng, Hsin-Fei; Lee, Kuan-Chen; Horng, Sheng-Fu

    2008-10-01

    Multilayer polymer light-emitting diodes fabricated by blade coating are presented. Multilayer of polymers can be easily deposited by blade coating on a hot plate. The multilayer structure is confirmed by the total thickness and the cross section view in the scanning electron microscope. The film thickness variation is only 3.3% in 10cm scale and the film roughness is about 0.3nm in the micron scale. The efficiency of single layer poly(para-phenylene vinylene) copolymer Super Yellow and poly(9,9-dioctylfluorene) (PFO, deep blue) devices are 9 and 1.7cd/A, respectively, by blade coating. The efficiency of the PFO device is raised to 2.9cd/A with a 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) hole-blocking layer and to 2.3cd/A with a poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)] elec-tron-blocking layer added by blade coating.

  18. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    Science.gov (United States)

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  19. TM-pass polarizer based on multilayer graphene polymer waveguide

    Science.gov (United States)

    Cai, Ke-su; Li, Yue-e.; Wei, Wen-jing; Mu, Xi-jiao; Ma, A.-ning; Wang, Zhong; Song, Dan-ming

    2018-05-01

    A TM-pass polarizer based on multilayer graphene polymer waveguide is proposed and theoretically analyzed. The mode properties, the extinction ratio, the insertion loss and the bandwidth are also discussed. The results show that a TM-pass polarizer, which only guides the TM mode, can be achieved by multilayer graphene polymer waveguide. With length of 150 μm, the proposed polarizer can achieve extinction ratio of 33 dB and insertion loss of 0.5 dB at optical wavelength of 1.55 μm. This device has an excellent performance, including large extinction ratio and low insertion loss within the spectral range from 1.45 μm to 1.6 μm.

  20. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  1. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  2. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Yujing Li

    2016-10-01

    Full Text Available Polyethylenimine (PEI as a cationic polymer is commonly used as a carrier for gene delivery. PEI-800 is less toxic than PEI-25K but it is also less efficient. A novel nanocarrier was developed by combining PEI-800 with a pH-sensitive lipid to form polymer-lipid hybrid nanoparticles (P/LNPs. They were synthesized by microfluidic focusing (MF. Two microfluidic devices were used to synthesize P/LNPs loaded with VEGF siRNA. A series of P/LNPs with different particle sizes and distributions were obtained by altering the flow rate and geometry of microfluidic chips, and introducing sonication. Furthermore, the P/LNPs can be loaded with VEGF siRNA efficiently and were stable in serum for 12 h. Finally, P/LNPs produced by the microfluidic chip showed greater cellular uptake as well as down-regulation of VEGF protein level in both A549 and MCF-7 with reduced cellular toxicity. All in all, the P/LNPs produced by MF method were shown to be a safe and efficient carrier for VEGF siRNA, with potential application for siRNA therapeutics.

  3. Batch fabrication of polymer microfluidic cartridges for QCM sensor packaging by direct bonding

    Science.gov (United States)

    Sandström, Niklas; Zandi Shafagh, Reza; Gylfason, Kristinn B.; Haraldsson, Tommy; van der Wijngaart, Wouter

    2017-12-01

    Quartz crystal microbalance (QCM) sensing is an established technique commonly used in laboratory based life-science applications. However, the relatively complex, multi-part design and multi-step fabrication and assembly of state-of-the-art QCM cartridges make them unsuited for disposable applications such as point-of-care (PoC) diagnostics. In this work, we present the uncomplicated manufacturing of QCMs in polymer microfluidic cartridges. Our novel approach comprises two key innovations: the batch reaction injection molding of microfluidic parts; and the integration of the cartridge components by direct, unassisted bonding. We demonstrate molding of batches of 12 off-stoichiometry thiol-ene epoxy polymer (OSTE+) polymer parts in a single molding cycle using an adapted reaction injection molding process; and the direct bonding of the OSTE+  parts to other OSTE+  substrates, to printed circuit boards, and to QCMs. The microfluidic QCM OSTE+  cartridges were successfully evaluated in terms of liquid sealing as well as electrical properties, and the sensor performance characteristics are on par with those of a commercially available QCM biosensor cartridge. The simplified manufacturing of QCM sensors with maintained performance potentializes novel application areas, e.g. as disposable devices in a point of care setting. Moreover, our results can be extended to simplifying the fabrication of other microfluidic devices with multiple heterogeneously integrated components.

  4. A practical multilayered conducting polymer actuator with scalable work output

    International Nuclear Information System (INIS)

    Ikushima, Kimiya; John, Stephen; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-01-01

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m −3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required

  5. Microfluidic Fabrication of Conjugated Polymer Sensor Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Imsung; Song, Simon [Hanyang University, Seoul (Korea, Republic of)

    2014-10-15

    We propose a fabrication method for polydiacetylene (PDA)-embedded hydrogel microfibers on a microfluidic chip. These fibers can be applied to the detection of cyclodextrines (CDs), which are a family of sugar and aluminum ions. PDA, a family of conjugated polymers, has unique characteristics when used for a sensor, because it undergoes a blue-to-red color transition and nonfluorescence-to-fluorescence transition in response to environmental stimulation. PDAs have different sensing characteristics depending on the head group of PCDA. By taking advantage of ionic crosslinking-induced hydrogel formation and the 3D hydrodynamic focusing effect on a microfluidic chip, PCDA-EDEA-derived diacetylene (DA) monomer-embedded microfibers were successfully fabricated. UV irradiation of the fibers afforded blue-colored PDA, and the resulting blue PDA fibers underwent a phase transition to red and emitted red fluorescence upon exposure to CDs and aluminum ions. Their fluorescence intensity varied depending on the CDs and aluminum ion concentrations. This phase transition was also observed when the fibers were dried.

  6. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    Science.gov (United States)

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-07

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  7. A Simple Opto-Fluidic Switch Detecting Liquid Filling in Polymer-Based Microfluidic Systems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Geschke, Oliver; Zengerle, R

    2007-01-01

    A novel detection scheme for detection of liquid levels and bubbles in microfluidic systems, using the principle of total internal reflection (TIR) is presented. A laser beam impinges on the side walls of a channel which are inclined at 45deg. In an unfilled channel of such a "V-groove", TIR defl...... of the microfluidic channels. The machining of the V-groves can seamlessly be integrated into common polymer microfabrication schemes such as injection molding....

  8. Continuous flow synthesis of nanoparticles using ceramic microfluidic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-de Pedro, S; Puyol, M; Alonso-Chamarro, J, E-mail: julian.alonso@uab.es [Grup de Sensors i Biosensors, Departament de Quimica, Facultat de Ciencies, Edifici Cn, Universitat Autonoma de Barcelona, Bellaterra 08193 (Spain)

    2010-10-15

    A microfluidic system based on the low-temperature co-fired ceramics technology (LTCC) is proposed to reproducibly carry out a simple one-phase synthesis and functionalization of monodispersed gold nanoparticles. It takes advantage of the LTCC technology, offering a fast prototyping without the need to use sophisticated facilities, reducing significantly the cost and production time of microfluidic systems. Some other interesting advantages of the ceramic materials compared to glass, silicon or polymers are their versatility and chemical resistivity. The technology enables the construction of multilayered systems, which can integrate other mechanical, electronic and fluidic components in a single substrate. This approach allows rapid, easy, low cost and automated synthesis of the gold colloidal, thus it becomes a useful approach in the progression from laboratory scale to pilot-line scale processes, which is currently demanded.

  9. Photo-crosslinkable polymers for fabrication of photonic multilayer sensors

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan C.

    2013-03-01

    We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.

  10. Controlled and tunable polymer particles' production using a single microfluidic device

    Science.gov (United States)

    Amoyav, Benzion; Benny, Ofra

    2018-04-01

    Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using small-scale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations. However, one of the drawback in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles' synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer). Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches. We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles' size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.

  11. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    Science.gov (United States)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  12. Easy fabrication of high quality nickel mold for deep polymer microfluidic channels

    International Nuclear Information System (INIS)

    Wong, Ten It; Tan, Christina Yuan Ling; Zhou, Xiaodong; Limantoro, Julian; Fong, Kin Phang; Quan, Chenggen; Sun, Ling Ling

    2016-01-01

    Mass fabrication of disposable microfluidic chips with hot embossing is a key technology for microfluidic chip based biosensors. In this work, we develop a new method of fabricating high quality and highly durable nickel molds for hot embossing polymer chips. The process involves the addition of a thick, patterned layer of negative photoresist AZ-125nxT to a 4″ silicon wafer, followed by nickel electroplating and delamination of the nickel mold. Our investigations found that compared to a pillar mask, a hole mask can minimize the diffraction effect in photolithography of a thick photoresist, reduce the adhesion of the AZ-125nxT to the photomask in photolithography, and facilitate clean development of the photoresist patterns. By optimizing the hot embossing and chip bonding parameters, microfluidic chips with deep channels are achieved. (paper)

  13. Novel Luminescent Multilayer Films Containing π-Conjugated Anionic Polymer with Electronic Microenvironment

    Directory of Open Access Journals (Sweden)

    Tianlei Wang

    2016-09-01

    Full Text Available Layered double hydroxides (LDHs, luminescent π-conjugated anionic polymer and montmorillonite (MMT were orderly assembled into luminescent multilayer films via layer-by-layer self-assembly method. The electronic microenvironment (EME, the structure of which is like a traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially, due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer, EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are expected to have the potential for designing, constructing, and investigating novel light-emitting thin films.

  14. Extracting interface locations in multilayer polymer waveguide films using scanning angle Raman spectroscopy

    International Nuclear Information System (INIS)

    Bobbitt, Jonathan M.; Smith, Emily A.

    2017-01-01

    There is an increasing demand for nondestructive in situ techniques that measure chemical content, total thickness, and interface locations for multilayer polymer films, and SA Raman spectroscopy in combination with appropriate data models can provide this information. A scanning angle (SA) Raman spectroscopy method was developed to measure the chemical composition of multilayer polymer waveguide films and to extract the location of buried interfaces between polymer layers with 7–80-nm axial spatial resolution. The SA Raman method measures Raman spectra as the incident angle of light upon a prism-coupled thin film is scanned. Six multilayer films consisting of poly(methyl methacrylate)/polystyrene or poly(methyl methacrylate)/polystyrene/poly(methyl methacrylate) were prepared with total thicknesses ranging from 330-1260 nm. The interface locations were varied by altering the individual layer thicknesses between 140-680 nm. The Raman amplitude ratio of the 1605 cm -1 peak for PS and 812 cm -1 peak for PMMA was used in calculations of the electric field intensity within the polymer layers to model the SA Raman data and extract the total thickness and interface locations. There is an average 8% and 7% difference in the measured thickness between the SA Raman and profilometry measurements for bilayer and trilayer films, respectively.

  15. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.

    Science.gov (United States)

    Fares, Hadi M; Schlenoff, Joseph B

    2017-10-18

    It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.

  16. A simple method of fabricating mask-free microfluidic devices for biological analysis.

    KAUST Repository

    Yi, Xin

    2010-09-07

    We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip\\'s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches.

  17. Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets.

    Science.gov (United States)

    Wu, Zhiguang; Si, Tieyan; Gao, Wei; Lin, Xiankun; Wang, Joseph; He, Qiang

    2016-02-03

    A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays -efficient NIR light-triggered propulsion in -biofluids and thus holds considerable promise for various potential biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-Throughput Fabrication of Nanocone Substrates through Polymer Injection Moulding For SERS Analysis in Microfluidic Systems

    DEFF Research Database (Denmark)

    Viehrig, Marlitt; Matteucci, Marco; Thilsted, Anil H.

    analysis. Metal-capped silicon nanopillars, fabricated through a maskless ion etch, are state-of-the-art for on-chip SERS substrates. A dense cluster of high aspect ratio polymer nanocones was achieved by using high-throughput polymer injection moulding over a large area replicating a silicon nanopillar...... structure. Gold-capped polymer nanocones display similar SERS sensitivity as silicon nanopillars, while being easily integrable into a microfluidic chips....

  19. Evaluation of biofouling in stainless microfluidic channels for implantable multilayered dialysis device

    Science.gov (United States)

    Ota, Takashi; To, Naoya; Kanno, Yoshihiko; Miki, Norihisa

    2017-06-01

    An implantable artificial kidney can markedly improve the quality of life of renal disease patients. Our group has developed an implantable multilayered dialysis system consisting of microfluidic channels and dialysis membranes. Long-term evaluation is necessary for implant devices where biofouling is a critical factor, culminating in the deterioration of dialysis performance. Our previous work revealed that surface conditions, which depend on the manufacturing process, determine the amount of biofouling, and that electrolytic etching is the most suitable technique for forming a channel wall free of biofouling. In this study, we investigated the electrolytic etching conditions in detail. We conducted in vitro experiments for 7 d and evaluated the adhesion of biomaterials by scanning electron microscopy. The experiments revealed that a surface mirror-finished by electrolytic etching effectively prevents biofouling.

  20. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  1. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2014-01-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628

  2. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  3. Polymer microfluidic device replacing fluids using only capillary force

    Science.gov (United States)

    Chung, Kwang Hyo; Lee, Dae Sik; Yang, Haesik; Kim, Sung Jin; Pyo, Hyun Bong

    2005-02-01

    A novel polymer microfluidic device for self-wash using only capillary force is presented. A liquid filled in a reaction chamber is replaced by another liquid with no external actuation. All the fluidic actuations in the device is pre-programmed about time and sequence, and accomplished by capillary force naturally. Careful design is necessary for exact actions. The fluidic conduits were designed by the newly derived theoretical equations about the capillary stop pressure and flow time. Simulations using CFD-ACE+ were conducted to check the validity of theory and the performance of the chip. These analytic results were consistent with experimental ones. The chip was made of polymers for the purpose of single use and low price. It was fabricated by sealing the hot-embossed PMMA substrate with a PET film. For simpler fabrication, the chip was of a single height. The embossing master was produced from a nickel-electroplating on a SU8-patterned Ni-plate followed by CMP. The contact angles of liquids on substrates were manipulated through the mixing of surfactants, and the temporal variations were monitored for a more exact design. The real actuation steps in experiment revealed the stable performance of selfwash, and coincided well with the designed ones. The presented microfluidic method can be applicable to other LOCs of special purposes through simple modification. For example, array or serial types would be possible for multiple selfwashes.

  4. An open-source, programmable pneumatic setup for operation and automated control of single- and multi-layer microfluidic devices

    Directory of Open Access Journals (Sweden)

    Kara Brower

    2018-04-01

    Full Text Available Microfluidic technologies have been used across diverse disciplines (e.g. high-throughput biological measurement, fluid physics, laboratory fluid manipulation but widespread adoption has been limited in part due to the lack of openly disseminated resources that enable non-specialist labs to make and operate their own devices. Here, we report the open-source build of a pneumatic setup capable of operating both single and multilayer (Quake-style microfluidic devices with programmable scripting automation. This setup can operate both simple and complex devices with 48 device valve control inputs and 18 sample inputs, with modular design for easy expansion, at a fraction of the cost of similar commercial solutions. We present a detailed step-by-step guide to building the pneumatic instrumentation, as well as instructions for custom device operation using our software, Geppetto, through an easy-to-use GUI for live on-chip valve actuation and a scripting system for experiment automation. We show robust valve actuation with near real-time software feedback and demonstrate use of the setup for high-throughput biochemical measurements on-chip. This open-source setup will enable specialists and novices alike to run microfluidic devices easily in their own laboratories. Keywords: Microfluidics, Pneumatics, Laboratory automation, Biochip, BioMEMs, Biohacking, Fluid handling, Micro total analysis systems (μTAS, Quake-style valves

  5. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.

    Science.gov (United States)

    De Coster, Diane; Ottevaere, Heidi; Vervaeke, Michael; Van Erps, Jürgen; Callewaert, Manly; Wuytens, Pieter; Simpson, Stephen H; Hanna, Simon; De Malsche, Wim; Thienpont, Hugo

    2015-11-30

    We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.

  6. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free

  7. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.

    Science.gov (United States)

    Devaraju, Naga Sai Gopi K; Unger, Marc A

    2012-11-21

    Advances in microfluidics now allow an unprecedented level of parallelization and integration of biochemical reactions. However, one challenge still faced by the field has been the complexity and cost of the control hardware: one external pressure signal has been required for each independently actuated set of valves on chip. Using a simple post-modification to the multilayer soft lithography fabrication process, we present a new implementation of digital fluidic logic fully analogous to electronic logic with significant performance advances over the previous implementations. We demonstrate a novel normally closed static gain valve capable of modulating pressure signals in a fashion analogous to an electronic transistor. We utilize these valves to build complex fluidic logic circuits capable of arbitrary control of flows by processing binary input signals (pressure (1) and atmosphere (0)). We demonstrate logic gates and devices including NOT, NAND and NOR gates, bi-stable flip-flops, gated flip-flops (latches), oscillators, self-driven peristaltic pumps, delay flip-flops, and a 12-bit shift register built using static gain valves. This fluidic logic shows cascade-ability, feedback, programmability, bi-stability, and autonomous control capability. This implementation of fluidic logic yields significantly smaller devices, higher clock rates, simple designs, easy fabrication, and integration into MSL microfluidics.

  8. Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers.

    Science.gov (United States)

    Pierleoni, Davide; Minelli, Matteo; Ligi, Simone; Christian, Meganne; Funke, Sebastian; Reineking, Niklas; Morandi, Vittorio; Doghieri, Ferruccio; Palermo, Vincenzo

    2018-04-04

    The performance of polymer-based membranes for gas separation is currently limited by the Robeson limit, stating that it is impossible to have high gas permeability and high gas selectivity at the same time. We describe the production of membranes based on the ability of graphene oxide (GO) and poly(ethyleneimine) (PEI) multilayers to overcome such a limit. The PEI chains act as molecular spacers in between the GO sheets, yielding a highly reproducible, periodic multilayered structure with a constant spacing of 3.7 nm, giving a record combination of gas permeability and selectivity. The membranes feature a remarkable gas selectivity (up to 500 for He/CO 2 ), allowing to overcome the Robeson limit. The permeability of these membranes to different gases depends exponentially on the diameter of the gas molecule, with a sieving mechanism never obtained in pure GO membranes, in which a size cutoff and a complex dependence on the chemical nature of the permeant is typically observed. The tunable permeability, the high selectivity, and the possibility to produce coatings on a wide range of polymers represent a new approach to produce gas separation membranes for large-scale applications.

  9. Development of an Integrated Polymer Microfluidic Stack

    International Nuclear Information System (INIS)

    Datta, Proyag; Hammacher, Jens; Pease, Mark; Gurung, Sitanshu; Goettert, Jost

    2006-01-01

    Microfluidic is a field of considerable interest. While significant research has been carried out to develop microfluidic components, very little has been done to integrate the components into a complete working system. We present a flexible modular system platform that addresses the requirements of a complete microfluidic system. A microfluidic stack system is demonstrated with the layers of the stack being modular for specific functions. The stack and accompanying infrastructure provides an attractive platform for users to transition their design concepts into a working microfluidic system quickly with very little effort. The concept is demonstrated by using the system to carry out a chemilumiscence experiment. Details regarding the fabrication, assembly and experimental methods are presented

  10. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    Science.gov (United States)

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  11. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  12. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Andersen, Karsten Brandt; Dimaki, Maria

    2015-01-01

    The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment...... pressures above 250 psi and therefore supports applications with high flow rates or highly viscous fluids. The ease of incorporation, configuration, fabrication and use make this interconnection system ideal for the rapid prototyping of simple microfluidic devices or other integrated systems that require...... microfluidic interfaces. It provides a valuable addition to the toolbox of individual and small arrays of connectors suitable for micromachined or template-based injection molded devices since it does not require protruding, threaded or glued modifications on the inlet and avoids bulky and expensive fittings....

  13. Porous double-layer polymer tubing for the potential use in heterogeneous continuous flow reactions.

    Science.gov (United States)

    Herwig, Gordon; Hornung, Christian H; Peeters, Gary; Ebdon, Nicholas; Savage, G Paul

    2014-12-24

    Functional polymer tubing with an OD of 1/16 or 1/8 in. was fabricated by a simple polymer coextrusion process. The tubing was made of an outer impervious polypropylene layer and an inner layer, consisting of a blend of a functional polymer, polyethylene-co-methacrylic acid, and a sacrificial polymer, polystyrene. After a simple solvent leaching step using common organic solvents, the polystyrene was removed, leaving behind a porous inner layer that contains functional carboxylic acid groups, which could then be used for the immobilization of target molecules. Solution-phase reactions using amines or isocyanates have proven successful for the immobilization of a series of small molecules and polymers. This flexible multilayered functional tubing can be easily cut to the desired length and connected via standard microfluidic fittings.

  14. Unravelling ``off-target'' effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells

    Science.gov (United States)

    Beretta, Giovanni L.; Folini, Marco; Cavalieri, Francesca; Yan, Yan; Fresch, Enrico; Kaliappan, Subramanian; Hasenöhrl, Christoph; Richardson, Joseph J.; Tinelli, Stella; Fery, Andreas; Caruso, Frank; Zaffaroni, Nadia

    2015-03-01

    Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell lines. This suggests that the simultaneous action of carboxyl and disulfide groups in PMASH polymer or capsules may play a role in mediating the intracellular off-target effects. Our work provides evidence that the rational design of redox-active carriers for therapeutic-related application should be guided by a careful investigation on potential disturbance of the cellular machineries related to the carrier association.Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell

  15. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-12-20

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free-surface thermal compression molding method. The laser fabricated poly(methyl methacrylate) (PMMA) sheet is used as the mold for the thermal compression molding process. With different surface treatment methods of the PMMA mold, microlenses with either convex or concave profiles could be achieved during the thermal molding process. By integrating the microlenses in the microfluidic systems, observing the flow inside the microchannels is easier. This new technique is rapid, low cost, and it does not require cleanroom facilities. Microlenses with both convex and concave profiles can be easily fabricated and integrated in microfluidic system with this technique. © 2013 Springer-Verlag Berlin Heidelberg.

  16. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    International Nuclear Information System (INIS)

    Xu Jianhua; Yang Yajie; Yu Junsheng; Jiang Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  17. Optical two-beam traps in microfluidic systems

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine

    2016-01-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast...... written waveguides and in an injection molded polymer chip with grooves for optical fibers. (C) 2016 The Japan Society of Applied Physics....

  18. Hydrophobic coating of microfluidic chips structured by SU-8 polymer for segmented flow operation

    International Nuclear Information System (INIS)

    Schumacher, J T; Grodrian, A; Metze, J; Kremin, C; Hoffmann, M

    2008-01-01

    We present a hydrophobization procedure for SU-8-based microfluidic chips on borofloat substrates. Different layouts of gold electrodes passivated by the polymer have been investigated. The chips are used for segmented flow in a two-fluid mode that requires a distinct hydrophobicity of the channel walls which is generated by the use of specific silane. In this paper we describe the production and silanization of the chips and demonstrate segmented flow operation

  19. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  20. 3D Ceramic Microfluidic Device Manufacturing

    International Nuclear Information System (INIS)

    Natarajan, Govindarajan; Humenik, James N

    2006-01-01

    Today, semiconductor processing serves as the backbone for the bulk of micromachined devices. Precision lithography and etching technology used in the semiconductor industry are also leveraged by alternate techniques like electroforming and molding. The nature of such processing is complex, limited and expensive for any manufacturing foundry. This paper details the technology elements developed to manufacture cost effective and versatile microfluidic devices for applications ranging from medical diagnostics to characterization of bioassays. Two applications using multilayer ceramic technology to manufacture complex 3D microfluidic devices are discussed

  1. A low cost and hybrid technology for integrating silicon sensors or actuators in polymer microfluidic systems

    International Nuclear Information System (INIS)

    Charlot, Samuel; Gué, Anne-Marie; Tasselli, Josiane; Marty, Antoine; Abgrall, Patrick; Estève, Daniel

    2008-01-01

    This paper describes a new technology permitting a hybrid integration of silicon chips in polymer (PDMS and SU8) microfluidic structures. This two-step technology starts with transferring the silicon device onto a rigid substrate (typically PCB) and planarizing it, and then it proceeds with stacking of the polymer-made fluidic network onto the device. The technology is low cost, based on screen printing and lamination, can be applied to treat large surface areas, and is compatible with standard photolithography and vacuum based approaches. We show, as an example, the integration of a thermal sensor inside channels made of PDMS or SU8. The developed structures had no fluid leaks at the Si/polymer interfaces and the electrical circuit was perfectly tightproof. (note)

  2. Trends in Polymer and Particle Characterization by Microfluidic Field-Flow Fractionation Methods: Science or Business?

    Czech Academy of Sciences Publication Activity Database

    Janča, Josef; Sobota, Jaroslav

    2014-01-01

    Roč. 19, 16 May (2014), s. 296-308 ISSN 1023-666X R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Asymmetrical flow FFF * Electrical FFF * Field-flow fractionation * Flow FFF * Microelectrical FFF * Microfluidic channels * Microthermal FFF * Miniaturization and resolution * Polymers and particles separation * Sedimentation FFF * Technical benefits of microchannels * Thermal FFF Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.264, year: 2014

  3. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Directory of Open Access Journals (Sweden)

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  4. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Østergaard, Peter Friis

    2014-01-01

    Rapid prototyping is desirable when developing products. One example of such a product is all-polymer, passive flow controlled lab-on-a-chip systems that are preferential when developing low-cost disposable chips for point-of-care use. In this paper we investigate the following aspects of going...... from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test...... structures. (2) Numerical modelling of the microvalve burst pressures. Numerical modelling of burst pressures is challenging due to its non-equilibrium nature. We have implemented and tested the level-set method modified with a damped driving term and show that the introduction of the damping term leads...

  6. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips

    KAUST Repository

    Zhang, Mengying

    2010-01-01

    We report a simple methodology to fabricate PDMS multi-layer microfluidic chips. A PDMS slab was surface-treated by trichloro (1H,1H,2H,2H-perfluorooctyl) silane, and acts as a reusable transferring layer. Uniformity of the thickness of the patterned PDMS layer and the well-alignment could be achieved due to the transparency and proper flexibility of this transferring layer. Surface treatment results are confirmed by XPS and contact angle testing, while bonding forces between different layers were measured for better understanding of the transferring process. We have also designed and fabricated a few simple types of 3D PDMS chip, especially one consisting of 6 thin layers (each with thickness of 50 μm), to demonstrate the potential utilization of this technique. 3D fluorescence images were taken by a confocal microscope to illustrate the spatial characters of essential parts. This fabrication method is confirmed to be fast, simple, repeatable, low cost and possible to be mechanized for mass production. © The Royal Society of Chemistry 2010.

  7. Comparison of roll-to-roll replication approaches for microfluidic and optical functions in lab-on-a-chip diagnostic devices

    Science.gov (United States)

    Brecher, Christian; Baum, Christoph; Bastuck, Thomas

    2015-03-01

    Economically advantageous microfabrication technologies for lab-on-a-chip diagnostic devices substituting commonly used glass etching or injection molding processes are one of the key enablers for the emerging market of microfluidic devices. On-site detection in fields of life sciences, point of care diagnostics and environmental analysis requires compact, disposable and highly functionalized systems. Roll-to-roll production as a high volume process has become the emerging fabrication technology for integrated, complex high technology products within recent years (e.g. fuel cells). Differently functionalized polymer films enable researchers to create a new generation of lab-on-a-chip devices by combining electronic, microfluidic and optical functions in multilayer architecture. For replication of microfluidic and optical functions via roll-to-roll production process competitive approaches are available. One of them is to imprint fluidic channels and optical structures of micro- or nanometer scale from embossing rollers into ultraviolet (UV) curable lacquers on polymer substrates. Depending on dimension, shape and quantity of those structures there are alternative manufacturing technologies for the embossing roller. Ultra-precise diamond turning, electroforming or casting polymer materials are used either for direct structuring or manufacturing of roller sleeves. Mastering methods are selected for application considering replication quality required and structure complexity. Criteria for the replication quality are surface roughness and contour accuracy. Structure complexity is evaluated by shapes producible (e.g. linear, circular) and aspect ratio. Costs for the mastering process and structure lifetime are major cost factors. The alternative replication approaches are introduced and analyzed corresponding to the criteria presented. Advantages and drawbacks of each technology are discussed and exemplary applications are presented.

  8. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas; Gong, Xiuqing; Li, Shunbo; Qin, Jianhua; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2011-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials employed in the fabrication of microfluidic chips including: silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives, etc. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components

  9. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen Skotte

    2013-01-01

    steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence......We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting...

  10. INVESTIGATION OF SANITARY-HYGIENIC CHARACTERISTICS OF MULTILAYER POLYMER FILMS USED FOR VACUUM PACKAGING MODIFIED BY NATIVE ANTIMICROBIAL COMPONENTS

    Directory of Open Access Journals (Sweden)

    O. B. Fedotova

    2016-01-01

    Full Text Available The results of the research works related to investigation of sanitary-hygienic characteristics of multilayer polymer film materials where the inner layer contacting directly with food product is modified by native antimicrobial components.

  11. A novel temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Sørensen, Karen Skotte

    steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature dependent fluorescence......We present a new temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with external heater and temperature sensor. The method employs optimized temperature overshooting and undershooting...

  12. In search of low cost biological analysis: Wax or acrylic glue bonded paper microfluidic devices

    KAUST Repository

    Kodzius, Rimantas

    2011-01-22

    In this body of work we have been developing and characterizing paper based microfluidic fabrication technologies to produce low cost biological analysis. Specifically we investigated the performance of paper microfluidics that had been bonded using wax or acrylic glue, and characterized the affect of these and other microfluidic materials on the polymerase chain reaction (PCR). We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax or cyanoacrylate-based resin as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax or simple cyanoacrylate-based resin can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate film, glass sheets, or metal plate. The wax bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by evacuating the channels of adhesive material in a hot-water. We applied the wax-paper based microfluidic chip to HeLa cell electroporation. Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein recombinant E. coli bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration. The chip bonded with cyanoacrylate-based resin was tested by measuring protein concentration and carrying out DNA capillary electrophoresis. To study the biocompatibility and applicability of our microfluidic chip fabrication technology, we tested the PCR compatibility of our chip materials along with various other common materials

  13. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  14. Three-dimensional micro structured nanocomposite beams by microfluidic infiltration

    International Nuclear Information System (INIS)

    Lebel, L L; Paez, O A; Therriault, D; Aïssa, B; El Khakani, M A

    2009-01-01

    Three-dimensional (3D) micro structured beams reinforced with a single-walled carbon nanotube (C-SWNT)/polymer nanocomposite were fabricated using an approach based on the infiltration of 3D microfluidic networks. The 3D microfluidic network was first fabricated by the direct-write assembly method, which consists of the robotized deposition of fugitive ink filaments on an epoxy substrate, forming thereby a 3D micro structured scaffold. After encapsulating the 3D micro-scaffold structure with an epoxy resin, the fugitive ink was liquefied and removed, resulting in a 3D network of interconnected microchannels. This microfluidic network was then infiltrated by a polymer loaded with C-SWNTs and subsequently cured. Prior to their incorporation in the polymer matrix, the UV-laser synthesized C-SWNTs were purified, functionalized and dispersed into the matrix using a three-roll mixing mill. The final samples consist of rectangular beams having a complex 3D skeleton structure of C-SWNT/polymer nanocomposite fibers, adapted to offer better performance under flexural solicitation. Dynamic mechanical analysis in flexion showed an increase of 12.5% in the storage modulus compared to the resin infiltrated beams. The nanocomposite infiltration of microfluidic networks demonstrated here opens new prospects for the achievement of 3D reinforced micro structures

  15. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

    Directory of Open Access Journals (Sweden)

    Rasheed Atif

    2016-08-01

    Full Text Available One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG and carbon nanotubes (CNTs tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites.

  16. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...

  17. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  18. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    Science.gov (United States)

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  19. Release of DNA from polyelectrolyte multilayers fabricated using 'charge-shifting' cationic polymers: tunable temporal control and sequential, multi-agent release.

    Science.gov (United States)

    Sun, Bin; Lynn, David M

    2010-11-20

    We report an approach to the design of multilayered polyelectrolyte thin films (or 'polyelectrolyte multilayers', PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic 'charge-shifting' polymers (amine functionalized polymers that undergo gradual changes in net charge upon side chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two 'charge-shifting' polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (3-dimethylamino-1-propanol and 2-dimethylaminoethanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that

  20. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.

    Science.gov (United States)

    Hamad, E M; Bilatto, S E R; Adly, N Y; Correa, D S; Wolfrum, B; Schöning, M J; Offenhäusser, A; Yakushenko, A

    2016-01-07

    Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing.

  1. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Gentile, Francesco T.; Coluccio, Maria Laura; Tallerico, Marco; De Grazia, Antonio; Nicastri, Annalisa; Perri, Angela Mena; Parrotta, Elvira; Pardeo, Francesca; Catalano, Rossella; Cuda, Giovanni; Di Fabrizio, Enzo M.

    2015-01-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological

  2. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  3. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device.

    Science.gov (United States)

    Abelha, T F; Phillips, T W; Bannock, J H; Nightingale, A M; Dreiss, C A; Kemal, E; Urbano, L; deMello, J C; Green, M; Dailey, L A

    2017-02-02

    This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG 5K -PLGA 55K ) matrix. The influence of PEG 5K -PLGA 55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG 5K -PLGA 55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.

  4. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, P; Truman, P; Stamm, M [Leibniz-Institut fuer Polymerforschung Dresden e V, Hohe Strasse 6, 01069 Dresden (Germany); Varnik, F; Zikos, G [Ruhr Universitaet Bochum, Stiepeler Strasse 129, 44801 Bochum (Germany); Moulin, J-F; Mueller-Buschbaum, P, E-mail: uhlmannp@ipfdd.de [Technische Universitaet Muenchen, Physik-Department, LS E13, James-Franck-Strasse 1, 85748 Garching (Germany)

    2011-05-11

    Emulsion separation is of high relevance for filtration applications, liquid-liquid-partitioning of biomolecules like proteins and recovery of products from droplet microreactors. Selective interaction of various components of an emulsion with substrates is used to design microfluidic flow chambers for efficient separation of emulsions into their individual components. Our lab-on-a-chip device consists of an emulsion separation cell with an integrated silicon sensor chip, the latter allowing the detection of liquid motion via the field-effect signal. Thus, within our lab-on-a-chip device, emulsions can be separated while the separation process is monitored simultaneously. For emulsion separation a surface energy step gradient, namely a sharp interface between the hydrophobic and hydrophilic parts of the separation chamber, is used. The key component of the lab-on-a-chip system is a multilayer and multifunctional nanofilm structure which not only provides the surface energy step gradient for emulsion separation but also constitutes the functional parts of the field-effect transistors. The proof-of-principle was performed using a model emulsion consisting of immiscible aqueous and organic solvent components. Droplet coalescence was identified as a key aspect influencing the separation process, with quite different effects during separation on open surfaces as compared to slit geometry. For a detailed description of this observation, an analytical model was derived and lattice Boltzmann computer simulations were performed. By use of grazing incidence small angle x-ray scattering (GISAXS) interfacial nanostructures during gold nanoparticle deposition in a flow field were probed to demonstrate the potential of GISAXS for in situ investigations during flow.

  5. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  6. Rheology at the Interface and the Role of the Interphase in Reactive Functionalized Multilayer Polymers in Coextrusion Process

    Science.gov (United States)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2008-07-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.

  7. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    International Nuclear Information System (INIS)

    Jang, Byung Chul; Kim, Jong Yun; Koo, Beom Jun; Yang, Sang Yoon; Choi, Sung-Yool; Seong, Hyejeong; Im, Sung Gap; Kim, Sung Kyu

    2015-01-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices. (paper)

  8. Printing-based fabrication method using sacrificial paper substrates for flexible and wearable microfluidic devices

    International Nuclear Information System (INIS)

    Chung, Daehan; Gray, Bonnie L

    2017-01-01

    We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5–46 ml min −1 . (paper)

  9. Printing-based fabrication method using sacrificial paper substrates for flexible and wearable microfluidic devices

    Science.gov (United States)

    Chung, Daehan; Gray, Bonnie L.

    2017-11-01

    We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.

  10. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    Science.gov (United States)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  11. Light-responsive polymers for microfluidic applications

    NARCIS (Netherlands)

    ter Schiphorst, J.; Saez, J.; Diamond, D.; Benito-Lopez, F.; Schenning, A.P.H.J.

    2018-01-01

    While the microfluidic device itself may be small, often the equipment required to control fluidics in the chip unit is large e.g. pumps, valves and mixing units, which can severely limit practical use and functional scalability. In addition, components associated with fluidic control of the device,

  12. Corrugated grating on organic multilayer Bragg reflector

    Science.gov (United States)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  13. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    International Nuclear Information System (INIS)

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-01-01

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior

  14. The on-line synthesis of enzyme functionalized silica nanoparticles in a microfluidic reactor using polyethylenimine polymer and R5 peptide

    International Nuclear Information System (INIS)

    He Ping; Greenway, Gillian; Haswell, Stephen J

    2008-01-01

    A simple microfluidic reactor system is described for the effective synthesis of enzyme functionalized nanoparticles which offers many advantages over batch reactions, including excellent enzyme efficiencies. Better control of the process parameters in the microfluidic reactor system over batch based methodology enables the production of silica nanoparticles with the optimum size for efficient enzyme immobilization with long-term stability. The synthetic approach is demonstrated with glucose oxidase (GOD) and two different nucleation catalysts of similar molecular mass: the natural R5 peptide, and polyethylenimine (PEI) polymer. Near-quantitative immobilization of GOD in the nanoparticles is obtained using PEI; the immobilization is attributed to electrostatic interaction between PEI and GOD. This interaction, however, limits the mobility of the immobilized enzyme, producing orientation hindrance of the enzyme's active sites as compared to free GOD in solution. In contrast, when the GOD is immobilized inside the silica nanoparticles using R5, lower enzyme immobilization efficiencies are obtained compared to using PEI polymers; however, similar Michaelis-Menten kinetic parameters (i.e. Michaelis constant and turnover number) to those of free GOD are observed. Reactions were monitored in situ using simple, rapid, separation-free amperometric detection

  15. Near-infrared light-triggered "on/off" motion of polymer multilayer rockets.

    Science.gov (United States)

    Wu, Zhiguang; Lin, Xiankun; Wu, Yingjie; Si, Tieyan; Sun, Jianmin; He, Qiang

    2014-06-24

    We describe an approach to modulating the on-demand motion of catalytic polymer-based microengines via near-infrared (NIR) laser irradiation. The polymer multilayer motor was fabricated by the template-assisted layer-by-layer assembly and subsequently deposition of platinum nanoparticles inside and a thin gold shell outside. Then a mixed monolayer of a tumor-targeted peptide and an antifouling poly(ethylene glycol) was functionalized on the gold shell. The microengines remain motionless at the critical peroxide concentration (0.1%, v/v); however, NIR illumination on the engines leads to a photothermal effect and thus rapidly triggers the motion of the catalytic engines. Computational modeling explains the photothermal effect and gives the temperature profile accordingly. Also, the photothermal effect can alone activate the motion of the engines in the absence of the peroxide fuel, implying that it may eliminate the use of toxic fuel in the future. The targeted recognition ability and subsequently killing of cancer cells by the photothermal effect under the higher power of a NIR laser were illustrated. Our results pave the way to apply self-propelled synthetic engines in biomedical fields.

  16. Fabrication of polyimide based microfluidic channels for biosensor devices

    Science.gov (United States)

    Zulfiqar, Azeem; Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2015-03-01

    The ever-increasing complexity of the fabrication process of Point-of-care (POC) devices, due to high demand of functional versatility, compact size and ease-of-use, emphasizes the need of multifunctional materials that can be used to simplify this process. Polymers, currently in use for the fabrication of the often needed microfluidic channels, have limitations in terms of their physicochemical properties. Therefore, the use of a multipurpose biocompatible material with better resistance to the chemical, thermal and electrical environment, along with capability of forming closed channel microfluidics is inevitable. This paper demonstrates a novel technique of fabricating microfluidic devices using polyimide (PI) which fulfills the aforementioned properties criteria. A fabrication process to pattern microfluidic channels, using partially cured PI, has been developed by using a dry etching method. The etching parameters are optimized and compared to those used for fully cured PI. Moreover, the formation of closed microfluidic channel on wafer level by bonding two partially cured PI layers or a partially cured PI to glass with high bond strength has been demonstrated. The reproducibility in uniformity of PI is also compared to the most commonly used SU8 polymer, which is a near UV sensitive epoxy resin. The potential applications of PI processing are POC and biosensor devices integrated with microelectronics.

  17. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    microchannels of oscillating width S Braunmüller, L Schmid and T Franke Semiflexible polymer conformation, distribution and migration in microcapillary flows Raghunath Chelakkot, Roland G Winkler and Gerhard Gompper Numerical simulation of tethered DNA in shear flow S Litvinov, X Y Hu and N A Adams Analysis of the fluctuations of a single-tethered, quantum-dot labeled DNA molecule in shear flow K Laube, K Günther and M Mertig Interaction of flexible surface hairs with near-wall turbulence Ch Brücker Development of a shear stress sensor to analyse the influence of polymers on the turbulent wall shear stress Bernardo Nottebrock, Sebastian Große and Wolfgang Schröder Small-scale particle advection, manipulation and mixing: beyond the hydrodynamic scale Arthur V Straube Microfluidic emulsion separation—simultaneous separation and sensing by multilayer nanofilm structures P Uhlmann, F Varnik, P Truman, G Zikos, J-F Moulin, P Müller-Buschbaum and M Stamm Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters M Boettcher, S Schmidt, A Latz, M S Jaeger, M Stuke and C Duschl Nanoscale structures and dynamics of a boundary liquid layer M Walz, S Gerth, P Falus, M Klimczak, T H Metzger and A Magerl

  18. Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers

    International Nuclear Information System (INIS)

    Zebda, A.; Camberlein, L.; Beche, B.; Gaviot, E.; Beche, E.; Duval, D.; Zyss, J.; Jezequel, G.; Solal, F.; Godet, C.

    2008-01-01

    Polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators, made of disk- or ring-shaped upper rib waveguides, using common polymers such as SU8 (biphenol A ether glycidyl), PS233 (polymeric silane) and SOG (siloxane Spin on Glass). Both oxygen and argon plasma treatments, applied to PS233 and SOG before spin-coating the SU8, improve substantially the grip of multilayer devices (SU8 / PS233 or SU8 / SOG). Surface energy components derived from contact angle measurements have been used to optimize the processing conditions. In such integrated photonic devices, the both single-electromagnetic-modes called transverse electric (TE 00 ) and transverse magnetic (TM 00 ) have been excited in a SU8 micro-disk, with a single mode propagation strongly localized near the edge of the disk (i.e. the so called whispering gallery modes)

  19. Double-Sided Terahertz Imaging of Multilayered Glass Fiber-Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Przemyslaw Lopato

    2017-06-01

    Full Text Available Polymer matrix composites (PMC play important roles in modern industry. Increasing the number of such structures in aerospace, construction, and automotive applications enforces continuous monitoring of their condition. Nondestructive inspection of layered composite materials is much more complicated process than evaluation of homogenous, (mostly metallic structures. Several nondestructive methods are utilized in this case (ultrasonics, shearography, tap testing, acoustic emission, digital radiography, infrared imaging but none of them gives full description of evaluated structures. Thus, further development of NDT techniques should be studied. A pulsed terahertz method seems to be a good candidate for layered PMC inspection. It is based on picosecond electromagnetic pulses interacting with the evaluated structure. Differences of dielectric parameters enables detection of a particular layer in a layered material. In the case of multilayered structures, only layers close to surface can be detected. The response of deeper ones is averaged because of multiple reflections. In this paper a novel inspection procedure with a data processing algorithm is introduced. It is based on a double-sided measurement, acquired signal deconvolution, and data combining. In order to verify the application of the algorithm stress-subjected glass fiber-reinforced polymer (GFRP was evaluated. The obtained results enabled detection and detailed analysis of delaminations introduced by stress treatment and proved the applicability of the proposed algorithm.

  20. Inkjet-printed Polyvinyl Alcohol Multilayers.

    Science.gov (United States)

    Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J

    2017-05-11

    Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.

  1. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    Evander, Mikael; Tenje, Maria

    2014-01-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  2. Multi-layer micro/nanofluid devices with bio-nanovalves

    Science.gov (United States)

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  3. Polymerization of vinyl stearate multilayers by electron beam irradiation

    International Nuclear Information System (INIS)

    Nishii, Masanobu; Hatada, Motoyoshi

    1975-01-01

    Studies on the radiation-induced polymerization of vinyl stearate (VST) multilayers were carried out. The VST multilayers built-up on an aluminum plated glass plate by Langmuir-Blodgett technique were irradiated with electron beams from a Van de Graaff electron accelerator in nitrogen atmosphere. The structure of the multilayers and the effects of irradiation were investigated by X-ray diffractometry, contact angle measurement, multireflection infrared spectroscopy, and scanning electron microscopy. The VST multilayers became insoluble to methanol by the irradiation, and the multi-reflection infrared spectrum of the VST multilayers turned into that of poly (VST) with increasing dosage. The polymerization proceeded during the irradiation at the temperature range between -10 0 and 10 0 C, and the conversion attained to 90% within 2.5 minutes (total dose, 5.6 Mrads). The multilayers irradiated above 13 Mrads turned into the polymer film insoluble to benzene, indicating that the polymer chains were cross-linked by the irradiation. Stearic acid which was formed by the irradiation of VST at nitrogen-water interface as a hydrolysis product was not detected in this system. (auth.)

  4. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Østergaard, Peter Friis; Taboryski, Rafael; Wolff, Anders; Hansen, Mikkel Fougt; Haugshøj, Kenneth Brian; Poulsen, Carl Esben

    2014-01-01

    Rapid prototyping is desirable when developing products. One example of such a product is all-polymer, passive flow controlled lab-on-a-chip systems that are preferential when developing low-cost disposable chips for point-of-care use. In this paper we investigate the following aspects of going from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test structures. (2) Numerical modelling of the microvalve burst pressures. Numerical modelling of burst pressures is challenging due to its non-equilibrium nature. We have implemented and tested the level-set method modified with a damped driving term and show that the introduction of the damping term leads to numerically robust results with limited computational demands and a low number of iterations. Numerical and simplified analytical results are validated against the experimental results. We find that injection moulding and ultrasonic welding are effective for chip production and that the experimental burst pressures could be estimated with an average accuracy of 5% using the presented numerical model. (paper)

  5. Silanization of boron nitride nanosheets (BNNSs) through microfluidization and their use for producing thermally conductive and electrically insulating polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A.Tuğrul, E-mail: atseyhan@anadolu.edu.tr [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Composite Materials Manufacturing Science Laboratory (CMMSL), Research and Application Center of Civil Aviation (RACCA), Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey); Göncü, Yapıncak; Durukan, Oya; Akay, Atakan; Ay, Nuran [Department of Materials Science and Engineering, Anadolu University - AU, Iki Eylul Campus, 26550 Eskisehir (Turkey)

    2017-05-15

    Chemical exfoliation of boron nitride nanosheets (BNNSs) from large flakes of specially synthesized micro-sized hexagonal boron nitride (h-BN) ceramics was carried out through microfluidization. The surface of BNNSs obtained was then functionalized with vinyl-trimethoxy silane (VTS) coupling agent through microfluidization once again in an effort to make them compatible with organic materials, especially those including polymers. The morphology of BNNSs with and without silane treatment was then systematically characterized by conducting various different analytical techniques, including Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Bright field Transmission Electron Microscopy (BF-TEM), Contact angle analyzer (CAA), Particle size analyzer (PSA) and Fourier Transmission Infrared (FTIR) spectroscopy attached with attenuated total reflectance (ATR) module. As a result, the silane treatment was determined to be properly and successfully carried out and to give rise to the irregularity of large flakes of the BNNSs by folding back their free edges upon themselves, which in turn assists in inducing further exfoliation of the few-layered nanosheets. To gain more insight into the effectiveness of the surface functionalization, thermal conductivity of polypropylene (PP) nanocomposites containing different amounts (1 wt% and 5 wt%) of BNNSs with and without silane treatment was experimentally investigated. Regardless of the weight content, PP nanocomposites containing silanized BNNSs were found to exhibit high thermal conductivity compared to PP nanocomposites containing BNNSs without silane treatment. It was concluded that microfluidization possesses the robustness to provide a reliable product quality, whether in small or large quantities, in a very time effective manner, when it comes to first exfoliating two-dimensional inorganic materials into few layered sheets, and functionalizing the surface of these sheets afterwards

  6. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Multilayer thin films: sequential assembly of nanocomposite materials

    National Research Council Canada - National Science Library

    Decher, Gero; Schlenoff, Joseph B

    2003-01-01

    ... polymeric or nanoparticulate building blocks, understanding the polymer physical chemistry of multilayers, or characterizing their optical, electrical or biological activities. The reasons for the intense interest in the field are also clearly evident: multilayers bridge the gap between monolayers and spun-on or dip-coated films, ...

  8. Biocombatibility and in vivo toxicity assessment of multilayered polymer encapsulated lanthanide doped particles

    International Nuclear Information System (INIS)

    Dhanya, C.R.; Sri Sivakumar; Jaishree, J.; Abraham, Annie

    2013-01-01

    Layer-by-layer (LbL) deposition technique has led to the development of multilayered multifunctional nanoparticles that can prove to be promising system for directed drug delivery. Recently, surface functionalized Lanthanide doped nanoparticles have been explored as a candidate for biomedical applications like bio-detection, fluorescence imaging and drug delivery. The toxicity behaviors of biomedical devices proposed for therapeutic use in human must be checked for their toxicity behaviors in animal models. Here, we have presented an initial systematic animal toxicity study of polymer encapsulated lanthanide doped particle in Swiss Albino mice. Polymer coated LNPs with concentration of 100 nM in PBS was administered intravenously through tail vein according to body weight (4μl/g). Animal behavior, survival and animal mass, were monitored and evaluated over short-term (one week) and long-term (one month) periods, after which animals were euthanized. Blood was collected for evaluating clinical biochemistry (SGOT and SGPT) and hematological parameters, and tissues (liver and kidney) for organ histology. Results demonstrated normal serum clinical biochemistry in animals for both short and long time exposure. Histological examination of LNP treated mice also showed normal histology of liver and kidney even after one month of administration. Similar results were obtained for hematological evaluation. Results exhibited the systemic nontoxic nature of the polymer encapsulated lanthanide particles and their suitability as a tool for tumor targeted drug delivery. (author)

  9. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes.

    Science.gov (United States)

    Jeon, Kangmin; Youn, Hongseok; Kim, Seongbeom; Shin, Seongbeom; Yang, Minyang

    2012-05-15

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs.

  10. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  11. Microfluidic Sensing Platforms for Medicine and Diagnostics

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine

    the specialized laboratory. Microfluidic cell migration devices, imitating in vivo conditions were developed with success, improving the in vitro experimental setup for basic research and drug discovery. Polymer biosensors have reached a new level of maturity, and pathogen detection could benefit from...

  12. A single microfluidic chip with dual surface properties for protein drug delivery.

    Science.gov (United States)

    Bokharaei, Mehrdad; Saatchi, Katayoun; Häfeli, Urs O

    2017-04-15

    Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.

    Science.gov (United States)

    Zhang, Yu Shrike; Pi, Qingmeng; van Genderen, Anne Metje

    2017-08-11

    Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.

  14. Construction of programmable interconnected 3D microfluidic networks

    International Nuclear Information System (INIS)

    Hunziker, Patrick R; Wolf, Marc P; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B

    2015-01-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries. (paper)

  15. Method for forming polymerized microfluidic devices

    Science.gov (United States)

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  16. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  17. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.

    Science.gov (United States)

    Lin, Hangyu; Chen, Junfang; Chen, Chuanpin

    2016-09-01

    Microbubbles are used as ultrasound contrast agents, which enhance ultrasound imaging techniques. In addition, microbubbles currently show promise in disease therapeutics. Microfluidic devices have increased the ability to produce microbubbles with precise size, and high monodispersity compared to microbubbles created using traditional methods. This paper will review several variations in microfluidic device structures used to produce microbubbles as ultrasound contrast agents. Microfluidic device structures include T-junction, and axisymmetric and asymmetric flow-focusing. These devices have made it possible to produce microbubbles that can enter the vascular space; these microbubbles must be less than 10 μm in diameter and have high monodispersity. For different demands of microbubbles production rate, asymmetric flow-focusing devices were divided into individual and integrated devices. In addition, asymmetric flow-focusing devices can produce double layer and multilayer microbubbles loaded with drug or biological components. Details on the mechanisms of both bubble formation and device structures are provided. Finally, microfluidically produced microbubble acoustic responses, microbubble stability, and microbubble use in ultrasound imaging are discussed.

  18. Microfluidic production of polymeric functional microparticles

    Science.gov (United States)

    Jiang, Kunqiang

    -bearing beads can function as non-invasive and real-time oxygen micro-sensors. Finally, we report a co-flow microfluidic method to prepare uniform polymer microparticles with macroporous texture, and investigate their application as discrete immunological biosensors for the detection of biological species. The matrix of such microparticles is based on macroporous polymethacrylate polymers configured with tailored pores ranging from hundreds of nanometers to a few microns. Subsequently, we immobilize bioactive antibodies on the particle surface, and demonstrate the immunological performance of these functionalized porous microbeads over a range of antigen concentrations.

  19. Monolithic integration of DUV-induced waveguides into plastic microfluidic chip for optical manipulation

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Vannahme, Christoph; Sørensen, Kristian Tølbøl

    2014-01-01

    A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 dB/mm at a wavelen......A monolithic polymer optofluidic chip for manipulation of microbeads in flow is demonstrated. On this chip, polymer waveguides induced by Deep UV lithography are integrated with microfluidic channels. The optical propagation losses of the waveguides are measured to be 0.66±0.13 d......B/mm at a wavelength of λ = 808 nm. An optimized bead tracking algorithm is implemented, allowing for determination of the optical forces acting on the particles. The algorithm features a spatio-temporal mapping of coordinates for uniting partial trajectories, without increased processing time. With an external laser...

  20. Development of multilayer conducting polymer actuator for power application

    Science.gov (United States)

    Ikushima, Kimiya; Kudoh, Yuji; Hiraoka, Maki; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-03-01

    In late years many kinds of home-use robot have been developed to assist elderly care and housework. Most of these robots are designed with conventional electromagnetic motors. For safety it is desirable to replace these electromagnetic motors with artificial muscle. However, an actuator for such a robot is required to have simple structure, low driving voltage, high stress generation, high durability, and operability in the air. No polymer actuator satisfying all these requirements has been realized yet. To meet these we took following two approaches focusing on conducting polymer actuators which can output high power in the air. (Approach 1) We have newly developed an actuator by multiply laminating ionic liquid infiltrated separators and polypyrrole films. Compared with conventional actuator that is driven in a bath of ionic liquid, the new actuator can greatly increase generated stress since the total sectional area is tremendously small. In our experiment, the new actuator consists of minimum unit with thickness of 128um and has work/weight ratio of 0.92J/kg by laminating 9 units in 0.5Hz driving condition. In addition, the driving experiment has shown a stable driving characteristic even for 10,000 cycles durability test. Furthermore, from our design consideration, it has been found that the work/weight ratio can be improved up to 8J/kg (1/8 of mammalian muscle of 64J/kg) in 0.1Hz by reducing the thickness of each unit to 30um. (Approach 2) In order to realize a simplified actuator structure in the air without sealing, we propose the use of ionic liquid gel. The actuation characteristic of suggested multilayered actuator using ionic liquid gel is simulated by computer. The result shows that performance degradation due to the use of ionic liquid gel is negligible small when ionic liquid gel with the elasticity of 3kPa or less is used. From above two results it is concluded that the proposed multilayerd actuator is promising for the future robotic applications

  1. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis

    International Nuclear Information System (INIS)

    Kise, Drew P; Reddish, Michael J; Brian Dyer, R

    2015-01-01

    We report on a microfluidic mixer fabrication platform that increases the versatility and flexibility of mixers for biomolecular applications. A sandwich-format design allows the application of multiple spectroscopic probes to the same mixer. A polymer spacer is ‘sandwiched’ between two transparent windows, creating a closed microfluidic system. The channels of the mixer are defined by regions in the polymer spacer that lack material and therefore the polymer need not be transparent in the spectral region of interest. Suitable window materials such as CaF 2 make the device accessible to a wide range of optical probe wavelengths, from the deep UV to the mid-IR. In this study, we use a commercially available 3D printer to print the polymer spacers to apply three different channel designs into the passive, continuous-flow mixer, and integrated them with three different spectroscopic probes. All three spectroscopic probes are applicable to each mixer without further changes. The sandwich-format mixer coupled with cost-effective 3D printed fabrication techniques could increase the applicability and accessibility of microfluidic mixing to intricate kinetic schemes and monitoring chemical synthesis in cases where only one probe technique proves insufficient. (paper)

  2. Burst pressure of phaseguide structures of different heights in all-polymer microfluidic channels

    DEFF Research Database (Denmark)

    Garbarino, Francesca; Kistrup, Kasper; Rizzi, Giovanni

    2017-01-01

    We present an experimental investigation of the burst/overflow pressure of water and a representative surfactant-containing buffer in microfluidic channels with phaseguide structures oriented at an angle of 90° to the channel length as a function of their height, . The all-polymer chips were...... structures were found able to pin both liquids and the burst pressure was found to increase approximately linearly with the height of the phaseguide from about 100–350 Pa for water and from about 25–200 Pa for the buffer. The burst pressure was found not to depend on the channel width and it was only weakly...... influenced by the presence of a branch on the phaseguide. For phaseguides with a branch, the liquid was always found to burst at the branch location. The measured burst pressures were compared to those estimated using a simple theory. The knowledge obtained in this study enables simple tuning of liquid...

  3. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  4. Next generation, in-situ microfluidic flow control using stimuli responsive materials for biomemetic microfluicic platforms

    NARCIS (Netherlands)

    Coleman, Simon; Azouz, Aymen Ben; Schiphorst, Jeroen Ter; Saez, Janire; Whyte, Jeffrey; McCluskey, Peter; Kent, Nigel; Benito-Lopez, Fernando; Schenning, Albert; Diamond, Dermot

    2016-01-01

    The requirement of significant off-chip fluid manipulation using high-cost mechanical components has resulted in design limitations in microfluidic devices. We report the use of novel stimuli responsive polymer gel materials for a variety of bio-inspired processes to achieve in-situ microfluidic

  5. Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures

    KAUST Repository

    Wang, Limu

    2013-10-10

    We report a fast and simple prototyping method to fabricate polymer-based microfluidic chips using Direct Laser Plotting (DLP) technique, by which various functional micro-structures can be realized within minutes, in a mask-free and out-of-cleanroom fashion. A 2D Computer-Aid-Design (CAD) software was employed to layout the required micro-structures and micro-channels, a CO2 laser plotter was then used to construct the microstructures. The desired patterns can be plotted directly on PDMS substrates and bio-compatible polymer films by manipulating the strength and density of laser pulses. With the DLP technique, chip-embedded micro-electrodes, micro-mixers and 3D microfluidic chips with 5 layers, which normally require several days of work in a cleanroom facility, can be fabricated in minutes in common laboratory. This novel method can produce microfluidic channels with average feature size of 100 μm, while feature size of 50 μm or smaller is achievable by making use of the interference effect from laser impulsion. In this report, we present the optimized parameters for successful fabrication of 3D microchannels, micro-mixers and microfluidic chips for protein concentration measurements (Bovine Serum Albumine (BSA) test), and a novel procedure to pattern flexible embedding electrodes on PDMS-based microfluidic chips. DLP offers a convenient and low cost alternative to conventional microfluidic channel fabrication technique which relies on complicated and hazardous soft lithography process.

  6. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  7. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    International Nuclear Information System (INIS)

    Lu, J-C; Liao, W-H; Tung, Y-C

    2012-01-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research. (paper)

  8. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.

    Science.gov (United States)

    Li, Wei; Liu, Dongfei; Zhang, Hongbo; Correia, Alexandra; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-01-15

    Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy. Halloysite nanotubes (HNTs) are attracting increasing attention for drug delivery applications. However, conventional HNTs-based oral drug delivery systems are lack of the capability to precisely control the drug release at a desired site in the gastrointestinal tract. In this study, a nanotube-in-microsphere drug delivery platform is developed by encapsulating HNTs in a pH-responsive polymer using microfluidics. Drugs with different physicochemical properties and synergistic effect on colon

  9. A smartphone controlled handheld microfluidic liquid handling system.

    Science.gov (United States)

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  10. Multi-chamber and multi-layer thiol-ene microchip for cell culture

    DEFF Research Database (Denmark)

    Tan, H. Y.; Hemmingsen, Mette; Lafleur, Josiane P.

    2014-01-01

    We present a multi-layer and multi-chamber microfluidic chip fabricated using two different thiol-ene mixtures. Sandwiched between the thiol-ene chip layers is a commercially available membrane whose morphology has been altered with coatings of thiol-ene mixtures. Experiments have been conducted ...... with the microchip and shown that the fabricated microchip is suitable for long term cell culture....

  11. DNA microarrays immobilized on unmodified plastics in a microfluidic biochip for rapid typing of Avian Influenza Virus

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Dufva, Martin

    2011-01-01

    Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate that UV irradiation can be used to d...

  12. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Science.gov (United States)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  13. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms.

    Science.gov (United States)

    Sanjay, Sharma T; Fu, Guanglei; Dou, Maowei; Xu, Feng; Liu, Rutao; Qi, Hao; Li, XiuJun

    2015-11-07

    Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.

  14. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  15. Roughness Influence On Macro- And Micro-Tribology Of Multi-Layered Hard Coatings On Carbon Fibre Polymer Composite

    Directory of Open Access Journals (Sweden)

    Lackner J.M.

    2015-09-01

    Full Text Available Goal of this work is the investigation of roughness influences on the abrasive wear behaviour of magnetron sputtered multi-layered, low-friction coatings on carbon-fibre reinforced polymers (CFRP. Higher coating roughness at similar CFRP quality was realized by higher deposition rates, leading to increased heat flux to the substrates during deposition. Thermal expansion of the epoxy matrix on the micro scale results in a wavy, wrinkled surface topography. Both in scratch and reciprocal sliding testing against alumina, the friction coefficients are lower for the smooth coatings, but their wear rate is higher due to low-cycle fatigue caused abrasion.

  16. Rapid interferometric imaging of printed drug laden multilayer structures

    DEFF Research Database (Denmark)

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik

    2014-01-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography...

  17. Fluorimetric urease inhibition assay on a multilayer microfluidic chip with immunoaffinity immobilized enzyme reactors.

    Science.gov (United States)

    Zhang, Qin; Tang, Xiuwen; Hou, Fenghua; Yang, Jianping; Xie, Zhiyong; Cheng, Zhiyi

    2013-10-01

    We fabricated a three-layer polydimethylsiloxane (PDMS)-based microfluidic chip for realizing urease inhibition assay with sensitive fluorescence detection. Procedures such as sample prehandling, enzyme reaction, reagent mixing, fluorescence derivatization, and detection can be readily carried out. Urease reactors were prepared by adsorption of rabbit immunoglobulin G (IgG) and immunoreaction with urease-conjugated goat anti-rabbit IgG. Acetohydroxamic acid (AHA) as a competitive inhibitor of urease was tested on the chip. Microfluidically generated gradient concentrations of AHA with substrate (urea) were loaded into urease reactors. After incubation, the produced ammonia was transported out of reactors and then reacted with o-phthalaldehyde (OPA) to generate fluorescent products. Urease inhibition was indicated by a decrease in fluorescence signal detected by microplate reader. The IC50 value of AHA was determined and showed good agreement with that obtained in microplate. The presented device combines several steps of the analytical process with advantages of low reagent consumption, reduced analysis time, and ease of manipulation. This microfluidic approach can be extended to the screening of inhibitory compounds in drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Local modification and laser-welding production of functionalized microfluidic chips

    NARCIS (Netherlands)

    Rijo Carvalho, Rui

    2017-01-01

    The ability to locally functionalize the surface of glass and polymers allows for myriad biomedical and chemical applications. When we started this research enclosed surfaces such as microfluidic channels were not easily amenable to localized functionalization. Furthermore, pre-functionalization

  19. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical Properties of Multilayer CdSe/POLYMER Structures

    Science.gov (United States)

    Red'Ko, V. P.; Voitenkov, A. I.; Kovalenko, O. E.

    The effects of preparation condition, concentration and size of particles upon optical and photoelectrical characteristics of multilayer structures CdSe/polyethylene terephthalate obtained by electron-beam evaporation were investigated.

  1. Fabricating a multi-level barrier-integrated microfluidic device using grey-scale photolithography

    International Nuclear Information System (INIS)

    Nam, Yoonkwang; Kim, Minseok; Kim, Taesung

    2013-01-01

    Most polymer-replica-based microfluidic devices are mainly fabricated by using standard soft-lithography technology so that multi-level masters (MLMs) require multiple spin-coatings, mask alignments, exposures, developments, and bakings. In this paper, we describe a simple method for fabricating MLMs for planar microfluidic channels with multi-level barriers (MLBs). A single photomask is necessary for standard photolithography technology to create a polydimethylsiloxane grey-scale photomask (PGSP), which adjusts the total amount of UV absorption in a negative-tone photoresist via a wide range of dye concentrations. Since the PGSP in turn adjusts the degree of cross-linking of the photoresist, this method enables the fabrication of MLMs for an MLB-integrated microfluidic device. Since the PGSP-based soft-lithography technology provides a simple but powerful fabrication method for MLBs in a microfluidic device, we believe that the fabrication method can be widely used for micro total analysis systems that benefit from MLBs. We demonstrate an MLB-integrated microfluidic device that can separate microparticles. (paper)

  2. A microfluidic galvanic cell on a single layer of paper

    Science.gov (United States)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  3. Prototyping of Microfluidic Systems with Integrated Waveguides in Cyclin Olefin Copolymer

    DEFF Research Database (Denmark)

    Bundgaard, Frederik

    2007-01-01

    , in a collaboration with IMTEK in Freiburg, Germany, an optical detection principle was developed. Using the principle of total internal reflection of a laser beam incident on a fluidic channel, detection of air bubbles is possible. The principle was used on a rotating platform as well as on non-moving systems....... the substrate, optical layers and the lid in the microfluidic systems. • Thermal bonding of polymer structures, including roll lamination of foil onto substrates. • Laser bonding of two polymer layers, including transparent on black, and transparent on transparent with a particle doped spin coating. • Thermal...... treatment of waveguides to improve the surface roughness and lower the propagation loss. The fabrication methods have been characterised, and have been optimised to minimise parameters like fabrication time, surface roughness and interface bonding strength. Using these fabrication methods, microfluidic...

  4. Development & Characterization of Multifunctional Microfluidic Materials

    Science.gov (United States)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for

  5. Finite element analysis of multilayer coextrusion.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  6. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    Science.gov (United States)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  7. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    Science.gov (United States)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  8. Multilayer Films and Capsules of Sodium Carboxymethylcellulose and Polyhexamethylenguanidine Hydrochloride

    Science.gov (United States)

    Guzenko, Nataliia; Gabchak, Oleksandra; Pakhlov, Evgenij

    The complexation of polyhexamethylenguanidine hydrochloride (PHMG) and sodium carboxymethylcellulose (CMC) was investigated for different conditions. Mixing of equiconcentrated aqueous solutions of the polyelectrolytes was found to result in the formation of an insoluble interpolyelectrolyte complex with an overweight of carboxymethylcellulose. A step-by-step formation of stable, irreversibly adsorbed multilayer film of the polymers was demonstrated using the quartz crystal microbalance method. Unusually thick polymer shells with a large number of loops and tails of the polyanion were formed by the method of layer-by-layer self-assembly of PHMG and CMC on spherical CaCO3 particles. Hollow multilayer capsules stable in neutral media were obtained by dissolution of the inorganic matrix in EDTA solution.

  9. Reflectivity quenching of ESR multilayer polymer film reflector in optically bonded scintillator arrays

    Science.gov (United States)

    Loignon-Houle, Francis; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger

    2017-04-01

    The 3M-ESR multilayer polymer film is a widely used reflector in scintillation detector arrays. As specified in the datasheet and confirmed experimentally by measurements in air, it is highly reflective (> 98 %) over the entire visible spectrum (400-1000 nm) for all angles of incidence. Despite these outstanding characteristics, it was previously found that light crosstalk between pixels in a bonded LYSO scintillator array with ESR reflector can be as high as ∼30-35%. This unexplained light crosstalk motivated further investigation of ESR optical performance. Analytical simulation of a multilayer structure emulating the ESR reflector showed that the film becomes highly transparent to incident light at large angles when surrounded on both sides by materials of refractive index higher than air. Monte Carlo simulations indicate that a considerable fraction (∼25-35%) of scintillation photons are incident at these leaking angles in high aspect ratio LYSO scintillation crystals. The film transparency was investigated experimentally by measuring the scintillation light transmission through the ESR film sandwiched between a scintillation crystal and a photodetector with or without layers of silicone grease. Strong light leakage, up to nearly 30%, was measured through the reflector when coated on both sides with silicone, thus elucidating the major cause of light crosstalk in bonded arrays. The reflector transparency was confirmed experimentally for angles of incidence larger than 60 ° using a custom designed setup allowing illumination of the bonded ESR film at selected grazing angles. The unsuspected ESR film transparency can be beneficial for detector arrays exploiting light sharing schemes, but it is highly detrimental for scintillator arrays designed for individual pixel readout.

  10. Utilizing ultrathin DNA/poly-lysine multilayer films to create liquid/liquid interfaces: spectroscopic characterization, interfacial reactions and nanoparticle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Jin; Wark, Alastair W; Corn, Robert M [Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (United States)

    2007-09-19

    Alternating electrostatic multilayer adsorption of poly-L-lysine (pLys) and DNA is used to create well-defined biopolymer multilayers for use as an ultrathin aqueous phase in liquid-liquid interfacial measurements. The molecular structure and thickness of the polyelectrolyte multilayers are determined using a combination of polarization modulation FT-IR reflection-absorption spectroscopy (PM-FTIRRAS) and FT-surface plasmon resonance (FT-SPR) thickness measurements. Electroactive species such as ferri/ferrocyanide ions can be incorporated into the DNA/pLys polyelectrolyte multilayers. The ion transport activity of these electroactive films when in contact with 1,2-dichoroethane is verified by electrochemical measurements. Micron-sized patterns of these multilayers are created by either photopatterning, vapour-deposited spot patterning or microfluidic stencil processing, and are used in conjunction with fluorescence and surface plasmon resonance imaging (SPRI) to monitor (i) the intercalation of dye molecules into DNA/pLys ultrathin films, (ii) the electrostatic adsorption of gold nanoparticles onto DNA/pLys multilayers and (iii) the spatially controlled incorporation and reaction of enzymes into patterned biopolymer multilayers.

  11. A lab-in-a-foil microfluidic reactor based on phaseguiding

    DEFF Research Database (Denmark)

    Eriksen, Johan; Schira, Julien; Vincent, Nadine

    2018-01-01

    We demonstrate a microfluidic reaction chamber that mimics a microcentrifuge tube where reagents can be mixed sequentially at a known stoichiometry. The device has no moving parts or valves and is made by hot embossing in a polymer foil. Sample and reagents are filled in the reaction chamber...

  12. Integration of microelectronic chips in microfluidic systems on printed circuit board

    International Nuclear Information System (INIS)

    Burdallo, I; Jimenez-Jorquera, C; Fernández-Sánchez, C; Baldi, A

    2012-01-01

    A new scheme for the integration of small semiconductor transducer chips with microfluidic structures on printed circuit board (PCB) is presented. The proposed approach is based on a packaging technique that yields a large and flat area with small and shallow (∼44 µm deep) openings over the chips. The photocurable encapsulant material used, based on a diacrylate bisphenol A polymer, enables irreversible bonding of polydimethylsiloxane microfluidic structures at moderate temperatures (80 °C). This integration scheme enables the insertion of transducer chips in microfluidic systems with a lower added volume than previous schemes. Leakage tests have shown that the bonded structures withstand more than 360 kPa of pressure. A prototype microfluidic system with two detection chips, including one inter-digitated electrode (IDE) chip for conductivity and one ion selective field effect transistor (ISFET) chip for pH, has been implemented and characterized. Good electrical insulation of the chip contacts and silicon edge surfaces from the solution in the microchannels has been achieved. This integration procedure opens the door to the low-cost fabrication of complex analytical microsystems that combine the extraordinary potential of both the microfluidics and silicon microtechnology fields. (paper)

  13. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    Science.gov (United States)

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  14. Inhibition of Breast Cancer Progression by Blocking Heterocellular Contact Between Epithelial Cells and Fibroblasts

    Science.gov (United States)

    2013-04-01

    tumor cells and fibroblasts in co-cultures.14 More recently, cell– polymer suspensions microinjected in collagen gels have been used to form 3D cell...Spaink, B. van de Water and E. H. J. Danen, Automated microinjection of cell- polymer suspensions in 3D ECM scaffolds for high-through- put quantitative...operation The microfluidic devices were fabricated using multilayered SU-8 molds and PDMS- based soft-lithography. In brief, three layers of SU8 -100

  15. Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures

    KAUST Repository

    Wang, Limu; Kodzius, Rimantas; Yi, Xin; Li, Shunbo; Hui, Yu Sanna; Wen, Weijia

    2013-01-01

    and bio-compatible polymer films by manipulating the strength and density of laser pulses. With the DLP technique, chip-embedded micro-electrodes, micro-mixers and 3D microfluidic chips with 5 layers, which normally require several days of work in a

  16. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    Science.gov (United States)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-12

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  17. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  18. Characterization of multi-layered impact damage in polymer matrix composites using lateral thermography

    Science.gov (United States)

    Whitlow, Travis; Sathish, Shamachary

    2017-02-01

    Polymer matrix composites (PMCs) are increasingly being integrated into aircraft structures. However, these components are susceptible to impact related delamination, which, on aircrafts, can occur due to a number of reasons during aircraft use and maintenance. Quantifying impact damage is an important aspect for life-management of aircraft and requires in-depth knowledge of the damage zone on a ply-by-ply level. Traditionally, immersion ultrasound has provided relative high resolution images of impact damage. Ultrasonic time-of-flight data can be used to determine the front surface delamination depth and an approximation of the delaminated area. However, such inspections require the material to be immersed in water and can be time consuming. The objective of this work is to develop a quick and robust methodology to non-destructively characterize multi-layered impact damage using lateral thermography. Initial results suggest lateral heat flow is sensitive to the depth of impact damage. The anticipated outcome of this project is to estimate the extent of through-thickness impact damage. Initial results are shown and future efforts are discussed.

  19. Transient sensing of liquid films in microfluidic channels with optofluidic microresonators

    International Nuclear Information System (INIS)

    Grad, M; Attinger, D; Tsai, C C; Wong, C W; Yu, M; Kwong, D-L

    2010-01-01

    We demonstrate that optical ring resonators can be used as time-resolved refractive index sensors embedded in microfluidic channels. The nanophotonic structures are integrated into soft silicone microchannels interfaced with a transparent hard polymer manifold and standard microfluidic connections. The steady-state sensitivity, resolution and detection limit of the sensors are characterized using aqueous saline solutions at various concentrations. Time-resolved measurements are performed by sensing thin liquid films (0–400 nm) associated with oil/water segmented flow in microfluidic channels. The influence of the interrogation wavelength is investigated, and the optimal wavelength is determined. Millisecond resolution is demonstrated by sensing the shape of a single drop as it flows past the sensor. Finally, the film thickness between the droplet and the resonator is measured for different capillary numbers and channel diameters, and compared with existing theoretical and experimental results

  20. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo

    2015-08-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological applications. The device is fabricated by micromilling and solvent assisted bonding, in which a microdialysis membrane (cut-off of 12-14 kDa) is sandwiched in between an upper and a bottom microfluidic chamber. An external frame connects the microfluidic device to external tubes, microvalves and syringe pumps. Bonding strength and interface sealing are pneumatically tested. Microfluidic protocols are also described by using the presented device to filter a sample composed of specific peptides (MW 1553.73 Da, at a concentration of 1.0 ng/μl) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancer, and albumin (MW 66.5 kDa, at a concentration of 35 μg/μl), the most represented protein in human plasma. The filtered samples coming out from the microfluidic device were subsequently deposited on a SERS (surface enhanced Raman scattering) substrate for further analysis by Raman spectroscopy. By using this approach, we were able to sort the small peptides from the bigger and highly concentrated protein albumin and to detect them by using a label-free technique at a resolution down to 1.0 ng/μl.

  1. Self-Supporting High Performance Multi-Layer Insulation Technology Development (SSMLI)

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of MLI—Integrated Multi-Layer Insulation (IMLI)—uses rigid, low-conductivity polymer spacers instead of netting to keep the radiation barriers separated....

  2. OLED Hybrid Integrated Polymer Microfluidic Biosensing for Point of Care Testing

    Directory of Open Access Journals (Sweden)

    Ashwin Acharya

    2015-09-01

    Full Text Available This paper reports a microfluidic platform with external hybrid integration of an organic light emitting diode (OLED as an excitation source. This device can be used as a simple and cost effective biosensing element. The device is capable of rapid in-situ detection of biological elements such as sensing of interaction of antigen with fluorescent tagged antibody conjugates. These portable microfluidic systems have great potential for use an OLED in a single chip with very high accuracy and sensitivity for various point-of-care (POC diagnosis and lab on a chip (LOC applications, as the miniaturization of the biosensor is essential for handling smaller sample volumes in order to achieve high throughput. The biosensing element was successfully tested to detect anti-sheep IgG conjugates tagged to Alexafluor using a fluorescence based immunoassay method.

  3. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  4. Fabrication and characterization of injection molded multi level nano and microfluidic systems

    DEFF Research Database (Denmark)

    Matteucci, Marco; Christiansen, Thomas Lehrmann; Tanzi, Simone

    2013-01-01

    We here present a method for fabrication of multi-level all-polymer chips by means of silicon dry etching, electroplating and injection molding. This method was used for successful fabrication of microfluidic chips for applications in the fields of electrochemistry, cell trapping and DNA elongati...

  5. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    International Nuclear Information System (INIS)

    Fulcrand, R; Jugieu, D; Escriba, C; Bancaud, A; Bourrier, D; Boukabache, A; Gué, A M

    2009-01-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules

  6. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    Science.gov (United States)

    Fulcrand, R.; Jugieu, D.; Escriba, C.; Bancaud, A.; Bourrier, D.; Boukabache, A.; Gué, A. M.

    2009-10-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules.

  7. A multilayered integrated sensor for three-dimensional, micro total analysis systems

    International Nuclear Information System (INIS)

    Xiao, Jing; Song, Fuchuan; Seo, Sang-Woo

    2013-01-01

    This paper presents a layer-by-layer integration approach of different functional devices and demonstrates a heterogeneously integrated optical sensor featuring a micro-ring resonator and a high-speed thin-film InGaAs-based photodetector co-integrated with a microfluidic droplet generation device. A thin optical device structure allows a seamless integration with other polymer-based devices on a silicon platform. The integrated sensor successfully demonstrates its transient measurement capability of two-phase liquid flow in a microfluidic droplet generation device. The proposed approach represents an important step toward fully integrated micro total analysis systems. (paper)

  8. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.

    Science.gov (United States)

    Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats

    2018-04-15

    Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems.

    Science.gov (United States)

    Leem, Juyoung; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin

    2014-03-07

    We present a microfluidic patterning system for fabricating nanostructured Ag thin films via a polyol method. The fabricated Ag thin films can be used immediately in a real-time SERS sensing system. The Ag thin films are formed on the inner surfaces of a microfluidic channel so that a Ag-patterned Si wafer and a Ag-patterned PDMS channel are produced by the fabrication. The optimum sensing region and fabrication duration for effective SERS detection were determined. As SERS active substrates, the patterned Ag thin films exhibit an enhancement factor (EF) of 4.25 × 10(10). The Ag-patterned polymer channel was attached to a glass substrate and used as a microfluidic sensing system for the real-time monitoring of biomolecule concentrations. This microfluidic patterning system provides a low-cost process for the fabrication of materials that are useful in medical and pharmaceutical detection and can be employed in mass production.

  10. Fabrication and testing of a CoNiCu/Cu CPP-GMR nanowire-based microfluidic biosensor

    International Nuclear Information System (INIS)

    Bellamkonda, Ramya; John, Tom; Mathew, Bobby; DeCoster, Mark; Hegab, Hisham; Davis, Despina

    2010-01-01

    Giant magneto resistance (GMR)-based microfluidic biosensors are used in applications involving the detection, analysis, enumeration and characterization of magnetic nano-particles attached to biological mediums such as antibodies and DNA. Here we introduce a novel multilayered CoNiCu/Cu nanowire GMR-based microfluidic biosensor. The current perpendicular to the plane of multilayers (CPP)-nanowires GMR was used as the core sensing material in the biosensor which responds to magnetic fields depending on the concentration and the flow velocity of bio-nano-magnetic fluids. The device was tested with different control solutions such as DI-water, mineral oil, phosphate buffered saline (PBS), ferrofluid, polystyrene superparamagnetic beads (PSB) and Dynabeads sheep anti-rabbit IgG. The nanowire array resistance decreased with an increase in the ferrofluid concentration, and a maximum 15.8% relative GMR was observed for the undiluted ferrofluid. The sensor was also responding differently to various ferrofluid flow rates. The GMR device showed variation in the output signal when the PSB and Dynabeads of different dilutions were pumped through it. When the tests were performed with pulsing potentials (150 mV and 200 mV), an increased GMR response was identified at higher voltages for PSB and Dynabeads sheep anti-rabbit IgG.

  11. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuehua; Zhang, Mengke [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Xinwen, E-mail: iamxwzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lai, Wenyong, E-mail: iamwylai@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Huang, Wei [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2017-06-15

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  12. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    International Nuclear Information System (INIS)

    Chen, Yuehua; Zhang, Mengke; Zhang, Xinwen; Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli; Lai, Wenyong; Huang, Wei

    2017-01-01

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  13. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    Science.gov (United States)

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  14. Solvent-assisted polymer micro-molding

    Institute of Scientific and Technical Information of China (English)

    HAN LuLu; ZHOU Jing; GONG Xiao; GAO ChangYou

    2009-01-01

    The micro-molding technology has played an important role in fabrication of polymer micro-patterns and development of functional devices.In such a process,suitable solvent can swell or dissolve the polymer films to decrease their glass transition temperature (Tg) and viscosity and thereby improve flowing ability.Consequently,it is easy to obtain the 2D and 3D patterns with high fidelity by the solvent-assisted micro-molding.Compared with the high temperature molding,this technology overcomes some shortcomings such as shrinking after cooling,degradation at high temperature,difficulty in processing some functional materials having high Tg,etc.It can be applied to making patterns not only on polymer monolayers but also on polyelectrolyte multilayers.Moreover,the compressioninduced patterns on the multilayers are chemically homogenous but physically heterogeneous.In this review,the controlling factors on the pattern quality are also discussed,including materials of the mold,solvent,pressure,temperature and pattern density.

  15. Cellular immobilization within microfluidic microenvironments: dielectrophoresis with polyelectrolyte multilayers.

    Science.gov (United States)

    Forry, Samuel P; Reyes, Darwin R; Gaitan, Michael; Locascio, Laurie E

    2006-10-25

    The development of biomimetic microenvironments will improve cell culture techniques by enabling in vitro cell cultures that mimic in vivo behavior; however, experimental control over attachment, cellular position, or intercellular distances within such microenvironments remains challenging. We report here the rapid and controllable immobilization of suspended mammalian cells within microfabricated environments using a combination of electronic (dielectrophoresis, DEP) and chemical (polyelectrolyte multilayers, PEMS) forces. While cellular position within the microsystem is rapidly patterned via intermittent DEP trapping, persistent adhesion after removal of electronic forces is enabled by surface treatment with PEMS that are amenable to cellular attachment. In contrast to DEP trapping alone, persistent adhesion enables the soluble microenvironment to be systematically varied, facilitating the use of soluble probes of cell state and enabling cellular characterization in response to various soluble stimuli.

  16. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    to enable real-time detection of cell responses, adjustment of cellular stimulation etc. leading to establishment of conditional experiments. In this project, microfluidic systems engineering was leveraged to develop an eight chamber multi-layer microchip for intestinal barrier studies. Sandwiched between...... the layers was a modified Teflon porous membrane for cell culture. The novelty lies in modifying the surface of the porous Teflon support membrane using thiol-ene ‘click’ chemistry, thus allowing the modified Teflon membrane to be bonded between the chip layers to form an enclosed microchip. Successful...... application of the multi-layer microchip was demonstrated by integrating the microchip to an existing cell culture fluidic system to culture the human intestinal epithelial cells, Caco-2, for long term studies. Under the continuous low flow conditions, the cells differentiated into columnar cells displaying...

  17. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    DEFF Research Database (Denmark)

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria

    2010-01-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological...

  18. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  19. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Trebotich, D

    2006-10-02

    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.

  20. Synergistic insecticidal and repellent effects of combined pyrethroid and repellent-impregnated bed nets using a novel long-lasting polymer-coating multi-layer technique.

    Science.gov (United States)

    Faulde, Michael K; Nehring, Oliver

    2012-08-01

    New and improved strategies for malaria control and prevention are urgently needed. As a contribution to an optimized personal protection strategy, a novel long-lasting insecticide and repellent-treated net (LLIRN) has been designed by binding combinations of permethrin plus N,N-diethyl-m-toluamide (DEET), or insect repellent 3535 (IR3535), and etofenprox plus DEET, onto fibres of bed net fabric employing a new multi-layer polymer-coating technique. Protective repellent efficacy, toxicological effectiveness and residual activity of 12 LLIRN types have been evaluated by laboratory testing against adult Aedes aegypti. The novel multi-layer LLIRN design allowed simultaneous embedding at concentrations up to 5,930 mg/m(2) for DEET, 3,408 mg/m(2) for IR3535, 2,296 mg/m(2) for permethrin and 2,349 mg/m(2) for etofenprox, respectively. IR3535 layers prevented co-binding of additional pyrethroid-containing polymer layers, thus making pyrethroids plus DEET LLIRNs an ideal combination. All LLIRNs revealed synergistic insecticidal effects which, when measured against concentration controls of the isolated compounds, were significant in all LLIRN types designed. DEET in DEET plus permethrin LLIRNs significantly (p time from 55 to 75 %, the corresponding 100 % kill time (p time of etofenprox from 42 to 50 % (p = 0.004), the 100 % kill time from 25 to 38 % (p biting protection, even at low concentrations. One hundred percent biting and probing protection of stored LLIRNs was preserved for 83 weeks with the 5,930 mg/m(2) DEET and 2,139 mg/m(2) etofenprox LLIRN, for 72 weeks with the 5,002 mg/m(2) DEET and 2,349 mg/m(2) etofenprox LLIRN, for 63 weeks with the 3,590 mg/m(2) DEET and 1,208 mg/m(2) permethrin LLRN, and for 61 weeks with the 4,711 mg/m(2) DEET and 702 mg/m(2) etofenprox LLIRN. Because 100 % bite protection with up to 75 % quicker contact toxicity of pyrethroids were documented, synergistic toxicological and repellent effects of multi-layer polymer

  1. Microfabrication and Test of a Three-Dimensional Polymer Hydro-focusing Unit for Flow Cytometry Applications

    Science.gov (United States)

    Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun

    2005-01-01

    This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer

  2. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  3. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  4. QCM-D studies on polymer behavior at interfaces

    CERN Document Server

    Liu, Guangming

    2014-01-01

    QCM-D Studies on Polymer Behavior at Interfaces reviews the applications of quartz crystal microbalance with dissipation (QCM-D) in polymer research, including the conformational change of grafted polymer chains, the grafting kinetics of polymer chains, the growth mechanism of polyelectrolyte multilayers, and the interactions between polymers and phospholipid membranes. It focuses on how QCM-D can be applied to the study of polymer behavior at various solid-liquid interfaces. Moreover, it clearly reveals the physical significance of the changes in frequency and dissipation associated with the different polymer behaviors at the interfaces.

  5. Stability of embossed PEI-(PSS-PDADMAC) 20 multilayer films versus storage time and versus a change in ionic strength

    Science.gov (United States)

    Ladhari, Nadia; Hemmerlé, Joseph; Haikel, Youssef; Voegel, Jean-Claude; Schaaf, Pierre; Ball, Vincent

    2008-12-01

    The use of microstructured films increased markedly in many areas of science and technology, notably in the design of microfluidic channels and in the design of parallel biosensing arrays. The concept of imprinting polyelectrolyte multilayer films (PEMs) has been introduced recently [C. Gao, B. Wang, J. Feng, J. Shen, Macromolecules 37 (2004) 8836]. These irreversibly imprinted films, obtained by plastic deformation, have to keep their size and shape after contact with fluids having physicochemical properties comparable to those of biological fluids in order to be used as microfluidic channels. We demonstrate herein that PEI-(PSS-PDADMAC) 20 PEMs built-up by the spray deposition from NaCl 1 M solutions and subsequently imprinted with polydimethylsiloxane stamps keep their morphology over time (up to 9 months) when stored in the dry state. In addition the depth of the imprinted channels does not change over this time duration. When the embossed films are immersed in NaCl 0.15 M solutions, mimicking biological fluids, the depth of the imprinted channels also does not significantly change. But, when the imprinted films prepared in the presence of 1 M NaCl are subsequently dipped in a 4 M NaCl solution, partial film loss and subsequent disappearance of the imprinted channels are observed. An explanation for these findings is furnished by means of FTIR spectroscopy in the attenuated total reflection mode (ATR-FTIR). These observations should offer large opportunities for the use of the imprinted multilayer films as microfluidic channels.

  6. Fabricating and Characterizing the Microfluidic Solid Phase Extraction Module Coupling with Integrated ESI Emitters

    Directory of Open Access Journals (Sweden)

    Hangbin Tang

    2018-05-01

    Full Text Available Microfluidic chips coupling with mass spectrometry (MS will be of great significance to the development of relevant instruments involving chemical and bio-chemical analysis, drug detection, food and environmental applications and so on. In our previous works, we proposed two types of microfluidic electrospray ionization (ESI chip coupling with MS: the two-phase flow focusing (FF ESI microfluidic chip and the corner-integrated ESI emitter, respectively. However the pretreatment module integrated with these ESI emitters is still a challenging problem. In this paper, we concentrated on integrating the solid phase micro-extraction (SPME module with our previous proposed on-chip ESI emitters; the fabrication processes of such SPME module are fully compatible with our previous proposed ESI emitters based on the multi-layer soft lithography. We optimized the structure of the integrated chip and characterized its performance using standard samples. Furthermore, we verified its abilities of salt removal, extraction of multiple analytes and separation through on-chip elution using mimic biological urine spiked with different drugs. The results indicated that our proposed integrated module with ESI emitters is practical and effective for real biological sample pretreatment and MS detection.

  7. Spin coating and plasma process for 2.5D and hybrid 3D micro-resonators on multilayer polymers

    Science.gov (United States)

    Bêche, B.; Gaviot, E.; Godet, C.; Zebda, A.; Potel, A.; Barbe, J.; Camberlein, L.; Vié, V.; Panizza, P.; Loas, G.; Hamel, C.; Zyss, J.; Huby, N.

    2009-05-01

    We have designed and realized three integrated photonic families of micro-resonators (MR) on multilayer organic materials. Such so-called 2.5D-MR and 3D-MR structures show off radius values ranging from 40 to 200μm. Both first and second families are especially designed on organic multilayer materials and shaped as ring- and disk-MR organics structures arranged upon (and coupled with) a pair of SU8-organic waveguides. The third family is related to hybrid 3D-MR structures composed of spherical glass-MR coupled to organic waveguides by a Langmuir-Blodgett lipid film about three nanometers in thickness. At first, polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators. Secondly, we have designed and characterized photonic-quadripoles made of 3D-glass-MR arranged upon a pair of SU8 waveguides. Such structures are defined by a 4-ports or 4-waveguides coupled by the spherical glass-MR. We have achieved an evanescent photonic coupling between the 3D-MR and the 4-ports structure. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures respectively characterized by a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.104.

  8. Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Daniela Serien

    2018-01-01

    Full Text Available Microfluidic devices and biochips offer miniaturized laboratories for the separation, reaction, and analysis of biochemical materials with high sensitivity and low reagent consumption. The integration of functional or biomimetic elements further functionalizes microfluidic devices for more complex biological studies. The recently proposed ship-in-a-bottle integration based on laser direct writing allows the construction of microcomponents made of photosensitive polymer inside closed microfluidic structures. Here, we expand this technology to integrate proteinaceous two-dimensional (2D and three-dimensional (3D microstructures with the aid of photo-induced cross-linking into glass microchannels. The concept is demonstrated with bovine serum albumin and enhanced green fluorescent protein, each mixed with photoinitiator (Sodium 4-[2-(4-Morpholino benzoyl-2-dimethylamino] butylbenzenesulfonate. Unlike the polymer integration, fabrication over the entire channel cross-section is challenging. Two proteins are integrated into the same channel to demonstrate multi-protein patterning. Using 50% w/w glycerol solvent instead of 100% water achieves almost the same fabrication resolution for in-channel fabrication as on-surface fabrication due to the improved refractive index matching, enabling the fabrication of 3D microstructures. A glycerol-water solvent also reduces the risk of drying samples. We believe this technology can integrate diverse proteins to contribute to the versatility of microfluidics.

  9. Integrated thin film Si fluorescence sensor coupled with a GaN microLED for microfluidic point-of-care testing

    Science.gov (United States)

    Robbins, Hannah; Sumitomo, Keiko; Tsujimura, Noriyuki; Kamei, Toshihiro

    2018-02-01

    An integrated fluorescence sensor consisting of a SiO2/Ta2O5 multilayer optical interference filter and hydrogenated amorphous silicon (a-Si:H) pin photodiode was coupled with a GaN microLED to construct a compact fluorescence detection module for point-of-care microfluidic biochemical analysis. The combination of the small size of the GaN microLED and asymmetric microlens resulted in a focal spot diameter of the excitation light of approximately 200 µm. The limit of detection of the sensor was as high as 36 nM for fluorescein solution flowing in a 100 µm deep microfluidic channel because of the lack of directionality of the LED light. Nevertheless, we used the GaN microLED coupled with the a-Si:H fluorescence sensor to successfully detect fluorescence from a streptavidin R-phycoerythrin conjugate that bound to biotinylated antibody-coated microbeads trapped by the barrier in the microfluidic channel.

  10. Simple Check Valves for Microfluidic Devices

    Science.gov (United States)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  11. CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems

    DEFF Research Database (Denmark)

    Klank, Henning; Kutter, Jörg Peter; Geschke, Oliver

    2002-01-01

    , a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO2-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful......In this article, we focus on the enormous potential of a CO2-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel...... for microstructured PMMA [poly( methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding...

  12. Gallic Acid as an Oxygen Scavenger in Bio-Based Multilayer Packaging Films.

    Science.gov (United States)

    Pant, Astrid F; Sängerlaub, Sven; Müller, Kajetan

    2017-05-03

    Oxygen scavengers are used in food packaging to protect oxygen-sensitive food products. A mixture of gallic acid (GA) and sodium carbonate was used as an oxygen scavenger (OSc) in bio-based multilayer packaging films produced in a three-step process: compounding, flat film extrusion, and lamination. We investigated the film surface color as well as oxygen absorption at different relative humidities (RHs) and temperatures, and compared the oxygen absorption of OSc powder, monolayer films, and multilayer films. The films were initially brownish-red in color but changed to greenish-black during oxygen absorption under humid conditions. We observed a maximum absorption capacity of 447 mg O₂/g GA at 21 °C and 100% RH. The incorporation of GA into a polymer matrix reduced the rate of oxygen absorption compared to the GA powder because the polymer acted as a barrier to oxygen and water vapor diffusion. As expected, the temperature had a significant effect on the initial absorption rate of the multilayer films; the corresponding activation energy was 75.4 kJ/mol. Higher RH significantly increased the oxygen absorption rate. These results demonstrate for the first time the production and the properties of a bio-based multilayer packaging film with GA as the oxygen scavenger. Potential applications include the packaging of food products with high water activity (a w > 0.86).

  13. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    Science.gov (United States)

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  14. SnO2/PPy Screen-Printed Multilayer CO2 Gas Sensor

    Directory of Open Access Journals (Sweden)

    S.A. WAGHULEY

    2007-05-01

    Full Text Available Tin dioxide (SnO2 plays a dominant role in solid state gas sensors and exhibit sensitivity towards oxidizing and reducing gases by a variation of its electrical properties. The electrical conducting polymer-polypyrrole (PPy has high anisotropy of electrical conduction and used as a gas sensor. SnO2/PPy multilayer, pure SnO2, pure PPy sensors were prepared by screen-printing method on Al2O3 layer followed by glass substrate. The sensors were used for different concentration (ppm of CO2 gas investigation at room temperature (303 K. The sensitivity of SnO2/PPy multilayer sensor was found to be higher, compared with pure SnO2 and pure PPy sensors. The multilayer sensor exhibited improved stability. The response and recovery time of multilayer sensor were found to be ~2 min and ~10 min respectively.

  15. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.

    Science.gov (United States)

    Li, Xuanyu; Jiang, Xingyu

    2017-12-24

    Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production. Copyright © 2017. Published by Elsevier B.V.

  16. Monolithic integration of microfluidic channels and semiconductor lasers

    Science.gov (United States)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  17. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System

    Science.gov (United States)

    Cherifi, Tamazight; Jacques, Mario; Quessy, Sylvain; Fravalo, Philippe

    2017-01-01

    Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA. PMID:28567031

  18. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System

    Directory of Open Access Journals (Sweden)

    Tamazight Cherifi

    2017-05-01

    Full Text Available Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI and in a 10-fold diluted BHI (BHI/10 at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10 was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.

  19. Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment

    International Nuclear Information System (INIS)

    Capretto, Lorenzo; Cheng Wei; Carugo, Dario; Katsamenis, Orestis L; Zhang Xunli; Hill, Martyn

    2012-01-01

    Microreactors have been shown to be a powerful tool for the production of nanoparticles (NPs); however, there is still a lack of understanding of the role that the microfluidic environment plays in directing the nanoprecipitation process. Here we investigate the mechanism of nanoprecipitation of block copolymer stabilized organic NPs using a microfluidic-based reactor in combination with computational fluid dynamics (CFD) modelling of the microfluidic implementation. The latter also accounts for the complex interplay between molecular and hydrodynamic phenomena during the nanoprecipitation process, in order to understand the hydrodynamics and its influence on the NP formation process. It is demonstrated that the competitive reactions result in the formation of two types of NPs, i.e., either with or without loading organic actives. The obtained results are interpreted by taking into consideration a new parameter representing the mismatching between the aggregations of the polymers and actives, which plays a decisive role in determining the size and polydispersity of the prepared hybrid NPs. These results expand the current understanding of the co-nanoprecipitation mechanism of active and block copolymer stabilizer, and on the role exerted by the microfluidic environment, giving information that could be translated to the emerging fields of microfluidic formation of NPs and nanomedicine. (paper)

  20. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  1. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.

    Science.gov (United States)

    Thompson, Brandon L; Ouyang, Yiwen; Duarte, Gabriela R M; Carrilho, Emanuel; Krauss, Shannon T; Landers, James P

    2015-06-01

    We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.

  2. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon; Kim, Eugene

    2015-01-01

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method

  3. Conducting polymer-based multilayer films for instructive biomaterial coatings

    OpenAIRE

    Hardy, John G; Li, Hetian; Chow, Jacqueline K; Geissler, Sydney A; McElroy, Austin B; Nguy, Lindsey; Hernandez, Derek S; Schmidt, Christine E

    2015-01-01

    Aim: To demonstrate the design, fabrication and testing of conformable conducting biomaterials that encourage cell alignment. Materials & methods: Thin conducting composite biomaterials based on multilayer films of poly (3,4-ethylenedioxythiophene) derivatives, chitosan and gelatin were prepared in a layer-by-layer fashion. Fibroblasts were observed with fluorescence microscopy and their alignment (relative to the dipping direction and direction of electrical current passed through the films)...

  4. Towards single step production of multi-layer inorganic hollow fibers

    NARCIS (Netherlands)

    de Jong, J.; Benes, Nieck Edwin; Koops, G.H.; Wessling, Matthias

    2004-01-01

    In this work we propose a generic synthesis route for the single step production of multi-layer inorganic hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes with a high surface area per unit volume ratio can be produced, while production time

  5. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  6. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device.

    Science.gov (United States)

    Shaw, Kirsty J; Joyce, Domino A; Docker, Peter T; Dyer, Charlotte E; Greenway, Gillian M; Greenman, John; Haswell, Stephen J

    2011-02-07

    Integrated DNA extraction and amplification have been carried out in a microfluidic device using electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the microfluidic device following encapsulation in agarose gel. Buccal cells were collected using OmniSwabs [Whatman™, UK] and manually added to a chaotropic binding/lysis solution pre-loaded into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks at 4 °C with no significant loss of activity. Such methodology lends itself to the production of 'ready-to-use' microfluidic devices containing all the necessary reagents for sample processing, with many obvious applications in forensics and clinical medicine.

  7. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.

    Science.gov (United States)

    Zhu, Wen; Li, Jiwei; Liu, Jianfeng

    2013-10-01

    We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.

  8. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  9. A microfluidic cell culture array with various oxygen tensions.

    Science.gov (United States)

    Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung

    2013-08-21

    Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.

  10. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  11. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  12. Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization

    Science.gov (United States)

    Cullen, Andrew T.; Price, Aaron D.

    2017-04-01

    Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

  13. Polymeric salt bridges for conducting electric current in microfluidic devices

    Science.gov (United States)

    Shepodd, Timothy J [Livermore, CA; Tichenor, Mark S [San Diego, CA; Artau, Alexander [Humacao, PR

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  14. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  15. Multilayer electronic component systems and methods of manufacture

    Science.gov (United States)

    Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)

    2010-01-01

    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.

  16. Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications

    International Nuclear Information System (INIS)

    Padmavathi, Rajangam; Karthikumar, Rajendhiran; Sangeetha, Dharmalingam

    2012-01-01

    Highlights: ► Multilayered membranes were fabricated with SPSu. ► Aminated polysulfone and silica were used as the layers in order to prevent the crossover of methanol. ► The methanol permeability and selectivity ratio proved a strong influence on DMFC application. ► The suitability of the multilayered membranes was studied in the lab made set-ups of PEMFC and DMFC. - Abstract: Polymer electrolyte membranes used in proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) suffer from low dimensional stability. Hence multilayered membranes using sulfonated polysulfone (SPSu) and silica (SiO 2 ) were fabricated to alter such properties. The introduction of an SiO 2 layer between two layers of SPSu to form the multilayered composite membrane enhanced its dimensional stability, but slightly lowered its proton conductivity when compared to the conventional SPSu/SiO 2 composite membrane. Additionally, higher water absorption, lower methanol permeability and higher flame retardancy were also observed in this newly fabricated multilayered membrane. The performance evaluation of the 2 wt% SiO 2 loaded multilayered membrane in DMFC showed a maximum power density of 86.25 mW cm −2 , which was higher than that obtained for Nafion 117 membrane (52.8 mW cm −2 ) in the same single cell test assembly. Hence, due to the enhanced dimensional stability, reduced methanol permeability and higher maximum power density, the SPSu/SiO 2 /SPSu multilayered membrane can be a viable and a promising candidate for use as an electrolyte membrane in DMFC applications, when compared to Nafion.

  17. Hemoglobin Detection on a Microfluidic Sensor Chip with a Partially Conjugated Polymer

    International Nuclear Information System (INIS)

    Eo, Soo Han; Won, Kwang Jae; Song, Simon; Yoon, Bora; Kim, Jong Man

    2010-01-01

    The development of efficient chemosensors based on the conjugated polymers has been the central focus of a large number of recent research programs. The presence of extensively delocalized electrons and conformational restrictions of the backbone structures make conjugated polymers attractive sensory materials. In these polymers, molecular recognition events influence electronic absorption and emission properties. Thus, a wide variety of conjugated polymer-based sensors have been investigated. However, the majority of the conjugated polymer sensors described to date have been explored in the form of solutions or thin films. Most biologically interesting target molecules, such as proteins, carbohydrates, nucleic acids, or ions, are only soluble in water. Thus, it is desirable to use water-soluble conjugated polymers as sensor matrices. In general, in order to make water-soluble conjugated polymers tedious procedures are required since most synthetic methods developed for this purpose are incompatible with sidechain functionalities. Accordingly, protecting group strategies are required to prepare polymers with requisite functional groups that foster water solubility

  18. Dual light-activated microfluidic pumps based on an optopiezoelectric composite

    International Nuclear Information System (INIS)

    Wang, Hsin-Hu; Lee, Chih-Kung; Hsu, Yu-Hsiang; Wu, Ting-Jui; Cheng, I-Chun; Lin, Shih-Jue; Gu, Jen-Tau

    2017-01-01

    In this paper, a new type of microfluidic pump that can be activated and controlled by a masked light source is presented. The actuation of this micropump is based on an optopiezoelectric composite. This composite is constructed by having one of the electrodes of a piezoelectric PVDF (polyvinylidene fluoride) polymer replaced by a layer of TiOPc (titanyl phthalocyanine) photoconductive coating and an ITO (indium-tin-oxide) transparent electrode. This layer of photoconductive electrode provides the capability to activate multiple locations of this optopiezoelectric composite independently using a masked light source and a single voltage source. To verify the feasibility of this concept, dual light-activated microfluidic pumps based on this optopiezoelectric composite are implemented and studied. Experimental results verify that two microfluidic pumps can be created by one optopiezoelectric composite and that each pump can be optically turned on and off independently or be turned on simultaneously. These results suggest that integrating an optopiezoelectric composite into a lab-on-a-chip system can reduce the size and the number of driving units significantly, since every operation can be done optically and only one driving source is needed. The equivalent circuit, design, and implementation of dual light-activated optopiezoelectric micropumps are discussed in this paper. (paper)

  19. Microfluidic systems with ion-selective membranes.

    Science.gov (United States)

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-01-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  20. Characterization and analysis of sub-micron surface roughness of injection moulded microfluidic systems using White Light Interferometry

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Surface topography is of great importance in polymer micro fluidics, therefore the replication capability of the process and the surface quality of the tool has to be suitably optimized. In this paper, optical profilometry (white light interferometry, WLI) is implemented for topographical...... characterization of polymer surfaces. In particular the study considers replication performance of injection moulding applied for the realization of microfluidic systems for blood analysis. Parts were produced by means of a series of statistically designed injection moulding experiments. Three process parameters...

  1. Study of multilayer polymer materials after ionization treatment

    Science.gov (United States)

    Tarasyuk, V. T.; Semkina, A. A.; Solovyeva, V. I.; Fedotova, D. D.; Strokova, N. E.; Malenko, D. M.; Baranov, O. V.; Bakumenko, A. V.; Puchkov, S. N.; Prokopenko, A. V.

    2017-12-01

    Electron-beam technologies of food products processing involves the use of modern packaging materials in form of polymer films of different composition. The objective of the research is to study the impact of accelerated electrons on the structure of the polymeric packaging materials used for storage of agricultural products. It was investigated radiation exposure on film material PE/PA (80/20) with a thickness of 80 mkm. This film used for storage of vegetables and fruits and has the necessary indicators for gas and vapor permeability. Electron beam treatment of the films was performed on a compact radiation sterilization installation with local bio-protection with electron energy of 5 MeV. A polymer films were irradiated with doses from 1 to 10 kGy. Changing the structure of the film composition was monitored by IR spectrometry. As a result of irradiation by accelerated electrons with doses up to 18 kGy is established that the polymer film is modification of the polymeric material in the form of a partial degradation with subsequent intra-molecular crosslinking. This improves the physico-mechanical properties in the transverse direction, and such film can be used for food packaging before electron-beam treatment.

  2. Layer-by-layer assembled biopolymer microcapsule with separate layer cavities generated by gas-liquid microfluidic approach.

    Science.gov (United States)

    Wang, Yifeng; Zhou, Jing; Guo, Xuecheng; Hu, Qian; Qin, Chaoran; Liu, Hui; Dong, Meng; Chen, Yanjun

    2017-12-01

    In this work, a layer-by-layer (LbL) assembled biopolymer microcapsule with separate layer cavities is generated by a novel and convenient gas-liquid microfluidic approach. This approach exhibits combined advantages of microfluidic approach and LbL assembly method, and it can straightforwardly build LbL-assembled capsules in mild aqueous environments at room temperature. In particular, using this approach we can build the polyelectrolyte multilayer capsule with favorable cavities in each layer, and without the need for organic solvent, emulsifying agent, or sacrificial template. Various components (e.g., drugs, proteins, fluorescent dyes, and nanoparticles) can be respectively encapsulated in the separate layer cavities of the LbL-assembled capsules. Moreover, the encapsulated capsules present the ability as colorimetric sensors, and they also exhibit the interesting release behavior. Therefore, the LbL-assembled biopolymer capsule is a promising candidate for biomedical applications in targeted delivery, controlled release, and bio-detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, V. A. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Orekhov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Chernyakov, D. D. [St. Petersburg State Chemical Pharmaceutical Academy (Russian Federation); Baklagina, Yu. G. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Romanov, D. P. [Russian Academy of Sciences, Grebenshchikov Institute of Silicate Chemistry (Russian Federation); Kononova, S. V. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Volod’ko, A. V.; Ermak, I. M. [Russian Academy of Sciences, Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch (Russian Federation); Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Skorik, Yu. A., E-mail: yury-skorik@mail.ru [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2016-11-15

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  4. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels

    International Nuclear Information System (INIS)

    Suriano, Raffaella; Kuznetsov, Arseniy; Eaton, Shane M.; Kiyan, Roman; Cerullo, Giulio; Osellame, Roberto; Chichkov, Boris N.; Levi, Marinella; Turri, Stefano

    2011-01-01

    This manuscript presents a study of physical and chemical properties of microchannels fabricated by femtosecond laser processing technology in thermoplastic polymeric materials, including poly(methyl methacrylate) (PMMA), polystyrene (PS) and cyclic olefin polymer (COP). By surface electron microscopy and optical profilometry, the dimensions of microchannels in the polymers were found to be easily tunable, with surface roughness values comparable to those obtained by standard prototyping techniques such as micromilling. Through colorimetric analysis and optical microscopy, PMMA was found to remain nearly transparent after ablation while COP and PS darkened significantly. Using infrared spectroscopy, the darkening in PS and COP was attributed to significant oxidation and dehydrogenation during laser ablation, unlike PMMA, which was found to degrade by a thermal depolymerization process. The more stable molecular structure of PMMA makes it the most viable thermoplastic polymer for femtosecond laser fabrication of microfluidic channels.

  5. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  6. MICROFLUIDIC COMPONENT CAPABLE OF SELF-SEALING

    DEFF Research Database (Denmark)

    2009-01-01

    A microfluidic component (100) for building a microfluidic system is provided. The microfluidic component (100) can be mounted on a microf luidic breadboard (202) in a manner that allows it to be connected to other microfluidic components (204, 206) without the requirement of additional devices....... The microfluidic component (100) comprises at least one flexible tube piece (102) for transporting a fluid. The microfluidic component (100) also comprises means for applying and maintaining pressure (104) between the flexible tube piece (102) and a tube piece (208, 210) housed in another microfluidic component...

  7. Ballistic Performance of Mallow and Jute Natural Fabrics Reinforced Epoxy Composites in Multilayered Armor

    OpenAIRE

    Nascimento, Lucio Fabio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Marçal, Rubens Lincoln Santana Blazutti; Lima Júnior, Édio Pereira; Margem, Jean Igor

    2017-01-01

    Natural fiber reinforced polymer composites have recently been investigated as a component of multilayered armor system (MAS). These composites were found to present advantages when replacing conventional high strength synthetic aramid fabric laminate composite (KevlarTM, with same thickness, as MAS second layer. Continuous and loose natural fibers were up to now mostly used to reinforce these ballistic composites. Only two natural fabrics reinforced polymer composite were so far used with sa...

  8. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.

    Science.gov (United States)

    Wouters, Sam; De Vos, Jelle; Dores-Sousa, José Luís; Wouters, Bert; Desmet, Gert; Eeltink, Sebastiaan

    2017-11-10

    The present paper discusses practical aspects of prototyping of microfluidic chips using cyclic olefin copolymer as substrate and the application in high-performance liquid chromatography. The developed chips feature a 60mm long straight separation channel with circular cross section (500μm i.d.) that was created using a micromilling robot. To irreversibly seal the top and bottom chip substrates, a solvent-vapor-assisted bonding approach was optimized, allowing to approximate the ideal circular channel geometry. Four different approaches to establish the micro-to-macro interface were pursued. The average burst pressure of the microfluidic chips in combination with an encasing holder was established at 38MPa and the maximum burst pressure was 47MPa, which is believed to be the highest ever report for these polymer-based microfluidic chips. Porous polymer monolithic frits were synthesized in-situ via UV-initiated polymerization and their locations were spatially controlled by the application of a photomask. Next, high-pressure slurry packing was performed to introduce 3μm silica reversed-phase particles as the stationary phase in the separation channel. Finally, the application of the chip technology is demonstrated for the separation of alkyl phenones in gradient mode yielding baseline peak widths of 6s by applying a steep gradient of 1.8min at a flow rate of 10μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.

    Science.gov (United States)

    Mazutis, Linas; Vasiliauskas, Remigijus; Weitz, David A

    2015-12-01

    Owing to their biocompatibility and reduced side effects, natural polymers represent an attractive choice for producing drug delivery systems. Despite few successful examples, however, the production of monodisperse biopolymer-based particles is often hindered by high viscosity of polymer fluids. In this work, we present a microfluidic approach for production of alginate-based particles carrying encapsulated antibodies. We use a triple-flow micro-device to induce hydrogel formation inside droplets before their collection off-chip. The fast mixing and gelation process produced alginate particles with a unique biconcave shape and dimensions of the mammalian cells. We show slow and fast dissolution of particles in different buffers and evaluate antibody release over time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A polymer chip-integrable piezoelectric micropump with low backpressure dependence

    DEFF Research Database (Denmark)

    Conde, A. J.; Bianchetti, A.; Veiras, F. E.

    2015-01-01

    We describe a piezoelectric micropump constructed in polymers with conventional machining methods. The micropump is self-contained and can be built as an independent device or as an on-chip module within laminated microfluidic chips. We demonstrate on-chip integrability by the fabrication and tes...

  11. Gate design in injection molding of microfluidic components using process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software......Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed...... for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...

  12. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

    KAUST Repository

    Li, Ming

    2011-12-03

    We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO 2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc. © Springer-Verlag 2011.

  13. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  14. Laterally Ordered Bulk Heterojunction of Conjugated Polymers : Nanoskiving a Jelly Roll

    NARCIS (Netherlands)

    Lipomi, Darren J.; Chiechi, Ryan C.; Reus, William F.; Whitesides, George M.

    2008-01-01

    This paper describes the fabrication of a nanostructured heterojunction of two conjugated polymers by a three-step process: i) spin-coating a multilayered film of the two polymers, ii) rolling the film into a cylinder (a ‘‘jelly roll’’) and iii) sectioning the film perpendicular to the axis of the

  15. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2017-01-01

    Full Text Available Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1 without antireflection coating (ARC layer, (2 with TiO2-compact ARC film, and (3 with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88% owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2 when compared with a single TiO2-compact ARC.

  16. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  17. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    Science.gov (United States)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  18. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    Science.gov (United States)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  19. Final Closeout report for grant FG36-08GO18018, titled: Functional Multi-Layer Solution Processable Polymer Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Adam J. Moule

    2012-05-01

    The original objectives were: (1) Develop a method to deposit multiple conjugated polymer film layers and avoid the problem of dissolution from mutually solubility; (2) Use this deposition method to develop multi-layer polymer based solar cells with layers that are function specific; (3) characterize these layers and devices; (4) develop electrical and optical models that describe and predict the properties of the multi-layers; and (5) Ultimate efficiency goals are {approx}6.75% with J{sub sc} = 12 mA/cm{sup 2}, FF = 0.75, and V{sub oc} = 0.75. The question of whether photovoltaic (PV) cells will ever be able to replace fossil fuels as the main provider of electrical power is not just a question of device efficiency; it is a question of how much power can be provided for what price. It has been well documented that PV devices at 10% power efficiency can provide for all of the world's power needs without covering too much of the earth's surface. Assuming desert like cloud coverage, an area equivalent to the land area of Texas would have to be covered. However, it has also been shown that using the current state-of-the-art silicon devices, the price-per-Watt will never be low enough to be economically feasible for large-scale development. Solution-processable PV devices based on polymers are a very attractive alternative to traditional Silicon PV because this technology is much lower in materials cost and in environmentally toxic waste production. Solution-based polymers can be rapidly deposited using printing technologies and are compatible with light-weight flexible substrates that can increase the range of available PV applications. In the past ten years, the efficiency of polymer based PV devices has increased from {approx}1% to over 10%. The highest efficiency organic solar cells are based upon a single layer than consists of a mixture of donor and acceptor moieties. This one layer has multiple optical and electrical functions, so the design of a

  20. Multilayer porous UHMWPE scaffolds for bone defects replacement.

    Science.gov (United States)

    Maksimkin, A V; Senatov, F S; Anisimova, N Yu; Kiselevskiy, M V; Zalepugin, D Yu; Chernyshova, I V; Tilkunova, N A; Kaloshkin, S D

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79±2%; the pore size range was 80-700μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer.

    Science.gov (United States)

    Zilberman, Yael; Sonkusale, Sameer R

    2015-05-15

    We present a microfluidic optoelectronic sensor for saliva diagnostics with a potential application for non-invasive early diagnosis of stomach cancer. Stomach cancer is the second most common cause of cancer-related deaths in the world. The primary identified cause is infection by a gram-negative bacterium Helicobacter pylori. These bacteria secrete the enzyme urease that converts urea into carbon dioxide (CO2) and ammonia (NH3), leading to their elevated levels in breath and body fluids. The proposed optoelectronic sensor will detect clinically relevant levels of CO2 and NH3 in saliva that can potentially be used for early diagnosis of stomach cancer. The sensor is composed of the embedded in a microfluidic device array of microwells filled with ion-exchange polymer microbeads doped with various organic dyes. The optical response of this unique highly diverse sensor is monitored over a broad spectrum, which provides a platform for cross-reactive sensitivity and allows detection of CO2 and NH3 in saliva at ppm levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multilayer polymer pipes failure assessment based on a fracture mechanics approach

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Zouhar, Michal; Náhlík, Luboš; Ševčík, Martin; Máša, Bohuslav

    2013-01-01

    Roč. 33, OCT (2013), s. 151-162 ISSN 1350-6307 R&D Projects: GA ČR(CZ) GAP108/12/1560 Institutional support: RVO:68081723 Keywords : Multilayer pipes * Generalised stress intensity factor * Material interface * Slow crack growth * Polyolefin pipes Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.130, year: 2013

  3. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  4. Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Dufva, Martin

    2012-01-01

    that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface......DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption...... of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate...

  5. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  6. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    Science.gov (United States)

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  7. Robust Multilayer Graphene-Organic Frameworks for Selective Separation of Monovalent Anions.

    Science.gov (United States)

    Zhao, Yan; Zhu, Jiajie; Li, Jian; Zhao, Zhijuan; Charchalac Ochoa, Sebastian Ignacio; Shen, Jiangnan; Gao, Congjie; Van der Bruggen, Bart

    2018-05-30

    The chemical and mechanical stability of graphene nanosheets was used in this work to design a multilayer architecture of graphene, grafted with sulfonated 4,4'-diaminodiphenyl sulfone (SDDS). Quaternized poly(phenylene oxide) (QPPO) was synthesized and mixed with SDDS (rGO-SDDS-rGO@QPPO), yielding a multilayer graphene-organic framework (MGOF) with positive as well as negative functional groups that can be applied as a versatile electrodriven membrane in electrodialysis (ED). Multilayer graphene-organic frameworks are a new class of multilayer structures, with an architecture having a tunable interlayer spacing connected by cationic polymer material. MGOF membranes were demonstrated to allow for an excellent selective separation of monovalent anions in aqueous solution. Furthermore, different types of rGO-SDDS-rGO@QPPO membranes were found to have a good mechanical strength, with a tensile strength up to 66.43 MPa. The membrane (rGO-SDDS-rGO@QPPO-2) also has a low surface electric resistance (2.79 Ω·cm 2 ) and a low water content (14.5%) and swelling rate (4.7%). In addition, the selective separation between Cl - and SO 4 2- of the MGOF membranes could be as high as 36.6%.

  8. Morphology and growing of nanometric multilayered films formed by alternated layers of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole)

    Energy Technology Data Exchange (ETDEWEB)

    Aradilla, David [Departament d' Enginyeria Quimica, E. T. S. d' Enginyers Industrials, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politecnica de Catalunya, Campus Sud, Edifici C' , C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Estrany, Francesc, E-mail: francesc.estrany@upc.ed [Center for Research in Nano-Engineering, Universitat Politecnica de Catalunya, Campus Sud, Edifici C' , C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Unitat de Quimica Industrial, Escola Universitaria d' Enginyeria Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, 08036 Barcelona (Spain); Armelin, Elaine [Departament d' Enginyeria Quimica, E. T. S. d' Enginyers Industrials, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politecnica de Catalunya, Campus Sud, Edifici C' , C/Pasqual i Vila s/n, Barcelona E-08028 (Spain); Aleman, Carlos, E-mail: carlos.aleman@upc.ed [Departament d' Enginyeria Quimica, E. T. S. d' Enginyers Industrials, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politecnica de Catalunya, Campus Sud, Edifici C' , C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)

    2010-05-31

    Multilayered nanometric films formed by alternated layers of conducting poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole) doped with perchlorate anions (ml-PEDOT/PNMPy) have been prepared using a layer-by-layer electrodeposition technique combined with a very small polymerization time. The mechanisms of formation and growth of the resulting multilayered systems have been investigated using Atomic Force Microscopy (AFM), and compared with those obtained for the corresponding homopolymers, which were prepared using identical experimental conditions. Furthermore, the local conductivity, electroactivity and electrostability have been also examined. Analyses of the morphology, topography and roughness of the surfaces indicate that the formation and growth of the multilayered films strongly depend on the number of layers as well as on the chemical nature of the conducting polymer. Interestingly, AFM reflects that the formation and growth of the ml-PEDOT/PNMPy films are significantly different from those of PEDOT and PNMPy homopolymers. The electrical and electrochemical properties of the systems under study are fully consistent with the proposed mechanisms. Results evidenced that multilayered systems formed by two conducting polymers are more advantageous from a technological point of view than the corresponding copolymers.

  9. Morphology and growing of nanometric multilayered films formed by alternated layers of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole)

    International Nuclear Information System (INIS)

    Aradilla, David; Estrany, Francesc; Armelin, Elaine; Aleman, Carlos

    2010-01-01

    Multilayered nanometric films formed by alternated layers of conducting poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole) doped with perchlorate anions (ml-PEDOT/PNMPy) have been prepared using a layer-by-layer electrodeposition technique combined with a very small polymerization time. The mechanisms of formation and growth of the resulting multilayered systems have been investigated using Atomic Force Microscopy (AFM), and compared with those obtained for the corresponding homopolymers, which were prepared using identical experimental conditions. Furthermore, the local conductivity, electroactivity and electrostability have been also examined. Analyses of the morphology, topography and roughness of the surfaces indicate that the formation and growth of the multilayered films strongly depend on the number of layers as well as on the chemical nature of the conducting polymer. Interestingly, AFM reflects that the formation and growth of the ml-PEDOT/PNMPy films are significantly different from those of PEDOT and PNMPy homopolymers. The electrical and electrochemical properties of the systems under study are fully consistent with the proposed mechanisms. Results evidenced that multilayered systems formed by two conducting polymers are more advantageous from a technological point of view than the corresponding copolymers.

  10. High quality ion channels recordings on an injection molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone

    In this thesis we demonstrate high quality recordings of the ion channel activity across the cell membrane in a biological cell by employing the so called patch clamping technique on an injection molded polymer microfluidic device. Such recordings are traditionally made using glass micropipettes,...

  11. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    Science.gov (United States)

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  13. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    Microfluidic applications hold promise for many different end‐users both within and outside, and across many different research communities. Despite the benefits of microfluidic approaches, adoption and implementation thereof is often hindered by practical issues. Microfluidic components which......‐integrated interconnection and miniaturized peristaltic pump solutions were then combined into modular microfluidic systems. One system provides high interconnection numbers/density and allows many possible configurations. Additionally, and apart from many other accounts of modular microfluidic solutions, methods...... for control and actuation of microfluidic networks built from the modular components is described. Prototypes of the microfluidic system have begun to be distributed to external collaborators and researcher parties. These end‐users will assist in the validation of the approach and ultimately fulfil the key...

  14. A review of piezoelectric polymers as functional materials for electromechanical transducers

    International Nuclear Information System (INIS)

    Ramadan, Khaled S; Evoy, S; Sameoto, D

    2014-01-01

    Polymer based MEMS and microfluidic devices have the advantages of mechanical flexibility, lower fabrication cost and faster processing over silicon based ones. Also, many polymer materials are considered biocompatible and can be used in biological applications. A valuable class of polymers for microfabricated devices is piezoelectric functional polymers. In addition to the normal advantages of polymers, piezoelectric polymers can be directly used as an active material in different transduction applications. This paper gives an overview of piezoelectric polymers based on their operating principle. This includes three main categories: bulk piezoelectric polymers, piezocomposites and voided charged polymers. State-of-the-art piezopolymers of each category are presented with a focus on fabrication techniques and material properties. A comparison between the different piezoelectric polymers and common inorganic piezoelectric materials (PZT, ZnO, AlN and PMN–PT) is also provided in terms of piezoelectric properties. The use of piezopolymers in different electromechanical devices is also presented. This includes tactile sensors, energy harvesters, acoustic transducers and inertial sensors. (topical review)

  15. Nanocomposite multilayer capacitors comprising BaTiO3@TiO2 and poly(vinylidene fluoride-hexafluoropropylene for dielectric-based energy storage

    Directory of Open Access Journals (Sweden)

    Mojtaba Rahimabady

    2014-04-01

    Full Text Available Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO3@TiO2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene (P(VDF–HFP polymer matrix (20 vol%. The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m. The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.

  16. All-Polymer Microfluidic Systems with integrated Nanostructures for Cell Handling

    DEFF Research Database (Denmark)

    Matschuk, Maria

    There is an increasing need for mass-production of nanostructures with high precision at polymer surfaces, for example to reduce the reflection of light, to reduce the adhesion of smudge, for optical data storage (e.g. Blu-ray discs), and for biological applications. In this project the effects...... of the polymer melt, interfacial effects like wetting and friction play a major role in injection molding of high aspect ratio nanostructures. The interfacial energy between mold and polymer needs to allow filling as well as demolding which are opposing properties: On the one hand, insufficient wetting...... cavity during demolding leading to nanostructural failure. It was found that the mold temperature has a major influence on the replication depth for tested mold coatings while other parameters (melt temperature, injection velocity and pressure, holding pressure and ejection temperature) do not have any...

  17. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2013-04-01

    Full Text Available The crystallization of polymers, caused by flow fields in the melt, has been the subject of extensive studies for many years. In this study, we use periodical shear to induce polypropylene to form multi-layer structure, which is usually observed in plants. Two interesting points were found: firstly, the quest of mimicking natural structures was achieved by controlled periodical shear field; secondly, the evolution from nano to shish-kebab-like cylindrite structure was obtained in the multi-layer structure, which can be clarified by nuclei competition model. This study can be used to better understand the shear-induced crystallization of polymer. Here our intention is to place this new observation on the map, leaving a fuller presentation and discussion of the work to a future publication.

  18. Fabrication and surface characterization of photopatterned encapsulated micromagnets for microrobotics and microfluidics applications

    Science.gov (United States)

    Li, Hui; Leachman, William; Kershaw, Joe

    2016-11-01

    In this paper, encapsulated micromagnets with magnetic core surrounded by pure SU-8 were fabricated utilizing multilayer photolithography with a middle NdFeB magnetic composite layer. Various geometries of micromagnets were fabricated with high density magnetic core and high resolution features, showing magnetically response while still being biocompatible and chemically resistant and making them suitable for a wide range of microrobotics and microfluidics applications. Especially, crescent and C-channel micromagnets showed potential of microtransportation devices because of their interior reservoirs. Surface characterization of the micromagnets was conducted using closed-form solutions derived from the general biplanar surface characterization method. The fabrication method was evaluated and the process errors were found less than 1%.

  19. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers

    OpenAIRE

    Wienhold, T.; Kraemmer, S.; Wondimu, S.F.; Siegle, T.; Bog, U.; Weinzierl, U.; Schmidt, S.; Becker, H.; Kalt, H.; Mappes, T.; Koeber, S.; Koos, C.

    2015-01-01

    We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 105 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid reso...

  20. Semiconductor/metal nanocomposites formed by in situ reduction method in multilayer thin films

    International Nuclear Information System (INIS)

    Song Yanli; Wang Enbo; Tian Chungui; Mao Baodong; Wang Chunlei

    2009-01-01

    A layer-by-layer adsorption and in situ reduction method was adopted for synthesizing semiconductor/metal nanocomposites in multilayer ultra-thin films. Alternate adsorption of ZnO nanoparticles modified with poly(ethyleneimine), hydrogentetrachloroaurate and poly(styrenesulfonate) sodium results in the formation of ZnO/AuCl 4 - -loaded multilayer films. In situ reduction of the incorporated metal ions by heating yields ZnO/Au nanocomposites in the films. UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy were used to characterize the components of the composite films. UV-vis spectra indicate regular growth of the films. The electrochemistry behavior of the multilayer films was studied in detail on indium tin oxide electrode. The combined results suggest that the layer-by-layer adsorption and subsequent reduction method used here provides an effective way to synthesize ZnO/Au nanocomposites in the polymer matrix

  1. Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection.

    Science.gov (United States)

    Kise, Drew P; Magana, Donny; Reddish, Michael J; Dyer, R Brian

    2014-02-07

    We report a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection, with an experimentally determined, submillisecond mixing time. The simple and robust mixer design has the microfluidic channels cut through a polymer spacer that is sandwiched between two IR transparent windows. The mixer hydrodynamically focuses the sample stream with two side flow channels, squeezing it into a thin jet and initiating mixing through diffusion and advection. The detection system generates a mid-infrared hyperspectral absorbance image of the microfluidic sample stream. Calibration of the hyperspectral image yields the mid-IR absorbance spectrum of the sample versus time. A mixing time of 269 μs was measured for a pD jump from 3.2 to above 4.5 in a D2O sample solution of adenosine monophosphate (AMP), which acts as an infrared pD indicator. The mixer was further characterized by comparing experimental results with a simulation of the mixing of an H2O sample stream with a D2O sheath flow, showing good agreement between the two. The IR microfluidic mixer eliminates the need for fluorescence labeling of proteins with bulky, interfering dyes, because it uses the intrinsic IR absorbance of the molecules of interest, and the structural specificity of IR spectroscopy to follow specific chemical changes such as the protonation state of AMP.

  2. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI

    Science.gov (United States)

    Russo, Maria; Bevilacqua, Paolo; Netti, Paolo Antonio; Torino, Enza

    2016-11-01

    Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.

  3. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells

    KAUST Repository

    Perozziello, Gerardo; Catalano, Rossella; Francardi, Marco; Rondanina, Eliana; Pardeo, Francesca; De Angelis, Francesco De; Malara, Natalia Maria; Candeloro, Patrizio; Morrone, Giovanni; Di Fabrizio, Enzo M.

    2013-01-01

    In this work we developed a microfluidic device integrating nanoplasmonic devices combined with fluidic trapping regions. The microfuidic traps allow to capture single cells in areas where plasmonic sensors are placed. In this way it is possible to perform Enhanced Raman analysis on the cell membranes. Moreover, by changing direction of the flux it is possible to change the orientation of the cell in the trap, so that it is possible to analyze different points of the membrane of the same cell. We shows an innovative procedure to fabricate and assembly the microfluidic device which combine photolithography, focused ion beam machining, and hybrid bonding between a polymer substrate and lid of Calcium fluoride. This procedure is compatible with the fabrication of the plasmonic sensors in close proximity of the microfluidic traps. Moreover, the use of Calcium fluoride as lid allows full compatibility with Raman measurements producing negligible Raman background signal and avoids Raman artifacts. Finally, we performed Raman analysis on cells to monitor their oxidative stress under particular non physiological conditions. © 2013 Elsevier B.V. All rights reserved.

  4. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells

    KAUST Repository

    Perozziello, Gerardo

    2013-11-01

    In this work we developed a microfluidic device integrating nanoplasmonic devices combined with fluidic trapping regions. The microfuidic traps allow to capture single cells in areas where plasmonic sensors are placed. In this way it is possible to perform Enhanced Raman analysis on the cell membranes. Moreover, by changing direction of the flux it is possible to change the orientation of the cell in the trap, so that it is possible to analyze different points of the membrane of the same cell. We shows an innovative procedure to fabricate and assembly the microfluidic device which combine photolithography, focused ion beam machining, and hybrid bonding between a polymer substrate and lid of Calcium fluoride. This procedure is compatible with the fabrication of the plasmonic sensors in close proximity of the microfluidic traps. Moreover, the use of Calcium fluoride as lid allows full compatibility with Raman measurements producing negligible Raman background signal and avoids Raman artifacts. Finally, we performed Raman analysis on cells to monitor their oxidative stress under particular non physiological conditions. © 2013 Elsevier B.V. All rights reserved.

  5. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    DEFF Research Database (Denmark)

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels on t...

  6. Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study.

    Science.gov (United States)

    Ghoussoub, Yara E; Zerball, Maximilian; Fares, Hadi M; Ankner, John F; von Klitzing, Regine; Schlenoff, Joseph B

    2018-02-28

    Ultrathin films of complexed polycation poly(diallyldimethylammonium), PDADMA, and polyanion poly(styrenesulfonate), PSS, were prepared on silicon wafers using the layer-by-layer adsorption technique. When terminated with PDADMA, all films had excess PDADMA, which was balanced by counterions. Neutron reflectivity of these as-made multilayers was compared with measurements on multilayers which had been further processed to ensure 1 : 1 stoichiometry of PDADMA and PSS. The compositions of all films, including polymers and counterions, were determined experimentally rather than by fitting, reducing the number of fit parameters required to model the reflectivity. For each sample, acetate, either protiated, CH 3 COO - , or deuterated, CD 3 COO - , served as the counterion. All films were maintained dry under vacuum. Scattering length density profiles were constrained to fit reflectivity data from samples having either counterion. The best fits were obtained with uniform counterion concentrations, even for stoichiometric samples that had been exposed to PDADMA for ca. 5 minutes, showing that surprisingly fast and complete transport of excess cationic charge occurs throughout the multilayer during its construction.

  7. PMMA to Polystyrene bonding for polymer based microfluidic systems

    KAUST Repository

    Fan, Yiqiang

    2013-03-29

    A thermal bonding technique for Poly (methylmethacrylate) (PMMA) to Polystyrene (PS) is presented in this paper. The PMMA to PS bonding was achieved using a thermocompression method, and the bonding strength was carefully characterized. The bonding temperature ranged from 110 to 125 C with a varying compression force, from 700 to 1,000 N (0.36-0.51 MPa). After the bonding process, two kinds of adhesion quantification methods were used to measure the bonding strength: the double cantilever beam method and the tensile stress method. The results show that the bonding strength increases with a rising bonding temperature and bonding force. The results also indicate that the bonding strength is independent of bonding time. A deep-UV surface treatment method was also provided in this paper to lower the bonding temperature and compression force. Finally, a PMMA to PS bonded microfluidic device was fabricated successfully. © 2013 Springer-Verlag Berlin Heidelberg.

  8. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon

    2015-12-22

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method made it possible to avoid the solvent compatibility problem that was typically encountered in successive coating of polymeric multilayer by solution processing. F8BT and MEH-PPV were used for electron transporting layer (ETL) and for emissive layer, respectively. Current-voltage-luminance characteristics and luminescence efficiency results showed that the insertion of ETL by floating-off film-transfer technique followed by proper heat treatment resulted in a significant improvement in PLED operation due to its electron-transporting and hole-blocking abilities.

  9. Ice matrix in reconfigurable microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, A M [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A [Cranfield Health, Cranfield University, Vincent Building B52, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Meglinski, I [Department of Physics, University of Otago, PO Box 56, Dunedin, 9054 (New Zealand)

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  10. Ice matrix in reconfigurable microfluidic systems

    International Nuclear Information System (INIS)

    Bossi, A M; Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A; Meglinski, I

    2013-01-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  11. Ice matrix in reconfigurable microfluidic systems

    Science.gov (United States)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  12. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    Science.gov (United States)

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  13. Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.

    Science.gov (United States)

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-24

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).

  14. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    International Nuclear Information System (INIS)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-01-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel. (paper)

  15. Tuning 3D topography on biomimetic surface for efficient self-cleaning and microfluidic manipulation

    Science.gov (United States)

    Guan, Wei-Sheng; Huang, Han-Xiong; Chen, An-Fu

    2015-03-01

    Currently, micro-/nanotopography on polymeric replica is generally limited to 2D when a mechanical demolding approach is applied. In this work, one-step replication of bio-inspired 3D topography is achieved using microinjection compression molding with novel dual-layer molds. Using a proposed flexible template, the replica topography and wettability are highly tunable during molding. Moreover, dual-scale topography on the mold is developed by coating the micropatterned insert with submicron silica particles. Contact angle and roll-off angle measurements indicate the lotus leaf, rose petal and rice leaf effects on biomimetic surfaces. Among the three kinds of surfaces, the petal-inspired surface possesses the superior performance in self-cleaning submicron contaminants and mechanical robustness, which is highly correlated to the low roughness-induced adhesive superhydrophobicity and the absence of fragile submicron-/nanostructure, respectively. Furthermore, a multi-layer mold structure is proposed for fabricating the open microfluidic devices. The embedment of the hydrophilic and hydrophobic silica particles in the microstructured open channel and the hydrophobic silica particles in the background area during replication renders the wettability contrast sharp, realizing the self-driven flow of microfluid confined within the open microchannel.

  16. A modular microfluidic architecture for integrated biochemical analysis.

    Science.gov (United States)

    Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang

    2005-07-12

    Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.

  17. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles.

    Science.gov (United States)

    Kolesnikova, Tatiana A; Skirtach, Andre G; Möhwald, Helmuth

    2013-01-01

    Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.

  18. Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip

    International Nuclear Information System (INIS)

    Cho, Jennifer S; Taschereau, Richard; Olma, Sebastian; Liu Kan; Chen Yichun; Shen, Clifton K-F; Van Dam, R Michael; Chatziioannou, Arion F

    2009-01-01

    It has been observed that microfluidic chips used for synthesizing 18 F-labeled compounds demonstrate visible light emission without nearby scintillators or fluorescent materials. The origin of the light was investigated and found to be consistent with the emission characteristics from Cerenkov radiation. Since 18 F decays through the emission of high-energy positrons, the energy threshold for beta particles, i.e. electrons or positrons, to generate Cerenkov radiation was calculated for water and polydimethylsiloxane (PDMS), the most commonly used polymer-based material for microfluidic chips. Beta particles emitted from 18 F have a continuous energy spectrum, with a maximum energy that exceeds this energy threshold for both water and PDMS. In addition, the spectral characteristics of the emitted light from 18 F in distilled water were also measured, yielding a broad distribution from 300 nm to 700 nm, with higher intensity at shorter wavelengths. A photograph of the 18 F solution showed a bluish-white light emitted from the solution, further suggesting Cerenkov radiation. In this study, the feasibility of using this Cerenkov light emission as a method for quantitative measurements of the radioactivity within the microfluidic chip in situ was evaluated. A detector previously developed for imaging microfluidic platforms was used. The detector consisted of a charge-coupled device (CCD) optically coupled to a lens. The system spatial resolution, minimum detectable activity and dynamic range were evaluated. In addition, the calibration of a Cerenkov signal versus activity concentration in the microfluidic chip was determined. This novel method of Cerenkov radiation measurements will provide researchers with a simple yet robust quantitative imaging tool for microfluidic applications utilizing beta particles.

  19. Optimisation of multi-layer rotationally moulded foamed structures

    Science.gov (United States)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4

  20. Fabrication and transfer of fragile 3D PDMS microstructures

    International Nuclear Information System (INIS)

    Karlsson, J Mikael; Haraldsson, Tommy; Carlborg, Carl Fredrik; Van der Wijngaart, Wouter; Hansson, Jonas; Russom, Aman

    2012-01-01

    We present a method for PDMS microfabrication of fragile membranes and 3D fluidic networks, using a surface modified water-dissolvable release material, poly(vinyl alcohol), as a tool for handling, transfer and release of fragile polymer microstructures. The method is well suited for the fabrication of complex multilayer microfluidic devices, here shown for a PDMS device with a thin gas permeable membrane and closely spaced holes for vertical interlayer connections fabricated in a single layer. To the authors’ knowledge, this constitutes the most advanced PDMS fabrication method for the combination of thin, fragile structures and 3D fluidics networks, and hence a considerable step in the direction of making PDMS fabrication of complex microfluidic devices a routine endeavour. (paper)

  1. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  2. Electrostatics and charge regulation in polyelectrolyte multilayered assembly.

    Science.gov (United States)

    Cherstvy, Andrey G

    2014-05-01

    We examine the implications of electrostatic interactions on formation of polyelectrolyte multilayers, in application to field-effect based biosensors for label-free detection of charged macromolecules. We present a quantitative model to describe the experimental potentiometric observations and discuss its possibilities and limitations for detection of polyelectrolyte adsorption. We examine the influence of the ionic strength and pH on the sensor response upon polyelectrolyte layer-by-layer formation. The magnitude of potential oscillations on the sensor-electrolyte interface predicted upon repetitive adsorption charge-alternating polymers agrees satisfactorily with experimental results. The model accounts for different screening by mobile ions in electrolyte and inside tightly interdigitated multilayered structure. In particular, we show that sensors' potential oscillations are larger and more persistent at lower salt conditions, while they decay faster with the number of layers at higher salt conditions, in agreement with experiments. The effects of polyelectrolyte layer thickness, substrate potential, and charge regulation on the sensor surface triggered by layer-by-layer deposition are also analyzed.

  3. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  4. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  5. Commercialization of microfluidic devices.

    Science.gov (United States)

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Interfacial pattern changes of imprinted multilayered material in milli- and microscales

    Science.gov (United States)

    Yonekura, Kazuhiro; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Nanoimprint lithography (NIL) is a technique that transfers a mold pattern of nanometer order to the surface of a resist material by heating and pressing. NIL is an excellent technology in terms of high productivity, accuracy, and resolution. Recently, NIL has been applied to the processing of different multilayered materials, in which it is possible to process multiple materials simultaneously. In this processing of multilayered materials, it is possible to form an interfacial pattern between the upper layer and the lower layer simultaneously with patterning on the mold surface. This interface pattern can be controlled by the deformation characteristics, initial thickness, and so forth. In this research, we compared the interfacial pattern changes of imprinted multilayered materials in milli- and microscales. For multilayered imprint using multiple materials, it is important to know the flow of the resist and its dependence on the scale. If there is similarity in the relationship produced by the scale on the imprinted samples, a process design with a number of feedbacks could be realized. It also becomes easier to treat structures in the millimeter scale for the experiment. In this study, we employed micropowder imprint (µPI) for multilayered material imprint. A compound sheet of alumina powder and polymer binder was used for imprint. Two similar experiments in different scales, micro- and millimeter scales, were carried out. Results indicate that the interfacial patterns of micro- and millimeter-scale-imprinted samples are similar.

  7. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gubala, Vladimir, E-mail: V.Gubala@kent.ac.uk [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Medway School of Pharmacy, University of Kent, Central Avenue, Anson 120, Chatham Maritime, Kent ME4 4TB (United Kingdom); Siegrist, Jonathan; Monaghan, Ruairi; O' Reilly, Brian; Gandhiraman, Ram Prasad [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Daniels, Stephen [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology (NCPST), Dublin City University, Dublin 9 (Ireland); Williams, David E. [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, University of Auckland, Auckland 1142 (New Zealand); Ducree, Jens [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. Black-Right-Pointing-Pointer Development for dilution by surface-adsorption based depletion of protein samples. Black-Right-Pointing-Pointer It can easily be done using a readily available apparatus like a spin-coater. Black-Right-Pointing-Pointer The assessment tool is facile and quantitative. Black-Right-Pointing-Pointer Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor{sup Registered-Sign }) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor{sup Registered-Sign} substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor{sup Registered-Sign }, and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and

  8. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    International Nuclear Information System (INIS)

    Gubala, Vladimir; Siegrist, Jonathan; Monaghan, Ruairi; O’Reilly, Brian; Gandhiraman, Ram Prasad; Daniels, Stephen; Williams, David E.; Ducrée, Jens

    2013-01-01

    Highlights: ► A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. ► Development for dilution by surface-adsorption based depletion of protein samples. ► It can easily be done using a readily available apparatus like a spin-coater. ► The assessment tool is facile and quantitative. ► Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor ® ) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor ® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor ® , and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real

  9. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2017-06-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided to allow, for example, research groups to have access to microfluidic fabrication. Unlike most fabrication methods, a method is provided to fabricate a microfluidic device in one step. In an embodiment, a resolution of 50 micrometers was achieved by using maskless high-resolution digital light projection (MDLP). Bonding and channel fabrication of complex or simple structures can be rapidly incorporated to fabricate the microfluidic devices.

  10. Functional and Multifunctional Polymers: Materials for Smart Structures

    Science.gov (United States)

    Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.

    1996-01-01

    The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three

  11. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    Science.gov (United States)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  12. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  13. Modelling mechanical properties of the multilayer composite materials with the polyamide core

    Directory of Open Access Journals (Sweden)

    Talaśka Krzysztof

    2018-01-01

    Full Text Available Due to the wide range of application for belt conveyors, engineers look for many different combinations of mechanical properties of conveyor and transmission belts. It can be made by creating multilayer or fibre reinforced composite materials from base thermoplastic or thermosetting polymers. In order to gain high strength with proper elasticity and friction coefficient, the core of the composite conveyor belt is made of polyamide film core, which can be combined with various types of polymer fabrics, films or even rubbers. In this paper authors show the complex model of multilayer composite belt with the polyamide core, which can be used in simulation analyses. The following model was derived based on the experimental research, which consisted of tensile, compression and shearing tests. In order to achieve the most accurate model, proper simulations in ABAQUS were made and then the results were compared with empirical mechanical characteristics of a conveyor belt. The main goal of this research is to fully describe the perforation process of conveyor and transmission belts for vacuum belt conveyors. The following model will help to develop design briefs for machines used for mechanical perforation.

  14. Layer-by-Layer Assembly of Polyelectrolyte Multilayer onto PET Fabric for Highly Tunable Dyeing with Water Soluble Dyestuffs

    Directory of Open Access Journals (Sweden)

    Shili Xiao

    2017-12-01

    Full Text Available Poly(ethyleneterephthalate (PET is a multi-purpose and widely used synthetic polymer in many industrial fields because of its remarkable advantages such as low cost, light weight, high toughness and resistance to chemicals, and high abrasion resistance. However, PET suffers from poor dyeability due to its non-polar nature, benzene ring structure as well as high crystallinity. In this study, PET fabrics were firstly treated with an alkaline solution to produce carboxylic acid functional groups on the surface of the PET fabric, and then was modified by polyelectrolyte polymer through the electrostatic layer-by-layer self-assembly technology. The polyelectrolyte multilayer-deposited PET fabric was characterized using scanning electron microscopy SEM, contact angle, Fourier transform infrared (FTIR and X-ray photoelectron spectroscopy (XPS. The dyeability of PET fabrics before and after surface modification was systematically investigated. It showed that the dye-uptake of the polyelectrolyte multilayer-deposited PET fabric has been enhanced compared to that of the pristine PET fabric. In addition, its dyeability is strongly dependent on the surface property of the polyelectrolyte multilayer-deposited PET fabric and the properties of dyestuffs.

  15. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  16. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  17. Development of a Polymer-carbon Nanotubes based Economic Solar Collector

    OpenAIRE

    Kim, S. I.; Kissick, John; Spence, Stephen; Boyle, Christine

    2014-01-01

    A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis,...

  18. Immobilization of immunoglobulin G in a highly oriented manner on a protein-A terminated multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Zengin, Adem [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey); Caykara, Tuncer, E-mail: caykara@gazi.edu.tr [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey)

    2011-01-01

    In this study, we have fabricated a multilayer system consisting of 3-glycidoxypropyldimethylmethoxysilane (GPDS), poly(dimethylsiloxane) bis 3-aminopropyl terminated (PDMS) and protein-A on a silicon wafer surface for oriented immobilization of immunoglobilin G (IgG). The multilayer system with a different component in each layer was characterized by ellipsometry, contact-angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) and fluorescence microscopy. The epoxy-terminated monolayer was formed by the chemisorption of GPDS molecules on the hydroxylated silicon surface. The PDMS film about 4.5 nm thick was produced on the GPDS-monolayer by the chemical reaction between the amine groups at the end of PDMS chain and the epoxy groups of GPDS molecules. By introducing the PDMS chains, the hydrophilic character of GPDS-monolayer decreased. Study of the time dependence of polymer grafting showed that the chemisorption of GPDS is fast, whereas at least 16 h is needed to generate the homogeneous PDMS layer. For immobilization of IgG molecules in a highly oriented manner, protein-A molecules were first chemically bound to an ultrathin ({approx}4.5 nm) PDMS reactive polymer layer and later used to capture IgG. It was shown that the existence of protein-A in the multilayer system has a strong influence on the binding properties of IgG not only in the efficiency of binding, but also in its specificity. In conclusion, the multilayer system with protein-A has the potential to be further developed into an efficient immunoassay protein chip.

  19. Multi-scale optical metrology for the quality control of polymer microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Micro injection moulding is a replication technology enabling large scale production of polymer-based micro products. To this respect, optical measuring technologies were selected to perform the quality control of a polymer micro-component: an optical coordinate measuring machine (CMM) and a white...

  20. A paper-polymer centrifugal device for low-cost sample pre-concentration and colorimetric lateral flow assay enhancement

    CSIR Research Space (South Africa)

    Wiederoder, MS

    2016-10-01

    Full Text Available This study describes a novel hybrid paper-polymer centrifugal microfluidic device for pre-concentration of E.coli and lateral flow immunoassay enhancement for water quality verification. The device balances rotational centrifugal force...

  1. Self-contained microfluidic systems: a review.

    Science.gov (United States)

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  2. Resonant Raman spectroscopy of PAH-Os self-assembled multilayers

    International Nuclear Information System (INIS)

    Tognalli, N.; Fainstein, A.; Bonazzola, C.; Calvo, E.

    2004-01-01

    We present a resonant Raman scattering study of (PAH-Os/PVS) n and (PAH-Os/GOx) m self-assembled multilayers (n=1-11 and m=1-3). These Os polymer multilayers can be used in electrodes as efficient molecular wires for biomolecular recognition. The Raman intensity dependence on the number of self-assembly cycles provides information on the deposition process. The spectra are identical to that observed for PAH-Os in aqueous solution, indicating that the PAH-Os metal complex structure is conserved in the multilayers. We observe at ∼500 nm incoming and outgoing Raman resonances of osmium and bipyridine vibrational modes. These resonances are associated to the metal-to-ligand charge transfer (MLCT) transition. We study the evolution of these Raman modes as a function of the Os oxidation state during in situ electrochemistry. During the oxidation process, Os(II)→Os(III), the Raman resonance related to the MLCT disappears and the bipyridine related modes harden by ∼10 cm-1. These results are correlated with optical transmission measurements which show the disappearance of the visible region absorption when the Os complex is oxidized. We also find partial quenching of the Raman mode intensity after in situ voltamperometric cycles which demonstrates the existence of photo-electro-chemical processes

  3. Femtosecond laser direct-write of optofluidics in polymer-coated optical fiber

    Science.gov (United States)

    Joseph, Kevin A. J.; Haque, Moez; Ho, Stephen; Aitchison, J. Stewart; Herman, Peter R.

    2017-03-01

    Multifunctional lab in fiber technology seeks to translate the accomplishments of optofluidic, lab on chip devices into silica fibers. a robust, flexible, and ubiquitous optical communication platform that can underpin the `Internet of Things' with distributed sensors, or enable lab on chip functions deep inside our bodies. Femtosecond lasers have driven significant advances in three-dimensional processing, enabling optical circuits, microfluidics, and micro-mechanical structures to be formed around the core of the fiber. However, such processing typically requires the stripping and recoating of the polymer buffer or jacket, increasing processing time and mechanically weakening the device. This paper reports on a comprehensive assessment of laser damage in urethane-acrylate-coated fiber. The results show a sufficient processing window is available for femtosecond laser processing of the fiber without damaging the polymer jacket. The fiber core, cladding, and buffer could be simultaneously processed without removal of the buffer jacket. Three-dimensional lab in fiber devices were successfully fabricated by distortion-free immersionlens focusing, presenting fiber-cladding optical circuits and progress towards chemically-etched channels, microfluidic cavities, and MEMS structure inside buffer-coated fiber.

  4. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Ronán [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Bagga, Komal; Groarke, Robert [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Stalcup, Apryll [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Vázquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-11-30

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  5. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    International Nuclear Information System (INIS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-01-01

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  6. Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres

    Science.gov (United States)

    Shin, Hee-Sup; Ryu, Jaiyoung; Majidi, Carmel; Park, Yong-Lae

    2016-02-01

    The cross-sectional geometry of an embedded microchannel influences the electromechanical response of a soft microfluidic sensor to applied surface pressure. When a pressure is exerted on the surface of the sensor deforming the soft structure, the cross-sectional area of the embedded channel filled with a conductive fluid decreases, increasing the channel’s electrical resistance. This electromechanical coupling can be tuned by adding solid microspheres into the channel. In order to determine the influence of microspheres, we use both analytic and computational methods to predict the pressure responses of soft microfluidic sensors with two different channel cross-sections: a square and an equilateral triangular. The analytical models were derived from contact mechanics in which microspheres were regarded as spherical indenters, and finite element analysis (FEA) was used for simulation. For experimental validation, sensor samples with the two different channel cross-sections were prepared and tested. For comparison, the sensor samples were tested both with and without microspheres. All three results from the analytical models, the FEA simulations, and the experiments showed reasonable agreement confirming that the multi-material soft structure significantly improved its pressure response in terms of both linearity and sensitivity. The embedded solid particles enhanced the performance of soft sensors while maintaining their flexible and stretchable mechanical characteristic. We also provide analytical and experimental analyses of hysteresis of microfluidic soft sensors considering a resistive force to the shape recovery of the polymer structure by the embedded viscous fluid.

  7. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    Science.gov (United States)

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  9. Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films.

    Science.gov (United States)

    Lian, Qing; Chen, Mu; Mokhtar, Muhamad Z; Wu, Shanglin; Zhu, Mingning; Whittaker, Eric; O'Brien, Paul; Saunders, Brian R

    2018-05-07

    Blends of semiconducting nanocrystals and conjugated polymers continue to attract major research interest because of their potential applications in optoelectronic devices, such as solar cells, photodetectors and light-emitting diodes. In this study we investigate the surface structure, morphological and optoelectronic properties of multilayer films constructed from ZnO nanocrystals (NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV). The effects of layer number and ZnO concentration (C ZnO ) used on the multilayer film properties are investigated. An optimised solvent blend enabled well-controlled layers to be sequentially spin coated and the construction of multilayer films containing six ZnO NC (Z) and MDMO-PPV (M) layers (denoted as (ZM) 6 ). Contact angle data showed a strong dependence on C ZnO and indicated distinct differences in the coverage of MDMO-PPV by the ZnO NCs. UV-visible spectroscopy showed that the MDMO-PPV absorption increased linearly with the number of layers in the films and demonstrates highly tuneable light absorption. Photoluminescence spectra showed reversible quenching as well as a surprising red-shift of the MDMO-PPV emission peak. Solar cells were constructed to probe vertical photo-generated charge transport. The measurements showed that (ZM) 6 devices prepared using C ZnO = 14.0 mg mL -1 had a remarkably high open circuit voltage of ∼800 mV. The device power conversion efficiency was similar to that of a control bilayer device prepared using a much thicker MDMO-PPV layer. The results of this study provide insight into the structure-optoelectronic property relationships of new semiconducting multilayer films which should also apply to other semiconducting NC/polymer combinations.

  10. Localized, stepwise template growth of functional nanowires from an amino acid-supported framework in a microfluidic chip.

    Science.gov (United States)

    Puigmartí-Luis, Josep; Rubio-Martínez, Marta; Imaz, Inhar; Cvetković, Benjamin Z; Abad, Llibertat; Pérez Del Pino, Angel; Maspoch, Daniel; Amabilino, David B

    2014-01-28

    A spatially controlled synthesis of nanowire bundles of the functional crystalline coordination polymer (CP) Ag(I)TCNQ (tetracyanoquinodimethane) from previously fabricated and trapped monovalent silver CP (Ag(I)Cys (cysteine)) using a room-temperature microfluidic-assisted templated growth method is demonstrated. The incorporation of microengineered pneumatic clamps in a two-layer polydimethylsiloxane-based (PDMS) microfluidic platform was used. Apart from guiding the formation of the Ag(I)Cys coordination polymer, this microfluidic approach enables a local trapping of the in situ synthesized structures with a simple pneumatic clamp actuation. This method not only enables continuous and multiple chemical events to be conducted upon the trapped structures, but the excellent fluid handling ensures a precise chemical activation of the amino acid-supported framework in a position controlled by interface and clamp location that leads to a site-specific growth of Ag(I)TCNQ nanowire bundles. The synthesis is conducted stepwise starting with Ag(I)Cys CPs, going through silver metal, and back to a functional CP (Ag(I)TCNQ); that is, a novel microfluidic controlled ligand exchange (CP → NP → CP) is presented. Additionally, the pneumatic clamps can be employed further to integrate the conductive Ag(I)TCNQ nanowire bundles onto electrode arrays located on a surface, hence facilitating the construction of the final functional interfaced systems from solution specifically with no need for postassembly manipulation. This localized self-supported growth of functional matter from an amino acid-based CP shows how sequential localized chemistry in a fluid cell can be used to integrate molecular systems onto device platforms using a chip incorporating microengineered pneumatic tools. The control of clamp pressure and in parallel the variation of relative flow rates of source solutions permit deposition of materials at different locations on a chip that could be useful for device

  11. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    International Nuclear Information System (INIS)

    Jeon, H J; Kim, D I; Kim, M J; Nguyen, X D; Park, D H; Go, J S

    2015-01-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times. (paper)

  12. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  13. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Microfluidic device, and related methods

    Science.gov (United States)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  15. Environmental responsiveness of polygalacturonic acid-based multilayers to variation of pH.

    Science.gov (United States)

    Westwood, Marta; Noel, Timothy R; Parker, Roger

    2011-02-14

    The effect of pH on the stability of layer-by-layer deposited polygalacturonic acid (PGalA)-based multilayer films prepared with the polycations poly-L-lysine, chitosan, and lysozyme is studied. The response was characterized using a quartz crystal microbalance, dual polarization interferometry, and Fourier transform infrared spectroscopy which probe multilayer thickness, density, polymer mass (composition and speciation), and hydration. All multilayers showed irreversible changes in response to pH change becoming thinner due to the partial disassembly. Preferential loss of the polycation (50-80% w/w) and relative small losses of PGaLA (10-35% w/w) occurred. The charge density on the polycation has a strong influence on the response to the acid cycle. Most of the disassembly takes place at the pH lower that pK(a) of PGaLA, indicating that this factor was crucial in determining the stability of the films. The pH challenge also revealed a polycation-dependent shift to acid pH in the PGaLA pK(a).

  16. MULPEX: A compact multi-layered polymer foil collector for micrometeoroids and orbital debris

    Science.gov (United States)

    Kearsley, A. T.; Graham, G. A.; Burchell, M. J.; Taylor, E. A.; Drolshagen, G.; Chater, R. J.; McPhail, D.

    Detailed studies of preserved hypervelocity impact residues on spacecraft multi-layer insulation foils have yielded important information about the flux of small particles from different sources in low-Earth orbit (LEO). We have extended our earlier research on impacts occurring in LEO to design and testing of a compact capture device. MUlti- Layer Polymer EXperiment (MULPEX) is simple, cheap to build, lightweight, of no power demand, easy to deploy, and optimised for the efficient collection of impact residue for analysis on return to Earth. The capture medium is a stack of very thin (8 and 40 μm) polyimide foils, supported on poly-tetrafluoroethylene sheet frames, surrounded by a protective aluminium casing. The uppermost foil has a very thin metallic coating for thermal protection and resistance to atomic oxygen and ultra-violet exposure. The casing provides a simple detachable interface for deployment on the spacecraft, facing into the desired direction for particle collection. On return to the laboratory, the stacked foils are separated for examination in a variable pressure scanning electron microscope, without need for surface coating. Analysis of impact residue is performed using energy dispersive X-ray spectrometers. Our laboratory experiments, utilising buck-shot firings of analogues to micrometeoroids (35-38 μm olivine) and space debris (4 μm alumina and 1 mm stainless steel) in a light gas gun, have shown that impact residue is abundant within the foil layers, and preserves a record of the impacting particle, whether of micrometer or millimetre dimensions. Penetrations of the top foil are easily recognised, and act as a proxy for dimensions of the penetrating particle. Impact may cause disruption and melting, but some residue retains sufficient crystallographic structure to show clear Raman lines, diagnostic of the original mineral.

  17. Rapid microfluidic thermal cycler for nucleic acid amplification

    Science.gov (United States)

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  18. Microfluidic Apps for off-the-shelf instruments.

    Science.gov (United States)

    Mark, Daniel; von Stetten, Felix; Zengerle, Roland

    2012-07-21

    Within the last decade a huge increase in research activity in microfluidics could be observed. However, despite several commercial success stories, microfluidic chips are still not sold in high numbers in mass markets so far. Here we promote a new concept that could be an alternative approach to commercialization: designing microfluidic chips for existing off-the-shelf instruments. Such "Microfluidic Apps" could significantly lower market entry barriers and provide many advantages: developers of microfluidic chips make use of existing equipment or platforms and do not have to develop instruments from scratch; end-users can profit from microfluidics without the need to invest in new equipment; instrument manufacturers benefit from an expanded customer base due to the new applications that can be implemented in their instruments. Microfluidic Apps could be considered as low-cost disposables which can easily be distributed globally via web-shops. Therefore they could be a door-opener for high-volume mass markets.

  19. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  20. Investigation of endothelial growth using a sensors-integrated microfluidic system to simulate physiological barriers

    Directory of Open Access Journals (Sweden)

    Rajabi Taleieh

    2015-09-01

    Full Text Available In this paper we present a microfluidic system based on transparent biocompatible polymers with a porous membrane as substrate for various cell types which allows the simulation of various physiological barriers under continuous laminar flow conditions at distinct tunable shear rates. Besides live cell and fluorescence microscopy, integrated electrodes enable the investigation of the permeability and barrier function of the cell layer as well as their interaction with external manipulations using the Electric Cell-substrate Impedance Sensing (ECIS method.

  1. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  2. Fiber Optic pH Sensor with Self-Assembled Polymer Multilayer Nanocoatings

    OpenAIRE

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-01

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength s...

  3. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  4. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    Science.gov (United States)

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  5. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials.

    Science.gov (United States)

    Gdowski, Andrew; Johnson, Kaitlyn; Shah, Sunil; Gryczynski, Ignacy; Vishwanatha, Jamboor; Ranjan, Amalendu

    2018-02-12

    The process of optimization and fabrication of nanoparticle synthesis for preclinical studies can be challenging and time consuming. Traditional small scale laboratory synthesis techniques suffer from batch to batch variability. Additionally, the parameters used in the original formulation must be re-optimized due to differences in fabrication techniques for clinical production. Several low flow microfluidic synthesis processes have been reported in recent years for developing nanoparticles that are a hybrid between polymeric nanoparticles and liposomes. However, use of high flow microfluidic synthetic techniques has not been described for this type of nanoparticle system, which we will term as nanolipomer. In this manuscript, we describe the successful optimization and functional assessment of nanolipomers fabricated using a microfluidic synthesis method under high flow parameters. The optimal total flow rate for synthesis of these nanolipomers was found to be 12 ml/min and flow rate ratio 1:1 (organic phase: aqueous phase). The PLGA polymer concentration of 10 mg/ml and a DSPE-PEG lipid concentration of 10% w/v provided optimal size, PDI and stability. Drug loading and encapsulation of a representative hydrophobic small molecule drug, curcumin, was optimized and found that high encapsulation efficiency of 58.8% and drug loading of 4.4% was achieved at 7.5% w/w initial concentration of curcumin/PLGA polymer. The final size and polydispersity index of the optimized nanolipomer was 102.11 nm and 0.126, respectively. Functional assessment of uptake of the nanolipomers in C4-2B prostate cancer cells showed uptake at 1 h and increased uptake at 24 h. The nanolipomer was more effective in the cell viability assay compared to free drug. Finally, assessment of in vivo retention in mice of these nanolipomers revealed retention for up to 2 h and were completely cleared at 24 h. In this study, we have demonstrated that a nanolipomer formulation can be successfully

  6. Preparation of nanoparticles by continuous-flow microfluidics

    International Nuclear Information System (INIS)

    Jahn, Andreas; Reiner, Joseph E.; Vreeland, Wyatt N.; DeVoe, Don L.; Locascio, Laurie E.; Gaitan, Michael

    2008-01-01

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  7. Micro-optics for microfluidic analytical applications.

    Science.gov (United States)

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  8. Rapid Fabrication of Electrophoretic Microfluidic Devices from Polyester, Adhesives and Gold Leaf

    Directory of Open Access Journals (Sweden)

    Christopher Birch

    2017-01-01

    Full Text Available In the last decade, the microfluidic community has witnessed an evolution in fabrication methodologies that deviate from using conventional glass and polymer-based materials. A leading example within this group is the print, cut and laminate (PCL approach, which entails the laser cutting of microfluidic architecture into ink toner-laden polyester sheets, followed by the lamination of these layers for device assembly. Recent success when applying this method to human genetic fingerprinting has highlighted that it is now ripe for the refinements necessary to render it amenable to mass-manufacture. In this communication, we detail those modifications by identifying and implementing a suitable heat-sensitive adhesive (HSA material to equip the devices with the durability and resilience required for commercialization and fieldwork. Importantly, this augmentation is achieved without sacrificing any of the characteristics which make the PCL approach attractive for prototyping. Exemplary HSA-devices performed DNA extraction, amplification and separation which, when combined, constitute the complete sequence necessary for human profiling and other DNA-based analyses.

  9. Microfluidic high gradient magnetic cell separation

    Science.gov (United States)

    Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.

    2006-04-01

    Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.

  10. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  11. Practical Packaging Technology for Microfluidic Systems

    International Nuclear Information System (INIS)

    Lee, Hwan Yong; Han, Song I; Han, Ki Ho

    2010-01-01

    This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI): the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI

  12. Applications of polymers for biomolecule immobilization in electrochemical biosensors

    International Nuclear Information System (INIS)

    Teles, F.R.R.; Fonseca, L.P.

    2008-01-01

    Polymers are becoming inseparable from biomolecule immobilization strategies and biosensor platforms. Their original role as electrical insulators has been progressively substituted by their electrical conductive abilities, which opens a new and broad scope of applications. In addition, recent advances in diagnostic chips and microfluidic systems, together with the requirements of mass-production technologies, have raised the need to replace glass by polymeric materials, which are more suitable for production through simple manufacturing processes. Conducting polymers (CPs), in particular, are especially amenable for electrochemical biosensor development for providing biomolecule immobilization and for rapid electron transfer. It is expected that the combination of known polymer substrates, but also new transducing and biocompatible interfaces, with nanobiotechnological structures, like nanoparticles, carbon nanotubes (CNTs) and nanoengineered 'smart' polymers, may generate composites with new and interesting properties, providing higher sensitivity and stability of the immobilized molecules, thus constituting the basis for new and improved analytical devices for biomedical and other applications. This review covers the state-of-the-art and main novelties about the use of polymers for immobilization of biomolecules in electrochemical biosensor platforms

  13. A microfluidic-based lid device for conventional cell culture dishes to automatically control oxygen level.

    Science.gov (United States)

    Lee, Seung Yeob; Yang, Sung

    2018-04-25

    Most conventional hypoxic cell culture systems undergo reoxygenation during experimental manipulations, resulting in undesirable effects including the reduction of cell viability. A lid device was developed herein for conventional cell culture dishes to resolve this limitation. The integration of multilayered microfluidic channels inside a thin membrane was designed to prevent the reoxygenation caused by reagent infusion and automatically control the oxygen level. The experimental data clearly show the reducibility of the dissolved oxygen in the infusing reagent and the controllability of the oxygen level inside the dish. The feasibility of the device for hypoxia studies was confirmed by HIF-1α experiments. Therefore, the device could be used as a compact and convenient hypoxic cell culture system to prevent reoxygenation-related issues.

  14. "Shrink-to-fit" superhydrophobicity: thermally-induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates.

    Science.gov (United States)

    Manna, Uttam; Carter, Matthew C D; Lynn, David M

    2013-06-11

    An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method.

    Science.gov (United States)

    Jafarifar, Elham; Hajialyani, Marziyeh; Akbari, Mona; Rahimi, Masoud; Shokoohinia, Yalda; Fattahi, Ali

    2017-09-01

    The aim of the present study is to prepare risperidone-loaded poly lactic-co-glycolic acid (PLGA) microspheres within microfluidic system and to achieve a formulation with uniform size and monotonic and reproducible release profile. In comparison to batch method, T-junction and serpentine chips were utilized and optimizing study was carried out at different processing parameters (e.g. PLGA and surfactant concentration and flow rates ratio of outer to inner phase). The computational fluid dynamic (CFD) modeling was performed, and loading and release study were carried out. CFD simulation indicates that increasing the flow rate of aqueous phase cause to decrease the droplet size, while the change in size of microspheres did not follow a specific pattern in the experimental results. The most uniform microspheres and narrowest standard deviation (66.79 μm ± 3.32) were achieved using T-junction chip, 1% polyvinylalcohol, 1% PLGA and flow rates ratio of 20. The microfluidic-assisted microspheres were more uniform with narrower size distribution. The release of risperidone from microspheres produced by the microfluidic method was more reproducible and closer to zero-order kinetic model. The release profile of formulation with 2:1 drug-to-polymer ratio was the most favorable release, in which 41.85% release could be achieved during 24 days.

  16. Research Progress of Microfluidic Chips Preparation and its Optical Element

    Directory of Open Access Journals (Sweden)

    Feng WANG

    2014-03-01

    Full Text Available Microfluidic technology is the emerging technologies in researching fluid channel and related applications in the micro and nano-scale space. Microfluidic chip is a new miniaturized rapid analysis platform by microfluidic technology, it has many characteristics such as liquid flow control, minimal reagent consumption, rapid analysis, which is widely used in physics, chemistry, biology, and engineering science and other fields, it has strong interdisciplinary. This paper mainly discusses research progress of materials used for microfluidic chips and the devices based on microfluidic technology, including microfluidic chip, microfluidic optical devices, microfluidic laser preparation, microfluidic chip applications, focusing on the quasi-molecular laser processing technology and femtosecond laser processing technology in the microfluidic devices preparation, and make development prospects for it.

  17. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  18. Polymer filters for ultraviolet-excited integrated fluorescence sensing

    International Nuclear Information System (INIS)

    Dandin, Marc; Abshire, Pamela; Smela, Elisabeth

    2012-01-01

    Optical filters for blocking ultraviolet (UV) light were fabricated by doping various polymer hosts with a UV absorbing chromophore. The polymers were polydimethylsiloxane (PDMS), a silicone elastomer frequently used in microfluidics, SU-8, a photopatternable epoxy, and Humiseal 1B66, an acrylic coating used for moisture protection of integrated circuits. The chromophore was 2-(2′-hydroxy-5′-methylphenyl) benzotriazole (BTA), which has a high extinction coefficient between 300 nm and 400 nm. We demonstrate filters 5 µm thick that exhibit high ultraviolet rejection (nearly −40 dB at 342 nm) yet pass visible light (near 0 dB above 400 nm), making them ideal for ultraviolet-excited fluorescence sensing within microsystems. The absorbance of the BTA depended on the host polymer. These filters are promising for integrated fluorescence spectroscopy in bioanalytical platforms because they can be patterned by dry etching, molding or exposure to ultraviolet light. (paper)

  19. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vanessa F. Cardoso

    2018-02-01

    Full Text Available Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

  20. Operation placement for application-specific digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate onchip all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow......, but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous...

  1. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    Science.gov (United States)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity

  2. Formation and enzymatic degradation of poly-l-arginine/fucoidan multilayer films.

    Science.gov (United States)

    Webber, Jessie L; Benbow, Natalie L; Krasowska, Marta; Beattie, David A

    2017-11-01

    A polyelectrolyte multilayer (PEM) system based on biopolymers has been constructed and studied in its formation and enzymatic breakdown. The multilayer is composed of fucoidan (a proven antimicrobial/anti-inflammatory seaweed-based polysaccharide) and poly-l-arginine (a polypeptide that can be readily degraded with trypsin to yield arginine, a known NO donor), thus making the multilayer a potential dual action surface treatment for wound dressings. Studies on the formation of the multilayer revealed that the film built-up in the expected stepwise manner with consistent reversal of the zeta potential upon the adsorption of each subsequent polyion. The completed film (8 bilayers) was seen to have low hydration (30% water), as determined by H 2 O/D 2 O solvent replacement studies using the quartz crystal microbalance, with an adsorbed mass (without hydration water) of approx. 4.8μgcm -2 , as determined by quantitative attenuated total reflectance Fourier transform infrared (ATR FTIR) spectroscopy. The enzymatic breakdown of the film in response to exposure to trypsin was also investigated, and the film was seen to release both polymers over time, with a projected complete film removal period of approximately 24h. Critically, this information was determined using ATR FTIR spectroscopy experiments, which allowed unambiguous deconvolution of the removal rates of the two polyions, which is information that cannot be obtained from other methodologies used to study enzymatic breakdown of surface films. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    Science.gov (United States)

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  4. Effectiveness of polymer bridge deck overlays in highway noise reduction : technical paper.

    Science.gov (United States)

    2016-04-01

    The Kansas Department of Transportation (KDOT) began placing multi-layer polymer bridge deck overlays in 1999 and at the present time have over 200 in service. A few years after placing the overlays, individuals indicated that they noticed how quiet ...

  5. Open-source, community-driven microfluidics with Metafluidics.

    Science.gov (United States)

    Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A

    2017-06-07

    Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.

  6. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.

    Science.gov (United States)

    Logtenberg, Hella; Lopez-Martinez, Maria J; Feringa, Ben L; Browne, Wesley R; Verpoorte, Elisabeth

    2011-06-21

    An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by laminar flow patterning. Introduction of air pockets during modification allows for control over the length of the channel section that is modified. This approach makes it possible to achieve slug flow and side-by-side flow of water : 1-octanol simultaneously within the same PDMS channel, without the need of additional structural elements. A key finding is that conditioning of the PDMS channels with 1-octanol before polymer deposition is crucial to achieving stable side-by-side flows.

  7. Improving multilayer films endurance by photoinduced interaction between Dawson-type polyoxometalate and diazo resin

    International Nuclear Information System (INIS)

    Zhang Jishuang; Xu Lin; Cui Yang; Cao Weixiao; Li Zhuang

    2005-01-01

    A composite multilayer film constructed of Dawson anion [P 2 Mo 18 O 62 ] 6- and diazo resin (DR) was prepared by the electrostatic layer-by-layer (LbL) self-assembly method. The film could be stabilized by the photoinduced interaction between Dawson anion and diazo resin. IR spectra and X-ray photoelectron spectra revealed the possible occurrence of partial transformation from electrostatic interaction to covalent interaction between layers of the film after irradiation by UV light. Such transformation evidently increases the endurance of the film, which was demonstrated by AFM images and etching experiments with organic solvent. This study provides a new route to stabilze the polyoxometalate-based multilayer film by virtue of the photoinduced reaction with photosensitive polymer

  8. Improving multilayer films endurance by photoinduced interaction between Dawson-type polyoxometalate and diazo resin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jishuang [Department of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China); Xu Lin [Department of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China)]. E-mail: linxu@nenu.edu.cn; Cui Yang [Department of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun 130024 (China); Cao Weixiao [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Zhuang [Changchun Institute of Applied Chemistry, Academia Sinica, Changchun 130022 (China)

    2005-03-15

    A composite multilayer film constructed of Dawson anion [P{sub 2}Mo{sub 18}O{sub 62}]{sup 6-} and diazo resin (DR) was prepared by the electrostatic layer-by-layer (LbL) self-assembly method. The film could be stabilized by the photoinduced interaction between Dawson anion and diazo resin. IR spectra and X-ray photoelectron spectra revealed the possible occurrence of partial transformation from electrostatic interaction to covalent interaction between layers of the film after irradiation by UV light. Such transformation evidently increases the endurance of the film, which was demonstrated by AFM images and etching experiments with organic solvent. This study provides a new route to stabilze the polyoxometalate-based multilayer film by virtue of the photoinduced reaction with photosensitive polymer.

  9. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    Science.gov (United States)

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  10. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    Science.gov (United States)

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.

  11. Fabrication of Covalently Crosslinked and Amine-Reactive Microcapsules by Reactive Layer-by-Layer Assembly of Azlactone-Containing Polymer Multilayers on Sacrificial Microparticle Templates

    Science.gov (United States)

    Saurer, Eric M.; Flessner, Ryan M.; Buck, Maren E.; Lynn, David M.

    2011-01-01

    We report on the fabrication of covalently crosslinked and amine-reactive hollow microcapsules using ‘reactive’ layer-by-layer assembly to deposit thin polymer films on sacrificial microparticle templates. Our approach is based on the alternating deposition of layers of a synthetic polyamine and a polymer containing reactive azlactone functionality. Multilayered films composed of branched poly(ethylene imine) (BPEI) and poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) were fabricated layer-by-layer on the surfaces of calcium carbonate and glass microparticle templates. After fabrication, these films contained residual azlactone functionality that was accessible for reaction with amine-containing molecules. Dissolution of the calcium carbonate or glass cores using aqueous ethylenediamine tetraacetic acid (EDTA) or hydrofluoric acid (HF), respectively, led to the formation of hollow polymer microcapsules. These microcapsules were robust enough to encapsulate and retain a model macromolecule (FITC-dextran) and were stable for at least 22 hours in high ionic strength environments, in low and high pH solutions, and in several common organic solvents. Significant differences in the behaviors of capsules fabricated on CaCO3 and glass cores were observed and characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Whereas capsules fabricated on CaCO3 templates collapsed upon drying, capsules fabricated on glass templates remained rigid and spherical. Characterization using EDS suggested that this latter behavior results, at least in part, from the presence of insoluble metal fluoride salts that are trapped or precipitate within the walls of capsules after etching of the glass cores using HF. Our results demonstrate that the assembly of BPEI/PVDMA films on sacrificial templates can be used to fabricate reactive microcapsules of potential use in a wide range of fields, including catalysis, drug and gene delivery, imaging, and

  12. Materials for Microfluidic Immunoassays: A Review.

    Science.gov (United States)

    Mou, Lei; Jiang, Xingyu

    2017-08-01

    Conventional immunoassays suffer from at least one of these following limitations: long processing time, high costs, poor user-friendliness, technical complexity, poor sensitivity and specificity. Microfluidics, a technology characterized by the engineered manipulation of fluids in channels with characteristic lengthscale of tens of micrometers, has shown considerable promise for improving immunoassays that could overcome these limitations in medical diagnostics and biology research. The combination of microfluidics and immunoassay can detect biomarkers with faster assay time, reduced volumes of reagents, lower power requirements, and higher levels of integration and automation compared to traditional approaches. This review focuses on the materials-related aspects of the recent advances in microfluidics-based immunoassays for point-of-care (POC) diagnostics of biomarkers. We compare the materials for microfluidic chips fabrication in five aspects: fabrication, integration, function, modification and cost, and describe their advantages and drawbacks. In addition, we review materials for modifying antibodies to improve the performance of the reaction of immunoassay. We also review the state of the art in microfluidic immunoassays POC platforms, from the laboratory to routine clinical practice, and also commercial products in the market. Finally, we discuss the current challenges and future developments in microfluidic immunoassays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In situ photo-immobilised pH gradient isoelectric focusing and zone electrophoresis integrated two-dimensional microfluidic chip electrophoresis for protein separation

    International Nuclear Information System (INIS)

    Lin, Fengmin; Yu, Shiyong; Gu, Le; Zhu, Xuetao; Wang, Jianshe; Zhu, Han; Lu, Yi; Wang, Yihua; Deng, Yulin; Geng, Lina

    2015-01-01

    A method is introduced for open-column photo-induced site-selective immobilization of pH gradients in a layer of PEG-methacrylate in a multi-dimensional microfluidic chip for use in electrophoresis. It has several attractive features: (a) mixtures of fluorescently labelled proteins carbonic anhydrase, catalase and myoglobin in their native state can be separated by pH-gradient isoelectric focusing (IEF) and zone electrophoresis (CZE) using integrated 2D chip electrophoresis; (b) compared to strip packing or monolithic photo-immobilization, it overcomes the shortcomings of free carrier ampholyte-based 2D chip electrophoresis in an easy way; (c) larger amount of sample can be loaded into the open column-mode electrophoresis (d) immobilized pH gradients can be re-used and the chip can be recycled; (e) a multilayer 3D pH gradient is established by a layer-by-layer assembly technique to further increase the separation capacity. In our perception, this strategy has a large potential in microfluidic chip-based separation schemes because of its simplicity, separation power, re-usability, and separation capacity. (author)

  14. Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond.

    Science.gov (United States)

    Waheed, Sidra; Cabot, Joan M; Macdonald, Niall P; Kalsoom, Umme; Farajikhah, Syamak; Innis, Peter C; Nesterenko, Pavel N; Lewis, Trevor W; Breadmore, Michael C; Paull, Brett

    2017-11-08

    Synthetic micro-diamond-polydimethylsiloxane (PDMS) composite microfluidic chips and thin films were produced using indirect 3D printing and spin coating fabrication techniques. Microfluidic chips containing up to 60 wt% micro-diamond were successfully cast and bonded. Physicochemical properties, including the dispersion pattern, hydrophobicity, chemical structure, elasticity and thermal characteristics of both chip and films were investigated. Scanning electron microscopy indicated that the micro-diamond particles were embedded and interconnected within the bulk material of the cast microfluidic chip, whereas in the case of thin films their increased presence at the polymer surface resulted in a reduced hydrophobicity of the composite. The elastic modulus increased from 1.28 for a PDMS control, to 4.42 MPa for the 60 wt% composite, along with a three-fold increase in thermal conductivity, from 0.15 to 0.45 W m -1 K -1 . Within the fluidic chips, micro-diamond incorporation enhanced heat dissipation by efficient transfer of heat from within the channels to the surrounding substrate. At a flow rate of 1000 μL/min, the gradient achieved for the 60 wt% composite chip equalled a 9.8 °C drop across a 3 cm long channel, more than twice that observed with the PDMS control chip.

  15. Porous Polymeric Films from Microbubbles Generated Using a T-Junction Microfluidic Device.

    Science.gov (United States)

    Elsayed, M; Kothandaraman, A; Edirisinghe, M; Huang, J

    2016-12-20

    In this work, a simple microfluidic junction with a T geometry and coarse (200 μm diameter) capillaries was used to generate monodisperse microbubbles with an alginate polymer shell. Subsequently, these bubbles were used to prepare porous alginate films with good control over the pore structure. The lack of pore size, shape, and surface control in scalable forming of polymeric films is a major application-limiting drawback at present. Controlling the thinning process of the shell of the bubbles to tune the surface of the resulting structures was also explored. Films were prepared with nanopatterned surfaces by controlling the thinning of the bubble shell, with the aid of surfactants, to induce efficient bursting (fragmentation) of bubbles to generate nanodroplets, which become embedded within the film surface. This novel feature greatly expands and enhances the use of hydrophilic polymers in a wide range of biomedical applications, particularly in drug delivery and tissue engineering, such as studying cellular responses to different morphological surfaces.

  16. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  18. Patterned immobilization of antibodies within roll-to-roll hot embossed polymeric microfluidic channels.

    Directory of Open Access Journals (Sweden)

    Belachew Feyssa

    Full Text Available This paper describes a method for the patterned immobilization of capture antibodies into a microfluidic platform fabricated by roll-to-roll (R2R hot embossing on poly (methyl methacrylate (PMMA. Covalent attachment of antibodies was achieved by two sequential inkjet printing steps. First, a polyethyleneimine (PEI layer was deposited onto oxygen plasma activated PMMA foil and further cross-linked with glutaraldehyde (GA to provide an amine-reactive aldehyde surface (PEI-GA. This step was followed by a second deposition of antibody by overprinting on the PEI-GA patterned PMMA foil. The PEI polymer ink was first formulated to ensure stable drop formation in inkjet printing and the printed films were characterized using atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS. Anti-CRP antibody was patterned on PMMA foil by the developed method and bonded permanently with R2R hot embossed PMMA microchannels by solvent bonding lamination. The functionality of the immobilized antibody inside the microfluidic channel was evaluated by fluorescence-based sandwich immunoassay for detection of C-reactive protein (CRP. The antibody-antigen assay exhibited a good level of linearity over the range of 10 ng/ml to 500 ng/ml (R(2 = 0.991 with a calculated detection limit of 5.2 ng/ml. The developed patterning method is straightforward, rapid and provides a versatile approach for creating multiple protein patterns in a single microfluidic channel for multiplexed immunoassays.

  19. Rapid mask prototyping for microfluidics.

    Science.gov (United States)

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  20. Microfluidic assisted preparation of CdSe/ZnS nanocrystals encapsulated into poly(DL-lactide-co-glycolide) microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J-Y [Nanopowder and Thin Film Technology Center, Industrial Technology Research Institute, Taiwan (China); Yang, C-H [Department of Biological Science and Technology, I-Shou University, Taiwan (China); Huang, K-S [Department of Biological Science and Technology, I-Shou University, Taiwan (China)

    2007-08-01

    This paper demonstrates a proof-of-concept approach for encapsulating CdSe/ZnS quantum dots (QDs) into uniform-sized poly(DL-lactide-co-glycolide) (PLGA) biocompatible microcapsules utilizing a microfluidic chip. By adapting a blend of poly(vinyl alcohol) (PVA) and chitosan (CS) as stabilizers for constructing a PLGA polymer matrix to entrap CdSe/ZnS QDs, the PLGA polymer solution was constrained to adopt the spherical droplets in a continuous aqueous phase at a microchannel cross-junction. The generation of these droplets was then studied quantitatively. The flow conditions of the two immiscible solutions were adjusted in order to successfully generate the polymer droplets. Size-controllable PLGA microgels containing CdSe/ZnS QDs were produced, ranging in size from 180 to 550 {mu}m in diameter. The narrow size distribution (within {+-} 5%) was obtained by altering the ratio of the flow rate. In contrast to individual QDs, each PLGA microsphere encapsulates thousands of fluorescent QDs in a protective polymer matrix, providing a highly amplified and reproducible signal for fluorescence-based bioanalysis.

  1. Packaging of silicon sensors for microfluidic bio-analytical applications

    International Nuclear Information System (INIS)

    Wimberger-Friedl, Reinhold; Prins, Menno; Megens, Mischa; Dittmer, Wendy; Witz, Christiane de; Nellissen, Ton; Weekamp, Wim; Delft, Jan van; Ansems, Will; Iersel, Ben van

    2009-01-01

    A new industrial concept is presented for packaging biosensor chips in disposable microfluidic cartridges to enable medical diagnostic applications. The inorganic electronic substrates, such as silicon or glass, are integrated in a polymer package which provides the electrical and fluidic interconnections to the world and provides mechanical strength and protection for out-of-lab use. The demonstrated prototype consists of a molded interconnection device (MID), a silicon-based giant magneto-resistive (GMR) biosensor chip, a flex and a polymer fluidic part with integrated tubing. The various processes are compatible with mass manufacturing and run at a high yield. The devices show a reliable electrical interconnection between the sensor chip and readout electronics during extended wet operation. Sandwich immunoassays were carried out in the cartridges with surface functionalized sensor chips. Biological response curves were determined for different concentrations of parathyroid hormone (PTH) on the packaged biosensor, which demonstrates the functionality and biocompatibility of the devices. The new packaging concept provides a platform for easy further integration of electrical and fluidic functions, as for instance required for integrated molecular diagnostic devices in cost-effective mass manufacturing

  2. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

    Science.gov (United States)

    Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R.

    This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

  3. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM

    2011-09-01

    Full Text Available because of their multi-functionality, ease of process-ability, potential for large-scale manufacturing, significantly lighter than metals, ease of synthesis when compared to the oxide/noble metal multi-layers (Gass et al., 2006; Lee et al., 2003.... their easy aggregation arising from their high surface free energy (Lee et al., 2006). In the design of nanocomposites, one must consider the properties of the polymer matrix as well as the stability of the nanoparticles and more importantly...

  4. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were

  5. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    Science.gov (United States)

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  6. Microfabrication and Applications of Opto-Microfluidic Sensors

    Science.gov (United States)

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  7. Ion induced modification of polymers at energies between 100 keV and 1 GeV applied for optical waveguides and improved metal adhesion

    International Nuclear Information System (INIS)

    Rueck, D.M.

    2000-01-01

    Polymers are a class of materials widely used for a broad field of applications. Ion irradiation ranging from several eV to GeV is a quite efficient tool to modify the properties of polymers like wettability, optical properties, adhesion between metal and polymer surfaces. In this paper ion induced chemical changes of polymers will be discussed in relation to the modified macroscopic properties. In the field of optical telecommunication, polymers are discussed as a new class of materials for the fabrication of passive optical devices. Ion irradiation is a promising method to generate structures with a modified index of refraction, which is necessary for the guidance of light with different wavelengths in optical devices. Modified optical properties of different polymers under ion irradiation will be discussed. Analytical investigations like infrared measurements and measurement of the outgassing reaction products during irradiation will be discussed to interpret the chemical changes of the polymers. Metallization of polymers is of interest in several fields of application like for multilayer systems in microtechnology or casings for radiation shielding for example. Ion beam mixing at low energies is a promising method to improve the metal/polymer adhesion. Also ion irradiation at high energies applied to a metal/polymer multilayer can improve the adhesion of a metal layer to a polymer surface, if not sufficient. Different metal/polymer systems will be presented as well as specific applications

  8. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  9. Microfluidic standardization: Past, present and future

    NARCIS (Netherlands)

    Heeren, H. van; Atkins, T.; Blom, M.; Bullema, J.E.; Tantra, R.; Verhoeven, D.; Verplanck, N.

    2016-01-01

    This paper addresses the issue of standardization in microfluidics. It contains the main points of an industry wide agreement about microfluidic port pitches and port nomenclature. It also addresses device classification and future steps.

  10. Load responsive multilayer insulation performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  11. Load responsive multilayer insulation performance testing

    International Nuclear Information System (INIS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  12. Ionochromic 4,4 '-azobispyridinium salt-incorporated polymer: synthesis and optical properties

    Science.gov (United States)

    Lee, Taek Seung; Ahn, Heungki; Lee, Jin Kyun; Park, Won Ho

    2003-01-01

    Azobispyridinium-bearing polyelectrolyte linked with flexible alkyl chain was synthesized and characterized. The polymer showed absorption changes upon addition of hydroxide anion with an isobestic point in UV-visible spectrum. It is presumed that conformational change of the azo group in the main chain is responsible for the point. Transduction of physical information (hydroxide concentration) into an optical signal from azo group was related to the ionochromic effect. Electrostatic self-assembled multilayer of the polymer with appropriate polyanion was carried out via layer-by-layer deposition.

  13. A MEMS lamination technology based on sequential multilayer electrodeposition

    International Nuclear Information System (INIS)

    Kim, Minsoo; Kim, Jooncheol; Herrault, Florian; Schafer, Richard; Allen, Mark G

    2013-01-01

    A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni 80 Fe 20 ) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 µm, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness <100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required. (paper)

  14. Droplet based microfluidics

    International Nuclear Information System (INIS)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  15. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  16. Diagnostics of transparent polymer coatings of metal items

    Science.gov (United States)

    Varepo, L. G.; Ermakova, I. N.; Nagornova, I. V.; Kondratov, A. P.

    2017-08-01

    The methods of visual and instrumental express diagnostics of safety critical defects and non-uniform thickness of transparent mono- and multilayer polyolefin surface coating of metal items are analyzed in the paper. The instrumental diagnostics method relates to colorimetric measuring based on effects, which appear in the polarized light for extrusion polymer coatings. A color coordinates dependence (in the color system CIE La*b*) on both HDPE / PVC coating thickness fluctuation values (from average ones) and coating interlayer or adhesion layer delaminating is shown. A variation of color characteristics in the polarized light at a liquid penetration into delaminated polymer layers is found. Measuring parameters and critical uncertainties are defined.

  17. Anode engineering for photocurrent enhancement in a polymer solar cell and applied on plastic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsing-Wang; Li, Pei-Wen [Department of Electrical Engineering, National Central University, Chungli 32001 (China); Pei, Zingway; Cheng, Shor-Jeng; Hsieh, Wei-Shung [Graduate Institute of Optoelectronic Engineering, Department of Electrical Engineering, National Chung Hsing University, Taichung 40227 (China); Chen, Chun-Chao; Chan, Yi-Jen [Electronics and Optoelectronics Research Laboratories (EOL), Industrial Technology Research Institute (ITRI), Hsinchu 31040 (China)

    2011-02-15

    In this work, a multilayer structure, PEDOT:PSS/insulator/PEDOT:PSS (CIC), was designed and used as the anode in a polymer solar cell (PSC) to enhance the efficiency at low annealing temperature. The efficiency for PSC with CIC multilayers could increase around 22% as compared to the reference cell. The internal electrical field enhancement due to the effective work function increase by CIC multilayer was assumed and responded to efficiency enhancement. The work function of the multilayer anode structure was explored by an electrostatic force microscopy (EFM) analysis. The EFM result shows that the surface potential of PEDPT:PSS in CIC structure is around 0.6 V higher than PEDOT:PSS in reference structure, indicating a higher work function for PEDOT:PSS in multilayer structure. By the input photon-to-current conversion efficiency (IPCE) study, the major enhancement in photocurrent occurred at solar spectrum range of 400-650 nm. Further applied to plastic substrate, the PSC exhibits 9.2% enhancement in efficiency. (author)

  18. Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Directory of Open Access Journals (Sweden)

    Aleksandr L. Simonian

    2002-03-01

    Full Text Available Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS, ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.

  19. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  20. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.

    Science.gov (United States)

    Costantini, Marco; Colosi, Cristina; Jaroszewicz, Jakub; Tosato, Alessia; Święszkowski, Wojciech; Dentini, Mariella; Garstecki, Piotr; Barbetta, Andrea

    2015-10-28

    Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.

  1. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  2. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  3. A novel microfluidic origami photoelectrochemical sensor based on CdTe quantum dots modified molecularly imprinted polymer and its highly selective detection of S-fenvalerate

    International Nuclear Information System (INIS)

    Wang, Yanhu; Zang, Dejin; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei

    2013-01-01

    Driven by the urgent demand of high-selectively point-of-care testing device for pesticide, molecular imprinting-photoelectrochemistry (MI-PEC) was introduced into microfluidic paper-based analytical strategy to design a novel paper-based photoelectrochemical (paper-based PEC) protocol. The MI-PEC strategy was constructed based on CdTe quantum dots dotted molecular imprinted polymers (CdTe QDs@MIPs), and triggered by a common ultraviolet lamp (∼365 nm, 50$). The paper-based PEC sensor was fabricated by immobilizing CdTe QDs@MIPs on paper-based screen-printed working electrodes (WEs) via gold nanoparticles (Au NPs), which was electrodeposited on the surface of WE to improve the electron transfer efficiency for high sensitivity. Using S-fenvalerate as model analyte, the produced photocurrent from the proposed paper-based MI-PEC sensor upon ultraviolet radiation decreased with the increasing concentrations of S-fenvalerate solution, and the quenched paper-based MI-PEC showed a low detection limit of 3.2 × 10 −9 mol L −1 . This study has made a successful attempt in the development of highly selective and sensitive photoelectrochemical sensor for S-fenvalerate monitoring

  4. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  5. Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication.

    Science.gov (United States)

    Zhang, Min; Li, Songjing

    2016-01-01

    In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future.

  6. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.

    Science.gov (United States)

    Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon

    2016-06-21

    Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms.

  7. Microfluidic process monitor for industrial solvent extraction system

    Science.gov (United States)

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  8. Multilayer and functionally gradient films of plasma polymers intended as compatible interlayers for hybrid materials

    Czech Academy of Sciences Publication Activity Database

    Hoferek, L.; Mistřík, J.; Trivedi, R.; Chen, K. S.; Peřina, Vratislav; Čech, V.

    2014-01-01

    Roč. 254, SEP (2014), s. 49-53 ISSN 0257-8972 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : multilayer * Gradient film * Plasma polymerization * ellipsometry * nanoindentation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.998, year: 2014

  9. Valve Concepts for Microfluidic Cell Handling

    Directory of Open Access Journals (Sweden)

    M. Grabowski

    2010-01-01

    Full Text Available In this paper we present various pneumatically actuated microfluidic valves to enable user-defined fluid management within a microfluidic chip. To identify a feasible valve design, certain valve concepts are simulated in ANSYS to investigate the pressure dependent opening and closing characteristics of each design. The results are verified in a series of tests. Both the microfluidic layer and the pneumatic layer are realized by means of soft-lithographic techniques. In this way, a network of channels is fabricated in photoresist as a molding master. By casting these masters with PDMS (polydimethylsiloxane we get polymeric replicas containing the channel network. After a plasma-enhanced bonding process, the two layers are irreversibly bonded to each other. The bonding is tight for pressures up to 2 bar. The valves are integrated into a microfluidic cell handling system that is designed to manipulate cells in the presence of a liquid reagent (e.g. PEG – polyethylene glycol, for cell fusion. For this purpose a user-defined fluid management system is developed. The first test series with human cell lines show that the microfluidic chip is suitable for accumulating cells within a reaction chamber, where they can be flushed by a liquid medium.

  10. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  11. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Gong, Xiuqing; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2010-01-01

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  12. Microfluidic Flame Barrier

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  13. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  14. Routing-based synthesis of digital microfluidic biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2012-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the necessary functions for biochemical analysis. The “digital” biochips are manipulating liquids as discrete droplets on a two-dimensional array of electrodes. Basic microfluidic...... electrodes are considered occupied during the operation execution, although the droplet uses only one electrode at a time. Moreover, the operations can actually be performed by routing the droplets on any sequence of electrodes on the microfluidic array. Hence, in this paper, we eliminate the concept...... on the surface of the microfluidic array. We have extended the GRASP-based algorithm to consider contamination avoidance during routing-based synthesis. Several real-life examples and synthetic benchmarks are used to evaluate the proposed approaches....

  15. Photopatterned free-standing polyacrylamide gels for microfluidic protein electrophoresis.

    Science.gov (United States)

    Duncombe, Todd A; Herr, Amy E

    2013-06-07

    Designed for compatibility with slab-gel polyacrylamide gel electrophoresis (PAGE) reagents and instruments, we detail development of free-standing polyacrylamide gel (fsPAG) microstructures supporting electrophoretic performance rivalling that of microfluidic platforms. For the protein electrophoresis study described here, fsPAGE lanes are comprised of a sample reservoir and contiguous separation gel. No enclosed microfluidic channels are employed. The fsPAG devices (120 μm tall) are directly photopatterned atop of and covalently attached to planar polymer or glass surfaces. Leveraging the fast prototype-test cycle - significantly faster than mold based fabrication techniques - we optimize the fsPAG architecture to minimize injection dispersion for rapid (prototyping of the fsPAGE provides researchers a powerful tool for developing custom analytical assays. We highlight the utility of assay customization by fabricating a polyacrylamide gel with a spatial pore-size distribution and demonstrate the resulting enhancement in separation performance over a uniform gel. Further, we up-scale from a unit separation to an array of 96 concurrent fsPAGE assays in 10 min run time driven by one electrode pair. The fsPAG array layout matches that of a 96-well plate to facilitate integration of the planar free standing gel array with multi-channel pipettes while remaining compatible with conventional slab-gel PAGE reagents, such as staining for label-free protein detection. Notably, the entire fsPAGE workflow from fabrication, to operation, and readout uses readily available materials and instruments - making this technique highly accessible.

  16. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, H.

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two

  17. Microfluidic technology for PET radiochemistry

    International Nuclear Information System (INIS)

    Gillies, J.M.; Prenant, C.; Chimon, G.N.; Smethurst, G.J.; Dekker, B.A.; Zweit, J.

    2006-01-01

    This paper describes the first application of a microfabricated reaction system to positron emission tomography (PET) radiochemistry. We have applied microfluidic technology to synthesise PET radiopharmaceuticals using 18 F and 124 I as labels for fluorodeoxyglucose (FDG) and Annexin-V, respectively. These reactions involved established methods of nucleophilic substitution on a mannose triflate precursor and direct iodination of the protein using iodogen as an oxidant. This has demonstrated a proof of principle of using microfluidic technology to radiochemical reactions involving low and high molecular weight compounds. Using microfluidic reactions, [ 18 F]FDG was synthesised with a 50% incorporation of the available F-18 radioactivity in a very short time of 4 s. The radiolabelling efficiency of 124 I Annexin-V was 40% after 1 min reaction time. Chromatographic analysis showed that such reaction yields are comparable to conventional methods, but in a much shorter time. The yields can be further improved with more optimisation of the microfluidic device itself and its fluid mixing profiles. This demonstrates the potential for this technology to have an impact on rapid and simpler radiopharmaceutical synthesis using short and medium half-life radionuclides

  18. Preface book Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    This book presents an overview of the major microfluidics techniques and platforms used for medicine and medical applications, providing the reader with an overview of the recent developments in this field. It is divided in three parts: (1) tissue and organs on-chip, (2) microfluidics for medicine

  19. Fabrication of an Open Microfluidic Device for Immunoblotting.

    Science.gov (United States)

    Abdel-Sayed, Philippe; Yamauchi, Kevin A; Gerver, Rachel E; Herr, Amy E

    2017-09-19

    Given the wide adoption of polydimethylsiloxane (PDMS) for the rapid fabrication of microfluidic networks and the utility of polyacrylamide gel electrophoresis (PAGE), we develop a technique for fabrication of PAGE molecular sieving gels in PDMS microchannel networks. In developing the fabrication protocol, we trade-off constraints on materials properties of these two polymer materials: PDMS is permeable to O 2 and the presence of O 2 inhibits the polymerization of polyacrylamide. We present a fabrication method compatible with performing PAGE protein separations in a composite PDMS-glass microdevice, that toggles from an "enclosed" microchannel for PAGE and blotting to an "open" PA gel lane for immunoprobing and readout. To overcome the inhibitory effects of O 2 , we coat the PDMS channel with a 10% benzophenone solution, which quenches the inhibiting effect of O 2 when exposed to UV, resulting in a PAGE-in-PDMS device. We then characterize the PAGE separation performance. Using a ladder of small-to-mid mass proteins (Trypsin Inhibitor (TI); Ovalbumin (OVA); Bovine Serum Albumin (BSA)), we observe resolution of the markers in TI, with comparable reproducibility to glass microdevice PAGE. We show that benzophenone groups incorporated into the gel through methacrylamide can be UV-activated multiple times to photocapture protein. PDMS microchannel network is reversibly bonded to a glass slide allowing direct access to separated proteins and subsequent in situ diffusion-driven immunoprobing and total protein Sypro red staining. We see this PAGE-in-PDMS fabrication technique as expanding the application and use of microfluidic PAGE without the need for a glass microfabrication infrastructure.

  20. High content screening in microfluidic devices

    Science.gov (United States)

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  1. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying; Gong, Xiuqing; Wen, Weijia

    2009-01-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer

  2. Reconfigurable microfluidic platform in ice

    OpenAIRE

    Varejka, M.

    2008-01-01

    Microfluidic devices are popular tools in the biotechnology industry where they provide smaller reagent requirements, high speed of analysis and the possibility for automation. The aim of the project is to make a flexible biocompatible microfluidic platform adapted to different specific applications, mainly analytical and separations which parameters and configuration can be changed multiple times by changing corresponding computer programme. The current project has been sup...

  3. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  4. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  5. Femtosecond Laser-Inscripted Direct Ultrafast Fabrication of a DNA Distributor Using Microfluidics

    Directory of Open Access Journals (Sweden)

    Hojun Shin

    2017-10-01

    Full Text Available A femtosecond laser can be used for single or multiple writing processes to create sub 10-μm lines or holes directly without the use of masks. In this study, we characterized the depth and width of micro-channels created by femtosecond laser micro-scribing in polydimethylsiloxane (PDMS under various energy doses (1%, 5%, 10%, 15% and 20% and laser beam passes (5, 10 and 15. Based on a microfluidic simulation in a bio-application, a DNA distributor was designed and fabricated based on an energy dose of 5% and a laser beam pass of 5. The simulated depth and width of the micro-channels was 3.58 and 5.27 μm, respectively. The depth and width of the micro-channels were linearly proportional to the energy dose and the number of laser beam passes. In a DNA distribution experiment, a brighter fluorescent intensity for YOYO-1 Iodide with DNA was observed in the middle channels with longer DNA. In addition, the velocity was the lowest as estimated in the computational simulation. The polymer processability of the femtosecond laser and the bio-applicability of the DNA distributor were successfully confirmed. Therefore, a promising technique for the maskless fabrication of sub 10-μm bio-microfluidic channels was demonstrated.

  6. Manufacturing routes for disposable polymer blood diagnostic microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Griffiths, Christian; Azcarate, Sabino

    2008-01-01

    (Multi-Material Micro Manufacture) that are relevant to the technology for disposable polymer parts for Micro-Tele-BioChip (µTBC) medical platforms. Combining two separation mechanisms a novel micro channel design was developed. The separation unit is based on a micro channel bend structure where typical...... channel dimensions are 20 µm for the plasma channel width, and 50-75 µm for the cell channel. The height of all channels is 100 µm. The micro channel bend works simply on physical and hydrodynamic separation mechanisms without integrated actuators like pumps or valves. For the mass-fabrication of low...

  7. Capture of DNA in microfluidic channel using magnetic beads: increasing capture efficiency with integrated microfluidic mixer

    DEFF Research Database (Denmark)

    Lund-Olesen, Torsten; Dufva, Hans Martin; Hansen, Mikkel Fougt

    2007-01-01

    We have studied the hybridization of target DNA in solution with probe DNA on magnetic beads immobilized on the channel sidewalls in a magnetic bead separator. The hybridization is carried out under a liquid flow and is diffusion limited. Two systems are compared: one with a straight microfluidic...... place on the surface in a microfluidic system....

  8. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    Science.gov (United States)

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. New microfluidic platform for life sciences in South Africa

    CSIR Research Space (South Africa)

    Hugo, S

    2012-10-01

    Full Text Available is also offered as numerous devices can be implemented on one disc. A variety of components from sample preparation through to detection can be implemented simply and effectively into an integrated microfluidic solution for life sciences. The lab... in the field of centrifugal microfluidics. New microfluidic platform for life sciences in South Africa S. HUGO, K. LAND CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidic...

  10. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    Science.gov (United States)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  11. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  12. Routing-based Synthesis of Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the basic functsions for biochemical analysis. The "digital" microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete droplets on a two-dimensional array...... of electrodes. Basic microfluidic operations, such as mixing and dilution, are performed on the array, by routing the corresponding droplets on a series of electrodes. So far, researchers have assumed that these operations are executed on rectangular virtual devices, formed by grouping several adjacent...

  13. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaoqun [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Yan, Huan; Yang, Jiumin [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Wu, Yudong; Zhang, Jian; Yao, Yingyi [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Ping [Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300300 (China); Wang, Huiquan [Department of Biomedical Engineering, School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Hu, Zhidong, E-mail: huzhidong27@163.com [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Chang, Jin, E-mail: jinchang@tju.edu.cn [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-10-05

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe{sub 3}O{sub 4} nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe{sub 3}O{sub 4} nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection. - Graphical abstract: We designed a novel strategy to prepare a kind of high-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip support with long-time fluorescent encoding and immunodetection stability for AFP detection. - Highlights: • A novel strategy combined the high temperature with chemical swelling technology is designed. • Based on hydrophobic interaction and polymer thermal motion, QDs and Fe{sub 3}O{sub 4} were effectively packaged into microbeads. • The fluorescence-encoded magnetic microbeads show long-term fluorescent encoding and immunodetection stability.

  14. MULTILAYER POROUS COMPOSITE FROM WASTE GLASS FOR WATER FILTRATION

    Directory of Open Access Journals (Sweden)

    M. P. Aji

    2015-07-01

    Full Text Available Multilayer porous composite have been produced through the heating process at temperature T=700oC for 2.5 h. Single layered porous composite was made with a varied mass percentage of from PEG polymer  1% to 10%. Double-layered porous composite were made by the arrangement of porosity (4:3%, (4:2% and (3:2%, while the three-layers porous composite have an arrangement (4:3:2%. Performance of multilayer porous composite for water filtration with pollutants of methylene blue 100 ppm was estimated from the absorbance spectrum. Rejection of methylene blue pollutants from single layered porous composite increases when the fraction of PEG polymer tend to be smaller in the matrix. Meanwhile, the double layered porous composite has a degradation of methylene blue pollutants are better than one layer. Triple layered porous composite have good performance for the water filtration where all the pollutants of methylene blue be able to be filtered.   Komposit pori berlapis telah dihasilkan dengan proses pemanasan pada temperatur T=700oC selama 2.5 jam. Komposit pori satu lapis dibuat dengan variasi persen massa polimer PEG 1% hingga 10%. Komposit pori dua lapis dibuat dengan susunan porositas (4:3%, (4:2% dan (3:2%, sedangkan komposit pori tiga lapis memiliki susunan porositas (4:3:2%. Kinerja komposit pori berlapis untuk filter air dengan polutan methylene blue 100 ppm diestimasi dari spektrum absorbansi. Rejeksi polutan methylene blue dari komposit pori satu lapis meningkat saat fraksi polimer PEG cenderung lebih kecil dalam matrik komposit. Sedangkan, komposit pori dua lapis memiliki kemampuan untuk degradasi polutan methylene blue yang lebih baik dari satu lapis. Komposit pori tiga lapis memiliki kinerja yang baik untuk filter air dimana seluruh polutan methylene blue mampu disaring. 

  15. Soft tubular microfluidics for 2D and 3D applications

    Science.gov (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  16. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy.

    Science.gov (United States)

    Liu, Dongfei; Zhang, Hongbo; Mäkilä, Ermei; Fan, Jin; Herranz-Blanco, Bárbara; Wang, Chang-Fang; Rosa, Ricardo; Ribeiro, António J; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-01-01

    An advanced nanocomposite consisting of an encapsulated porous silicon (PSi) nanoparticle and an acid-degradable acetalated dextran (AcDX) matrix (nano-in-nano), was efficiently fabricated by a one-step microfluidic self-assembly approach. The obtained nano-in-nano PSi@AcDX composites showed improved surface smoothness, homogeneous size distribution, and considerably enhanced cytocompatibility. Furthermore, multiple drugs with different physicochemical properties have been simultaneously loaded into the nanocomposites with a ratiometric control. The release kinetics of all the payloads was predominantly controlled by the decomposition rate of the outer AcDX matrix. To facilitate the intracellular drug delivery, a nona-arginine cell-penetrating peptide (CPP) was chemically conjugated onto the surface of the nanocomposites by oxime click chemistry. Taking advantage of the significantly improved cell uptake, the proliferation of two breast cancer cell lines was markedly inhibited by the CPP-functionalized multidrug-loaded nanocomposites. Overall, this nano-in-nano PSi@polymer composite prepared by the microfluidic self-assembly approach is a universal platform for nanoparticles encapsulation and precisely controlled combination chemotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. "Connecting worlds - a view on microfluidics for a wider application".

    Science.gov (United States)

    Fernandes, Ana C; Gernaey, Krist V; Krühne, Ulrich

    From its birth, microfluidics has been referenced as a revolutionary technology and the solution to long standing technological and sociological issues, such as detection of dilute compounds and personalized healthcare. Microfluidics has for example been envisioned as: (1) being capable of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient's skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However, the current state of microfluidics, although technologically advanced, has so far failed to reach the originally promised widespread use. In this paper, some of the aspects are identified and discussed that have prevented microfluidics from reaching its full potential, especially in the chemical engineering and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, "plug and play" approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates, reactions and operation conditions, and other microfluidic systems is indeed of surmount importance and current academic and industrial approaches to modular microfluidics are presented. Furthermore, two views on the commercialization of plug-and-play microfluidics systems, leading towards improved acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors in microfluidics. The proposed guidelines are then applied for the development of two different example platforms, and to three examples taken from literature. With this work, we

  18. Reagent-loaded plastic microfluidic chips for detecting homocysteine

    International Nuclear Information System (INIS)

    Suk, Ji Won; Jang, Jae-Young; Cho, Jun-Hyeong

    2008-01-01

    This report describes the preliminary study on plastic microfluidic chips with pre-loaded reagents for detecting homocysteine (Hcy). All reagents needed in an Hcy immunoassay were included in a microfluidic chip to remove tedious assay steps. A simple and cost-effective bonding method was developed to realize reagent-loaded microfluidic chips. This technique uses an intermediate layer between two plastic substrates by selectively patterning polydimethylsiloxane (PDMS) on the embossed surface of microchannels and fixing the substrates under pressure. Using this bonding method, the competitive immunoassay for SAH, a converted form of Hcy, was performed without any damage to reagents in chips, and the results showed that the fluorescent signal from antibody antigen binding decreased as the SAH concentration increased. Based on the SAH immunoassay, whole immunoassay steps for Hcy detection were carried out in plastic microfluidic chips with all necessary reagents. These experiments demonstrated the feasibility of the Hcy immunoassay in microfluidic devices

  19. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.

    Science.gov (United States)

    Karakasyan, C; Mathos, J; Lack, S; Davy, J; Marquis, M; Renard, D

    2015-11-01

    We used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine(®) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and using two alginate:jeffamine mass ratios. The size of the grafted-alginate microgels varied from 60 to 80 μm depending on the type of alginate used and the degree of substitution. The droplet-based microfluidics technique offered exquisite control of both the dimension and physical chemical properties of the grafted-alginate microgels. These microgels were therefore comparable to isolated grafted-alginate chains in retaining both their amphiphilic and thermo-sensitive properties. Amphiphilicity was demonstrated at the oil-water interface where grafted-alginate microgels were found to decrease interfacial tension by ∼ 50%. The thermo-sensitivity of microgels was clearly demonstrated and a 10 to 20% reduction in size between was evidenced on increasing the temperature above the lower critical solution temperature (TLCST) of Jeffamine. In addition, the reversibility of thermo-sensitivity was demonstrated by studying the oil-water affinity of microgels with temperature after Congo red labeling. Finally, droplet-based microfluidics was found to be a good and promising tool for generating responsive biobased hydrogels for drug delivery applications and potential new colloidal stabilizers for dispersed systems such as Pickering emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Microfluidics as a functional tool for cell mechanics.

    Science.gov (United States)

    Vanapalli, Siva A; Duits, Michel H G; Mugele, Frieder

    2009-01-05

    Living cells are a fascinating demonstration of nature's most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax-thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical

  1. A Microfluidic Cell Concentrator

    Science.gov (United States)

    Warrick, Jay; Casavant, Ben; Frisk, Megan; Beebe, David

    2010-01-01

    Cell concentration via centrifugation is a ubiquitous step in many cell culture procedures. At the macroscale, centrifugation suffers from a number of limitations particularly when dealing with small numbers of cells (e.g., less than 50,000). On the other hand, typical microscale methods for cell concentration can affect cell physiology and bias readouts of cell behavior and function. In this paper, we present a microfluidic concentrator device that utilizes the effects of gravity to allow cells to gently settle out of a suspension into a collection region without the use of specific adhesion ligands. Dimensional analysis was performed to compare different device designs and was verified with flow modeling to optimize operational parameters. We are able to concentrate low-density cell suspensions in a microfluidic chamber, achieving a cell loss of only 1.1 ± 0.6% (SD, n=7) with no observed loss during a subsequent cell staining protocol which incorporates ~36 complete device volume replacements. This method provides a much needed interface between rare cell samples and microfluidic culture assays. PMID:20843010

  2. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  3. Fluorescence detection system for microfluidic droplets

    Science.gov (United States)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  4. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips

    International Nuclear Information System (INIS)

    Walczak, Rafał; Adamski, Krzysztof

    2015-01-01

    This article reports, for the first time, the results of detailed research on the application of inkjet 3D printing for the fabrication of microfluidic structures. CAD designed test structures were printed with four different printers. Dimensional fidelity, shape conformity, and surface roughness were studied for each printout. It was found that the minimum dimension (width or depth) for a properly printed microfluidic channel was approximately 200 μm. Although the nominal resolution of the printers was one order of magnitude better, smaller structures were significantly deformed or not printed at all. It was also found that a crucial step in one-step fabrication of embedded microchannels is the removal of the support material. We also discuss the source of print error and present a way to evaluate other printers. The printouts obtained from the four different printers were compared, and the optimal printing technique and printer were used to fabricate a microfluidic structure for the spectrophotometric characterisation of beverages. UV/VIS absorbance characteristics were collected using this microfluidic structure, demonstrating that the fabricated spectrophotometric chip operated properly. Thus, a proof-of-concept for using inkjet 3D printing for the fabrication of microfluidic structures was obtained. (paper)

  5. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  6. Microfluidics without channels: highly-flexible synthesis on a digital-microfluidic chip for production of diverse PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, Robert Michael [Univ. of California, Los Angeles, CA (United States)

    2010-09-01

    Positron emission tomography (PET) imaging is used for fundamental studies of living biological organisms and microbial ecosystems in applications ranging from biofuel production to environmental remediation to the study, diagnosis, and treatment monitoring of human disease. Routine access to PET imaging, to monitor biochemical reactions in living organisms in real time, could accelerate a broad range of research programs of interest to DOE. Using PET requires access to short-lived radioactive-labeled compounds that specifically probe the desired living processes. The overall aims of this project were to develop a miniature liquid-handling technology platform (called “microfluidics”) that increases the availability of diverse PET probes by reducing the cost and complexity of their production. Based on preliminary experiments showing that microfluidic chips can synthesis such compounds, we aimed to advance this technology to improve its robustness, increase its flexibility for a broad range of probes, and increase its user-friendliness. Through the research activities of this project, numerous advances were made; Tools were developed to enable the visualization of radioactive materials within microfluidic chips; Fundamental advances were made in the microfluidic chip architecture and fabrication process to increase its robustness and reliability; The microfluidic chip technology was shown to produce useful quantities of an example PET probes, and methods to further increase the output were successfully pursued; A “universal” chip was developed that could produce multiple types of PET probes, enabling the possibility of “on demand” synthesis of different probes; and Operation of the chip was automated to ensure minimal radiation exposure to the operator Based on the demonstrations of promising technical feasibility and performance, the microfluidic chip technology is currently being commercialized. It is anticipated that costs of microfluidic chips can be

  7. Low-temperature bonded glass-membrane microfluidic device for in vitro organ-on-a-chip cell culture models

    Science.gov (United States)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2015-12-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organson- a-chip", which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass based devices have long been utilised in the field of microfluidics but the integration of alternative functional elements within multi-layered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimised on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650 °C) and quartz/fused silica bonding (1050 °C) processes, this method maintains the integrity and functionality of the membrane (Tg 150 °C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 hours, indicating sufficient bond strength for long term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  8. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  9. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow...

  10. Chain polymerization of diacetylene compound multilayer films on the topmost surface initiated by a scanning tunneling microscope tip.

    Science.gov (United States)

    Takajo, Daisuke; Okawa, Yuji; Hasegawa, Tsuyoshi; Aono, Masakazu

    2007-05-08

    Chain polymerizations of diacetylene compound multilayer films on graphite substrates were examined with a scanning tunneling microscope (STM) at the liquid/solid interface of the phenyloctane solution. The first layer grew very quickly into many small domains. This was followed by the slow formation of the piled up layers into much larger domains. Chain polymerization on the topmost surface layer could be initiated by applying a pulsed voltage between the STM tip and the substrate, usually producing a long polymer of submicrometer length. In contrast, polymerizations on the underlying layer were never observed. This can be explained by a conformation model in which the polymer backbone is lifted up.

  11. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors.

    Science.gov (United States)

    Madrigal, Justin L; Sharma, Shonit N; Campbell, Kevin T; Stilhano, Roberta S; Gijsbers, Rik; Silva, Eduardo A

    2018-03-15

    Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for

  12. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic operations

    CSIR Research Space (South Africa)

    Hugo, S

    2013-10-01

    Full Text Available can be achieved. This work provides a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of microfluidic applications and potential products rapidly and at a low cost. ... stream_source_info Hugo_2015_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 1281 Content-Encoding UTF-8 stream_name Hugo_2015_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 Rapid Product Development...

  13. Design of pressure-driven microfluidic networks using electric circuit analogy.

    Science.gov (United States)

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  14. Evaporative Lithography in Open Microfluidic Channel Networks

    KAUST Repository

    Lone, Saifullah

    2017-02-24

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  15. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    International Nuclear Information System (INIS)

    Murray, Gabriel; Gandhi, Farhan

    2010-01-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer

  16. Microfluidic Reactors for the Controlled Synthesis of Nanoparticles

    Science.gov (United States)

    Erdem, Emine Yegan

    Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low

  17. New developments in Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I; Hoghoj, P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    It is now 20 years since super-mirrors were first used as a neutron optical element. Since then the field of multilayer neutron-optics has matured with multilayers finding their way to application in many neutron scattering instruments. However, there is still room for progress in terms of multilayer quality, performance and application. Along with work on multilayers for neutron polarisation Ni/Ti super-mirrors have been optimised. The state-of-the-art Ni/Ti super-mirror performance and the results obtained in two neutron-optics applications of Ni/Ti multilayers are presented. (author).

  18. Microfluidic Fabrication of Morphology-Controlled Polymeric Microspheres of Blends of Poly(4-butyltriphenylamine and Poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Saki Yoshida

    2018-04-01

    Full Text Available Multicomponent polymer particles with specific morphology are promising materials exhibiting novel functionality which cannot be obtained with single-component polymer particles. Particularly, the preparation of such kinds of polymer particles involving electrically or optically active conjugated polymers with uniform size is a challenging subject due to their intense demands. Here, microspheres of binary polymer blend consisting of poly(4-butyltriphenylamine (PBTPA/poly(methyl methacrylate (PMMA (1:1 in weight were produced via a microfluidic emulsification with a Y-shaped microreactor, and a subsequent solvent evaporation method. The flow rate of the dispersed phase (polymer solution was fixed to 7 µL/min, and 140 or 700 µL/min of the flow rate of the continuous phase (aqueous 0.6 wt % of poly(vinyl alcohol (PVA solution was utilized to produce the dispersion with different diameter. The concentration of dispersed phase was adjusted to 0.1 or 1.0 w/v%. Core-shell, Janus and dumbbell type microspheres were obtained dependent on the flow rate of continuous phase. Incomplete core-shell type microspheres were produced for the blend involving low molecular weight PMMA. Complex Janus and core-shell type microspheres were fabricated by the addition of sodium dodecyl sulfate (SDS to continuous phase. It is found that final morphologies are strongly dependent on the initial conditions of dispersion including the particle size suggesting that the morphologies are governed by the kinetical factors together with the conventionally accepted thermodynamic ones.

  19. Neutron optics with multilayer monochromators

    International Nuclear Information System (INIS)

    Saxena, A.M.; Majkrzak, C.F.

    1984-01-01

    A multilayer monochromator is made by depositing thin films of two materials in an alternating sequence on a glass substrate. This makes a multilayer periodic in a direction perpendicular to the plane of the films, with a d-spacing equal to the thickness of one bilayer. Neutrons of wavelength λ incident on a multilayer will be reflected at an angle phi given by the Bragg relation nλ = 2d sinphi, where n is the order of reflection. The use of thin-film multilayers for monochromating neutrons is discussed. Because of the low flux of neutrons, the samples have to be large, and the width of the incident beam can be as much as 2 cm. Multilayers made earlier were fabricated by resistive heating of the materials in a vacuum chamber. Because of geometrical constraints imposed by the size of the vacuum chamber, limits on the amount of material that can be loaded in a boat, and finite life of the boats, this method of preparation limits the length of a multilayer to ∼ 15 cm and the total number of bilayers in a multilayer to about 200. This paper discusses a thin-film deposition system using RF sputtering for depositing films

  20. Direct fabrication of polymer micro-lens array

    Science.gov (United States)

    Coppola, S.; Pagliarulo, V.; Vespini, V.; Nasti, G.; Olivieri, F.; Grilli, S.; Ferraro, P.

    2017-06-01

    In order to break the rigidity of classic lithographic techniques, a flexible pyro-electric-electrohydrodynamic (EHD) inkjet printing is presented. In particular, here is showed a method able to manipulate highly viscous polymers, usable for optical integrated devices. The system proposed reaches spatial resolution up to the nano-scale and can print, for instance, nano-particles and high viscous polymer solutions. This technique allows writing patterns directly onto a substrate of interest in 2D or in 3D configuration and is studied in order to overcome limitations in terms of type of materials, geometry and thickness of the substrate. In the present work, we show the potential of pyro-EHD printing in fields as optics and micro-fluidics. A micro-channel chip is functionalized with a PDMS-made micro-lenses array, directly printed on the chip. The geometric properties and the quality of the lenses are evaluated by a Digital Holography (DH) analysis.

  1. Synthesis of Application-Specific Fault-Tolerant Digital Microfluidic Biochip Architectures

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2016-01-01

    Digital microfluidic biochips (DMBs) are microfluidic devices that manipulate droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, and split, are performed on the electrode array to perform a biochemical application. All previous work assumes that the DMB...

  2. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  3. An Examination of Radiation Induced Tensile Failure of Stressed and Unstressed Polymer Films Flown on MISSE-6

    Science.gov (United States)

    Miller, Sharon K.; Sechkar, Edward A.

    2012-01-01

    Thin film polymers are used in many spacecraft applications for thermal control (multilayer insulation and sunshields), as lightweight structural members (solar array blankets, inflatable/deployable structures) and have been proposed for propulsion (solar sails). Polymers in these applications are often under a tensile load and are directly exposed to the space environment, therefore it is important to understand the effect of stress in combination with the environment on the durability of these polymer films. The purpose of the Polymer Film Tensile Experiment, flown as part of Materials International Space Station Experiment 6 (MISSE 6), was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. This paper describes the results of post flight tensile testing of these samples.

  4. Diffusion phenomena of cells and biomolecules in microfluidic devices.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-09-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.

  5. Patterning of PMMA microfluidic parts using screen printing process

    Science.gov (United States)

    Ahari Kaleibar, Aminreza; Rahbar, Mona; Haiducu, Marius; Parameswaran, Ash M.

    2010-02-01

    An inexpensive and rapid micro-fabrication process for producing PMMA microfluidic components has been presented. Our proposed technique takes advantages of commercially available economical technologies such as the silk screen printing and UV patterning of PMMA substrates to produce the microfluidic components. As a demonstration of our proposed technique, we had utilized a homemade deep-UV source, λ=254nm, a silk screen mask made using a local screen-printing shop and Isopropyl alcohol - water mixture (IPA-water) as developer to quickly define the microfluidic patterns. The prototyped devices were successfully bonded, sealed, and the device functionality tested and demonstrated. The screen printing based technique can produce microfluidic channels as small as 50 micrometers quite easily, making this technique the most cost-effective, fairly high precision and at the same time an ultra economical plastic microfluidic components fabrication process reported to date.

  6. A "place n play" modular pump for portable microfluidic applications.

    Science.gov (United States)

    Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong

    2012-03-01

    This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.

  7. Isolation of cancer cells by "in situ" microfluidic biofunctionalization protocols

    DEFF Research Database (Denmark)

    De Vitis, Stefania; Matarise, Giuseppina; Pardeo, Francesca

    2014-01-01

    The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be...

  8. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    Science.gov (United States)

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A Microfluidic Approach for Studying Piezo Channels.

    Science.gov (United States)

    Maneshi, M M; Gottlieb, P A; Hua, S Z

    2017-01-01

    Microfluidics is an interdisciplinary field intersecting many areas in engineering. Utilizing a combination of physics, chemistry, biology, and biotechnology, along with practical applications for designing devices that use low volumes of fluids to achieve high-throughput screening, is a major goal in microfluidics. Microfluidic approaches allow the study of cells growth and differentiation using a variety of conditions including control of fluid flow that generates shear stress. Recently, Piezo1 channels were shown to respond to fluid shear stress and are crucial for vascular development. This channel is ideal for studying fluid shear stress applied to cells using microfluidic devices. We have developed an approach that allows us to analyze the role of Piezo channels on any given cell and serves as a high-throughput screen for drug discovery. We show that this approach can provide detailed information about the inhibitors of Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    Science.gov (United States)

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  11. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices.

    Science.gov (United States)

    Dong, Tao; Barbosa, Cátia

    2015-01-26

    Microfluidic two-phase flow detection has attracted plenty of interest in various areas of biology, medicine and chemistry. This work presents a capacitive sensor using insulated interdigital electrodes (IDEs) to detect the presence of droplets in a microchannel. This droplet sensor is composed of a glass substrate, patterned gold electrodes and an insulation layer. A polydimethylsiloxane (PDMS) cover bonded to the multilayered structure forms a microchannel. Capacitance variation induced by the droplet passage was thoroughly investigated with both simulation and experimental work. Olive oil and deionized water were employed as the working fluids in the experiments to demonstrate the droplet sensor. The results show a good sensitivity of the droplet with the appropriate measurement connection. This capacitive droplet sensor is promising to be integrated into a lab-on-chip device for in situ monitoring/counting of droplets or bubbles.

  12. Review of Recent Metamaterial Microfluidic Sensors.

    Science.gov (United States)

    Salim, Ahmed; Lim, Sungjoon

    2018-01-15

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  13. Microfluidic Biochip Design

    Science.gov (United States)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  14. Relaxation dynamics of multilayer triangular Husimi cacti

    Science.gov (United States)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  15. Advanced combinational microfluidic multiplexer for fuel cell reactors

    International Nuclear Information System (INIS)

    Lee, D W; Kim, Y; Cho, Y-H; Doh, I

    2013-01-01

    An advanced combinational microfluidic multiplexer capable to address multiple fluidic channels for fuel cell reactors is proposed. Using only 4 control lines and two different levels of control pressures, the proposed multiplexer addresses up to 19 fluidic channels, at least two times larger than the previous microfluidic multiplexers. The present multiplexer providing high control efficiency and simple structure for channel addressing would be used in the application areas of the integrated microfluidic systems such as fuel cell reactors and dynamic pressure generators

  16. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  17. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  18. A truly Lego®-like modular microfluidics platform

    Science.gov (United States)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-03-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.

  19. A truly Lego®-like modular microfluidics platform

    International Nuclear Information System (INIS)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-01-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos ® and why Legos ® inspire many existing modular microfluidics platforms. In this paper, a truly Lego ® -like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego ® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego ® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail. (paper)

  20. Polarization-dependent plasmonic splitter based on low-loss polymer optical materials

    Science.gov (United States)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Liu, Yi-Ran; Zhao, Ning; Zhang, Tong

    2018-01-01

    A polarization-dependent optical beam splitter consisting of a straight long-range surface plasmon polariton (LRSPP) waveguide and an S-bend polymer waveguide was designed, fabricated and measured in this paper. At the splitting section, the two different waveguides are vertically coupled. The measurenment results show that the splitter operated in dual-channel mode at TM polarization, and single-channel mode at TE polarization. In addition, the polymer waveguide and LRSPP waveguide in the splitter exhibit low propagation loss of 0.51 dB/cm and 1.7 dB/cm, respectively. The hybrid beam splitter has wide potential applications in three dimensional (3D) multilayer photonic integrated circuits (PICs).

  1. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  2. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  3. Downstream bioprocess characterisation within microfluidic devices

    DEFF Research Database (Denmark)

    Marques, Marco; Krühne, Ulrich; Szita, Nicolas

    2016-01-01

    developed which has, to some extent, hindered their implementation as early process development tools. Microfluidic devices are particularly attractive for using fewer resources, for having the possibility of parallelisation and for requiring fewer mechanical manipulations. The expectation...... is that these devices will facilitate the rapid definition of critical process parameters, and thus ultimately reduce production costs. We have developed several microfluidic mDUOs and combined them with advanced and novel analytical approaches, resulting in devices that can potentially be employed for both analytical...... for the liquid–liquid extraction of pharmaceuticals, for the purification and concentration of drug delivery vehicles, and for the flocculation of yeast cells in microfluidic devices. For the latter, we will present for the first time the capability to study flocculation-growth independent from the floc breakage...

  4. A centrifugal microfluidic platform for point-of-care diagnostic applications

    Directory of Open Access Journals (Sweden)

    Suzanne Hugo

    2014-02-01

    Full Text Available Microfluidic systems enable precise control over tiny volumes of fluid in a compact and low-cost form, thus providing the ideal platform on which to develop point-of-care diagnostic solutions. Centrifugal microfluidic systems, also referred to as lab-on-a-disc or lab-on-a-CD systems, provide a particularly attractive solution for the implementation of microfluidic point-of-care diagnostic solutions as a result of their simple and compact instrumentation, as well as their functional diversity. Here we detail the implementation of a centrifugal microfluidic platform the first of its kind in South Africa as a foundation for the development of point-of-care diagnostic applications for which both the need and impact is great. The centrifugal microfluidic platform consists of three main components: a microfluidic disc device similar in size and shape to a CD, a system for controlling fluid flow on the device, and a system for recording the results obtained. These components have been successfully implemented and tested. Preliminary test results show that microfluidic functions such as pumping and valving of fluids can be successfully achieved, as well as the generation of monodisperse microfluidic droplets, providing a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of applications, including point-of-care diagnostics. The lab-on-a-disc platform has the potential to provide new diagnostic solutions at the point-of-need in health- and industry-related areas. This paves the way for providing resource limited areas with services such as improved, decentralised health-care access or water-quality monitoring, and reduced diagnosis times at a low cost.

  5. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  6. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    Science.gov (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  7. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  8. A microfluidic renal proximal tubule with active reabsorptive function.

    Directory of Open Access Journals (Sweden)

    Else M Vedula

    Full Text Available In the kidney, the renal proximal tubule (PT reabsorbs solutes into the peritubular capillaries through active transport. Here, we replicate this reabsorptive function in vitro by engineering a microfluidic PT. The microfluidic PT architecture comprises a porous membrane with user-defined submicron surface topography separating two microchannels representing a PT filtrate lumen and a peritubular capillary lumen. Human PT epithelial cells and microvascular endothelial cells in respective microchannels created a PT-like reabsorptive barrier. Co-culturing epithelial and endothelial cells in the microfluidic architecture enhanced viability, metabolic activity, and compactness of the epithelial layer. The resulting tissue expressed tight junctions, kidney-specific morphology, and polarized expression of kidney markers. The microfluidic PT actively performed sodium-coupled glucose transport, which could be modulated by administration of a sodium-transport inhibiting drug. The microfluidic PT reproduces human physiology at the cellular and tissue levels, and measurable tissue function which can quantify kidney pharmaceutical efficacy and toxicity.

  9. Redundancy Optimization for Error Recovery in Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2015-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets. Research......Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets....... Researchers have proposed approaches for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. During the execution...... propose an online recovery strategy, which decides during the execution of the biochemical application the introduction of the redundancy required for fault-tolerance. We consider both time redundancy, i.e., re-executing erroneous operations, and space redundancy, i.e., creating redundant droplets...

  10. Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network

    Science.gov (United States)

    Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.

    2003-01-01

    We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.

  11. Wedged multilayer Laue lens

    International Nuclear Information System (INIS)

    Conley, Ray; Liu Chian; Qian Jun; Kewish, Cameron M.; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Kang, Hyon Chol; Stephenson, G. Brian

    2008-01-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures

  12. Microfluidic Devices for Forensic DNA Analysis: A Review.

    Science.gov (United States)

    Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han

    2016-08-05

    Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.

  13. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.; Gumus, Abdurrahman; Nassar, Joanna M.; Hussain, Muhammad Mustafa

    2018-01-01

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  14. CMOS Enabled Microfluidic Systems for Healthcare Based Applications

    KAUST Repository

    Khan, Sherjeel M.

    2018-02-27

    With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.

  15. The selective flow of volatile organic compounds in conductive polymer-coated microchannels

    Science.gov (United States)

    Hossein-Babaei, Faramarz; Hooshyar Zare, Ali

    2017-02-01

    Many gaseous markers of critical biological, physicochemical, or industrial occurrences are masked by the cross-sensitivity of the sensors to the other active components present at higher concentrations. Here, we report the strongly selective diffusion and drift of contaminant molecules in air-filled conductive polymer-coated microfluidic channels for the first time. Monitoring the passage of different target molecules through microchannels coated with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) revealed that contaminants such as hexane, benzene, and CO pass through the channel unaffected by the coating while methanol, ethanol, and partly acetone are blocked. The observations are explained with reference to the selective interactions between the conductive polymer surface and target gas molecules amplified by the large wall/volume ratio in microchannels. The accumulated quantitative data point at the hydrogen bonding as the mechanism of wall adsorption; dipole-dipole interactions are relatively insignificant. The presented model facilitates a better understanding of how the conductive polymer-based chemical sensors operate.

  16. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  17. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  18. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  19. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  20. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for sim...... in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions. (C) 2014 International Union of Crystallography......Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented...

  1. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    Science.gov (United States)

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  2. The Microfluidic Jukebox

    Science.gov (United States)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  3. Laser welding of thin polymer films to container substrates for aseptic packaging

    Science.gov (United States)

    Brown, N.; Kerr, D.; Jackson, M. R.; Parkin, R. M.

    2000-03-01

    Keyhole laser welding of polymers is a subject well covered and researched, but relatively little information exists regarding the welding of thin polymer films, particularly to a heavier substrate. This paper presents the design of a suitable test apparatus for laser welding thin film to a heavier substrate, and shows the results of an investigation into the feasibility of laser welding multi-layer polymer film lids to tubs for the manufacture of aseptic food containers. A consistent weld, free from defects, is the key to process success. Typical welding defects have been synthesised in order to investigate, and consequently remove, their cause. The result is a reliable welding method based on even film clamping. With careful attention to machine design, a seal of high mechanical strength and chemical integrity is possible.

  4. Review of Recent Metamaterial Microfluidic Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2018-01-01

    Full Text Available Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter–nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  5. Printed wax masks for 254 nm deep-UV pattering of PMMA-based microfluidics

    International Nuclear Information System (INIS)

    Fan, Yiqiang; Liu, Yang; Li, Huawei; Foulds, Ian G

    2012-01-01

    This paper reports a new technique for masking deep-UV exposure of poly(methyl methacrylate) (PMMA) using a printed wax mask. This technique provides an inexpensive and bulk fabrication method for PMMA structures. The technique involves the direct printing of the mask onto a polymer sheet using a commercial wax printer. The wax layer was then transferred to a PMMA substrate using a thermal laminator, exposed using deep-UV (with a wavelength of 254 nm), developed in an IPA:water solution, and completed by bonding on a PMMA cap layer. A sample microfluidic device fabricated with this method is also presented, with the microchannel as narrow as 50 µm. The whole process is easy to perform without the requirement for any microfabrication facilities. (technical note)

  6. Resonant infrared laser deposition of polymer-nanocomposite materials for optoelectronic applications

    Science.gov (United States)

    Park, Hee K.; Schriver, Kenneth E.; Haglund, Richard F.

    2011-11-01

    Polymers find a number of potentially useful applications in optoelectronic devices. These include both active layers, such as light-emitting polymers and hole-transport layers, and passive layers, such as polymer barrier coatings and light-management films. This paper reports the experimental results for polymer films deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) and resonant infrared pulsed laser deposition (RIR-PLD) for commercial optoelectronic device applications. In particular, light-management films, such as anti-reflection coatings, require refractive-index engineering of a material. However, refractive indices of polymers fall within a relatively narrow range, leading to major efforts to develop both low- and high-refractive-index polymers. Polymer nanocomposites can expand the range of refractive indices by incorporating low- or high-refractive-index nanoscale materials. RIR-MAPLE is an excellent technique for depositing polymer-nanocomposite films in multilayer structures, which are essential to light-management coatings. In this paper, we report our efforts to engineer the refractive index of a barrier polymer by combining RIR-MAPLE of nanomaterials (for example, high refractive-index TiO2 nanoparticles) and RIR-PLD of host polymer. In addition, we report on the properties of organic and polymer films deposited by RIR-MAPLE and/or RIR-PLD, such as Alq3 [tris(8-hydroxyquinoline) aluminum] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)]. Finally, the challenges and potential for commercializing RIR-MAPLE/PLD, such as industrial scale-up issues, are discussed.

  7. Temperature Sensing in Modular Microfluidic Architectures

    Directory of Open Access Journals (Sweden)

    Krisna C. Bhargava

    2016-01-01

    Full Text Available A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.

  8. Understanding Molecular Interactions within Chemically Selective Layered Polymer Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gary J. Blanchard

    2009-06-30

    This work focuses on two broad issues. These are (1) the molecular origin of the chemical selectivity achieved with ultrathin polymer multilayers, and (2) how the viscoelastic properties of the polymer layers are affected by exposure to solvent and analytes. These issues are inter-related, and to understand them we need to design experiments that probe both the energetic and kinetic aspects of interfacial adsorption processes. This project focuses on controling the chemical structure, thickness, morphology and sequential ordering of polymer layers bound to interfaces using maleimide-vinyl ether and closely related alternating copolymerization chemistry and efficient covalent cross-linking reactions that allow for layer-by-layer polymer deposition. This chemistry has been developed during the funding cycle of this Grant. We have measure the equilibrium constants for interactions between specific layers within the polymer interfaces and size-controlled, surface-functionalized gold nanoparticles. The ability to control both size and functionality of gold nanoparticle model analytes allows us to evaluate the average “pore size” that characterizes our polymer films. We have measured the “bulk” viscosity and shear modulus of the ultrathin polymer films as a function of solvent overlayer identity using quartz crystal microbalance complex impedance measurements. We have measured microscopic viscosity at specific locations within the layered polymer interfaces with time-resolved fluorescence lifetime and depolarization techniques. We combine polymer, cross-linking and nanoparticle synthetic expertise with a host of characterization techniques, including QCM gravimetry and complex impedance analysis, steady state and time-resolved spectroscopies.

  9. Optimized fabrication protocols of microfluidic devices for X-ray analysis

    KAUST Repository

    Catalano, Rossella

    2014-07-01

    Microfluidics combined with X-ray scattering techniques allows probing conformational changes or assembly processes of biological materials. Our aim was to develop a highly X-ray transparent microfluidic cell for detecting small variations of X-ray scattering involved in such processes. We describe the fabrication of a polyimide microfluidic device based on a simple, reliable and inexpensive lamination process. The implemented microstructured features result in windows with optimized X-ray transmission. The microfluidic device was characterized by X-ray microbeam scattering at the ID13 beamline of the European Synchrotron Radiation Facility. © 2014 Elsevier B.V. All rights reserved.

  10. Microfluidic Devices for Blood Fractionation

    Directory of Open Access Journals (Sweden)

    Chwee Teck Lim

    2011-07-01

    Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.

  11. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    Science.gov (United States)

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Inhibitory effect of common microfluidic materials on PCR outcome

    KAUST Repository

    Kodzius, Rimantas; Xiao, Kang; Wu, Jinbo; Yi, Xin; Gong, Xiuqing; Foulds, Ian G.; Wen, Weijia

    2012-01-01

    Microfluidic chips have a variety of applications in the biological sciences and medicine. In contrast with traditional experimental approaches, microfluidics entails lower sample and reagent consumption, allows faster reactions and enables

  13. Optial sensing systems for microfluidic devices: a review

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Huskens, Jurriaan; Verboom, Willem

    2007-01-01

    This review deals with the application of optical sensing systems for microfluidic devices. In the “off-chip approach” macro-scale optical infrastructure is coupled, while the “on-chip approach” comprises the integration of micro-optical functions into microfluidic devices. The current progress of

  14. Electric field-decoupled electroosmotic pump for microfluidic devices.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  15. A PEG-DA microfluidic device for chemotaxis studies

    International Nuclear Information System (INIS)

    Traore, Mahama Aziz; Behkam, Bahareh

    2013-01-01

    The study of cells in a well-defined and chemically programmable microenvironment is essential for a complete and fundamental understanding of the cell behaviors with respect to specific chemical compounds. Flow-free microfluidic devices that generate quasi-steady chemical gradients (spatially varying but temporally constant) have been demonstrated as effective chemotaxis assay platforms due to dissociating the effect of chemical cues from mechanical shear forces caused by fluid flow. In this work, we demonstrate the fabrication and characterization of a flow-free microfluidic platform made of polyethylene glycol diacrylate (PEG-DA) hydrogel. We have demonstrated that the mass transport properties of these devices can be customized by fabricating them from PEG-DA gels of four distinct molecular weights. In contrast to microfluidic devices developed using soft lithography; this class of devices can be realized using a more cost-effective approach of direct photopolymerization with fewer microfabrication steps. This microfluidic platform was tested by conducting a quantitative study of the chemotactic behavior of Escherichia coli (E. coli) RP437, a model microorganism, in presence of the chemo-effector, casamino-acids. Using the microfabrication and characterization methodology presented in this work, microfluidic platforms with well-defined and customizable diffusive properties can be developed to accommodate the study of a wide range of cell types. (paper)

  16. Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kragh, Søren; Kjeldsen, B.G.

    2003-01-01

    We investigate a micro-fluidic dye laser, which can be integrated with polymer-based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the lasing threshold. The laser device is characterised using the laser dye Rhodamine 6G dissolved...... in ethanol, and the influence of dye concentration on the lasing wavelength and threshold is investigated. The experiments confirm the predictions of the rate-equation model, that lasing can be achieved in the 10 mum long laser cavity with moderate concentrations of Rhodamine 6G in ethanol, starting from 5 x...

  17. Figure correction of multilayer coated optics

    Science.gov (United States)

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  18. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  19. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  20. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.