Optoelectronic implementation of multilayer perceptron and Hopfield neural networks
Domanski, Andrzej W.; Olszewski, Mikolaj K.; Wolinski, Tomasz R.
2004-11-01
In this paper we present an optoelectronic implementation of two networks based on multilayer perceptron and the Hopfield neural network. We propose two different methods to solve a problem of lack of negative optical signals that are necessary for connections between layers of perceptron as well as within the Hopfield network structure. The first method applied for construction of multilayer perceptron was based on division of signals into two channels and next to use both of them independently as positive and negative signals. The second one, applied for implementation of the Hopfield model, was based on adding of constant value for elements of matrix weight. Both methods of compensation of lack negative optical signals were tested experimentally as optoelectronic models of multilayer perceptron and Hopfield neural network. Special configurations of optical fiber cables and liquid crystal multicell plates were used. In conclusion, possible applications of the optoelectronic neural networks are briefly discussed.
Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network
DEFF Research Database (Denmark)
Míguez González, M; López Peña, F.; Díaz Casás, V.
2011-01-01
acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...
Multilayer perceptron neural network for flow prediction.
Araujo, P; Astray, G; Ferrerio-Lage, J A; Mejuto, J C; Rodriguez-Suarez, J A; Soto, B
2011-01-01
Artificial neural networks (ANNs) have proven to be a tool for characterizing, modeling and predicting many of the non-linear hydrological processes such as rainfall-runoff, groundwater evaluation or simulation of water quality. After proper training they are able to generate satisfactory predictive results for many of these processes. In this paper they have been used to predict 1 or 2 days ahead the average and maximum daily flow of a river in a small forest headwaters in northwestern Spain. The inputs used were the flow and climate data (precipitation, temperature, relative humidity, solar radiation and wind speed) as recorded in the basin between 2003 and 2008. Climatic data have been utilized in a disaggregated form by considering each one as an input variable in ANN(1), or in an aggregated form by its use in the calculation of evapotranspiration and using this as input variable in ANN(2). Both ANN(1) and ANN(2), after being trained with the data for the period 2003-2007, have provided a good fit between estimated and observed data, with R(2) values exceeding 0.95. Subsequently, its operation has been verified making use of the data for the year 2008. The correlation coefficients obtained between the data estimated by ANNs and those observed were in all cases superior to 0.85, confirming the capacity of ANNs as a model for predicting average and maximum daily flow 1 or 2 days in advance.
Parallel multilayer perceptron neural network used for hyperspectral image classification
Garcia-Salgado, Beatriz P.; Ponomaryov, Volodymyr I.; Robles-Gonzalez, Marco A.
2016-04-01
This study is focused on time optimization for the classification problem presenting a comparison of five Artificial Neural Network Multilayer Perceptron (ANN-MLP) architectures. We use the Artificial Neural Network (ANN) because it allows to recognize patterns in data in a lower time rate. Time and classification accuracy are taken into account together for the comparison. According to time comparison, two paradigms in the computational field for each ANN-MLP architecture are analysed with three schemes. Firstly, sequential programming is applied by using a single CPU core. Secondly, parallel programming is employed over a multi-core CPU architecture. Finally, a programming model running on GPU architecture is implemented. Furthermore, the classification accuracy is compared between the proposed five ANN-MLP architectures and a state-of.the-art Support Vector Machine (SVM) with three classification frames: 50%,60% and 70% of the data set's observations are randomly selected to train the classifiers. Also, a visual comparison of the classified results is presented. The Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) criteria are also calculated to characterise visual perception. The images employed were acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Reflective Optics System Imaging Spectrometer (ROSIS) and the Hyperion sensor.
Classification of fused face images using multilayer perceptron neural network
Bhattacharjee, Debotosh; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas
2010-01-01
This paper presents a concept of image pixel fusion of visual and thermal faces, which can significantly improve the overall performance of a face recognition system. Several factors affect face recognition performance including pose variations, facial expression changes, occlusions, and most importantly illumination changes. So, image pixel fusion of thermal and visual images is a solution to overcome the drawbacks present in the individual thermal and visual face images. Fused images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal and visual face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 95.07%. The main objective of employing fusion is to produce a fused image that provides the most detailed and reliable information. Fusion of multip...
Directory of Open Access Journals (Sweden)
Flávio Clésio Silva de Souza
2014-06-01
Full Text Available The purpose of the present research is to apply a Multilayer Perceptron (MLP neural network technique to create classification models from a portfolio of Non-Performing Loans (NPLs to classify this type of credit derivative. These credit derivatives are characterized as the amount of loans that were not paid and are already overdue more than 90 days. Since these titles are, because of legislative motives, moved by losses, Credit Rights Investment Funds (FDIC performs the purchase of these debts and the recovery of the credits. Using the Multilayer Perceptron (MLP architecture of Artificial Neural Network (ANN, classification models regarding the posterior recovery of these debts were created. To evaluate the performance of the models, evaluation metrics of classification relating to the neural networks with different architectures were presented. The results of the classifications were satisfactory, given the classification models were successful in the presented economics costs structure.
Ceballos-Magaña, Silvia G; de Pablos, Fernando; Jurado, José Marcos; Martín, María Jesús; Alcázar, Ángela; Muñiz-Valencia, Roberto; Gonzalo-Lumbreras, Raquel; Izquierdo-Hornillos, Roberto
2013-02-15
Differentiation of silver, gold, aged and extra-aged tequila using 1-propanol, ethyl acetate, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-methyl-1-butanol and furan derivatives like 5-(hydroxymethyl)-2-furaldehyde and 2-furaldehyde has been carried out. The content of 1-propanol, ethyl acetate, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-methyl-1-butanol was determined by means of head space solid phase microextraction gas chromatography mass-spectrometry. 5-(Hydroxymethyl)-2-furaldehyde and 2-furaldehyde were determined by high performance liquid chromatography with diode array detection. Kruskal-Wallis test was used to highlight significant differences between types of tequila. Principal component analysis was applied as visualisation technique. Linear discriminant analysis and multilayer perceptron artificial neural networks were used to construct classification models. The best classification performance was obtained when multilayer perceptron model was applied.
Generation of hourly irradiation synthetic series using the neural network multilayer perceptron
Energy Technology Data Exchange (ETDEWEB)
Hontoria, L.; Aguilera, J. [Universidad de Jaen, Linares-Jaen (Spain). Dpto. de Electronica; Zufiria, P. [Ciudad Universitaria, Madrid (Spain). Grupo de Redes Neuronales
2002-05-01
In this work, a methodology based on the neural network model called multilayer perceptron (MLP) to solve a typical problem in solar energy is presented. This methodology consists of the generation of synthetic series of hourly solar irradiation. The model presented is based on the capacity of the MLP for finding relations between variables for which interrelation is unknown explicitly. The information available can be included progressively at the series generator at different stages. A comparative study with other solar irradiation synthetic generation methods has been done in order to demonstrate the validity of the one proposed. (author)
Zhang, Haowei; Gao, Yanni; Yuan, Chengmei; Liu, Ying; Ding, Yuqing
2015-06-01
Multi-layer perceptron (MLP) neural network belongs to multi-layer feedforward neural network, and has the ability and characteristics of high intelligence. It can realize the complex nonlinear mapping by its own learning through the network. Bipolar disorder is a serious mental illness with high recurrence rate, high self-harm rate and high suicide rate. Most of the onset of the bipolar disorder starts with depressive episode, which can be easily misdiagnosed as unipolar depression and lead to a delayed treatment so as to influence the prognosis. The early identifica- tion of bipolar disorder is of great importance for patients with bipolar disorder. Due to the fact that the process of early identification of bipolar disorder is nonlinear, we in this paper discuss the MLP neural network application in early identification of bipolar disorder. This study covered 250 cases, including 143 cases with recurrent depression and 107 cases with bipolar disorder, and clinical features were statistically analyzed between the two groups. A total of 42 variables with significant differences were screened as the input variables of the neural network. Part of the samples were randomly selected as the learning sample, and the other as the test sample. By choosing different neu- ral network structures, all results of the identification of bipolar disorder were relatively good, which showed that MLP neural network could be used in the early identification of bipolar disorder.
Directory of Open Access Journals (Sweden)
Mohammad Fathian
2012-04-01
Full Text Available In this paper, the problem of predicting the exchange rate time series in the foreign exchange rate market is going to be solved using a time-delayed multilayer perceptron neural network with gold price as external factor. The input for the learning phase of the artificial neural network are the exchange rate data of the last five days plus the gold price in two different currencies of the exchange rate as the external factor for helping the artificial neural network improving its forecast accuracy. The five-day delay has been chosen because of the weekly cyclic behavior of the exchange rate time series with the consideration of two holidays in a week. The result of forecasts are then compared with using the multilayer peceptron neural network without gold price external factor by two most important evaluation techniques in the literature of exchange rate prediction. For the experimental analysis phase, the data of three important exchange rates of EUR/USD, GBP/USD, and USD/JPY are used.
Kayri, Murat
2015-01-01
The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…
An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose
Directory of Open Access Journals (Sweden)
Chih-Heng Pan
2012-12-01
Full Text Available This study examines an analog circuit comprising a multilayer perceptron neural network (MLPNN. This study proposes a low-power and small-area analog MLP circuit to implement in an E-nose as a classifier, such that the E-nose would be relatively small, power-efficient, and portable. The analog MLP circuit had only four input neurons, four hidden neurons, and one output neuron. The circuit was designed and fabricated using a 0.18 μm standard CMOS process with a 1.8 V supply. The power consumption was 0.553 mW, and the area was approximately 1.36 × 1.36 mm2. The chip measurements showed that this MLPNN successfully identified the fruit odors of bananas, lemons, and lychees with 91.7% accuracy.
Directory of Open Access Journals (Sweden)
Umar Draz
2016-01-01
Full Text Available SMEs (Small and Medium Sized Enterprises sector is facing problems relating to implementation of international quality standards. These SMEs need to identify factors affecting business success abroad for intelligent allocation of resources to the process of internationalization. In this paper, MLP NN (Multi-Layer Perceptron Neural Network has been used for identifying relative importance of key variables related to firm basics, manufacturing, quality inspection labs and level of education in determining the exporting status of Pakistani SMEs. A survey has been conducted for scoring out the pertinent variables in SMEs and coded in MLP NNs. It is found that ?firm registered with OEM (Original Equipment Manufacturer and ?size of firm? are the most important in determining exporting status of SMEs followed by other variables. For internationalization, the results aid policy makers in formulating strategies
Highly Accurate Multi-layer Perceptron Neural Network for Air Data System
Directory of Open Access Journals (Sweden)
H. S. Krishna
2009-11-01
Full Text Available The error backpropagation multi-layer perceptron algorithm is revisited. This algorithm is used to train and validate two models of three-layer neural networks that can be used to calibrate a 5-hole pressure probe. This paper addresses Occam's Razor problem as it describes the adhoc training methodology applied to improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with jump connection are comparable to second decimal digit (~0.05 accuracy, hitherto unreported in literature.Defence Science Journal, 2009, 59(6, pp.670-674, DOI:http://dx.doi.org/10.14429/dsj.59.1574
Analysis of (7)Be behaviour in the air by using a multilayer perceptron neural network.
Samolov, A; Dragović, S; Daković, M; Bačić, G
2014-11-01
A multilayer perceptron artificial neural network (ANN) model for the prediction of the (7)Be behaviour in the air as the function of meteorological parameters was developed. The model was optimized and tested using (7)Be activity concentrations obtained by standard gamma-ray spectrometric analysis of air samples collected in Belgrade (Serbia) during 2009-2011 and meteorological data for the same period. Good correlation (r = 0.91) between experimental values of (7)Be activity concentrations and those predicted by ANN was obtained. The good performance of the model in prediction of (7)Be activity concentrations could provide basis for construction of models which would forecast behaviour of other airborne radionuclides.
Vanzella, E; Fontana, A; Nonino, M; Arnouts, S; Giallongo, E; Grazian, A; Fasano, G; Popesso, P; Saracco, P; Zaggia, S R
2003-01-01
We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data and mixed samples. The prediction of the method is tested on the spectroscopic sample in the HDF-S (44 galaxies). Over the entire redshift range, $0.1
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady-state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m3/(m3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m3·d), the COD removal efficiency decreases. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.
Indian Academy of Sciences (India)
Kamal Ahmed; Shamsuddin Shahid; Sobri Bin Haroon; Wang Xiao-Jun
2015-08-01
Downscaling rainfall in an arid region is much challenging compared to wet region due to erratic and infrequent behaviour of rainfall in the arid region. The complexity is further aggregated due to scarcity of data in such regions. A multilayer perceptron (MLP) neural network has been proposed in the present study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan, which is considered as one of the most vulnerable areas of Pakistan to climate change. The National Center for Environmental Prediction (NCEP) reanalysis datasets from 20 grid points surrounding the study area were used to select the predictors using principal component analysis. Monthly rainfall data for the time periods 1961–1990 and 1991–2001 were used for the calibration and validation of the MLP model, respectively. The performance of the model was assessed using various statistics including mean, variance, quartiles, root mean square error (RMSE), mean bias error (MBE), coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE). Comparisons of mean monthly time series of observed and downscaled rainfall showed good agreement during both calibration and validation periods, while the downscaling model was found to underpredict rainfall variance in both periods. Other statistical parameters also revealed good agreement between observed and downscaled rainfall during both calibration and validation periods in most of the stations.
Directory of Open Access Journals (Sweden)
Alireza Taravat
2014-12-01
Full Text Available Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR, as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM and MultiLayer Perceptron (MLP neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN model generates poor accuracies.
Directory of Open Access Journals (Sweden)
Murat Kayri
2010-01-01
Full Text Available Problem statement: The aim of the present study is to exemplify the use of Artificial Neural Networks (ANN for parameter prediction. Missing value or unreal approach to some questions in scale is a problem for unbiased findings. To learn a real pattern with ANN provides robust and unbiased parameter estimation. Approach: To this end, data was collected from 906 students using ?Scale of student views about the expected situations and the current expectations from their families during learning process? for the study entitled ?Student views about the expected situations and the current expectations from their families during learning process?. In the study, first the initial data set gathered using the measurement tool and the new data set produced by Multi-Layer Receptors algorithm, which was considered as the highest predictive level of ANN for the research were individually analyzed by Chaid analysis and the results of the two analyses were compared. Results: The findings showed that as a result of Chaid analysis with the initial data set the variable ?education level of mother? had a considerable effect on total score dependent variable, while ?education level of father? was the influential variable on the attitude level in the data set predicted by ANN, unlike the previous model. Conclusion/Recommendations: The findings of the research show Artificial Neural Networks could be used for parameter estimation in cause-effect based studies. It is also thought the research will contribute to extensive use of advanced statistical methods.
Directory of Open Access Journals (Sweden)
Mawloud GUERMOUI
2016-07-01
Full Text Available Accurate estimation of Daily Global Solar Radiation (DGSR has been a major goal for solar energy application. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly of the search for relationships between weather variables, such as temperature, humidity, sunshine duration, etc. In this respect, the present study focuses on the development of artificial neural network (ANN model for estimation of daily global solar radiation on horizontal surface in Ghardaia city (South Algeria. In this analysis back-propagation algorithm is applied. Daily mean air temperature, relative humidity and sunshine duration was used as climatic inputs parameters, while the daily global solar radiation (DGSR was the only output of the ANN. We have evaluated Multi-Layer Perceptron (MLP models to estimate DGSR using three year of measurement (2005-2008. It was found that MLP-model based on sunshine duration and mean air temperature give accurate results in term of Mean Absolute Bias Error, Root Mean Square Error, Relative Square Error and Correlation Coefficient. The obtained values of these indicators are 0.67 MJ/m², 1.28 MJ/m², 6.12%and 98.18%, respectively which shows that MLP is highly qualified for DGSR estimation in semi-arid climates.
Directory of Open Access Journals (Sweden)
A. Piotrowski
2007-12-01
Full Text Available The prediction of temporal concentration profiles of a transported pollutant in a river is still a subject of ongoing research efforts worldwide. The present paper is aimed at studying the possibility of using Multi-Layer Perceptron Neural Networks to evaluate the whole concentration versus time profile at several cross-sections of a river under various flow conditions, using as little information about the river system as possible. In contrast with the earlier neural networks based work on longitudinal dispersion coefficients, this new approach relies more heavily on measurements of concentration collected during tracer tests over a range of flow conditions, but fewer hydraulic and morphological data are needed. The study is based upon 26 tracer experiments performed in a small river in Edinburgh, UK (Murray Burn at various flow rates in a 540 m long reach. The only data used in this study were concentration measurements collected at 4 cross-sections, distances between the cross-sections and the injection site, time, as well as flow rate and water velocity, obtained according to the data measured at the 1st and 2nd cross-sections.
The four main features of concentration versus time profiles at a particular cross-section, namely the peak concentration, the arrival time of the peak at the cross-section, and the shapes of the rising and falling limbs of the profile are modeled, and for each of them a separately designed neural network was used. There was also a variant investigated in which the conservation of the injected mass was assured by adjusting the predicted peak concentration. The neural network methods were compared with the unit peak attenuation curve concept.
In general the neural networks predicted the main features of the concentration profiles satisfactorily. The predicted peak concentrations were generally better than those obtained using the unit peak attenuation method, and the method with mass
Multilayer perceptron, fuzzy sets, and classification
Pal, Sankar K.; Mitra, Sushmita
1992-01-01
A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.
Algorithm for Training a Recurrent Multilayer Perceptron
Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.
2004-01-01
An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.
Conventional modeling of the multilayer perceptron using polynomial basis functions
Chen, Mu-Song; Manry, Michael T.
1993-01-01
A technique for modeling the multilayer perceptron (MLP) neural network, in which input and hidden units are represented by polynomial basis functions (PBFs), is presented. The MLP output is expressed as a linear combination of the PBFs and can therefore be expressed as a polynomial function of its inputs. Thus, the MLP is isomorphic to conventional polynomial discriminant classifiers or Volterra filters. The modeling technique was successfully applied to several trained MLP networks.
KLASIFIKASI WEBSITE MENGGUNAKAN ALGORITMA MULTILAYER PERCEPTRON
Directory of Open Access Journals (Sweden)
Nyoman Purnama
2014-12-01
Full Text Available Sistem klasifikasi merupakan proses temu balik informasi yang sangat bergantung dari elemen-elemen penyusunnya.Sistem ini banyak digunakan untuk mengatasi permasalahan segmentasi data. Klasifikasi dapat digunakan pada website sebagaimetode untuk mengelompokkan website. Website merupakan salah satu data yang memiliki informasi yang beraneka-ragam,sehingga pengelompokan data ini penting untuk diteliti. Sistem klasifikasi dimulai dengan melakukan proses pengumpulaninformasi dari halaman website (parsing dan untuk setiap hasil parsing dilakukan proses penghapusan kata henti, stemming,feature selection dengan tf-idf. Hasil dari proses ini berupa fitur yang menjadi inputan algoritma Multilayer Perceptron. Dalamalgoritma ini terjadi proses pembelajaran terhadap pola input masukan dan pembuatan bobot pelatihan. Bobot ini akandigunakan pada proses klasifikasi. Hasil dari penelitian menunjukkan bahwa algoritma Multilayer Perceptron dapatmenghasilkan klasifikasi website dengan akurasi yang bagus. Hal ini dibuktikan dengan beberapa tahapan penelitian yangberbeda dan didapatkan nilai akurasi rata-rata diatas 70%.
Cheng, Jie; Xiao, Qing; Li, Xiao-Wen; Liu, Qin-Huo; Du, Yong-Ming
2008-04-01
The present paper firstly points out the defect of typical temperature and emissivity separation algorithms when dealing with hyperspectral FTIR data: the conventional temperature and emissivity algorithms can not reproduce correct emissivity value when the difference between the ground-leaving radiance and object's blackbody radiation at its true temperature and the instrument random noise are on the same order, and this phenomenon is very prone to occur rence near 714 and 1 250 cm(-1) in the field measurements. In order to settle this defect, a three-layer perceptron neural network has been introduced into the simultaneous inversion of temperature and emissivity from hyperspectral FTIR data. The soil emissivity spectra from the ASTER spectral library were used to produce the training data, the soil emissivity spectra from the MODIS spectral library were used to produce the test data, and the result of network test shows the MLP is robust. Meanwhile, the ISSTES algorithm was used to retrieve the temperature and emissivity form the test data. By comparing the results of MLP and ISSTES, we found the MLP can overcome the disadvantage of typical temperature and emisivity separation, although the rmse of derived emissivity using MLP is lower than the ISSTES as a whole. Hence, the MLP can be regarded as a beneficial complementarity of the typical temperature and emissivity separation.
Multilayer Potts perceptrons with Levenberg-Marquardt learning.
Wu, Jiann-Ming
2008-12-01
This paper presents learning multilayer Potts perceptrons (MLPotts) for data driven function approximation. A Potts perceptron is composed of a receptive field and a K -state transfer function that is generalized from sigmoid-like transfer functions of traditional perceptrons. An MLPotts network is organized to perform translation from a high-dimensional input to the sum of multiple postnonlinear projections, each with its own postnonlinearity realized by a weighted K-state transfer function. MLPotts networks span a function space that theoretically covers network functions of multilayer perceptrons. Compared with traditional perceptrons, weighted Potts perceptrons realize more flexible postnonlinear functions for nonlinear mappings. Numerical simulations show MLPotts learning by the Levenberg-Marquardt (LM) method significantly improves traditional supervised learning of multilayer perceptrons for data driven function approximation.
A Parallel Framework for Multilayer Perceptron for Human Face Recognition
Bhowmik, M K; Nasipuri, M; Basu, D K; Kundu, M
2010-01-01
Artificial neural networks have already shown their success in face recognition and similar complex pattern recognition tasks. However, a major disadvantage of the technique is that it is extremely slow during training for larger classes and hence not suitable for real-time complex problems such as pattern recognition. This is an attempt to develop a parallel framework for the training algorithm of a perceptron. In this paper, two general architectures for a Multilayer Perceptron (MLP) have been demonstrated. The first architecture is All-Class-in-One-Network (ACON) where all the classes are placed in a single network and the second one is One-Class-in-One-Network (OCON) where an individual single network is responsible for each and every class. Capabilities of these two architectures were compared and verified in solving human face recognition, which is a complex pattern recognition task where several factors affect the recognition performance like pose variations, facial expression changes, occlusions, and ...
IDENTIFIKASI GORESAN DASAR MANDARIN DENGAN METODE MULTILAYER PERCEPTRON
Directory of Open Access Journals (Sweden)
Dewi
2015-02-01
Full Text Available Mandarin Language is the second international language after English Language. Mandarin Language is different with English Language. Mandarin Language consists of stroke, intonation and pin yin. The basic strokes in Mandarin Language are eleven strokes. In this research, author identifies the basic stroke of Mandarin using Multilayer Perceptron to determine how the accuracy of Multilayer Perceptron to recognize the strokes. Data of the basic stroke of Mandarin that used are strokes from several different people.The data has been saved in image with size 80x80 pixel and changed into black and white image. Then taking the FFT and Mean Citra value from the image. The next step is training the data, determining the target and implementation the multilayer perceptron method. The accuracy that reached by multilayer perceptron method in identifying the basic stroke of Mandarin is 59.09% with 45 node of hidden layer. The node amount of hidden layer very affect the output value.
Institute of Scientific and Technical Information of China (English)
Soofastaei Ali; Aminossadati Saiied M.; Arefi Mohammad M.; Kizil Mehmet S.
2016-01-01
The mining industry annually consumes trillions of British thermal units of energy, a large part of which is saveable. Diesel fuel is a significant source of energy in surface mining operations and haul trucks are the major users of this energy source. Gross vehicle weight, truck velocity and total resistance have been recognised as the key parameters affecting the fuel consumption. In this paper, an artificial neural net-work model was developed to predict the fuel consumption of haul trucks in surface mines based on the gross vehicle weight, truck velocity and total resistance. The network was trained and tested using real data collected from a surface mining operation. The results indicate that the artificial neural network modelling can accurately predict haul truck fuel consumption based on the values of the haulage param-eters considered in this study.
Institute of Scientific and Technical Information of China (English)
Bharatendra RAI; Nanua SINGH
2005-01-01
Automobile companies that spend billions of dollars annually towards warranty cost, give high priority to warranty reduction programs. Forecasting of automobile warranty performance plays an important role towards these efforts. The forecasting process involves prediction of not only the specific months-in-service (MIS) warranty performance at certain future time, but also at future MIS values. However, 'maturing data' (also called warranty growth) phenomena that causes warranty performance at specific MIS values to change with time, makes such a forecasting task challenging.Although warranty forecasting methods such as log-log plots and dynamic linear models appear in this paper we use an artificial neural network for the forecasting of warranty performance in presence testing errors using response surface methodology. This application shows the effectiveness of neural phenomena.
Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.
Abderrahim, Hamza; Chellali, Mohammed Reda; Hamou, Ahmed
2016-01-01
Air quality forecasting system has acquired high importance in atmospheric pollution due to its negative impacts on the environment and human health. The artificial neural network is one of the most common soft computing methods that can be pragmatic for carving such complex problem. In this paper, we used a multilayer perceptron neural network to forecast the daily averaged concentration of the respirable suspended particulates with aerodynamic diameter of not more than 10 μm (PM10) in Algiers, Algeria. The data for training and testing the network are based on the data sampled from 2002 to 2006 collected by SAMASAFIA network center at El Hamma station. The meteorological data, air temperature, relative humidity, and wind speed, are used as inputs network parameters in the formation of model. The training patterns used correspond to 41 days data. The performance of the developed models was evaluated on the basis index of agreement and other statistical parameters. It was seen that the overall performance of model with 15 neurons is better than the ones with 5 and 10 neurons. The results of multilayer network with as few as one hidden layer and 15 neurons were quite reasonable than the ones with 5 and 10 neurons. Finally, an error around 9% has been reached.
Recognition of Text Image Using Multilayer Perceptron
Vijendra, Singh; Vasudeva, Nisha; Parashar, Hem Jyotsana
2016-01-01
The biggest challenge in the field of image processing is to recognize documents both in printed and handwritten format. Optical Character Recognition OCR is a type of document image analysis where scanned digital image that contains either machine printed or handwritten script input into an OCR software engine and translating it into an editable machine readable digital text format. A Neural network is designed to model the way in which the brain performs a particular task or function of int...
Directory of Open Access Journals (Sweden)
Khuat Thanh Tung
2016-11-01
Full Text Available Optical Character Recognition plays an important role in data storage and data mining when the number of documents stored as images is increasing. It is expected to find the ways to convert images of typewritten or printed text into machine-encoded text effectively in order to support for the process of information handling effectively. In this paper, therefore, the techniques which are being used to convert image into editable text in the computer such as principal component analysis, multilayer perceptron network, self-organizing maps, and improved multilayer neural network using principal component analysis are experimented. The obtained results indicated the effectiveness and feasibility of the proposed methods.
Validation of Infinite Impulse Response Multilayer Perceptron for Modelling Nuclear Dynamics
Directory of Open Access Journals (Sweden)
F. Cadini
2008-01-01
Full Text Available Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite impulse response multilayer perceptron (IIR-MLP for nuclear dynamics are considered in comparison to static modeling by a finite impulse response multilayer perceptron (FIR-MLP and a conventional static MLP. The comparison is made with respect to the nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally recurrent scheme is demonstrated.
Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron
Institute of Scientific and Technical Information of China (English)
HUANGTian-min; PEIZheng
2003-01-01
The paper presents an extension multi-layer perceptron model that is capable of representing and reasoning propositional knowledge base. An extended version of propositional calculus is developed,and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of propositional knowledge base can be imple-ment by the extension multi-layer perceptron, and by learning, an unknown formula set can be found.
Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.
1992-01-01
In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.
Minimizing Hexapod Robot Foot Deviations Using Multilayer Perceptron
Directory of Open Access Journals (Sweden)
Vytautas Valaitis
2015-12-01
Full Text Available Rough-terrain traversability is one of the most valuable characteristics of walking robots. Even despite their slower speeds and more complex control algorithms, walking robots have far wider usability than wheeled or tracked robots. However, efficient movement over irregular surfaces can only be achieved by eliminating all possible difficulties, which in many cases are caused by a high number of degrees of freedom, feet slippage, frictions and inertias between different robot parts or even badly developed inverse kinematics (IK. In this paper we address the hexapod robot-foot deviation problem. We compare the foot-positioning accuracy of unconfigured inverse kinematics and Multilayer Perceptron-based (MLP methods via theory, computer modelling and experiments on a physical robot. Using MLP-based methods, we were able to significantly decrease deviations while reaching desired positions with the hexapod’s foot. Furthermore, this method is able to compensate for deviations of the robot arising from any possible reason.
Classification of Log-Polar-Visual Eigenfaces using Multilayer Perceptron
Bhowmik, Mrinal Kanti; Nasipuri, Mita; Kundu, Mahantapas; Basu, Dipak Kumar
2010-01-01
In this paper we present a simple novel approach to tackle the challenges of scaling and rotation of face images in face recognition. The proposed approach registers the training and testing visual face images by log-polar transformation, which is capable to handle complicacies introduced by scaling and rotation. Log-polar images are projected into eigenspace and finally classified using an improved multi-layer perceptron. In the experiments we have used ORL face database and Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database for visual face images. Experimental results show that the proposed approach significantly improves the recognition performances from visual to log-polar-visual face images. In case of ORL face database, recognition rate for visual face images is 89.5% and that is increased to 97.5% for log-polar-visual face images whereas for OTCBVS face database recognition rate for visual images is 87.84% and 96.36% for log-polar-visual face images.
Digital modulation classification using multi-layer perceptron and time-frequency features
Institute of Scientific and Technical Information of China (English)
Yuan Ye; Mei Wenbo
2007-01-01
Considering that real communication signals corrupted by noise are generally nonstationary, and time-frequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals.The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation.According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed.Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier.
An application of the multilayer perceptron: Solar radiation maps in Spain
Energy Technology Data Exchange (ETDEWEB)
Hontoria, L.; Aguilera, J. [Grupo Investigacion y Desarrollo en Energia Solar y Automatica, Dpto. de Ingenieria Electronica, de Telecomunicaciones y Automatica, Escuela Politecnica Superior de Jaen, Campus de las Lagunillas, Universidad de Jaen, 23071 Jaen (Spain); Zufiria, P. [Grupo de Redes Neuronales, Dpto. de Matematica Aplicada a las Tecnologias de la Informacion, ETSI Telecomunicaciones, UPM Ciudad Universitaria s/n, 28040 Madrid (Spain)
2005-11-01
In this work an application of a methodology to obtain solar radiation maps is presented. This methodology is based on a neural network system [Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4-22] called Multi-Layer Perceptron (MLP) [Haykin, S., 1994. Neural Networks. A Comprehensive Foundation. Macmillan Publishing Company; Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366]. To obtain a solar radiation map it is necessary to know the solar radiation of many points spread wide across the zone of the map where it is going to be drawn. For most of the locations all over the world the records of these data (solar radiation in whatever scale, daily or hourly values) are non-existent. Only very few locations have the privilege of having good meteorological stations where records of solar radiation have being registered. But even in those locations with historical records of solar data, the quality of these solar series is not as good as it should be for most purposes. In addition, to draw solar radiation maps the number of points on the maps (real sites) that it is necessary to work with makes this problem difficult to solve. Nevertheless, with the application of the methodology proposed in this paper, this problem has been solved and solar radiation maps have been obtained for a small region of Spain: Jaen province, a southern province of Spain between parallels 38{sup o}25' N and 37{sup o}25' N, and meridians 4{sup o}10' W and 2{sup o}10' W, and for a larger region: Andalucia, the most southern region of Spain situated between parallels 38{sup o}40' N and 36{sup o}00' N, and meridians 7{sup o}30' W and 1{sup o}40' W. (author)
Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron
Directory of Open Access Journals (Sweden)
Mohammad Subhi Al-batah
2015-01-01
Full Text Available Landslides are one of the dangerous natural phenomena that hinder the development in Penang Island, Malaysia. Therefore, finding the reliable method to predict the occurrence of landslides is still the research of interest. In this paper, two models of artificial neural network, namely, Multilayer Perceptron (MLP and Cascade Forward Neural Network (CFNN, are introduced to predict the landslide hazard map of Penang Island. These two models were tested and compared using eleven machine learning algorithms, that is, Levenberg Marquardt, Broyden Fletcher Goldfarb, Resilient Back Propagation, Scaled Conjugate Gradient, Conjugate Gradient with Beale, Conjugate Gradient with Fletcher Reeves updates, Conjugate Gradient with Polakribiere updates, One Step Secant, Gradient Descent, Gradient Descent with Momentum and Adaptive Learning Rate, and Gradient Descent with Momentum algorithm. Often, the performance of the landslide prediction depends on the input factors beside the prediction method. In this research work, 14 input factors were used. The prediction accuracies of networks were verified using the Area under the Curve method for the Receiver Operating Characteristics. The results indicated that the best prediction accuracy of 82.89% was achieved using the CFNN network with the Levenberg Marquardt learning algorithm for the training data set and 81.62% for the testing data set.
Elizondo, David A; Birkenhead, Ralph; Góngora, Mario; Taillard, Eric; Luyima, Patrick
2007-12-01
The Recursive Deterministic Perceptron (RDP) feed-forward multilayer neural network is a generalisation of the single layer perceptron topology. This model is capable of solving any two-class classification problem as opposed to the single layer perceptron which can only solve classification problems dealing with linearly separable sets. For all classification problems, the construction of an RDP is done automatically and convergence is always guaranteed. Three methods for constructing RDP neural networks exist: Batch, Incremental, and Modular. The Batch method has been extensively tested and it has been shown to produce results comparable with those obtained with other neural network methods such as Back Propagation, Cascade Correlation, Rulex, and Ruleneg. However, no testing has been done before on the Incremental and Modular methods. Contrary to the Batch method, the complexity of these two methods is not NP-Complete. For the first time, a study on the three methods is presented. This study will allow the highlighting of the main advantages and disadvantages of each of these methods by comparing the results obtained while building RDP neural networks with the three methods in terms of the convergence time, the level of generalisation, and the topology size. The networks were trained and tested using the following standard benchmark classification datasets: IRIS, SOYBEAN, and Wisconsin Breast Cancer. The results obtained show the effectiveness of the Incremental and the Modular methods which are as good as that of the NP-Complete Batch method but with a much lower complexity level. The results obtained with the RDP are comparable to those obtained with the backpropagation and the Cascade Correlation algorithms.
Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
Classification of frozen soil blastability by using perceptron neural network
Institute of Scientific and Technical Information of China (English)
马芹永; 张志红
2002-01-01
Influence factors of frozen soil blastability are analyzed which mainly conclude the strain energy coefficient, tensile strength, compressive strength, longitudinal wave velocity and transverse wave velocity. According to the principle of perceptron neural network, at first the index factors are standardized by the aid of the efficient function theory, then the blastability of frozen sand at -7, -12 and -17 ℃ are classified three categories. Through adjusting the weight value and threshold value, we can obtain that the clay blastability at -7 ℃ is close to the sand blastability at -12 ℃, they belong to the second category, the clay blastability at -12 ℃ is close to the sand blastability at -17 ℃, thus they are divided into the third category.
Classification of Parking Spots Using Multilayer Perceptron Networks
Directory of Open Access Journals (Sweden)
FALCAO, H. S.
2013-12-01
Full Text Available This project intends to develop a prototype for the identification of free spots in open air parking area where there is a good aerial view without obstacles, allowing for the identification of occupied and free spots. We used image processing techniques and pattern recognition using Artificial Neural Networks (ANN. In order to help implement the prototype, we used Matlab. In order to simulate the parking area, we created a model so that we could acquire the images using a webcam, process them, train the neural network, classify the spots and finally, show the results. The results show that it is viable to apply pattern recognition through image capture to classify parking spots
Classification of Parking Spots Using Multilayer Perceptron Networks
FALCAO, H. S.; LOVATO, A. V.; SANTOS A. F. DOS; OLIVEIRA, L. S.
2013-01-01
This project intends to develop a prototype for the identification of free spots in open air parking area where there is a good aerial view without obstacles, allowing for the identification of occupied and free spots. We used image processing techniques and pattern recognition using Artificial Neural Networks (ANN). In order to help implement the prototype, we used Matlab. In order to simulate the parking area, we created a model so that we could acquire the images using a webcam, process th...
Fuzzy and Multilayer Perceptron for Evaluation of HV Bushings
Dhlamini, Sizwe M; Majozi, Thokozani
2007-01-01
The work proposes the application of fuzzy set theory (FST) to diagnose the condition of high voltage bushings. The diagnosis uses dissolved gas analysis (DGA) data from bushings based on IEC60599 and IEEE C57-104 criteria for oil impregnated paper (OIP) bushings. FST and neural networks are compared in terms of accuracy and computational efficiency. Both FST and NN simulations were able to diagnose the bushings condition with 10% error. By using fuzzy theory, the maintenance department can classify bushings and know the extent of degradation in the component.
A Linear Multi-Layer Perceptron for Identifying Harmonic Contents of Biomedical Signals
Nguyen, Thien; Wira, Patrice
2013-01-01
Part 7: Intelligent Signal and Image Processing; International audience; A linear Multi Layer Perceptron (MLP) is proposed as a new approach to identify the harmonic content of biomedical signals and to characterize them. This layered neural network uses only linear neurons. Some synthetic sinusoidal terms are used as inputs and represent a priori knowledge. A measured signal serves as a reference, then a supervised learning allows to adapt the weights and to fit its Fourier series. The ampli...
Experts Fusion and Multilayer Perceptron Based on Belief Learning for Sonar Image Classification
Martin, Arnaud
2008-01-01
The sonar images provide a rapid view of the seabed in order to characterize it. However, in such as uncertain environment, real seabed is unknown and the only information we can obtain, is the interpretation of different human experts, sometimes in conflict. In this paper, we propose to manage this conflict in order to provide a robust reality for the learning step of classification algorithms. The classification is conducted by a multilayer perceptron, taking into account the uncertainty of the reality in the learning stage. The results of this seabed characterization are presented on real sonar images.
Approximating Gaussian mixture model or radial basis function network with multilayer perceptron.
Patrikar, Ajay M
2013-07-01
Gaussian mixture models (GMMs) and multilayer perceptron (MLP) are both popular pattern classification techniques. This brief shows that a multilayer perceptron with quadratic inputs (MLPQ) can accurately approximate GMMs with diagonal covariance matrices. The mapping equations between the parameters of GMM and the weights of MLPQ are presented. A similar approach is applied to radial basis function networks (RBFNs) to show that RBFNs with Gaussian basis functions and Euclidean norm can be approximated accurately with MLPQ. The mapping equations between RBFN and MLPQ weights are presented. There are well-established training procedures for GMMs, such as the expectation maximization (EM) algorithm. The GMM parameters obtained by the EM algorithm can be used to generate a set of initial weights of MLPQ. Similarly, a trained RBFN can be used to generate a set of initial weights of MLPQ. MLPQ training can be continued further with gradient-descent based methods, which can lead to improvement in performance compared to the GMM or RBFN from which it is initialized. Thus, the MLPQ can always perform as well as or better than the GMM or RBFN.
Quantum perceptron over a field and neural network architecture selection in a quantum computer.
da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa
2016-04-01
In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator.
Multilayer Perceptron applied to Data Assimilation for the Global FSU Atmospheric Model
Cocke, S.; Cintra, R. S.; Campos Velho, H. F.
2015-12-01
The better quality of forecasts is given the more accurate of the initial conditions. Data assimilation (DA) is the process by which short-forecast and observations are combined to obtain an accurate representation of the state of the modeled system, e.g. is a technique to generate an initial condition to a weather forecasts. This paper shows the results of a DA technique using artificial neural networks (NN) to obtain the analysis to the atmospheric model for the Florida State University. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel spectral primitive equation model with vertical sigma coordinates, at resolution T63L27. The data assimilation experiments are based in simulated observations data and FSUGSM 6-hours forecasts. For the NN data assimilation, we use Multilayer Perceptron (MLP) with supervised training algorithm where NN receives input vectors with their corresponding response from LETKF data assimilation. The surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity results are presented. A self-configuration method finds the optimal NN and configures a set of 52 MLPs to DA experiment, referred as MLP-DA. A methodology developed with self-configuration using a meta-heuristic called the Multiple Particle Collision Algorithm to compute the optimal topology for NN. The MLP presents four input nodes, two nodes coordinates vector, one for the 6-hours forecast vector and one node for observation vector; one output node for the analysis vector results. The vector represents the values for one grid model point. The ANNs were trained with data from each month of 2001, 2002, and 2003. The
Alfina, Ommi
2012-01-01
As one of the information processing systems, artificial neural networks (ANN) which resembles biological neural networks has grown rapidly. One application of artificial neural networks is in the field of biology which to categorize plant species. In order to determine the species of a plant, one usually looks at its flowers or its leaves. In this research, two artificial neural networks (ANN) methods which are backpropagation and simple perceptron are applied separately in order to evalua...
Image Binarization Using Multi-Layer Perceptron: A Semi-Supervised Approach
Directory of Open Access Journals (Sweden)
Amlan Raychaudhuri
2012-04-01
Full Text Available In this paper, we have discussed the Image Binarization technique using Multilayer Perceptron (MLP. The purpose of Image Binarization is to extract the lightness (brightness, density as a feature amount from the Image. It converts a gray-scale image of up to 256 gray levels to a black and white image. We use Backpropagation algorithm for training MLP. It is a supervised learning technique. Here Kmeans clustering algorithm has been used for clustering a 256 × 256 gray-level image. The dataset obtained by this is fed to the MLP and processed in a Semi-Supervised way where some training samples are taken as Known patterns (for training and others as Unknown patterns. Finally through this approach a Binarized image is produced.
A Rejection Model Based on Multi-Layer Perceptrons forMandarin Digit Recognition
Institute of Scientific and Technical Information of China (English)
钟林; 刘加; 刘润生
2002-01-01
High performance Mandarin digit recognition (MDR) is much more difficult to achieve than its English counterpart, especially on inexpensive hardware implementation In this paper, a new Multi-Layer Perceptrons (MLP) based postprocessor, an a posteriori probability estimator, is presented and used for the rejection model of the speaker independent Mandarin digit recognition system based on hidden Markov model (HMM). Poor utterances,which are recognized by HMMs but have low a posteriori probability, will be rejected. After rejecting about 4.9% of the tested utterances, the MLP rejection model can boost the digit recognition accuracy from 97.1% to 99.6%. The performance is better than those rejection models based on linear discrimination, likelihood ratio or anti-digit.
Classification of Polar-Thermal Eigenfaces using Multilayer Perceptron for Human Face Recognition
Bhowmik, Mrinal Kanti; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas
2010-01-01
This paper presents a novel approach to handle the challenges of face recognition. In this work thermal face images are considered, which minimizes the affect of illumination changes and occlusion due to moustache, beards, adornments etc. The proposed approach registers the training and testing thermal face images in polar coordinate, which is capable to handle complicacies introduced by scaling and rotation. Polar images are projected into eigenspace and finally classified using a multi-layer perceptron. In the experiments we have used Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal face images. Experimental results show that the proposed approach significantly improves the verification and identification performance and the success rate is 97.05%.
Time series modeling with pruned multi-layer perceptron and 2-stage damped least-squares method
Voyant, Cyril; Tamas, Wani; Paoli, Christophe; Balu, Aurélia; Muselli, Marc; Nivet, Marie-Laure; Notton, Gilles
2014-03-01
A Multi-Layer Perceptron (MLP) defines a family of artificial neural networks often used in TS modeling and forecasting. Because of its "black box" aspect, many researchers refuse to use it. Moreover, the optimization (often based on the exhaustive approach where "all" configurations are tested) and learning phases of this artificial intelligence tool (often based on the Levenberg-Marquardt algorithm; LMA) are weaknesses of this approach (exhaustively and local minima). These two tasks must be repeated depending on the knowledge of each new problem studied, making the process, long, laborious and not systematically robust. In this paper a pruning process is proposed. This method allows, during the training phase, to carry out an inputs selecting method activating (or not) inter-nodes connections in order to verify if forecasting is improved. We propose to use iteratively the popular damped least-squares method to activate inputs and neurons. A first pass is applied to 10% of the learning sample to determine weights significantly different from 0 and delete other. Then a classical batch process based on LMA is used with the new MLP. The validation is done using 25 measured meteorological TS and cross-comparing the prediction results of the classical LMA and the 2-stage LMA.
Evaluation of multilayer perceptron algorithms for an analysis of network flow data
Bieniasz, Jedrzej; Rawski, Mariusz; Skowron, Krzysztof; Trzepiński, Mateusz
2016-09-01
The volume of exchanged information through IP networks is larger than ever and still growing. It creates a space for both benign and malicious activities. The second one raises awareness on security network devices, as well as network infrastructure and a system as a whole. One of the basic tools to prevent cyber attacks is Network Instrusion Detection System (NIDS). NIDS could be realized as a signature-based detector or an anomaly-based one. In the last few years the emphasis has been placed on the latter type, because of the possibility of applying smart and intelligent solutions. An ideal NIDS of next generation should be composed of self-learning algorithms that could react on known and unknown malicious network activities respectively. In this paper we evaluated a machine learning approach for detection of anomalies in IP network data represented as NetFlow records. We considered Multilayer Perceptron (MLP) as the classifier and we used two types of learning algorithms - Backpropagation (BP) and Particle Swarm Optimization (PSO). This paper includes a comprehensive survey on determining the most optimal MLP learning algorithm for the classification problem in application to network flow data. The performance, training time and convergence of BP and PSO methods were compared. The results show that PSO algorithm implemented by the authors outperformed other solutions if accuracy of classifications is considered. The major disadvantage of PSO is training time, which could be not acceptable for larger data sets or in real network applications. At the end we compared some key findings with the results from the other papers to show that in all cases results from this study outperformed them.
Institute of Scientific and Technical Information of China (English)
黄天民; 裴峥
2003-01-01
The paper presents an extension multi-layer perceptron model that is capable of representing and reasoning propositional knowledge base. An extended version of propositional calculus is developed, and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of propositional knowledge base can be implement by the extension multi-layer perceptron, and by learning, an unknown formula set can be found.
Uysal, Gökçen; Şensoy, Aynur; Şorman, A. Arda
2016-12-01
This paper investigates the contribution of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Snow Cover Area (SCA) product and in-situ snow depth measurements to Artificial Neural Network model (ANN) based daily streamflow forecasting in a mountainous river basin. In order to represent non-linear structure of the snowmelt process, Multi-Layer Perceptron (MLP) Feed-Forward Backpropagation (FFBP) architecture is developed and applied in Upper Euphrates River Basin (10,275 km2) of Turkey where snowmelt constitutes approximately 2/3 of total annual volume of runoff during spring and early summer months. Snowmelt season is evaluated between March and July; 7 years (2002-2008) seasonal daily data are used during training while 3 years (2009-2011) seasonal daily data are split for forecasting. One of the fastest ANN training algorithms, the Levenberg-Marquardt, is used for optimization of the network weights and biases. The consistency of the network is checked with four performance criteria: coefficient of determination (R2), Nash-Sutcliffe model efficiency (ME), root mean square error (RMSE) and mean absolute error (MAE). According to the results, SCA observations provide useful information for developing of a neural network model to predict snowmelt runoff, whereas snow depth data alone are not sufficient. The highest performance is experienced when total daily precipitation, average air temperature data are combined with satellite snow cover data. The data preprocessing technique of Discrete Wavelet Analysis (DWA) is coupled with MLP modeling to further improve the runoff peak estimates. As a result, Nash-Sutcliffe model efficiency is increased from 0.52 to 0.81 for training and from 0.51 to 0.75 for forecasting. Moreover, the results are compared with that of a conceptual model, Snowmelt Runoff Model (SRM), application using SCA as an input. The importance and the main contribution of this study is to use of satellite snow products and data
Cebrian, Manuel
2007-01-01
The random initialization of weights of a multilayer perceptron makes it possible to model its training process as a Las Vegas algorithm, i.e. a randomized algorithm which stops when some required training error is obtained, and whose execution time is a random variable. This modelling is used to perform a case study on a well-known pattern recognition benchmark: the UCI Thyroid Disease Database. Empirical evidence is presented of the training time probability distribution exhibiting a heavy tail behavior, meaning a big probability mass of long executions. This fact is exploited to reduce the training time cost by applying two simple restart strategies. The first assumes full knowledge of the distribution yielding a 40% cut down in expected time with respect to the training without restarts. The second, assumes null knowledge, yielding a reduction ranging from 9% to 23%.
Institute of Scientific and Technical Information of China (English)
LI Chang-ping; ZHI Xin-yue; MA Jun; CUI Zhuang; ZHU Zi-long; ZHANG Cui; HU Liang-ping
2012-01-01
Background Various methods can be applied to build predictive models for the clinical data with binary outcome variable.This research aims to explore the process of constructing common predictive models,Logistic regression (LR),decision tree (DT) and multilayer perceptron (MLP),as well as focus on specific details when applying the methods mentioned above:what preconditions should be satisfied,how to set parameters of the model,how to screen variables and build accuracy models quickly and efficiently,and how to assess the generalization ability (that is,prediction performance) reliably by Monte Carlo method in the case of small sample size.Methods All the 274 patients (include 137 type 2 diabetes mellitus with diabetic peripheral neuropathy and 137 type 2 diabetes mellitus without diabetic peripheral neuropathy) from the Metabolic Disease Hospital in Tianjin participated in the study.There were 30 variables such as sex,age,glycosylated hemoglobin,etc.On account of small sample size,the classification and regression tree (CART) with the chi-squared automatic interaction detector tree (CHAID) were combined by means of the 100 times 5-7 fold stratified cross-validation to build DT.The MLP was constructed by Schwarz Bayes Criterion to choose the number of hidden layers and hidden layer units,alone with levenberg-marquardt (L-M) optimization algorithm,weight decay and preliminary training method.Subsequently,LR was applied by the best subset method with the Akaike Information Criterion (AIC) to make the best used of information and avoid overfitting.Eventually,a 10 to 100 times 3-10 fold stratified cross-validation method was used to compare the generalization ability of DT,MLP and LR in view of the areas under the receiver operating characteristic (ROC) curves (AUC).Results The AUC of DT,MLP and LR were 0.8863,0.8536 and 0.8802,respectively.As the larger the AUC of a specific prediction model is,the higher diagnostic ability presents,MLP performed optimally,and then
Chen, Fangyue; Chen, Guanrong; He, Qinbin; He, Guolong; Xu, Xiubin
2009-08-01
Implementing linearly nonseparable Boolean functions (non-LSBF) has been an important and yet challenging task due to the extremely high complexity of this kind of functions and the exponentially increasing percentage of the number of non-LSBF in the entire set of Boolean functions as the number of input variables increases. In this paper, an algorithm named DNA-like learning and decomposing algorithm (DNA-like LDA) is proposed, which is capable of effectively implementing non-LSBF. The novel algorithm first trains the DNA-like offset sequence and decomposes non-LSBF into logic XOR operations of a sequence of LSBF, and then determines the weight-threshold values of the multilayer perceptron (MLP) that perform both the decompositions of LSBF and the function mapping the hidden neurons to the output neuron. The algorithm is validated by two typical examples about the problem of approximating the circular region and the well-known n-bit parity Boolean function (PBF).
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Owing to continuous production lines with large amount of consecutive controls, various control signals and huge logistic relations, this paper introduced the methods and principles of the development of knowledge base in a fault diagnosis expert system that was based on machine learning by the four-layer perceptron neural network. An example was presented. By combining differential function with not differentia function and back propagation of error with back propagation of expectation, the four-layer perceptron neural network was established. And it was good for solving such a bottleneck problem in knowledge acquisition in expert system and enhancing real-time on-line diagnosis. A method of synthetic back propagation was designed, which broke the limit to non-differentiable function in BP neural network.
Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D
2015-01-01
The model organism, Drosophila melanogaster, and the mosquito Anopheles gambiae use 60 and 79 odorant receptors, respectively, to sense their olfactory world. However, a commercial "electronic nose" in the form of an insect olfactory biosensor demands very low numbers of receptors at its front end of detection due to the difficulties of receptor/sensor integration and functionalization. In this letter, we demonstrate how computation via artificial neural networks (ANNs), in the form of multilayer perceptrons (MLPs), can be successfully incorporated as the signal processing back end of the biosensor to drastically reduce the number of receptors to three while still retaining 100% performance of odorant detection to that of a full complement of receptors. In addition, we provide a detailed performance comparison between D. melanogaster and A. gambiae odorant receptors and demonstrate that A. gambiae receptors provide superior olfaction detection performance over D. melanogaster for very low receptor numbers. The results from this study present the possibility of using the computation of MLPs to discover ideal biological olfactory receptors for an olfactory biosensor device to provide maximum classification performance of unknown odorants.
Djupfeldt, Petter
2016-01-01
This thesis explores the potential of using machine learning to superviseand diagnose a computer system by comparing how Multilayer Perceptron(MLP) and Random Forest (RF) perform at this task in a controlledenvironment. The base of comparison is primarily how accurate theyare in their predictions, but some thought is given to how cost effectivethey are regarding time. The specific system used is a content management system (CMS)called Polopoly. The thesis details how training samples were col...
Gardner, J. W.; Craven, M.; Dow, C.; Hines, E. L.
1998-01-01
An investigation into the use of an electronic nose to predict the class and growth phase of two potentially pathogenic micro-organisms, Eschericha coli ( E. coli) and Staphylococcus aureus ( S. aureus), has been performed. In order to do this we have developed an automated system to sample, with a high degree of reproducibility, the head space of bacterial cultures grown in a standard nutrient medium. Head spaces have been examined by using an array of six different metal oxide semiconducting gas sensors and classified by a multi-layer perceptron (MLP) with a back-propagation (BP) learning algorithm. The performance of 36 different pre-processing algorithms has been studied on the basis of nine different sensor parameters and four different normalization techniques. The best MLP was found to classify successfully 100% of the unknown S. aureus samples and 92% of the unknown E. coli samples, on the basis of a set of 360 training vectors and 360 test vectors taken from the lag, log and stationary growth phases. The real growth phase of the bacteria was determined from optical cell counts and was predicted from the head space samples with an accuracy of 81%. We conclude that these results show considerable promise in that the correct prediction of the type and growth phase of pathogenic bacteria may help both in the more rapid treatment of bacterial infections and in the more efficient testing of new anti-biotic drugs.
Lenze, Burkhard; Raddatz, Jörg
2002-04-01
In this paper, we will take a further look at a generalized perceptron-like learning rule which uses dilation and translation parameters in order to enhance the recall performance of higher order Hopfield neural networks without significantly increasing their complexity. We will practically study the influence of these parameters on the perceptron learning and recall process, using a generalized version of the Hebbian learning rule for initialization. Our analysis will be based on a pattern recognition problem with random patterns. We will see that in case of a highly correlated set of patterns, there can be gained some improvements concerning the learning and recall performance. On the other hand, we will show that the dilation and translation parameters have to be chosen carefully for a positive result.
Hybrid combination of multi-layer perceptron and neutron activation analysis in cement prediction
Eftekhari-Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.
2017-02-01
Determination of concentration of major elements such as Ca, Si, Al, and Fe in cement is very important for quality control during its production, correct classification according to the existing standards, and thus for appropriate use in the construction industry. For this purpose, neutron activation analysis is very suitable. In this preliminary theoretical work, the irradiation and consecutive measurement of the percentage of the constituent elements in different cement samples were done using MCNPX with γ-ray spectra as the output. Specific peaks of Ca, Si, Al, and Fe obtained from these spectra were used as input for artificial neural network (18 of them for training and 8 for testing) resulting in the determination of each element in the given sample. The mean absolute errors of the results are less than 0.4%, which is very promising for the future experimental work where the uncertainties are usually one order higher.
Hybrid combination of multi-layer perceptron and neutron activation analysis in cement prediction
Indian Academy of Sciences (India)
E EFTEKHARI-ZADEH; S A H FEGHHI; G H ROSHANI
2017-02-01
Determination of concentration of major elements such as Ca, Si, Al, and Fe in cement is very important for quality control during its production, correct classification according to the existing standards, and thus for appropriate use in the construction industry. For this purpose, neutron activation analysis is verysuitable. In this preliminary theoretical work, the irradiation and consecutive measurement of the percentage of the constituent elements in different cement samples were done using MCNPX with γ -ray spectra as the output. Specific peaks of Ca, Si, Al, and Fe obtained from these spectra were used as input for artificial neural network (18 of them for training and 8 for testing) resulting in the determination of each element in the given sample. The mean absolute errors of the results are less than 0.4%, which is very promising for the future xperimental work where the uncertainties are usually one order higher.
Multi-Layer and Recursive Neural Networks for Metagenomic Classification.
Ditzler, Gregory; Polikar, Robi; Rosen, Gail
2015-09-01
Recent advances in machine learning, specifically in deep learning with neural networks, has made a profound impact on fields such as natural language processing, image classification, and language modeling; however, feasibility and potential benefits of the approaches to metagenomic data analysis has been largely under-explored. Deep learning exploits many layers of learning nonlinear feature representations, typically in an unsupervised fashion, and recent results have shown outstanding generalization performance on previously unseen data. Furthermore, some deep learning methods can also represent the structure in a data set. Consequently, deep learning and neural networks may prove to be an appropriate approach for metagenomic data. To determine whether such approaches are indeed appropriate for metagenomics, we experiment with two deep learning methods: i) a deep belief network, and ii) a recursive neural network, the latter of which provides a tree representing the structure of the data. We compare these approaches to the standard multi-layer perceptron, which has been well-established in the machine learning community as a powerful prediction algorithm, though its presence is largely missing in metagenomics literature. We find that traditional neural networks can be quite powerful classifiers on metagenomic data compared to baseline methods, such as random forests. On the other hand, while the deep learning approaches did not result in improvements to the classification accuracy, they do provide the ability to learn hierarchical representations of a data set that standard classification methods do not allow. Our goal in this effort is not to determine the best algorithm in terms accuracy-as that depends on the specific application-but rather to highlight the benefits and drawbacks of each of the approach we discuss and provide insight on how they can be improved for predictive metagenomic analysis.
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
In the present study, an artificial neural network method has been applied for wave transmission prediction of multilayer floating breakwater. Two neural network models are constructed based on the parameters which influence the wave transmission...
Supervised Learning in Multilayer Spiking Neural Networks
Sporea, Ioana
2012-01-01
The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.
Cruz, Febus Reidj G.; Padilla, Dionis A.; Hortinela, Carlos C.; Bucog, Krissel C.; Sarto, Mildred C.; Sia, Nirlu Sebastian A.; Chung, Wen-Yaw
2017-02-01
This study is about the determination of moisture content of milled rice using image processing technique and perceptron neural network algorithm. The algorithm involves several inputs that produces an output which is the moisture content of the milled rice. Several types of milled rice are used in this study, namely: Jasmine, Kokuyu, 5-Star, Ifugao, Malagkit, and NFA rice. The captured images are processed using MATLAB R2013a software. There is a USB dongle connected to the router which provided internet connection for online web access. The GizDuino IOT-644 is used for handling the temperature and humidity sensor, and for sending and receiving of data from computer to the cloud storage. The result is compared to the actual moisture content range using a moisture tester for milled rice. Based on results, this study provided accurate data in determining the moisture content of the milled rice.
Based on Perceptron Object Classification Algorithms for Processing of Agricultural Field Images
Ganchenko, V.; Doudkin, A.; Pawlowski, T.; Petrovsky, A.; Sadykhov, R.
2012-01-01
Neural network algorithms of object classification are considered in the paper applying to disease area recognition of agricultural field images. The images are presented as reduced normalized histograms. The classification is carried out for RGB-and HSV-space by using of a multilayer perceptron.
Bahi, Jacques M; Couchot, Jean-François; Guyeux, Christophe; Salomon, Michel
2012-03-01
Many research works deal with chaotic neural networks for various fields of application. Unfortunately, up to now, these networks are usually claimed to be chaotic without any mathematical proof. The purpose of this paper is to establish, based on a rigorous theoretical framework, an equivalence between chaotic iterations according to Devaney and a particular class of neural networks. On the one hand, we show how to build such a network, on the other hand, we provide a method to check if a neural network is a chaotic one. Finally, the ability of classical feedforward multilayer perceptrons to learn sets of data obtained from a dynamical system is regarded. Various boolean functions are iterated on finite states. Iterations of some of them are proven to be chaotic as it is defined by Devaney. In that context, important differences occur in the training process, establishing with various neural networks that chaotic behaviors are far more difficult to learn.
Jeong, Sungmoon; Jung, Chanwoong; Kim, Cheol-Su; Shim, Jae Hoon; Lee, Minho
2011-08-01
This paper presents a new computer interface system based on laser spot detection and moving pattern analysis of the detected laser spots in real-time processing. We propose a systematic method that uses either the frame difference of successive input images or an autoassociative multilayer perceptron (AAMLP) to detect laser spots. The AAMLP is applied only to areas of the input images where the frame difference of the successive images is not effective for detecting laser spots. In order to enhance the detection performance, the AAMLP is trained by a new training algorithm that increases the sensitivity of the input-to-output mapping of the AAMLP allowing a small variation in the input feature of the laser spot image to be successfully indicated. The proposed interface system is also able to keep track of the laser spot and recognize gesture commands. The moving pattern of the laser spot is recognized by using a multilayer perception. It is experimentally shown that the proposed computer interface system is fast enough for real-time operation with reliable accuracy.
Directory of Open Access Journals (Sweden)
Chudech Losiri
2016-07-01
Full Text Available Urban expansion is considered as one of the most important problems in several developing countries. Bangkok Metropolitan Region (BMR is the urbanized and agglomerated area of Bangkok Metropolis (BM and its vicinity, which confronts the expansion problem from the center of the city. Landsat images of 1988, 1993, 1998, 2003, 2008, and 2011 were used to detect the land use and land cover (LULC changes. The demographic and economic data together with corresponding maps were used to determine the driving factors for land conversions. This study applied Cellular Automata-Markov Chain (CA-MC and Multi-Layer Perceptron-Markov Chain (MLP-MC to model LULC and urban expansions. The performance of the CA-MC and MLP-MC yielded more than 90% overall accuracy to predict the LULC, especially the MLP-MC method. Further, the annual population and economic growth rates were considered to produce the land demand for the LULC in 2014 and 2035 using the statistical extrapolation and system dynamics (SD. It was evident that the simulated map in 2014 resulting from the SD yielded the highest accuracy. Therefore, this study applied the SD method to generate the land demand for simulating LULC in 2035. The outcome showed that urban occupied the land around a half of the BMR.
First steps towards the realization of a double layer perceptron based on organic memristive devices
Directory of Open Access Journals (Sweden)
A. V. Emelyanov
2016-11-01
Full Text Available Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classification (XOR logic task using a network implemented with CMOS-based neurons and organic memrisitive devices that constitutes the first step toward the realization of a double layer perceptron. We also show numerically the ability of such network to solve a principally analogue task which cannot be realized by digital devices. The obtained results prove the possibility to create a multilayer ANN based on memristive devices that paves the way for designing a more complex network such as the double layer perceptron.
First steps towards the realization of a double layer perceptron based on organic memristive devices
Emelyanov, A. V.; Lapkin, D. A.; Demin, V. A.; Erokhin, V. V.; Battistoni, S.; Baldi, G.; Dimonte, A.; Korovin, A. N.; Iannotta, S.; Kashkarov, P. K.; Kovalchuk, M. V.
2016-11-01
Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs) since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron) based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classification (XOR logic task) using a network implemented with CMOS-based neurons and organic memrisitive devices that constitutes the first step toward the realization of a double layer perceptron. We also show numerically the ability of such network to solve a principally analogue task which cannot be realized by digital devices. The obtained results prove the possibility to create a multilayer ANN based on memristive devices that paves the way for designing a more complex network such as the double layer perceptron.
Speech Recognition Method Based on Multilayer Chaotic Neural Network
Institute of Scientific and Technical Information of China (English)
REN Xiaolin; HU Guangrui
2001-01-01
In this paper,speech recognitionusing neural networks is investigated.Especially,chaotic dynamics is introduced to neurons,and a mul-tilayer chaotic neural network (MLCNN) architectureis built.A learning algorithm is also derived to trainthe weights of the network.We apply the MLCNNto speech recognition and compare the performanceof the network with those of recurrent neural net-work (RNN) and time-delay neural network (TDNN).Experimental results show that the MLCNN methodoutperforms the other neural networks methods withrespect to average recognition rate.
Optimization of multilayer neural network parameters for speaker recognition
Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka
2016-05-01
This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.
A Novel Single Neuron Perceptron with Universal Approximation and XOR Computation Properties
Directory of Open Access Journals (Sweden)
Ehsan Lotfi
2014-01-01
Full Text Available We propose a biologically motivated brain-inspired single neuron perceptron (SNP with universal approximation and XOR computation properties. This computational model extends the input pattern and is based on the excitatory and inhibitory learning rules inspired from neural connections in the human brain’s nervous system. The resulting architecture of SNP can be trained by supervised excitatory and inhibitory online learning rules. The main features of proposed single layer perceptron are universal approximation property and low computational complexity. The method is tested on 6 UCI (University of California, Irvine pattern recognition and classification datasets. Various comparisons with multilayer perceptron (MLP with gradient decent backpropagation (GDBP learning algorithm indicate the superiority of the approach in terms of higher accuracy, lower time, and spatial complexity, as well as faster training. Hence, we believe the proposed approach can be generally applicable to various problems such as in pattern recognition and classification.
The design and analysis of effective and efficient neural networks and their applications
Energy Technology Data Exchange (ETDEWEB)
Makovoz, W.V.
1989-01-01
A complicated design issue of efficient Multilayer neural networks is addressed, and the perception and similar neural networks are examined. It shows that a three-layer perceptron neural network with specially designed learning algorithms provides an efficient framework to solve an exclusive OR problem using only n {minus} 1 processing elements in the second layer. Two efficient rapidly converging algorithms for any symmetric Boolean function were developed using only n {minus} 1 processing elements in the perceptron neural network and int(n/2) processing elements in the Adaline and perceptron neural network with the stepfunction transfer function. Similar results were obtained for the quasi-symmetric Boolean functions using a linear number of processing elements in perceptron neural networks, Adaline's, and perceptron neural networks with the stepfunction transfer functions. Generalized Boolean functions are discussed and two rapidly converging algorithms are shown for perceptron neural networks, Adaline's, and perceptron neural network with stepfunction transfer function. Many other interesting perceptron neural networks are discussed in the dissertation. Perceptron neural networks are applied to find the largest value of the n inputs. A new perceptron neural network is designed to find the largest value of the n inputs with the minimum number of inputs and the minimum number of layers. New perceptron neural networks are developed to sort n inputs. New, effective and efficient back-propagation Neural networks are designed to sort n inputs. The Sigmoid transfer function was discussed and a generalized Sigmoid function to improve Neural network performance was developed. A modified back-propagation learning algorithm was developed that builds any n input symmetric Boolean function using only int(n/2) processing elements in the second layer.
Ferreira, B D L; Sebastião, R C O; Yoshida, M I; Mussel, W N; Fialho, S L; Barbosa, J
2016-01-01
Kinetic study by thermal decomposition of antiretroviral drugs, Efavirenz (EFV) and Lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases unacceptable errors are found using this methodology. To circumvent this problem, here is proposed to use a multilayer perceptron neural network (MLP), with an appropriate algorithm, which constitutes a linearization of the network by setting weights between the input layer and the intermediate one and the use of Kinetic models as activation functions of neurons in the hidden layer. The interconnection weights between that intermediate layer and output layer determines the contribution of each model in the overall fit of the experimental data. Thus, the decomposition is assumed to be a phenomenon that can occur following different kinetic processes. In the investigated data, the kinetic thermal decomposition process was best described by R1 and D4 model for all temperatures to EF...
The learning problem of multi-layer neural networks.
Ban, Jung-Chao; Chang, Chih-Hung
2013-10-01
This manuscript considers the learning problem of multi-layer neural networks (MNNs) with an activation function which comes from cellular neural networks. A systematic investigation of the partition of the parameter space is provided. Furthermore, the recursive formula of the transition matrix of an MNN is obtained. By implementing the well-developed tools in the symbolic dynamical systems, the topological entropy of an MNN can be computed explicitly. A novel phenomenon, the asymmetry of a topological diagram that was seen in Ban, Chang, Lin, and Lin (2009) [J. Differential Equations 246, pp. 552-580, 2009], is revealed.
Implementation of a Neural Network Using Simulator and Petri Nets*
Directory of Open Access Journals (Sweden)
Nayden Valkov Nenkov
2016-01-01
Full Text Available This paper describes construction of multilayer perceptron by open source neural networks simulator - Neuroph and Petri net. The described multilayer perceptron solves logical function "xor "- exclusive or. The aim is to explore the possibilities of description of the neural networks by Petri Nets. The selected neural network (multilayer perceptron allows to be seen clearly the advantages and disadvantages of the realizing through simulator. The selected logical function does not have a linear separability. After consumption of a neural network on a simulator was investigated implementation by Petri Nets. The results are used to determine and to consider opportunities for different discrete representations of the same model and the same subject area.
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Deep Kernel Mapping Support Vector Machines Based on Multi-layer Perceptron%基于多层感知器的深度核映射支持向量机
Institute of Scientific and Technical Information of China (English)
李玉鑑; 张婷; 胡海鹤
2016-01-01
为改善支持向量机的性能,从深度学习的角度研究核学习的方法,提出了基于多层感知器的深度核映射支持向量机模型( deep kernel mapping support vector machine,DKMSVM)以及相应的学习算法。该模型首先通过多层感知器学习一个从原始输入空间到合适维度空间的核映射代替传统意义上的核函数,然后直接在合适维度空间使用支持向量机进行分类,而不是采用核技巧进行求解。实验结果验证了DKMSVM的有效性。%To improve the performance of support vector machines ( SVMs ) , from the deep learning ’ s point of view, a kernel learning method was studied and a deep kernel mapping support vector machine ( DKMSVM ) was proposed based on multi-layer perceptron together with the corresponding learning algorithm. Firstly, a kernel mapping from the original input space to a proper dimensional space through a multilayer perceptron instead of a traditional kernel function was researched in this model. Then a SVM was used to classify in the proper dimensional space without kernel tricks. Experimental results demonstrate the effectiveness of DKMSVM.
A multilayer neural network model for perception of rotational motion
Institute of Scientific and Technical Information of China (English)
郭爱克; 孙海坚; 杨先一
1997-01-01
A multilayer neural nerwork model for the perception of rotational motion has been developed usingReichardt’s motion detector array of correlation type, Kohonen’s self-organized feature map and Schuster-Wagner’s oscillating neural network. It is shown that the unsupervised learning could make the neurons on the second layer of the network tend to be self-organized in a form resembling columnar organization of selective directions in area MT of the primate’s visual cortex. The output layer can interpret rotation information and give the directions and velocities of rotational motion. The computer simulation results are in agreement with some psychophysical observations of rotation-al perception. It is demonstrated that the temporal correlation between the oscillating neurons would be powerful for solving the "binding problem" of shear components of rotational motion.
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...
Building a Chaotic Proved Neural Network
Bahi, Jacques M; Salomon, Michel
2011-01-01
Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.
Aryadoust, Vahid; Baghaei, Purya
2016-01-01
This study aims to examine the relationship between reading comprehension and lexical and grammatical knowledge among English as a foreign language students by using an Artificial Neural Network (ANN). There were 825 test takers administered both a second-language reading test and a set of psychometrically validated grammar and vocabulary tests.…
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Multi-Layered Neural Networks Infer Fundamental Stellar Parameters
Verma, Kuldeep; Bhattacharya, Jishnu; Antia, H M; Krishnamurthy, Ganapathy
2016-01-01
The advent of space-based observatories such as CoRoT and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial Helium abundance, initial metallicity, mixing-length (assumed to be constant over time) and the age to which the star must be evolved. These parameters are also very useful in characterizing the associated planets and in studying galactic archaeology. How to obtain the parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using multi-layered neural networks, is successful in determining the evolutionary parameters based on spect...
System Identification Using Multilayer Differential Neural Networks: A New Result
Directory of Open Access Journals (Sweden)
J. Humberto Pérez-Cruz
2012-01-01
Full Text Available In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.
DEFF Research Database (Denmark)
Kucuk, Nil; Manohara, S.R.; Hanagodimath, S.M.
2013-01-01
V, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg–Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.4.3 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA...
Standard Cell-Based Implementation of a Digital Optoelectronic Neural-Network Hardware
Maier, Klaus D.; Beckstein, Clemens; Blickhan, Reinhard; Erhard, Werner
2001-03-01
A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.
A MULTILAYER COMPLEX NEURAL NETWORK TRAINING ALGORITHM AND ITS APPLICATION IN ADAPTIVE EQUALIZATION
Institute of Scientific and Technical Information of China (English)
Li Chunguang; Liao Xiaofeng; Wu Zhongfu; Yu Juebang
2001-01-01
In this paper, the layer-by-layer optimizing algorithm for training multilayer neural network is extended for the case of a multilayer neural network whose inputs, weights, and activation functions are all complex. The updating of the weights of each layer in the network is based on the recursive least squares method. The performance of the proposed algorithm is demonstrated with application in adaptive complex communication channel equalization.
Neural-estimator for the surface emission rate of atmospheric gases
Paes, F F
2009-01-01
The emission rate of minority atmospheric gases is inferred by a new approach based on neural networks. The neural network applied is the multi-layer perceptron with backpropagation algorithm for learning. The identification of these surface fluxes is an inverse problem. A comparison between the new neural-inversion and regularized inverse solution id performed. The results obtained from the neural networks are significantly better. In addition, the inversion with the neural netwroks is fster than regularized approaches, after training.
A multilayer recurrent neural network for solving continuous-time algebraic Riccati equations.
Wang, Jun; Wu, Guang
1998-07-01
A multilayer recurrent neural network is proposed for solving continuous-time algebraic matrix Riccati equations in real time. The proposed recurrent neural network consists of four bidirectionally connected layers. Each layer consists of an array of neurons. The proposed recurrent neural network is shown to be capable of solving algebraic Riccati equations and synthesizing linear-quadratic control systems in real time. Analytical results on stability of the recurrent neural network and solvability of algebraic Riccati equations by use of the recurrent neural network are discussed. The operating characteristics of the recurrent neural network are also demonstrated through three illustrative examples.
Bascil, M Serdar; Temurtas, Feyzullah
2011-06-01
In this study, a hepatitis disease diagnosis study was realized using neural network structure. For this purpose, a multilayer neural network structure was used. Levenberg-Marquardt algorithm was used as training algorithm for the weights update of the neural network. The results of the study were compared with the results of the previous studies reported focusing on hepatitis disease diagnosis and using same UCI machine learning database. We obtained a classification accuracy of 91.87% via tenfold cross validation.
A neural network based seafloor classification using acoustic backscatter
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.
This paper presents a study results of the Artificial Neural Network (ANN) architectures [Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP)] using single beam echosounding data. The single beam echosounder, operable at 12 kHz, has been used...
Performance Comparison of Neural Networks for HRTFs Approximation
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In order to approach to head-related transfer functions (HRTFs), this paper employs and compares three kinds of one-input neural network models, namely, multi-layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful.
Discrete Orthogonal Transforms and Neural Networks for Image Interpolation
Directory of Open Access Journals (Sweden)
J. Polec
1999-09-01
Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.
Institute of Scientific and Technical Information of China (English)
鄢田云; 张翠芳; 靳蕃
2003-01-01
Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).
Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...
Institute of Scientific and Technical Information of China (English)
CHAI Yu-hua; PAN Wei; NING Hai-long
2005-01-01
In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output,weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding.
Automatic detection of intruders using a neural network
Carvalho, Fernando D.; Novo, Pedro; Pais, Cassiano P.; Rodrigues, Fernando C.; Rego, Toste
1992-09-01
A system is presented that applies a neural network to a video surveillance system. It consists of a pre-processing unit that extract high level information from images and introduces it in the neural network. This system can learn in operational conditions while under the supervision of an unskilled operator. It uses the error backpropagation learning algorithm in a multilayer perceptron structure. The results obtained show that the system performs well, and with a high degree of efficiency.
Stacked Heterogeneous Neural Networks for Time Series Forecasting
Directory of Open Access Journals (Sweden)
Florin Leon
2010-01-01
Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.
Weight-decay induced phase transitions in multilayer neural networks
Ahr, M.; Biehl, M.; Schlösser, E.
1999-01-01
We investigate layered neural networks with differentiable activation function and student vectors without normalization constraint by means of equilibrium statistical physics. We consider the learning of perfectly realizable rules and find that the length of student vectors becomes infinite, unless
Intelligent neural network classifier for automatic testing
Bai, Baoxing; Yu, Heping
1996-10-01
This paper is concerned with an application of a multilayer feedforward neural network for the vision detection of industrial pictures, and introduces a high characteristics image processing and recognizing system which can be used for real-time testing blemishes, streaks and cracks, etc. on the inner walls of high-accuracy pipes. To take full advantage of the functions of the artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerance ability, this system uses a multilayer perceptron as a regular detector to extract features of the images to be inspected and classify them.
Predictive vector quantization using a neural network approach
Mohsenian, Nader; Rizvi, Syed A.; Nasrabadi, Nasser M.
1993-07-01
A new predictive vector quantization (PVQ) technique capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks (vectors) of pixels is introduced. The two components of the PVQ scheme, the vector predictor and the vector quantizer, are implemented by two different classes of neural networks. A multilayer perceptron is used for the predictive component and Kohonen self- organizing feature maps are used to design the codebook for the vector quantizer. The multilayer perceptron uses the nonlinearity condition associated with its processing units to perform a nonlinear vector prediction. The second component of the PVQ scheme vector quantizers the residual vector that is formed by subtracting the output of the perceptron from the original input vector. The joint-optimization task of designing the two components of the PVQ scheme is also achieved. Simulation results are presented for still images with high visual quality.
Engineering Applications of Neural Computing: A State-of-the-Art Survey
1991-05-01
H. U., and Geisel , T., "Dynamics of Signal Processing in Feedback Multilayer Percep- trons," Proceedings of the International Joint Conference on...Neural Networks, San Diego, June 17-21, 1990, 111-131. 3. Bauer, H. U., and Geisel , T., "Sequence Analysis in Feeedback Multilayer Perceptrons," in...1981. 46. Janko, W H., Roubens, M., and Zimmermann, H.-J. (Eds.), Progress in Fuzzy Sets and Systems, Theory And Decision Library , Kluwer Academic
Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis
Liu, Hua-Kuang; Huang, K. S.; Diep, J.
1993-01-01
Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.
Multilayer Neural Networks and Nearest Neighbor Classifier Performances for Image Annotation
Directory of Open Access Journals (Sweden)
Mustapha OUJAOURA
2012-12-01
Full Text Available The explosive growth of image data leads to the research and development of image content searching and indexing systems. Image annotation systems aim at annotating automatically animage with some controlled keywords that can be used for indexing and retrieval of images. This paper presents a comparative evaluation of the image content annotation system by using the multilayer neural networks and the nearest neighbour classifier. The region growing segmentation is used to separate objects, the Hu moments, Legendre moments and Zernike moments which are used in as feature descriptors for the image content characterization and annotation.The ETH-80 database image is used in the experiments here. The best annotation rate is achieved by using Legendre moments as feature extraction method and the multilayer neural network as a classifier
Institute of Scientific and Technical Information of China (English)
FANG Jun-long; ZHANG Chang-li; WANG Shu-wen
2004-01-01
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was upto 94%.
A selective learning method to improve the generalization of multilayer feedforward neural networks.
2001-01-01
Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to b...
Existence and stability of traveling wave solutions for multilayer cellular neural networks
Hsu, Cheng-Hsiung; Lin, Jian-Jhong; Yang, Tzi-Sheng
2015-08-01
The purpose of this article is to investigate the existence and stability of traveling wave solutions for one-dimensional multilayer cellular neural networks. We first establish the existence of traveling wave solutions using the truncated technique. Then we study the asymptotic behaviors of solutions for the Cauchy problem of the neural model. Applying two kinds of comparison principles and the weighed energy method, we show that all solutions of the Cauchy problem converge exponentially to the traveling wave solutions provided that the initial data belong to a suitable weighted space.
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.
Maca, Petr; Pech, Pavel
2016-01-01
The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.
Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Petr Maca
2016-01-01
Full Text Available The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI and the standardized precipitation evaporation index (SPEI and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.
Final Progress Report on Robust and/or Adaptive Filtering by Neural Networks
2007-11-02
Conference on Artificial Neural Networks in Engineering , Nov. 4-7, 2001, St. Louis, Missouri. This paper shows that the risk-averting error criterion is...sensitive estimates, i.e., exhibiting an extremely high level of nonuniqueness . • Recurrent Multilayer Perceptrons for Discrete-Time Dynamic System...Proceedings of the 2001 Conference on Artificial Neural Networks in Engineering , St. Louis, Missouri, November 2001. 7. Avoiding Poor Local Minima in Training
Multilayer neural networks for reduced-rank approximation.
Diamantaras, K I; Kung, S Y
1994-01-01
This paper is developed in two parts. First, the authors formulate the solution to the general reduced-rank linear approximation problem relaxing the invertibility assumption of the input autocorrelation matrix used by previous authors. The authors' treatment unifies linear regression, Wiener filtering, full rank approximation, auto-association networks, SVD and principal component analysis (PCA) as special cases. The authors' analysis also shows that two-layer linear neural networks with reduced number of hidden units, trained with the least-squares error criterion, produce weights that correspond to the generalized singular value decomposition of the input-teacher cross-correlation matrix and the input data matrix. As a corollary the linear two-layer backpropagation model with reduced hidden layer extracts an arbitrary linear combination of the generalized singular vector components. Second, the authors investigate artificial neural network models for the solution of the related generalized eigenvalue problem. By introducing and utilizing the extended concept of deflation (originally proposed for the standard eigenvalue problem) the authors are able to find that a sequential version of linear BP can extract the exact generalized eigenvector components. The advantage of this approach is that it's easier to update the model structure by adding one more unit or pruning one or more units when the application requires it. An alternative approach for extracting the exact components is to use a set of lateral connections among the hidden units trained in such a way as to enforce orthogonality among the upper- and lower-layer weights. The authors call this the lateral orthogonalization network (LON) and show via theoretical analysis-and verify via simulation-that the network extracts the desired components. The advantage of the LON-based model is that it can be applied in a parallel fashion so that the components are extracted concurrently. Finally, the authors show the
Neural method of spatiotemporal filter design
Szostakowski, Jaroslaw
1997-10-01
There is a lot of applications in medical imaging, computer vision, and the communications, where the video processing is critical. Although many techniques have been successfully developed for the filtering of the still-images, significantly fewer techniques have been proposed for the filtering of noisy image sequences. In this paper the novel approach to spatio- temporal filtering design is proposed. The multilayer perceptrons and functional-link nets are used for the 3D filtering. The spatio-temporal patterns are creating from real motion video images. The neural networks learn these patterns. The perceptrons with different number of layers and neurons in each layer are tested. Also, the different input functions in functional- link net are searched. The practical examples of the filtering are shown and compared with traditional (non-neural) spatio-temporal methods. The results are very interesting and the neural spatio-temporal filters seems to be very efficient tool for video noise reduction.
Neural net approach to predictive vector quantization
Mohsenian, Nader; Nasrabadi, Nasser M.
1992-11-01
A new predictive vector quantization (PVQ) technique, capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks of pixels, is introduced. Two different classes of neural nets form the components of the PVQ scheme. A multi-layer perceptron is embedded in the predictive component of the compression system. This neural network, using the non-linearity condition associated with its processing units, can perform as a non-linear vector predictor. The second component of the PVQ scheme vector quantizes (VQ) the residual vector that is formed by subtracting the output of the perceptron from the original wave-pattern. Kohonen Self-Organizing Feature Map (KSOFM) was utilized as a neural network clustering algorithm to design the codebook for the VQ technique. Coding results are presented for monochrome 'still' images.
Directory of Open Access Journals (Sweden)
Md. Abdullah-al-mamun
2015-08-01
Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.
Directory of Open Access Journals (Sweden)
A. Piotrowski
2006-01-01
Full Text Available In this paper, Multi-Layer Perceptron and Radial-Basis Function Neural Networks, along with the Nearest Neighbour approach and linear regression are utilized for flash-flood forecasting in the mountainous Nysa Klodzka river catchment. It turned out that the Radial-Basis Function Neural Network is the best model for 3- and 6-h lead time prediction and the only reliable one for 9-h lead time forecasting for the largest flood used as a test case.
On the Adaptability of Neural Network Image Super-Resolution
Chua, Kah Keong; Tay, Yong Haur
2012-01-01
In this paper, we described and developed a framework for Multilayer Perceptron (MLP) to work on low level image processing, where MLP will be used to perform image super-resolution. Meanwhile, MLP are trained with different types of images from various categories, hence analyse the behaviour and performance of the neural network. The tests are carried out using qualitative test, in which Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The r...
Particle identification using artificial neural networks at BESⅢ
Institute of Scientific and Technical Information of China (English)
QIN Gang; LI Gang; LI Hai-Bo; LI Wei-Dong; LIU Chun-Xiu; LIU Huai-Min; MA Qiu-Mei; MA Xiang; MAO Ya-Jun; MAO Ze-Pu; MO Xiao-Hu; L(U) Jun-Guang; QIU Jin-Fa; SUN Sheng-Sen; SUN Yong-Zhao; WANG Ji-Ke; WANG Liang-Liang; WEN Shuo-Pin; WU Ling-Hui; XIE Yu-Guang; YOU Zheng-Yun; YANG Ming; HE Kang-Lin; YU Guo-Wei; YUAN Chang-Zheng; YUAN Ye; ZANG Shi-Lei; ZHANG Chang-Chun; ZHANG Jian-Yong; ZHANG Ling; ZHANG Xue-Yao; ZHANG Yao; ZHU Yong-Sheng; BIAN Jian-Ming; ZOU Jia-Heng; CAO Guo-Fu; DENG Zi-Yan; HE Miao; HUANG Bin; JI Xiao-Bin
2008-01-01
A multilayered perceptrons' neural network technique has been applied in the particle identification at BESⅢ. The networks are trained in each sub-detector level. The NN output of sub-detectors can be sent to a sequential network or be constructed as PDFs for a likelihood. Good muon-ID, electron-ID and hadron-ID are obtained from the networks by using the simulated Monte Carlo samples.
An "Artificial Expert"-Knowledge Acquisition via Neural Networks
Zhe , Ma.; Harrison, R F
1995-01-01
Artificial neural networks (ANN's) perform adaptive learning. This advantage can be used to solve knowledge acquisition bottle-neck in knowledge engineering by rule extraction from the ANN's. This paper proposes a rule extraction method combining both open-box (white-box) and black-box approaches to analyse a trained Multilayer Perceptron in order to extract general production rules accurately, abstractly and efficiently.
Directory of Open Access Journals (Sweden)
Barati
2016-07-01
Full Text Available Alzheimer disease is one form of dementia in old age. Alzheimer disease, the incurable disease, which is usually in the seventh decade of human life, shows its symptoms. The disease may be present for years without clinical symptoms. The current study identified the genes with altered expression in patients with Alzheimer disease. The important sequence of each gene in Alzheimer disease was found and introduced as a biomarker of this disease. The present study used microarray libraries related to Alzheimer disease. Finally, the data were weighted using 10 data mining methods, including methods such as support vector machine (SVM, deviation, information gain ratio and the Gini coefficient. Sequences with least two algorithm weights above 0.5 were selected as the most important sequences. Then, a neural network algorithm (neural net, auto multilayer perceptron and perceptron was run on 11 data bases from the weighted perceptron algorithm, resulting in a careful 97% best performance.
Multilayer discrete-time neural-net controller with guaranteed performance.
Jagannathan, S; Lewis, F L
1996-01-01
A family of novel multilayer discrete-time neural-net (NN) controllers is presented for the control of a class of multi-input multi-output (MIMO) dynamical systems. The neural net controller includes modified delta rule weight tuning and exhibits a learning while-functioning-features. The structure of the NN controller is derived using a filtered error/passivity approach. Linearity in the parameters is not required and certainty equivalence is not used. This overcomes several limitations of standard adaptive control. The notion of persistency of excitation (PE) for multilayer NN is defined and explored. New online improved tuning algorithms for discrete-time systems are derived, which are similar to sigma or epsilon-modification for the case of continuous-time systems, that include a modification to the learning rate parameter plus a correction term. These algorithms guarantee tracking as well as bounded NN weights in nonideal situations so that PE is not needed. An extension of these novel weight tuning updates to NN with an arbitrary number of hidden layers is discussed. The notions of discrete-time passive NN, dissipative NN, and robust NN are introduced. The NN makes the closed-loop system passive.
Directory of Open Access Journals (Sweden)
Onursal Çetin
2015-06-01
Full Text Available Objective: Implementation of multilayer neural network (MLNN with sigmoid activation function for the diagnosis of hepatitis disease. Methods: Artificial neural networks (ANNs are efficient tools currently in common use for medical diagnosis. In hardware based architectures activation functions play an important role in ANN behavior. Sigmoid function is the most frequently used activation function because of its smooth response. Thus, sigmoid function and its close approximations were implemented as activation function. The dataset is taken from the UCI machine learning database. Results: For the diagnosis of hepatitis disease, MLNN structure was implemented and Levenberg Morquardt (LM algorithm was used for learning. Our method of classifying hepatitis disease produced an accuracy of 91.9% to 93.8% via 10 fold cross validation. Conclusion: When compared to previous work that diagnosed hepatitis disease using artificial neural networks and the identical data set, our results are promising in order to reduce the size and cost of neural network based hardware. Thus, hardware based diagnosis systems can be developed effectively by using approximations of sigmoid function.
Generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2013-03-01
In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.
Cerqueira, Eduardo O.; Andrade,João C. de; Ronei J. Poppi; Cesar Mello
2001-01-01
Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytic...
NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Feed forward neural net works such as multi-layer perceptron,radial basis function neural net-works,have been widely applied to classification,function approxi mation and data mining.Evolu-tionary computation has been explored to train neu-ral net works as a very promising and competitive al-ternative learning method,because it has potentialto produce global mini mum in the weight space.Recently,an emerging evolutionary computationtechnique,Particle Swar m Opti mization(PSO)be-comes a hot topic because of i...
Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks.
Leung, C S; Tsoi, A C; Chan, L W
2001-01-01
Recursive least squares (RLS)-based algorithms are a class of fast online training algorithms for feedforward multilayered neural networks (FMNNs). Though the standard RLS algorithm has an implicit weight decay term in its energy function, the weight decay effect decreases linearly as the number of learning epochs increases, thus rendering a diminishing weight decay effect as training progresses. In this paper, we derive two modified RLS algorithms to tackle this problem. In the first algorithm, namely, the true weight decay RLS (TWDRLS) algorithm, we consider a modified energy function whereby the weight decay effect remains constant, irrespective of the number of learning epochs. The second version, the input perturbation RLS (IPRLS) algorithm, is derived by requiring robustness in its prediction performance to input perturbations. Simulation results show that both algorithms improve the generalization capability of the trained network.
Directory of Open Access Journals (Sweden)
Zhekang Dong
2014-01-01
Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
A Novel Training Algorithm of Genetic Neural Networks and Its Application to Classification
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorithm for neural networks based on genetic algorithm and BP algorithm is developed. The difference between the new training algorithm and BP algorithm in the ability of nonlinear approaching is expressed through an example, and the application foreground is illustrated by an example.
Neural networks for modelling and control of a non-linear dynamic system
Murray-Smith, R.; Neumerkel, D.; Sbarbaro-Hofer, D.
1992-01-01
The authors describe the use of neural nets to model and control a nonlinear second-order electromechanical model of a drive system with varying time constants and saturation effects. A model predictive control structure is used. This is compared with a proportional-integral (PI) controller with regard to performance and robustness against disturbances. Two feedforward network types, the multilayer perceptron and radial-basis-function nets, are used to model the system. The problems involved ...
Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia
2011-01-01
Rainfall is considered as one of the major component of the hydrological process, it takes significant part of evaluating drought and flooding events. Therefore, it is important to have accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting task such as Multi-Layer Perceptron Neural Networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other ha...
A design philosophy for multi-layer neural networks with applications to robot control
Vadiee, Nader; Jamshidi, MO
1989-01-01
A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.
Institute of Scientific and Technical Information of China (English)
JunJun Yang; ZhiBin He; WeiJun Zhao; Jun Du; LongFei Chen; Xi Zhu
2016-01-01
Soil moisture simulation and prediction in semi-arid regions are important for agricultural production, soil conservation and climate change. However, considerable heterogeneity in the spatial distribution of soil moisture, and poor ability of distributed hydrological models to estimate it, severely impact the use of soil moisture models in research and practical applications. In this study, a newly-developed technique of coupled (WA-ANN) wavelet analysis (WA) and artificial neural network (ANN) was applied for a multi-layer soil moisture simulation in the Pailugou catchment of the Qilian Mountains, Gansu Province, China. Datasets included seven meteorological factors: air and land surface temperatures, relative humidity, global radiation, atmospheric pressure, wind speed, precipitation, and soil water content at 20, 40, 60, 80, 120 and 160 cm. To investigate the effectiveness of WA-ANN, ANN was applied by itself to conduct a comparison. Three main findings of this study were: (1) ANN and WA-ANN provided a statistically reliable and robust prediction of soil moisture in both the root zone and deepest soil layer studied (NSE >0.85, NSE means Nash-Sutcliffe Efficiency coefficient); (2) when input meteorological factors were transformed using maximum signal to noise ratio (SNR) and one-dimensional auto de-noising algorithm (heursure) in WA, the coupling technique improved the performance of ANN especially for soil moisture at 160 cm depth; (3) the results of multi-layer soil moisture prediction indicated that there may be different sources of water at different soil layers, and this can be used as an indicator of the maximum impact depth of meteorological factors on the soil water content at this study site. We conclude that our results show that appropriate simulation methodology can provide optimal simulation with a minimum distortion of the raw-time series; the new method used here is applicable to soil sciences and management applications.
Perancangan Pengenal QR (Quick Response) Code Dengan Jaringan Syaraf Tiruan Metode Perceptron
Novalia
2013-01-01
Quick Response (QR) Code is used to store important information of an item or product. QR Code has a very random pattern and can not be distinguished. QR Code can also be dirty and damaged. Research conducted on the pattern of QR Code in order to find out the information stored in the QR Code. The method used to identify patterns of QR Code is to use Artificial Neural Networks Perceptron method. Perceptron is a neural network method is often used for pattern recognition. The input to the syst...
Video Traffic Prediction Using Neural Networks
Directory of Open Access Journals (Sweden)
Miloš Oravec
2008-10-01
Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].
Evaluation of the efficiency of artificial neural networks for genetic value prediction.
Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M
2016-03-28
Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.
Development of Al2O3/TiN Ceramic Cutting Tool Materials by Artificial Neural Networks
Institute of Scientific and Technical Information of China (English)
Ning FAN; Xiangbo ZE; Zihui GAO
2004-01-01
The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramic cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particle reinforced ceramics are established. The Al2O3/TiNl ceramic cutting tool material was developed by ANN, whose mechanical properties fully satisfy the cutting requirements.
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Tierra, Alfonso; Romero, Ricardo
2014-12-01
Prior any satellite technology developments, the geodetic networks of a country were realized from a topocentric datum, and hence the respective cartography was performed. With availability of Global Navigation Satellite Systems-GNSS, cartography needs to be updated and referenced to a geocentric datum to be compatible with this technology. Cartography in Ecuador has been performed using the PSAD56 (Provisional South American Datum 1956) systems, nevertheless it's necessary to have inside the system SIRGAS (SIstema de Referencia Geocéntrico para las AmericaS). This transformation between PSAD56 to SIRGAS use seven transformation parameters calculated with the method Helmert. These parameters, in case of Ecuador are compatible for scales of 1:25 000 or less, that does not satisfy the requirements on applications for major scales. In this study, the technique of neural networks is demonstrated as an alternative for improving the processing of UTM planes coordinates E, N (East, North) from PSAD56 to SIRGAS. Therefore, from the coordinates E, N, of the two systems, four transformation parameters were calculated (two of translation, one of rotation, and one scale difference) using the technique bidimensional transformation. Additionally, the same coordinates were used to training Multilayer Artificial Neural Network -MANN, in which the inputs are the coordinates E, N in PSAD56 and output are the coordinates E, N in SIRGAS. Both the two-dimensional transformation and ANN were used as control points to determine the differences between the mentioned methods. The results imply that, the coordinates transformation obtained with the artificial neural network multilayer trained have been improving the results that the bidimensional transformation, and compatible to scales 1:5000. Dostęp do nowoczesnych technologii, w tym GNSS umożliwiły dokładniejsze zdefi niowanie systemów odniesień przestrzennych wykorzystywanych m.in. w defi niowaniu krajowych układów odniesień i
Directory of Open Access Journals (Sweden)
Eduardo O. de Cerqueira
2001-12-01
Full Text Available Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytical applications based on near infrared spectroscopy are presented, the first one for determination of nitrogen content in wheat leaves using multi-layer perceptrons networks and second one for determination of BRIX in sugar cane juices using radial basis functions networks.
A Deterministic and Polynomial Modified Perceptron Algorithm
Directory of Open Access Journals (Sweden)
Olof Barr
2006-01-01
Full Text Available We construct a modified perceptron algorithm that is deterministic, polynomial and also as fast as previous known algorithms. The algorithm runs in time O(mn3lognlog(1/ρ, where m is the number of examples, n the number of dimensions and ρ is approximately the size of the margin. We also construct a non-deterministic modified perceptron algorithm running in timeO(mn2lognlog(1/ρ.
The Use of Artificial Neural Network for Prediction of Dissolution Kinetics
Directory of Open Access Journals (Sweden)
H. Elçiçek
2014-01-01
Full Text Available Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals.
A Novel Technique to Image Annotation using Neural Network
Directory of Open Access Journals (Sweden)
Pankaj Savita
2013-03-01
Full Text Available : Automatic annotation of digital pictures is a key technology for managing and retrieving images from large image collection. Traditional image semantics extraction and representation schemes were commonly divided into two categories, namely visual features and text annotations. However, visual feature scheme are difficult to extract and are often semantically inconsistent. On the other hand, the image semantics can be well represented by text annotations. It is also easier to retrieve images according to their annotations. Traditional image annotation techniques are time-consuming and requiring lots of human effort. In this paper we propose Neural Network based a novel approach to the problem of image annotation. These approaches are applied to the Image data set. Our main work is focused on the image annotation by using multilayer perceptron, which exhibits a clear-cut idea on application of multilayer perceptron with special features. MLP Algorithm helps us to discover the concealed relations between image data and annotation data, and annotate image according to such relations. By using this algorithm we can save more memory space, and in case of web applications, transferring of images and download should be fast. This paper reviews 50 image annotation systems using supervised machine learning Techniques to annotate images for image retrieval. Results obtained show that the multi layer perceptron Neural Network classifier outperforms conventional DST Technique.
Institute of Scientific and Technical Information of China (English)
2016-01-01
Soil moisture simulation and prediction in semi-arid regions are important for agricultural production, soil conservation andclimate change. However, considerable heterogeneity in the spatial distribution of soil moisture, and poor ability of distributedhydrological models to estimate it, severely impact the use of soil moisture models in research and practical applications. Inthis study, a newly-developed technique of coupled （WA-ANN） wavelet analysis （WA） and artificial neural network （ANN）was applied for a multi-layer soil moisture simulation in the Pailugou catchment of the Qilian Mountains, Gansu Province,China. Datasets included seven meteorological factors： air and land surface temperatures, relative humidity, global radiation,atmospheric pressure, wind speed, precipitation, and soil water content at 20, 40, 60, 80, 120 and 160 cm. To investigate theeffectiveness of WA-ANN, ANN was applied by itself to conduct a comparison. Three main findings of this study were： （1）ANN and WA-ANN provided a statistically reliable and robust prediction of soil moisture in both the root zone and deepestsoil layer studied （NSE 〉0.85, NSE means Nash-Sutcliffe Efficiency coefficient）; （2） when input meteorological factors weretransformed using maximum signal to noise ratio （SNR） and one-dimensional auto de-noising algorithm （heursure） in WA,the coupling technique improved the performance of ANN especially for soil moisture at 160 cm depth; （3） the results ofmulti-layer soil moisture prediction indicated that there may be different sources of water at different soil layers, and this canbe used as an indicator of the maximum impact depth of meteorological factors on the soil water content at this study site. Weconclude that our results show that appropriate simulation methodology can provide optimal simulation with a minimumdistortion of the raw-time series; the new method used here is applicable to soil sciences and management
Probability matching in perceptrons: Effects of conditional dependence and linear nonseparability.
Dawson, Michael R W; Gupta, Maya
2017-01-01
Probability matching occurs when the behavior of an agent matches the likelihood of occurrence of events in the agent's environment. For instance, when artificial neural networks match probability, the activity in their output unit equals the past probability of reward in the presence of a stimulus. Our previous research demonstrated that simple artificial neural networks (perceptrons, which consist of a set of input units directly connected to a single output unit) learn to match probability when presented different cues in isolation. The current paper extends this research by showing that perceptrons can match probabilities when presented simultaneous cues, with each cue signaling different reward likelihoods. In our first simulation, we presented up to four different cues simultaneously; the likelihood of reward signaled by the presence of one cue was independent of the likelihood of reward signaled by other cues. Perceptrons learned to match reward probabilities by treating each cue as an independent source of information about the likelihood of reward. In a second simulation, we violated the independence between cues by making some reward probabilities depend upon cue interactions. We did so by basing reward probabilities on a logical combination (AND or XOR) of two of the four possible cues. We also varied the size of the reward associated with the logical combination. We discovered that this latter manipulation was a much better predictor of perceptron performance than was the logical structure of the interaction between cues. This indicates that when perceptrons learn to match probabilities, they do so by assuming that each signal of a reward is independent of any other; the best predictor of perceptron performance is a quantitative measure of the independence of these input signals, and not the logical structure of the problem being learned.
Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses
DEFF Research Database (Denmark)
Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.
2011-01-01
The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol......, located 25 km from the Caspian Sea, also was predicted with an artificial neural network (ANN). A multilayer perceptron neural network model was applied to the landslide area and was used to analyze specific elements in the study area that contributed to previous landsliding events. The ANN models were...... studies in landslide susceptibility zonation....
Foreground removal from Planck Sky Model temperature maps using a MLP neural network
DEFF Research Database (Denmark)
Nørgaard-Nielsen, Hans Ulrik; Hebert, K.
2009-01-01
with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before including them...... in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80% of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors....
THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE
Directory of Open Access Journals (Sweden)
António José Silva
2007-03-01
Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports
Using neural networks for prediction of nuclear parameters
Energy Technology Data Exchange (ETDEWEB)
Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear
2013-07-01
Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
Energy Technology Data Exchange (ETDEWEB)
Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.
Exponential synchronization of general chaotic delayed neural networks via hybrid feedback
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, and covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, recurrent multilayer perceptrons (RMLPs). By virtue of LyapunovKrasovskii stability theory and linear matrix inequality (LMI) technique, some exponential synchronization criteria are derived.Using the drive-response concept, hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria. Finally, detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
Terrain Mapping and Classification in Outdoor Environments Using Neural Networks
Directory of Open Access Journals (Sweden)
Alberto Yukinobu Hata
2009-12-01
Full Text Available This paper describes a three-dimensional terrain mapping and classification technique to allow the operation of mobile robots in outdoor environments using laser range finders. We propose the use of a multi-layer perceptron neural network to classify the terrain into navigable, partially navigable, and non-navigable. The maps generated by our approach can be used for path planning, navigation, and local obstacle avoidance. Experimental tests using an outdoor robot and a laser sensor demonstrate the accuracy of the presented methods.
Nonlinear Time Series Model for Shape Classification Using Neural Networks
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A complex nonlinear exponential autoregressive (CNEAR) model for invariant feature extraction is developed for recognizing arbitrary shapes on a plane. A neural network is used to calculate the CNEAR coefficients. The coefficients, which constitute the feature set, are proven to be invariant to boundary transformations such as translation, rotation, scale and choice of starting point in tracing the boundary. The feature set is then used as the input to a complex multilayer perceptron (C-MLP) network for learning and classification. Experimental results show that complicated shapes can be accurately recognized even with the low-order model and that the classification method has good fault tolerance when noise is present.
Advances in Artificial Neural Networks – Methodological Development and Application
Directory of Open Access Journals (Sweden)
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Template learning in morphological neural nets
Davidson, Jennifer L.; Sun, K.
1991-07-01
This paper presents an application of morphology neural networks to a template learning problem. Morphology neural networks are a nonlinear version of the familiar artificial neural networks. Typically, an artificial neural net is used to solve pattern classification problems One useful characterization of many neural network algorithms is the ability to 'learn' to respond correctly to new data based only on a selection of known data responses. For example, in the multilayer perceptron model, the 'learning' is a procedure whereby parameters are fed back from output to input neurons and the weights changed to give a better response. The morphological neural net in this paper solves a different type of image processing problem. Specifically, given an input image and an output image which corresponds to a dilated version of the input, one would like to determine what template produced the output. The problem corresponds to teaching the network to solve for the weights in a morphological net, as the weights are the template's values. A reasonable method has been investigated for the boolean case; in this paper results are presented for gray scale images. Image algebra has been shown to provide a succinct expression of neural networks algorithms and also to allow a generalization of neural networks, and thus the authors describe the algorithm in image algebra. The remainder of the paper gives a brief discussion of image algebra, the relationship of image algebra and neural networks, a recap of the dilation morphology neural network boolean for boolean images, and the generalization to grayscale data.
Digital Repository Service at National Institute of Oceanography (India)
Singh, Y.; Nair, R.R.; Singh, H.; Datta, P.; Jaiswal, P.; Dewangan, P.; Ramprasad, T.
-Godavari basin. Log prediction process, with uncertainties based on root mean square error properties, was implemented by way of a multi-layer feed forward neural network. The log properties were merged with seismic data by applying a non-linear transform...
Multilayered feed forward neural network based on particle swarm optimizer algorithm
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
BP is a commonly used neural network training method, which has some disadvantages, such as local minima,sensitivity of initial value of weights, total dependence on gradient information. This paper presents some methods to train a neural network, including standard particle swarm optimizer (PSO), guaranteed convergence particle swarm optimizer (GCPSO), an improved PSO algorithm, and GCPSO-BP, an algorithm combined GCPSO with BP. The simulation results demonstrate the effectiveness of the three algorithms for neural network training.
Energy Technology Data Exchange (ETDEWEB)
Bordieu, Ch.; Rebiere, D. [Bordeaux-1 Univ., Lab. IXL, UMR CNRS 5818, 33 (France); Pistre, J.; Planata, R. [Centre d' Etudes du Bouchet, 91 - Vert-le-Petit (France)
1999-07-01
The association of artificial neural networks (multilayer perceptrons) with a real time pattern recognition technique (shifting windows) allowed the development of systems for the detection and the quantification of gases. Shifting window technique is presented and offers an interesting way to improve the detection response time. The partial detector characterization with regard to its parameters was realized. Applications dealing with the detection of gas compounds using surface acoustic sensors permit to show the shifting window technique feasibility. (author)
Energy Technology Data Exchange (ETDEWEB)
Furini, M.A.; Araujo, P.B. de; Pereira, A.L.S. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Fac. de Engenharia. Dept. Engenharia Eletrica], Emails: mafurini@aluno.feis.unesp.br, percival@dee.feis.unesp.br, andspa@gmail.com
2009-07-01
This paper aims at analyzing the main operation and design of operationally robust controllers in order to damp the electromechanics oscillations type inter area. For this we used an intelligent control technique based on artificial neural networks, where a multilayer perceptron it was implemented. We used a symmetrical test system of four generators, ten bars and nine transmission lines to verify the performance of the power system stabilizers and power oscillation damping (POD) for the FACTS devices, unified power flow controller (UPFC), designed for neural networks. The results show the superiority in the operation and control of oscillations in power systems using UPFC equipped with the POD.
Fast lossless color image compression method using perceptron
Institute of Scientific and Technical Information of China (English)
贾克斌; 张延华; 庄新月
2004-01-01
The technique of lossless image compression plays an important role in image transmission and storage for high quality. At present, both the compression ratio and processing speed should be considered in a real-time multimedia system. A novel lossless compression algorithm is researched. A low complexity predictive model is proposed using the correlation of pixels and color components. In the meantime, perceptron in neural network is used to rectify the prediction values adaptively. It makes the prediction residuals smaller and in a small dynamic scope. Also a color space transform is used and good decorrelation is obtained in our algorithm. The compared experimental results have shown that our algorithm has a noticeably better performance than traditional algorithms. Compared to the new standard JPEG-LS, this predictive model reduces its computational complexity. And its speed is faster than the JPEG-LS with negligible performance sacrifice.
Flores, Dora-Luz; Gómez, Claudia; Cervantes, David; Abaroa, Alberto; Castro, Carlos; Castañeda-Martínez, Rubén A
2017-01-01
Multi-layer perceptron artificial neural networks (MLP-ANNs) were used to predict the concentration of digoxin needed to obtain a cardio-activity of specific biophysical parameters in Tivela stultorum hearts. The inputs of the neural networks were the minimum and maximum values of heart contraction force, the time of ventricular filling, the volume used for dilution, heart rate and weight, volume, length and width of the heart, while the output was the digoxin concentration in dilution necessary to obtain a desired physiological response. ANNs were trained, validated and tested with the dataset of the in vivo experiment results. To select the optimal network, predictions for all the dataset for each configuration of ANNs were made, a maximum 5% relative error for the digoxin concentration was set and the diagnostic accuracy of the predictions made was evaluated. The double-layer perceptron had a barely higher performance than the single-layer perceptron; therefore, both had a good predictive ability. The double-layer perceptron was able to obtain the most accurate predictions of digoxin concentration required in the hearts of T. stultorum using MLP-ANNs.
Directory of Open Access Journals (Sweden)
Mustafa Ahmet Beyazıt Ocaktan
2013-06-01
Full Text Available Real life problems are generally large-scale and difficult to model. Therefore, these problems can't be mostly solved by classical optimisation methods. This paper presents a reinforcement learning algorithm using a multi-layer artificial neural network to find an approximate solution for large-scale semi Markov decision problems. Performance of the developed algorithm is measured and compared to the classical reinforcement algorithm on a small-scale numerical example. According to results of numerical examples, a number of hidden layer are the key success factors, and average cost of the solution generated by the developed algorithm is approximately equal to that generated by the classical reinforcement algorithm.
Radial basis function neural network for power system load-flow
Energy Technology Data Exchange (ETDEWEB)
Karami, A.; Mohammadi, M.S. [Faculty of Engineering, The University of Guilan, P.O. Box 41635-3756, Rasht (Iran)
2008-01-15
This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)
Institute of Scientific and Technical Information of China (English)
Liu Ranbing; Liu Leiming; Zhang Faqiang; Li Changhua
2008-01-01
This paper creates a LM (Levenberg-Marquardt) algorithm model which is appropriate to solve the problem a-bout weights value of feedforward neural network. On the base of this model, we provide two applications in the oilfield production. Firstly, we simulated the functional relationships between the petrophysical and electrical properties of the rock by neural networks model, and studied oil saturation. Under the precision of data is confirmed, this method can re-duce the number of experiments. Secondly, we simulated the relationships between investment and income by the neural networks model, and studied invest saturation point and income growth rate. It is very significant to guide the investment decision. The research result shows that the model is suitable for the modeling and identification of nonlinear systems due to the great fit characteristic of neural network and very fast convergence speed of LM algorithm.
File access prediction using neural networks.
Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar
2010-06-01
One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors.
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Chattopadhyay, Surajit; Chattopadhyay, Goutami
2012-10-01
In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.
A Neural Network Approach for Inverse Kinematic of a SCARA Manipulator
Directory of Open Access Journals (Sweden)
Panchanand Jha
2014-07-01
Full Text Available Inverse kinematic is one of the most interesting problems of industrial robot. The inverse kinematics problem in robotics is about the determination of joint angles for a desired Cartesian position of the end effector. It comprises of the computation need to find the joint angles for a given Cartesian position and orientation of the end effectors to control a robot arm. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network is one such technique which can be gainfully used to yield the acceptable results. This paper proposes a structured artificial neural network (ANN model to find the inverse kinematics solution of a 4-dof SCARA manipulator. The ANN model used is a multi-layered perceptron neural network (MLPNN, wherein gradient descent type of learning rules is applied. An attempt has been made to find the best ANN configuration for the problem. It is found that multi-layered perceptron neural network gives minimum mean square error.
Hierarchical Neural Network Structures for Phoneme Recognition
Vasquez, Daniel; Minker, Wolfgang
2013-01-01
In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.
Neural networks for aerosol particles characterization
Berdnik, V. V.; Loiko, V. A.
2016-11-01
Multilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.
Neural networks for predicting breeding values and genetic gains
Directory of Open Access Journals (Sweden)
Gabi Nunes Silva
2014-12-01
Full Text Available Analysis using Artificial Neural Networks has been described as an approach in the decision-making process that, although incipient, has been reported as presenting high potential for use in animal and plant breeding. In this study, we introduce the procedure of using the expanded data set for training the network. Wealso proposed using statistical parameters to estimate the breeding value of genotypes in simulated scenarios, in addition to the mean phenotypic value in a feed-forward back propagation multilayer perceptron network. After evaluating artificial neural network configurations, our results showed its superiority to estimates based on linear models, as well as its applicability in the genetic value prediction process. The results further indicated the good generalization performance of the neural network model in several additional validation experiments.
Practical Application of Neural Networks in State Space Control
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon
In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... applied to a realistic process. The thesis therefore strives to provide a thorough treatment of two classes of neural network-based controllers, and to make a rigorous comparison between them and a classical linear controller. Thus, the thesis starts out with a short review of some relevant system...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...
Dual adaptive dynamic control of mobile robots using neural networks.
Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato
2009-02-01
This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.
Stochastic resonance in an intracellular genetic perceptron
Bates, Russell; Blyuss, Oleg; Zaikin, Alexey
2014-03-01
Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity.
Use of Neural Networks for Damage Assessment in a Steel Mast
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
1994-01-01
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorithm for detecting location and size of a damage in a civil engineering structure is investigated. The structure considered is a 20 m high steel lattice mast subjected to wind excita...... as well as full-scale tests where the mast is identified by an ARMA-model. The results show that a neural network trained with simulated data is capable for detecting location of a damage in a steel lattice mast when the network is subjected to experimental data.·...
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Francisco J.O.; Crispim, Verginia R.; Silva, Ademir X., E-mail: fferreira@ien.gov.b, E-mail: verginia@con.ufri.b, E-mail: ademir@con.ufri.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2009-07-01
The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)
Noise Reduction Technique for Images using Radial Basis Function Neural Networks
Directory of Open Access Journals (Sweden)
Sander Ali Khowaja
2014-07-01
Full Text Available This paper presents a NN (Neural Network based model for reducing the noise from images. This is a RBF (Radial Basis Function network which is used to reduce the effect of noise and blurring from the captured images. The proposed network calculates the mean MSE (Mean Square Error and PSNR (Peak Signal to Noise Ratio of the noisy images. The proposed network has also been successfully applied to medical images. The performance of the trained RBF network has been compared with the MLP (Multilayer Perceptron Network and it has been demonstrated that the performance of the RBF network is better than the MLP network.
How deals with discrete data for the reduction of simulation models using neural network
Thomas, Philippe
2009-01-01
Simulation is useful for the evaluation of a Master Production/distribution Schedule (MPS). Also, the goal of this paper is the study of the design of a simulation model by reducing its complexity. According to theory of constraints, we want to build reduced models composed exclusively by bottlenecks and a neural network. Particularly a multilayer perceptron, is used. The structure of the network is determined by using a pruning procedure. This work focuses on the impact of discrete data on the results and compares different approaches to deal with these data. This approach is applied to sawmill internal supply chain
Framewise phoneme classification with bidirectional LSTM and other neural network architectures.
Graves, Alex; Schmidhuber, Jürgen
2005-01-01
In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.
Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation
Directory of Open Access Journals (Sweden)
Ahmed M. Wefky
2010-04-01
Full Text Available It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.
Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia
Directory of Open Access Journals (Sweden)
A. El-Shafie
2012-04-01
Full Text Available Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN. In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series.
Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN, radial basis function neural network (RBFNN and input delay neural network (IDNN, respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008 on a weekly basis and 22 yr (1987–2008 on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.
Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia
El-Shafie, A.; Noureldin, A.; Taha, M.; Hussain, A.; Mukhlisin, M.
2012-04-01
Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series. Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBFNN) and input delay neural network (IDNN), respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997-2008) on a weekly basis and 22 yr (1987-2008) on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.
Directory of Open Access Journals (Sweden)
Hossein Naderi
2012-08-01
Full Text Available Stock market prediction is one of the most important interesting areas of research in business. Stock markets prediction is normally assumed as tedious task since there are many factors influencing the market. The primary objective of this paper is to forecast trend closing price movement of Tehran Stock Exchange (TSE using financial accounting ratios from year 2003 to year 2008. The proposed study of this paper uses two approaches namely Artificial Neural Networks and multi-layer perceptron. Independent variables are accounting ratios and dependent variable of stock price , so the latter was gathered for the industry of Motor Vehicles and Auto Parts. The results of this study show that neural networks models are useful tools in forecasting stock price movements in emerging markets but multi-layer perception provides better results in term of lowering error terms.
Training a multilayer neural network for the Euro-dollar (EUR/ USD exchange rate
Directory of Open Access Journals (Sweden)
Jaime Alberto Villamil Torres
2010-04-01
Full Text Available A mathematical tool or model for predicting how an economic variable like the exchange rate (relative price between two currencies will respond is a very important need for investors and policy-makers. Most current techniques are based on statistics, particularly linear time series theory. Artificial neural networks (ANNs are mathematical models which try to emulate biological neural networks’ parallelism and nonlinearity; these models have been successfully applied in Economics and Engineering since the 1980s. ANNs appear to be an alternative for modelling the behaviour of financial variables which resemble (as first approximation a random walk. This paper reports the results of using ANNs for Euro/USD exchange rate trading and the usefulness of the algorithm for chemotaxis leading to training networks thereby maximising an objective function re predicting a trader’s profits. JEL: F310, C450.
An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.
Ranganayaki, V; Deepa, S N
2016-01-01
Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.
Analysis of Mars Express Ionogram Data via a Multilayer Artificial Neural Network
Wilkinson, Collin; Potter, Arron; Palmer, Greg; Duru, Firdevs
2017-01-01
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), which is a low frequency radar on the Mars Express (MEX) Spacecraft, can provide electron plasma densities of the ionosphere local at the spacecraft in addition to densities obtained with remote sounding. The local electron densities are obtained, with a standard error of about 2%, by measuring the electron plasma frequencies with an electronic ruler on ionograms, which are plots of echo intensity as a function of time and frequency. This is done by using a tool created at the University of Iowa (Duru et al., 2008). This approach is time consuming due to the rapid accumulation of ionogram data. In 2013, results from an algorithm-based analysis of ionograms were reported by Andrews et al., but this method did not improve the human error. In the interest of fast, accurate data interpretation, a neural network (NN) has been created based on the Fast Artificial Neural Network C libraries. This NN consists of artificial neurons, with 4 layers of 12960, 10000, 1000 and 1 neuron(s) each, consecutively. This network was trained using 40 iterations of 1000 orbits. The algorithm-based method of Andrews et al. had a standard error of 40%, while the neural network has achieved error on the order of 20%.
Directory of Open Access Journals (Sweden)
Mahmoud Hassanlourad
2014-12-01
Full Text Available In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty and three relative densities (%30, %50, and %90 were injected with the sodium silicate grout with three different concentrations (water to sodium silicate ratio of 0.33, 1, and 2. A multi-layer Perceptron type of the artificial neural network was trained and tested using the results of 138 experimental tests. The multi-layer Perceptron included one input layer, two hidden layers and one output layer. The input parameters consisted of initial relative densities of grouted samples, the average size of particles (D50, the ratio of the grout water to sodium silicate and the grout pressure. The output parameter was the grout injection radius. The results of the experimental tests showed that the radius of grout injection is a complicated function of the mentioned parameters. In addition, the results of the trained artificial neural network showed to be reasonably consistent with the experimental results.
Wavelet-based neural network analysis of internal carotid arterial Doppler signals.
Ubeyli, Elif Derya; Güler, Inan
2006-06-01
In this study, internal carotid arterial Doppler signals recorded from 130 subjects, where 45 of them suffered from internal carotid artery stenosis, 44 of them suffered from internal carotid artery occlusion and the rest of them were healthy subjects, were classified using wavelet-based neural network. Wavelet-based neural network model, employing the multilayer perceptron, was used for analysis of the internal carotid arterial Doppler signals. Multi-layer perceptron neural network (MLPNN) trained with the Levenberg-Marquardt algorithm was used to detect stenosis and occlusion in internal carotid arteries. In order to determine the MLPNN inputs, spectral analysis of the internal carotid arterial Doppler signals was performed using wavelet transform (WT). The MLPNN was trained, cross validated, and tested with training, cross validation, and testing sets, respectively. All these data sets were obtained from internal carotid arteries of healthy subjects, subjects suffering from internal carotid artery stenosis and occlusion. The correct classification rate was 96% for healthy subjects, 96.15% for subjects having internal carotid artery stenosis and 96.30% for subjects having internal carotid artery occlusion. The classification results showed that the MLPNN trained with the Levenberg-Marquardt algorithm was effective to detect internal carotid artery stenosis and occlusion.
Wavelet-based neural network analysis of ophthalmic artery Doppler signals.
Güler, Nihal Fatma; Ubeyli, Elif Derya
2004-10-01
In this study, ophthalmic artery Doppler signals were recorded from 115 subjects, 52 of whom had ophthalmic artery stenosis while the rest were healthy controls. Results were classified using a wavelet-based neural network. The wavelet-based neural network model, employing the multilayer perceptron, was used for analysis of ophthalmic artery Doppler signals. A multilayer perceptron neural network (MLPNN) trained with the Levenberg-Marquardt algorithm was used to detect stenosis in ophthalmic arteries. In order to determine the MLPNN inputs, spectral analysis of ophthalmic artery Doppler signals was performed using wavelet transform. The MLPNN was trained, cross validated, and tested with training, cross validation, and testing sets, respectively. All data sets were obtained from ophthalmic arteries of healthy subjects and subjects suffering from ophthalmic artery stenosis. The correct classification rate was 97.22% for healthy subjects, and 96.77% for subjects having ophthalmic artery stenosis. The classification results showed that the MLPNN trained with the Levenberg-Marquardt algorithm was effective to detect ophthalmic artery stenosis.
1991-03-01
20 2. Perceptrons..................21 3. Adaline /Madaline................24 4. Backpropagation................28 a. General Architecture...perceptron called an Adaline (Adaptive Linear Element) , which was the basis of the first commercially successful neural network enterprise, the...Memistor corporation. They also developed a theorem which stated that an adaline and a perceptron are each capable of classifying any input space that could
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling
Institute of Scientific and Technical Information of China (English)
LIU He; HUANG Dao
2008-01-01
A muitilayer recurrent fuzzy neural network (MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can he solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy.
Learning algorithms for perceptrons from statistical physics
Gordon, Mirta B.; Peretto, Pierre; Berchier, Dominique
1993-02-01
Learning algorithms for perceptrons are deduced from statistical mechanics. Thermodynamical quantities are used as cost functions which may be extremalized by gradient dynamics to find the synaptic efficacies that store the learning set of patterns. The learning rules so obtained are classified in two categories, following the statistics used to derive the cost functions, namely, Boltzmann statistics, and Fermi statistics. In the limits of zero or infinite temperatures some of the rules behave like already known algorithms, but new strategies for learning are obtained at finite temperatures, which minimize the number of errors on the training set. Nous déduisons des algorithmes d'apprentissage pour des perceptrons à partir de considérations de mécanique statistique. Des quantités thermodynamiques sont considérées comme des fonctions de coût, dont on obtient, par une dynamique de gradient, les efficacités synaptiques qui apprennent l'ensemble d'apprentissage. Les règles ainsi obtenues sont classées en deux catégories suivant les statistiques, de Boltzmann ou de Fermi, utilisées pour dériver les fonctions de coût. Dans les limites de températures nulle ou infinie, la plupart des règles trouvées tendent vers les algorithmes connus, mais à température finie on trouve des stratégies nouvelles, qui minimisent le nombre d'erreurs dans l'ensemble d'apprentissage.
Neural networks for segmentation, tracking, and identification
Rogers, Steven K.; Ruck, Dennis W.; Priddy, Kevin L.; Tarr, Gregory L.
1992-09-01
The main thrust of this paper is to encourage the use of neural networks to process raw data for subsequent classification. This article addresses neural network techniques for processing raw pixel information. For this paper the definition of neural networks includes the conventional artificial neural networks such as the multilayer perceptrons and also biologically inspired processing techniques. Previously, we have successfully used the biologically inspired Gabor transform to process raw pixel information and segment images. In this paper we extend those ideas to both segment and track objects in multiframe sequences. It is also desirable for the neural network processing data to learn features for subsequent recognition. A common first step for processing raw data is to transform the data and use the transform coefficients as features for recognition. For example, handwritten English characters become linearly separable in the feature space of the low frequency Fourier coefficients. Much of human visual perception can be modelled by assuming low frequency Fourier as the feature space used by the human visual system. The optimum linear transform, with respect to reconstruction, is the Karhunen-Loeve transform (KLT). It has been shown that some neural network architectures can compute approximations to the KLT. The KLT coefficients can be used for recognition as well as for compression. We tested the use of the KLT on the problem of interfacing a nonverbal patient to a computer. The KLT uses an optimal basis set for object reconstruction. For object recognition, the KLT may not be optimal.
Verma, Kuldeep; Hanasoge, Shravan; Bhattacharya, Jishnu; Antia, H. M.; Krishnamurthi, Ganapathy
2016-10-01
The advent of space-based observatories such as Convection, Rotation and planetary Transits (CoRoT) and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial helium abundance, initial metallicity, mixing length (assumed to be constant over time), and the age to which the star must be evolved. Some of these parameters are also very useful in characterizing the associated planets and in studying Galactic archaeology. How to obtain these parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using artificial neural networks, is successful in determining the evolutionary parameters based on spectroscopic and seismic measurements. Our trained networks show robustness over a broad range of parameter space, and critically, are entirely computationally inexpensive and fully automated. We analyse the observations of a few stars using this method and the results compare well to inferences obtained using other techniques. This method is both computationally cheap and inferentially accurate, paving the way for analysing the vast quantities of stellar observations from past, current, and future missions.
Directory of Open Access Journals (Sweden)
Jemli Rim
2010-01-01
Full Text Available The main difficulty for natural disaster insurance derives from the uncertainty of an event's damages. Insurers cannot precisely appreciate the weight of natural hazards because of risk dependences. Insurability under uncertainty first requires an accurate assessment of entire damages. Insured and insurers both win when premiums calculate risk properly. In such cases, coverage will be available and affordable. Using the artificial neural network - a technique rooted in artificial intelligence - insurers can predict annual natural disaster losses. There are many types of artificial neural network models. In this paper we use the multilayer perceptron neural network, the most accommodated to the prediction task. In fact, if we provide the natural disaster explanatory variables to the developed neural network, it calculates perfectly the potential annual losses for the studied country.
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Design and tuning of FPGA implementations of neural networks
Clare, Peter J. C.; Gulley, J. W.; Hickman, Duncan; Smith, Moira I.
1997-06-01
Artificial neural network (ANN) algorithms are applicable in a variety of roles for image processing in infrared search and track (IRST) systems. Achieving a high throughput is a key objective in developing ANNs for processing large numbers of pixels at high frame rates. Previous work has investigated the use of a neural core supported by configurable logic to achieve a versatile technology applicable to a variety of systems. The implementation of multi-layer perceptron (MLP) ANNs, using field programmable gate array (FPGA) technology to ensure upgradability and reconfigurability, is the focus of this research. Approximations to the MLP algorithms are needed to ensure that a high throughput can be achieved with a sufficiently low gate count.
Directory of Open Access Journals (Sweden)
Mustafa Yıldız
2012-08-01
Full Text Available Introduction: We aimed to develop a classification method to discriminate ventricular septal defect and atrial septal defect by using severalhemodynamic parameters.Patients and Methods: Forty three patients (30 atrial septal defect, 13 ventricular septal defect; 26 female, 17 male with documentedhemodynamic parameters via cardiac catheterization are included to study. Such parameters as blood pressure values of different areas,gender, age and Qp/Qs ratios are used for classification. Parameters, we used in classification are determined by divergence analysismethod. Those parameters are; i pulmonary artery diastolic pressure, ii Qp/Qs ratio, iii right atrium pressure, iv age, v pulmonary arterysystolic pressure, vi left ventricular sistolic pressure, vii aorta mean pressure, viii left ventricular diastolic pressure, ix aorta diastolicpressure, x aorta systolic pressure. Those parameters detected from our study population, are uploaded to multi-layered artificial neuralnetwork and the network was trained by genetic algorithm.Results: Trained cluster consists of 14 factors (7 atrial septal defect and 7 ventricular septal defect. Overall success ratio is 79.2%, andwith a proper instruction of artificial neural network this ratio increases up to 89%.Conclusion: Parameters, belonging to artificial neural network, which are needed to be detected by the investigator in classical methods,can easily be detected with the help of genetic algorithms. During the instruction of artificial neural network by genetic algorithms, boththe topology of network and factors of network can be determined. During the test stage, elements, not included in instruction cluster, areassumed as in test cluster, and as a result of this study, we observed that multi-layered artificial neural network can be instructed properly,and neural network is a successful method for aimed classification.
CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Dr.A.TRIVEDI
2011-04-01
Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.
SPATIAL DATA MINING TOOLBOX FOR MAPPING SUITABILITY OF LANDFILL SITES USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
S. K. M. Abujayyab
2016-09-01
Full Text Available Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. The multilayer perceptron (MLP neural networks structure with a backpropagation learning algorithm is used. The dataset is mined from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result shows the ability of the toolbox to produce suitability maps for landfill sites.
Spatial Data Mining Toolbox for Mapping Suitability of Landfill Sites Using Neural Networks
Abujayyab, S. K. M.; Ahamad, M. S. S.; Yahya, A. S.; Aziz, H. A.
2016-09-01
Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. The multilayer perceptron (MLP) neural networks structure with a backpropagation learning algorithm is used. The dataset is mined from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result shows the ability of the toolbox to produce suitability maps for landfill sites.
Institute of Scientific and Technical Information of China (English)
纪亚洲; 顾和和; 李保杰
2015-01-01
针对土地利用数据库更新规则复杂、不同更新类型与更新规则自动匹配困难等问题，该文提出并构建了一种基于多层感知器神经网络的土地利用要素自适应更新模型。该模型将土地利用要素的每个变更类型判断及更新行为判断过程均设计成一个神经元，同类神经元组织成一个网络层，所有网络层采用全连接方式构成一个多层感知更新策略判断模型。该模型可以自动完成变更类型与更新规则的正确快速匹配，且可根据更新规则的变化，灵活改变知识库并产生新的推理机。试验表明：该模型明显减少了人工交互环节，综合更新效率较各基地软件可以提高30%左右，一次性更新正确率可以提高5个百分点以上，研究成果可为土地利用数据库的高效自动更新提供一整套新的解决方案。%Land use database is the basis for the government departments at all levels to regulate land use, and the currency and quality of land use database directly determine the level and effect of land supervision. However, at present, the land use database updating technology and means are not advanced enough yet. The currency of the land use database significantly lags our economic development level. In light of the automatic matching complexity of change type and update strategy, artificial neural network is introduced into update strategy judgment field. According to the structure and main updating content, from the horizontal, land use database adaptive updating model is divided into land class polygon, linear feature and isolated feature. Then, in accordance with annual update implementation program of land use database and current updating progress, methods and habits, from the vertical, the above-mentioned updating model is divided into spatial analysis layer, input layer, change type judgment layer, spatial update strategy judgment layer and attribute update strategy judgment
Optimal properties of analog perceptrons with excitatory weights.
Directory of Open Access Journals (Sweden)
Claudia Clopath
Full Text Available The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF to Purkinje Cell (PC synapses is guided by the Climbing fibers (CF, which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as seen experimentally.
Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer
2016-04-01
In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.
Evaluation of convolutional neural networks for visual recognition.
Nebauer, C
1998-01-01
Convolutional neural networks provide an efficient method to constrain the complexity of feedforward neural networks by weight sharing and restriction to local connections. This network topology has been applied in particular to image classification when sophisticated preprocessing is to be avoided and raw images are to be classified directly. In this paper two variations of convolutional networks--neocognitron and a modification of neocognitron--are compared with classifiers based on fully connected feedforward layers (i.e., multilayer perceptron, nearest neighbor classifier, auto-encoding network) with respect to their visual recognition performance. Beside the original neocognitron a modification of the neocognitron is proposed which combines neurons from perceptron with the localized network structure of neocognitron. Instead of training convolutional networks by time-consuming error backpropagation, in this work a modular procedure is applied whereby layers are trained sequentially from the input to the output layer in order to recognize features of increasing complexity. For a quantitative experimental comparison with standard classifiers two very different recognition tasks have been chosen: handwritten digit recognition and face recognition. In the first example on handwritten digit recognition the generalization of convolutional networks is compared to fully connected networks. In several experiments the influence of variations of position, size, and orientation of digits is determined and the relation between training sample size and validation error is observed. In the second example recognition of human faces is investigated under constrained and variable conditions with respect to face orientation and illumination and the limitations of convolutional networks are discussed.
Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Linares, José J.; Piuleac, Ciprian-George; Curteanu, Silvia
Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 °C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs.
Energy Technology Data Exchange (ETDEWEB)
Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Linares, Jose J. [Chemical Engineering Department, University of Castilla-La Mancha, Campus Universitario s/n. 13004, Ciudad Real (Spain); Piuleac, Ciprian-George; Curteanu, Silvia [Gh. Asachi Technical University Iasi, Department of Chemical Engineering (Romania)
2009-07-01
Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs. (author)
Prediction of stock market characteristics using neural networks
Pandya, Abhijit S.; Kondo, Tadashi; Shah, Trupti U.; Gandhi, Viraf R.
1999-03-01
International stocks trading, currency and derivative contracts play an increasingly important role for many investors. Neural network is playing a dominant role in predicting the trends in stock markets and in currency speculation. In most economic applications, the success rate using neural networks is limited to 70 - 80%. By means of the new approach of GMDH (Group Method of Data Handling) neural network predictions can be improved further by 10 - 15%. It was observed in our study, that using GMDH for short, noisy or inaccurate data sample resulted in the best-simplified model. In the GMDH model accuracy of prediction is higher and the structure is simpler than that of the usual full physical model. As an example, prediction of the activity on the stock exchange in New York was considered. On the basis of observations in the period of Jan '95 to July '98, several variables of the stock market (S&P 500, Small Cap, Dow Jones, etc.) were predicted. A model portfolio using various stocks (Amgen, Merck, Office Depot, etc.) was built and its performance was evaluated based on neural network forecasting of the closing prices. Comparison of results was made with various neural network models such as Multilayer Perceptrons with Back Propagation, and the GMDH neural network. Variations of GMDH were studied and analysis of their performance is reported in the paper.
Financial time series prediction using spiking neural networks.
Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam
2014-01-01
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.
Financial time series prediction using spiking neural networks.
Directory of Open Access Journals (Sweden)
David Reid
Full Text Available In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.
Energy Technology Data Exchange (ETDEWEB)
Guia, Jose G.C. da; Araujo, Adevid L. de [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica; Irmao, Marcos A. da Silva [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia de Processos; Silva, Antonio A. [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia Mecanica
2003-07-01
The condition monitoring and diagnostic of structural faults in pipelines are an important problem for the petroleum's industry, being necessary to develop supervisory systems for detection, prediction and evaluation of a fault in the pipelines to avoid environmental and financial damages. In this work, three types of Artificial Neural Networks (ANNs) are reviewed and used to detect and locate a fault in a simulated pipe. The simulated pipe was modeled through the Finite Elements Method. In Neural Networks' analysis, the first six natural frequencies of the pipe are used as networks' inputs. The used ANNs were the Multi-Layer Perceptron Network with backpropagation, the Probabilistic Neural Network and the Generalized Regression Neural Network. After the analysis, it was concluded that the ANN are a good computational tool in problems of faults detection on pipelines with a great precision. In the localization of the faults were obtained errors smaller than 5%. (author)
Minimal perceptrons for memorizing complex patterns
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
The Use of Neural Network Technology to Model Swimming Performance
Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida
2007-01-01
The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports
Canonical ensemble approach to graded-response perceptrons
Bollé, D.; Erichsen, R., Jr.
1999-03-01
Perceptrons with graded input-output relations and a limited output precision are studied within the Gardner-Derrida canonical ensemble approach. Soft non-negative error measures are introduced allowing for extended retrieval properties. In particular, the performance of these systems for a linear (quadratic) error measure, corresponding to the perceptron (adaline) learning algorithm, is compared with the performance for a rigid error measure, simply counting the number of errors. Replica-symmetry-breaking effects are evaluated, and the analytic results are compared with numerical simulations.
Foreground removal from CMB temperature maps using an MLP neural network
DEFF Research Database (Denmark)
Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.
2008-01-01
One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic...... CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting...... the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over...
Neural Network on Photodegradation of Octylphenol using Natural and Artificial UV Radiation
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2011-09-01
Full Text Available The present paper comes up with an experimental design meant to point out the factors interferingin octylphenol’s degradation in surface waters under solar radiation, underlining each factor’sinfluence on the process observable (concentration of p-octylphenol. Multiple linear regressionanalysis and artificial neural network (Multi-Layer Perceptron type were applied in order to obtaina mathematical model capable to explain the action of UV-light upon synthetic solutions of OP inultra-pure water (MilliQ type. Neural network proves to be the most efficient method in predictingthe evolution of OP concentration during photodegradation process. Thus, determination in neuralnetwork’s case has almost double value versus the regression analysis.
Directory of Open Access Journals (Sweden)
Nor A.M. Isa
2007-01-01
Full Text Available Thirteen cytology of fine needle aspiration image (i.e. cellularity, background information, cohesiveness, significant stromal component, clump thickness, nuclear membrane, bare nuclei, normal nuclei, mitosis, nucleus stain, uniformity of cell, fragility and number of cells in cluster are evaluated their possibility to be used as input data for artificial neural network in order to classify the breast pre-cancerous cases into four stages, namely malignant, fibroadenoma, fibrocystic disease, and other benign diseases. A total of 1300 reported breast pre-cancerous cases which was collected from Penang General Hospital and Hospital Universiti Sains Malaysia, Kelantan, Malaysia was used to train and test the artificial neural networks. The diagnosis system which was developed using the Hybrid Multilayered Perceptron and trained using Modified Recursive Prediction Error produced excellent diagnosis performance with 100% accuracy, 100% sensitivity and 100% specificity.
A Comparison between Neural Networks and Wavelet Networks in Nonlinear System Identification
Directory of Open Access Journals (Sweden)
S. Ehsan Razavi
2012-01-01
Full Text Available In this study, identification of a nonlinear function will be presented by neural network and wavelet network methods. Behavior of a nonlinear system can be identified by intelligent methods. Two groups of the most common and at the same time the most effective of neural networks methods are multilayer perceptron and radial basis function that will be used for nonlinear system identification. The selected structure is series - parallel method that after network training by a series of training random data, the output is estimated and the nonlinear function is compared to a sinusoidal input. Then, wavelet network is used for identification and we will use Orthogonal Least Squares (OLS method for wavelet selection to reduce the volume of calculations and increase the convergence speed.
Directory of Open Access Journals (Sweden)
Petr Maca
2014-01-01
Full Text Available The presented paper aims to analyze the influence of the selection of transfer function and training algorithms on neural network flood runoff forecast. Nine of the most significant flood events, caused by the extreme rainfall, were selected from 10 years of measurement on small headwater catchment in the Czech Republic, and flood runoff forecast was investigated using the extensive set of multilayer perceptrons with one hidden layer of neurons. The analyzed artificial neural network models with 11 different activation functions in hidden layer were trained using 7 local optimization algorithms. The results show that the Levenberg-Marquardt algorithm was superior compared to the remaining tested local optimization methods. When comparing the 11 nonlinear transfer functions, used in hidden layer neurons, the RootSig function was superior compared to the rest of analyzed activation functions.
Cutting force signal pattern recognition using hybrid neural network in end milling
Institute of Scientific and Technical Information of China (English)
Song-Tae SEONG; Ko-Tae JO; Young-Moon LEE
2009-01-01
Under certain cutting conditions in end milling, the signs of cutting forces change from positive to negative during a revolution of the tool. The change of force direction causes the cutting dynamics to be unstable which results in chatter vibration. Therefore, cutting force signal monitoring and classification are needed to determine the optimal cutting conditions and to improve the efficiency of cut. Artificial neural networks are powerful tools for solving highly complex and nonlinear problems. It can be divided into supervised and unsupervised learning machines based on the availability of a teacher. Hybrid neural network was introduced with both of functions of multilayer perceptron (MLP) trained with the back-propagation algorithm for monitoring and detecting abnormal state, and self organizing feature map (SOFM) for treating huge datum such as image processing and pattern recognition, for predicting and classifying cutting force signal patterns simultaneously. The validity of the results is verified with cutting experiments and simulation tests.
A hybrid Evolutionary Functional Link Artificial Neural Network for Data mining and Classification
Directory of Open Access Journals (Sweden)
Faissal MILI
2012-08-01
Full Text Available This paper presents a specific structure of neural network as the functional link artificial neural network (FLANN. This technique has been employed for classification tasks of data mining. In fact, there are a few studies that used this tool for solving classification problems. In this present research, we propose a hybrid FLANN (HFLANN model, where the optimization process is performed using 3 known population based techniques such as genetic algorithms, particle swarm and differential evolution. This model will be empirically compared to FLANN based back-propagation algorithm and to others classifiers as decision tree, multilayer perceptron based back-propagation algorithm, radical basic function, support vector machine, and K-nearest Neighbor. Our results proved that the proposed model outperforms the other single model. (Abstract
Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction
Directory of Open Access Journals (Sweden)
Seong-Gon Kim
2011-06-01
Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.
Parameter estimation in space systems using recurrent neural networks
Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.
1991-01-01
The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.
Institute of Scientific and Technical Information of China (English)
张长江; 付梦印; 金梅
2003-01-01
A kind of second-order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi-layer feed-forward neural networks, the second-order back-propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second-order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second-order learning algorithm that was given by Karayiannis.
Practical application of artificial neural networks in the neurosciences
Pinti, Antonio
1995-04-01
This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.
Handwritten Farsi Character Recognition using Artificial Neural Network
Ahangar, Reza Gharoie
2009-01-01
Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition. Till date, a very little work has been reported for Handwritten Farsi Character recognition. In this paper, we have made an attempt to recognize handwritten Farsi characters by using a multilayer perceptron with one hidden layer. The error backpropagation algorithm has been used to train the MLP network. In addition, an analysis has been carried out to determine the number of hidden nodes to achieve high performance of backpropagation network in the recognition of handwritten Farsi characters. The system has been trained using several different forms of handwriting provided by both male and female participants of different age groups. Finally, this rigorous training results an automatic HCR system using MLP network. In this work, the experiments were carried out on two hundred fifty samples of five writers. The results showed that the MLP networks trained by the err...
Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia
Directory of Open Access Journals (Sweden)
A. El-Shafie
2011-07-01
Full Text Available Rainfall is considered as one of the major component of the hydrological process, it takes significant part of evaluating drought and flooding events. Therefore, it is important to have accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting task such as Multi-Layer Perceptron Neural Networks (MLP-NN. In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series.
Two different static neural networks and one dynamic neural network namely; Multi-Layer Peceptron Neural network (MLP-NN, Radial Basis Function Neural Network (RBFNN and Input Delay Neural Network (IDNN, respectively, have been examined in this study. Those models had been developed for two time horizon in monthly and weekly rainfall basis forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008 on weekly basis and 22 yr (1987–2008 for monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural network. Results showed that MLP-NN neural network model able to follow the similar trend of the actual rainfall, yet it still relatively poor. RBFNN model achieved better accuracy over the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model outperformed during training and testing stage which prove a consistent level of accuracy with seen and unseen data. Furthermore, the IDNN significantly enhance the forecasting accuracy if compared with the other static neural network model as they could memorize the
Soda, K J; Slice, D E; Naylor, G J P
2017-01-01
Over the past few decades, geometric morphometric methods have become increasingly popular and powerful tools to describe morphological data while over the same period artificial neural networks have had a similar rise in the classification of specimens to preconceived groups. However, there has been little research into how well these two systems operate together, particularly in comparison to preexisting techniques. In this study, geometric morphometric data and multilayer perceptrons, a style of artificial neural network, were used to classify shark teeth from the genus Carcharhinus to species. Three datasets of varying size and species differences were used. We compared the performance of this combination with geometric morphometric data in a linear discriminate function analysis, linear measurements in a linear discriminate function analysis, and a preexisting methodology from the literature that incorporates linear measurements and a two-layered discriminate function analysis. Across datasets, geometric morphometric data in a multilayer perceptron tended to yield modest accuracies but accuracies that varied less across species whereas other methods were able to achieve higher accuracies in some species at the expense of lower accuracies in others. Further, the performance of the two-layered discriminate function analysis illustrates that constraining what material is classified can increase the accuracy of a method. Based on this tradeoff, the best methodology will then depend on the scope of the study and the amount of material available. J. Morphol. 278:131-141, 2017. ©© 2016 Wiley Periodicals,Inc.
Artificial neural networks applied to forecasting time series.
Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar
2011-04-01
This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-06-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available An electrocardiogram (ECG beat classification scheme based on multiple signal classification (MUSIC algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP neural network and a probabilistic neural network (PNN, are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.
Naghsh-Nilchi, Ahmad R.; Kadkhodamohammadi, A. Rahim
2009-12-01
An electrocardiogram (ECG) beat classification scheme based on multiple signal classification (MUSIC) algorithm, morphological descriptors, and neural networks is proposed for discriminating nine ECG beat types. These are normal, fusion of ventricular and normal, fusion of paced and normal, left bundle branch block, right bundle branch block, premature ventricular concentration, atrial premature contraction, paced beat, and ventricular flutter. ECG signal samples from MIT-BIH arrhythmia database are used to evaluate the scheme. MUSIC algorithm is used to calculate pseudospectrum of ECG signals. The low-frequency samples are picked to have the most valuable heartbeat information. These samples along with two morphological descriptors, which deliver the characteristics and features of all parts of the heart, form an input feature vector. This vector is used for the initial training of a classifier neural network. The neural network is designed to have nine sample outputs which constitute the nine beat types. Two neural network schemes, namely multilayered perceptron (MLP) neural network and a probabilistic neural network (PNN), are employed. The experimental results achieved a promising accuracy of 99.03% for classifying the beat types using MLP neural network. In addition, our scheme recognizes NORMAL class with 100% accuracy and never misclassifies any other classes as NORMAL.
The Chebyshev-polynomials-based unified model neural networks for function approximation.
Lee, T T; Jeng, J T
1998-01-01
In this paper, we propose the approximate transformable technique, which includes the direct transformation and indirect transformation, to obtain a Chebyshev-Polynomials-Based (CPB) unified model neural networks for feedforward/recurrent neural networks via Chebyshev polynomials approximation. Based on this approximate transformable technique, we have derived the relationship between the single-layer neural networks and multilayer perceptron neural networks. It is shown that the CPB unified model neural networks can be represented as a functional link networks that are based on Chebyshev polynomials, and those networks use the recursive least square method with forgetting factor as learning algorithm. It turns out that the CPB unified model neural networks not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural networks. Furthermore, we have also derived the condition such that the unified model generating by Chebyshev polynomials is optimal in the sense of error least square approximation in the single variable ease. Computer simulations show that the proposed method does have the capability of universal approximator in some functional approximation with considerable reduction in learning time.
Energy Technology Data Exchange (ETDEWEB)
Altran, A.B.; Lotufo, A.D.P.; Minussi, C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], Emails: lealtran@yahoo.com.br, annadiva@dee.feis.unesp.br, minussi@dee.feis.unesp.br; Lopes, M.L.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Matematica], E-mail: mara@mat.feis.unesp.br
2009-07-01
This paper presents a methodology for electrical load forecasting, using radial base functions as activation function in artificial neural networks with the training by backpropagation algorithm. This methodology is applied to short term electrical load forecasting (24 h ahead). Therefore, results are presented analyzing the use of radial base functions substituting the sigmoid function as activation function in multilayer perceptron neural networks. However, the main contribution of this paper is the proposal of a new formulation of load forecasting dedicated to the forecasting in several points of the electrical network, as well as considering several types of users (residential, commercial, industrial). It deals with the MLF (Multimodal Load Forecasting), with the same processing time as the GLF (Global Load Forecasting). (author)
Johnson, Cameron; Venayagamoorthy, Ganesh Kumar; Mitra, Pinaki
2009-01-01
The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps: (i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on generators of different ratings and parameters. Performances of the SNN and MLP are compared to evaluate robustness on the identification of generator dynamics under small and large disturbances, and to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.
Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub
2015-10-30
An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.
Directory of Open Access Journals (Sweden)
Jun-Young Jung
2015-10-01
Full Text Available An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.
Directory of Open Access Journals (Sweden)
Mahmoud Akbarian
2015-07-01
Results: Twelve features with P<0.05 and four features with P<0.1 were identified by using binary logistic regression as effective features. These sixteen features were used as input variables in artificial neural networks. The accuracy, sensitivity and specificity of the test data for the MLP network were 90.9%, 80.0%, and 94.1% respectively and for the total data were 97.3%, 93.5%, and 99.0% respectively. Conclusion: According to the results, we concluded that feed-forward Multi-Layer Perceptron (MLP neural network with scaled conjugate gradient (trainscg back propagation learning algorithm can help physicians to predict the pregnancy outcomes (spontaneous abortion and live birth among pregnant women with lupus by using identified effective variables.
Directory of Open Access Journals (Sweden)
Palukuru NAGENDRA
2010-12-01
Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.
The Role of Weight Shrinking in Large Margin Perceptron Learning
Panagiotakopoulos, Constantinos
2012-01-01
We introduce into the classical perceptron algorithm with margin a mechanism that shrinks the current weight vector as a first step of the update. If the shrinking factor is constant the resulting algorithm may be regarded as a margin-error-driven version of NORMA with constant learning rate. In this case we show that the allowed strength of shrinking depends on the value of the maximum margin. We also consider variable shrinking factors for which there is no such dependence. In both cases we obtain new generalizations of the perceptron with margin able to provably attain in a finite number of steps any desirable approximation of the maximal margin hyperplane. The new approximate maximum margin classifiers appear experimentally to be very competitive in 2-norm soft margin tasks involving linear kernels.
Al-Abadi, Alaa M.
2016-11-01
The potential of using three different data-driven techniques namely, multilayer perceptron with backpropagation artificial neural network (MLP), M5 decision tree model, and Takagi-Sugeno (TS) inference system for mimic stage-discharge relationship at Gharraf River system, southern Iraq has been investigated and discussed in this study. The study used the available stage and discharge data for predicting discharge using different combinations of stage, antecedent stages, and antecedent discharge values. The models' results were compared using root mean squared error (RMSE) and coefficient of determination ( R 2) error statistics. The results of the comparison in testing stage reveal that M5 and Takagi-Sugeno techniques have certain advantages for setting up stage-discharge than multilayer perceptron artificial neural network. Although the performance of TS inference system was very close to that for M5 model in terms of R 2, the M5 method has the lowest RMSE (8.10 m3/s). The study implies that both M5 and TS inference systems are promising tool for identifying stage-discharge relationship in the study area.
Yoshida, Yuki; Karakida, Ryo; Okada, Masato; Amari, Shun-ichi
2017-04-01
Weight normalization, a newly proposed optimization method for neural networks by Salimans and Kingma (2016), decomposes the weight vector of a neural network into a radial length and a direction vector, and the decomposed parameters follow their steepest descent update. They reported that learning with the weight normalization achieves better converging speed in several tasks including image recognition and reinforcement learning than learning with the conventional parameterization. However, it remains theoretically uncovered how the weight normalization improves the converging speed. In this study, we applied a statistical mechanical technique to analyze on-line learning in single layer linear and nonlinear perceptrons with weight normalization. By deriving order parameters of the learning dynamics, we confirmed quantitatively that weight normalization realizes fast converging speed by automatically tuning the effective learning rate, regardless of the nonlinearity of the neural network. This property is realized when the initial value of the radial length is near the global minimum; therefore, our theory suggests that it is important to choose the initial value of the radial length appropriately when using weight normalization.
NNIC—neural network image compressor for satellite positioning system
Danchenko, Pavel; Lifshits, Feodor; Orion, Itzhak; Koren, Sion; Solomon, Alan D.; Mark, Shlomo
2007-04-01
We have developed an algorithm, based on novel techniques of data compression and neural networks for the optimal positioning of a satellite. The algorithm is described in detail, and examples of its application are given. The heart of this algorithm is the program NNIC—neural network image compressor. This program was developed for compression color and grayscale images with artificial neural networks (ANNs). NNIC applies three different methods for compression. Two of them are based on neural networks architectures—multilayer perceptron and kohonen network. The third is based on a widely used method of discrete cosine transform, the basis for the JPEG standard. The program also serves as a tool for determining numerical and visual quality parameters of compression and comparison between different methods. A number of advantages and disadvantages of the compression using ANNs were discovered in the course of the present research, some of them presented in this report. The thrust of the report is the discussion of ANNs implementation problems for modern platforms, such as a satellite positioning system that include intensive image flowing and processing.
Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Ziaul Huque
2007-08-31
This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.
Neural network payload estimation for adaptive robot control.
Leahy, M R; Johnson, M A; Rogers, S K
1991-01-01
A concept is proposed for utilizing artificial neural networks to enhance the high-speed tracking accuracy of robotic manipulators. Tracking accuracy is a function of the controller's ability to compensate for disturbances produced by dynamical interactions between the links. A model-based control algorithm uses a nominal model of those dynamical interactions to reduce the disturbances. The problem is how to provide accurate dynamics information to the controller in the presence of payload uncertainty and modeling error. Neural network payload estimation uses a series of artificial neural networks to recognize the payload variation associated with a degradation in tracking performance. The network outputs are combined with a knowledge of nominal dynamics to produce a computationally efficient direct form of adaptive control. The concept is validated through experimentation and analysis on the first three links of a PUMA-560 manipulator. A multilayer perceptron architecture with two hidden layers is used. Integration of the principles of neural network pattern recognition and model-based control produces a tracking algorithm with enhanced robustness to incomplete dynamic information. Tracking efficacy and applicability to robust control algorithms are discussed.
Face recognition: a convolutional neural-network approach.
Lawrence, S; Giles, C L; Tsoi, A C; Back, A D
1997-01-01
We present a hybrid neural-network for human face recognition which compares favourably with other methods. The system combines local image sampling, a self-organizing map (SOM) neural network, and a convolutional neural network. The SOM provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the SOM, and a multilayer perceptron (MLP) in place of the convolutional network for comparison. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze the computational complexity and discuss how new classes could be added to the trained recognizer.
A neural network device for on-line particle identification in cosmic ray experiments
Energy Technology Data Exchange (ETDEWEB)
Scrimaglio, R. E-mail: renato.scrimaglio@aquila.infn.it; Finetti, N.; D' Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G.C
2004-05-21
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.
Dziuba, B
2013-01-01
Fourier transform infrared spectroscopy (FTIR) and artificial neural networks (ANN's) were used to identify species of Propionibacteria strains. The aim of the study was to improve the methodology to identify species of Propionibacteria strains, in which the differentiation index D, calculated based on Pearson's correlation and cluster analyses were used to describe the correlation between the Fourier transform infrared spectra and bacteria as molecular systems brought unsatisfactory results. More advanced statistical methods of identification of the FTIR spectra with application of artificial neural networks (ANN's) were used. In this experiment, the FTIR spectra of Propionibacteria strains stored in the library were used to develop artificial neural networks for their identification. Several multilayer perceptrons (MLP) and probabilistic neural networks (PNN) were tested. The practical value of selected artificial neural networks was assessed based on identification results of spectra of 9 reference strains and 28 isolates. To verify results of isolates identification, the PCR based method with the pairs of species-specific primers was used. The use of artificial neural networks in FTIR spectral analyses as the most advanced chemometric method supported correct identification of 93% bacteria of the genus Propionibacterium to the species level.
Control on a 2-D Wing Flutter Using an AdaptiveNonlinear Neural Controller
Directory of Open Access Journals (Sweden)
Hayder S. Abd Al-Amir
2011-01-01
Full Text Available An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO. The structure of the controller consists of two models :the modified Elman neural network (MENN and the feed forward multi-layer Perceptron (MLP. The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. The feed forward neural controller is trained off-line and adaptive weights are implemented on-line to find the flap angles, which controls the plunge and pitch motion of the wing. The general back propagation algorithm is used to learn the feed forward neural controller and the neural identifier. The simulation results show the effectiveness of the proposed control algorithm; this is demonstrated by the minimized tracking error to zero approximation with very acceptable settling time even with the existence of bounded external disturbances.
Dynamic Baysesian state-space model with a neural network for an online river flow prediction
Ham, Jonghwa; Hong, Yoon-Seok
2013-04-01
The usefulness of artificial neural networks in complex hydrological modeling has been demonstrated by successful applications. Several different types of neural network have been used for the hydrological modeling task but the multi-layer perceptron (MLP) neural network (also known as the feed-forward neural network) has enjoyed a predominant position because of its simplicity and its ability to provide good approximations. In many hydrological applications of MLP neural networks, the gradient descent-based batch learning algorithm such as back-propagation, quasi-Newton, Levenburg-Marquardt, and conjugate gradient algorithms has been used to optimize the cost function (usually by minimizing the error function in the prediction) by updating the parameters and structure in a neural network defined using a set of input-output training examples. Hydrological systems are highly with time-varying inputs and outputs, and are characterized by data that arrive sequentially. The gradient descent-based batch learning approaches that are implemented in MLP neural networks have significant disadvantages for online dynamic hydrological modeling because they could not update the model structure and parameter when a new set of hydrological measurement data becomes available. In addition, a large amount of training data is always required off-line with a long model training time. In this work, a dynamic nonlinear Bayesian state-space model with a multi-layer perceptron (MLP) neural network via a sequential Monte Carlo (SMC) learning algorithm is proposed for an online dynamic hydrological modeling. This proposed new method of modeling is herein known as MLP-SMC. The sequential Monte Carlo learning algorithm in the MLP-SMC is designed to evolve and adapt the weight of a MLP neural network sequentially in time on the arrival of each new item of hydrological data. The weight of a MLP neural network is treated as the unknown dynamic state variable in the dynamic Bayesian state
Directory of Open Access Journals (Sweden)
J. C. Ochoa-Rivera
2002-01-01
Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..
Energy Technology Data Exchange (ETDEWEB)
Azevedo-Marques, P.M. de; Ambrosio, P.E.; Pereira, R.R. Jr.; Valini, R. de A.; Salomao, S.C. [Faculty of Medicine of Ribeirao Preto, Univ. of Sao Paulo (Brazil)
2007-06-15
This paper presents an automated approach to apply a self-organizing map (SOM) artificial neural network (ANN) as a tool for feature extraction and dimensionality reduction to recognize and characterize radiologic patterns of interstitial lung diseases in chest radiography. After feature extraction and dimensionality reduction a multilayer perceptron (MLP) ANN is applied for radiologic patterns classification in normal, linear, nodular or mixed. A leave-one-out methodology was applied for training and test over a database containing 17 samples of linear pattern, 9 samples of nodular pattern, 9 samples of mixed pattern and 18 samples of normal pattern. The MLP network provided an average result of 88.7% of right classification, with 100% of right classification for linear pattern, 55.5% for nodular pattern, 77.7% for mixed pattern and 100% for normal pattern. (orig.)
A new approach for sizing stand alone photovoltaic systems based in neural networks
Energy Technology Data Exchange (ETDEWEB)
Hontoria, L.; Aguilera, J. [Universidad de Jaen, Dept. de Electronica, Jaen (Spain); Zufiria, P. [UPM Ciudad Universitaria, Dept. de Matematica Aplicada a las Tecnologias de la Informacion, Madrid (Spain)
2005-02-01
Several methods for sizing stand alone photovoltaic (pv) systems has been developed. The more simplistic are called intuitive methods. They are a useful tool for a first approach in sizing stand alone photovoltaic systems. Nevertheless they are very inaccurate. Analytical methods use equations to describe the pv system size as a function of reliability. These ones are more accurate than the previous ones but they are also not accurate enough for sizing of high reliability. In a third group there are methods which use system simulations. These ones are called numerical methods. Many of the analytical methods employ the concept of reliability of the system or the complementary term: loss of load probability (LOLP). In this paper an improvement for obtaining LOLP curves based on the neural network called Multilayer Perceptron (MLP) is presented. A unique MLP for many locations of Spain has been trained and after the training, the MLP is able to generate LOLP curves for any value and location. (Author)
Energy and Carbon Flux Coupling: Multi-ecosystem Comparisons Using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Assefa M. Melesse
2005-01-01
Full Text Available A multi-ecosystems carbon flux simulation from energy fluxes is presented. A new statistical learning technique based on Artificial Neural Network (ANN back propagation algorithm and multi-layer perceptron architecture was used in the CO2 simulation. Four input layers (net radiation, soil heat flux, sensible and latent heat flux were used for training (calibration and testing (verification of model outputs. The 15-days half-hourly (grassland and hourly (forest and cropland micrometeorological data from eddy covariance observations of AmeriFlux towers were divided into training (5-days and testing (10-days sets. Results show that the ANN-based technique predicts CO2 flux with testing R2 values of 0.86, 0.75 and 0.94 for forest, grassland and cropland ecosystems, respectively. The technique is reliable and efficient to estimate regional or global CO2 fluxes from point measurements and understand the spatiotemporal budget of the CO2 fluxes.
Evaluation of Starting Current of Induction Motors Using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Iman Sadeghkhani
2014-07-01
Full Text Available Induction motors (IMs are widely used in industry including it be an electrical or not. However during starting period, their starting currents are so large that can damage equipment. Therefore, this current should be estimated accurately to prevent hazards caused by it. In this paper, the artificial neural network (ANN as an intelligent tool is used to evaluate starting current peak of IMs. Both Multilayer Perceptron (MLP and Radial Basis Function (RBF structures have been analyzed. Six learning algorithms, backpropagation (BP, delta-bar-delta (DBD, extended delta-bar-delta (EDBD, directed random search (DRS, quick propagation (QP, and levenberg marquardt (LM were used to train the MLP. The simulation results using MATLAB show that most developed ANNs can estimate the starting current peak of IMs with good accuracy. However, it is proven that LM and EDBD algorithms present better performance for starting current evaluation based on average of relative and absolute errors.
Prediction of Atmospheric Pressure at Ground Level using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Angshuman Ray
2013-01-01
Full Text Available Prediction of Atmospheric Pressure is one important and challenging task that needs lot of attention and study for analyzing atmospheric conditions. Advent of digital computers and development of data driven artificial intelligence approaches like Artificial Neural Networks (ANN have helped in numerical prediction of pressure. However, very few works have been done till now in this area. The present study developed an ANN model based on the past observations of several meteorological parameters like temperature, humidity, air pressure and vapour pressure as an input for training the model. The novel architecture of the proposed model contains several multilayer perceptron network (MLP to realize better performance. The model is enriched by analysis of alternative hybrid model of k-means clustering and MLP. The improvement of the performance in the prediction accuracy has been demonstrated by the automatic selection of the appropriate cluster
Fast converging minimum probability of error neural network receivers for DS-CDMA communications.
Matyjas, John D; Psaromiligkos, Ioannis N; Batalama, Stella N; Medley, Michael J
2004-03-01
We consider a multilayer perceptron neural network (NN) receiver architecture for the recovery of the information bits of a direct-sequence code-division-multiple-access (DS-CDMA) user. We develop a fast converging adaptive training algorithm that minimizes the bit-error rate (BER) at the output of the receiver. The adaptive algorithm has three key features: i) it incorporates the BER, i.e., the ultimate performance evaluation measure, directly into the learning process, ii) it utilizes constraints that are derived from the properties of the optimum single-user decision boundary for additive white Gaussian noise (AWGN) multiple-access channels, and iii) it embeds importance sampling (IS) principles directly into the receiver optimization process. Simulation studies illustrate the BER performance of the proposed scheme.
Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.
2016-09-01
The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.
A constructive approach for finding arbitrary roots of polynomials by neural networks.
Huang, De-Shuang
2004-03-01
This paper proposes a constructive approach for finding arbitrary (real or complex) roots of arbitrary (real or complex) polynomials by multilayer perceptron network (MLPN) using constrained learning algorithm (CLA), which encodes the a priori information of constraint relations between root moments and coefficients of a polynomial into the usual BP algorithm (BPA). Moreover, the root moment method (RMM) is also simplified into a recursive version so that the computational complexity can be further decreased, which leads the roots of those higher order polynomials to be readily found. In addition, an adaptive learning parameter with the CLA is also proposed in this paper; an initial weight selection method is also given. Finally, several experimental results show that our proposed neural connectionism approaches, with respect to the nonneural ones, are more efficient and feasible in finding the arbitrary roots of arbitrary polynomials.
PREDICTING STUDENT ACADEMIC PERFORMANCE IN BLENDED LEARNING USING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Nick Z. Zacharis
2016-09-01
Full Text Available Along with the spreading of online education, the importance of active support of students involved in online learning processes has grown. The application of artificial intelligence in education allows instructors to analyze data extracted from university servers, identify patterns of student behavior and develop interventions for struggling students. This study used student data stored in a Moodle server and predicted student success in course, based on four learning activities - communication via emails, collaborative content creation with wiki, content interaction measured by files viewed and self-evaluation through online quizzes. Next, a model based on the Multi-Layer Perceptron Neural Network was trained to predict student performance on a blended learning course environment. The model predicted the performance of students with correct classification rate, CCR, of 98.3%.
Neural networks for emulation variational method for data assimilation in nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Morais Furtado, Helaine Cristina; Fraga de Campos Velho, Haroldo; Macau, Elbert E N, E-mail: helaine.furtado@lac.inpe.br, E-mail: haroldo@lac.inpe.br, E-mail: elbert@lac.inpe.br [Laboratorio Associado de Computacao e Matematica Aplicada, Sao Jose dos Campos (Brazil)
2011-03-01
Description of a physical phenomenon through differential equations has errors involved, since the mathematical model is always an approximation of reality. For an operational prediction system, one strategy to improve the prediction is to add some information from the real dynamics into mathematical model. This additional information consists of observations on the phenomenon. However, the observational data insertion should be done carefully, for avoiding a worse performance of the prediction. Technical data assimilation are tools to combine data from physical-mathematics model with observational data to obtain a better forecast. The goal of this work is to present the performance of the Neural Network Multilayer Perceptrons trained to emulate a Variational method in context of data assimilation. Techniques for data assimilation are applied for the Lorenz systems; which presents a strong nonlinearity and chaotic nature.
Directory of Open Access Journals (Sweden)
J. Pavlovicova
2007-04-01
Full Text Available In this contribution, human face as biometric is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron and PCA (principal component analysis. This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and RBF (radial basis function networks, and to a system using MLP as a feature extractor and MLP and RBF networks in the role of classifier. Also a two-stage method for face recognition is presented, in which Kohonen self-organizing map is used as a feature extractor. MLP and RBF network are used as classifiers. In order to obtain deeper insight into presented methods, also visualizations of internal representation of input data obtained by neural networks are presented.
Static sign language recognition using 1D descriptors and neural networks
Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César
2012-10-01
A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.
Energy Technology Data Exchange (ETDEWEB)
Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)
2016-09-11
The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.
Artificial neural Network-Based modeling and monitoring of photovoltaic generator
Directory of Open Access Journals (Sweden)
H. MEKKI
2015-03-01
Full Text Available In this paper, an artificial neural network based-model (ANNBM is introduced for partial shading detection losses in photovoltaic (PV panel. A Multilayer Perceptron (MLP is used to estimate the electrical outputs (current and voltage of the photovoltaic module using the external meteorological data: solar irradiation G (W/m2 and the module temperature T (°C. Firstly, a database of the BP150SX photovoltaic module operating without any defect has been used to train the considered MLP. Subsequently, in the first case of this study, the developed model is used to estimate the output current and voltage of the PV module considering the partial shading effect. Results confirm the good ability of the ANNBM to detect the partial shading effect in the photovoltaic module with logical accuracy. The proposed strategy could also be used for the online monitoring and supervision of PV modules.
Application of neural models as controllers in mobile robot velocity control loop
Cerkala, Jakub; Jadlovska, Anna
2017-01-01
This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.
Evaluation of Neural Networks Performance in Active Cancellation of Acoustic Noise
Directory of Open Access Journals (Sweden)
Mehrshad Salmasi,
2014-12-01
Full Text Available Active Noise Control (ANC works on the principle of destructive interference between the primary disturbance field heard as undesired noise and the secondary field which is generated from control actuators. In the simplest system, the disturbance field can be a simple sine wave, and the secondary field is the same sine wave but 180 degrees out of phase. This research presents an investigation on the use of different types of neural networks in active noise control. Performance of the multilayer perceptron (MLP, Elman and generalized regression neural networks (GRNN in active cancellation of acoustic noise signals is investigated and compared in this paper. Acoustic noise signals are selected from a Signal Processing Information Base (SPIB database. In order to compare the networks appropriately, similar structures and similar training and test samples are deduced for neural networks. The simulation results show that MLP, GRNN, and Elman neural networks present proper performance in active cancellation of acoustic noise. It is concluded that Elman and MLP neural networks have better performance than GRNN in noise attenuation. It is demonstrated that designed ANC system achieve good noise reduction in low frequencies.
Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri
2010-05-01
Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.
Review On Applications Of Neural Network To Computer Vision
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
Modeling of surface dust concentrations using neural networks and kriging
Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.
2016-12-01
Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.
Estimating Type Ia Supernova Metallicities Using Neural Networks
Villar, V. Ashley
2017-01-01
Normal Type Ia supernovae (SNe) can be used as standardizable candles because their progenitors, white dwarfs, are a fairly homogenous class of objects. However, intrinsic variability in these events arise from a number of factors, including metallicity. Recent studies have investigated the effects of metallicity on Type Ia SNe observables from both a theoretical approach, by tuning model metallicity to analyze spectral features, and an observational approach, by studying the effect of host metallicity on light curves. In this work, we take a new, data-driven approach to the problem. Inspired by the success of neural networks in the field of image processing, we aim to estimate the metallicities of Type Ia SNe progenitors from their near-maximum spectra using feed-forward neural networks. We first collect a sample of near-maximum Type Ia SNe spectra from the literature to be smoothed and down-sampled. We then estimate the metallicities of the SNe hosts using the B-band magnitudes. We build a multilayer perceptron to generate a model that takes as input the down-sampled spectra and returns a scalar metallicity. Finally, we discuss basic considerations to be taken when working with spectral (as opposed to image) data using neural networks.
Neural Network Based Lna Design for Mobile Satellite Receiver
Directory of Open Access Journals (Sweden)
Abhijeet Upadhya
2014-08-01
Full Text Available Paper presents a Neural Network Modelling approach to microwave LNA design. To acknowledge the specifications of the amplifier, Mobile Satellite Systems are analyzed. Scattering parameters of the LNA in the frequency range 0.5 to 18 GHz are calculated using a Multilayer Perceptron Artificial Neural Network model and corresponding smith charts and polar charts are plotted as output to the model. From these plots, the microwave scattering parameter description of the LNA are obtained. Model is efficiently trained using Agilent ATF 331M4 InGaAs/InP Low Noise pHEMT amplifier datasheet and the neural model’s output seem to follow the various device characteristic curves with high regression. Next, Maximum Allowable Gain and Noise figure of the device are modelled and plotted for the same frequency range. Finally, the optimized model is utilized as an interpolator and the resolution of the amplifying capability with noise characteristics are obtained for the L Band of MSS operation.
Artificial Neural Network Approach in Radar Target Classification
Directory of Open Access Journals (Sweden)
N. K. Ibrahim
2009-01-01
Full Text Available Problem statement: This study unveils the potential and utilization of Neural Network (NN in radar applications for target classification. The radar system under test is a special of it kinds and known as Forward Scattering Radar (FSR. In this study the target is a ground vehicle which is represented by typical public road transport. The features from raw radar signal were extracted manually prior to classification process using Neural Network (NN. Features given to the proposed network model are identified through radar theoretical analysis. Multi-Layer Perceptron (MLP back-propagation neural network trained with three back-propagation algorithm was implemented and analyzed. In NN classifier, the unknown target is sent to the network trained by the known targets to attain the accurate output. Approach: Two types of classifications were analyzed. The first one is to classify the exact type of vehicle, four vehicle types were selected. The second objective is to grouped vehicle into their categories. The proposed NN architecture is compared to the K Nearest Neighbor classifier and the performance is evaluated. Results: Based on the results, the proposed NN provides a higher percentage of successful classification than the KNN classifier. Conclusion/Recommendation: The result presented here show that NN can be effectively employed in radar classification applications.
Directory of Open Access Journals (Sweden)
Fatma Zohra Chelali
2015-01-01
Full Text Available Face recognition has received a great attention from a lot of researchers in computer vision, pattern recognition, and human machine computer interfaces in recent years. Designing a face recognition system is a complex task due to the wide variety of illumination, pose, and facial expression. A lot of approaches have been developed to find the optimal space in which face feature descriptors are well distinguished and separated. Face representation using Gabor features and discrete wavelet has attracted considerable attention in computer vision and image processing. We describe in this paper a face recognition system using artificial neural networks like multilayer perceptron (MLP and radial basis function (RBF where Gabor and discrete wavelet based feature extraction methods are proposed for the extraction of features from facial images using two facial databases: the ORL and computer vision. Good recognition rate was obtained using Gabor and DWT parameterization with MLP classifier applied for computer vision dataset.
Evrendilek, Fatih; Denizli, Haluk; Yetis, Hakan; Karakaya, Nusret
2013-07-01
Concentrations of outdoor radon-222 ((222)Rn) in temperate grazed peatland and deciduous forest in northwestern Turkey were measured, compared, and modeled using artificial neural networks (ANNs) and multiple nonlinear regression (MNLR) models. The best-performing multilayer perceptron model selected out of 28 ANNs considerably enhanced accuracy metrics in emulating (222)Rn concentrations relative to the MNLR model. The two ecosystems had similar diel patterns with the lowest (222)Rn concentrations in the afternoon and the highest ones near dawn. Mean level (5.1 + 2.5 Bq m(-3) h(-1)) of (222)Rn in the forest was three times smaller than that (15.8 + 9.7 Bq m(-3)) of (222)Rn in the peatland. Mean (222)Rn level had negative and positive relationships with air temperature and relative humidity, respectively.
Institute of Scientific and Technical Information of China (English)
Ahmad KhazaiePoul; M Soleimani; S Salahi
2016-01-01
Nowadays artificial neural networks (ANNs) with strong ability have been applied widely for prediction of non-linear phenomenon. In this work an optimized ANN with 7 inputs that consist of temperature, pressure, critical temperature, critical pressure, density, molecular weight and acentric factor has been used for solubility predic-tion of three disperse dyes in supercritical carbon dioxide (SC-CO2) and ethanol as co-solvent. It was shown how a multi-layer perceptron network can be trained to represent the solubility of disperse dyes in SC-CO2. Numeric Sensitivity Analysis and Garson equation were utilized to find out the degree of effectiveness of different input variables on the efficiency of the proposed model. Results showed that our proposed ANN model has correlation coefficient, Nash–Sutcliffe model efficiency coefficient and discrepancy ratio about 0.998, 0.992, and 1.053 respectively.
Directory of Open Access Journals (Sweden)
Boulbaba Ben Ammar
2013-09-01
Full Text Available This paper gives the definition of Transparent Neural Network “TNN” for the simulation of the globallocal vision and its application to the segmentation of administrative document image. We have developed and have adapted a recognition method which models the contextual effects reported from studies in experimental psychology. Then, we evaluated and tested the TNN and the multi-layer perceptron “MLP”, which showed its effectiveness in the field of the recognition, in order to show that the TNN is clearer for the user and more powerful on the level of the recognition. Indeed, the TNN is the only system which makes it possible to recognize the document and its structure.
Directory of Open Access Journals (Sweden)
J. Prakash Maran
2013-09-01
Full Text Available In this study, a comparative approach was made between artificial neural network (ANN and response surface methodology (RSM to predict the mass transfer parameters of osmotic dehydration of papaya. The effects of process variables such as temperature, osmotic solution concentration and agitation speed on water loss, weight reduction, and solid gain during osmotic dehydration were investigated using a three-level three-factor Box-Behnken experimental design. Same design was utilized to train a feed-forward multilayered perceptron (MLP ANN with back-propagation algorithm. The predictive capabilities of the two methodologies were compared in terms of root mean square error (RMSE, mean absolute error (MAE, standard error of prediction (SEP, model predictive error (MPE, chi square statistic (χ2, and coefficient of determination (R2 based on the validation data set. The results showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.
Cabrelli, C; Molter, U; Shonkwiler, R
2000-01-01
A sufficient condition that a region be classifiable by a two-layer feedforward neural net (a two-layer perceptron) using threshold activation functions is that either it be a convex polytope or that intersected with the complement of a convex polytope in its interior, or that intersected with the complement of a convex polytope in its interior or ... recursively. These have been called convex recursive deletion (CoRD) regions.We give a simple algorithm for finding the weights and thresholds in both layers for a feedforward net that implements such a region. The results of this work help in understanding the relationship between the decision region of a perceptron and its corresponding geometry in input space. Our construction extends in a simple way to the case that the decision region is the disjoint union of CoRD regions (requiring three layers). Therefore this work also helps in understanding how many neurons are needed in the second layer of a general three-layer network. In the event that the decision region of a network is known and is the union of CoRD regions, our results enable the calculation of the weights and thresholds of the implementing network directly and rapidly without the need for thousands of backpropagation iterations.
Handwritten Arabic Numeral Recognition using a Multi Layer Perceptron
Das, Nibaran; Saha, Sudip; Haque, Syed Sahidul
2010-01-01
Handwritten numeral recognition is in general a benchmark problem of Pattern Recognition and Artificial Intelligence. Compared to the problem of printed numeral recognition, the problem of handwritten numeral recognition is compounded due to variations in shapes and sizes of handwritten characters. Considering all these, the problem of handwritten numeral recognition is addressed under the present work in respect to handwritten Arabic numerals. Arabic is spoken throughout the Arab World and the fifth most popular language in the world slightly before Portuguese and Bengali. For the present work, we have developed a feature set of 88 features is designed to represent samples of handwritten Arabic numerals for this work. It includes 72 shadow and 16 octant features. A Multi Layer Perceptron (MLP) based classifier is used here for recognition handwritten Arabic digits represented with the said feature set. On experimentation with a database of 3000 samples, the technique yields an average recognition rate of 94....
Safavi, Hamid R; Malek Ahmadi, Kian
2015-01-01
Although drought impacts on water quantity are widely recognized, the impacts on water quality are less known. The Zayandehrud River basin in the west-central part of Iran plateau witnessed an increased contamination during the recent droughts and low flows. The river has been receiving wastewater and effluents from the villages, a number of small and large industries, and irrigation drainage systems along its course. What makes the situation even worse is the drought period the river basin has been going through over the last decade. Therefore, a river quality management model is required to include the adverse effects of industrial development in the region and the destructive effects of droughts which affect the river's water quality and its surrounding environment. Developing such a model naturally presupposes investigations into pollution effects in terms of both quality and quantity to be used in such management tools as mathematical models to predict the water quality of the river and to prevent pollution escalation in the environment. The present study aims to investigate electrical conductivity of the Zayandehrud River as a water quality parameter and to evaluate the effect of this parameter under drought conditions. For this purpose, artificial neural networks are used as a modeling tool to derive the relationship between electrical conductivity and the hydrological parameters of the Zayandehrud River. The models used in this research include multi-layer perceptron and radial basis function. Finally, these two models are compared in terms of their performance using the time series of electrical conductivity at eight monitoring-hydrometric stations during drought periods between the years 1997-2012. Results show that artificial neural networks can be used for modeling the relationship between electrical conductivity and hydrological parameters under drought conditions. It is further shown that radial basis function works better for the upstream stretches
Neural networks type MLP in the process of identification chosen varieties of maize
Boniecki, P.; Nowakowski, K.; Tomczak, R.
2011-06-01
During the adaptation process of the weights vector that occurs in the iterative presentation of the teaching vector, the the MLP type artificial neural network (MultiLayer Perceptron) attempts to learn the structure of the data. Such a network can learn to recognise aggregates of input data occurring in the input data set regardless of the assumed criteria of similarity and the quantity of the data explored. The MLP type neural network can be also used to detect regularities occurring in the obtained graphic empirical data. The neuronal image analysis is then a new field of digital processing of signals. It is possible to use it to identify chosen objects given in the form of bitmap. If at the network input, a new unknown case appears which the network is unable to recognise, it means that it is different from all the classes known previously. The MLP type artificial neural network taught in this way can serve as a detector signalling the appearance of a widely understood novelty. Such a network can also look for similarities between the known data and the noisy data. In this way, it is able to identify fragments of images presented in photographs of e.g. maze's grain. The purpose of the research was to use the MLP neural networks in the process of identification of chosen varieties of maize with the use of image analysis method. The neuronal classification shapes of grains was performed with the use of the Johan Gielis super formula.
Neural network analysis of terahertz spectra of explosives and bio-agents
Oliveira, Felipe; Barat, Robert; Shulkin, Brian; Federici, John F.; Gary, Dale; Zimdars, David A.
2003-08-01
A proposed, non-invasive, means to detect and characterize concealed biological and explosive agents in near real-time with a wide field-of-view uses spatial imaging of their characteristic transmission or reflectivity wavelength spectrum in the Terahertz (THz) electro-magnetic range (0.1-3 THz). Neural network analyses of the THz spectra and images will provide the specificity of agent detection and reduce the frequency of false alarms. Artificial neural networks are mathematical devices for modeling complex, non-linear functionalities. The key to a successful neural network is adequate training with known input-output data. Important challenges in the research include identification of the preferred network structure (e.g. multi-layer perceptron), number of hidden nodes, training algorithm (e.g. back propagation), and determination of what type of THz spectral image pre-processing is needed prior to application of the network. Detector array images containing both spectral and spatial information are analyzed with the aid of the Neurosolutions(TM) commercial neural network software package.
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
Power prediction in mobile communication systems using an optimal neural-network structure.
Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J
1997-01-01
Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.
Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks
Directory of Open Access Journals (Sweden)
M. Bazazzadeh
2011-01-01
Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.
Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation
Directory of Open Access Journals (Sweden)
M. Agatonović
2012-12-01
Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.
Energy Technology Data Exchange (ETDEWEB)
Lobato, Justo; Canizares, Pablo; Rodrigo, Manuel A.; Linares, Jose J. [Chemical Engineering Department, University of Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real (Spain); Piuleac, Ciprian-George; Curteanu, Silvia [Faculty of Chemical Engineering and Environmental Protection, Department of Chemical Engineering, ' ' Gh. Asachi' ' Technical University Iasi Bd. D. Mangeron, No. 71A, 700050 IASI (Romania)
2010-08-15
This article shows the application of a very useful mathematical tool, artificial neural networks, to predict the fuel cells results (the value of the tortuosity and the cell voltage, at a given current density, and therefore, the power) on the basis of several properties that define a Gas Diffusion Layer: Teflon content, air permeability, porosity, mean pore size, hydrophobia level. Four neural networks types (multilayer perceptron, generalized feedforward network, modular neural network, and Jordan-Elman neural network) have been applied, with a good fitting between the predicted and the experimental values in the polarization curves. A simple feedforward neural network with one hidden layer proved to be an accurate model with good generalization capability (error about 1% in the validation phase). A procedure based on inverse neural network modelling was able to determine, with small errors, the initial conditions leading to imposed values for characteristics of the fuel cell. In addition, the use of this tool has been proved to be very attractive in order to predict the cell performance, and more interestingly, the influence of the properties of the gas diffusion layer on the cell performance, allowing possible enhancements of this material by changing some of its properties. (author)
Chaotic diagonal recurrent neural network
Institute of Scientific and Technical Information of China (English)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.
Image segmentation using neural tree networks
Samaddar, Sumitro; Mammone, Richard J.
1993-06-01
We present a technique for Image Segmentation using Neural Tree Networks (NTN). We also modify the NTN architecture to let is solve multi-class classification problems with only binary fan-out. We have used a realistic case study of segmenting the pole, coil and painted coil regions of light bulb filaments (LBF). The input to the network is a set of maximum, minimum and average of intensities in radial slices of a circular window around a pixel, taken from a front-lit and a back-lit image of an LBF. Training is done with a composite image drawn from images of many LBFs. Each node of the NTN is a multi-layer perceptron and has one output for each segment class. These outputs are treated as probabilities to compute a confidence value for the segmentation of that pixel. Segmentation results with high confidence values are deemed to be correct and not processed further, while those with moderate and low confidence values are deemed to be outliers by this node and passed down the tree to children nodes. These tend to be pixels in boundary of different regions. The results are favorably compared with a traditional segmentation technique applied to the LBF test case.
Neural tree network method for image segmentation
Samaddar, Sumitro; Mammone, Richard J.
1994-02-01
We present an extension of the neural tree network (NTN) architecture to let it solve multi- class classification problems with only binary fan-out. We then demonstrate it's effectiveness by applying it in a method for image segmentation. Each node of the NTN is a multi-layer perceptron and has one output for each segment class. These outputs are treated as probabilities to compute a confidence value for the segmentation of that pixel. Segmentation results with high confidence values are deemed to be correct and not processed further, while those with moderate and low confidence values are deemed to be outliers by this node and passed down the tree to children nodes. These tend to be pixels in boundary of different regions. We have used a realistic case study of segmenting the pole, coil and painted coil regions of light bulb filaments (LBF). The input to the network is a set of maximum, minimum and average of intensities in radial slices of a circular window around a pixel, taken from a front-lit and a back-lit image of an LBF. Training is done with a composite image drawn from images of many LBFs. The results are favorably compared with a traditional segmentation technique applied to the LBF test case.
Fast cosmological parameter estimation using neural networks
Auld, T; Hobson, M P; Gull, S F
2006-01-01
We present a method for accelerating the calculation of CMB power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called CosmoNet, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released Pico algorithm of Fendt & Wandelt, but has several additional benefits in terms of simplicity, computational speed, memory requirements and ease of training. We demonstrate the capabilities of CosmoNet by computing CMB power spectra over a box in the parameter space of flat \\Lambda CDM models containing the 3\\sigma WMAP1 confidence region. We also use CosmoNet to compute the WMAP3 likelihood for flat \\Lambda CDM models and show that marginalised posteriors on parameters derived are very similar to those obtained using CAMB and the WMAP3 code. We find that the average error in the power spectra is typically 2-3% of cosmic variance, and that CosmoNet is \\sim 7 \\times 10^4 faster than CAMB (for flat ...
Neural network implementation using bit streams.
Patel, Nitish D; Nguang, Sing Kiong; Coghill, George G
2007-09-01
A new method for the parallel hardware implementation of artificial neural networks (ANNs) using digital techniques is presented. Signals are represented using uniformly weighted single-bit streams. Techniques for generating bit streams from analog or multibit inputs are also presented. This single-bit representation offers significant advantages over multibit representations since they mitigate the fan-in and fan-out issues which are typical to distributed systems. To process these bit streams using ANNs concepts, functional elements which perform summing, scaling, and squashing have been implemented. These elements are modular and have been designed such that they can be easily interconnected. Two new architectures which act as monotonically increasing differentiable nonlinear squashing functions have also been presented. Using these functional elements, a multilayer perceptron (MLP) can be easily constructed. Two examples successfully demonstrate the use of bit streams in the implementation of ANNs. Since every functional element is individually instantiated, the implementation is genuinely parallel. The results clearly show that this bit-stream technique is viable for the hardware implementation of a variety of distributed systems and for ANNs in particular.
Directory of Open Access Journals (Sweden)
G. Sánchez
2004-01-01
Full Text Available Este artículo propone una red neuronal de tipo perceptron multicapas (MLP que optimiza tanto su matriz de pesos como el número de neuronas ocultas. Inicialmente el sistema propuesto usa un número reducido de neuronas ocultas, optimizándose la matriz de pesos mediante un algoritmo de perturbación simultánea. Una vez que la red converge se analiza su funcionamiento y si este no es el esperado se agrega una neurona oculta. Este proceso se repite hasta obtener el funcionamiento deseado. Los resultados obtenidos muestran que el sistema propuesto presenta un funcionamiento muy similar al de un MLP convencional, cuando éste tiene un número óptimo de nodos en la capa oculta y disminuye la complejidad computacional durante la etapa de entrenamiento.This paper proposes a multilayer perceptron neural network (MLP which optimizes both the matrix weights and the numbers of hidden neurons. Initially, the proposed system uses a reduced number of hidden neurons, optimizing the matrix weights by using a simultaneous perturbation algorithm. Once the network converges, its function is analyzed and if this is not as expected, a hidden neuron is added. This process is repeated until achieving the desired functioning. The results obtained show that the proposed system functions similarly to that of a conventional MLP when this has an optimal number of nodes in the hidden layer, decreasing the computational complexity during the training step.
Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; De Gennaro, Gianluigi
2011-09-01
An array of commercial gas sensors and nanotechnology sensors has been integrated to quantify gas concentration of air-pollutants. A variety of chemoresistive gas sensors, commercial (Figaro and Fis) and developed at ENEA laboratories (metal-modified carbon nanotubes) were tested to implement a database useful for applied artificial neural networks (ANNs). The ANN algorithm used is the common perceptron multi-layer feed-forward network based on error back-propagation. Electronic Noses based on various sensor arrays related to mammalian olfactory systems have been largely reported [1,2]. Here, we reported on the perceptron-based ANNs applied to a large database of 3875 datapoints for environmental air monitoring. The ANNs performance has been individually assessed for any targeted gas. The response of the classifier has been measured for NO2, CO, CO2, SO2, and H2S gas. The NO2 characteristics exhibit that real concentrations and predicted concentrations are very close with a normalized mean square error (NMSE) in the test set as low as 6%.
Institute of Scientific and Technical Information of China (English)
张瑞成; 李冲
2011-01-01
关于优化神经网络模型的快速性和精度,为了寻找最优的神经网络结构,在复杂网络的研究方法对多层前向神经网络模型的基础上,提出一种在层次结构上处于规则型到随机型神经网络过渡的中间网络模型-NW型多层前向小世界人工神经网络模型.利用对多层前向规则神经网络中神经元以某一概率p随机化向后层跨层连接,构建新的神经网络模型,然后将不同跨层概率下的小世界人工神经网络应用于函数逼近.在设定精度相同情况下对不同概率下的收敛次数做比较,仿真发现随机化加边概率p处于p =0.08附近时的小世界人工神经网络比同规模的规则网络和随机网络具有更好的收敛速度,实验证实采用NW型小世界多层前向人工神经网络模型,在精度和收敛速度上均得到提高.%To find the optimal neural network structure, based on the research methods from the complex network , the structure of multi - layer forward neural networks model was studied, and a new neural networks model, NW multi-layer forward small world artificial neural networks was proposed, whose structure of layer was between the regular model and the stochastic model. At first, the regular of multilayer feed -forward neural network neurons randomized cross-layer link back layer with a probability p, and constructed the new neural network model. Second-ly, the cross -layer small world artificial neural networks were used for function approximation under different re-wiring probability. The count of convergence under different probability was compared by setting a same precision. Simulation shows that the small-world neural network has a better convergence speed than regular network and random network nearly p = 0. 08, and the optimum performance of the NW multi-layer forward small world artificial neural network is proved in the right side of probability increases.
Kivelä, Mikko; Barthelemy, Marc; Gleeson, James P; Moreno, Yamir; Porter, Mason A
2013-01-01
Most real and engineered systems include multiple subsystems and layers of connectivity, and it is important to take such features into account to try to obtain a complete understanding of these systems. It is thus necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts occurred several decades ago, but now the study of multilayer networks has become one of the major directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and then review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multila...
Directory of Open Access Journals (Sweden)
José Antonio Vázquez-López
2012-06-01
Full Text Available In this article the Perceptron artificial neural network is applied as a classifier system of out of control points, in the field of contrlol chart for individual measurements. The use of geometric properties of the Perceptron as a training method is introduced, replacing in consequence to the known training methods. Some experiments with numerical databases contaminated with altered data in global average was performed, and the ability of the detection of \\out of control points" of the control chart with the implementation of the Perceptron trained by geometry was compared. The results reveal greater capacity in the Perceptron. This approach can be generalized to other types of control charts and patterns of natural and special variation, not considered in this research. // RESUMEN: En este artículo se aplica la red neuronal artificial Perceptrón como sistema clasificador de puntos fuera de control en el ámbito de la carta de control de mediciones individuales. Se introduce el uso de las propiedades geométricas de la Perceptrón como método de entrenamiento para sustituir, en consecuencia, a los métodos de entrenamiento conocidos. Se experimentó con bases de datos numéricas contaminadas con datos alterados en su media global y se comparó la capacidad de la detección de puntos fuera de control de la carta de control con la aplicación de la Perceptrón entrenada por geometría. Los resultados revelan mayor capacidad en la Perceptrón en diferentes porcentajes de contaminación. Esta propuesta puede ser generalizada a otros tipos de gráficos de control y a patrones de variación especial y natural no considerados en esta investigación.
Remote sensing images segmentation by Deriche's filter and neural network
Koffi, Raphael K.; Solaiman, Basel; Mouchot, Marie-Catherine
1994-12-01
An image segmentation method for remote sensing data using hybride techniques is proposed. Edge detection approach for segmentation is considered in our study. Our aim is to integrate segmentation results in further processing namely classification. Images of the land from satellite are often corrupted by noise. On one hand, optimal edge detectors insure good noise immunity. On the other hand, the multi-layer perceptron (MLP) neural network has been found to be suited for classification. So we propose to combine these two techniques to improve segmentation process. Satellites for remote sensing provide several images for the same area, coded differently according to spectral bands. In order to bear in mind spectral and spatial information, neighborhood relation of pixels and different bands are taken into consideration during the classification realized by the neural network. Samples which constituate the training set for the MLP are selected from the third, fourth and fifth band and represent edge and non-edge patterns. Each sample vector is composed of the value of a current pixel in the local maxima image (enhancement image obtained by Deriche's filter) and its 8 nearest neighbors. The proposed method provides satisfactory results for our application and compared to other similar methods.
Using Bayesian neural networks to classify forest scenes
Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujarvi, Jouni
1998-10-01
We present results that compare the performance of Bayesian learning methods for neural networks on the task of classifying forest scenes into trees and background. Classification task is demanding due to the texture richness of the trees, occlusions of the forest scene objects and diverse lighting conditions under operation. This makes it difficult to determine which are optimal image features for the classification. A natural way to proceed is to extract many different types of potentially suitable features, and to evaluate their usefulness in later processing stages. One approach to cope with large number of features is to use Bayesian methods to control the model complexity. Bayesian learning uses a prior on model parameters, combines this with evidence from a training data, and the integrates over the resulting posterior to make predictions. With this method, we can use large networks and many features without fear of overfitting. For this classification task we compare two Bayesian learning methods for multi-layer perceptron (MLP) neural networks: (1) The evidence framework of MacKay uses a Gaussian approximation to the posterior weight distribution and maximizes with respect to hyperparameters. (2) In a Markov Chain Monte Carlo (MCMC) method due to Neal, the posterior distribution of the network parameters is numerically integrated using the MCMC method. As baseline classifiers for comparison we use (3) MLP early stop committee, (4) K-nearest-neighbor and (5) Classification And Regression Tree.
Neural network based daily precipitation generator (NNGEN-P)
Energy Technology Data Exchange (ETDEWEB)
Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Paris (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Penalba, Olga [University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2007-02-15
Daily weather generators are used in many applications and risk analyses. The present paper explores the potential of neural network architectures to design daily weather generator models. Focusing this first paper on precipitation, we design a collection of neural networks (multi-layer perceptrons in the present case), which are trained so as to approximate the empirical cumulative distribution (CDF) function for the occurrence of wet and dry spells and for the precipitation amounts. This approach contributes to correct some of the biases of the usual two-step weather generator models. As compared to a rainfall occurrence Markov model, NNGEN-P represents fairly well the mean and standard deviation of the number of wet days per month, and it significantly improves the simulation of the longest dry and wet periods. Then, we compared NNGEN-P to three parametric distribution functions usually applied to fit rainfall cumulative distribution functions (Gamma, Weibull and double-exponential). A data set of 19 Argentine stations was used. Also, data corresponding to stations in the United States, in Europe and in the Tropics were included to confirm the results. One of the advantages of NNGEN-P is that it is non-parametric. Unlike other parametric function, which adapt to certain types of climate regimes, NNGEN-P is fully adaptive to the observed cumulative distribution functions, which, on some occasions, may present complex shapes. On-going works will soon produce an extended version of NNGEN to temperature and radiation. (orig.)
Lashkari, Negin; Poshtan, Javad; Azgomi, Hamid Fekri
2015-11-01
The three-phase shift between line current and phase voltage of induction motors can be used as an efficient fault indicator to detect and locate inter-turn stator short-circuit (ITSC) fault. However, unbalanced supply voltage is one of the contributing factors that inevitably affect stator currents and therefore the three-phase shift. Thus, it is necessary to propose a method that is able to identify whether the unbalance of three currents is caused by ITSC or supply voltage fault. This paper presents a feedforward multilayer-perceptron Neural Network (NN) trained by back propagation, based on monitoring negative sequence voltage and the three-phase shift. The data which are required for training and test NN are generated using simulated model of stator. The experimental results are presented to verify the superior accuracy of the proposed method.
de Alcantara, Naasson
2013-03-01
This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover.
Directory of Open Access Journals (Sweden)
Valérie Bourdès
2010-01-01
Full Text Available The aim of this study was to compare multilayer perceptron neural networks (NNs with standard logistic regression (LR to identify key covariates impacting on mortality from cancer causes, disease-free survival (DFS, and disease recurrence using Area Under Receiver-Operating Characteristics (AUROC in breast cancer patients. From 1996 to 2004, 2,535 patients diagnosed with primary breast cancer entered into the study at a single French centre, where they received standard treatment. For specific mortality as well as DFS analysis, the ROC curves were greater with the NN models compared to LR model with better sensitivity and specificity. Four predictive factors were retained by both approaches for mortality: clinical size stage, Scarff Bloom Richardson grade, number of invaded nodes, and progesterone receptor. The results enhanced the relevance of the use of NN models in predictive analysis in oncology, which appeared to be more accurate in prediction in this French breast cancer cohort.
Directory of Open Access Journals (Sweden)
Satish Kumar
2012-09-01
Full Text Available In this study, a method of artificial neural network applied for the solution of inverse kinematics of 2-link serial chain manipulator. The method is multilayer perceptrons neural network has applied. This unsupervised method learns the functional relationship between input (Cartesian space and output (joint space based on a localized adaptation of the mapping, by using the manipulator itself under joint control and adapting the solution based on a comparison between the resulting locations of the manipulator's end effectors in Cartesian space with the desired location. Even when a manipulator is not available; the approach is still valid if the forward kinematic equations are used as a model of the manipulator. The forward kinematic equations always have a unique solution, and the resulting Neural net can be used as a starting point for further refinement when the manipulator does become available. Artificial neural network especially MLP are used to learn the forward and the inverse kinematic equations of two degrees freedom robot arm. A set of some data sets were first generated as per the formula equation for this the input parameter X and Y coordinates in inches. Using these data sets was basis for the training and evaluation or testing the MLP model. Out of the sets data points, maximum were used as training data and some were used for testing for MLP. Backpropagation algorithm was used for training the network and for updating the desired weights. In this work epoch based training method was applied.
Neural processing-type displacement sensor employing multimode waveguide
Aisawa, Shigeki; Noguchi, Kazuhiro; Matsumoto, Takao
1991-04-01
A novel neural processing-type displacement sensor, consisting of a multimode waveguide and a neural network, is demonstrated. This sensor detects displacement using changes in the interference output image of the waveguide. The interference image is directly processed by a three-layer perceptron neural network. Environmental change, such as the intensity fluctuation, and change of the temperature can be followed by training the neural network. Experimental results show that the sensor has a resolution of 1 micron.
Remote Sensing Image Segmentation with Probabilistic Neural Networks
Institute of Scientific and Technical Information of China (English)
LIU Gang
2005-01-01
This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results.
A research about breast cancer detection using different neural networks and K-MICA algorithm.
Kalteh, A A; Zarbakhsh, Payam; Jirabadi, Meysam; Addeh, Jalil
2013-01-01
Breast cancer is the second leading cause of death for women all over the world. The correct diagnosis of breast cancer is one of the major problems in the medical field. From the literature it has been found that different pattern recognition techniques can help them to improve in this domain. This paper presents a novel hybrid intelligent method for detection of breast cancer. The proposed method includes two main modules: Clustering module and the classifier module. In the clustering module, first the input data will be clustered by a new technique. This technique is a suitable combination of the modified imperialist competitive algorithm (MICA) and K-means algorithm. Then the Euclidean distance of each pattern is computed from the determined clusters. The classifier module determines the membership of the patterns using the computed distance. In this module, several neural networks, such as the multilayer perceptron, probabilistic neural networks and the radial basis function neural networks are investigated. Using the experimental study, we choose the best classifier in order to recognize the breast cancer. The proposed system is tested on Wisconsin Breast Cancer (WBC) database and the simulation results show that the recommended system has high accuracy.
Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach
Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele
2012-09-01
The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2016-10-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
A research about breast cancer detection using different neural networks and K-MICA algorithm
Directory of Open Access Journals (Sweden)
A A Kalteh
2013-01-01
Full Text Available Breast cancer is the second leading cause of death for women all over the world. The correct diagnosis of breast cancer is one of the major problems in the medical field. From the literature it has been found that different pattern recognition techniques can help them to improve in this domain. This paper presents a novel hybrid intelligent method for detection of breast cancer. The proposed method includes two main modules: Clustering module and the classifier module. In the clustering module, first the input data will be clustered by a new technique. This technique is a suitable combination of the modified imperialist competitive algorithm (MICA and K-means algorithm. Then the Euclidean distance of each pattern is computed from the determined clusters. The classifier module determines the membership of the patterns using the computed distance. In this module, several neural networks, such as the multilayer perceptron, probabilistic neural networks and the radial basis function neural networks are investigated. Using the experimental study, we choose the best classifier in order to recognize the breast cancer. The proposed system is tested on Wisconsin Breast Cancer (WBC database and the simulation results show that the recommended system has high accuracy.
Artificial neural network as the tool in prediction rheological features of raw minced meat
Directory of Open Access Journals (Sweden)
Edyta Balejko
2012-09-01
Full Text Available Background. The aim of the study was to elaborate a method of modelling and forecasting rheological features which could be applied to raw minced meat at the stage of mixture preparation with a given ingredient composition. Material and methods. The investigated material contained pork and beef meat, pork fat, fat substitutes, ice and curing mixture in various proportions. Seven texture parameters were measured for each sample of raw minced meat. The data obtained were processed using the artificial neural network module in Statistica 9.0 software. Results. The model that reached the lowest training error was a multi-layer perceptron MLP with three neural layers and architecture 7:7-11-7:7. Correlation coefficients between the experimental and calculated values in training, verification and testing subsets were similar and rather high (around 0.65 which indicated good network performance. Conclusion. High percentage of the total variance explained in PCA analysis (73.5% indicated that the percentage composition of raw minced meat can be successfully used in the prediction of its rheological features. Statistical analysis of the results revealed, that artificial neural network model is able to predict rheological parameters and thus a complete texture profile of raw minced meat.
Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon
2017-01-03
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae specie, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network (ANN). Neural network architectures of Multilayer Perceptron (MLP) and Radial Basis Function (RBF) architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.
Identification and control of plasma vertical position using neural network in Damavand tokamak.
Rasouli, H; Rasouli, C; Koohi, A
2013-02-01
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Wang, Baijie; Wang, Xin; Chen, Zhangxin
2013-08-01
Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.
Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio
2017-02-01
Diluting a sample to obtain a measure within the analytical range is a common task in clinical laboratories. However, for urgent samples, it can cause delays in test reporting, which can put patients' safety at risk. The aim of this work is to show a simple artificial neural network that can be used to make it unnecessary to predilute a sample using the information available through the laboratory information system. Particularly, the Multilayer Perceptron neural network built on a data set of 16,106 cardiac troponin I test records produced a correct inference rate of 100% for samples not requiring predilution and 86.2% for those requiring predilution. With respect to the inference reliability, the most relevant inputs were the presence of a cardiac event or surgery and the result of the previous assay. Therefore, such an artificial neural network can be easily implemented into a total automation framework to sensibly reduce the turnaround time of critical orders delayed by the operation required to retrieve, dilute, and retest the sample.
Local residue coupling strategies by neural network for InSAR phase unwrapping
Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.
1997-12-01
Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.
Akhbardeh, Alireza; Junnila, Sakari; Koivistoinen, Teemu; Värri, Alpo
2007-02-01
This paper presents a comparative analysis of novel supervised fuzzy adaptive resonance theory (SF-ART), multilayer perceptron (MLP) and Multi Layer Perceptrons (MLP) neural networks over Ballistocardiogram (BCG) signal recognition. To extract essential features of the BCG signal, we applied Biorthogonal wavelets. SF-ART performs classification on two levels. At first level, pre-classifier which is self-organized fuzzy ART tuned for fast learning classifies the input data roughly to arbitrary (M) classes. At the second level, post-classification level, a special array called Affine Look-up Table (ALT) with M elements stores the labels of corresponding input samples in the address equal to the index of fuzzy ART winner. However, in running (testing) mode, the content of an ALT cell with address equal to the index of fuzzy ART winner output will be read. The read value declares the final class that input data belongs to. In this paper, we used two well-known patterns (IRIS and Vowel data) and a medical application (Ballistocardiogram data) to evaluate and check SF-ART stability, reliability, learning speed and computational load. Initial tests with BCG from six subjects (both healthy and unhealthy people) indicate that the SF-ART is capable to perform with a high classification performance, high learning speed (elapsed time for learning around half second), and very low computational load compared to the well-known neural networks such as MLP which needs minutes to learn the training material. Moreover, to extract essential features of the BCG signal, we applied Biorthogonal wavelets. The applied wavelet transform requires no prior knowledge of the statistical distribution of data samples.
Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks
Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.
2008-05-01
The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p
Artificial neural nets application in the cotton yarn industry
Directory of Open Access Journals (Sweden)
Gilberto Clóvis Antoneli
2016-06-01
Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.
Directory of Open Access Journals (Sweden)
hojat moayedi rad
2012-02-01
Full Text Available Due to simplicity and low cost, induction motors are more useful than direct current motors. Hence the control of these motors is important. The pervious methods are fitted normally for a limited speed range and could not be used for high, low and very low speeds. The voltage model is suitable for high speed because the voltage drop of stator resistance is not small in low speed. The current model is suitable for low speed because of the problems of flux saturation at high speed. This research presents a new method of PWM pulse generating in induction motors based on artificial neural networks in which, the switching pulses are generated by a multilayer feed-forward neural network that is trained by the voltage and current references. Also, for the estimation of required torque and flux information a multilayer perceptron is used. By application of this new method, there is no problem of stability at low and high speeds. The simulation results by matlab-simulink verify the proposed method in transient and steady-state operating modes.
APPROXIMATION CAPABILITIES OF MULTILAYER FEEDFORWARD REGULAR FUZZY NEURAL NETWORKS%多层前向正则模糊神经网络的逼近能力
Institute of Scientific and Technical Information of China (English)
刘普寅
2001-01-01
Four-layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F0(R)n by the four-layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of Rn. Secondly,by introducing cut-preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions.
Bijjani, Richard
1990-01-01
The introduction of neural network models has created new algorithms and application opportunities in parallel signal processing. Here, an M-ary extension of the Hopfield model is presented and is shown to have a substantially higher error correction capability, when compared to the Hopfield model. A digital image processing experiment is successfully conducted to illustrate the new model, and a holographic implementation is proposed. The use of neural networks and of linear combination filters are investigated in connection with the problem of user identification in code division multiple access systems. A multi-layer back-propagation perceptron model is then presented as a means of detecting a wideband signal in the presence of narrowband jammers and additive white Gaussian noise. The performance of the neural network is compared to that of the estimation type filter that uses a least mean squared adaptive filter, in terms of the interference rejection capability, the bit error rate and the overall robustness of the system. The nonlinear neural network filter is found to offer a faster convergence rate and an overall better performance over the LMS Widrow-Hoff filter.
Directory of Open Access Journals (Sweden)
Ozren Bukovac
2016-01-01
Full Text Available Compared to the other marine engines for ship propulsion, turbocharged two-stroke low speed diesel engines have advantages due to their high efficiency and reliability. Modern low speed ”intelligent” marine diesel engines have a flexibility in its operation due to the variable fuel injection strategy and management of the exhaust valve drive. This paper carried out verified zerodimensional numerical simulations which have been used for MLP (Multilayer Perceptron neural network predictions of marine two-stroke low speed diesel engine steady state performances. The developed MLP neural network was used for marine engine optimized operation control. The paper presents an example of achieving lowest specific fuel consumption and for minimization of the cylinder process highest temperature for reducing NOx emission. Also, the developed neural network was used to achieve optimal exhaust gases heat flow for utilization. The obtained data maps give insight into the optimal working areas of simulated marine diesel engine, depending on the selected start of the fuel injection (SOI and the time of the exhaust valve opening (EVO.
Directory of Open Access Journals (Sweden)
Bahman O. Taha
2015-06-01
Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.
Acir, Nurettin; Oztura, Ibrahim; Kuntalp, Mehmet; Baklan, Bariş; Güzeliş, Cüneyt
2005-01-01
This paper introduces a three-stage procedure based on artificial neural networks for the automatic detection of epileptiform events (EVs) in a multichannel electroencephalogram (EEG) signal. In the first stage, two discrete perceptrons fed by six features are used to classify EEG peaks into three subgroups: 1) definite epileptiform transients (ETs); 2) definite non-ETs; and 3) possible ETs and possible non-ETs. The pre-classification done in the first stage not only reduces the computation time but also increases the overall detection performance of the procedure. In the second stage, the peaks falling into the third group are aimed to be separated from each other by a nonlinear artificial neural network that would function as a postclassifier whose input is a vector of 41 consecutive sample values obtained from each peak. Different networks, i.e., a backpropagation multilayer perceptron and two radial basis function networks trained by a hybrid method and a support vector method, respectively, are constructed as the postclassifier and then compared in terms of their classification performances. In the third stage, multichannel information is integrated into the system for contributing to the process of identifying an EV by the electroencephalographers (EEGers). After the integration of multichannel information, the overall performance of the system is determined with respect to EVs. Visual evaluation, by two EEGers, of 19 channel EEG records of 10 epileptic patients showed that the best performance is obtained with a radial basis support vector machine providing an average sensitivity of 89.1%, an average selectivity of 85.9%, and a false detection rate (per hour) of 7.5.
Retinal vessel extraction using Lattice Neural Networks with Dendritic Processing.
Vega, Roberto; Sanchez-Ante, Gildardo; Falcon-Morales, Luis E; Sossa, Humberto; Guevara, Elizabeth
2015-03-01
Retinal images can be used to detect and follow up several important chronic diseases. The classification of retinal images requires an experienced ophthalmologist. This has been a bottleneck to implement routine screenings performed by general physicians. It has been proposed to create automated systems that can perform such task with little intervention from humans, with partial success. In this work, we report advances in such endeavor, by using a Lattice Neural Network with Dendritic Processing (LNNDP). We report results using several metrics, and compare against well known methods such as Support Vector Machines (SVM) and Multilayer Perceptrons (MLP). Our proposal shows better performance than other approaches reported in the literature. An additional advantage is that unlike those other tools, LNNDP requires no parameters, and it automatically constructs its structure to solve a particular problem. The proposed methodology requires four steps: (1) Pre-processing, (2) Feature computation, (3) Classification and (4) Post-processing. The Hotelling T(2) control chart was used to reduce the dimensionality of the feature vector, from 7 that were used before to 5 in this work. The experiments were run on images of DRIVE and STARE databases. The results show that on average, F1-Score is better in LNNDP, compared with SVM and MLP implementations. Same improvement is observed for MCC and the accuracy.
Classification of objects in ISAR imagery using artificial neural networks
Fechner, Thomas; Hantsche, Ruediger; Tanger, Ralf
1996-03-01
The motive of our work is to achieve aspect angle and motion independent robust classification of relevant objects in inverse synthetic aperture radar imagery. It is required that the classification decision should incorporate an estimate of confidence in order to reject weak decisions due to critical aspect angles or unknown objects. The proposed architecture employs a cascaded combination of an unsupervised and a supervised trained neural network. The unsupervised trained Self-Organizing Feature Map is used for object segmentation by clustering a 2D feature space and the supervised multi-layer perceptron (MLP) classifier performs the object recognition based on extracted features from the segmented object. Various features characterizing the geometrical appearance and the scatterer distribution of the objects are investigated and a combination of features, which maximize the MLP classification rate, is selected. For comparison purposes a nearest neighbor classification approach is also considered. A grouping mechanism which groups together similar views of the object, reduces the degrees of freedom of the classification process by using its own adapted classifier for each group. On simulated noisy images a recognition rates over 90% for 10 different object classes has been achieved.
Neural network diagnostic system for dengue patients risk classification.
Faisal, Tarig; Taib, Mohd Nasir; Ibrahim, Fatimah
2012-04-01
With the dramatic increase of the worldwide threat of dengue disease, it has been very crucial to correctly diagnose the dengue patients in order to decrease the disease severity. However, it has been a great challenge for the physicians to identify the level of risk in dengue patients due to overlapping of the medical classification criteria. Therefore, this study aims to construct a noninvasive diagnostic system to assist the physicians for classifying the risk in dengue patients. Systematic producers have been followed to develop the system. Firstly, the assessment of the significant predictors associated with the level of risk in dengue patients was carried out utilizing the statistical analyses technique. Secondly, Multilayer perceptron neural network models trained via Levenberg-Marquardt and Scaled Conjugate Gradient algorithms was employed for constructing the diagnostic system. Finally, precise tuning for the models' parameters was conducted in order to achieve the optimal performance. As a result, 9 noninvasive predictors were found to be significantly associated with the level of risk in dengue patients. By employing those predictors, 75% prediction accuracy has been achieved for classifying the risk in dengue patients using Scaled Conjugate Gradient algorithm while 70.7% prediction accuracy were achieved by using Levenberg-Marquardt algorithm.
AN APPLICATION OF SPEAKER RECOGNITION USING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Murat CANER
2006-02-01
Full Text Available In this study an artificial neural network (ANN is implemented, which has been used frequently as an implementation model in recent years, to recognize speaker identification. Generally, recognition is consist of three stages that, processing of signal, obtaining attributes and comparing them. Speech samples are transformed into digital data according to voice card of PC. In the analysis of voice stage, recurrent periods and white noise of voice data are trimmed by hamming window method and voice attribute part of the digital data is obtained. For obtaining attribute of voice data LPC (linear predictive coding and DFT (discrete fourier transform methods are used. Of those 28 coefficents, that is used for speaker recognition, 16 were obtained by the analysis of DFT and 12 were obtained by the analysis of LPC. The parameters that represent speaker voice, is used for training and test of ANN. Multilayer perceptron model is used as an architecture of ANN and backpropagation algorithm is used for training method. Voices of "a" is taken from 7 different person and their attributes are found. ANN is trained with these features to find the speaker who is the owner of the sample voice. And then using the test data that is not used for training part, recognition achievement of ANN is tested. As a result, good results were obtained with low failure rate.
Customer Credit Risk Assessment using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Nasser Mohammadi
2016-03-01
Full Text Available Since the granting of banking facilities in recent years has faced problems such as customer credit risk and affects the profitability directly, customer credit risk assessment has become imperative for banks and it is used to distinguish good applicants from those who will probably default on repayments. In credit risk assessment, a score is assigned to each customer then by comparing it with the cut-off point score which distinguishes two classes of the applicants, customers are classified into two credit statuses either a good or bad applicant. Regarding good performance and their ability of classification, generalization and learning patterns, Multilayer Perceptron Neural Network model trained using various Back-Propagation (BP algorithms considered in designing an evaluation model in this study. The BP algorithms, Levenberg-Marquardt (LM, Gradient descent, Conjugate gradient, Resilient, BFGS Quasinewton, and One-step secant were utilized. Each of these six networks runs and trains for different numbers of neurons within their hidden layer. Mean squared error (MSE is used as a criterion to specify optimum number of neurons in the hidden layer. The results showed that LM algorithm converges faster to the network and achieves better performance than the other algorithms. At last, by comparing classification performance of neural network with a number of classification algorithms such as Logistic Regression and Decision Tree, the neural network model outperformed the others in customer credit risk assessment. In credit models, because the cost that Type II error rate imposes to the model is too high, therefore, Receiver Operating Characteristic curve is used to find appropriate cut-off point for a model that in addition to high Accuracy, has lower Type II error rate.
VoIP attacks detection engine based on neural network
Safarik, Jakub; Slachta, Jiri
2015-05-01
The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.
Use of a Neural Network for Damage Detection and Location in a Steel Member
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
The paper explores the potential of using a Multilayer Perceptron (MLP) network trained with the Backpropagation algorithm for damage assessment of free-free cracked straight steel beam based on vibration measurements. The problem of damage assessment, i.e. detecting, locating and quantifying...
Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick
2015-09-01
We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.
Identification of bean varieties according to color features using artificial neural network
Directory of Open Access Journals (Sweden)
A. Nasirahmadi
2013-07-01
Full Text Available A machine vision and a multilayer perceptron artificial neural network (MLP-ANN were applied to identify bean varieties, based on color features. Ten varieties of beans, which were grown in Iran (Khomein1, KS21108, Khomein2, Sarab1, Khomein3, KS21409, Akhtar2, Sarab2, KS21205, and G11870 were collected. Six color features of the bean and six color features of the spots were extracted and used as input for MLP-ANN classifier. In this study, 1000 data sets were used, 70% for training, 15% for validating and 15% for testing. The results showed that the applied machine vision and neural network were able to classify bean varieties with 100% sensibility and specificity, except with Sarab1 with sensibilities of 100%, 73.3%, 60% for the training, validation and testing processes, respectively and KS21108 with specificities of 100%, 79% and 71%, respectively for the aforementioned processes. Considering total sensibilities of 100%, 97.33%, 96% and also specificities of 100%, 97.9% and 97.1% for training, validation and testing of beans, respectively, the ANN could be used as a effective tool for classification of bean varieties.
Marmo, Roberto; Amodio, Sabrina; Tagliaferri, Roberto; Ferreri, Vittoria; Longo, Giuseppe
2005-06-01
Using more than 1000 thin section photos of ancient (Phanerozoic) carbonates from different marine environments (pelagic to shallow-water) a new numerical methodology, based on digitized images of thin sections, is proposed here. In accordance with the Dunham classification, it allows the user to automatically identify carbonate textures unaffected by post-depositional modifications (recrystallization, dolomitization, meteoric dissolution and so on). The methodology uses, as input, 256 grey-tone digital image and by image processing gives, as output, a set of 23 values of numerical features measured on the whole image including the "white areas" (calcite cement). A multi-layer perceptron neural network takes as input this features and gives, as output, the estimated class. We used 532 images of thin sections to train the neural network, whereas to test the methodology we used 268 images taken from the same photo collection and 215 images from San Lorenzello carbonate sequence (Matese Mountains, southern Italy), Early Cretaceous in age. This technique has shown 93.3% and 93.5% of accuracy to classify automatically textures of carbonate rocks using digitized images on the 268 and 215 test sets, respectively. Therefore, the proposed methodology is a further promising application to the geosciences allowing carbonate textures of many thin sections to be identified in a rapid and accurate way. A MATLAB-based computer code has been developed for the processing and display of images.
Foulkes, Stephen B.; Booth, David M.
1997-07-01
Object segmentation is the process by which a mask is generated which identifies the area of an image which is occupied by an object. Many object recognition techniques depend on the quality of such masks for shape and underlying brightness information, however, segmentation remains notoriously unreliable. This paper considers how the image restoration technique of Geman and Geman can be applied to the improvement of object segmentations generated by a locally adaptive background subtraction technique. Also presented is how an artificial neural network hybrid, consisting of a single layer Kohonen network with each of its nodes connected to a different multi-layer perceptron, can be used to approximate the image restoration process. It is shown that the restoration techniques are very well suited for parallel processing and in particular the artificial neural network hybrid has the potential for near real time image processing. Results are presented for the detection of ships in SPOT panchromatic imagery and the detection of vehicles in infrared linescan images, these being a fair representation of the wider class of problem.
Directory of Open Access Journals (Sweden)
N. Sriraam
2011-01-01
Full Text Available A telemedicine system using communication and information technology to deliver medical signals such as ECG, EEG for long distance medical services has become reality. In either the urgent treatment or ordinary healthcare, it is necessary to compress these signals for the efficient use of bandwidth. This paper discusses a quality on demand compression of EEG signals using neural network predictors for telemedicine applications. The objective is to obtain a greater compression gains at a low bit rate while preserving the clinical information content. A two-stage compression scheme with a predictor and an entropy encoder is used. The residue signals obtained after prediction is first thresholded using various levels of thresholds and are further quantized and then encoded using an arithmetic encoder. Three neural network models, single-layer and multi-layer perceptrons and Elman network are used and the results are compared with linear predictors such as FIR filters and AR modeling. The fidelity of the reconstructed EEG signal is assessed quantitatively using parameters such as PRD, SNR, cross correlation and power spectral density. It is found from the results that the quality of the reconstructed signal is preserved at a low PRD thereby yielding better compression results compared to results obtained using lossless scheme.
Artificial neural networks for simulating wind effects on sprinkler distribution patterns
Energy Technology Data Exchange (ETDEWEB)
Sayyadi, H.; Sadraddini, A. A.; Farsadi Zadeh, D.; Montero, J.
2012-07-01
A new approach based on Artificial Neural Networks (ANNs) is presented to simulate the effects of wind on the distribution pattern of a single sprinkler under a center pivot or block irrigation system. Field experiments were performed under various wind conditions (speed and direction). An experimental data from different distribution patterns using a Nelson R3000 Rotator sprinkler have been split into three and used for model training, validation and testing. Parameters affecting the distribution pattern were defined. To find an optimal structure, various networks with different architectures have been trained using an Early Stopping method. The selected structure produced R2 0.929 and RMSE = 6.69 mL for the test subset, consisting of a Multi-Layer Perceptron (MLP) neural network with a backpropagation training algorithm; two hidden layers (twenty neurons in the first hidden layer and six neurons in the second hidden layer) and a tangent-sigmoid transfer function. This optimal network was implemented in MATLAB to develop a model termed ISSP (Intelligent Simulator of Sprinkler Pattern). ISSP uses wind speed and direction as input variables and is able to simulate the distorted distribution pattern from a R3000 Rotator sprinkler with reasonable accuracy (R{sup 2} > 0.935). Results of model evaluation confirm the accuracy and robustness of ANNs for simulation of a single sprinkler distribution pattern under real field conditions. (Author) 41 refs.
Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad
2016-01-01
In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.
Huang, De-Shuang; Du, Ji-Xiang
2008-12-01
In this paper, a novel heuristic structure optimization methodology for radial basis probabilistic neural networks (RBPNNs) is proposed. First, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to select the initial hidden-layer centers of the RBPNN, and then the recursive orthogonal least square algorithm (ROLSA) combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. The proposed algorithms are evaluated through eight benchmark classification problems and two real-world application problems, a plant species identification task involving 50 plant species and a palmprint recognition task. Experimental results show that our proposed algorithm is feasible and efficient for the structure optimization of the RBPNN. The RBPNN achieves higher recognition rates and better classification efficiency than multilayer perceptron networks (MLPNs) and radial basis function neural networks (RBFNNs) in both tasks. Moreover, the experimental results illustrated that the generalization performance of the optimized RBPNN in the plant species identification task was markedly better than that of the optimized RBFNN.
Archambeau, Cédric; Delbeke, Jean; Veraart, Claude; Verleysen, Michel
2004-11-01
Within the framework of the OPTIVIP project, an optic nerve based visual prosthesis is developed in order to restore partial vision to the blind. One of the main challenges is to understand, decode and model the physiological process linking the stimulating parameters to the visual sensations produced in the visual field of a blind volunteer. We propose to use adaptive neural techniques. Two prediction models are investigated. The first one is a grey-box model exploiting the neurophysiological knowledge available up to now. It combines a neurophysiological model with artificial neural networks, such as multi-layer perceptrons and radial basis function networks, in order to predict the features of the visual perceptions. The second model is entirely of the black-box type. We show that both models provide satisfactory prediction tools and achieve similar prediction accuracies. Moreover, we demonstrate that significant improvement (25%) was gained with respect to linear statistical methods, suggesting that the biological process is strongly non-linear.
Tahavvor, Ali Reza
2016-06-01
In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.
Artificial Neural Networks to Predict the Power Output of a PV Panel
Directory of Open Access Journals (Sweden)
Valerio Lo Brano
2014-01-01
Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.
Energy Technology Data Exchange (ETDEWEB)
Garg, A. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Sastry, P.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Pandey, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)]. E-mail: manmohan@iitg.ac.in; Dixit, U.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Gupta, S.K. [Atomic Energy Regulatory Board, Mumbai 400085 (India)
2007-02-15
Numerical simulation of natural circulation boiling water reactor is important in order to study its performance for different designs and under various off-design conditions. Numerical simulations can be performed by using thermal-hydraulic codes. Very fast numerical simulations, useful for extensive parametric studies and for solving design optimization problems, can be achieved by using an artificial neural network (ANN) model of the system. In the present work, numerical simulations of natural circulation boiling water reactor have been performed with RELAP5 code for different values of design parameters and operational conditions. Parametric trends observed have been discussed. The data obtained from these simulations have been used to train artificial neural networks, which in turn have been used for further parametric studies and design optimization. The ANN models showed error within {+-}5% for all the simulated data. Two most popular methods, multilayer perceptron (MLP) and radial basis function (RBF) networks, have been used for the training of ANN model. Sequential quadratic programming (SQP) has been used for optimization.
Tahavvor, Ali Reza
2017-03-01
In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.
Presenting an Appropriate Neural Network for Optimal Mix Design of Roller Compacted Concrete Dams
Directory of Open Access Journals (Sweden)
Taha Mehmannavaz
2014-03-01
Full Text Available In general, one of the main targets to achieve the optimal mix design of concrete dams is to reduce the amount of cement, heat of hydration, increasing the size of aggregate (coarse and reduced the permeability. Thus, one of the methods which is used in construction of concrete and soil dams as a suitable replacement is construction of dams in roller compacted concrete method. Spending fewer budgets, using road building machinery, short time of construction and continuation of construction all are the specifications of this construction method, which have caused priority of these two methods and finally this method has been known as a suitable replacement for constructing dams in different parts of the world. On the other hand, expansion of the materials used in this type of concrete, complexity of its mix design, effect of different parameters on its mix design and also finding relations between different parameters of its mix design have necessitated the presentation of a model for roller compacted concretemix design. Artificial neural networks are one of the modeling methods which have shown very high power for adjustment to engineering problems. A kind of these networks, called Multi-Layer Perceptron (MLP neural networks, was used as the main core of modeling in this study along with error-back propagation training algorithm, which is mostly applied in modeling mapping behaviors.
Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad
2016-11-01
In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.
On-line learning algorithms for locally recurrent neural networks.
Campolucci, P; Uncini, A; Piazza, F; Rao, B D
1999-01-01
This paper focuses on on-line learning procedures for locally recurrent neural networks with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN's). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose on-line version, causal recursive backpropagation (CRBP), presents some advantages with respect to the other on-line training methods. The new CRBP algorithm includes as particular cases backpropagation (BP), temporal backpropagation (TBP), backpropagation for sequences (BPS), Back-Tsoi algorithm among others, thereby providing a unifying view on gradient calculation techniques for recurrent networks with local feedback. The only learning method that has been proposed for locally recurrent networks with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and higher speed of convergence with respect to the Back-Tsoi algorithm, which is supported by the theoretical development and confirmed by simulations. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with the new CRBP method. The simulations show that CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space.
Investigation of efficient features for image recognition by neural networks.
Goltsev, Alexander; Gritsenko, Vladimir
2012-04-01
In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better.
Issues in the use of neural networks in information retrieval
Iatan, Iuliana F
2017-01-01
This book highlights the ability of neural networks (NNs) to be excellent pattern matchers and their importance in information retrieval (IR), which is based on index term matching. The book defines a new NN-based method for learning image similarity and describes how to use fuzzy Gaussian neural networks to predict personality. It introduces the fuzzy Clifford Gaussian network, and two concurrent neural models: (1) concurrent fuzzy nonlinear perceptron modules, and (2) concurrent fuzzy Gaussian neural network modules. Furthermore, it explains the design of a new model of fuzzy nonlinear perceptron based on alpha level sets and describes a recurrent fuzzy neural network model with a learning algorithm based on the improved particle swarm optimization method.
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2016-07-05
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
Energy Technology Data Exchange (ETDEWEB)
Herget, Philipp; O' Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2017-03-21
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
Institute of Scientific and Technical Information of China (English)
韩明红; 韩捷; 关惠玲
2001-01-01
The reasons for the slowness in convergence of standard backpropagation algorithm and the imperfection of conventional improved algorithms have been fully analyzed. In order to improve the convergence rate of multilayer feedforward neural networks, a new highly efficent unitary backpropagation algorithm based on the unitary-function is proposed. Numerical simulation and experimental results show that the algorithm can greatly increase the convergence rate and highly improve their imminent accurary.%分析了引起标准BP算法收敛速度慢的原因，以及传统改进方法的不足之处，探讨了解决的途径。为了提高BP算法的收敛速度，定义并引入了基量函数的概念，并将其运用到BP算法中，给出了一种高效的单位BP算法。仿真和实例结构均表明该算法能够较好地克服标准BP算法收敛速度慢的缺点，并可以达到很高的网络逼近精度。
Chen, Chao; Yan, Xuefeng
2015-06-01
In this paper, an optimized multilayer feed-forward network (MLFN) is developed to construct a soft sensor for controlling naphtha dry point. To overcome the two main flaws in the structure and weight of MLFNs, which are trained by a back-propagation learning algorithm, minimal redundancy maximal relevance-partial mutual information clustering (mPMIc) integrated with least square regression (LSR) is proposed to optimize the MLFN. The mPMIc can determine the location of hidden layer nodes using information in the hidden and output layers, as well as remove redundant hidden layer nodes. These selected nodes are highly related to output data, but are minimally correlated with other hidden layer nodes. The weights between the selected hidden layer nodes and output layer are then updated through LSR. When the redundant nodes from the hidden layer are removed, the ideal MLFN structure can be obtained according to the test error results. In actual applications, the naphtha dry point must be controlled accurately because it strongly affects the production yield and the stability of subsequent operational processes. The mPMIc-LSR MLFN with a simple network size performs better than other improved MLFN variants and existing efficient models.
Neural network method applied to particle image velocimetry
Grant, Ian; Pan, X.
1993-12-01
realised. An important class of neural network is the multi-layer perceptron. The neurons are distributed on surfaces and linked by weighted interconnections. In the present paper we demonstrate how this type of net can developed into a competitive, adaptive filter which will identify PIV image pairs in a number of commonly occurring flow types. Previous work by the authors in particle tracking analysis (1, 2) has shown the efficiency of statistical windowing techniques in flows without systematic (in time or space) variations. The effectiveness of the present neural net is illustrated by applying it to digital simulations ofturbulent and rotating flows. Work reported by Cenedese et al (3) has taken a different approach in examining the potential for neural net methods applied to PIV.
Applications of Neural Networks in Fault Detection of Rotating Machinery
1993-05-17
based on the ADALINE (ADAptive LINear Element) perceptron [Ref #4]. They correctly theorized that it would be possible for their 7 network to...Marvin Minski and Seymour Pappert [Ref #5]. After extensive mathematical study, Minski and Pappert concluded that a neural network based on the ADALINE
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops. PMID:22629171
Directory of Open Access Journals (Sweden)
Ana-Isabel de Castro
2012-01-01
Full Text Available In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC analysis and two neural networks, specifically, multilayer perceptron (MLP and radial basis function (RBF. Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.
Mohamad-Saleh, J.; Hoyle, B. S.
2002-12-01
Artificial neural networks (ANNs) have been used to investigate their capabilities at estimating key parameters for the characterization of flow processes, based on electrical capacitance-sensed tomographic (ECT) data. The estimations of the parameters are made directly, without recourse to tomographic images. The parameters of interest include component height and interface orientation of two-component flows, and component fractions of two-component and three-component flows. Separate multi-layer perceptron networks were trained with patterns consisting of pairs of simulated ECT data and the corresponding component heights, interface orientations and component fractions. The networks were then tested with patterns consisting of unlearned simulated ECT data of various flows and with real ECT data of gas-water flows. The neural systems provided estimations having mean absolute errors of less than 1% for oil and water heights and fractions and less than 10° for interface orientations. When tested with real plant ECT data, the mean absolute errors were less than 4% for water height, less than 15° for gas-water interface orientation and less than 3% for water fraction, respectively. The results demonstrate the feasibility of the application of ANNs for flow process parameter estimations based upon tomography data.
Binaghi, Elisabetta; Gallo, Ignazio; Boschetti, Mirco; Brivio, Pietro A.
2004-02-01
In this paper, we propose a method able to fuse spectral information with spatial contextual information in order to solve "operationally" classification problem. The salient aspect of the method is the integration of heterogeneous data within a Multi-Layer Perceptron model. Spatial and spectral relationships are not explicitly formalized in an attempt to limit design and computational complexity; raw data are instead presented directly as input to the neural network classifier. The method in particular addresses new open problems in processing hyperspectral and high resolution data finding solution for multisource analysis. Experimental results in real domain show this fusing approach is able to produce accurate classification. The method in fact is able to handle the problem of a volumetric mixture typical of natural forest ecosystems identifying the different surfaces present under the tree canopy. The understory map, produced by the neural classification method, was used as input to the inversion of radiative transfer models that show a significant increase in the retrieval of important biophysical vegetation parameter.
Directory of Open Access Journals (Sweden)
Edia E.O.
2010-10-01
Full Text Available Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM, an unsupervised Artificial Neural Networks (ANN method. This method was applied to pattern the samples based on the richness of five major orders of aquatic insects (Diptera, Ephemeroptera, Coleoptera, Trichoptera and Odonata. This permitted to identify three clusters that were mainly related to the local environmental status of sampling sites. Then, we used the environmental characteristics of the sites to predict, using a multilayer perceptron neural network (MLP, trained by BackPropagation algorithm (BP, a supervised ANN, the richness of the five insect orders. The BP showed high predictability (0.90 for both Diptera and Trichoptera, 0.84 for both Coleoptera and Odonata, 0.69 for Ephemeroptera. The most contributing variables in predicting the five insect order richness were pH, conductivity, total dissolved solids, water temperature, percentage of rock and the canopy. This underlines the crucial influence of both instream characteristics and riparian context.
Directory of Open Access Journals (Sweden)
M. Aquilino
2014-01-01
The historical archive of LANDSAT imagery dating back to the launch of ERTS in 1972 provides a comprehensive and permanent data source for tracking change on the planet‟s land surface. In this study case the imagery acquisition dates of 1987, 2002 and 2011 were selected to cover a time trend of 24 years. Land cover categories were based on classes outlined by the Curve Number method with the aim of characterizing land use according to the level of surface imperviousness. After comparing two land use classification methods, i.e. Maximum Likelihood Classifier (MLC and Multi-Layer Perceptron (MLP neural network, the Artificial Neural Networks (ANN approach was found the best reliable and efficient method in the absence of ground reference data. The ANN approach has a distinct advantage over statistical classification methods in that it is non-parametric and requires little or no a priori knowledge on the distribution model of input data. The results quantify land cover change patterns in the river basin area under study and demonstrate the potential of multitemporal LANDSAT data to provide an accurate and cost-effective means to map and analyse land cover changes over time that can be used as input in land management and policy decision-making.
Braga, C C
2001-01-01
A neural network structure has been used for unfolding neutron spectra measured by means of a Bonner Sphere Spectrometer set and a foil activation set using several neutron induced reactions. The present work used the SNNS (Stuttgart Neural Network Simulator) as the interface for designing, training and validation of the Multilayer Perceptron network. The back-propagation algorithm was applied. The Bonner Sphere set chosen has been calibrated at the National Physical Laboratory, United Kingdom, and uses gold activation foils as thermal neutron detectors. The neutron energy covered by the response functions goes from 0.0001 eV to 14 MeV. The foil activation set chosen has been irradiated at the IEA-R1 research reactor and measured at the Nuclear Metrology Laboratory of IPEN-CNEN/SP. Two types of neutron spectra were numerically investigated: monoenergetic and continuous The unfolded spectra were compared to a conventional method using code SAND-II as part of the neutron dosimetry system SAIPS. Good results wer...
Directory of Open Access Journals (Sweden)
Namık KılıÇ
2015-06-01
Full Text Available Determination of ballistic performance of an armor solution is a complicated task and evolved significantly with the application of finite element methods (FEM in this research field. The traditional armor design studies performed with FEM requires sophisticated procedures and intensive computational effort, therefore simpler and accurate numerical approaches are always worthwhile to decrease armor development time. This study aims to apply a hybrid method using FEM simulation and artificial neural network (ANN analysis to approximate ballistic limit thickness for armor steels. To achieve this objective, a predictive model based on the artificial neural networks is developed to determine ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition. In this methodology, the FEM simulations are used to create training cases for Multilayer Perceptron (MLP three layer networks. In order to validate FE simulation methodology, ballistic shot tests on 20 mm thickness target were performed according to standard Stanag 4569. Afterwards, the successfully trained ANN(s is used to predict the ballistic limit thickness of 500 HB high hardness steel armor. Results show that even with limited number of data, FEM-ANN approach can be used to predict ballistic penetration depth with adequate accuracy.
Rai, H. M.; Trivedi, A.; Chatterjee, K.; Shukla, S.
2014-01-01
This paper employed the Daubechies wavelet transform (WT) for R-peak detection and radial basis function neural network (RBFNN) to classify the electrocardiogram (ECG) signals. Five types of ECG beats: normal beat, paced beat, left bundle branch block (LBBB) beat, right bundle branch block (RBBB) beat and premature ventricular contraction (PVC) were classified. 500 QRS complexes were arbitrarily extracted from 26 records in Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, which are available on Physionet website. Each and every QRS complex was represented by 21 points from p1 to p21 and these QRS complexes of each record were categorized according to types of beats. The system performance was computed using four types of parameter evaluation metrics: sensitivity, positive predictivity, specificity and classification error rate. The experimental result shows that the average values of sensitivity, positive predictivity, specificity and classification error rate are 99.8%, 99.60%, 99.90% and 0.12%, respectively with RBFNN classifier. The overall accuracy achieved for back propagation neural network (BPNN), multilayered perceptron (MLP), support vector machine (SVM) and RBFNN classifiers are 97.2%, 98.8%, 99% and 99.6%, respectively. The accuracy levels and processing time of RBFNN is higher than or comparable with BPNN, MLP and SVM classifiers.
de Castro, Ana-Isabel; Jurado-Expósito, Montserrat; Gómez-Casero, María-Teresa; López-Granados, Francisca
2012-01-01
In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.
Directory of Open Access Journals (Sweden)
Hacene MELLAH
2016-07-01
Full Text Available The objective of this paper is to develop an Artificial Neural Network (ANN model to estimate simultaneously, parameters and state of a brushed DC machine. The proposed ANN estimator is novel in the sense that his estimates simultaneously temperature, speed and rotor resistance based only on the measurement of the voltage and current inputs. Many types of ANN estimators have been designed by a lot of researchers during the last two decades. Each type is designed for a specific application. The thermal behavior of the motor is very slow, which leads to large amounts of data sets. The standard ANN use often Multi-Layer Perceptron (MLP with Levenberg-Marquardt Backpropagation (LMBP, among the limits of LMBP in the case of large number of data, so the use of MLP based on LMBP is no longer valid in our case. As solution, we propose the use of Cascade-Forward Neural Network (CFNN based Bayesian Regulation backpropagation (BRBP. To test our estimator robustness a random white-Gaussian noise has been added to the sets. The proposed estimator is in our viewpoint accurate and robust.
Committee neural network model for rock permeability prediction
Bagheripour, Parisa
2014-05-01
Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.
Shafizadeh Moghadam, H; Hagenauer, J; Farajzadeh, M; Helbich, M
2015-01-01
The majority of cities are rapidly growing. This makes the monitoring and modeling of urban change’s spatial patterns critical to urban planners, decision makers, and environment protection activists. Although a wide range of methods exists for modeling and simulating urban growth, machine learning
Directory of Open Access Journals (Sweden)
Luiz Henry Monken e Silva
2005-01-01
Full Text Available Neste artigo a habilidade das redes neurais perceptron multicamada eminterpolar foi utilizada para analisar duas classes de problemas de contorno. A primeira classe é formada por equações diferenciais em que a solução pode apresentar gradientes elevados e a segunda classe é formada de equações diferenciais definidas em domínios arbitrários. As metodologias propostas por Lagaris et al. (1998 foram estendidas para casos de equações diferenciais sujeitas às condições de Cauchy e condições de contorno mistas. Os resultados fornecidos pelo método da rede neural se apresentam precisos quando comparados com os resultados analíticos ou por métodos numéricos de resolução deequações diferenciais. A precisão alcançada nos resultados e a facilidade no manuseio do método para resolver estes problemas de contorno encorajaram a continuidade da pesquisa, particularmente no tocante à convergência e estabilidade numérica.In this paper, the ability of the multilayer perceptron neural network (MLP in interpolation was used to analyze two classes of boundary value problems. The first class is formed by differential equations, with solutions which can have high gradients and the second are partial differential equations, defined on arbitrary shaped domain. Also, the methodologies proposed by Lagaris et al. (1998 were enlarged for differential equations subjected to Cauchy and mix boundary conditions type. The results of the artificial neural network method are very precise when comparison to the analytical ones or those of classical numerical methods to solve differential equations. The precision achieved in the results and the ability to handle the method, to solve those boundary value problems, were encouraging to keep the research, particularly on an important direction, concerning convergence and numerical stability.
Directory of Open Access Journals (Sweden)
GEMAN, O.
2014-02-01
Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.
Directory of Open Access Journals (Sweden)
Bertin Dominique
2016-01-01
Full Text Available The Liane River is a small costal river, famous for its floods, which can affect the city of Boulogne-sur-Mer. Due to the complexity of land cover and hydrologic processes, a black-box non-linear modelling was chosen using neural networks. The multilayer perceptron model, known for its property of universal approximation is thus chosen. Four models were designed, each one for one forecasting horizon using rainfall forecasts: 24h, 12h, 6h, 3h. The desired output of the model is original: it represents the maximal value of the water level respectively 24h, 12h, 6h, 3h ahead. Working with best forecasts of rain (the observed ones during the event in the past, on the major flood of the database in test set, the model provides excellent forecasts. Nash criteria calculated for the four lead times are 0.98 (3h, 0.97 (6h, 0.91 (12h, 0.89 (24h. Designed models were thus estimated as efficient enough to be implemented in a specific tool devoted to real time operational use. The software tool is described hereafter: designed in Java, it presents a friendly interface allowing applying various scenarios of future rainfalls, and a graphical visualization of the predicted maximum water levels and their associated real time observed values.
Stamenković, Lidija J; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V
2015-12-01
Ammonia emissions at the national level are frequently estimated by applying the emission inventory approach, which includes the use of emission factors, which are difficult and expensive to determine. Emission factors are therefore the subject of estimation, and as such they contribute to inherent uncertainties in the estimation of ammonia emissions. This paper presents an alternative approach for the prediction of ammonia emissions at the national level based on artificial neural networks and broadly available sustainability and economical/agricultural indicators as model inputs. The Multilayer Perceptron (MLP) architecture was optimized using a trial-and-error procedure, including the number of hidden neurons, activation function, and a back-propagation algorithm. Principal component analysis (PCA) was applied to reduce mutual correlation between the inputs. The obtained results demonstrate that the MLP model created using the PCA transformed inputs (PCA-MLP) provides a more accurate prediction than the MLP model based on the original inputs. In the validation stage, the MLP and PCA-MLP models were tested for ammonia emission predictions for up to 2 years and compared with a principal component regression model. Among the three models, the PCA-MLP demonstrated the best performance, providing predictions for the USA and the majority of EU countries with a relative error of less than 20%.
Directory of Open Access Journals (Sweden)
Khanchoul Kamel
2014-01-01
Full Text Available Knowledge of sediment yield and the factors controlling it provides useful information for estimating erosion intensities within river basins. The objective of this study was to build a model from which suspended sediment yield could be estimated from ungauged rivers using computed sediment yield and physical factors. Researchers working on suspended sediment transported by wadis in the Maghreb are usually facing the lack of available data for such river types. Further study of the prediction of sediment transport in these regions and its variability is clearly required. In this work, ANNs were built between sediment yield established from longterm measurement series at gauging stations in Algerian catchments and corresponding basic physiographic parameters such as rainfall, runoff, lithology index, coefficient of torrentiality, and basin area. The proposed Levenberg-Marquardt and Multilayer Perceptron algorithms to train the neural networks of the current research study was based on the feed-forward backpropagation method with combinations of number of neurons in each hidden layer, transfer function, error goal. Additionally, three statistical measurements, namely the root mean square error (RMSE, the coefficient of determination (R², and the efficiency factor (EF have been reported for examining the forecasting accuracy of the developed model. Single plot displays of network outputs with respect to targets for training have provided good performance results and good fitting . Thus, ANNs were a promising method for predicting suspended sediment yield in ungauged Algerian catchments.
Optical bandgap modeling of thermal annealed ZnO:Ga thin films using neural networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Chang Eun; Moon, Pyung; Yun, Ilgu [School of Electrical and Electronic Engineering, Yonsei University, 262 Seongsanno, Seodaemoon-gu, Seoul 120-749 (Korea); Kim, Sungyeon; Myoung, Jae-Min [Department of Materials Science and Engineering, Yonsei University, 262 Seongsanno, Seodaemoon-gu, Seoul 120-749 (Korea); Jang, Hyeon Woo; Bang, Jungsik [LG Chem, Ltd., Research Park, 104-1 Moonji-Dong, Yuseng-Gu, Daejeon 305-380 (Korea)
2010-07-15
In this paper, the thermal annealing process modeling for the optical bandgap of ZnO:Ga thin films for transparent conductive oxide was presented using neural network (NNets) based on error backpropagation (BPNN) algorithm and multilayer perceptron (MLP). The thermal annealing process of ZnO:Ga thin films were analyzed by general factorial experimental design. The annealing temperature and film thickness were considered as input factors. To model the nonlinear annealing process, 6 experiments were trained by BPNN which has 2-4-1 structures and 2 additional samples were experimented to verify the predicted models. The output response model on optical bandgap and carrier concentration of ZnO:Ga thin films trained by BPNN was represented by surface plot of response surface model. Based on the modeling results, NNets can provide sufficient correspondence between the predicted output values and the measured. The optical bandgap variation of ZnO:Ga thin films by annealing is due to increased carrier concentration and explained by Burstein-Moss effect. The thermal annealing process is nonlinear and complex but the output response can be predicted by the NNets model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Metastatic liver tumour segmentation with a neural network-guided 3D deformable model.
Vorontsov, Eugene; Tang, An; Roy, David; Pal, Christopher J; Kadoury, Samuel
2017-01-01
The segmentation of liver tumours in CT images is useful for the diagnosis and treatment of liver cancer. Furthermore, an accurate assessment of tumour volume aids in the diagnosis and evaluation of treatment response. Currently, segmentation is performed manually by an expert, and because of the time required, a rough estimate of tumour volume is often done instead. We propose a semi-automatic segmentation method that makes use of machine learning within a deformable surface model. Specifically, we propose a deformable model that uses a voxel classifier based on a multilayer perceptron (MLP) to interpret the CT image. The new deformable model considers vertex displacement towards apparent tumour boundaries and regularization that promotes surface smoothness. During operation, a user identifies the target tumour and the mesh then automatically delineates the tumour from the MLP processed image. The method was tested on a dataset of 40 abdominal CT scans with a total of 95 colorectal metastases collected from a variety of scanners with variable spatial resolution. The segmentation results are encouraging with a Dice similarity metric of [Formula: see text] and demonstrates that the proposed method can deal with highly variable data. This work motivates further research into tumour segmentation using machine learning with more data and deeper neural networks.
Directory of Open Access Journals (Sweden)
César Fernandes Aquino
2016-01-01
Full Text Available ABSTRACT Banana is one of the most consumed fruits in Brazil and an important source of minerals, vitamins and carbohydrates for human diet. The characterization of banana superior genotypes allows identifying those with nutritional quality for cultivation and to integrate genetic improvement programs. However, identification and quantification of the provitamin carotenoids are hampered by the instruments and reagents cost for chemical analyzes, and it may become unworkable if the number of samples to be analyzed is high. Thus, the objective was to verify the potential of indirect phenotyping of the vitamin A content in banana through artificial neural networks (ANNs using colorimetric data. Fifteen banana cultivars with four replications were evaluated, totaling 60 samples. For each sample, colorimetric data were obtained and the vitamin A content was estimated in the ripe banana pulp. For the prediction of the vitamin A content by colorimetric data, multilayer perceptron ANNs were used. Ten network architectures were tested with a single hidden layer. The network selected by the best fit (least mean square error had four neurons in the hidden layer, enabling high efficiency in prediction of vitamin A (r2 = 0.98. The colorimetric parameters a* and Hue angle were the most important in this study. High-scale indirect phenotyping of vitamin A by ANNs on banana pulp is possible and feasible.
Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A
2012-01-01
Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.
Neural network based approach for time to crash prediction to cope with software aging
Institute of Scientific and Technical Information of China (English)
Moona Yakhchi; Javier Alonso; Mahdi Fazeli; Amir Akhavan Bitaraf; Ahmad Patooghy
2015-01-01
Recent studies have shown that software is one of the main reasons for computer systems unavailability. A growing ac-cumulation of software errors with time causes a phenomenon cal ed software aging. This phenomenon can result in system per-formance degradation and eventual y system hang/crash. To cope with software aging, software rejuvenation has been proposed. Software rejuvenation is a proactive technique which leads to re-moving the accumulated software errors by stopping the system, cleaning up its internal state, and resuming its normal operation. One of the main chal enges of software rejuvenation is accurately predicting the time to crash due to aging factors such as me-mory leaks. In this paper, different machine learning techniques are compared to accurately predict the software time to crash un-der different aging scenarios. Final y, by comparing the accuracy of different techniques, it can be concluded that the multilayer per-ceptron neural network has the highest prediction accuracy among al techniques studied.
Use of artificial neural networks and geographic objects for classifying remote sensing imagery
Directory of Open Access Journals (Sweden)
Pedro Resende Silva
2014-06-01
Full Text Available The aim of this study was to develop a methodology for mapping land use and land cover in the northern region of Minas Gerais state, where, in addition to agricultural land, the landscape is dominated by native cerrado, deciduous forests, and extensive areas of vereda. Using forest inventory data, as well as RapidEye, Landsat TM and MODIS imagery, three specific objectives were defined: 1 to test use of image segmentation techniques for an object-based classification encompassing spectral, spatial and temporal information, 2 to test use of high spatial resolution RapidEye imagery combined with Landsat TM time series imagery for capturing the effects of seasonality, and 3 to classify data using Artificial Neural Networks. Using MODIS time series and forest inventory data, time signatures were extracted from the dominant vegetation formations, enabling selection of the best periods of the year to be represented in the classification process. Objects created with the segmentation of RapidEye images, along with the Landsat TM time series images, were classified by ten different Multilayer Perceptron network architectures. Results showed that the methodology in question meets both the purposes of this study and the characteristics of the local plant life. With excellent accuracy values for native classes, the study showed the importance of a well-structured database for classification and the importance of suitable image segmentation to meet specific purposes.
Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio
2010-05-01
This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.
Artificial Neural Network Based Method to Mitigate Temporary Over-voltages
Directory of Open Access Journals (Sweden)
Iman Sadeghkhani
2011-09-01
Full Text Available Uncontrolled energization of large power transformers may result in magnetizing inrush current of high amplitude and switching over-voltages. The most effective method for the limitation of the switching over-voltages is controlled switching since the magnitudes of the produced transients are strongly dependent on the closing instants of the switch. We introduce a harmonic index that its minimum value is corresponding to the best-case switching time. Also, this paper presents an Artificial Neural Network (ANN-based approach to estimate the optimum switching instants for real time applications. In the proposed ANN, second order Levenberg–Marquardt method is used to train the multilayer perceptron. ANN training is performed based on equivalent circuit parameters of the network. Thus, trained ANN is applicable to every studied system. To verify the effectiveness of the proposed index and accuracy of the ANN-based approach, two case studies are presented and demonstrated.
Lallahem, S.; Hani, A.
2017-02-01
Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.
Hybrid artificial neural network system for short-term load forecasting
Directory of Open Access Journals (Sweden)
Ilić Slobodan A.
2012-01-01
Full Text Available This paper presents a novel hybrid method for Short-Term Load Forecasting (STLF. The system comprises of two Artificial Neural Networks (ANN, assembled in a hierarchical order. The first ANN is a Multilayer Perceptron (MLP which functions as integrated load predictor (ILP for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor (HLP for a forecasting day. By using a separate ANN that predicts the integral of the load (ILP, additional information is presented to the actual forecasting ANN (HLP, while keeping its input space relatively small. This property enables online training and adaptation, as new data become available, because of the short training time. Different sizes of training sets have been tested, and the optimum of 30 day sliding time-window has been determined. The system has been verified on recorded data from Serbian electrical utility company. The results demonstrate better efficiency of the proposed method in comparison to non-hybrid methods because it produces better forecasts and yields smaller mean average percentage error (MAPE.
Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana
2016-01-01
This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.
Directory of Open Access Journals (Sweden)
Adelaïde Nicole Kengnou Telem
2014-01-01
Full Text Available A robust gray image encryption scheme using chaotic logistic map and artificial neural network (ANN is introduced. In the proposed method, an external secret key is used to derive the initial conditions for the logistic chaotic maps which are employed to generate weights and biases matrices of the multilayer perceptron (MLP. During the learning process with the backpropagation algorithm, ANN determines the weight matrix of the connections. The plain image is divided into four subimages which are used for the first diffusion stage. The subimages obtained previously are divided into the square subimage blocks. In the next stage, different initial conditions are employed to generate a key stream which will be used for permutation and diffusion of the subimage blocks. Some security analyses such as entropy analysis, statistical analysis, and key sensitivity analysis are given to demonstrate the key space of the proposed algorithm which is large enough to make brute force attacks infeasible. Computing validation using experimental data with several gray images has been carried out with detailed numerical analysis, in order to validate the high security of the proposed encryption scheme.
Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models
Directory of Open Access Journals (Sweden)
Sungwon Kim
2015-06-01
Full Text Available The objective of this study is to develop artificial neural network (ANN models, including multilayer perceptron (MLP and Kohonen self-organizing feature map (KSOFM, for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive to the number of hidden nodes than were the conjugate gradient and quickprop training algorithms using the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient and quickprop and 11-3-1 (Levenberg-Marquardt were the best for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop and 1-3-11 (Levenberg–Marquardt, which are the inverse networks for estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into individual point rainfall with spatial concepts.
Artificial Neural Network applied as a methodology of mosquito species identification.
Lorenz, Camila; Ferraudo, Antonio Sergio; Suesdek, Lincoln
2015-12-01
There are about 200 species of mosquitoes (Culicidae) known to be vectors of pathogens that cause diseases in humans. Correct identification of mosquito species is an essential step in the development of effective control strategies for these diseases; recognizing the vectors of pathogens is integral to understanding transmission. Unfortunately, taxonomic identification of mosquitoes is a laborious task, which requires trained experts, and it is jeopardized by the high variability of morphological and molecular characters found within the Culicidae family. In this context, the development of an automatized species identification method would be a valuable and more accessible resource to non-taxonomist and health professionals. In this work, an artificial neural network (ANN) technique was proposed for the identification and classification of 17 species of the genera Anopheles, Aedes, and Culex, based on wing shape characters. We tested the hypothesis that classification using ANN is better than traditional classification by discriminant analysis (DA). Thirty-two wing shape principal components were used as input to a Multilayer Perceptron Classification ANN. The obtained ANN correctly identified species with accuracy rates ranging from 85.70% to 100%, and classified species more efficiently than did the traditional method of multivariate discriminant analysis. The results highlight the power of ANNs to diagnose mosquito species and to partly automatize taxonomic identification. These findings also support the hypothesis that wing venation patterns are species-specific, and thus should be included in taxonomic keys.
Comparative Study of Artificial Neural Network and ARIMA Models in Predicting Exchange Rate
Directory of Open Access Journals (Sweden)
karamollah Bagherifard
2012-11-01
Full Text Available Capital market as an organized market has an effective role in mobilizing financial resources due to have growth and economic development of countries and many countries now in the finance firms is responsible for the required credits. In the stock market, shareholders are always seeking the highest efficiency, so the stock price prediction is important for them. Since the stock market is a nonlinear system under conditions of political, economic and psychological, it is difficult to predict the correct stock price. Thus, in the present study artificial intelligence and ARIMA method has been used to predict stock prices. Multilayer Perceptron neural network and radial basis functions are two methods used in this research. Evaluation methods, selection methods and exponential smoothing methods are compared to random walk. The results showed that AI-based methods used in predicting stock performance are more accurate. Between two methods used in artificial intelligence, a method based on radial basis functions is capable to estimate stock prices in the future with higher accuracy.
Directory of Open Access Journals (Sweden)
Onur Satir
2016-09-01
Full Text Available Forest fires are one of the most important factors in environmental risk assessment and it is the main cause of forest destruction in the Mediterranean region. Forestlands have a number of known benefits such as decreasing soil erosion, containing wild life habitats, etc. Additionally, forests are also important player in carbon cycle and decreasing the climate change impacts. This paper discusses forest fire probability mapping of a Mediterranean forestland using a multiple data assessment technique. An artificial neural network (ANN method was used to map forest fire probability in Upper Seyhan Basin (USB in Turkey. Multi-layer perceptron (MLP approach based on back propagation algorithm was applied in respect to physical, anthropogenic, climate and fire occurrence datasets. Result was validated using relative operating characteristic (ROC analysis. Coefficient of accuracy of the MLP was 0.83. Landscape features input to the model were assessed statistically to identify the most descriptive factors on forest fire probability mapping using the Pearson correlation coefficient. Landscape features like elevation (R = −0.43, tree cover (R = 0.93 and temperature (R = 0.42 were strongly correlated with forest fire probability in the USB region.
A Comparative Approach to Hand Force Estimation using Artificial Neural Networks.
Mobasser, Farid; Hashtrudi-Zaad, Keyvan
2012-01-01
In many applications that include direct human involvement such as control of prosthetic arms, athletic training, and studying muscle physiology, hand force is needed for control, modeling and monitoring purposes. The use of inexpensive and easily portable active electromyography (EMG) electrodes and position sensors would be advantageous in these applications compared to the use of force sensors which are often very expensive and require bulky frames. Among non-model-based estimation methods, Multilayer Perceptron Artificial Neural Networks (MLPANN) has widely been used to estimate muscle force or joint torque from different anatomical features in humans or animals. This paper investigates the use of Radial Basis Function (RBF) ANN and MLPANN for force estimation and experimentally compares the performance of the two methodologies for the same human anatomy, ie, hand force estimation, under an ensemble of operational conditions. In this unified study, the EMG signal readings from upper-arm muscles involved in elbow joint movement and elbow angular position and velocity are utilized as inputs to the ANNs. In addition, the use of the elbow angular acceleration signal as an input for the ANNs is also investigated.
Neural-network approach to modeling liquid crystals in complex confinement.
Santos-Silva, T; Teixeira, P I C; Anquetil-Deck, C; Cleaver, D J
2014-05-01
Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.
Directory of Open Access Journals (Sweden)
Edwin Kimutai Kanda
2016-11-01
Full Text Available River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water pollution. Artificial neural network (ANN has gained popularity in water quality forecasting. This study aimed at assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 monthly values for the input variables and output variable from 2009–2013 which were split into training and testing datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The dissolved oxygen values follow seasonal trend with low values during dry periods.
Two-dimensional shape classification using generalized Fourier representation and neural networks
Chodorowski, Artur; Gustavsson, Tomas; Mattsson, Ulf
2000-04-01
A shape-based classification method is developed based upon the Generalized Fourier Representation (GFR). GFR can be regarded as an extension of traditional polar Fourier descriptors, suitable for description of closed objects, both convex and concave, with or without holes. Explicit relations of GFR coefficients to regular moments, moment invariants and affine moment invariants are given in the paper. The dual linear relation between GFR coefficients and regular moments was used to compare shape features derive from GFR descriptors and Hu's moment invariants. the GFR was then applied to a clinical problem within oral medicine and used to represent the contours of the lesions in the oral cavity. The lesions studied were leukoplakia and different forms of lichenoid reactions. Shape features were extracted from GFR coefficients in order to classify potentially cancerous oral lesions. Alternative classifiers were investigated based on a multilayer perceptron with different architectures and extensions. The overall classification accuracy for recognition of potentially cancerous oral lesions when using neural network classifier was 85%, while the classification between leukoplakia and reticular lichenoid reactions gave 96% (5-fold cross-validated) recognition rate.
Can artificial neural networks be used to predict the origin of ozone episodes?
Fontes, T; Silva, L M; Silva, M P; Barros, N; Carvalho, A C
2014-08-01
Tropospheric ozone is a secondary pollutant having a negative impact on health and environment. To control and minimize such impact the European Community established regulations to promote a clean air all over Europe. However, when an episode is related with natural mechanisms as Stratosphere-Troposphere Exchanges (STE), the benefits of an action plan to minimize precursor emissions are inefficient. Therefore, this work aims to develop a tool to identify the sources of ozone episodes in order to minimize misclassification and thus avoid the implementation of inappropriate air quality plans. For this purpose, an artificial neural network model - the Multilayer Perceptron - is used as a binary classifier of the source of an ozone episode. Long data series, between 2001 and 2010, considering the ozone precursors, (7)Be activity and meteorological conditions were used. With this model, 2-7% of a mean error was achieved, which is considered as a good generalization. Accuracy measures for imbalanced data are also discussed. The MCC values show a good performance of the model (0.65-0.92). Precision and F1-measure indicate that the model specifies a little better the rare class. Thus, the results demonstrate that such a tool can be used to help authorities in the management of ozone, namely when its thresholds are exceeded due natural causes, as the above mentioned STE. Therefore, the resources used to implement an action plan to minimize ozone precursors could be better managed avoiding the implementation of inappropriate measures.
Amozegar, M; Khorasani, K
2016-04-01
In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies.
Alidoost, F.; Arefi, H.
2016-06-01
In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of buildings' roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN) framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning approach to detect and extract the pattern of buildings' roofs automatically considering the complementary nature of height and RGB information.
Directory of Open Access Journals (Sweden)
F. Alidoost
2016-06-01
Full Text Available In recent years, with the development of the high resolution data acquisition technologies, many different approaches and algorithms have been presented to extract the accurate and timely updated 3D models of buildings as a key element of city structures for numerous applications in urban mapping. In this paper, a novel and model-based approach is proposed for automatic recognition of buildings’ roof models such as flat, gable, hip, and pyramid hip roof models based on deep structures for hierarchical learning of features that are extracted from both LiDAR and aerial ortho-photos. The main steps of this approach include building segmentation, feature extraction and learning, and finally building roof labeling in a supervised pre-trained Convolutional Neural Network (CNN framework to have an automatic recognition system for various types of buildings over an urban area. In this framework, the height information provides invariant geometric features for convolutional neural network to localize the boundary of each individual roofs. CNN is a kind of feed-forward neural network with the multilayer perceptron concept which consists of a number of convolutional and subsampling layers in an adaptable structure and it is widely used in pattern recognition and object detection application. Since the training dataset is a small library of labeled models for different shapes of roofs, the computation time of learning can be decreased significantly using the pre-trained models. The experimental results highlight the effectiveness of the deep learning approach to detect and extract the pattern of buildings’ roofs automatically considering the complementary nature of height and RGB information.
Increasing spatial resolution of CHIRPS rainfall datasets for Cyprus with artificial neural networks
Tymvios, Filippos; Michaelides, Silas; Retalis, Adrianos; Katsanos, Dimitrios; Lelieveld, Jos
2016-08-01
The use of high resolution rainfall datasets is an alternative way of studying climatological regions where conventional rain measurements are sparse or not available. Starting in 1981 to near-present, the CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) dataset incorporates a 5km×5km resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis, severe events and seasonal drought monitoring. The aim of this work is to further increase the resolution of the rainfall dataset for Cyprus to 1km×1km, by correlating the CHIRPS dataset with elevation information, the NDVI index (Normalized Difference Vegetation Index) from satellite images at 1km×1km and precipitation measurements from the official raingauge network of the Cyprus' Department of Meteorology, utilizing Artificial Neural Networks. The Artificial Neural Networks' architecture that was implemented is the Multi-Layer Perceptron (MLP) trained with the back propagation method, which is widely used in environmental studies. Seven different network architectures were tested, all with two hidden layers. The number of neurons ranged from 3 to10 in the first hidden layer and from 5 to 25 in the second hidden layer. The dataset was separated into a randomly selected training set, a validation set and a testing set; the latter is independently used for the final assessment of the models' performance. Using the Artificial Neural Network approach, a new map of the spatial analysis of rainfall is constructed which exhibits a considerable increase in its spatial resolution. A statistical assessment of the new spatial analysis was made using the rainfall ground measurements from the raingauge network. The assessment indicates that the methodology is promising for several applications.
Krajišnik, Danina; Stepanović-Petrović, Radica; Tomić, Maja; Micov, Ana; Ibrić, Svetlana; Milić, Jela
2014-04-01
In this study, utilization of artificial neural network (ANN) models [static-multilayer perceptron (MLP) and generalized regression neural networks and dynamic-gamma one-layer network and recurrent one-layer network] for prediction of diclofenac sodium (DS) release from drug-cationic surfactant-modified zeolites physical mixtures comprising different surfactant/drug molar ratio (0.2-2.5) was performed. The inputs for ANNs trainings were surfactant/drug molar ratios, that is, drug loadings in the drug-modified zeolite mixtures, whereas the outputs were percents of drug release in predetermined time points during drug release test (8 h). The obtained results revealed that MLP showed the highest correlation between experimental and predicted drug release. The safety of both natural and cationic surfactant-modified zeolite as a potential excipient was confirmed in an acute toxicity testing during 72 h. DS (1.5, 5, 10, mg/kg, p.o.) as well as DS-modified zeolites mixtures produced a significant dose-dependent reduction of the rat paw edema induced by proinflammatory agent carrageenan. DS antiedematous effect was intensified and prolonged significantly by modified zeolite. These results could suggest the potential improvement in the treatment of inflammation by DS-modified zeolite mixtures.
Noise and randomlike behavior of perceptrons: Theory and applicationto protein structure prediction
Compiani, M.; Fariselli, P.; Casadio, R.
1997-06-01
In the first part of this paper we study the performance of a single-layer perceptron that is expected to classify patterns into classes in the case where the mapping to be learned is corrupted by noise. Extending previous results concerning the statistical behavior of perceptrons, we distinguish two mutually exclusive kinds of noise (I noise and R noise) and study their effect on the statistical information that can be drawn from the output. In the presence of I noise, the learning stage results in the convergence of the output to the probabilities that the input occurs in each class. R noise, on the contrary, perturbs the learning of probabilities to the extent that the performance of the perceptron deteriorates and the network becomes equivalent to a random predictor. We derive an analytical expression for the efficiency of classification of inputs affected by strong R noise. We argue that, from the standpoint of the efficiency score, the network is equivalent to a device performing biased random flights in the space of the weights, which are ruled by the statistical information stored by the network during the learning stage. The second part of the paper is devoted to the application of our model to the prediction of protein secondary structures where one has to deal with the effects of R noise. Our results are shown to be consistent with data drawn from experiments and simulations of the folding process. In particular, the existence of coding and noncoding traits of the protein is properly rationalized in terms of R-noise intensity. In addition, our model provides a justification of the seeming existence of a relationship between the prediction efficiency and the amount of R noise in the sequence-to-structure mapping. Finally, we define an entropylike parameter that is useful as a measure of R noise.
Directory of Open Access Journals (Sweden)
Epping W. J. M.
2006-11-01
Full Text Available Neural networks with the multi-layered perceptron architecture were trained on an autoassociation task to compress 2D seismic data. Networks with linear transfer functions outperformed nonlinear neural nets with single or multiple hidden layers. This indicates that the correlational structure of the seismic data is predominantly linear. A compression factor of 5 to 7 can be achieved if a reconstruction error of 10% is allowed. The performance on new test data was similar to that achieved with the training data. The hidden units developed feature-detecting properties that resemble oriented line, edge and more complex feature detectors. The feature detectors of linear neural nets are near-orthogonal rotations of the principal eigenvectors of the Karhunen-Loève transformation. Des réseaux neuronaux à architecture de perceptron multicouches ont été expérimentés en auto-association pour permettre la compression de données sismiques bidimensionnelles. Les réseaux neuronaux à fonctions de transfert linéaires s'avèrent plus performants que les réseaux neuronaux non linéaires, à une ou plusieurs couches cachées. Ceci indique que la structure corrélative des données sismiques est à prédominance linéaire. Un facteur de compression de 5 à 7 peut être obtenu si une erreur de reconstruction de 10 % est admise. La performance sur les données de test est très proche de celle obtenue sur les données d'apprentissage. Les unités cachées développent des propriétés de détection de caractéristiques ressemblant à des détecteurs de lignes orientées, de bords et de figures plus complexes. Les détecteurs de caractéristique des réseaux neuronaux linéaires sont des rotations quasi orthogonales des vecteurs propres principaux de la transformation de Karhunen-Loève.
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Energy Technology Data Exchange (ETDEWEB)
Labrador, I.; Carrasco, R.; Martinez, L.
1996-07-01
This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.
Menchón-Lara, Rosa-María; Bastida-Jumilla, María-Consuelo; Morales-Sánchez, Juan; Sancho-Gómez, José-Luis
2014-02-01
Atherosclerosis is the leading underlying pathologic process that results in cardiovascular diseases, which represents the main cause of death and disability in the world. The atherosclerotic process is a complex degenerative condition mainly affecting the medium- and large-size arteries, which begins in childhood and may remain unnoticed during decades. The intima-media thickness (IMT) of the common carotid artery (CCA) has emerged as one of the most powerful tool for the evaluation of preclinical atherosclerosis. IMT is measured by means of B-mode ultrasound images, which is a non-invasive and relatively low-cost technique. This paper proposes an effective image segmentation method for the IMT measurement in an automatic way. With this purpose, segmentation is posed as a pattern recognition problem, and a combination of artificial neural networks has been trained to solve this task. In particular, multi-layer perceptrons trained under the scaled conjugate gradient algorithm have been used. The suggested approach is tested on a set of 60 longitudinal ultrasound images of the CCA by comparing the automatic segmentation with four manual tracings. Moreover, the intra- and inter-observer errors have also been assessed. Despite of the simplicity of our approach, several quantitative statistical evaluations have shown its accuracy and robustness.
Iqbal, Abdullah; Valous, Nektarios A; Sun, Da-Wen; Allen, Paul
2011-02-01
Lacunarity is about quantifying the degree of spatial heterogeneity in the visual texture of imagery through the identification of the relationships between patterns and their spatial configurations in a two-dimensional setting. The computed lacunarity data can designate a mathematical index of spatial heterogeneity, therefore the corresponding feature vectors should possess the necessary inter-class statistical properties that would enable them to be used for pattern recognition purposes. The objectives of this study is to construct a supervised parsimonious classification model of binary lacunarity data-computed by Valous et al. (2009)-from pork ham slice surface images, with the aid of kernel principal component analysis (KPCA) and artificial neural networks (ANNs), using a portion of informative salient features. At first, the dimension of the initial space (510 features) was reduced by 90% in order to avoid any noise effects in the subsequent classification. Then, using KPCA, the first nineteen kernel principal components (99.04% of total variance) were extracted from the reduced feature space, and were used as input in the ANN. An adaptive feedforward multilayer perceptron (MLP) classifier was employed to obtain a suitable mapping from the input dataset. The correct classification percentages for the training, test and validation sets were 86.7%, 86.7%, and 85.0%, respectively. The results confirm that the classification performance was satisfactory. The binary lacunarity spatial metric captured relevant information that provided a good level of differentiation among pork ham slice images.
Directory of Open Access Journals (Sweden)
Pablo García
2013-06-01
Full Text Available Thanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present, the Smart Grid and Microgrid paradigms are able to take advantage from aggregated load forecasting, which opens the door for the implementation of new algorithms to seize this information for optimization and advanced planning. Therefore, accuracy in load forecasts will potentially have a big impact on key operation factors for the future Smart Grid/Microgrid-based energy network like user satisfaction and resource saving, and new methods to achieve an efficient prediction in future energy landscapes (very different from the centralized, big area networks studied so far. This paper proposes different improved models to forecast next day’s aggregated load using artificial neural networks, taking into account the variables that are most relevant for the aggregated. In particular, seven models based on the multilayer perceptron will be proposed, progressively adding input variables after analyzing the influence of climate factors on aggregated load. The results section presents the forecast from the proposed models, obtained from real data.
Quang Truong, Dinh; Ahn, Kyoung Kwan
2014-07-01
An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique.
Birsan, Marius-Victor; Dumitrescu, Alexandru; Cǎrbunaru, Felicia
2016-04-01
The role of statistical downscaling is to model the relationship between large-scale atmospheric circulation and climatic variables on a regional and sub-regional scale, making use of the predictions of future circulation generated by General Circulation Models (GCMs) in order to capture the effects of climate change on smaller areas. The study presents a statistical downscaling model based on a neural network-based approach, by means of multi-layer perceptron networks. Sub-daily temperature data series from 81 meteorological stations over Romania, with full data records are used as predictands. As large-scale predictor, the NCEP/NCAD air temperature data at 850 hPa over the domain 20-30E / 40-50N was used, at a spatial resolution of 2.5×2.5 degrees. The period 1961-1990 was used for calibration, while the validation was realized over the 1991-2010 interval. Further, in order to estimate future changes in air temperature for 2021-2050 and 2071-2100, air temperature data at 850 hPa corresponding to the IPCC A1B scenario was extracted from the CNCM33 model (Meteo-France) and used as predictor. This work has been realized within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian Executive Agency for Higher Education Research, Development and Innovation Funding (UEFISCDI).
Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.
2010-01-01
The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.
Ak, Ronay; Vitelli, Valeria; Zio, Enrico
2015-11-01
We consider the task of performing prediction with neural networks (NNs) on the basis of uncertain input data expressed in the form of intervals. We aim at quantifying the uncertainty in the prediction arising from both the input data and the prediction model. A multilayer perceptron NN is trained to map interval-valued input data onto interval outputs, representing the prediction intervals (PIs) of the real target values. The NN training is performed by nondominated sorting genetic algorithm-II, so that the PIs are optimized both in terms of accuracy (coverage probability) and dimension (width). Demonstration of the proposed method is given in two case studies: 1) a synthetic case study, in which the data have been generated with a 5-min time frequency from an autoregressive moving average model with either Gaussian or Chi-squared innovation distribution and 2) a real case study, in which experimental data consist of wind speed measurements with a time step of 1 h. Comparisons are given with a crisp (single-valued) approach. The results show that the crisp approach is less reliable than the interval-valued input approach in terms of capturing the variability in input.
Green, Geoffrey C; Chan, Adrian D C; Goubran, Rafik A
2009-01-01
Adopting the use of real-time odour monitoring in the smart home has the potential to alert the occupant of unsafe or unsanitary conditions. In this paper, we measured (with a commercial metal-oxide sensor-based electronic nose) the odours of five household foods that had been left out at room temperature for a week to spoil. A multilayer perceptron (MLP) neural network was trained to recognize the age of the samples (a quantity related to the degree of spoilage). For four of these foods, median correlation coefficients (between target values and MLP outputs) of R > 0.97 were observed. Fuzzy C-means clustering (FCM) was applied to the evolving odour patterns of spoiling milk, which had been sampled more frequently (4h intervals for 7 days). The FCM results showed that both the freshest and oldest milk samples had a high degree of membership in "fresh" and "spoiled" clusters, respectively. In the future, as advancements in electronic nose development remove the present barriers to acceptance, signal processing methods like those explored in this paper can be incorporated into odour monitoring systems used in the smart home.
Directory of Open Access Journals (Sweden)
Zhe Dong
2014-02-01
Full Text Available Small modular reactors (SMRs could be beneficial in providing electricity power safely and also be viable for applications such as seawater desalination and heat production. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear power plants. Since the MHTGR dynamics display high nonlinearity and parameter uncertainty, it is necessary to develop a nonlinear adaptive power-level control law which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR, but also easy to implement practically. In this paper, based on the concept of shifted-ectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD output-feedback power-level control can provide asymptotic closed-loop stability. Then, based on the strong approximation capability of the multi-layer perceptron (MLP artificial neural network (ANN, a compensator is established to suppress the negative influence caused by system parameter uncertainty. It is also proved that the MLP-compensated PD power-level control law constituted by an experientially-tuned PD regulator and this MLP-based compensator can guarantee bounded closed-loop stability. Numerical simulation results not only verify the theoretical results, but also illustrate the high performance of this MLP-compensated PD power-level controller in suppressing the oscillation of process variables caused by system parameter uncertainty.
López, M Estefanía; Rene, Eldon R; Boger, Zvi; Veiga, María C; Kennes, Christian
2017-02-15
A two-stage biological waste gas treatment system consisting of a first stage biotrickling filter (BTF) and second stage biofilter (BF) was tested for the removal of a gas-phase methanol (M), hydrogen sulphide (HS) and α-pinene (P) mixture. The bioreactors were tested with two types of shock loads, i.e., long-term (66h) low to medium concentration loads, and short-term (12h) low to high concentration loads. M and HS were removed in the BTF, reaching maximum elimination capacities (ECmax) of 684 and 33 gm(-3)h(-1), respectively. P was removed better in the second stage BF with an ECmax of 130 gm(-3)h(-1). The performance was modelled using two multi-layer perceptrons (MLPs) that employed the error backpropagation with momentum algorithm, in order to predict the removal efficiencies (RE, %) of methanol (REM), hydrogen sulphide (REHS) and α-pinene (REP), respectively. It was observed that, a MLP with the topology 3-4-2 was able to predict REM and REHS in the BTF, while a topology of 3-3-1 was able to approximate REP in the BF. The results show that artificial neural network (ANN) based models can effectively be used to model the transient-state performance of bioprocesses treating gas-phase pollutants.
Adiabatic superconducting cells for ultra-low-power artificial neural networks
Directory of Open Access Journals (Sweden)
Andrey E. Schegolev
2016-10-01
Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Adiabatic superconducting cells for ultra-low-power artificial neural networks.
Schegolev, Andrey E; Klenov, Nikolay V; Soloviev, Igor I; Tereshonok, Maxim V
2016-01-01
We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.
Carrasco, Manuel; Garde, Andres; Murillo, Pilar; Serrano, Luis
2005-06-01
In this paper a novel design and implementation of a VLSI Analogue Neural Net based on Multi-Layer Perceptron (MLP) with on-chip Back Propagation (BP) learning algorithm suitable for the resolution of classification problems is described. In order to implement a general and programmable analogue architecture, the design has been carried out in a hierarchical way. In this way the net has been divided in synapsis-blocks and neuron-blocks providing an easy method for the analysis. These blocks basically consist on simple cells, which are mainly, the activation functions (NAF), derivatives (DNAF), multipliers and weight update circuits. The analogue design is based on current-mode translinear techniques using MOS transistors working in the weak inversion region in order to reduce both the voltage supply and the power consumption. Moreover, with the purpose of minimizing the noise, offset and distortion of even order, the topologies are fully-differential and balanced. The circuit, named ANNE (Analogue Neural NEt), has been prototyped and characterized as a proof of concept on CMOS AMI-0.5A technology occupying a total area of 2.7mm2. The chip includes two versions of neural nets with on-chip BP learning algorithm, which are respectively a 2-1 and a 2-2-1 implementations. The proposed nets have been experimentally tested using supply voltages from 2.5V to 1.8V, which is suitable for single cell lithium-ion battery supply applications. Experimental results of both implementations included in ANNE exhibit a good performance on solving classification problems. These results have been compared with other proposed Analogue VLSI implementations of Neural Nets published in the literature demonstrating that our proposal is very efficient in terms of occupied area and power consumption.
An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries
2010-10-01
Oregon on October 10-14, 2010. U.S. Government or Federal Purpose Rights License., The original document contains color images . 14. ABSTRACT Prognostics...current processing . Output Hidden Nodes/Layers InputsPrevious States Z-1 Z-1 Z-1 Z-1 Weights M Weights W Weights V Weights U Adaptive Feedback Recurrent...network output can take any form of multi-layer perceptron (MLP), denoted by ))(()( nygnyo , (3) where )(g represents the nonlinear mapping of
Nath, Sankar; Kotal, S. D.; Kundu, P. K.
2016-12-01
Three artificial neural network (ANN) methods, namely, multilayer perceptron (MLP), radial basis function (RBF) and generalized regression neural network (GRNN) are utilized to predict the seasonal tropical cyclone (TC) activity over the north Indian Ocean (NIO) during the post-monsoon season (October, November, December). The frequency of TC and large-scale climate variables derived from NCEP/NCAR reanalysis dataset of resolution 2.5° × 2.5° were analyzed for the period 1971-2013. Data for the years 1971-2002 were used for the development of the models, which were tested with independent sample data for the year 2003-2013. Using the correlation analysis, the five large-scale climate variables, namely, geopotential height at 500 hPa, relative humidity at 500 hPa, sea-level pressure, zonal wind at 700 hPa and 200 hPa for the preceding month September, are selected as potential predictors of the post-monsoon season TC activity. The result reveals that all the three different ANN methods are able to provide satisfactory forecast in terms of the various metrics, such as root mean-square error (RMSE), standard deviation (SD), correlation coefficient ( r), and bias and index of agreement ( d). Additionally, leave-one-out cross validation (LOOCV) method is also performed and the forecast skill is evaluated. The results show that the MLP model is found to be superior to the other two models (RBF, GRNN). The (MLP) is expected to be very useful to operational forecasters for prediction of TC activity.
River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches
Sivakumar, B.; Jayawardena, A. W.; Fernando, T. M. K. G.
2002-08-01
The use of two non-linear black-box approaches, phase-space reconstruction (PSR) and artificial neural networks (ANN), for forecasting river flow dynamics is studied and a comparison of their performances is made. This is done by attempting 1-day and 7-day ahead forecasts of the daily river flow from the Nakhon Sawan station at the Chao Phraya River basin in Thailand. The results indicate a reasonably good performance of both approaches for both 1-day and 7-day ahead forecasts. However, the performance of the PSR approach is found to be consistently better than that of ANN. One reason for this could be that in the PSR approach the flow series in the phase-space is represented step by step in local neighborhoods, rather than a global approximation as is done in ANN. Another reason could be the use of the multi-layer perceptron (MLP) in ANN, since MLPs may not be most appropriate for forecasting at longer lead times. The selection of training set for the ANN may also contribute to such results. A comparison of the optimal number of variables for capturing the flow dynamics, as identified by the two approaches, indicates a large discrepancy in the case of 7-day ahead forecasts (1 and 7 variables, respectively), though for 1-day ahead forecasts it is found to be consistent (3 variables). A possible explanation for this could be the influence of noise in the data, an observation also made from the 1-day ahead forecast results using the PSR approach. The present results lead to observation on: (1) the use of other neural networks for runoff forecasting, particularly at longer lead times; (2) the influence of training set used in the ANN; and (3) the effect of noise on forecast accuracy, particularly in the PSR approach.
Monthly evaporation forecasting using artificial neural networks and support vector machines
Tezel, Gulay; Buyukyildiz, Meral
2016-04-01
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.
A Neural Network Based Hybrid Mixture Model to Extract Information from Non-linear Mixed Pixels
Directory of Open Access Journals (Sweden)
Uttam Kumar
2012-09-01
Full Text Available Signals acquired by sensors in the real world are non-linear combinations, requiring non-linear mixture models to describe the resultant mixture spectra for the endmember’s (pure pixel’s distribution. This communication discusses inferring class fraction through a novel hybrid mixture model (HMM. HMM is a three-step process, where the endmembers are first derived from the images themselves using the N-FINDR algorithm. These endmembers are used by the linear mixture model (LMM in the second step that provides an abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual ground proportions are fed into neural network based multi-layer perceptron (MLP architecture as input to train the neurons. The neural output further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. HMM is first implemented and validated on simulated hyper spectral data of 200 bands and subsequently on real time MODIS data with a spatial resolution of 250 m. The results on computer simulated data show that the method gives acceptable results for unmixing pixels with an overall RMSE of 0.0089 ± 0.0022 with LMM and 0.0030 ± 0.0001 with the HMM when compared to actual class proportions. The unmixed MODIS images showed overall RMSE with HMM as 0.0191 ± 0.022 as compared to the LMM output considered alone that had an overall RMSE of 0.2005 ± 0.41, indicating that individual class abundances obtained from HMM are very close to the real observations.
Golubović, Jelena; Birkemeyer, Claudia; Protić, Ana; Otašević, Biljana; Zečević, Mira
2016-03-18
Quantitative structure-property relationship (QSPR) methods are based on the hypothesis that changes in the molecular structure are reflected in changes in the observed property of the molecule. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. For the first time a quantitative structure-response relationship in electrospray ionization-mass spectrometry (ESI-MS) by means of artificial neural networks (ANN) on the group of angiotensin II receptor antagonists--sartans has been established. The investigated descriptors correspond to different properties of the analytes: polarity (logP), ionizability (pKa), surface area (solvent excluded volume) and number of proton acceptors. The influence of the instrumental parameters: methanol content in mobile phase, mobile phase pH and flow rate was also examined. Best performance showed a multilayer perceptron network with the architecture 6-3-3-1, trained with backpropagation algorithm. It showed high prediction ability on the previously unseen (test) data set with a coefficient of determination of 0.994. High prediction ability of the model would enable prediction of ESI-MS responsiveness under different conditions. This is particularly important in the method development phase. Also, prediction of responsiveness can be important in case of gradient-elution LC-MS and LC-MS/MS methods in which instrumental conditions are varied during time. Polarity, chargeability and surface area all appeared to be crucial for electrospray ionization whereby signal intensity appeared to be the result of a simultaneous influence of the molecular descriptors and their interactions. Percentage of organic phase in the mobile phase showed a positive, while flow rate showed a negative impact on signal intensity.
Directory of Open Access Journals (Sweden)
Juan David Velásquez Henao
2007-12-01
Full Text Available En este artículo, se modela el precio promedio mensual del café colombiano en la Bolsa de Nueva York, usando varios modelos alternativos. El modelo final seleccionado está compuesto por una componente lineal autorregresiva más una red neuronal artificial tipo perceptron multicapa con dos neuronas en la capa oculta, que permite representar la dinámica que sigue el valor esperado de la serie de precios; mientras que la dinámica de los residuales es especificada usando un proceso heterocedástico condicional autoregresivo de primer orden. Los residuales normalizados del modelo son incorrelacionados y homocedásticos, y siguen aproximadamente una distribución normal. Los resultados indican que el precio actual depende de los precios ocurridos en los últimos cuatro meses.In this paper, the monthly average price of the Colombian coffee in the New York Stock Exchange, is modelling by means of several alternative models. The preferred model is composed by a lineal autoregressive component plus a multilayer perceptron neural network with two neurons in the hidden layer, that allow us to representing the dynamic following by the expected value of the price time series; while, the dynamic of the residuals is specified by an autoregressive conditional heterocedastic model of first order. The normalized residuals of the preferred model are uncorrelated, homocedastic and are distributed following a normal distribution. The results indicate that the current price depend of the prices in the previous four months.
Directory of Open Access Journals (Sweden)
Chau Sen Shia
2016-07-01
Full Text Available - Classical methods for software development require high costs and problems of communication between development teams, project risks and delays in the delivery of its services. In this work, the aim is to develop a perceptron model to demonstrate the ability to control, service quality assessment and decision-making in IT (Information Technology. For this, we used perceptron network techniques, standards of service quality measures and risk analysis model of applied projects in software engineering. With the network perceptron model implementation was possible to simulate the application of development in several requests for applications for software, in order to meet the management of schedules in all phases of the life cycle of the projects carried out. The tests with the perceptron model were applied in it environments to meet service requests from various fields. The results and analyses presented in these projects demonstrate that communication between development teams were more consistent. It was also possible to predict with more accuracy the delivery of services, decision making and risk reduction projects.
The Physics of Neural Networks
Gutfreund, Hanoch; Toulouse, Gerard
The following sections are included: * Introduction * Historical Perspective * Why Statistical Physics? * Purpose and Outline of the Paper * Basic Elements of Neural Network Models * The Biological Neuron * From the Biological to the Formal Neuron * The Formal Neuron * Network Architecture * Network Dynamics * Basic Functions of Neural Network Models * Associative Memory * Learning * Categorization * Generalization * Optimization * The Hopfield Model * Solution of the Model * The Merit of the Hopfield Model * Beyond the Standard Model * The Gardner Approach * A Microcanonical Formulation * The Case of Biased Patterns * A Canonical Formulation * Constraints on the Synaptic Weights * Learning with Errors * Learning with Noise * Hierarchically Correlated Data and Categorization * Hierarchical Data Structures * Storage of Hierarchical Data Structures * Categorization * Generalization * Learning a Classification Task * The Reference Perceptron Problem * The Contiguity Problem * Discussion - Issues of Relevance * The Notion of Attractors and Modes of Computation * The Nature of Attractors * Temporal versus Spatial Coding * Acknowledgements * References
Q-valued neural network as a system of fast identification and pattern recognition
Alieva, D. I.; Kryzhanovsky, B. V.; V.M. Kryzhanovsky; Fonarev, A. B.
2004-01-01
An effective neural network algorithm of the perceptron type is proposed. The algorithm allows us to identify strongly distorted input vector reliably. It is shown that its reliability and processing speed are orders of magnitude higher than that of full connected neural networks. The processing speed of our algorithm exceeds the one of the stack fast-access retrieval algorithm that is modified for working when there are noises in the input channel.
A Neural Network with Minimal Structure for Maglev System Modeling and Control
1999-01-01
6 pages; International audience; The paper is concerned with the determination of a minimal structure of a one hidden layer perceptron for system identification and control. Structural identification is a key issue in neural modeling. Decreasing the size of the neural networks is a way to avoid overfitting and bad generalization and leads moreover to simpler models which are required for real time applications, particularly in control. A learning algorithm and a pruning method both based on a...
Applying Artificial Neural Networks for Face Recognition
Directory of Open Access Journals (Sweden)
Thai Hoang Le
2011-01-01
Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.
Interfacial effects in multilayers
Energy Technology Data Exchange (ETDEWEB)
Barbee, T.W. Jr. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.
1998-12-31
Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general.
DEFF Research Database (Denmark)
Dickison, Mark; Magnani, Matteo; Rossi, Luca
research communities, leading to the development of several independent models and methods to deal with the same set of problems. This book unifies and consolidates existing practical and theoretical knowledge on multilayer networks including data collection and analysis, modeling, and mining of multilayer......Multilayer networks, in particular multilayer social networks, where users belong to and interact on different networks at the same time, are an active research area in social network analysis, computer science, and physics. These networks have traditionally been studied within these separate...... social network systems, the evolution of interconnected social networks, and dynamic processes such as information spreading. A single real dataset is used to illustrate the concepts presented throughout the book, demonstrating both the practical utility and the potential shortcomings of the various...
Directory of Open Access Journals (Sweden)
Ivana Đurđević Babić
2015-03-01
Full Text Available Student satisfaction with courses in academic institutions is an important issue and is recognized as a form of support in ensuring effective and quality education, as well as enhancing student course experience. This paper investigates whether there is a connection between student satisfaction with courses and log data on student courses in a virtual learning environment. Furthermore, it explores whether a successful classification model for predicting student satisfaction with course can be developed based on course log data and compares the results obtained from implemented methods. The research was conducted at the Faculty of Education in Osijek and included analysis of log data and course satisfaction on a sample of third and fourth year students. Multilayer Perceptron (MLP with different activation functions and Radial Basis Function (RBF neural networks as well as classification tree models were developed, trained and tested in order to classify students into one of two categories of course satisfaction. Type I and type II errors, and input variable importance were used for model comparison and classification accuracy. The results indicate that a successful classification model using tested methods can be created. The MLP model provides the highest average classification accuracy and the lowest preference in misclassification of students with a low level of course satisfaction, although a t-test for the difference in proportions showed that the difference in performance between the compared models is not statistically significant. Student involvement in forum discussions is recognized as a valuable predictor of student satisfaction with courses in all observed models.
Utilizando uma rede neural artificial para aproximação da função de evolução do sistema de Lorentz
Directory of Open Access Journals (Sweden)
Andrea Martiniano
2016-04-01
Full Text Available O objetivo principal deste artigo é realizar a aproximação da função de evolução temporal do Sistema de Lorenz utilizando uma Rede Neural Artificial do tipo MLP (Multilayer Perceptron. Além deste objetivo principal, como objetivo específico, apresentam-se os conceitos básicos das Redes Neurais Artificiais (RNAs, um breve histórico da Teoria do Caos e o Sistema de Lorentz. A metodologia adotada na estruturação deste artigo foi definida como bibliográfica e experimental. Atualmente, existe grande interesse nos modelos de redes neurais para resolver problemas não convencionais e complexos, nesse contexto, as Redes Neurais Artificiais têm surgido como alternativa para inúmeras aplicações em diversas áreas do conhecimento. Os resultados obtidos nos experimentos apontam positivamente para a utilização das RNAs. Espera-se com esse artigo incentive a utilização das RNAs em aplicações complexas em que a aprendizagem, associação, generalização e abstração são necessárias para apoio à tomada de decisão.
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Directory of Open Access Journals (Sweden)
Zhiqiang Guo
Full Text Available In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D2PCA and a Radial Basis Function Neural Network (RBFNN to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA and independent component analysis (ICA. The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar
2016-04-01
Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.
Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh
2016-08-01
The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.
Biyanto, Totok R.
2016-06-01
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Directory of Open Access Journals (Sweden)
Behniafar Ali
2013-01-01
Full Text Available The electric marine instruments are newly inserted in the trade and industry, for which the existence of an equipped and reliable power system is necessitated. One of the features of such a power system is that it cannot have an earth system causing the protection relays not to be able to detect the single line to ground short circuit fault. While on the other hand, the occurrence of another similar fault at the same time can lead to the double line fault and thereby the tripping of relays and shortening of vital loads. This in turn endangers the personals' security and causes the loss of military plans. From the above considerations, it is inferred that detecting the single line to ground fault in the marine instruments is of a special importance. In this way, this paper intends to detect the single line to ground fault in the power systems of the marine instruments using the wavelet transform and Multi-Layer Perceptron (MLP neural network. In the numerical analysis, several different types of short circuit faults are simulated on several marine power systems and the proposed approach is applied to detect the single line to ground fault. The results are of a high quality and preciseness and perfectly demonstrate the effectiveness of the proposed approach.
DEFF Research Database (Denmark)
S. Nadimi, Esmaeil; Nyholm Jørgensen, Rasmus; Blanes-Vidal, Victoria;
2012-01-01
perceptron (MLP)-based artificial neural network (ANN). The best performance of the ANN in terms of the mean squared error (MSE) and the convergence speed was achieved when it was initialized and trained using the Nguyen–Widrow and Levenberg–Marquardt back-propagation algorithms, respectively. The success...
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
SOLVING INVERSE KINEMATICS OF REDUNDANT MANIPULATOR BASED ON NEURAL NETWORK
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
For the redundant manipulators, neural network is used to tackle the velocity inverse kinematics of robot manipulators. The neural networks utilized are multi-layered perceptions with a back-propagation training algorithm. The weight table is used to save the weights solving the inverse kinematics based on the different optimization performance criteria. Simulations verify the effectiveness of using neural network.
Directory of Open Access Journals (Sweden)
Siamak Khorram
2009-07-01
Full Text Available This paper focuses on an automated ANN classification system consisting of two modules: an unsupervised Kohonen’s Self-Organizing Mapping (SOM neural network module, and a supervised Multilayer Perceptron (MLP neural network module using the Backpropagation (BP training algorithm. Two training algorithms were provided for the SOM network module: the standard SOM, and a refined SOM learning algorithm which incorporated Simulated Annealing (SA. The ability of our automated ANN system to perform Land-Use/Land-Cover (LU/LC classifications of a Landsat Thematic Mapper (TM image was tested using a supervised MLP network, an unsupervised SOM network, and a combination of SOM with SA network. Our case study demonstrated that the ANN classification system fulfilled the tasks of network training pattern creation, network training, and network generalization. The results from the three networks were assessed via a comparison with reference data derived from the high spatial resolution Digital Colour Infrared (CIR Digital Orthophoto Quarter Quad (DOQQ data. The supervised MLP network obtained the most accurate classification accuracy as compared to the two unsupervised SOM networks. Additionally, the classification performance of the refined SOM network was found to be significantly better than that of the standard SOM network essentially due to the incorporation of SA. This is mainly due to the SA-assisted classification utilizing the scheduling cooling scheme. It is concluded that our automated ANN classification system can be utilized for LU/LC applications and will be particularly useful when traditional statistical classification methods are not suitable due to a statistically abnormal distribution of the input data.
Directory of Open Access Journals (Sweden)
M. R. Mustafa
2015-01-01
Full Text Available Knowledge of spatial and temporal variations of soil pore-water pressure in a slope is vital in hydrogeological and hillslope related processes (i.e., slope failure, slope stability analysis, etc.. Measurements of soil pore-water pressure data are challenging, expensive, time consuming, and difficult task. This paper evaluates the applicability of artificial neural network (ANN technique for modeling soil pore-water pressure variations at multiple soil depths from the knowledge of rainfall patterns. A multilayer perceptron neural network model was constructed using Levenberg-Marquardt training algorithm for prediction of soil pore-water pressure variations. Time series records of rainfall and pore-water pressures at soil depth of 0.5 m were used to develop the ANN model. To investigate applicability of the model for prediction of spatial and temporal variations of pore-water pressure, the model was tested for the time series data of pore-water pressure at multiple soil depths (i.e., 0.5 m, 1.1 m, 1.7 m, 2.3 m, and 2.9 m. The performance of the ANN model was evaluated by root mean square error, mean absolute error, coefficient of correlation, and coefficient of efficiency. The results revealed that the ANN performed satisfactorily implying that the model can be used to examine the spatial and temporal behavior of time series of pore-water pressures with respect to multiple soil depths from knowledge of rainfall patterns and pore-water pressure with some antecedent conditions.
A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia
Wong, Man Sing; Xiao, Fei; Nichol, Janet; Fung, Jimmy; Kim, Jhoon; Campbell, James; Chan, P. W.
2015-05-01
Dust storms are known to have adverse effects on human health and significant impact on weather, air quality, hydrological cycle, and ecosystem. Atmospheric dust loading is also one of the large uncertainties in global climate modeling, due to its significant impact on the radiation budget and atmospheric stability. Observations of dust storms in humid tropical south China (e.g. Hong Kong), are challenging due to high industrial pollution from the nearby Pearl River Delta region. This study develops a method for dust storm detection by combining ground station observations (PM10 concentration, AERONET data), geostationary satellite images (MTSAT), and numerical weather and climatic forecasting products (WRF/Chem). The method is based on a hybrid neural network (NN) retrieval model for two scales: (i) a NN model for near real-time detection of dust storms at broader regional scale; (ii) a NN model for detailed dust storm mapping for Hong Kong and Taiwan. A feed-forward multilayer perceptron (MLP) NN, trained using back propagation (BP) algorithm, was developed and validated by the k-fold cross validation approach. The accuracy of the near real-time detection MLP-BP network is 96.6%, and the accuracies for the detailed MLP-BP neural network for Hong Kong and Taiwan is 74.8%. This newly automated multi-scale hybrid method can be used to give advance near real-time mapping of dust storms for environmental authorities and the public. It is also beneficial for identifying spatial locations of adverse air quality conditions, and estimates of low visibility associated with dust events for port and airport authorities.
Directory of Open Access Journals (Sweden)
Savić Ivan M.
2013-01-01
Full Text Available The aim of this paper was to model and optimize the process of total flavonoid extraction from the green tea using the artificial neural network and response surface methodology, as well as the comparation of these optimization techniques. The extraction time, ethanol concentration and solid-to-liquid ratio were identified as the independent variables, while the yield of total flavonoid was selected as the dependent variable. Central composite design (CCD, using second-order polynomial model and multilayer perceptron (MLP were used for fitting the obtained experimental data. The values of root mean square error, cross-validated correlation coefficient and normal correlation coefficient for both models indicate that the artificial neural network is better in prediction of total flavonoid yield than CCD. The optimal conditions using the desirability function at CCD model was achieved for the extraction time of 32.5 min, ethanol concentration of 100% (v/v and solid-to-liquid ratio of 1:32.5 (m/v. The predicted yield at these conditions was 2.11 g/100 g of the dried extract (d.e., while the experimentally obtained was 2.39 g/100 g d.e. The extraction process was optimized by the use of simplex method at MLP model. The optimal value of total flavonoid yield (2.80 g/100 g d.e. was achieved after the extraction time of 27.2 min using ethanol concentration of 100% (v/v at solid-to-liquid ratio of 1:20.7 (m/v. The predicted value of response under optimal conditions for MLP model was also experimentally confirmed (2.71 g/100 g d.e..
Models of Innate Neural Attractors and Their Applications for Neural Information Processing.
Solovyeva, Ksenia P; Karandashev, Iakov M; Zhavoronkov, Alex; Dunin-Barkowski, Witali L
2015-01-01
In this work we reveal and explore a new class of attractor neural networks, based on inborn connections provided by model molecular markers, the molecular marker based attractor neural networks (MMBANN). Each set of markers has a metric, which is used to make connections between neurons containing the markers. We have explored conditions for the existence of attractor states, critical relations between their parameters and the spectrum of single neuron models, which can implement the MMBANN. Besides, we describe functional models (perceptron and SOM), which obtain significant advantages over the traditional implementation of these models, while using MMBANN. In particular, a perceptron, based on MMBANN, gets specificity gain in orders of error probabilities values, MMBANN SOM obtains real neurophysiological meaning, the number of possible grandma cells increases 1000-fold with MMBANN. MMBANN have sets of attractor states, which can serve as finite grids for representation of variables in computations. These grids may show dimensions of d = 0, 1, 2,…. We work with static and dynamic attractor neural networks of the dimensions d = 0 and 1. We also argue that the number of dimensions which can be represented by attractors of activities of neural networks with the number of elements N = 10(4) does not exceed 8.
A morphological perceptron with gradient-based learning for Brazilian stock market forecasting.
Araújo, Ricardo de A
2012-04-01
Several linear and non-linear techniques have been proposed to solve the stock market forecasting problem. However, a limitation arises from all these techniques and is known as the random walk dilemma (RWD). In this scenario, forecasts generated by arbitrary models have a characteristic one step ahead delay with respect to the time series values, so that, there is a time phase distortion in stock market phenomena reconstruction. In this paper, we propose a suitable model inspired by concepts in mathematical morphology (MM) and lattice theory (LT). This model is generically called the increasing morphological perceptron (IMP). Also, we present a gradient steepest descent method to design the proposed IMP based on ideas from the back-propagation (BP) algorithm and using a systematic approach to overcome the problem of non-differentiability of morphological operations. Into the learning process we have included a procedure to overcome the RWD, which is an automatic correction step that is geared toward eliminating time phase distortions that occur in stock market phenomena. Furthermore, an experimental analysis is conducted with the IMP using four complex non-linear problems of time series forecasting from the Brazilian stock market. Additionally, two natural phenomena time series are used to assess forecasting performance of the proposed IMP with other non financial time series. At the end, the obtained results are discussed and compared to results found using models recently proposed in the literature.
Control of Multilayer Networks
Menichetti, Giulia; Bianconi, Ginestra
2015-01-01
The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable.
Controlling light with plasmonic multilayers
DEFF Research Database (Denmark)
Orlov, Alexey A.; Zhukovsky, Sergei; Iorsh, Ivan V.
2014-01-01
Recent years have seen a new wave of interest in layered media - namely, plasmonic multilayers - in several emerging applications ranging from transparent metals to hyperbolic metamaterials. In this paper, we review the optical properties of such subwavelength metal-dielectric multilayered...... metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials...
Wind speed spatial estimation for energy planning in Sicily: A neural kriging application
Energy Technology Data Exchange (ETDEWEB)
Cellura, M.; Marvuglia, A. [Dipartimento di Ricerche Energetiche ed Ambientali (DREAM), Universita degli Studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Cirrincione, G. [ISSIA-CNR, Institute on Intelligent Systems for the Automation, Section of Palermo, via Dante12, Palermo (Italy); Miraoui, A. [Universite de Technologie de Belfort-Montbeliard (UTBM), Belfort (France)
2008-06-15
One of the first steps for the exploitation of any energy source is necessarily represented by its estimation and mapping at the aim of identifying the most suitable areas in terms of energy potential. In the field of renewable energies this is often a very difficult task, because the energy source is in this case characterized by relevant variations over space and time. This implies that any temporal, but also spatial, estimation model has to be able to incorporate this spatial and temporal variability. The paper deals with the spatial estimation of the wind fields in Sicily (Italy) by following a data-driven approach. Starting from the results of a preliminary study, a novel technique resulting from the integration of neural and geostatistical techniques was developed in order to obtain the wind speed maps for the region at 10 and 50 meters above the ground level. The mean values of the theoretical Weibull distribution function describing the wind regime at each of the available measurement sites were used to train a multi-layer perceptron (MLP) whose goal is to compute the most of the wind spatial trends. Other pieces of information about the territory (altitude, land coverage) were also used as inputs of the network and organized into a geographic information system (GIS) environment. The remaining de-trended linear means have been computed by using a universal kriging (UK) estimator. The results of these steps were then summed up and it was thus possible to obtain a map of the estimated wind fields. (author)
Can artificial neural networks be used to predict the origin of ozone episodes?
Energy Technology Data Exchange (ETDEWEB)
Fontes, T., E-mail: trfontes@ua.pt [University Fernando Pessoa, Global Change, Energy, Environment and Bioengineering Center (CIAGEB), Praça 9 de Abril, 349, 4249-004 Porto (Portugal); University of Aveiro, Department of Mechanical Engineering/Centre for Mechanical Technology and Automation, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Silva, L.M. [University of Aveiro, Department of Mathematics, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); INEB — Instituto de Engenharia Biomédica, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Silva, M.P.; Barros, N. [University Fernando Pessoa, Global Change, Energy, Environment and Bioengineering Center (CIAGEB), Praça 9 de Abril, 349, 4249-004 Porto (Portugal); Carvalho, A.C. [New University of Lisbon, Faculty of Sciences and Technology/Center for Environmental and Sustainability Research (CENSE), Quinta da Torre, 2829-516 Caparica (Portugal)
2014-08-01
Tropospheric ozone is a secondary pollutant having a negative impact on health and environment. To control and minimize such impact the European Community established regulations to promote a clean air all over Europe. However, when an episode is related with natural mechanisms as Stratosphere–Troposphere Exchanges (STE), the benefits of an action plan to minimize precursor emissions are inefficient. Therefore, this work aims to develop a tool to identify the sources of ozone episodes in order to minimize misclassification and thus avoid the implementation of inappropriate air quality plans. For this purpose, an artificial neural network model – the Multilayer Perceptron – is used as a binary classifier of the source of an ozone episode. Long data series, between 2001 and 2010, considering the ozone precursors, {sup 7}Be activity and meteorological conditions were used. With this model, 2–7% of a mean error was achieved, which is considered as a good generalization. Accuracy measures for imbalanced data are also discussed. The MCC values show a good performance of the model (0.65–0.92). Precision and F{sub 1}-measure indicate that the model specifies a little better the rare class. Thus, the results demonstrate that such a tool can be used to help authorities in the management of ozone, namely when its thresholds are exceeded due natural causes, as the above mentioned STE. Therefore, the resources used to implement an action plan to minimize ozone precursors could be better managed avoiding the implementation of inappropriate measures. - Highlights: • ANN can classify the origin of an O{sub 3} episode with a mean error around 2-7%. • The best classification is obtained when a simpler input combination is used. • ANN can help authorities to foster O{sub 3} action plans to control exceedances.
A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors
Directory of Open Access Journals (Sweden)
Zhe Dong
2013-10-01
Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.
Face Recognition: An Approach Based on Feature Fusion and Neural Network%人脸识别:一种基于特征融合及神经网络的方法
Institute of Scientific and Technical Information of China (English)
於东军; 赵海涛; 杨静宇
2005-01-01
基于特征融合和神经网络构建了一个完整的人脸识别系统.首先使用广义K-L变换对人脸的自组织特征和形状特征进行融合;然后使用UDT(Uncorrelated Discriminant Transform)对融合后的特征进行变换,以获得最优鉴别矢量;最后使用多层感知器作为分类器.仿真结果证明了该方法的有效性.%A complete face recognition system based on feature fusion and neural network is proposed in this paper. The new face coding technology based on the fusion of SOM and Shape features is utilized. The dimensionality of the fused feature space is reduced using generalized K-L transform. The corresponding reduced feature is then processed by the Uncorrelated Discriminant Transform (UDT), which has better classification capability than that of the classical Foley-Sammon Discriminant Transform (FSDT), to obtain optimal discriminant feature. Finally, a Multi-Layer Perceptron (MLP), the output of which consists of class membership values, is utilized as the face recognizer. Experimental results on the face database NUST603 of 960 face images corresponding to 96 subjects show the effectiveness and robustness of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Torres, Walmir Maximo
2008-07-01
A technique for level measurement in pressure vessels was developed using thermal probes with internal cooling and artificial neural networks (ANN's). This new concept of thermal probes was experimentally tested in an experimental facility (BETSNI) with two test sections, ST1 and ST2. Two different thermal probes were designed and constructed: concentric tubes probe and U tube probe. A data acquisition system (DAS) was assembled to record the experimental data during the tests. Steady state and transient level tests were carried out and the experimental data obtained were used as learning and recall data sets in the ANN's program RETRO-05 that simulate a multilayer perceptron with backpropagation. The results of the analysis show that the technique can be applied for level measurements in pressure vessel. The technique is applied for a less input temperature data than the initially designed to the probes. The technique is robust and can be used in case of lack of some temperature data. Experimental data available in literature from electrically heated thermal probe were also used in the ANN's analysis producing good results. The results of the ANN's analysis show that the technique can be improved and applied to level measurements in pressure vessels. (author)
Directory of Open Access Journals (Sweden)
J D Velásquez
2012-06-01
Full Text Available Many time series with trend and seasonal pattern are successfully modeled and forecasted by the airline model of Box and Jenkins; however, this model neglects the presence of nonlinearity on data. In this paper, we propose a new nonlinear version of the airline model; for this, we replace the moving average linear component by a multilayer perceptron neural network. The proposedmodel is used for forecasting two benchmark time series; we found that theproposed model is able to forecast the time series with more accuracy that other traditional approaches.Muchas series de tiempo con tendencia y ciclos estacionales son exitosamente modeladas y pronosticadas usando el modelo airline de Box y Jenkins; sin embargo, la presencia de no linealidades en los datos son despreciadas por este modelo. En este artículo, se propone una nueva versión no lineal del modelo airline; para esto, se reemplaza la componente lineal de promedios móviles por un perceptrón multicapa. El modelo propuesto es usado para pronosticar dos series de tiempo benchmark; se encontró que el modelo propuesto es capaz de pronosticar las series de tiempo con mayor precisión que otras aproximaciones tradicionales.
Fast learning of biased patterns in neural networks.
Wendemuth, A; Sherrington, D
1993-09-01
Usual neural network gradient descent training algorithms require training times of the same order as the number of neurons N if the patterns are biased. In this paper, modified algorithms are presented which require training times equal to those in unbiased cases which are of order 1. Exact convergence proofs are given. Gain parameters which produce minimal learning times in large networks are computed by replica methods. It is demonstrated how these modified algorithms are applied in order to produce four types of solutions to the learning problem: 1. A solution with all internal fields equal to the desired output, 2. The Adaline (or pseudo-inverse) solution, 3. The perceptron of optimal stability without threshold and 4. The perceptron of optimal stability with threshold.
Directory of Open Access Journals (Sweden)
Luciana C. Bucene
2004-12-01
Full Text Available Objetivando classificar terras para irrigação, faz-se necessário analisar e determinar alguns parâmetros, entre eles a produtividade do solo. A classificação de produtividade (comumente chamada fertilidade aparente é delimitada em cinco classes: muito alta, alta, média, baixa e muito baixa, e em cada classe é preciso avaliar certos atributos do solo, como pH, CTC (capacidade de troca de cátions, V% (índice de saturação por bases, P (fósforo, Mg (magnésio e K (potássio. Neste trabalho, objetivou-se identificar a produtividade na qual atributos do solo, da parte inicial da microbacia hidrográfica do Rio Pardo, localizada em Pardinho, SP, foram analisados e classificados nas classes que a delimitam, através de Redes Neurais Artificiais (RNAs utilizandose Perceptron Múltiplas Camadas (Multilayers Perceptrons - MLP com o algoritmo de treinamento "backpropagation"- classificador de padrões, obtendo-se um número ótimo de camadas intermediárias e de neurônios; resultando na classificação de produtividade, a situação ótima da rede obteve 78% dos resultados iguais aos desejados, com duas camadas de neurônios, uma das quais intermediária, com 5 neurônios, e uma camada de saída.Productivity data (commonly known as apparent fertility of the initial part of the river Pardo-SP watershed was analyzed and classified with Artificial Neural Networks (ANNs, in order to classify lands for irrigation. Soil attributes as pH, CEC (cation exchange capacity, V% (base saturation index, P (phosphorus, Mg (magnesium and K (potassium were defined in five classes: very high, high, medium, low and very low. Apparent fertility classification taking into account the five classes was performed by using Multiple Layers Perceptron (MLP. Backpropagation algorithm was performed with the training set. One hidden layer with 5 neurons was the situation that best performed.
Kwak, Inn-Sil; Chon, Tae-Soo; Kang, Hyun-Min; Chung, Nam- Il; Kim, Jong-Sang; Koh, Sung Cheol; Lee, Sung-Kyu; Kim, Yoo-Shin
2002-01-01
Specimens of medaka (Oryzias latipes) were observed continuously through an automatic image recognition system before and after treatments of an anti-cholinesterase insecticide, diazinon (0.1 mg/l), for 4 days in semi-natural conditions (2 days before treatment and 2 days after treatment). The "smooth" pattern was typically shown as a normal movement behavior, while the "shaking" pattern was frequently observed after treatments of diazinon. These smooth and shaking patterns were selected for training with an artificial neural network. Parameters characterizing the movement tracks, such as speed, degree of backward movements, stop duration, turning rate, meander, and maximum distance movements in the y-axis of 1-min duration, were given as input (six nodes) to a multi-layer perceptron with the back propagation algorithm. Binary information for the smooth and shaking patterns was separately given as the matching output (one node), while eight nodes were assigned to a single hidden layer. As new input data were given to the trained network, it was possible to recognize the smooth and shaking patterns of the new input data. Average recognition rates of the smooth pattern decreased significantly while those for the shaking pattern increased to a higher degree after treatments of diazinon. The trained network was able to reveal the difference in the shaking pattern in different light phases before treatments of diazinon. This study demonstrated that artificial neural networks could be useful for detecting the presence of toxic chemicals in the environment by serving as in-situ behavioral monitoring tools.
The value of "black-box" neural network modeling in subsurface flow prediction
Paleologos, E.; Skitzi, I.; Katsifarakis, K.
2012-04-01
In several hydrologic cases the complexity of the processes involved tied in with the uncertainty in the subsurface geologic environment, geometries, and boundary conditions cannot be addressed by constitutive relationships, either in a deterministic or a stochastic framework. "Black-box" models are used routinely in surface hydrologic predictions, but in subsurface hydrology there is still a tendency to rely on physical descriptions, even in problems where the geometry, the medium, the processes, the boundary conditions are largely unknown. Subsurface flow in karstic environments exemplifies all the above complexities and uncertainties rendering the use of physical models impractical. The current study uses neural networks to exemplify that "black-box" models can provide useful predictions even in the absence of physical process descriptions. Daily discharges of two springs lying in a karstic environment were simulated for a period of two and a half years with the use of a multi-layer perceptron back-propagation neural network. Missing discharge values were supplemented by assuming linear relationships during base flow conditions, thus extending the length of the data record during the network's training phase and improving its performance. The time lag between precipitation and spring discharge differed significantly for the two springs indicating that in karstic environments hydraulic behavior is dominated, even within a few hundred meters, by local conditions. Optimum training results were attained with a Levenberg-Marquardt algorithm resulting in a network architecture consisting of two input layer neurons, four hidden layer neurons, and one output layer neuron, the spring's discharge. The neural network's predictions captured the behavior for both springs and followed very closely the discontinuities in the discharge time series. Under/over-estimation of observed discharges for the two springs remained below 3%, with the exception of a few local maxima where
Representation of Functional Data in Neural Networks
Rossi, Fabrice; Conan-Guez, Brieuc; Verleysen, Michel
2005-01-01
Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data ana...
The neural network Z vertex trigger for the Belle II detector
Energy Technology Data Exchange (ETDEWEB)
Skambraks, Sebastian; Abudinen, Fernando [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6 80805 Muenchen (Germany)
2013-07-01
A novel approach for track triggering is currently studied for the Belle II detector: neural networks are used to predict the event vertex in z direction, using only information from the central drift chamber. The lack in accuracy of classical online vertex reconstruction motivates new studies for the z vertex trigger. Since neural networks are general function approximators, they are well suited for problems where the model is not known a priori. Several methods were investigated, but our studies for single tracks in geometrically restricted areas of the detector have proven the multi layer perceptron to produce the most accurate results, even in the presence of background. This encourages the use of a set of multi layer perceptrons to cover the entire detector. Additionally, the methods presented may lead to online event reconstruction, for Belle II as well as for other running or future detectors.
Back Propagation Neural Network Arabic Characters Classification Module Utilizing Microsoft Word
Directory of Open Access Journals (Sweden)
A. A. Hamza
2008-01-01
Full Text Available Problem statement: Arabic character recognition has been one of the last major languages to receive attention. This may be attributed to the inherent complexity of both printed and handwritten Arabic characters. The objectives of this study were to: (i summarize the main characteristics of Arabic language writing style. (ii suggest a neural network recognition circuit. Approach: A Neural network with back propagation training mechanism for classification was designed and trained to recognize any set of character combinations, sizes or fonts used in Microsoft word. Results: The proposed network recognition behaviours were compared with perceptron-like net that combines perceptron with ADALINE features. These circuits were tested for three character sets combinations; 28 basic Arabic characters plus 10 numerals set, 52 Latin characters and 10 numerals only. Conclusions: The method was robust and flexible and can be easily extended to any character set. The network exhibited recognition rates approaching 100% with reasonable noise tolerance.
System Identification, Prediction, Simulation and Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: 1) Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. 2) Amongst numerous training algorithms, only the Recursive Prediction Error Method using...
Musa Abbagoni, Baba; Yeung, Hoi
2016-08-01
The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the
Directory of Open Access Journals (Sweden)
L.O. Murta Jr.
2006-01-01
Full Text Available The present study describes an auxiliary tool in the diagnosis of left ventricular (LV segmental wall motion (WM abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN was developed and validated for grading LV segmental WM using data from color kinesis (CK images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1 normal, 2 mild hypokinesia, 3 moderate hypokinesia, 4 severe hypokinesia, 5 akinesia, and 6 dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99. In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Murta, L O; Ruiz, E E S; Pazin-Filho, A; Schmidt, A; Almeida-Filho, O C; Simões, M V; Marin-Neto, J A; Maciel, B C
2006-01-01
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R2 = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.
2013-10-01
In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.
Control of a Uniform Step Asymmetrical 9-Level Inverter Based on Artificial Neural Network Strategy
Directory of Open Access Journals (Sweden)
Rachid Taleb
2009-12-01
Full Text Available A neural implementation of a harmonic elimination strategy for the control auniform step asymmetrical 9-level inverter is proposed and described in this paper. AMulti-Layer Perceptrons (MLP neural network is used to approximate the mappingbetween the modulation rate and the required switching angles. After learning, the neuralnetwork generates the appropriate switching angles for the inverter. This leads to a lowcomputational-cost neural controller which is therefore well suited for real-timeapplications. This neural approach is compared to the well-known Multi-Carrier Pulse-Width Modulation (MCPWM. Simulation results demonstrate the technical advantages ofthe neural implementation of the harmonic elimination strategy over the conventionalmethod for the control of an uniform step asymmetrical 9-level inverter. The approach isused to supply an asynchronous machine and results show that the neural method ensures ahighest quality torque by efficiently canceling the harmonics generated by the inverter.
Bouyer, Charlène; Chen, Pu; Güven, Sinan; Demirtaş, Tuğrul Tolga; Nieland, Thomas J F; Padilla, Frédéric; Demirci, Utkan
2016-01-06
A bio-acoustic levitational assembly method for engineering of multilayered, 3D brainlike constructs is presented. Acoustic radiation forces are used to levitate neuroprogenitors derived from human embryonic stem cells in 3D multilayered fibrin tissue constructs. The neuro-progenitor cells are subsequently differentiated in neural cells, resulting in a 3D neuronal construct with inter and intralayer neurite elongations.
Multilayer graphene waveguides
Smirnova, Daria; Shadrivov, Ilya; Kivshar, Yuri
2014-01-01
We study dispersion properties of TM-polarized electromagnetic waves guided by a multilayer graphene metamaterial. We demonstrate that both dispersion and localization of the guided modes can be efficiently controlled by changing the number of layers in the structure. Remarkably, we find that in the long wavelength limit, the dispersion of the fundamental mode of the N-layer graphene structure coincides with the dispersion of a plasmon mode supported by a single graphene layer, but with N times larger conductivity. We also compare our exact dispersion relations with the results provided by the effective media model.
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Visual Grouping by Neural Oscillators
Yu, Guoshen
2008-01-01
Distributed synchronization is known to occur at several scales in the brain, and has been suggested as playing a key functional role in perceptual grouping. State-of-the-art visual grouping algorithms, however, seem to give comparatively little attention to neural synchronization analogies. Based on the framework of concurrent synchronization of dynamic systems, simple networks of neural oscillators coupled with diffusive connections are proposed to solve visual grouping problems. Multi-layer algorithms and feedback mechanisms are also studied. The same algorithm is shown to achieve promising results on several classical visual grouping problems, including point clustering, contour integration and image segmentation.
Multilayer motif analysis of brain networks
Battiston, Federico; Chavez, Mario; Latora, Vito
2016-01-01
In the last decade network science has shed new light on the anatomical connectivity and on correlations in the activity of different areas of the human brain. The study of brain networks has made possible in fact to detect the central areas of a neural system, and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on structural and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows to perform a multiplex analysis of the human brain where the structural and functional layers are considered at the same time. In this work we describe how to classify subgraphs in multiplex networks, and we extend motif analysis to networks with many layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, respectively obtained from diffusion and functional magnetic resonance imaging. Results i...
Artificial Neural Network and Rough Set for HV Bushings Condition Monitoring
Mpanza, LJ
2011-01-01
Most transformer failures are attributed to bushings failures. Hence it is necessary to monitor the condition of bushings. In this paper three methods are developed to monitor the condition of oil filled bushing. Multi-layer perceptron (MLP), Radial basis function (RBF) and Rough Set (RS) models are developed and combined through majority voting to form a committee. The MLP performs better that the RBF and the RS is terms of classification accuracy. The RBF is the fasted to train. The committee performs better than the individual models. The diversity of models is measured to evaluate their similarity when used in the committee.
Energy Technology Data Exchange (ETDEWEB)
Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.
1999-05-01
We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600°C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc.
Energy Technology Data Exchange (ETDEWEB)
Bader, S.D.
1992-02-01
Magneto-optical multilayers are of interest to the optical data storage community as a possible second-generation medium of the future. The important Co/Pt-superlattice system is introduced in this respect, and an extensive reference listing is provided to previous research. Magneto-optical modeling studies of Co/Pt are presented, and it is concluded that the interfacial Pt is magnetized and is magneto-optically active at the short wavelengths of interest ({approximately}4 eV) for applications. Magneto-optics in the ultrathin limit are discussed, and an additivity law is presented and verified experimentally utilizing data for epitaxial Fe/Ag(111) superlattices. Finally, the surface magnetic anisotropy that provides the vertical easy axes of magnetization in candidate superlattice systems is discussed and illustrated experimentally using ultrathin epitaxial films of Fe grown on a variety of substrates. It is concluded that magneto-optic multilayers will provide many stimulating basic and applied challenges in the years ahead.
Energy Technology Data Exchange (ETDEWEB)
Hood, R.Q.
1994-04-01
Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.
Energy Technology Data Exchange (ETDEWEB)
1991-01-01
The present conference the application of neural networks to associative memories, neurorecognition, hybrid systems, supervised and unsupervised learning, image processing, neurophysiology, sensation and perception, electrical neurocomputers, optimization, robotics, machine vision, sensorimotor control systems, and neurodynamics. Attention is given to such topics as optimal associative mappings in recurrent networks, self-improving associative neural network models, fuzzy activation functions, adaptive pattern recognition with sparse associative networks, efficient question-answering in a hybrid system, the use of abstractions by neural networks, remote-sensing pattern classification, speech recognition with guided propagation, inverse-step competitive learning, and rotational quadratic function neural networks. Also discussed are electrical load forecasting, evolutionarily stable and unstable strategies, the capacity of recurrent networks, neural net vs control theory, perceptrons for image recognition, storage capacity of bidirectional associative memories, associative random optimization for control, automatic synthesis of digital neural architectures, self-learning robot vision, and the associative dynamics of chaotic neural networks.
Kim, Ki Hwan; Park, Sung-Hong
2017-04-01
The balanced steady-state free precession (bSSFP) MR sequence is frequently used in clinics, but is sensitive to off-resonance effects, which can cause banding artifacts. Often multiple bSSFP datasets are acquired at different phase cycling (PC) angles and then combined in a special way for banding artifact suppression. Many strategies of combining the datasets have been suggested for banding artifact suppression, but there are still limitations in their performance, especially when the number of phase-cycled bSSFP datasets is small. The purpose of this study is to develop a learning-based model to combine the multiple phase-cycled bSSFP datasets for better banding artifact suppression. Multilayer perceptron (MLP) is a feedforward artificial neural network consisting of three layers of input, hidden, and output layers. MLP models were trained by input bSSFP datasets acquired from human brain and knee at 3T, which were separately performed for two and four PC angles. Banding-free bSSFP images were generated by maximum-intensity projection (MIP) of 8 or 12 phase-cycled datasets and were used as targets for training the output layer. The trained MLP models were applied to another brain and knee datasets acquired with different scan parameters and also to multiple phase-cycled bSSFP functional MRI datasets acquired on rat brain at 9.4T, in comparison with the conventional MIP method. Simulations were also performed to validate the MLP approach. Both the simulations and human experiments demonstrated that MLP suppressed banding artifacts significantly, superior to MIP in both banding artifact suppression and SNR efficiency. MLP demonstrated superior performance over MIP for the 9.4T fMRI data as well, which was not used for training the models, while visually preserving the fMRI maps very well. Artificial neural network is a promising technique for combining multiple phase-cycled bSSFP datasets for banding artifact suppression.
A new approach to the analysis of alpha spectra based on neural network techniques
Energy Technology Data Exchange (ETDEWEB)
Baeza, A.; Miranda, J. [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Guillen, J., E-mail: fguillen@unex.es [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Corbacho, J.A. [LARUEX, Environmental Radioactivity Laboratory, Dept. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain); Perez, R. [Dept. Technology of Computers and Communications, Polytechnics School, University of Extremadura, Avda. Universidad s/n, 10003 Caceres (Spain)
2011-10-01
The analysis of alpha spectra requires good radiochemical procedures in order to obtain well differentiated alpha peaks in the spectrum, and the easiest way to analyze them is by directly summing the counts obtained in the Regions of Interest (ROIs). However, the low-energy tails of the alpha peaks frequently make this simple approach unworkable because some peaks partially overlap. Many fitting procedures have been proposed to solve this problem, most of them based on semi-empirical mathematical functions that emulate the shape of a theoretical alpha peak. The main drawback of these methods is that the great number of fitting parameters used means that their physical meaning is obscure or completely lacking. We propose another approach-the application of an artificial neural network. Instead of fitting the experimental data to a mathematical function, the fit is carried out by an artificial neural network (ANN) that has previously been trained to model the shape of an alpha peak using as training patterns several polonium spectra obtained from actual samples analyzed in our laboratory. In this sense, the ANN is able to learn the shape of an actual alpha peak. We have designed such an ANN as a feed-forward multi-layer perceptron with supervised training based on a back-propagation algorithm. The fitting procedure is based on the experimental observables that are characteristic of alpha peaks-the number of counts of the maximum and several peak widths at different heights. Polonium isotope spectra were selected because the alpha peaks corresponding to {sup 208}Po, {sup 209}Po, and {sup 210}Po are monoenergetic and well separated. The uncertainties introduced by this fitting procedure were less than the counting uncertainties. This new approach was applied to the problem of resolving overlapping peaks. Firstly, a theoretical study was carried out by artificially overlapping alpha peaks from actual samples in order to test the ability of the ANN to resolve each peak
Character Recognition Using Novel Optoelectronic Neural Network
1993-04-01
17 2.3.7. Learning rule ................................................................... 18 3. ADALINE ... ADALINE neuron and linear separability which provides a justification for multilayer networks. The MADALINE (many ADALINE ) multi layer network is also...element used In many neural networks (Figure 3.1). The ADALINE functions as an adaptive threshold logic element. In digital Implementation, an input
Energy Technology Data Exchange (ETDEWEB)
Montes, J.L.; Ortiz, J.J.; Perusquia C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico); Francois, J.L.; Martin del Campo M, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: jlmt@nuclear.inin.mx
2007-07-01
To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U{sup 235}, some of these bars also contain a concentration of Gd{sub 2}O{sub 3} and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)