WorldWideScience

Sample records for multilayer electronic devices

  1. Desktop aligner for fabrication of multilayer microfluidic devices.

    Science.gov (United States)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  2. Multilayered analog optical differentiating device: performance analysis on structural parameters.

    Science.gov (United States)

    Wu, Wenhui; Jiang, Wei; Yang, Jiang; Gong, Shaoxiang; Ma, Yungui

    2017-12-15

    Analogy optical devices (AODs) able to do mathematical computations have recently gained strong research interest for their potential applications as accelerating hardware in traditional electronic computers. The performance of these wavefront-processing devices is primarily decided by the accuracy of the angular spectral engineering. In this Letter, we show that the multilayer technique could be a promising method to flexibly design AODs according to the input wavefront conditions. As examples, various Si-SiO 2 -based multilayer films are designed that can precisely perform the second-order differentiation for the input wavefronts of different Fourier spectrum widths. The minimum number and thickness uncertainty of sublayers for the device performance are discussed. A technique by rescaling the Fourier spectrum intensity has been proposed in order to further improve the practical feasibility. These results are thought to be instrumental for the development of AODs.

  3. Enhancement of electroplex emission by using multi-layer device structure

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Xu Zheng; Hou Yanbing; Wang Yongsheng; Xu Xurong

    2005-01-01

    Electroplex emission based on poly(N-vinylcarbazole) (PVK) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) has been improved dramatically by using a multi-layer device structure indium-tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulphonic acid) (PEDOT:PSS)/PVK/BCP/PVK/BCP/LiF/Al. Electroplex emission at 595 nm has been improved about 10 times under low voltage and four times under high voltage compared to the double layer device ITO/PVK/BCP/Al. The maximum brightness of the device also has been improved about eight times. Bright white emission via electroplex formation can be obtained with Commission International d'Eclairage (CIE) coordinates (0.336, 0.320) at 26 V with a brightness of 123 cd/m 2 . Based on the analysis of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the materials, we suggest the enhancement is mainly ascribed to the confinement effect of the quantum-well-like multi-layer device structure. Every hole and electron has more possibilities to cross recombination at the PVK/BCP interface

  4. Enhancement of electroplex emission by using multi-layer device structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanmin [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Teng Feng [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China) and Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China)]. E-mail: advanced9898@126.com; Xu Zheng [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Wang Yongsheng [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China)

    2005-04-30

    Electroplex emission based on poly(N-vinylcarbazole) (PVK) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) has been improved dramatically by using a multi-layer device structure indium-tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulphonic acid) (PEDOT:PSS)/PVK/BCP/PVK/BCP/LiF/Al. Electroplex emission at 595 nm has been improved about 10 times under low voltage and four times under high voltage compared to the double layer device ITO/PVK/BCP/Al. The maximum brightness of the device also has been improved about eight times. Bright white emission via electroplex formation can be obtained with Commission International d'Eclairage (CIE) coordinates (0.336, 0.320) at 26 V with a brightness of 123 cd/m{sup 2}. Based on the analysis of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the materials, we suggest the enhancement is mainly ascribed to the confinement effect of the quantum-well-like multi-layer device structure. Every hole and electron has more possibilities to cross recombination at the PVK/BCP interface.

  5. Theoretical prediction of high electron mobility in multilayer MoS2 heterostructured with MoSe2

    Science.gov (United States)

    Ji, Liping; Shi, Juan; Zhang, Z. Y.; Wang, Jun; Zhang, Jiachi; Tao, Chunlan; Cao, Haining

    2018-01-01

    Two-dimensional (2D) MoS2 has been considered to be one of the most promising semiconducting materials with the potential to be used in novel nanoelectronic devices. High carrier mobility in the semiconductor is necessary to guarantee a low power dissipation and a high switch speed of the corresponding electronic device. Strain engineering in 2D materials acts as an important approach to tailor and design their electronic and carrier transport properties. In this work, strain is introduced to MoS2 through perpendicularly building van der Waals heterostructures MoSe2-MoS2. Our first-principles calculations demonstrate that acoustic-phonon-limited electron mobility can be significantly enhanced in the heterostructures compared with that in pure multilayer MoS2. It is found that the effective electron mass and the deformation potential constant are relatively smaller in the heterostructures, which is responsible for the enhancement in the electron mobility. Overall, the electron mobility in the heterostructures is about 1.5 times or more of that in pure multilayer MoS2 with the same number of layers for the studied structures. These results indicate that MoSe2 is an excellent material to be heterostructured with multilayer MoS2 to improve the charge transport property.

  6. Multi-layer micro/nanofluid devices with bio-nanovalves

    Science.gov (United States)

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  7. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tien-Li, E-mail: tlchang@ntnu.edu.tw; Chen, Zhao-Chi

    2015-12-30

    Graphical abstract: - Highlights: • Direct UV laser irradiation on multilayer graphene was discussed. • Multilayer graphene with screen-printed process was presented. • Surface patterning of multilayer graphene at fluence threshold was investigated. • Electrical response of glucose in sensing devices can be studied. - Abstract: The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm{sup 2}. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  8. Electron with arbitrary pseudo-spins in multilayer graphene

    Institute of Scientific and Technical Information of China (English)

    Worasak Prarokijjak; Bumned Soodchomshom

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (}/2), where N={1, 2, 3, . . .}. It is said that for N>1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers.

  9. Electron with arbitrary pseudo-spins in multilayer graphene

    International Nuclear Information System (INIS)

    Prarokijjak Worasak; Soodchomshom Bumned

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (ħ/2), where N = {1, 2, 3,…}. It is said that for N > 1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers. (paper)

  10. Polymerization of vinyl stearate multilayers by electron beam irradiation

    International Nuclear Information System (INIS)

    Nishii, Masanobu; Hatada, Motoyoshi

    1975-01-01

    Studies on the radiation-induced polymerization of vinyl stearate (VST) multilayers were carried out. The VST multilayers built-up on an aluminum plated glass plate by Langmuir-Blodgett technique were irradiated with electron beams from a Van de Graaff electron accelerator in nitrogen atmosphere. The structure of the multilayers and the effects of irradiation were investigated by X-ray diffractometry, contact angle measurement, multireflection infrared spectroscopy, and scanning electron microscopy. The VST multilayers became insoluble to methanol by the irradiation, and the multi-reflection infrared spectrum of the VST multilayers turned into that of poly (VST) with increasing dosage. The polymerization proceeded during the irradiation at the temperature range between -10 0 and 10 0 C, and the conversion attained to 90% within 2.5 minutes (total dose, 5.6 Mrads). The multilayers irradiated above 13 Mrads turned into the polymer film insoluble to benzene, indicating that the polymer chains were cross-linked by the irradiation. Stearic acid which was formed by the irradiation of VST at nitrogen-water interface as a hydrolysis product was not detected in this system. (auth.)

  11. Review of multi-layered magnetoelectric composite materials and devices applications

    Science.gov (United States)

    Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang

    2018-06-01

    Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.

  12. Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education

    Science.gov (United States)

    Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang

    2006-02-01

    Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.

  13. Multilayer Integrated Film Bulk Acoustic Resonators

    CERN Document Server

    Zhang, Yafei

    2013-01-01

    Multilayer Integrated Film Bulk Acoustic Resonators mainly introduces the theory, design, fabrication technology and application of a recently developed new type of device, multilayer integrated film bulk acoustic resonators, at the micro and nano scale involving microelectronic devices, integrated circuits, optical devices, sensors and actuators, acoustic resonators, micro-nano manufacturing, multilayer integration, device theory and design principles, etc. These devices can work at very high frequencies by using the newly developed theory, design, and fabrication technology of nano and micro devices. Readers in fields of IC, electronic devices, sensors, materials, and films etc. will benefit from this book by learning the detailed fundamentals and potential applications of these advanced devices. Prof. Yafei Zhang is the director of the Ministry of Education’s Key Laboratory for Thin Films and Microfabrication Technology, PRC; Dr. Da Chen was a PhD student in Prof. Yafei Zhang’s research group.

  14. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah Alam, Md. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Mohammed, Waleed S., E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control System (BU-CROCCS), School of Engineering, Bangkok University, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman)

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  15. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuehua; Zhang, Mengke [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Xinwen, E-mail: iamxwzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Lai, Wenyong, E-mail: iamwylai@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Huang, Wei [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2017-06-15

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  16. Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer

    International Nuclear Information System (INIS)

    Chen, Yuehua; Zhang, Mengke; Zhang, Xinwen; Lei, Zhenfeng; Zhang, Xiaolin; Hao, Lin; Fan, Quli; Lai, Wenyong; Huang, Wei

    2017-01-01

    Efficient multilayered green phosphorescent polymer light-emitting devices (PhPLEDs) were successfully fabricated using a solution-processed n-doped small molecular electron transporting layer (ETL) composed of 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBi) and CsF. We found that the electroluminescence properties of the devices with n-doped ETLs are significantly improved. The maximum luminance efficiency of the device with 7.5 wt% CsF doped TPBi ETL reached 26.9 cd/A, which is 1.5 times as large as that of the undoped device. The impedance spectra of the devices and electron transport properties of the CsF doped ETLs demonstrate that doping dramatically decreases the impedance and enhances the electrical conductivity. Similarly, enhanced performance of PhPLED is also observed by use of CsF-doped 4,7-diphenyl-1,10 -phenanthroline (BPhen) ETL. These results demonstrate that CsF can be used as an effective n-dopant in solution-processed devices.

  17. Hot-electrons-induced ultrafast demagnitization in Co/Pt multilayers

    NARCIS (Netherlands)

    Bergeard, N.; Hehn, M.; Mangin, S.; Lengaigne, G.; Montaigne, F.; Lalieu, M. L. M.; Koopmans, B.; Malinowski, G.

    2016-01-01

    Using specially engineered structures to tailor the optical absorption in a metallic multilayer, we analyze the magnetization dynamics of a Co/Pt multilayer buried below a thick Cu layer. We demonstrate that hot electrons alone can very efficiently induce ultrafast demagnetization. Simulations based

  18. [The role of BCP in electroluminescence of multilayer organic light-emitting devices].

    Science.gov (United States)

    Deng, Zhao-Ru; Yang, Sheng-Yi; Lou, Zhi-Dong; Meng, Ling-Chuan

    2009-03-01

    As a hole-blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is usually used in blue and white light electroluminescent devices. The ability of blocking holes of BCP layer depends on its thickness, and basically holes can tunnel through thin BCP layer. In order to know the role of BCP layer in electroluminescence (EL) of multilayer organic light-emitting diodes (OLEDs), in the present paper, the authors designed a multilayer OLED ITO/NPB/BCP/Alq3 : DCJTB/Alq3/Al and investigated the influence of thickness of BCP on the EL spectra of multilayer OLEDs at different applied voltages. The experimental data show that thin BCP layer can block holes partially and tune the energy transfer between different emissive layers, and in this way, it is easy to obtain white emission, but its EL spectra will change with the applied voltages. The EL spectra of multilayer device will remain relatively stable when BCP layer is thick enough, and the holes can hardly tunnel through when the thickness of BCP layer is more than 15 nm. Furthermore, the stability of EL spectra of the multilayer OLED at different applied voltages was discussed.

  19. The calculation of electron depth-dose distributions in multilayer medium

    International Nuclear Information System (INIS)

    Wang Chuanshan; Xu Mengjie; Li Zhiliang; Feng Yongxiang; Li Panlin

    1989-01-01

    Energy deposition in multilayer medium and the depth dose distribution in the layers are studied. Based on semi-empirical calculation of electron energy absorption in matter with EDMULT program of Tabata and Ito, further work has been carried out to extend the computation to multilayer composite material. New program developed in this paper makes IBM-PC compatible with complicated electron dose calculations

  20. Characterization of multilayer nitride coatings by electron microscopy and modulus mapping

    International Nuclear Information System (INIS)

    Pemmasani, Sai Pramod; Rajulapati, Koteswararao V.; Ramakrishna, M.; Valleti, Krishna; Gundakaram, Ravi C.; Joshi, Shrikant V.

    2013-01-01

    This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture

  1. A microdot multilayer oxide device: let us tune the strain-ionic transport interaction.

    Science.gov (United States)

    Schweiger, Sebastian; Kubicek, Markus; Messerschmitt, Felix; Murer, Christoph; Rupp, Jennifer L M

    2014-05-27

    In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd0.1Ce0.9O(2-δ)/Er2O3. The fast ionic conducting Gd0.1Ce0.9O(2-δ) single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain activated volume of the Gd0.1Ce0.9O(2-δ) is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by Δ0.31 eV by changing the compressive strain of a microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order ionic transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain activated volumes of Gd0.1Ce0.9O(2-δ) in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wide range beyond classic doping strategies for single films. The reported fabrication route and concept of strained multilayer microdots is a promising path

  2. The effect of illumination and electrode adjustment on the carrier behavior in special multilayer devices

    Science.gov (United States)

    Deng, Yanhong; Ou, Qingdong; Wang, Jinjiang; Zhang, Dengyu; Chen, Liezun; Li, Yanqing

    2017-08-01

    Intermediate connectors play an important role in semiconductor devices, especially in tandem devices. In this paper, four types of different intermediate connectors (e.g. Mg:Alq3/MoO3, MoO3, Mg:Alq3, and none) and two kinds of modified electrode materials (LiF and MoO3) integrated into the special multilayer devices are proposed, with the aim of studying the impact of light illumination and electrode adjustment on the carrier behavior of intermediate connectors through the current density-voltage characteristics, interfacial electronic structures, and capacitance-voltage characteristics. The results show that the illumination enhances the charge generation and separation in intermediate connectors, and further electrode interface modifications enhance the functionality of intermediate connectors. In addition, the device with an efficient intermediate connector structure shows a photoelectric effect, which paves the way for organic photovoltaic devices to realize optical-electrical integration transformation.

  3. Processing and characterization of multilayers for energy device fabrication (invited)

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Kiebach, Wolff-Ragnar; Gurauskis, Jonas

    SOFC and tubular OTM, we present selected challenges in ceramic processing such asymmetric multilayer structures. By optimizing different steps in the ceramic processing, we improved the mechanical properties and gas permeability of porous supports and the (electrochemical) performance of electrodes......The performance of asymmetric multilayer structures in solid oxide fuel cells (SOFC)/solid oxide electrolysis cells (SOEC), tubular oxygen transport membranes (OTM) and similar high temperature energy devices is often determined by the ceramic fabrication (for given materials and design). A good...... understanding and control of different processing steps (from powder/materials selection, through shaping and sintering) is of crucial importance to achieve a defect-free multilayer microstructure with the desired properties and performance. Based on the experiences at DTU Energy with the fabrication of planar...

  4. Release strategies for making transferable semiconductor structures, devices and device components

    Science.gov (United States)

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  5. Surface wave photonic device based on porous silicon multilayers

    International Nuclear Information System (INIS)

    Guillermain, E.; Lysenko, V.; Benyattou, T.

    2006-01-01

    Porous silicon is widely studied in the field of photonics due to its interesting optical properties. In this work, we present theoretical and first experimental studies of a new kind of porous silicon photonic device based on optical surface wave. A theoretical analysis of the device is presented using plane-wave approximation. The porous silicon multilayered structures are realized using electrochemical etching of p + -type silicon. Morphological and optical characterizations of the realized structures are reported

  6. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    International Nuclear Information System (INIS)

    Galanakis, I.

    2015-01-01

    Half-metallic Co 2 MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co 2 MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co 2 MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co 2 MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices

  7. Surface acoustic wave devices on AlN/3C–SiC/Si multilayer structures

    International Nuclear Information System (INIS)

    Lin, Chih-Ming; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G; Pisano, Albert P; Chen, Yung-Yu; Felmetsger, Valery V

    2013-01-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C–SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C–SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C–SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C–SiC/Si multilayer structure exhibits a phase velocity of 5528 m s −1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C–SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C–SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C–SiC layers are applicable to timing and sensing applications in harsh environments. (paper)

  8. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  9. Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Yan, Hong; Sun, Xiaoming; Zhang, Han; Luo, Liang; Lei, Xiaodong; Wan, Pengbo; Chen, Xiaodong

    2015-11-18

    Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer-by-layer-assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network-containing film with transparency and superior network structures on self-healing substrate is obtained by the lateral movement of the underlying self-healing layer to bring the separated areas of the CNT layer back into contact. The as-prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface-to-volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tailoring electronic properties of multilayer phosphorene by siliconization

    Science.gov (United States)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn V.; Radchenko, Ihor; Wu, Ping; Persson, Clas

    Controlling a thickness dependence of electronic properties for two-dimensional (2d) materials is among primary goals for their large-scale applications. Herein, employing a first-principles computational approach, we predict that Si interaction with multilayer phosphorene (2d-P) can result in the formation of highly stable 2d-SiP and 2d-SiP$_2$ compounds with a weak interlayer interaction. Our analysis demonstrates that these systems are semiconductors with band gap energies that can be governed by varying the thickness and stacking order. Specifically, siliconization of phosphorene allows to design 2d-SiP$_x$ materials with significantly weaker thickness dependence of electronic properties than that in 2d-P and to develop ways for their tailoring. We also reveal the spatial dependence of electronic properties for 2d-SiP$_x$ highlighting difference in effective band gaps for different layers. Particularly, our results show that central layers in the multilayer 2d systems determine overall electronic properties, while the role of the outermost layers is noticeably smaller.

  11. Multilayer electronic component systems and methods of manufacture

    Science.gov (United States)

    Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)

    2010-01-01

    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.

  12. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  13. Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection

    International Nuclear Information System (INIS)

    Zheng Gao-Feng; Pei Yan-Bo; Wang Xiang; Zheng Jian-Yi; Sun Dao-Heng

    2014-01-01

    A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10 −7 Ω·m and 1.39 × 10 −7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry

  14. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    Science.gov (United States)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  15. Evaluation of biofouling in stainless microfluidic channels for implantable multilayered dialysis device

    Science.gov (United States)

    Ota, Takashi; To, Naoya; Kanno, Yoshihiko; Miki, Norihisa

    2017-06-01

    An implantable artificial kidney can markedly improve the quality of life of renal disease patients. Our group has developed an implantable multilayered dialysis system consisting of microfluidic channels and dialysis membranes. Long-term evaluation is necessary for implant devices where biofouling is a critical factor, culminating in the deterioration of dialysis performance. Our previous work revealed that surface conditions, which depend on the manufacturing process, determine the amount of biofouling, and that electrolytic etching is the most suitable technique for forming a channel wall free of biofouling. In this study, we investigated the electrolytic etching conditions in detail. We conducted in vitro experiments for 7 d and evaluated the adhesion of biomaterials by scanning electron microscopy. The experiments revealed that a surface mirror-finished by electrolytic etching effectively prevents biofouling.

  16. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  17. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  18. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  19. Tuning the electronic properties of gated multilayer phosphorene: A self-consistent tight-binding study

    Science.gov (United States)

    Li, L. L.; Partoens, B.; Peeters, F. M.

    2018-04-01

    By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.

  20. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    Science.gov (United States)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  1. Electron density profile in multilayer systems

    International Nuclear Information System (INIS)

    Toekesi, K.

    2004-01-01

    Complete text of publication follows. Electron energy loss spectroscopy (EELS) has been used extensively to study the multilayer systems, where the thickness of layers are in the nanometer range. These studies has received considerable attention because of its technological interest, for example in the nanotechnology. On the most fundamental level, its importance is derived from the basic physics that is involved. One key quantities of interest is the response of a many-body system to an external perturbation: How act and how modify the interface between the solid-solid or solid-vacuum the excitations in the solid and in the vicinity of the interfaces. In this work, as a starting point of such investigations we calculated the electron density profile for multilayer systems. Our approach employs the time-dependent density functional theory (TDDFT), that is, the solution of a time-dependent Schroedinger equation in which the potential and forces are determined selfconsistently from the dynamics governed by the Schroedinger equation. We treat the problem in TDDFT at the level of the local-density approximation (LDA). Later, the comparison of experimentally obtained loss functions and the theory, based on our TDDFT calculations can provide deeper understanding of surface physics. We performed the calculations for half-infinite samples characterized by r s =1.642 and r s =1.997. We also performed the calculations for double layer systems. The substrate was characterized by r s =1.997 and the coverage by r s =1.642. Fig. 1. shows the obtained electron density profile in LDA approximation. Because of the sharp cutoff of electronic wave vectors at the Fermi surface, the densities in the interior exhibit slowly decaying Friedel oscillations. To highlight the Friedel oscillation we enlarged the electron density profile in Fig. 1a. and Fig. 1b. The work was supported by the Hungarian Scientific Research Found: OTKA No. T038016, the grant 'Bolyai' from the Hungarian Academy of

  2. Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Chaiken, A.; Michel, R.P. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Multilayer films made by alternate deposition of two materials play an important role in electronic and optical devices such as quantum-well lasers and x-ray mirrors. In addition, novel phenomena like giant magnetoresistance and dimensional crossover in superconductors have emerged from studies of multilayers. While sophisticated x-ray techniques are widely used to study the morphology of multilayer films, progress in studying the electronic structure has been slower. The short mean-free path of low-energy electrons severely limits the usefulness of photoemission and related electron free path of low-energy electrons severely limit spectroscopies for multilayer studies. Soft x-ray fluorescence (SXF) is a bulk-sensitive photon-in, photon-out method to study valence band electronic states. Near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) measured with partial photon yield can give complementary bulk-sensitive information about unoccupied states. Both these methods are element-specific since the incident x-ray photons excite electrons from core levels. By combining NEXAFS and SXF measurements on buried layers in multilayers and comparing these spectra to data on appropriate reference compounds, it is possible to obtain a detailed picture of the electronic structure. Results are presented for a study of a Fe/Si multilayer system.

  3. Soft-x-ray fluorescence study of buried silicides in antiferromagnetically coupled Fe/Si multilayers

    International Nuclear Information System (INIS)

    Carlisle, J.A.; Chaiken, A.; Michel, R.P.

    1997-01-01

    Multilayer films made by alternate deposition of two materials play an important role in electronic and optical devices such as quantum-well lasers and x-ray mirrors. In addition, novel phenomena like giant magnetoresistance and dimensional crossover in superconductors have emerged from studies of multilayers. While sophisticated x-ray techniques are widely used to study the morphology of multilayer films, progress in studying the electronic structure has been slower. The short mean-free path of low-energy electrons severely limits the usefulness of photoemission and related electron free path of low-energy electrons severely limit spectroscopies for multilayer studies. Soft x-ray fluorescence (SXF) is a bulk-sensitive photon-in, photon-out method to study valence band electronic states. Near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) measured with partial photon yield can give complementary bulk-sensitive information about unoccupied states. Both these methods are element-specific since the incident x-ray photons excite electrons from core levels. By combining NEXAFS and SXF measurements on buried layers in multilayers and comparing these spectra to data on appropriate reference compounds, it is possible to obtain a detailed picture of the electronic structure. Results are presented for a study of a Fe/Si multilayer system

  4. Organic nonvolatile memory devices with charge trapping multilayer graphene film

    International Nuclear Information System (INIS)

    Ji, Yongsung; Choe, Minhyeok; Cho, Byungjin; Song, Sunghoon; Yoon, Jongwon; Ko, Heung Cho; Lee, Takhee

    2012-01-01

    We fabricated an array-type organic nonvolatile memory device with multilayer graphene (MLG) film embedded in polyimide (PI) layers. The memory devices showed a high ON/OFF ratio (over 10 6 ) and a long retention time (over 10 4 s). The switching of the Al/PI/MLG/PI/Al memory devices was due to the presence of the MLG film inserted into the PI layers. The double-log current–voltage characteristics could be explained by the space-charge-limited current conduction based on a charge-trap model. A conductive atomic force microscopy found that the conduction paths in the low-resistance ON state were distributed in a highly localized area, which was associated with a carbon-rich filamentary switching mechanism. (paper)

  5. Magnetic multilayers and giant magnetoresistance fundamentals and industrial applications

    CERN Document Server

    2000-01-01

    Magneto-electronics is certainly one of the most rapidly expanding fields in basic research and industrial application. Magnetic multilayers are the key devices in this field; they allow the utilization of unique micromagnetic, magneto-optic, and magneto-electronic phenomena which cannot be realized on the basis of conventional materials. This book provides a detailed and well-balanced introduction to both the underlying physical fundamentals and the technological applications in terms of devices that are just entering the market or are of high industrial relevance for the near future. In particular, the employment of magnetic multilayers in magneto-optical recording, in GMR and spin-valve devices, and as configurations yielding a striking nonlinear magneto-optical response is discussed in a comprehensive way. This state-of-the-art review involves an extensive list of key references to original work and thus makes the vast knowledge already accumulated in the field accessible to the reader.

  6. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.

    Science.gov (United States)

    Devaraju, Naga Sai Gopi K; Unger, Marc A

    2012-11-21

    Advances in microfluidics now allow an unprecedented level of parallelization and integration of biochemical reactions. However, one challenge still faced by the field has been the complexity and cost of the control hardware: one external pressure signal has been required for each independently actuated set of valves on chip. Using a simple post-modification to the multilayer soft lithography fabrication process, we present a new implementation of digital fluidic logic fully analogous to electronic logic with significant performance advances over the previous implementations. We demonstrate a novel normally closed static gain valve capable of modulating pressure signals in a fashion analogous to an electronic transistor. We utilize these valves to build complex fluidic logic circuits capable of arbitrary control of flows by processing binary input signals (pressure (1) and atmosphere (0)). We demonstrate logic gates and devices including NOT, NAND and NOR gates, bi-stable flip-flops, gated flip-flops (latches), oscillators, self-driven peristaltic pumps, delay flip-flops, and a 12-bit shift register built using static gain valves. This fluidic logic shows cascade-ability, feedback, programmability, bi-stability, and autonomous control capability. This implementation of fluidic logic yields significantly smaller devices, higher clock rates, simple designs, easy fabrication, and integration into MSL microfluidics.

  7. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  8. Formulation, evaluation, and comparison of bilayered and multilayered mucoadhesive buccal devices of propranolol hydrochloride.

    Science.gov (United States)

    Patel, Vishnu M; Prajapati, Bhupendra G; Patel, Madhabhai M

    2007-03-16

    The purpose of this research work was to establish mucoadhesive buccal devices of propranolol hydrochloride (PRH) in the forms of bilayered and multilayered tablets. The tablets were prepared using sodium carboxymethylcellulose (SCMC) and Carbopol-934 (CP) as bioadhesive polymers to impart mucoadhesion and ethyl cellulose (EC) to act as an impermeable backing layer. Buccal devices were evaluated by different parameters such as weight uniformity, content uniformity, thickness, hardness, surface pH, swelling index, ex vivo mucoadhesive strength, ex vivo mucoadhesion time, in vitro drug release, and in vitro drug permeation. As compared with bilayered tablets, multilayered tablets showed slow release rate of drug with improved ex vivo bioadhesive strength and enhanced ex vivo mucoadhesion time. The mechanism of drug release was found to be non-Fickian diffusion (value of n between 0.5 and 1.0) for both the buccal devices. The stability of drug in both the optimized buccal devices was tested for 6 hours in natural human saliva; both the buccal devices were found to be stable in natural human saliva. The present study concludes that mucoadhesive buccal devices of PRH can be a good way to bypass the extensive hepatic first-pass metabolism and to improve the bioavailability of PRH.

  9. Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors

    International Nuclear Information System (INIS)

    Deng, Yan-Hong; Chen, Xiang-Yu; Ou, Qing-Dong; Wang, Qian-Kun; Jiang, Xiao-Cheng; Zhang, Dan-Dan; Li, Yan-Qing

    2014-01-01

    The impact of illumination on the connection part of the tandem organic light-emitting diodes was studied by using a special organic multilayer sample consisted of two organic active layers coupled with different transition metal oxide (TMO)-based intermediate connectors (ICs). Through measuring the current density-voltage characteristic, interfacial electronic structures, and capacitance-voltage characteristic, we observe an unsymmetrical phenomenon in current density-voltage and capacitance-voltage curves of Mg:Alq 3 /MoO 3 and MoO 3 composed devices, which was induced by the charge spouting zone near the ICs region and the recombination state in the MoO 3 layer. Moreover, Mg:Alq 3 /MoO 3 composed device displays a photovoltaic effect and the V oc shifts to forward bias under illumination. Our results demonstrate that the TMO-based IC structure coupled with photovoltaic effect can be a good approach for the study of photodetector, light sensor, and so on.

  10. Propagation of Dirac electrons in Cantor graphene multilayers

    International Nuclear Information System (INIS)

    Rodríguez-González, R.; Martínez-Orozco, J. C.; Madrigal-Melchor, J.; Rodríguez-Vargas, I.

    2014-01-01

    In this work we use the standard T-matrix method to study the tunneling of Dirac electrons through graphene multilayers. A graphene sheet is deposited on top of slabs of Silicon-Oxide (SiO 2 ) and Silicon-Carbide (SiC) substrates, in which we applied the Cantor’s series. We calculate the transmittance as a function of energy for different incident angles and different generations of the Cantor’s series. Comparing the transmittance, we found three types of self-similarity: (a) local - into generations, (b) between incident angles and (c) between generations. We also compute the angular distribution of the transmittance for fixed energies finding a self-similar pattern between generations. To our knowledge is the first time that four different self-similar patterns are presented in Cantor-based multilayers

  11. Propagation of Dirac electrons in Cantor graphene multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-González, R.; Martínez-Orozco, J. C.; Madrigal-Melchor, J.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    In this work we use the standard T-matrix method to study the tunneling of Dirac electrons through graphene multilayers. A graphene sheet is deposited on top of slabs of Silicon-Oxide (SiO{sub 2}) and Silicon-Carbide (SiC) substrates, in which we applied the Cantor’s series. We calculate the transmittance as a function of energy for different incident angles and different generations of the Cantor’s series. Comparing the transmittance, we found three types of self-similarity: (a) local - into generations, (b) between incident angles and (c) between generations. We also compute the angular distribution of the transmittance for fixed energies finding a self-similar pattern between generations. To our knowledge is the first time that four different self-similar patterns are presented in Cantor-based multilayers.

  12. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    International Nuclear Information System (INIS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-01-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z_2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  13. Influence of boundary effects on electron beam dose distribution formation in multilayer targets

    International Nuclear Information System (INIS)

    Kaluska, I.; Zimek, Z.; Lazurik, V.T.; Lazurik, V.M.; Popov, G.F.; Rogov, Y.V.

    2010-01-01

    Computational dosimetry play a significant role in an industrial radiation processing at dose measurements in the product irradiated with electron beams (EB), X-ray and gamma ray from radionuclide sources. Accurate and validated programs for absorbed dose calculations are required for computational dosimetry. The program ModeStEB (modelling of EB processing in a three-dimensional (3D) multilayer flat targets) was designed specially for simulation and optimization of industrial radiation processing, calculation of the 3D absorbed dose distribution within multilayer packages. The package is irradiated with scanned EB on an industrial radiation facility that is based on the pulsed or continuous type of electron accelerators in the electron energy range from 0.1 to 25 MeV. Simulation of EB dose distributions in the multilayer targets was accomplished using the Monte Carlo (MC) method. Experimental verification of MC simulation prediction for EB dose distribution formation in a stack of plates interleaved with polyvinylchloride (PVC) dosimetric films (DF), within a packing box, and irradiated with a scanned 10 MeV EB on a moving conveyer is discussed. (authors)

  14. Design refinement of multilayer optical thin film devices with two optimization techniques

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.

    1992-01-01

    The design efficiency of two different optimization techniques of designing multilayer optical thin film devices is compared. Ten different devices of varying complexities are chosen as design examples for the comparison. The design refinement efficiency and the design parameter characteristics of all the sample designs obtained with the two techniques are compared. The results of the comparison demonstrate that the new method of design developed using damped least squares technique with indirect derivatives give superior and efficient designs compared to the method developed with direct derivatives. (author). 23 refs., 4 tabs., 14 figs

  15. Fabrication of hybrid molecular devices using multi-layer graphene break junctions

    Science.gov (United States)

    Island, J. O.; Holovchenko, A.; Koole, M.; Alkemade, P. F. A.; Menelaou, M.; Aliaga-Alcalde, N.; Burzurí, E.; van der Zant, H. S. J.

    2014-11-01

    We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.

  16. Multilayer polymer light-emitting diodes by blade coating method

    Science.gov (United States)

    Tseng, Shin-Rong; Meng, Hsin-Fei; Lee, Kuan-Chen; Horng, Sheng-Fu

    2008-10-01

    Multilayer polymer light-emitting diodes fabricated by blade coating are presented. Multilayer of polymers can be easily deposited by blade coating on a hot plate. The multilayer structure is confirmed by the total thickness and the cross section view in the scanning electron microscope. The film thickness variation is only 3.3% in 10cm scale and the film roughness is about 0.3nm in the micron scale. The efficiency of single layer poly(para-phenylene vinylene) copolymer Super Yellow and poly(9,9-dioctylfluorene) (PFO, deep blue) devices are 9 and 1.7cd/A, respectively, by blade coating. The efficiency of the PFO device is raised to 2.9cd/A with a 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) hole-blocking layer and to 2.3cd/A with a poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)] elec-tron-blocking layer added by blade coating.

  17. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); Kim, Yong Jin; Kim, Young Keun [Department of Materials Science and Engineering, Korea University, Seoul 02481 (Korea, Republic of); Shin, Minju [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); IMEP-LAHC, Grenoble INP-MINATEC, 3 Parvis Louis Neel, 38016 Grenoble (France)

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  18. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  19. Role of the inversion layer on the charge injection in silicon nanocrystal multilayered light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Tondini, S. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy); Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena (Italy); Pucker, G. [Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento (Italy); Pavesi, L. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy)

    2016-09-07

    The role of the inversion layer on injection and recombination phenomena in light emitting diodes (LEDs) is here studied on a multilayer (ML) structure of silicon nanocrystals (Si-NCs) embedded in SiO{sub 2}. Two Si-NC LEDs, which are similar for the active material but different in the fabrication process, elucidate the role of the non-radiative recombination rates at the ML/substrate interface. By studying current- and capacitance-voltage characteristics as well as electroluminescence spectra and time-resolved electroluminescence under pulsed and alternating bias pumping scheme in both the devices, we are able to ascribe the different experimental results to an efficient or inefficient minority carrier (electron) supply by the p-type substrate in the metal oxide semiconductor LEDs.

  20. Electron transport in magnetic multilayers: effect of disorder

    Czech Academy of Sciences Publication Activity Database

    Drchal, Václav; Kudrnovský, Josef; Bruno, P.; Dederichs, P. H.; Turek, Ilja; Weinberger, P.

    2002-01-01

    Roč. 65, - (2002), s. 214414-1-214414-8 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.30; GA ČR GA202/00/0122; GA AV ČR IAA1010829; GA AV ČR IBS2041105 Institutional research plan: CEZ:AV0Z1010914 Keywords : electron transport * magnetic multilayers * ballistic transport * diffusive transport * disorder Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  1. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics

    Science.gov (United States)

    Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi

    2017-08-01

    Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.

  2. Characterization of amorphous multilayered ZnO-SnO2 heterostructure thin films and their field effect electronic properties

    International Nuclear Information System (INIS)

    Lee, Su-Jae; Hwang, Chi-Sun; Pi, Jae-Eun; Yang, Jong-Heon; Oh, Himchan; Cho, Sung Haeng; Cho, Kyoung-Ik; Chu, Hye Yong

    2014-01-01

    Multilayered ZnO-SnO 2 heterostructure thin films were produced using pulsed laser ablation of pie-shaped ZnO-SnO 2 oxides target, and their structural and field effect electronic transport properties were investigated as a function of the thickness of the ZnO and SnO 2 layers. The films have an amorphous multilayered heterostructure composed of the periodic stacking of the ZnO and SnO 2 layers. The field effect electronic properties of amorphous multilayered ZnO-SnO 2 heterostructure thin film transistors (TFTs) are highly dependent on the thickness of the ZnO and SnO 2 layers. The highest electron mobility of 37 cm 2 /V s, a low subthreshold swing of a 0.19 V/decade, a threshold voltage of 0.13 V, and a high drain current on-to-off ratio of ∼10 10 obtained for the amorphous multilayered ZnO(1.5 nm)-SnO 2 (1.5 nm) heterostructure TFTs. These results are presumed to be due to the unique electronic structure of an amorphous multilayered ZnO-SnO 2 heterostructure film consisting of ZnO, SnO 2 , and ZnO-SnO 2 interface layers

  3. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Palacios-Huerta, L.; Aceves-Mijares, M. [Electronics Department, INAOE, Apdo. 51, Puebla, Pue. 72000, México (Mexico); Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, Apodaca, NL 66628, México (Mexico); Domínguez-Horna, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra 08193, Barcelona (Spain)

    2016-07-18

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si{sup +} implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  4. Nondestructive diagnosis of multilayer electronic plates

    International Nuclear Information System (INIS)

    Matvienko, A.N.; Savin, D.O.; Yas'ko, A.V.

    1992-01-01

    Methods of non-destructive tomographic investigation into multilayer printed plates using x radiation are described. Mathematic problem setting is given, experimental facility and methods for source data ecquisition are described. A special attention is paid to the consideration of the main factors differing the actual problem setting from the idealized one. Methods for accounting and correction of these factors are described. The efficiency of the approach proposed is demonstrated using the actual problems of reducing separate layers of multilayer printed plate metallization. The method developed is useful when exersizing control over multilayer printed plate production

  5. Inkjet Printing With In Situ Fast Annealing For Patterned Multilayer Deposition

    KAUST Repository

    Boulfrad, Samir; Alarousu, Erkki; Da'as, Eman Husni; Jabbour, Ghassan

    2013-01-01

    Patterned multilayer films, such as those used in electronic devices, solar cells, solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs) may be deposited and annealed in a single tool. The tool includes an inkjet printer head, a heater, and a laser. The inkjet printer head deposits on a substrate either suspended particles of a functional material or solvated precursors of a functional material. The head is mounted on a support that allows the head to scan the substrate by moving along the support in a first direction and moving the support along a second direction. After the head deposits the material the heater evaporates solvent from substrate, and the depositing and heating may be repeated one or more times to form a patterned multilayer material. Then, a laser, microwave, and/or Joule effect heating device may be used to anneal the multilayer material to a desired pattern and crystalline state.

  6. Inkjet Printing With In Situ Fast Annealing For Patterned Multilayer Deposition

    KAUST Repository

    Boulfrad, Samir

    2013-12-05

    Patterned multilayer films, such as those used in electronic devices, solar cells, solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs) may be deposited and annealed in a single tool. The tool includes an inkjet printer head, a heater, and a laser. The inkjet printer head deposits on a substrate either suspended particles of a functional material or solvated precursors of a functional material. The head is mounted on a support that allows the head to scan the substrate by moving along the support in a first direction and moving the support along a second direction. After the head deposits the material the heater evaporates solvent from substrate, and the depositing and heating may be repeated one or more times to form a patterned multilayer material. Then, a laser, microwave, and/or Joule effect heating device may be used to anneal the multilayer material to a desired pattern and crystalline state.

  7. Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers

    Science.gov (United States)

    He, Min; Li, Gang; Zhu, Zhaozhao; Zhang, Ying; Peng, Licong; Li, Rui; Li, Jianqi; Wei, Hongxiang; Zhao, Tongyun; Zhang, X.-G.; Wang, Shouguo; Lin, Shi-Zeng; Gu, Lin; Yu, Guoqiang; Cai, J. W.; Shen, Bao-gen

    2018-05-01

    Magnetic skyrmions in multilayers are particularly appealing as next generation memory devices due to their topological compact size, the robustness against external perturbations, the capability of electrical driving and detection, and the compatibility with the existing spintronic technologies. To date, Néel-type skyrmions at room temperature (RT) have been studied mostly in multilayers with easy-axis magnetic anisotropy. Here, we systematically broadened the evolution of magnetic skyrmions with sub-50-nm size in a series of Pt/Co/Ta multilayers where the magnetic anisotropy is tuned continuously from easy axis to easy plane by increasing the ferromagnetic Co layer thickness. The existence of nontrivial skyrmions is identified via the combination of in situ Lorentz transmission electron microscopy (L-TEM) and Hall transport measurements. A high density of magnetic skyrmions over a wide temperature range is observed in the multilayers with easy-plane anisotropy, which will stimulate further exploration for new materials and accelerate the development of skyrmion-based spintronic devices.

  8. A high resolution electron microscopy investigation of curvature in multilayer graphite sheets

    International Nuclear Information System (INIS)

    Wang Zhenxia; Hu Jun; Wang Wenmin; Yu Guoqing

    1998-01-01

    Here the authors report a carbon sample generated by ultrasonic wave high oriented pyrolytic graphite (HOPG) in ethanol, water or ethanol-water mixed solution. High resolution transmission electron microscopy (HRTEM) revealed many multilayer graphite sheets with a total curved angle that is multiples of θ 0 (= 30 degree C). Close examination of the micrographs showed that the curvature is accomplished by bending the lattice planes. A possible explanation for the curvature in multilayer graphite sheets is discussed based on the conformation of graphite symmetry axes and the formation of sp 3 -like line defects in the sp 2 graphitic network

  9. Influence of Fe nanoparticles diameters on the structure and electron emission studies of carbon nanotubes and multilayer graphene

    International Nuclear Information System (INIS)

    Sharma, Himani; Shukla, A.K.; Vankar, V.D.

    2013-01-01

    In this paper we report the effect of Fe film thickness on the growth, structure and electron emission characteristics of carbon nanotubes (CNTs) and multilayer graphene deposited on Si substrate. It is observed that the number of graphitic shells in carbon nanostructures (CNs) varies with the thickness of the catalyst depending on the average size of nanoparticles. Further, the Fe nanoparticles do not catalyze beyond a particular size of nanoclusters leading to the formation of multilayer graphene structure, instead of carbon nanotubes (CNTs). It is observed that the crystallinity of CNs enhances upon increasing the catalyst thickness. Multilayer graphene structures show improved crystallinity in comparison to CNTs as graphitic to defect mode intensity ratio (I D /I G ) decreases from 1.2 to 0.8. However, I 2D /I G value for multilayer graphene is found to be 1.1 confirming the presence of at least 10 layers of graphene in these samples. CNTs with smaller diameter show better electron emission properties with enhancement factor (γ C = 2.8 × 10 3 ) in comparison to multilayer graphene structure (γ C = 1.5 × 10 3 ). The better emission characteristics in CNTs are explained due to combination of electrons from edges as well as centers in comparison to the multilayer graphene. Highlights: ► Graphitic shells in CNTs and graphene depend on the size of Fe nanoparticles. ► The diameter of nanoparticles decides the morphology of CNTs and graphene. ► Multilayer graphene structures show improved crystallinity in comparison to CNTs. ► Multilayer graphene (MLG) has the γ C factor of 1.5 × 10 3 and CNTs has 2.8 × 10 3 . ► The nonlinearity in MLG may occur through change in work function.

  10. Photolithographically patterened thin-film multilayer devices of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Kingston, J.J.; Wellstood, F.C.; Quan, D.; Clarke, J.

    1990-09-01

    We have fabricated thin-film YBa 2 Cu 3 O 7-x -SrTiO 3 -YBa 2 Cu 3 O 7-x multilayer interconnect structures in which each in situ laser-deposited film is independently patterned by photolithography. In particular, we have constructed the two key components necessary for a superconducting multilayer interconnect technology, crossovers and window contacts. As a further demonstration of the technology, we have fabricated a thin-film flux transformer, suitable for use with a Superconducting QUantum Interference Device (SQUID), that includes a ten-turn input coil with 6μm linewidth. Transport measurements showed that the critical temperature was 87K and the critical current was 135 μA at 82K. 7 refs., 6 figs

  11. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  12. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    Science.gov (United States)

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  13. Exploring interface morphology of a deeply buried layer in periodic multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, Maharashtra (India); Khooha, Ajay; Singh, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India)

    2016-06-27

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection condition is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.

  14. Electronic security device

    Science.gov (United States)

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  15. Electronic security device

    International Nuclear Information System (INIS)

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-01-01

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs

  16. SU-G-BRA-06: Quantification of Tracking Performance of a Multi-Layer Electronic Portal Imaging Device

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y; Rottmann, J; Myronakis, M; Berbeco, R [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: The purpose of this study was to quantify the improvement in tumor tracking, with and without fiducial markers, afforded by employing a multi-layer (MLI) electronic portal imaging device (EPID) over the current state-of-the-art, single-layer, digital megavolt imager (DMI) architecture. Methods: An ideal observer signal-to-noise ratio (d’) approach was used to quantify the ability of an MLI EPID and a current, state-of-the-art DMI EPID to track lung tumors from the treatment beam’s-eye-view. Using each detector modulation transfer function (MTF) and noise power spectrum (NPS) as inputs, a detection task was employed with object functions describing simple three-dimensional Cartesian shapes (spheres and cylinders). Marker-less tumor tracking algorithms often use texture discrimination to differentiate benign and malignant tissue. The performance of such algorithms is simulated by employing a discrimination task for the ideal observer, which measures the ability of a system to differentiate two image quantities. These were defined as the measured textures for benign and malignant lung tissue. Results: The NNPS of the MLI ∼25% of that of the DMI at the expense of decreased MTF at intermediate frequencies (0.25≤

  17. Multilayer epitaxial graphene grown on the (SiC 000 1-bar ) surface; structure and electronic properties

    International Nuclear Information System (INIS)

    Sprinkle, M; Hicks, J; Tinkey, H; Clark, M C; Hass, J; Conrad, E H; Tejeda, A; Taleb-Ibrahimi, A; Le Fevre, P; Bertran, F; Soukiassian, P; Martinotti, D

    2010-01-01

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (0 0 0 1-bar ) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  18. Silicon Nanosheets: Crossover between Multilayer Silicene and Diamond-like Growth Regime.

    Science.gov (United States)

    Grazianetti, Carlo; Cinquanta, Eugenio; Tao, Li; De Padova, Paola; Quaresima, Claudio; Ottaviani, Carlo; Akinwande, Deji; Molle, Alessandro

    2017-03-28

    The structural and electronic properties of nanoscale Si epitaxially grown on Ag(111) can be tuned from a multilayer silicene phase, where the constitutive layers incorporate a mixed sp 2 /sp 3 bonding, to other ordinary Si phases, such as amorphous and diamond-like Si. Based on comparative scanning tunneling microscopy and Raman spectroscopy investigations, a key role in determining the nanoscale Si phase is played by the growth temperature of the epitaxial deposition on Ag(111) substrate and the presence or absence of a single-layer silicene as a seed for the successive growth. Furthermore, when integrated into a field-effect transistor device, multilayer silicene exhibits a characteristic ambipolar charge carrier transport behavior that makes it strikingly different from other conventional Si channels and suggestive of a Dirac-like character of the electronic bands of the crystal. These findings spotlight the interest in multilayer silicene as a different nanoscale Si phase for advanced nanotechnology applications such as ultrascaled nanoelectronics and nanomembranes, as well as for fundamental exploration of quantum properties.

  19. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  20. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  1. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  2. Electrons and Phonons in Semiconductor Multilayers

    Science.gov (United States)

    Ridley, B. K.

    1996-11-01

    This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.

  3. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    Science.gov (United States)

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun

    2015-01-01

    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328

  4. Pressurized waterproof case electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-01

    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed

  5. Electron transfer kinetics on mono- and multilayer graphene.

    Science.gov (United States)

    Velický, Matěj; Bradley, Dan F; Cooper, Adam J; Hill, Ernie W; Kinloch, Ian A; Mishchenko, Artem; Novoselov, Konstantin S; Patten, Hollie V; Toth, Peter S; Valota, Anna T; Worrall, Stephen D; Dryfe, Robert A W

    2014-10-28

    Understanding of the electrochemical properties of graphene, especially the electron transfer kinetics of a redox reaction between the graphene surface and a molecule, in comparison to graphite or other carbon-based materials, is essential for its potential in energy conversion and storage to be realized. Here we use voltammetric determination of the electron transfer rate for three redox mediators, ferricyanide, hexaammineruthenium, and hexachloroiridate (Fe(CN)(6)(3-), Ru(NH3)(6)(3+), and IrCl(6)(2-), respectively), to measure the reactivity of graphene samples prepared by mechanical exfoliation of natural graphite. Electron transfer rates are measured for varied number of graphene layers (1 to ca. 1000 layers) using microscopic droplets. The basal planes of mono- and multilayer graphene, supported on an insulating Si/SiO(2) substrate, exhibit significant electron transfer activity and changes in kinetics are observed for all three mediators. No significant trend in kinetics with flake thickness is discernible for each mediator; however, a large variation in kinetics is observed across the basal plane of the same flakes, indicating that local surface conditions affect the electrochemical performance. This is confirmed by in situ graphite exfoliation, which reveals significant deterioration of initially, near-reversible kinetics for Ru(NH3)(6)(3+) when comparing the atmosphere-aged and freshly exfoliated graphite surfaces.

  6. Pressurized waterproof case electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-31

    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touchscreen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may include a small gas cartridge or may be provided from an external source.

  7. Nitridation and contrast of B4C/La interfaces and X-ray multilayer optics

    NARCIS (Netherlands)

    Tsarfati, T.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Bijkerk, Frederik

    2010-01-01

    Chemical diffusion and interlayer formation in thin layers and at interfaces is of increasing influence in nanoscopic devices such as nano-electronics, magneto-optical storage and multilayer X-ray optics. We show that with the nitridation of reactive B4C/La interfaces, both the chemical and optical

  8. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  9. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  10. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    OpenAIRE

    Assili, Mohamed; Haddad, Sonia

    2013-01-01

    We theoretically study the effect of the motion and the merging of Dirac cone on the interlayer magnetoresistance in multilayer graphene like systems. This merging, which could be induced by a uniaxial strain, gives rise in monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase where Dirac points disappear. Based on a universal Hamiltonian proposed to describe the motion and the merging of Dirac points in two dimensional Dirac electron cr...

  11. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  12. Guide to state-of-the-art electron devices

    CERN Document Server

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  13. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  14. Multilayer mirrors as power filters in insertion device beamlines

    International Nuclear Information System (INIS)

    Kortright, J.B.; DiGennaro, R.S.

    1988-08-01

    The power-filtering capabilities of multilayer band-pass x-ray mirrors relative to total reflection low-pass mirrors is presented. Results are based on calculations assuming proposed wiggler sources on the upcoming generation of low energy (1.5 GeV) and high energy (7.0 GeV) synchrotron radiation sources. Results show that multilayers out-perform total reflection mirrors in terms of reduction in reflected power by roughly an order of magnitude, with relatively small increases in total absorbed power and power density over total reflection mirrors, and with comparable reflected flux values. Various aspects of this potential application of multilayer x-ray optics are discussed. 13 refs., 3 figs., 1 tab

  15. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  16. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

    KAUST Repository

    Li, Ming

    2011-12-03

    We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO 2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc. © Springer-Verlag 2011.

  17. Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect

    Science.gov (United States)

    Ellis, Chase T.; Stier, Andreas V.; Kim, Myoung-Hwan; Tischler, Joseph G.; Glaser, Evan R.; Myers-Ward, Rachael L.; Tedesco, Joseph L.; Eddy, Charles R.; Gaskill, D. Kurt; Cerne, John

    2013-11-01

    The remarkable electronic properties of graphene strongly depend on the thickness and geometry of graphene stacks. This wide range of electronic tunability is of fundamental interest and has many applications in newly proposed devices. Using the mid-infrared, magneto-optical Kerr effect, we detect and identify over 18 interband cyclotron resonances (CR) that are associated with ABA and ABC stacked multilayers as well as monolayers that coexist in graphene that is epitaxially grown on 4H-SiC. Moreover, the magnetic field and photon energy dependence of these features enable us to explore the band structure, electron-hole band asymmetries, and mechanisms that activate a CR response in the Kerr effect for various multilayers that coexist in a single sample. Surprisingly, we find that the magnitude of monolayer Kerr effect CRs is not temperature dependent. This unexpected result reveals new questions about the underlying physics that makes such an effect possible.

  18. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers; LB films; biosensor microactuators; monolayers. ... have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices.

  19. Interfacial electronic charge transfer and density of states in short period Cu/Cr multilayers; TOPICAL

    International Nuclear Information System (INIS)

    Barbee, T W; Bello, A F; Klepeis, J E; Van Buuren, T

    1999-01-01

    Nanometer period metallic multilayers are ideal structures to investigate electronic phenomena at interfaces between metal films since interfacial atoms comprise a large atomic fraction of the samples. The Cu/Cr binary pair is especially suited to study the interfaces in metals since these elements are mutually insoluble, thus eliminating mixing effects and compound formation and the lattice mismatch is very small. This allows the fabrication of high structural quality Cu/Cr multilayers that have a structure which can be approximated in calculations based on idealized atomic arrangements. The electronic structure of the Cu and the Cr layers in several samples of thin Cu/Cr multilayers were studied using x-ray absorption spectroscopy (XAS). Total electron yield was measured and used to study the white lines at the Cu L(sub 2) and L(sub 3) absorption edges. The white lines at the Cu absorption edges are strongly related to the unoccupied d-orbitals and are used to calculate the amount of charge transfer between the Cr and Cu atoms in interfaces. Analysis of the Cu white lines show a charge transfer of 0.026 electrons/interfacial Cu atom to the interfacial Cr atoms. In the Cu XAS spectra we also observe a van Hove singularity between the L(sub 2) and L(sub 3) absorption edges as expected from the structural analysis. The absorption spectra are compared to partial density of states obtained from a full-potential linear muffin-tin orbital calculation. The calculations support the presence of charge transfer and indicate that it is localized to the first two interfacial layers in both Cu and Cr

  20. High resolution electron microscopy study of as-prepared and annealed tungsten-carbon multilayers

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Gronsky, R.; Kortright, J.B.

    1988-12-01

    A series of sputtered tungsten-carbon multilayer structures with periods ranging from 2 to 12 nm in the as-prepared state and after annealing at 500/degree/C for 4 hours has been studied with high resolution transmission electron microscopy. The evolution with annealing of the microstructure of these multilayers depends on their period. As-prepared structures appear predominantly amorphous from TEM imaging and diffraction. Annealing results in crystallization of the W-rich layers into WC in the larger period samples, and less complete or no crystallization in the smaller period samples. X-ray scattering reveals that annealing expands the period in a systematic way. The layers remain remarkably well-defined after annealing under these conditions. 12 refs., 4 figs., 1 tab

  1. Novel Luminescent Multilayer Films Containing π-Conjugated Anionic Polymer with Electronic Microenvironment

    Directory of Open Access Journals (Sweden)

    Tianlei Wang

    2016-09-01

    Full Text Available Layered double hydroxides (LDHs, luminescent π-conjugated anionic polymer and montmorillonite (MMT were orderly assembled into luminescent multilayer films via layer-by-layer self-assembly method. The electronic microenvironment (EME, the structure of which is like a traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially, due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer, EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are expected to have the potential for designing, constructing, and investigating novel light-emitting thin films.

  2. 14 CFR 91.21 - Portable electronic devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  3. Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device.

    Science.gov (United States)

    Wang, Dongrui; Wang, Xiaogong

    2011-03-01

    Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.

  4. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  5. Electronic devices for analog signal processing

    CERN Document Server

    Rybin, Yu K

    2012-01-01

    Electronic Devices for Analog Signal Processing is intended for engineers and post graduates and considers electronic devices applied to process analog signals in instrument making, automation, measurements, and other branches of technology. They perform various transformations of electrical signals: scaling, integration, logarithming, etc. The need in their deeper study is caused, on the one hand, by the extension of the forms of the input signal and increasing accuracy and performance of such devices, and on the other hand, new devices constantly emerge and are already widely used in practice, but no information about them are written in books on electronics. The basic approach of presenting the material in Electronic Devices for Analog Signal Processing can be formulated as follows: the study with help from self-education. While divided into seven chapters, each chapter contains theoretical material, examples of practical problems, questions and tests. The most difficult questions are marked by a diamon...

  6. Soft X-ray multilayers and filters

    CERN Document Server

    Wang Zhan Shan; Tang Wei Xing; Qin Shuji; Zhou Bing; Chen Ling Ya

    2002-01-01

    The periodic and non-periodic multilayers were designed by using a random number to change each layer and a suitable merit function. Ion beam sputtering and magnetron sputtering were used to fabricate various multilayers and beam splitters in soft X-ray range. The characterization of multilayers by small angle X-ray diffraction, Auger electron spectroscopy, Rutherford back scattering spectroscopy and reflectivity illustrated the multilayers had good structures and smooth interlayers. The reflectivity and transmission of a beam splitter is about 5%. The fabrication and transmission properties of Ag, Zr were studied. The Rutherford back scattering spectroscopy and auger electron spectroscopy were used to investigate the contents and distributions of impurities and influence on qualities of filters. The attenuation coefficients were corrected by the data obtained by measurements

  7. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  8. Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

    Science.gov (United States)

    Arora, M.; Hübner, R.; Suess, D.; Heinrich, B.; Girt, E.

    2017-07-01

    We studied the variation in perpendicular magnetic anisotropy of (111) textured Au /N ×[Co /Ni ]/Au films as a function of the number of bilayer repeats N . The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N ≤10 and then moderately decreases for N >10 . The model we propose reveals that the decrease of the anisotropy for N reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N >10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N .

  9. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  10. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    International Nuclear Information System (INIS)

    Xu Jianhua; Yang Yajie; Yu Junsheng; Jiang Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  11. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  12. Electronic device and method of manufacturing an electronic device

    NARCIS (Netherlands)

    2009-01-01

    An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units

  13. Remote detection of electronic devices

    Science.gov (United States)

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  14. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  15. Solving the shrinkage-induced PDMS alignment registration issue in multilayer soft lithography

    International Nuclear Information System (INIS)

    Moraes, Christopher; Sun, Yu; Simmons, Craig A

    2009-01-01

    Shrinkage of polydimethylsiloxane (PDMS) complicates alignment registration between layers during multilayer soft lithography fabrication. This often hinders the development of large-scale microfabricated arrayed devices. Here we report a rapid method to construct large-area, multilayered devices with stringent alignment requirements. This technique, which exploits a previously unrecognized aspect of sandwich mold fabrication, improves device yield, enables highly accurate alignment over large areas of multilayered devices and does not require strict regulation of fabrication conditions or extensive calibration processes. To demonstrate this technique, a microfabricated Braille display was developed and characterized. High device yield and accurate alignment within 15 µm were achieved over three layers for an array of 108 Braille units spread over a 6.5 cm 2 area, demonstrating the fabrication of well-aligned devices with greater ease and efficiency than previously possible

  16. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Science.gov (United States)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  17. Modeling Temperature Dependent Singlet Exciton Dynamics in Multilayered Organic Nanofibers

    DEFF Research Database (Denmark)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob

    2018-01-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers, but also by the behavior of the excitons generated...... dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a Kinetic Monte Carlo (KMC) model is employed in combination with a genetic algorithm to theoretically reproduce time resolved photoluminescence measurements...

  18. Simulation of reflectivity spectrum for non-absorbing multilayer ...

    Indian Academy of Sciences (India)

    Reflectivity simulation is an essential tool for the design and optimization of optical thin ... with the experimental results of the multilayer optical thin films grown by electron-beam evaporation ... beam splitters [4] and various optical filters. ... thickness (QWOT) layer AR coating and multilayer HR coating using electron- beam ...

  19. 46 CFR 28.260 - Electronic position fixing devices.

    Science.gov (United States)

    2010-10-01

    ... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28...

  20. Operation of ohmic Ti/Al/Pt/Au multilayer contacts to GaN at 600 °C in air

    Science.gov (United States)

    Hou, Minmin; Senesky, Debbie G.

    2014-08-01

    The high-temperature characteristics (at 600 °C) of Ti/Al/Pt/Au multilayer contacts to gallium nitride (GaN) in air are reported. Microfabricated circular-transfer-line-method test structures were subject to 10 h of thermal storage at 600 °C. Intermittent electrical characterization during thermal storage showed minimal variation in the contact resistance after 2 h and that the specific contact resistivity remained on the order of 10-5 Ω-cm2. In addition, the thermally stored multilayer contacts to GaN showed ohmic I-V characteristics when electrically probed at 600 °C. The microstructural analysis with atomic force microscopy showed minimal changes in surface roughness after thermal storage. Observations of the thermochemical reactions after thermal storage using Auger electron spectroscopy chemical depth profiling showed diffusion of Pt and minimal additional Al oxidation. The results support the use of Ti/Al/Pt/Au multilayer metallization for GaN-based sensors and electronic devices that will operate within a high-temperature and oxidizing ambient.

  1. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.

    Science.gov (United States)

    Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A

    2009-12-15

    Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.

  2. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  3. Study of plasma-treated multilayer graphene properties

    Energy Technology Data Exchange (ETDEWEB)

    Gelamo, R.V.; Machuno, L.G.B.; Rout, C.S. [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil)

    2016-07-01

    Full text: This work presents the study of multilayer graphene (MLG) obtainment and functionalization using plasmas of different gas species. MLGs were obtained using mechanical exfoliation methods of pre-exfoliated graphite in acids. The functionalization of MLGs was made through cold plasma using mixtures of CO2, O2, N2 and Ar gases. Investigation of electrical, optical and morphological properties are presented and discussed. Structure and chemical composition were investigated with Raman, FTIR, XPS and other techniques. MLGs showed a certain incorporation of oxygen as can be seen in XPS results. We investigated the treatment conditions and the changes in the materials obtained particularly the properties of MLGs films and pellets. Applications of these treated MLGs in field emission and super capacitor devices are herein presented and discussed, enabling applications in electronic devices and energy storage areas. (author)

  4. Study of plasma-treated multilayer graphene properties

    International Nuclear Information System (INIS)

    Gelamo, R.V.; Machuno, L.G.B.; Rout, C.S.

    2016-01-01

    Full text: This work presents the study of multilayer graphene (MLG) obtainment and functionalization using plasmas of different gas species. MLGs were obtained using mechanical exfoliation methods of pre-exfoliated graphite in acids. The functionalization of MLGs was made through cold plasma using mixtures of CO2, O2, N2 and Ar gases. Investigation of electrical, optical and morphological properties are presented and discussed. Structure and chemical composition were investigated with Raman, FTIR, XPS and other techniques. MLGs showed a certain incorporation of oxygen as can be seen in XPS results. We investigated the treatment conditions and the changes in the materials obtained particularly the properties of MLGs films and pellets. Applications of these treated MLGs in field emission and super capacitor devices are herein presented and discussed, enabling applications in electronic devices and energy storage areas. (author)

  5. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  6. Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons

    International Nuclear Information System (INIS)

    Su, Guozhen; Zhang, Yanchao; Cai, Ling; Su, Shanhe; Chen, Jincan

    2015-01-01

    Most electronic cooling devices are powered by an external bias applied between the cold and the hot reservoirs. Here we propose a new concept of electronic cooling, in which cooling is achieved by using a reservoir of hot electrons as the power source. The cooling device incorporates two energy filters with the Lorentzian transmission function to respectively select low- and high-energy electrons for transport. Based on the proposed model, we analyze the performances of the device varying with the resonant levels and half widths of two energy filters and establish the optimal configuration of the cooling device. It is believed that such a novel device may be practically used in some nano-energy fields. - Highlights: • A new electronic cooling device powered by hot electrons is proposed. • Two energy filters are employed to select the electrons for transport. • The effects of the resonant levels and half widths of two filters are discussed. • The maximum cooling power and coefficient of performance are calculated. • The optimal configuration of the cooling device is determined.

  7. Nanolaminated TiN/Mo2N hard multilayer coatings

    International Nuclear Information System (INIS)

    Martev, I N; Dechev, D A; Ivanov, N P; Uzunov, T S D; Kashchieva, E P

    2010-01-01

    The paper presents results on the synthesis of hard multilayer coatings consisting of titanium nitride and molybdenum nitride thin films with thickness of several nm. The TiN and Mo 2 N films were successively deposited by reactive DC magnetron sputtering. These multilayer structures were investigated by Auger electron spectroscopy (AES), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), cross-section scanning electron microscopy (CSSEM) and cross-section electron probe microanalysis (CSEPMA). The mechanical properties of the multilayer coatings, namely, hardness, Young's modulus and the coefficient of plastic deformation were measured. The adhesion was evaluated by the Rockwell-C-impact test. Coatings with different total thickness were examined with respect to adhesion to substrates of tool materials.

  8. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (filters and power converters.

  9. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    Science.gov (United States)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  10. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

    Science.gov (United States)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-03

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  11. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  12. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  13. A reference device for evaluating the thermal behavior of installed multilayered wall containing a phase change material

    International Nuclear Information System (INIS)

    Pagliolico, S.L.; Sassi, G.; Cascone, Y.; Bongiovanni, R.M.

    2015-01-01

    Highlights: • Thermal analysis of installed wallboards embedding phase change material layer. • Simple devices and real conditions for thermal analysis toward a standardization. • Scanning calorimetric measurements as initial condition for data regression. • Bias correction of calorimetric measurements data by installation factors. • Practical approach to identify a reliable thermal curve for capacitive wallboards. - Abstract: Thermal inertia of lightweight building envelopes can be improved including phase change materials in multilayered wallboards. The thermal modeling of buildings for design purposes needs a robust description of the thermal properties of installed phase change materials. A standard method would improve the thermal characterization of commercial products. The aim of the study is to develop a simple methodology to obtain reliable thermal data for phase change materials integrated in multilayered wallboards. The methodology modifies differential scanning calorimetry measurements on phase change material by installation factors to obtain the apparent specific heat vs. temperature for the wallboard layer embedding phase change material. Simple cubic cells were realized as reference devices to simulate a confined environment. A dynamic model of heat transfer was developed to simulate the thermal behavior of devices. Installation factors were calculated by regression of the monitored temperatures inside and outside the devices operating under real environmental conditions. The apparent specific heat of phase change material, measured by differential scanning calorimetry at different rates, resulted in a spread of curves vs. temperature. Mean curves were used as initial condition for regression. The mean calculation method did not significantly affect the installed resulted curve. A unique curve of apparent specific heat vs. temperature best fit data measured over a wide range of experimental devices and conditions. Good regression

  14. Organic electronic devices using phthalimide compounds

    Science.gov (United States)

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  15. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  16. Investigation of optical properties of Cu/Ni multilayer nanowires embedded in etched ion-track template

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Lu [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Yao, Huijun, E-mail: Yaohuijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Duan, Jinglai; Chen, Yonghui [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lyu, Shuangbao [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Maaz, Khan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad (Pakistan); Mo, Dan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, Jie, E-mail: J.Liu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, Youmei; Hou, Mingdong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-01

    Graphical abstract: The schematic diagram of measurement of extinction spectra of Cu/Ni multilayer nanowire arrays embedded in the template after removing the gold/copper substrate. - Highlights: • The optical properties of Cu/Ni multilayer nanowire arrays were first investigated by UV/Vis/NIR spectrometer and it was confirmed that the extinction peaks strongly related to the periodicity of the multilayer nanowire. • The Ni segment was thought as a kind of impurity which can change the surface electron distribution and thereby the extinction peaks of nanowire. • Current work supplied the clear layer thickness information of Cu and Ni in Cu/Ni multilayer nanowire with TEM and EDS line-scan profile analysis. - Abstract: For understanding the interaction between light and noble/magnetism multilayer nanowires, Cu/Ni multilayer nanowires are fabricated by a multi-potential step deposition technique in etched ion-track polycarbonate template. The component and the corresponding layer thickness of multilayer nanowire are confirmed by TEM and EDS line-scan analysis. By tailoring the nanowire diameter, the Cu layer thickness and the periodicity of the nanowire, the extinction spectral of nanowire arrays exhibit an extra sensitivity to the change of structural parameters. The resonance wavelength caused by surface plasmon resonance increases obviously with increasing the nanowire diameter, the Cu layer thickness and the periodicity. The observations in our work can be explained by the “impurity effect” and coupled effect and can also be optimized for developing optical devices based on multilayer nanowires.

  17. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  18. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    Science.gov (United States)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-09-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1,2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  19. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2 /Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  20. Vacuum nanoelectronic devices novel electron sources and applications

    CERN Document Server

    Evtukh, Anatoliy; Yilmazoglu, Oktay; Mimura, Hidenori; Pavlidis, Dimitris

    2015-01-01

    Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments.  This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. Unique coverage of quantum physical results for electron-field emission and novel electron sourc...

  1. Design of a wideband multilayer grating spectrometer for the study of electronic structure of thin-film CIS solar cells

    International Nuclear Information System (INIS)

    Imazono, Takashi; Koike, Masato; Kuramoto, Satoshi; Nagano, Tetsuya; Koeda, Masaru; Moriya, Naoji

    2014-01-01

    A soft x-ray emission spectrometer equipped with a wideband Ni/C multilayer-coated laminar-type varied-line-spacing holographic grating is designed to analyze the electronic structure in thin-film copper indium selenide (CIS) solar cells nondestructively by soft x-ray emission spectroscopy. The spectrometer equipped with the multilayer grating thus designed allows us to detect the L emission lines of Cu, In, and Se simultaneously from a CIS absorber layer in the 1–3.5 keV range at a constant angle of incidence. (author)

  2. Quantification of multielement-multilayer-samples in electron probe analysis

    International Nuclear Information System (INIS)

    Pfeiffer, A.

    1995-03-01

    The following dissertation presents the theoretical basis of analytical correction models and Monte Carlo simulations in the field of electron probe microanalysis to describe the excitation conditions of x-rays in a multilayer-multielement-sample. In this connection analyzing programs have been developed to make a quantitative investigation of heterogeneous samples possible. In the work the mathematical methods and formulas, which are mainly based on empirical and semiempirical findings, are described and their validity is discussed in detail. Especially the improvements of the 'multiple reflections'-model by August are compared with the Φ(ρz)-models by Pouchou, Merlet and Bastin. The calculations of depth distribution functions for characteristics and continuous fluorescence excitation result in a consistent and completeΦ(ρz)-model. This allows to analyze layered structures in great detail. Because of the increasing importance in electron probe microanalysis and as a reference method a Monte Carlo model is described. With this model electron trajectories and excitation conditions in arbitrary two dimensional geometries can be calculated. The validity of the analytical model is proven with a comprehensive comparison of results of new calculations to published data. To show an application of the programs and models in routine use in the industrial research and development, a quantitative analysis of a Co/Si system is made. In the conclusion of this dissertation some reflections upon investigations, which are based on this work and which should be made in future are outlined. (author)

  3. Interstitial Mo-Assisted Photovoltaic Effect in Multilayer MoSe2 Phototransistors.

    Science.gov (United States)

    Kim, Sunkook; Maassen, Jesse; Lee, Jiyoul; Kim, Seung Min; Han, Gyuchull; Kwon, Junyeon; Hong, Seongin; Park, Jozeph; Liu, Na; Park, Yun Chang; Omkaram, Inturu; Rhyee, Jong-Soo; Hong, Young Ki; Yoon, Youngki

    2018-03-01

    Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe 2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W -1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe 2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe 2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe 2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Investigation of Electronic Corrosion at Device Level

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    This work presents device level testing of a lead free soldered electronic device tested with bias on under cyclic humidity conditions in a climatic chamber. Besides severe temperature and humidity during testing some devices were deliberately contaminated before testing. Contaminants investigated...

  5. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  6. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    Science.gov (United States)

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  7. Energy level alignment at interfaces in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Opitz, Andreas; Frisch, Johannes; Schlesinger, Raphael; Wilke, Andreas; Koch, Norbert

    2013-01-01

    Highlights: ► Energy level alignment is crucial for organic solar cell efficiency. ► Photoelectron spectroscopy can reliably determine energy levels of organic material interfaces. ► Care must be taken to avoid even subtle sample damage. -- Abstract: The alignment of energy levels at interfaces in organic photovoltaic devices is crucial for their energy conversion efficiency. Photoelectron spectroscopy (PES) is a well-established and widely used technique for determining the electronic structure of materials; at the same time PES measurements of conjugated organic materials often pose significant challenges, such as obtaining sufficiently defined sample structures and radiation-induced damage of the organic layers. Here we report how these challenges can be tackled to unravel the energy levels at interfaces in organic photovoltaic devices, i.e., electrode/organic and organic/organic interfaces. The electronic structure across entire photovoltaic multilayer devices can thus be reconciled. Finally, general considerations for correlating the electronic structure and the photovoltaic performance of devices will be discussed

  8. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  9. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  10. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  11. Mechanical properties of highly textured Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Liu, Y.; Bufford, D.; Wang, H.; Sun, C.; Zhang, X.

    2011-01-01

    We report on the synthesis of highly (1 1 1) and (1 0 0) textured Cu/Ni multilayers with individual layer thicknesses, h, varying from 1 to 200 nm. When, h, decreases to 5 nm or less, X-ray diffraction spectra show epitaxial growth of Cu/Ni multilayers. High resolution transmission electron microscopy studies show the coexistence of nanotwins and coherent layer interfaces in highly (1 1 1) textured Cu/Ni multilayers with smaller h. Hardnesses of multilayer films increase with decreasing h, approach a maximum at h of a few nanometers, and show softening thereafter at smaller h. The influence of layer interfaces as well as twin interfaces on strengthening mechanisms of multilayers and the formation of twins in Ni in multilayers are discussed.

  12. Pressurized waterproof case for electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-01

    having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touch-screen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein

  13. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  14. MEMS/Electronic Device Design and Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility allows DoD to design and characterize state-of-the-art microelectromechanical systems (MEMS) and electronic devices. Device designers develop their own...

  15. Characteristics in AlN/AlGaN/GaN Multilayer-Structured High-Electron-Mobility Transistors

    International Nuclear Information System (INIS)

    Gui-Zhou, Hu; Ling, Yang; Li-Yuan, Yang; Si, Quan; Shou-Gao, Jiang; Ji-Gang, Ma; Xiao-Hua, Ma; Yue, Hao

    2010-01-01

    A new multilayer-structured AlN/AlGaN/GaN heterostructure high-electron-mobility transistor (HEMT) is demonstrated. The AlN/AlGaN/GaN HEMT exhibits the maximum drain current density of 800 mA/mm and the maximum extrinsic transconductance of 170 mS/mm. Due to the increase of the distance between the gate and the two-dimensional electron-gas channel, the threshold voltage shifts slightly to the negative. The reduced drain current collapse and higher breakdown voltage are observed on this AlN/AlGaN/GaN HEMT. The current gain cut-off frequency and the maximum frequency of oscillation are 18.5 GHz and 29.0 GHz, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  17. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  18. Asynchronous cracking with dissimilar paths in multilayer graphene.

    Science.gov (United States)

    Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki

    2017-11-16

    Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.

  19. Pressurized waterproof case for electronic device

    KAUST Repository

    Berumen, Michael L.

    2013-01-31

    The pressurized waterproof case for an electronic device is particularly adapted for the waterproof containment and operation of a touch-screen computer or the like therein at some appreciable water depth. The case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touch-screen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may be a small gas cartridge (e.g., CO2), or may be provided from an external source, such as the diver\\'s breathing air. A pressure relief valve is also provided.

  20. Mechanical and thermal properties of commercial multilayer PET/PP film irradiated with electron-beam

    International Nuclear Information System (INIS)

    Ortiz, Angel V.; Nogueira, Beatriz R.; Oliveira, Vitor M.; Moura, Esperidiana A.B.

    2009-01-01

    The effects of electron-beam irradiation on mechanical and thermal properties, for one commercial flexible food packaging multilayer structure, were studied. The laminated poly(ethylene terephthalate) (PET)/ polypropylene (PP) structure was irradiated up to 60 kGy, using a 1.5 MeV electron beam accelerator, at room temperature in the presence of air. Mechanical properties showed significant changes (p < 0.05). In addition, the DSC analysis, after treatment, showed that the fusion enthalpy and crystallinity of the PET/PP structure components presented significant changes (p < 0.05) with the electron-beam radiation doses applied. It was observed an increase in PP crystallinity while the PET crystallinity decreases. Such decrease in PET crystallinity indicates the predominance of a cross-linking process on the irradiated PET layer; responsible for the increase in some mechanical properties of the studied film. (author)

  1. Electron emitting filaments for electron discharge devices

    International Nuclear Information System (INIS)

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1988-01-01

    This patent describes an electron emitting device for use in an electron discharge system. It comprises: a filament having a pair of terminal ends, electrical supply means for supplying electrical power to the terminal ends of the filament for directly heating the filament by the passage of an electrical current along the filament between the terminal ends, the filament being substantially tapered in cross section continuously in one direction from one of its pair of terminal ends to another of its pair of terminal ends to achieve uniform heating of the filament along the length thereof by compensating for the nonuniform current along the filament due to the emission of electrons therefrom

  2. A Multilayer Secure Biomedical Data Management System for Remotely Managing a Very Large Number of Diverse Personal Healthcare Devices

    Directory of Open Access Journals (Sweden)

    KeeHyun Park

    2015-01-01

    Full Text Available In this paper, a multilayer secure biomedical data management system for managing a very large number of diverse personal health devices is proposed. The system has the following characteristics: the system supports international standard communication protocols to achieve interoperability. The system is integrated in the sense that both a PHD communication system and a remote PHD management system work together as a single system. Finally, the system proposed in this paper provides user/message authentication processes to securely transmit biomedical data measured by PHDs based on the concept of a biomedical signature. Some experiments, including the stress test, have been conducted to show that the system proposed/constructed in this study performs very well even when a very large number of PHDs are used. For a stress test, up to 1,200 threads are made to represent the same number of PHD agents. The loss ratio of the ISO/IEEE 11073 messages in the normal system is as high as 14% when 1,200 PHD agents are connected. On the other hand, no message loss occurs in the multilayered system proposed in this study, which demonstrates the superiority of the multilayered system to the normal system with regard to heavy traffic.

  3. Improved multilayer OLED architecture using evolutionary genetic algorithm

    International Nuclear Information System (INIS)

    Quirino, W.G.; Teixeira, K.C.; Legnani, C.; Calil, V.L.; Messer, B.; Neto, O.P. Vilela; Pacheco, M.A.C.; Cremona, M.

    2009-01-01

    Organic light-emitting diodes (OLEDs) constitute a new class of emissive devices, which present high efficiency and low voltage operation, among other advantages over current technology. Multilayer architecture (M-OLED) is generally used to optimize these devices, specially overcoming the suppression of light emission due to the exciton recombination near the metal layers. However, improvement in recombination, transport and charge injection can also be achieved by blending electron and hole transporting layers into the same one. Graded emissive region devices can provide promising results regarding quantum and power efficiency and brightness, as well. The massive number of possible model configurations, however, suggests that a search algorithm would be more suitable for this matter. In this work, multilayer OLEDs were simulated and fabricated using Genetic Algorithms (GAs) as evolutionary strategy to improve their efficiency. Genetic Algorithms are stochastic algorithms based on genetic inheritance and Darwinian strife to survival. In our simulations, it was assumed a 50 nm width graded region, divided into five equally sized layers. The relative concentrations of the materials within each layer were optimized to obtain the lower V/J 0.5 ratio, where V is the applied voltage and J the current density. The best M-OLED architecture obtained by genetic algorithm presented a V/J 0.5 ratio nearly 7% lower than the value reported in the literature. In order to check the experimental validity of the improved results obtained in the simulations, two M-OLEDs with different architectures were fabricated by thermal deposition in high vacuum environment. The results of the comparison between simulation and some experiments are presented and discussed.

  4. Role of interface states on electron transport in a-Si:H/nc-Si:H multilayer structures

    Science.gov (United States)

    Yadav, Asha; Kumari, Juhi; Agarwal, Pratima

    2018-05-01

    In this paper we report, I-V characteristic of a-Si:H/nc-Si:H multilayer structures in lateral as well as transverse direction. In lateral geometry, where the interfaces are parallel to the direction of electronic transport, residual photo conductivity (persistent photoconductivity) is observed after the light was turned off. On the other hand, in transverse geometry, where interfaces are along the direction of electronic transport, the space charge limited currents are affected and higher density of states is obtained. The PPC was more in the structures where numbers of such interface were more. These results have been understood in terms of the charge carriers trapped at the interface, which influence the electronic transport.

  5. Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)

    International Nuclear Information System (INIS)

    Arezki, Hakim; Jaffré, Alexandre; Alamarguy, David; Alvarez, José; Kleider, Jean-Paul; Boutchich, Mohamed; Ho, Kuan-I; Lai, Chao-Sung

    2015-01-01

    Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges. Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities

  6. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  7. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  8. Tissue-electronics interfaces: from implantable devices to engineered tissues

    Science.gov (United States)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  9. Deformation sensor based on polymer-supported discontinuous graphene multi-layer coatings

    International Nuclear Information System (INIS)

    Carotenuto, G.; Schiavo, L.; Romeo, V.; Nicolais, L.

    2014-01-01

    Graphene can be conveniently used in the modification of polymer surfaces. Graphene macromolecules are perfectly transparent to the visible light and electrically conductive, consequently these two properties can be simultaneously provided to polymeric substrates by surface coating with thin graphene layers. In addition, such coating process provides the substrates of: water-repellence, higher surface hardness, low-friction, self-lubrication, gas-barrier properties, and many other functionalities. Polyolefins have a non-polar nature and therefore graphene strongly sticks on their surface. Nano-crystalline graphite can be used as graphene precursor in some chemical processes (e.g., graphite oxide synthesis by the Hummer method), in addition it can be directly applied to the surface of a polyolefin substrate (e.g., polyethylene) to cover it by a thin graphene multilayer. In particular, the nano-crystalline graphite perfectly exfoliate under the application of a combination of shear and friction forces and the produced graphene single-layers perfectly spread and adhere on the polyethylene substrate surface. Such polymeric materials can be used as ITO (indium-tin oxide) substitute and in the fabrication of different electronic devices. Here the fabrication of transparent resistive deformation sensors based on low-density polyethylene films coated by graphene multilayers is described. Such devices are very sensible and show a high reversible and reproducible behavior

  10. Characterization of Mo/Si multilayer growth on stepped topographies

    NARCIS (Netherlands)

    van den Boogaard, Toine; Louis, Eric; Zoethout, E.; Goldberg, K.A.; Bijkerk, Frederik

    2011-01-01

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the step-edge region was studied by cross section transmission electron microscopy. A transition from a continuous- to

  11. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    Science.gov (United States)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  12. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    International Nuclear Information System (INIS)

    Jang, Byung Chul; Kim, Jong Yun; Koo, Beom Jun; Yang, Sang Yoon; Choi, Sung-Yool; Seong, Hyejeong; Im, Sung Gap; Kim, Sung Kyu

    2015-01-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices. (paper)

  13. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  14. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  15. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  16. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Seidel, Paul

    2015-01-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  17. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    OpenAIRE

    T. A. Ismailov; D. V. Evdulov; A. G. Mustafaev; D. K. Ramazanova

    2014-01-01

    In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  18. Heat stability evaluations of Co/SiO2 multilayers

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Koike, Masato; Kanehira, Mika; Satou, Futami; Terauchi, Masami; Sano, Kazuo

    2008-01-01

    The heat stability of Co/SiO 2 multilayers was evaluated. Co/SiO 2 multilayer samples were deposited on Si substrate by means of an ion beam sputtering method, and annealed at temperatures from 100degC to 600degC in a vacuum furnace. For the structural and optical evaluations, small angle x-ray diffraction (XRD) measurements, soft x-ray reflectivity measurements, and transmission electron microscopy (TEM) observations were carried out. As the results, the Co/SiO 2 multilayer samples annealed up to 400degC maintained the initial multilayer structures, and kept almost the same soft x-ray reflectivities as that of the as-deposited Co/SiO 2 multilayer sample. A deterioration of the multilayer structure caused by the growth of Co grains was found on the Co/SiO 2 multilayer samples annealed over 500degC, and the soft x-ray reflectivity dropped in accordance with the deterioration of the multilayer structure. (author)

  19. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.

    Science.gov (United States)

    Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su; Jung, Inhwa; Kim, Hoon-Sik; Meitl, Matthew; Menard, Etienne; Li, Xiuling; Coleman, James J; Paik, Ungyu; Rogers, John A

    2010-05-20

    Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

  20. Electronic cigarette devices and oro-facial trauma (Literature review)

    Science.gov (United States)

    Ghazali, A. F.; Ismail, A. F.; Daud, A.

    2017-08-01

    Detrimental effects of cigarette smoking have been well described and recognized globally. With recent advancement of technology, electronic cigarette has been introduced and gained its popularity and became a global trend, especially among young adults. However, the safety of the electronic devices remains debatable. This paper aimed to compile and review the reported cases of oro-facial trauma related to the usage of electronic cigarette devices. A literature search was conducted using PubMed/Medline in December 2016. The search terms used were a combination of “oral trauma”, “dental trauma”, “oral injury” and “electronic cigarette”. The search included all abstract published from the inception of the database until December 2016. Abstract that was written in English, case report, letter to editors, clinical and human studies were included for analysis. All selected abstract were searched for full articles. A total of 8 articles were included for review. All of the articles were published in 2016 with mostly case reports. The sample size of the studies ranged from 1 to 15 patients. Seven of the included articles are from United States of America and one from Mexico. Our review concluded that the use of electronic cigarette devices posed not only a safety concern but also that the devices were mostly unregulated. There should be a recognized authority body to regulate the safety and standard of the electronic devices.

  1. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    International Nuclear Information System (INIS)

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-01-01

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 angstrom to 304 angstrom) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner

  2. Fabrication of FeSi and Fe{sub 3}Si compounds by electron beam induced mixing of [Fe/Si]{sub 2} and [Fe{sub 3}/Si]{sub 2} multilayers grown by focused electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Porrati, F.; Sachser, R.; Huth, M. [Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Gazzadi, G. C. [S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, 41125 Modena (Italy); Frabboni, S. [S3 Center, Nanoscience Institute-CNR, Via Campi 213/a, 41125 Modena (Italy); FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy)

    2016-06-21

    Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO){sub 5}, and neopentasilane, Si{sub 5}H{sub 12} as precursor gases. The fabrication procedure consisted in preparing multilayer structures which were treated by low-energy electron irradiation and annealing to induce atomic species intermixing. In this way, we are able to fabricate FeSi and Fe{sub 3}Si binary compounds from [Fe/Si]{sub 2} and [Fe{sub 3}/Si]{sub 2} multilayers, as shown by transmission electron microscopy investigations. This fabrication procedure is useful to obtain nanostructured binary alloys from precursors which compete for adsorption sites during growth and, therefore, cannot be used simultaneously.

  3. Reading from electronic devices versus hardcopy text.

    Science.gov (United States)

    Hue, Jennifer E; Rosenfield, Mark; Saá, Gianinna

    2014-01-01

    The use of electronic reading devices has increased dramatically. However, some individuals report increased visual symptoms when reading from electronic screens. This investigation compared reading from two electronic devices (Amazon Kindle or Apple Ipod) versus hardcopy text in two groups of 20 subjects. Subjects performed a 20 min reading task for each condition. Both the accommodative response and reading rate were monitored during the trial. Immediately post-task, subjects completed a questionnaire concerning the ocular symptoms experienced during the task. In comparing the Kindle with hardcopy, no significant difference in the total symptom score was observed, although the mean score for the symptoms of tired eyes and eye discomfort was significantly higher with the Kindle. No significant differences in reading rate were found. When comparing the Ipod with hardcopy, no significant differences in symptom scores were found. The mean reading rate with the Ipod was significantly slower than for hardcopy while the mean lag of accommodation was significantly larger for the Ipod. Given the significant increase in symptoms with the Kindle, and larger lag of accommodation and reduced reading rate with the Ipod, one may conclude that reading from electronic devices is not equivalent to hardcopy.

  4. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  5. Thermal modeling and design of electronic systems and devices

    International Nuclear Information System (INIS)

    Wirtz, R.A.; Lehmann, G.L.

    1990-01-01

    The thermal control electronic devices, particularly those in complex systems with high heat flux density, continues to be of interest to engineers involved in system cooling design and analysis. This volume contains papers presented at the 1990 ASME Winter Annual Meeting in two K-16 sponsored sessions: Empirical Modeling of Heat Transfer in Complex Electronic Systems and Design and Modeling of Heat Transfer Devices in High-Density Electronics. The first group deals with understanding the heat transfer processes in these complex systems. The second group focuses on the use of analysis techniques and empirically determined data in predicting device and system operating performance

  6. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  7. Nanomechanical characterization of multilayered thin film structures for digital micromirror devices

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat; Joshua Jacobs, S.

    2004-01-01

    The digital micromirror device (DMD), used for digital projection displays, comprises a surface-micromachined array of up to 2.07 million aluminum micromirrors (14 μm square and 15 μm pitch), which switch forward and backward thousands of times per second using electrostatic attraction. The nanomechanical properties of the thin-film structures used are important to the performance of the DMD. In this paper, the nanomechanical characterization of the single and multilayered thin film structures, which are of interest in DMDs, is carried out. The hardness, Young's modulus and scratch resistance of TiN/Si, SiO 2 /Si, Al alloy/Si, TiN/Al alloy/Si and SiO 2 /TiN/Al alloy/Si thin-film structures were measured using nanoindentation and nanoscratch techniques, respectively. The residual (internal) stresses developed during the thin film growth were estimated by measuring the radius of curvature of the sample before and after deposition. To better understand the nanomechanical properties of these thin film materials, the surface and interface analysis of the samples were conducted using X-ray photoelectron spectroscopy. The nanomechanical properties of these materials are analyzed and the impact of these properties on micromirror performance is discussed

  8. Scaling of ion implanted Si:P single electron devices

    International Nuclear Information System (INIS)

    Escott, C C; Hudson, F E; Chan, V C; Petersson, K D; Clark, R G; Dzurak, A S

    2007-01-01

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n + ) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number

  9. Scaling of ion implanted Si:P single electron devices

    Energy Technology Data Exchange (ETDEWEB)

    Escott, C C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Hudson, F E [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Chan, V C [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Petersson, K D [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia); Clark, R G [Centre for Quantum Computer Technology, School of Physics, UNSW, Sydney, 2052 (Australia); Dzurak, A S [Centre for Quantum Computer Technology, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)

    2007-06-13

    We present a modelling study on the scaling prospects for phosphorus in silicon (Si:P) single electron devices using readily available commercial and free-to-use software. The devices comprise phosphorus ion implanted, metallically doped (n{sup +}) dots (size range 50-500 nm) with source and drain reservoirs. Modelling results are compared to measurements on fabricated devices and discussed in the context of scaling down to few-electron structures. Given current fabrication constraints, we find that devices with 70-75 donors per dot should be realizable. We comment on methods for further reducing this number.

  10. High yield Cu-Co CPP GMR multilayer sensors

    International Nuclear Information System (INIS)

    Spallas, J., Mao, M., Law, B., Grabner, F., Cerjan, C., O'Kane, O.

    1997-01-01

    We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operational devices to ≥90% per wafer and a significant reduction of the device resistance to ≤560 milliohms and of the uniformity of the device resistance to ≤3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 angstrom/Co 20 angstrom] 18 (third peak) to [Cu 20.5 angstrom/Co 12 angstrom] 30 (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% ± 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% ± 4%. The average second peak CPP sensitivity is 0.09 %/Oe ± 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs

  11. Off-axis electron holography of ferromagnetic multilayer nanowires

    DEFF Research Database (Denmark)

    Akhtari-Zavareh, Azadeh; Carignan, L. P.; Yelon, A.

    2014-01-01

    with respect to the axis of the wires. In thinner Cu/CoFeB ((multilayer, magnetic field vortices were detected, associated with opposing magnetization in neighbouring layers. The measured crystallinity, compositions, and layer thicknesses of individual NWs were found to be significantly different...

  12. Device for the radiation centering at electron emitters

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Jessat, K.; Bahr, G.

    1985-01-01

    The invention has been directed at a device for a simplified and reliable centering of electron beams at electron emitters in particular for welding and thermal surface modifications. The electron beam has been focussed relatively to an electron-optical lens. A movable masked electron detector has been arranged at the electron beam deflection plane. The electron detector is connected with an electronic data evaluation equipment

  13. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  14. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  15. dc-plasma-sprayed electronic-tube device

    Science.gov (United States)

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  16. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  17. 3D Printed structural electronics: embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.H.; Bruning, F.B.J.; Schipper, M.M.R. de; Werff, J.J.J. van der; Germs, W.W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  18. 3D Printed structural electronics : embedding and connecting electronic components into freeform electronic devices

    NARCIS (Netherlands)

    Maalderink, H.H.; Bruning, F.B.J.; de Schipper, M.R.; van der Werff, J.J.; Germs, W.C.; Remmers, J.J.C.; Meinders, E.R.

    2018-01-01

    The need for personalised and smart products drives the development of structural electronics with mass-customisation capability. A number of challenges need to be overcome in order to address the potential of complete free form manufacturing of electronic devices. One key challenge is the

  19. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  20. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  1. Rational design of metal-organic electronic devices: A computational perspective

    Science.gov (United States)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device

  2. Fullerene Derived Molecular Electronic Devices

    Science.gov (United States)

    Menon, Madhu; Srivastava, Deepak; Saini, Subbash

    1998-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale electronic devices. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal grapheme sheet, more complex joints require other mechanisms. In this work we explore structural and electronic properties of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme.

  3. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    International Nuclear Information System (INIS)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-01-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10 −4 to 1.2×10 −3 M with the detect limit of 5×10 −6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept electroactivity in

  4. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun

    2016-06-06

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.

  5. An open-source, programmable pneumatic setup for operation and automated control of single- and multi-layer microfluidic devices

    Directory of Open Access Journals (Sweden)

    Kara Brower

    2018-04-01

    Full Text Available Microfluidic technologies have been used across diverse disciplines (e.g. high-throughput biological measurement, fluid physics, laboratory fluid manipulation but widespread adoption has been limited in part due to the lack of openly disseminated resources that enable non-specialist labs to make and operate their own devices. Here, we report the open-source build of a pneumatic setup capable of operating both single and multilayer (Quake-style microfluidic devices with programmable scripting automation. This setup can operate both simple and complex devices with 48 device valve control inputs and 18 sample inputs, with modular design for easy expansion, at a fraction of the cost of similar commercial solutions. We present a detailed step-by-step guide to building the pneumatic instrumentation, as well as instructions for custom device operation using our software, Geppetto, through an easy-to-use GUI for live on-chip valve actuation and a scripting system for experiment automation. We show robust valve actuation with near real-time software feedback and demonstrate use of the setup for high-throughput biochemical measurements on-chip. This open-source setup will enable specialists and novices alike to run microfluidic devices easily in their own laboratories. Keywords: Microfluidics, Pneumatics, Laboratory automation, Biochip, BioMEMs, Biohacking, Fluid handling, Micro total analysis systems (μTAS, Quake-style valves

  6. Consumers' Use of Personal Electronic Devices in the Kitchen.

    Science.gov (United States)

    Lando, Amy M; Bazaco, Michael C; Chen, Yi

    2018-02-23

    Smartphones, tablets, and other personal electronic devices have become ubiquitous in Americans' daily lives. These devices are used by people throughout the day, including while preparing food. For example, a device may be used to look at recipes and therefore be touched multiple times during food preparation. Previous research has indicated that cell phones can harbor bacteria, including opportunistic human pathogens such as Staphylococcus and Klebsiella spp. This investigation was conducted with data from the 2016 Food Safety Survey (FSS) and from subsequent focus groups to determine the frequency with which consumers use personal electronic devices in the kitchen while preparing food, the types of devices used, and hand washing behaviors after handling these devices. The 2016 FSS is the seventh wave of a repeated cross-sectional survey conducted by the U.S. Food and Drug Administration in collaboration with the U.S. Department of Agriculture. The goal of the FSS is to evaluate U.S. adult consumer attitudes, behaviors, and knowledge about food safety. The FSS included 4,169 adults that were contacted using a dual-frame (land line and cell phone interviews) random-digit-dial sampling process. The personal electronics module was the first of three food safety topics discussed by each of eight consumer focus groups, which were convened in four U.S. cities in fall 2016. Results from the 2016 FSS revealed that of those individuals who use personal electronic devices while cooking, only about one third reported washing hands after touching the device and before continuing cooking. This proportion is significantly lower than that for self-reported hand washing behaviors after touching risky food products such as raw eggs, meat, chicken, or fish. Results from the focus groups highlight the varied usage of these devices during food preparation and the related strategies consumers are using to incorporate personal electric devices into their cooking routines.

  7. Microstructural differences between two Zr(C,N) coatings revealed by analytical transmission electron microscopy

    International Nuclear Information System (INIS)

    Dörfel, Ilona; Rooch, Heidemarie; Österle, Werner

    2012-01-01

    The microstructures of two samples of a Zr(C,N) coating on steel, which unexpectedly differed in their tribological properties, were investigated by analytical transmission electron microscopy. The samples were produced by a cathodic arc evaporation process in two commercial coating devices under similar coating conditions with the exception of the number of Zr targets. The source of the differing tribological properties of the samples was detected by analytical transmission electron microscopy (TEM) methods energy-dispersive X-ray spectroscopy (EDX), energy filtering TEM (EFTEM), electron diffraction, high resolution electron microscopy, and high angel annular dark field. The TEM preparation and the results of the TEM investigations are shown in detail. The origin of the unexpected behavior was determined to be a nano-scale multilayer structure that existed only in the tribologically superior specimen. EDX and EFTEM investigations indicated enrichment in oxygen at the interface between coating and steel substrate in the tribologically inferior sample. Findings of the microstructural configuration were obtained by taking a closer look at the structure and comparing the results of the several analytical TEM techniques. This allows the allocation of the concentration fluctuations in N, C, and Zr to the two thickness fractions of the nano multilayers and a local correlation of the identified minority phase Zr 3 (C,N) 4 to the higher N content in the narrower type of the multilayer fraction of the sample with the excellent tribological properties. The minority phase Zr 3 (C,N) 4 is randomly distributed in the sample with the defective tribological properties. Coating conditions are not topic of this work, but after discussion of the TEM results, the fact that one of the coating devices worked with one Zr target and the other one with two, could be identified as cause for the formation of the nano multilayer structure in the sample with the superior tribological

  8. Ballistic current transport studies of ferromagnetic multilayer films and tunnel junctions (invited)

    International Nuclear Information System (INIS)

    Rippard, W. H.; Perrella, A. C.; Buhrman, R. A.

    2001-01-01

    Three applications of ballistic electron microscopy are used to study, with nanometer-scale resolution, the magnetic and electronic properties of magnetic multilayer thin films and tunnel junctions. First, the capabilities of ballistic electron magnetic microscopy are demonstrated through an investigation of the switching behavior of continuous Ni 80 Fe 20 /Cu/Co trilayer films in the presence of an applied magnetic field. Next, the ballistic, hot-electron transport properties of Co films and multilayers formed by thermal evaporation and magnetron sputtering are compared, a comparison which reveals significant differences in the ballistic transmissivity of thin film multilayers formed by the two techniques. Finally, the electronic properties of thin aluminum oxide tunnel junctions formed by thermal evaporation and sputter deposition are investigated. Here the ballistic electron microscopy studies yield a direct measurement of the barrier height of the aluminum oxide barriers, a result that is invariant over a wide range of oxidation conditions. [copyright] 2001 American Institute of Physics

  9. Vertical coupling and transition energies in multilayer InAs/GaAs quantum-dot structures

    Science.gov (United States)

    Taddei, S.; Colocci, M.; Vinattieri, A.; Bogani, F.; Franchi, S.; Frigeri, P.; Lazzarini, L.; Salviati, G.

    2000-10-01

    Vertically ordered quantum dots in multilayer InAs/GaAs structures have attracted large interest in recent years for device application as light emitters. Contradictory claims on the dependence of the fundamental transition energy on the interlayer separation and number of dot layers have been reported in the literature. We show that either a blueshift or a redshift of the fundamental transition energy can be observed in different coupling conditions and straightforwardly explained by including strain, indium segregation, and electron-hole Coulomb interaction, in good agreement with experimental results.

  10. Reflection of femtosecond pulses from soft X-ray free-electron laser by periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D.; Grigorian, S.; Pietsch, U. [Faculty of Physics, University of Siegen (Germany); Hendel, S.; Bienert, F.; Sacher, M.D.; Heinzmann, U. [Faculty of Physics, University of Bielefeld (Germany)

    2009-08-15

    Recent experiments on a soft X-ray free-electron laser (FEL) source (FLASH in Hamburg) have shown that multilayers (MLs) can be used as optical elements for highly intense X-ray irradiation. An effort to find most appropriate MLs has to consider the femtosecond time structure and the particular photon energy of the FEL. In this paper we have analysed the time response of 'low absorbing' MLs (e.g. such as La/B{sub 4}C) as a function of the number of periods. Interaction of a pulse train of Gaussian shaped sub-pulses using a realistic ML grown by electron-beam evaporation technique has been analysed in the soft-X-ray range. The structural parameters of the MLs were obtained by reflectivity measurements at BESSY II and subsequent profile fittings. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Molecular and nanoscale materials and devices in electronics.

    Science.gov (United States)

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  12. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.

    Science.gov (United States)

    Zhu, Wen; Li, Jiwei; Liu, Jianfeng

    2013-10-01

    We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.

  13. Fiscal 1998 research achievement report. Project for developing key technologies for electronic devices (Projection X-ray exposure process technology and active reflective device structure technology); 1998 nendo denshi device kiban gijutsu kaihatsu jigyo seika hokokusho. Shukusho X sen roko process gijutsu to active hansha kozogata keisei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Studies were conducted for the development of technologies of the very advanced level relating to an ultrafine machining process and high-performance reflector type liquid crystal display structure formation. Studied in the research and development of projection X-ray exposure process technology were multi-layer film formation, absorbing body film formation, absorbing body machining, multi-layer film mask defect evaluation, and cleaning for defect reduction. As the result, multi-layer film formation by Helicon sputtering and formation and machining of film with Ta acting as absorbing body therein were carried out, and it was found by actual exposure experiments that there were excellent X-ray reflectivity and absorbing body contrast. Furthermore, a study was made of cleaning using dummy foreign matters, and 100% removal of dummy foreign matters was achieved across a range up to the 70nm level. Studied in the development of active reflective device structure technology were the addition of an electrical control function to the reflector, addition of an unreflected rays absorbing function, production of a bias stabilized device for the practical application of a memory function, and the development of materials for the fabrication of the said devices. (NEDO)

  14. Exact thermal representation of multilayer rectangular structures by infinite plate structures using the method of images

    Science.gov (United States)

    Palisoc, Arthur L.; Lee, Chin C.

    1988-12-01

    Using the method of images and the analytical temperature solution to the multilayer infinite plate structure, the thermal profile over finite rectangular multilayer integrated circuit devices can be calculated exactly. The advantage of using the image method lies in the enhanced capability of arriving at an analytical solution for structures where analytical solutions do not apparently exist, e.g., circular or arbitrarily oriented rectangular sources over multilayered rectangular structures. The new approach results in large savings in computer CPU time especially for small sources over large substrates. The method also finds very important applications to integrated circuit devices with heat dissipating elements close to the edge boundaries. Results from two examples indicate that the edge boundaries of a device may also be utilized to remove heat from it. This additional heat removing capability should have important applications in high power devices.

  15. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices.

    Science.gov (United States)

    Campbell, Michael G; Dincă, Mircea

    2017-05-12

    In the past decade, advances in electrically conductive metal-organic frameworks (MOFs) and MOF-based electronic devices have created new opportunities for the development of next-generation sensors. Here we review this rapidly-growing field, with a focus on the different types of device configurations that have allowed for the use of MOFs as active components of electronic sensor devices.

  16. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  17. Recent progress on thin-film encapsulation technologies for organic electronic devices

    Science.gov (United States)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  18. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  19. Study of total ionization dose effects in electronic devices

    International Nuclear Information System (INIS)

    Nidhin, T.S.; Bhattacharyya, Anindya; Gour, Aditya; Behera, R.P.; Jayanthi, T.

    2018-01-01

    Radiation effects in electronic devices are a major challenge in the dependable application developments of nuclear power plant instrumentation and control systems. The main radiation effects are total ionization dose (TID) effects, displacement damage dose (DDD) effects and single event effects (SEE). In this study, we are concentrating on TID effects in electronic devices. The focus of the study is mainly on SRAM based field programmable gate arrays (FPGA) along with that the devices of our interest are voltage regulators, flash memory and optocoupler. The experiments are conducted by exposing the devices to gamma radiation in power off condition and the degradation in the performances are analysed

  20. Macroscopic charge quantization in single-electron devices

    NARCIS (Netherlands)

    Burmistrov, I.S.; Pruisken, A.M.M.

    2010-01-01

    In a recent paper by the authors [I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801 (2008)] it was shown that single-electron devices (single-electron transistor or SET) display "macroscopic charge quantization" which is completely analogous to the quantum Hall effect observed on

  1. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  2. GaN epitaxial layers grown on multilayer graphene by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe

    2018-04-01

    In this study, GaN epitaxial layers were successfully deposited on a multilayer graphene (MLG) by using metal-organic chemical vapor deposition (MOCVD). Highly crystalline orientations of the GaN films were confirmed through electron backscatter diffraction (EBSD). An epitaxial relationship between GaN films and MLG is unambiguously established by transmission electron microscope (TEM) analysis. The Raman spectra was used to analyze the internal stress of GaN films, and the spectrum shows residual tensile stress in the GaN films. Moreover, the results of the TEM analysis and Raman spectra indicate that the high quality of the MLG substrate is maintained even after the growth of the GaN film. This high-quality MLG makes it possible to easily remove epitaxial layers from the supporting substrate by micro-mechanical exfoliation technology. This work can aid in the development of transferable devices using GaN films.

  3. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    International Nuclear Information System (INIS)

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  4. Corrugated grating on organic multilayer Bragg reflector

    Science.gov (United States)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  5. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  6. Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials

    Directory of Open Access Journals (Sweden)

    Hao Shen

    2015-05-01

    Full Text Available In contrast to strong plasmonic scattering from metal particles or structures in metal films, we show that patterns of arbitrary shape fabricated out of multilayer hyperbolic metamaterials become invisible within a chosen band of optical frequencies. This is due to anomalously weak scattering when the in-plane permittivity of the multilayer hyperbolic metamaterials is tuned to match with the surrounding medium. This new phenomenon is described theoretically and demonstrated experimentally by optical characterization of various patterns in Au-Si multilayer hyperbolic metamaterials. This anomalously weak scattering is insensitive to pattern sizes, shapes, and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes, and optoelectric devices.

  7. Tunable Multilayer Graphene Metamaterials for Terahertz/Infrared Waveguide Modulators

    DEFF Research Database (Denmark)

    Khromova, Irina; Andryieuski, Andrei; Lavrinenko, Andrei

    regimes of multilayer graphene-dielectric artificial metamaterials. The interplay between interband and intraband transitions in graphene allows converting the structure into a transparent and/or electromagnetically dense artificial medium. The gate voltage can be used to electrically control...... the concentration of carriers in the graphene sheets and, thus, efficiently change the dispersion of the whole structure. Placed inside a hollow waveguide, a multilayer graphene/dielectric metamaterial provides high-speed modulation and tunable bandpass filtering. The absence of scattered radiation enables dense...... the latter to shift its central frequency by 1:25% per every meV graphene Fermi energy change. We believe that graphene-dielectric multilayer metamaterials will constitute the functional platform for THz-IR waveguide-integrated devices....

  8. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    Science.gov (United States)

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  9. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors.

    Science.gov (United States)

    Maity, Kuntal; Mandal, Dipankar

    2018-05-30

    Rapid development of wearable electronics, piezoelectric nanogenerator (PNG), has been paid a special attention because of its sustainable and accessible energy generation. In this context, we present a simple yet highly efficient design strategy to enhance the output performance of an all-organic PNG (OPNG) based on multilayer assembled electrospun poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats where vapor-phase polymerized poly(3,4-ethylenedioxythiophene)-coated PVDF NFs are assembled as electrodes and neat PVDF NFs are utilized as an active component. In addition to the multilayer assembly, electrode compatibility and durability remain a challenging task to mitigate the primary requirements of wearable electronics. A multilayer networked three-dimensional structure integrated with a compatible electrode thereby provides enhanced output voltage and current (e.g., open-circuit voltage, V oc ≈ 48 V, and short-circuit current, I sc ≈ 6 μA, upon 8.3 kPa of the applied stress amplitude) with superior piezoelectric energy conversion efficiency of 66% compared to the single-mat device. Besides, OPNG also shows ultrasensitivity toward human movements such as foot strikes and walking. The weight measurement mapping is critically explored by principal component analysis that may have enormous applications in medical diagnosis to smart packaging industries. More importantly, fatigue test under continuous mechanical impact (over 6 months) shows great promise as a robust wearable mechanical energy harvester.

  10. Trend of Energy Saving in Electronic Devices for Research and Development

    Directory of Open Access Journals (Sweden)

    Rahmayanti R.

    2016-01-01

    Full Text Available In electronic industry, energy saving is one of the performance indicators of competitiveness beside price, speed, bandwidth and reliability. This affects research and development (R&D activity in mechatronic systems which uses electronic components and electronic systems. A review of trend of electronic devices technology development has been conducted with focus on energy saving. This review includes electronic devices, semiconductor, and nanotechnology. It can be concluded that the trend in electronic devices is mainly dictated by semiconductor technology development. The trend can be concluded as smaller size, lower voltage leading to energy saving, less heat, higher speed, more reliable, and cheaper. In accordance to such technology development, R&D activities in mechatronics especially in Indonesia is being pushed to make proper alignment.Some of such alignment actions are surface mount technology (SMT for installing surface mount devices components (SMD, design layout and SMD troubleshooting tools as well as human resources training and development.

  11. System Testability Analysis for Complex Electronic Devices Based on Multisignal Model

    International Nuclear Information System (INIS)

    Long, B; Tian, S L; Huang, J G

    2006-01-01

    It is necessary to consider the system testability problems for electronic devices during their early design phase because modern electronic devices become smaller and more compositive while their function and structure are more complex. Multisignal model, combining advantage of structure model and dependency model, is used to describe the fault dependency relationship for the complex electronic devices, and the main testability indexes (including optimal test program, fault detection rate, fault isolation rate, etc.) to evaluate testability and corresponding algorithms are given. The system testability analysis process is illustrated for USB-GPIB interface circuit with TEAMS toolbox. The experiment results show that the modelling method is simple, the computation speed is rapid and this method has important significance to improve diagnostic capability for complex electronic devices

  12. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    CERN Document Server

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  13. Recent developments of truly stretchable thin film electronic and optoelectronic devices.

    Science.gov (United States)

    Zhao, Juan; Chi, Zhihe; Yang, Zhan; Chen, Xiaojie; Arnold, Michael S; Zhang, Yi; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P

    2018-03-29

    Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e.g. buckling), and the whole device can be bent, twisted, or stretched to meet the demands for practical applications, which are beyond the capability of conventional flexible devices that can only bend or twist. Recently, great achievements have been made toward truly stretchable electronics. Here, the contribution of this review is an effort to provide a panoramic view of the latest progress concerning truly stretchable electronic devices, of which we give special emphasis to three kinds of thin film electronic and optoelectronic devices: (1) thin film transistors, (2) electroluminescent devices (including organic light-emitting diodes, light-emitting electrochemical cells and perovskite light-emitting diodes), and (3) photovoltaics (including organic photovoltaics and perovskite solar cells). We systematically discuss the device design and fabrication strategies, the origin of device stretchability and the relationship between the electrical and mechanical behaviors of the devices. We hope that this review provides a clear outlook of these attractive stretchable devices for a broad range of scientists and attracts more researchers to devote their time to this interesting research field in both industry and academia, thus encouraging more intelligent lifestyles for human beings in the coming future.

  14. Terrestrial radiation effects in ULSI devices and electronic systems

    CERN Document Server

    Ibe, Eishi H

    2014-01-01

    A practical guide on how mathematical approaches can be used to analyze and control radiation effects in semiconductor devices within various environments Covers faults in ULSI devices to failures in electronic systems caused by a wide variety of radiation fields, including electrons, alpha -rays, muons, gamma rays, neutrons and heavy ions. Readers will learn the environmental radiation features at the ground or avionics altitude. Readers will also learn how to make numerical models from physical insight and what kind of mathematical approaches should be implemented to analyze the radiation effects. A wide variety of mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them. The book provides the reader with the knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. It explains how electronic systems including servers and rout...

  15. Capacitor ageing in electronic devices

    Directory of Open Access Journals (Sweden)

    Richard B. N. Vital

    2015-10-01

    Full Text Available The moment when an electronic component doesn’t work like requirements, previously established is a task that need to be considered since began of a system design. However, the use of different technologies, operating under several environmental conditions, makes a component choice a complex step in system design. This paper analyzes the effects that ageing phenomenon of capacitors may introduce in electronic devices operation. For this reason, reliability concepts, processes and mechanism of degradation are presented. Additionally, some mathematical models are presented to assist maintenance activities or component replacement. The presented approach compares the operability of intact and aged components.

  16. INTERFACE ELECTRONIC MEDICAL CARD ON MOBILE DEVICE

    Directory of Open Access Journals (Sweden)

    Y. L. Nechyporenko

    2013-05-01

    Full Text Available The concept designed by electronic medical card for heterogeneous environment of medical information systems at various levels. Appropriate model and technical solution. Done evaluating operating systems for mobile devices. Designed and produced by the project mobile application on Android OS as an electronic medical record on a Tablet PC Acer.

  17. Tuning the hysteresis voltage in 2D multilayer MoS{sub 2} FETs

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jie, E-mail: jiangjie@csu.edu.cn; Zheng, Zhouming; Guo, Junjie

    2016-10-01

    The hysteresis tuning is of great significance before the two-dimensional (2D) molybdenum disulfide (MoS{sub 2}) field-effect transistors (FETs) can be practically used in the next-generation nanoelectronic devices. In this paper, a simple and effective annealing method was developed to tune the hysteresis voltage in 2D MoS{sub 2} transistors. It was found that high temperature (175 °C) annealing in air could increase the hysteresis voltage from 8.0 V (original device) to 28.4 V, while a next vacuum annealing would reduce the hysteresis voltage to be only 2.0 V. An energyband diagram model based on electron trapping/detrapping due to oxygen adsorption is proposed to understand the hysteresis mechanism in multilayer MoS{sub 2} FET. This simple method for tuning the hysteresis voltage of MoS{sub 2} FET can make a significant step toward 2D nanoelectronic device applications.

  18. Optimisation of multi-layer rotationally moulded foamed structures

    Science.gov (United States)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4

  19. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors

    International Nuclear Information System (INIS)

    Bajt, Sasa; Chapman, Henry N.; Nguyen, Nhan; Alameda, Jennifer; Robinson, Jeffrey C.; Malinowski, Michael; Gullikson, Eric; Aquila, Andrew; Tarrio, Charles; Grantham, Steven

    2003-01-01

    Multilayer lifetime has emerged as one of the major issues for the commercialization of extreme-ultraviolet lithography (EUVL). We describe the performance of an oxidation-resistant capping layer of Ru atop multilayers that results in a reflectivity above 69% at 13.2 nm, which is suitable for EUVL projection optics and has been tested with accelerated electron-beam and extreme-ultraviolet (EUV) light in a water-vapor environment. Based on accelerated exposure results, we calculated multilayer lifetimes for all reflective mirrors in a typical commercial EUVL tool and concluded that Ru-capped multilayers have ∼40x longer lifetimes than Si-capped multilayers, which translates to 3 months to many years, depending on the mirror dose

  20. Device for monitoring electron-ion ring parameters

    International Nuclear Information System (INIS)

    Tyutyunnikov, S.I.; Shalyapin, V.N.

    1982-01-01

    The invention is classified as the method of collective ion acceleration. The device for electron-ion ring parameters monitoring is described. The invention is aimed at increasing functional possibilities of the device at the expense of the enchance in the number of the ring controlled parameters. The device comprises three similar plane mirrors installed over accelerating tube circumference and a mirror manufactured in the form of prism and located in the tube centre, as well as the system of synchrotron radiation recording and processing. Two plane mirrors are installed at an angle of 45 deg to the vertical axis. The angle of the third plane mirror 3 α and that of prismatic mirror 2 α to the vertical axis depend on geometric parameters of the ring and accelerating tube and they are determined by the expression α=arc sin R K /2(R T -L), where R K - ring radius, R T - accelerating tube radius, L - the height of segment, formed by the mirror and inner surface of the accelerating tube. The device suggested permits to determine longitudinal dimensions of the ring, its velocity and the number of electrons and ions in the ring

  1. An examination of safety reports involving electronic flight bags and portable electronic devices

    Science.gov (United States)

    2014-06-01

    The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...

  2. The Effect of Electronic Devices Self-Efficacy, Electronic Devices Usage and Information Security Awareness on Identity-Theft Anxiety Level

    Science.gov (United States)

    Sanga, Sushma

    2016-01-01

    Identity-theft means stealing someone's personal information and using it without his or her permission. Each year, millions of Americans are becoming the victims of identity-theft, and this is one of the seriously growing and widespread issues in the U.S. This study examines the effect of electronic devices self-efficacy, electronic devices…

  3. Economic analysis of evolution/devolution of electronic devices functionality

    Directory of Open Access Journals (Sweden)

    Esipov A. S.

    2017-12-01

    Full Text Available the researcher of this article has presented the analysis of evolution/devolution of electronic devices functionality as well as the analysis of the current situation at the computers and mobile devices market, and some thoughts about new products. Is a newer device better? Are corporations producing really new devices or they are only the improvement of old ones.

  4. A multilayer concentric filter device to diminish clogging for separation of particles and microalgae based on size.

    Science.gov (United States)

    Chen, Chih-Chung; Chen, Yu-An; Liu, Yi-Ju; Yao, Da-Jeng

    2014-04-21

    Microalgae species have great economic importance; they are a source of medicines, health foods, animal feeds, industrial pigments, cosmetic additives and biodiesel. Specific microalgae species collected from the environment must be isolated for examination and further application, but their varied size and culture conditions make their isolation using conventional methods, such as filtration, streaking plate and flow cytometric sorting, labour-intensive and costly. A separation device based on size is one of the most rapid, simple and inexpensive methods to separate microalgae, but this approach encounters major disadvantages of clogging and multiple filtration steps when the size of microalgae varies over a wide range. In this work, we propose a multilayer concentric filter device with varied pore size and is driven by a centrifugation force. The device, which includes multiple filter layers, was employed to separate a heterogeneous population of microparticles into several subpopulations by filtration in one step. A cross-flow to attenuate prospective clogging was generated by altering the rate of rotation instantly through the relative motion between the fluid and the filter according to the structural design of the device. Mixed microparticles of varied size were tested to demonstrate that clogging was significantly suppressed due to a highly efficient separation. Microalgae in a heterogeneous population collected from an environmental soil collection were separated and enriched into four subpopulations according to size in a one step filtration process. A microalgae sample contaminated with bacteria and insect eggs was also tested to prove the decontamination capability of the device.

  5. Interface characterization in B-based multilayer mirrors for next generation lithography

    International Nuclear Information System (INIS)

    Naujok, Philipp; Yulin, Sergiy; Müller, Robert; Kaiser, Norbert; Tünnermann, Andreas

    2016-01-01

    The interfaces in La/B_4C and LaN/B_4C multilayer mirrors designed for near normal incidence reflection of 6.x nm EUV light were investigated by grazing incidence X-ray reflectometry, high-resolution transmission electron microscopy and EUV reflectometry. The thickness and roughness asymmetries of the different interfaces in both studied systems have been identified. A development of interface roughness with an increasing number of bilayers was found by different investigation methods. For near normal incidence, R = 51.1% @ λ = 6.65 nm could be reached with our La/B_4C multilayer mirrors, whereas R = 58.1% was achieved with LaN/B_4C multilayers at the same wavelength. - Highlights: • Interface structure in B-based multilayer mirrors investigated. • Combining X-ray reflection, EUV reflection and transmission electron microscopy • Interface thickness and roughness asymmetry identified • Interface roughness increases with higher number of bilayers.

  6. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Science.gov (United States)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  7. A reconfigurable image tube using an external electronic image readout

    Science.gov (United States)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  8. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco); LMPG, Ecole supérieure de technologie, Université Hassan de Casablanca, Casablanca (Morocco); Moubah, R.; El Bahoui, A.; Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco)

    2017-04-15

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t{sub Fe}). The change of magnetization as a function of temperature is well depicted by a T{sup 3/2} law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  9. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    International Nuclear Information System (INIS)

    Salhi, H.; Moubah, R.; El Bahoui, A.; Lassri, H.

    2017-01-01

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t Fe ). The change of magnetization as a function of temperature is well depicted by a T 3/2 law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  10. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  11. Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene)

    Science.gov (United States)

    Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.

    1996-05-01

    Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.

  12. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Science.gov (United States)

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  13. On electron and pion identification using a multilayer perceptron in the transition radiation detector of the CBM experiment

    International Nuclear Information System (INIS)

    Akishina, T.P.; Denisova, O.Yu.; Ivanov, V.V.

    2009-01-01

    The problem of pion-electron identification based on their energy losses in the TRD is considered in the frame of the CBM experiment. For particles identification an artificial neural network (ANN) was used, a multilayer perceptron realized in JETNET and ROOT packages. It is demonstrated that, in order to get correct and comparable results, it is important to define the network structure correctly. The recommendations for such a selection are given. In order to achieve an acceptable level of pions suppression, the energy losses need to be transformed to more 'effective' variables. The dependency of ANN output threshold for a fixed portion of electron loss on the particle momentum is presented

  14. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    Science.gov (United States)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  15. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thinning of multilayer graphene to monolayer graphene in a plasma environment

    International Nuclear Information System (INIS)

    Hazra, K S; Misra, D S; Rafiee, J; Rafiee, M A; Koratkar, N; Mathur, A; Roy, S S; McLauhglin, J

    2011-01-01

    We present a facile approach to transform multilayer graphene to single-layer graphene in a gradual thinning process. Our technique is based upon gradual etching of multilayer graphene in a hydrogen and nitrogen plasma environment. High resolution transmission microscopy, selected area electron diffraction and Raman spectroscopy confirm the transformation of multilayer graphene to monolayer graphene at a substrate temperature of ∼ 400 0 C. The shift in the position of the G-band peak shows a perfect linear dependence with substrate temperature, which indicates a controlled gradual etching process. Selected area electron diffraction also confirmed the removal of functional groups from the graphene surface due to the plasma treatment. We also show that plasma treatment can be used to engineer graphene nanomesh structures.

  17. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  18. Electronic medical devices: a primer for pathologists.

    Science.gov (United States)

    Weitzman, James B

    2003-07-01

    Electronic medical devices (EMDs) with downloadable memories, such as implantable cardiac pacemakers, defibrillators, drug pumps, insulin pumps, and glucose monitors, are now an integral part of routine medical practice in the United States, and functional organ replacements, such as the artificial heart, pancreas, and retina, will most likely become commonplace in the near future. Often, EMDs end up in the hands of the pathologist as a surgical specimen or at autopsy. No established guidelines for systematic examination and reporting or comprehensive reviews of EMDs currently exist for the pathologist. To provide pathologists with a general overview of EMDs, including a brief history; epidemiology; essential technical aspects, indications, contraindications, and complications of selected devices; potential applications in pathology; relevant government regulations; and suggested examination and reporting guidelines. Articles indexed on PubMed of the National Library of Medicine, various medical and history of medicine textbooks, US Food and Drug Administration publications and product information, and specifications provided by device manufacturers. Studies were selected on the basis of relevance to the study objectives. Descriptive data were selected by the author. Suggested examination and reporting guidelines for EMDs received as surgical specimens and retrieved at autopsy. Electronic medical devices received as surgical specimens and retrieved at autopsy are increasing in number and level of sophistication. They should be systematically examined and reported, should have electronic memories downloaded when indicated, will help pathologists answer more questions with greater certainty, and should become an integral part of the formal knowledge base, research focus, training, and practice of pathology.

  19. Tunable photonic multilayer sensors from photo-crosslinkable polymers

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan

    2014-03-01

    The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.

  20. Shelf life of electronic/electrical devices

    International Nuclear Information System (INIS)

    Polanco, S.; Behera, A.K.

    1993-01-01

    This paper discusses inconsistencies which exist between various industry practices regarding the determination of shelf life for electrical and electronic components. New methodologies developed to evaluate the shelf life of electrical and electronic components are described and numerous tests performed at Commonwealth Edison Company's Central Receiving Inspection and Testing (CRIT) Facility are presented. Based upon testing and analysis using the Arrhenius methodology and typical materials used in the manufacturing of electrical and electronic components, shelf life of these devices was determined to be indefinite. Various recommendations to achieve an indefinite. Various recommendations to achieve an indefinite shelf life are presented to ultimately reduce inventory and operating costs at nuclear power plants

  1. Non-destructive Reliability Evaluation of Electronic Device by ESPI

    International Nuclear Information System (INIS)

    Yoon, Sung Un; Kim, Koung Suk; Kang, Ki Soo; Jo, Seon Hyung

    2001-01-01

    This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information

  2. Magnetic studies of spin wave excitations in Ni/Au multilayers

    International Nuclear Information System (INIS)

    Salhi, H.; Chafai, K.; Benkirane, K.; Lassri, H.; Abid, M.; Hlil, E.K.

    2010-01-01

    Ni/Au multilayers were prepared by the electron beam evaporation method under ultra high vacuum conditions. The multilayer films have a coherent structure with (1 1 1) texture. The magnetic properties of Ni/Au multilayers are examined as a function of Ni layer thickness t Ni . The temperature dependence of the spontaneous magnetization M(T) is well described by a T 3/2 law in all multilayers. A spin wave theory has been used to explain the magnetization versus temperature. Based on this theory, the approximate values for the bulk exchange interaction J b , surface exchange interaction J S and the interlayer coupling strength J I have been obtained for various Ni layer thicknesses.

  3. Magnetothermoelectric figure of merit of Co/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X. K., E-mail: xiukun.hu@ptb.de; Krzysteczko, P.; Liebing, N.; Schumacher, H. W. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig (Germany); Serrano-Guisan, S. [International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga (Portugal); Rott, K.; Reiss, G. [Fakultät für Physik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany); Kimling, J.; Böhnert, T.; Nielsch, K. [Institut für Angewandte Physik, Universität Hamburg, Jungiusstraße 11, D-20355 Hamburg (Germany)

    2014-03-03

    The switching of the magnetic configuration of giant magnetoresistance multilayers not only changes the electrical and thermal conductivities but also the thermopower. We study the magnetotransport and the magnetothermoelectric properties of Co/Cu multilayer devices in a lateral thermal gradient. The Seebeck coefficient reaches values up to −18 μV/K at room temperature and shows a magnetic field dependence up to 28.6% upon spin reversal. In combination with thermal conductivity data of the same Co/Cu stack, we find a magnetothermoelectric figure of merit of up to 65%. Furthermore, a magneto-power factor of up to 110% is derived.

  4. Domain structures and magnetization reversal in Co/Pd and CoFeB/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sbiaa, R., E-mail: rachid@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123 (Oman); Ranjbar, M. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden)

    2015-05-07

    Domain structures and magnetization reversal of (Co/Pd) and (CoFeB/Pd) multilayers with 7 and 14 repeats were investigated. The Co-based multilayers show much larger coercivities, a better squareness, and a sharper magnetization switching than CoFeB-based multilayers. From magnetic force microscopy observations, both structures show strong reduction in domains size as the number of repeats increases but the magnetic domains for Co-based multilayers are more than one order of magnitude larger than for CoFeB-based multilayers. By imaging domains at different times, breaks in the (CoFeB/Pd) multilayer stripes were observed within only few hours, while no change could be seen for (Co/Pd) multilayers. Although CoFeB single layers are suitable for magnetoresistive devices due to their large spin polarization and low damping constants, their lamination with Pd suffers mainly from thermal instability.

  5. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p-n heterojunctions.

    Science.gov (United States)

    Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian

    2016-10-12

    Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.

  6. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  7. Ocular Tolerance of Contemporary Electronic Display Devices.

    Science.gov (United States)

    Clark, Andrew J; Yang, Paul; Khaderi, Khizer R; Moshfeghi, Andrew A

    2018-05-01

    Electronic displays have become an integral part of life in the developed world since the revolution of mobile computing a decade ago. With the release of multiple consumer-grade virtual reality (VR) and augmented reality (AR) products in the past 2 years utilizing head-mounted displays (HMDs), as well as the development of low-cost, smartphone-based HMDs, the ability to intimately interact with electronic screens is greater than ever. VR/AR HMDs also place the display at much closer ocular proximity than traditional electronic devices while also isolating the user from the ambient environment to create a "closed" system between the user's eyes and the display. Whether the increased interaction with these devices places the user's retina at higher risk of damage is currently unclear. Herein, the authors review the discovery of photochemical damage of the retina from visible light as well as summarize relevant clinical and preclinical data regarding the influence of modern display devices on retinal health. Multiple preclinical studies have been performed with modern light-emitting diode technology demonstrating damage to the retina at modest exposure levels, particularly from blue-light wavelengths. Unfortunately, high-quality in-human studies are lacking, and the small clinical investigations performed to date have failed to keep pace with the rapid evolutions in display technology. Clinical investigations assessing the effect of HMDs on human retinal function are also yet to be performed. From the available data, modern consumer electronic displays do not appear to pose any acute risk to vision with average use; however, future studies with well-defined clinical outcomes and illuminance metrics are needed to better understand the long-term risks of cumulative exposure to electronic displays in general and with "closed" VR/AR HMDs in particular. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:346-354.]. Copyright 2018, SLACK Incorporated.

  8. Opto-electronic devices with nanoparticles and their assemblies

    Science.gov (United States)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.

  9. Bulk and interface quantum states of electrons in multi-layer heterostructures with topological materials

    Science.gov (United States)

    Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.

    2018-06-01

    In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.

  10. Optical Properties of Multilayer CdSe/POLYMER Structures

    Science.gov (United States)

    Red'Ko, V. P.; Voitenkov, A. I.; Kovalenko, O. E.

    The effects of preparation condition, concentration and size of particles upon optical and photoelectrical characteristics of multilayer structures CdSe/polyethylene terephthalate obtained by electron-beam evaporation were investigated.

  11. Surface modification of multilayer graphene using Ga ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Shao, Ying; Ge, Daohan; Ren, Naifei [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yang, Qizhi [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State key laboratory of Robotics, Chinese Academy of Sciences, Shengyang 110000 (China)

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  12. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  13. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  14. Operation of a LAr-TPC equipped with a multilayer LEM charge readout

    Science.gov (United States)

    Baibussinov, B.; Centro, S.; Farnese, C.; Fava, A.; Gibin, D.; Guglielmi, A.; Meng, G.; Pietropaolo, F.; Varanini, F.; Ventura, S.; Zatrimaylov, K.

    2018-03-01

    A novel detector for ionization signals in a single phase LAr-TPC has been experimented in the ICARINO test facility at the INFN Laboratories in Legnaro. It is based on the adoption of a multilayer Large Electron Multiplier (LEM) replacing the traditional anodic wire arrays. Cosmic muon tracks were detected allowing the measurement of energy deposition and a first determination of the signal to noise ratio. The analysis of the recorded events demonstrated the 3D reconstruction capability of this device for ionizing events in liquid Argon. The collected fraction of ionization charge is close to about 90%, with signal to noise ratio similar to that measured with more traditional wire chambers.

  15. Effect of swift heavy ion-irradiation on Cr/Fe/Ni multilayers

    International Nuclear Information System (INIS)

    Gupta, Ratnesh; Gupta, Ajay; Avasthi, D.K.; Principi, G.; Tosello, C.

    1999-01-01

    A multilayer film having overall composition Fe 50 Cr 25 Ni 25 , was irradiated successively by 80 MeV Si ions and Ag ions of 150 and 200 MeV energy. The energy deposited in the multilayer in the form of electronic excitations results in significant modification at the interfaces. The interfacial roughness increases in the system after the irradiations as revealed by X-ray reflectivity measurement. Moessbauer measurements provide evidence of intermixing after the irradiation by 200 MeV Ag ions. Comparison of heavy ion irradiated multilayer has been done with annealed and low energy ion irradiated samples. Results suggest that the phases formed at the interfaces of iron as a result of electronic energy loss are similar to those in the cases of thermal diffusion and keV energy ion beam irradiation

  16. Processes for multi-layer devices utilizing layer transfer

    Science.gov (United States)

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  17. Indium antimonide quantum well structures for electronic device applications

    Science.gov (United States)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  18. 77 FR 24764 - Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices

    Science.gov (United States)

    2012-04-25

    ...-0053] Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices AGENCY... proposed voluntary NHTSA Driver Distraction Guidelines for in-vehicle electronic devices. The agency... Driver Distraction Guidelines for in-vehicle electronic devices (77 FR 11200). The proposed NHTSA...

  19. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  20. Electronic voltage and current transformers testing device.

    Science.gov (United States)

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  1. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  2. Advanced Materials and Devices for Bioresorbable Electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of

  3. Ultrasensitive Terahertz Waveguide Modulators Using Multilayer Graphene Metamaterials

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz-infrared electromagnetic properties of multilayer graphene- dielectric metamaterial and present novel waveguide-based devices: modulators with high mod- ulation depth ( > 38 dB at 0 : 07 eV graphene’s Fermi energy change) or extreme sensitivity (mod- ulation depth of > 13 : 2 d...

  4. An electron cooling device in the one MeV energy region

    International Nuclear Information System (INIS)

    Busso, L.; Tecchio, L.; Tosello, F.

    1987-01-01

    The project of an electron cooling device at 700 KeV electron energy is reported. The single parts of the device is described in detail. Electron beam diagnostics and technical problems is discussed. The electron gun, the accelerating/decelerating column and the collector have been studied by menas of the Herrmannsfeldt's program and at present are under construction. The high voltage system and the electron cooling magnet are also under construction. Vacuum tests with both hot and cold cathodes have demonstrated that the vacuum requirements can be attained by the use of non-evaporable getter (NEG) pumps between gun, collector and the cooling region. Both kinds of diagnostic for longitudinal and transversal electron temperature measurements are in progress. A first prototype of the synchronous picj-up was successfully tested at CERN SPS. At present the diagnostic with laser beam is in preparation. During the next year the device will be assembled and the laboratory test will be started

  5. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  6. iPosture: The Size of Electronic Consumer Devices Affects our Behavior

    OpenAIRE

    Bos, Maarten W.; Cuddy, Amy J. C.

    2013-01-01

    We examined whether incidental body posture, prompted by working on electronic devices of different sizes, affects power-related behaviors. Grounded in research showing that adopting expansive body postures increases psychological power, we hypothesized that working on larger devices, which forces people to physically expand, causes users to behave more assertively. Participants were randomly assigned to interact with one of four electronic devices that varied in size: an iPod Touch, an iPad,...

  7. Electronic spectrum of a deterministic single-donor device in silicon

    International Nuclear Information System (INIS)

    Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2013-01-01

    We report the fabrication of a single-electron transistor (SET) based on an individual phosphorus dopant that is deterministically positioned between the dopant-based electrodes of a transport device in silicon. Electronic characterization at mK-temperatures reveals a charging energy that is very similar to the value expected for isolated P donors in a bulk Si environment. Furthermore, we find indications for bulk-like one-electron excited states in the co-tunneling spectrum of the device, in sharp contrast to previous reports on transport through single dopants

  8. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Science.gov (United States)

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  9. Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiNx/SiO2 buffer

    Science.gov (United States)

    Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong

    2017-08-01

    We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.

  10. Plykin type attractor in electronic device simulated in MULTISIM

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2011-12-01

    An electronic device is suggested representing a non-autonomous dynamical system with hyperbolic chaotic attractor of Plykin type in the stroboscopic map, and the results of its simulation with software package NI MULTISIM are considered in comparison with numerical integration of the underlying differential equations. A main practical advantage of electronic devices of this kind is their structural stability that means insensitivity of the chaotic dynamics in respect to variations of functions and parameters of elements constituting the system as well as to interferences and noises.

  11. Remote Monitoring of Cardiac Implantable Electronic Devices.

    Science.gov (United States)

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. Electronic device, system on chip ad method of monitoring data traffic

    NARCIS (Netherlands)

    2011-01-01

    Therefore, an electronic device is provided which comprises a plurality of processing units (IP1-IP6), and a network-based interconnect (N) coupling the processing units (IP1-IP6) for enabling at least one first communication path (C) between the processing units (IP1-IP6). The electronic device

  13. Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology

    Science.gov (United States)

    Peckinpaugh, C. J.

    1974-01-01

    Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.

  14. Handling magnetic anisotropy and magnetoimpedance effect in flexible multilayers under external stress

    Energy Technology Data Exchange (ETDEWEB)

    Agra, K.; Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Mori, T.J.A. [Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, 1000, Guará, 13083-100 Campinas, SP (Brazil); Callegari, G.L.; Dorneles, L.S. [Departamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Correa, M.A., E-mail: marciocorrea@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2016-12-15

    We investigate the dynamic magnetic response though magnetoimpedance effect of ferromagnetic flexible NiFe/Ta and FeCuNbSiB/Ta multilayers under external stress. We explore the possibility of handling magnetic anisotropy, and consequently the magnetoimpedance effect, of magnetostrictive multilayers deposited onto flexible substrates. We quantify the sensitivity of the multilayers under external stress by calculating the ratio between impedance variations and external stress changes, and show that considerable values can be reached by tuning the magnetic field, frequency, magnetostriction constant, and external stress. The results extend possibilities of application of magnetostrictive multilayers deposited onto flexible substrates when under external stress and place them as very attractive candidates as element sensor for the development of sensitive smart touch sensors. - Highlights: • We investigate the magnetoimpedance effect in magnetostrictive flexible multilayers grown on flexible substrates. • The external applied stress enables to tuning the samples anisotropies, and consequently the MI performance. • The flexible substrate becomes promising candidate for RF-frequency devices.

  15. Analog Multilayer Perceptron Circuit with On-chip Learning: Portable Electronic Nose

    Science.gov (United States)

    Pan, Chih-Heng; Tang, Kea-Tiong

    2011-09-01

    This article presents an analog multilayer perceptron (MLP) neural network circuit with on-chip back propagation learning. This low power and small area analog MLP circuit is proposed to implement as a classifier in an electronic nose (E-nose). Comparing with the E-nose using microprocessor or FPGA as a classifier, the E-nose applying analog circuit as a classifier can be faster and much smaller, demonstrate greater power efficiency and be capable of developing a portable E-nose [1]. The system contains four inputs, four hidden neurons, and only one output neuron; this simple structure allows the circuit to have a smaller area and less power consumption. The circuit is fabricated using TSMC 0.18 μm 1P6M CMOS process with 1.8 V supply voltage. The area of this chip is 1.353×1.353 mm2 and the power consumption is 0.54 mW. Post-layout simulations show that the proposed analog MLP circuit can be successively trained to identify three kinds of fruit odors.

  16. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature

    Science.gov (United States)

    Sun, Hong-Tao; Wang, Xiao-Ping; Kou, Zhi-Qi; Wang, Li-Jun; Wang, Jin-Ye; Sun, Yi-Qing

    2015-04-01

    Highly transparent indium-free composite electrodes of TiO2/Cu/TiO2 are deposited by electron-beam evaporation at room temperature. The effects of Cu thickness and annealing temperature on the electrical and optical properties of the multilayer film are investigated. The critical thickness of Cu mid-layer to form a continuous conducting layer is found to be 11 nm. The multilayer with a mid-Cu thickness of 11 nm is optimized to obtain a resistivity of 7.4×10-5 Ω·cm and an average optical transmittance of 86% in the visible spectral range. The figure of merit of the TiO2/Cu(11 nm)/TiO2 multilayer annealed at 150 °C reaches a minimum resistivity of 5.9×10-5 Ω·cm and an average optical transmittance of 88% in the visible spectral range. The experimental results indicate that TiO2/Cu/TiO2 multilayers can be used as a transparent electrode for solar cell and other display applications. Project supported by the Research Innovation Key Project of Education Committee of Shanghai, China (Grant No. 14ZZ137) and the National Cultivation Fund from University of Shanghai for Science and Technology (Grant No. 14XPM04).

  17. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  18. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    Science.gov (United States)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  19. 78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation

    Science.gov (United States)

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...

  20. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Directory of Open Access Journals (Sweden)

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  1. Electronic bipolar resistive switching behavior in Ni/VOx/Al device

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Mengseng [School of Electronic Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300130 (China); School of Electronic Information Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384 (China); Zhang, Kailiang, E-mail: kailiang_zhang@163.com [School of Electronic Information Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384 (China); Yang, Ruixia, E-mail: yangrx@hebut.edu.cn [School of Electronic Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300130 (China); Wang, Fang; Zhang, Zhichao; Wu, Shijian [School of Electronic Information Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384 (China)

    2017-07-15

    Highlights: • The resistive random access memory of Ni/VOx/Al was fabricated. • The device has the electronic bipolar resistive switching characteristic. • The activity energy (Ea) of HRS has been calculated. • The reasons of the degradation of the resistance ratio of HRS/LRS were analyzed. - Abstract: In this paper, the Ni/VOx/Al resistive random access memory (RRAM) device is constructed and it shows bipolar resistive switching behavior, low resistive state (LRS) nonlinearity, and good retention. The set and reset processes are likely induced by the electron trapping and detrapping of trapping centers in the VOx films, respectively. The conduction mechanism in negative/positive region are controlled by space charge limited current mechanism (SCLC)/Schottky emission. The temperature dependence of I–V curves for HRS is measured to confirm the defects trapping and detrapping electrons model. activation energy was calculated to analyze the endurance performance of the device. The detailed analysis of the switching behavior with SCLC mechanism and Schottky emission mechanism could provide useful information for electronic bipolar resistive switching (eBRS) characteristics.

  2. Electronic bipolar resistive switching behavior in Ni/VOx/Al device

    International Nuclear Information System (INIS)

    Xia, Mengseng; Zhang, Kailiang; Yang, Ruixia; Wang, Fang; Zhang, Zhichao; Wu, Shijian

    2017-01-01

    Highlights: • The resistive random access memory of Ni/VOx/Al was fabricated. • The device has the electronic bipolar resistive switching characteristic. • The activity energy (Ea) of HRS has been calculated. • The reasons of the degradation of the resistance ratio of HRS/LRS were analyzed. - Abstract: In this paper, the Ni/VOx/Al resistive random access memory (RRAM) device is constructed and it shows bipolar resistive switching behavior, low resistive state (LRS) nonlinearity, and good retention. The set and reset processes are likely induced by the electron trapping and detrapping of trapping centers in the VOx films, respectively. The conduction mechanism in negative/positive region are controlled by space charge limited current mechanism (SCLC)/Schottky emission. The temperature dependence of I–V curves for HRS is measured to confirm the defects trapping and detrapping electrons model. activation energy was calculated to analyze the endurance performance of the device. The detailed analysis of the switching behavior with SCLC mechanism and Schottky emission mechanism could provide useful information for electronic bipolar resistive switching (eBRS) characteristics.

  3. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    International Nuclear Information System (INIS)

    Conde, J.C.; Martín, E.; Stefanov, S.; Alpuim, P.; Chiussi, S.

    2012-01-01

    Highlights: ► nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. ► UV-ELA technique causes a rapid heating that provokes the H 2 desorption from the Si surface and bulk material. ► Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. ► These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO 2 . ► To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. ► The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25 ns pulse length and energy densities ranging from 50 mJ/cm 2 to 400 mJ/cm 2 have been calculated. Numerical results allowed us to estimate the dehydrogenation

  4. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  5. Effects of Various Passivation Layers on Electrical Properties of Multilayer MoS₂ Transistors.

    Science.gov (United States)

    Ma, Jiyeon; Yoo, Geonwook

    2018-09-01

    So far many of research on transition metal dichalcogenides (TMDCs) are based on a bottomgate device structure due to difficulty with depositing a dielectric film on top of TMDs channel layer. In this work, we study different effects of various passivation layers on electrical properties of multilayer MoS2 transistors: spin-coated CYTOP, SU-8, and thermal evaporated MoOX. The SU-8 passivation layer alters device performance least significantly, and MoOX induces positive threshold voltage shift of ~8.0 V due to charge depletion at the interface, and the device with CYTOP layer exhibits decreased field-effect mobility by ~50% due to electric dipole field effect of C-F bonds in the end groups. Our results imply that electrical properties of the multilayer MoS2 transistors can be modulated using a passivation layer, and therefore a proper passivation layer should be considered for MoS2 device structures.

  6. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Science.gov (United States)

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Chih-Jui; Ho, Chia-Ling

    2012-01-01

    Highlights: ► Multilayered architecture of the graphene/MnO 2 electrode is fabricated. ► The composite provides horizontal and vertical channels for electrolyte access. ► Graphene (GN) layer provides fast electron conduction in the composite. ► MnO 2 nanowire layer on the GN layer suppresses the oxygen evolution reaction. ► Capacitance behavior is enhanced by the multilayered architecture of GN/MnO 2 . - Abstract: Multilayered graphene/MnO 2 nanocomposite electrode prepared by anodic electrodeposition and electrophoresis exhibited superior capacitive behavior compared to the bare MnO 2 and graphene electrodes. The multilayered architecture provided both the horizontal and vertical channels for electrolyte access during fast charging and discharging. The graphene layer turned out to play an important role in enhancing the electron conduction in the multilayered architecture. Therefore, the improved electrochemical behavior might result from the significantly improved ion transport and electron conduction in the multilayered architecture of the graphene/MnO 2 composite electrode. Furthermore, the MnO 2 nanowire layer coated on the graphene layer could significantly suppress the oxygen evolution reaction, broadening the potential window of water stability.

  8. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Science.gov (United States)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  9. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  10. Effect of interior geometry on local climate inside an electronic device enclosure

    DEFF Research Database (Denmark)

    Joshy, Salil; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    Electronic enclosure design and the internal arrangement of PCBs and components influence microclimate inside the enclosure. This work features a general electronic unit with parallel PCBs. One of the PCB is considered to have heat generating components on it. The humidity and temperature profiles...... geometry of the device and related enclosure design parameters on the humidity and temperature profiles inside the electronic device enclosure....

  11. Plasmonically enhanced hot electron based photovoltaic device.

    Science.gov (United States)

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

  12. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array

    International Nuclear Information System (INIS)

    Cho, Ikjun; Cho, Jinhan; Kim, Beom Joon; Cho, Jeong Ho; Ryu, Sook Won

    2014-01-01

    Organic field-effect transistor (OFET) memories have rapidly evolved from low-cost and flexible electronics with relatively low-memory capacities to memory devices that require high-capacity memory such as smart memory cards or solid-state hard drives. Here, we report the high-capacity OFET memories based on the multilayer stacking of densely packed hydrophobic metal NP layers in place of the traditional transistor memory systems based on a single charge trapping layer. We demonstrated that the memory performances of devices could be significantly enhanced by controlling the adsorption isotherm behavior, multilayer stacking structure and hydrophobicity of the metal NPs. For this study, tetraoctylammonium (TOA)-stabilized Au nanoparticles (TOA-Au NPs ) were consecutively layer-by-layer (LbL) assembled with an amine-functionalized poly(amidoamine) dendrimer (PAD). The formed (PAD/TOA-Au NP ) n films were used as a multilayer stacked charge trapping layer at the interface between the tunneling dielectric layer and the SiO 2 gate dielectric layer. For a single Au NP layer (i.e. PAD/TOA-Au NP ) 1 ) with a number density of 1.82 × 10 12 cm −2 , the memory window of the OFET memory device was measured to be approximately 97 V. The multilayer stacked OFET memory devices prepared with four Au NP layers exhibited excellent programmable memory properties (i.e. a large memory window (ΔV th ) exceeding 145 V, a fast switching speed (1 μs), a high program/erase (P/E) current ratio (greater than 10 6 ) and good electrical reliability) during writing and erasing over a relatively short time scale under an operation voltage of 100 V applied at the gate. (paper)

  13. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.

    Science.gov (United States)

    Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B

    2015-08-10

    We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

  14. Electronic device for endosurgical skills training (EDEST): study of reliability.

    Science.gov (United States)

    Pagador, J B; Uson, J; Sánchez, M A; Moyano, J L; Moreno, J; Bustos, P; Mateos, J; Sánchez-Margallo, F M

    2011-05-01

    Minimally Invasive Surgery procedures are commonly used in many surgical practices, but surgeons need specific training models and devices due to its difficulty and complexity. In this paper, an innovative electronic device for endosurgical skills training (EDEST) is presented. A study on reliability for this device was performed. Different electronic components were used to compose this new training device. The EDEST was focused on two basic laparoscopic tasks: triangulation and coordination manoeuvres. A configuration and statistical software was developed to complement the functionality of the device. A calibration method was used to assure the proper work of the device. A total of 35 subjects (8 experts and 27 novices) were used to check the reliability of the system using the MTBF analysis. Configuration values for triangulation and coordination exercises were calculated as 0.5 s limit threshold and 800-11,000 lux range of light intensity, respectively. Zero errors in 1,050 executions (0%) for triangulation and 21 errors in 5,670 executions (0.37%) for coordination were obtained. A MTBF of 2.97 h was obtained. The results show that the reliability of the EDEST device is acceptable when used under previously defined light conditions. These results along with previous work could demonstrate that the EDEST device can help surgeons during first training stages.

  15. Hot-rolled Process of Multilayered Composite Metal Plate

    Directory of Open Access Journals (Sweden)

    YU Wei

    2017-02-01

    Full Text Available For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.

  16. Carbon footprint of electronic devices

    Science.gov (United States)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  17. Structural evolution of Ti/TiC multilayers

    International Nuclear Information System (INIS)

    Dahan, I.; Frage, N.; Dariel, M.P.

    2004-01-01

    Hard coatings based on metal/ceramic multilayers with periods in the nanometer range have been shown to possess some potential for improved tribological and mechanical properties. The present work is concerned with the structural evolution of (Ti/TiC) multilayers. Two kinds of multilayers consisting of 30 equithick (40 nm)TiC layers and 20 and 60 nm thick Ti layers, respectively, were sputter deposited on Mo substrates. The structural and the compositional evolution of these multilayers were examined by x-ray diffraction, transition electron microscopy (TEM), high-resolution TEM, Auger electron microscopy spectroscopy and differential thermal analysis (DTA), in the as-deposited state and after various heat treatments up to 500 deg. C. Initially, the Ti layers had a crystalline columnar grain structure displaying a (002) texture. The TiC layers displayed weak crystallinity with a pronounced (111) texture. In the course of the heat treatments, carbon diffused from the carbide layer into the adjacent Ti layers transforming the latter into off-stoichiometric TiC x with x≅0.5 and simultaneously depleting the carbon content of the initial carbide layer. The formed TiC x layers maintained the textural relationship with the neighboring TiC layers, consistent with a transformation that involved only a ABAB to ABC stacking change of the Ti sublattice. Increased mobility of the Ti atoms in carbon-depleted original TiC layers led to their full or partial recrystallization. The thermal effects associated both with the transformation of Ti layers into TiC, due to the influx of carbon atoms, and with the recrystallization of the original TiC layers were clearly revealed by the DTA measurements

  18. Elastic properties of suspended multilayer WSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rui, E-mail: rui.zhang@ed.ac.uk; Cheung, Rebecca [Scottish Microelectronics Centre, Alexander Crum Brown Road, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FF (United Kingdom); Koutsos, Vasileios [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FB (United Kingdom)

    2016-01-25

    We report the experimental determination of the elastic properties of suspended multilayer WSe{sub 2}, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe{sub 2} membranes have been fabricated by mechanical exfoliation of bulk WSe{sub 2} and transfer of the exfoliated multilayer WSe{sub 2} flakes onto SiO{sub 2}/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe{sub 2} membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe{sub 2} has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe{sub 2} (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS{sub 2} and WS{sub 2}. Moreover, the multilayer WSe{sub 2} can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe{sub 2} can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  19. Ultraviolet magnetic circular dichroism study and x-ray absorption spectroscopy of zinc-blende type CrAs multilayer

    International Nuclear Information System (INIS)

    Mizuguchi, M.; Manago, T.; Akinaga, H.; Yamada, T.; Yagi-Watanabe, K.; Yuri, M.; Chen, C.T.; Shirai, M.

    2004-01-01

    Full text: Half-metallic ferromagnets such as CrO 2 and Heusler alloys have attracted a great deal of attention due to its application to spin-dependent device. We have predicted by first principle calculations that zinc-blende (zb) type CrAs, which normally exists in a MnP type, shows a half-metallic band structure, and succeeded in fabrication of this film. However, the epitaxial growth with maintaining a zb structure was limited up to around the nominal thickness of 3 nm. In this contribution, ultraviolet magnetic circular dichroism (MCD) and x-ray absorption spectroscopy (XAS) of CrAs multilayers are reported. These multilayers include zb-CrAs layers and low-temperature GaAs layers stacked alternately, and total thicknesses of zb- CrAs are thicker than 3 nm. Incident beam with the photon energy from 4 to 8 eV were used, and samples were attached on a magnet with the magnetic field of 1.0 T for the MCD measurements. Strong signal with the peak top at 6.5 eV is observed in the MCD spectrum. It can be seen that the experimental spectrum has a good agreement with the theoretical one, which indicates the formation of a superstructure as designed. It was also clarified by the XAS measurement using incident beam from 560 to 600 eV that peak positions of these multilayers shift systematically according to the thickness of each layer. The CrAs/GaAs multilayer is also expected to possess a half-metallic property by the theoretical calculation, therefore, the present result shows the multilayer will be the promising candidate as the spin electronics material

  20. Incorporating Ethical Consumption into Electronic Device Acquisition: A Proposal

    Science.gov (United States)

    Poggiali, Jennifer

    2016-01-01

    This essay proposes that librarians practice ethical consumption when purchasing electronic devices. Though librarians have long been engaged with environmentalism and social justice, few have suggested that such issues as e-waste and sweatshop labor should impact our decisions to acquire e-readers, tablets, and other electronics. This article…

  1. Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides.

    Science.gov (United States)

    Liu, Yuan; Guo, Jian; He, Qiyuan; Wu, Hao; Cheng, Hung-Chieh; Ding, Mengning; Shakir, Imran; Gambin, Vincent; Huang, Yu; Duan, Xiangfeng

    2017-09-13

    Negative transconductance (NTC) devices have been heavily investigated for their potential in low power logical circuit, memory, oscillating, and high-speed switching applications. Previous NTC devices are largely attributed to two working mechanisms: quantum mechanical tunneling, and mobility degradation at high electrical field. Herein we report a systematic investigation of charge transport in multilayer two-dimensional semiconductors (2DSCs) with optimized van der Waals contact and for the first time demonstrate NTC and antibipolar characteristics in multilayer 2DSCs (such as MoS 2 , WSe 2 ). By varying the measurement temperature, bias voltage, and body thickness, we found the NTC behavior can be attributed to a vertical potential barrier in the multilayer 2DSCs and the competing mechanisms between intralayer lateral transport and interlayer vertical transport, thus representing a new working mechanism for NTC operation. Importantly, this vertical potential barrier arises from inhomogeneous carrier distribution in 2DSC from the near-substrate region to the bulk region, which is in contrast to conventional semiconductors with homogeneous doping defined by bulk dopants. We further show that the unique NTC behavior can be explored for creating frequency doublers and phase shift keying circuits with only one transistor, greatly simplifying the circuit design compared to conventional technology.

  2. Organic/metal interfaces. Electronic and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Duhm, Steffen

    2008-07-17

    This work addresses several important topics of the field of organic electronics. The focus lies on organic/metal interfaces, which exist in all organic electronic devices. Physical properties of such interfaces are crucial for device performance. Four main topics have been covered: (i) the impact of molecular orientation on the energy levels, (ii) energy level tuning with strong electron acceptors, (iii) the role of thermodynamic equilibrium at organic/ organic homo-interfaces and (iv) the correlation of interfacial electronic structure and bonding distance. To address these issues a broad experimental approach was necessary: mainly ultraviolet photoelectron spectroscopy was used, supported by X-ray photoelectron spectroscopy, metastable atom electron spectroscopy, X-ray diffraction and X-ray standing waves, to examine vacuum sublimed thin films of conjugated organic molecules (COMs) in ultrahigh vacuum. (i) A novel approach is presented to explain the phenomenon that the ionization energy in molecular assemblies is orientation dependent. It is demonstrated that this is due to a macroscopic impact of intramolecular dipoles on the ionization energy in molecular assemblies. Furthermore, the correlation of molecular orientation and conformation has been studied in detail for COMs on various substrates. (ii) A new approach was developed to tune hole injection barriers ({delta}{sub h}) at organic/metal interfaces by adsorbing a (sub-) monolayer of an organic electron acceptor on the metal electrode. Charge transfer from the metal to the acceptor leads to a chemisorbed layer, which reduces {delta}{sub h} to the COM overlayer. This concept was tested with three acceptors and a lowering of {delta}{sub h} of up to 1.2 eV could be observed. (iii) A transition from vacuum-level alignment to molecular level pinning at the homo-interface between a lying monolayer and standing multilayers of a COM was observed, which depended on the amount of a pre-deposited acceptor. The

  3. Impact of stand-by energy losses in electronic devices on smart network performance

    Directory of Open Access Journals (Sweden)

    Mandić-Lukić Jasmina S.

    2012-01-01

    Full Text Available Limited energy resources and environmental concerns due to ever increasing energy consumption, more and more emphasis is being put on energy savings. Smart networks are promoted worldwide as a powerful tool used to improve the energy efficiency through consumption management, as well as to enable the distributed power generation, primarily based on renewable energy sources, to be optimally explored. To make it possible for the smart networks to function, a large number of electronic devices is needed to operate or to be in their stand-by mode. The consumption of these devices is added to the consumption of many other electronic devices already in use in households and offices, thus giving rise to the overall power consumption and threatening to counteract the primary function of smart networks. This paper addresses the consumption of particular electronic devices, with an emphasis placed on their thermal losses when in stand-by mode and their total share in the overall power consumption in certain countries. The thermal losses of electronic devices in their stand-by mode are usually neglected, but it seems theoretically possible that a massive increase in their number can impact net performance of the future smart networks considerably so that above an optimum level of energy savings achieved by their penetration, total consumption begins to increase. Based on the current stand-by energy losses from the existing electronic devices, we propose that the future penetration of smart networks be optimized taking also into account losses from their own electronic devices, required to operate in stand-by mode.

  4. Magnetic metallic multilayers

    International Nuclear Information System (INIS)

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons

  5. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers

    International Nuclear Information System (INIS)

    Baek, Hyunhee; Cho, Jinhan; Lee, Chanwoo; Lim, Kwang-il

    2012-01-01

    The properties of enzymes, which can cause reversible changes in currents through redox reactions in solution, are of fundamental and practical importance in bio-electrochemical applications. These redox properties of enzymes are often associated with their charge-trap sites. Here, we demonstrate that reversible changes in resistance in dried lysozyme (LYS) films can be generated by an externally applied voltage as a result of charge trap/release. Based on such changes, LYS can be used as resistive switching active material for nonvolatile memory devices. In this study, cationic LYS and anionic poly(styrene sulfonate) (PSS) layers were alternately deposited onto Pt-coated silicon substrates using a layer-by-layer assembly method. Then, top electrodes were deposited onto the top of LYS/PSS multilayers to complete the fabrication of the memory-like device. The LYS/PSS multilayer devices exhibited typical resistive switching characteristics with an ON/OFF current ratio above 10 2 , a fast switching speed of 100 ns and stable performance. Furthermore, the insertion of insulating polyelectrolytes (PEs) between the respective LYS layers significantly enhanced the memory performance of the devices showing a high ON/OFF current ratio of ∼10 6 and low levels of power consumption. (paper)

  6. 4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K

    Science.gov (United States)

    Spry, D. J.; Neudeck, P. G.; Chen, L.; Chang, C. W.; Lukco, D.; Beheim, G. M.

    2015-01-01

    Testing of semiconductor electronics at temperatures above their designed operating envelope is recognized as vital to qualification and lifetime prediction of circuits. This work describes the high temperature electrical testing of prototype 4H silicon carbide (SiC) junction field effect transistor (JFET) integrated circuits (ICs) technology implemented with multilayer interconnects; these ICs are intended for prolonged operation at temperatures up to 773K (500 C). A 50 mm diameter sapphire wafer was used in place of the standard NASA packaging for this experiment. Testing was carried out between 300K (27 C) and 1150K (877 C) with successful electrical operation of all devices observed up to 1000K (727 C).

  7. Modern Electronic Devices: An Increasingly Common Cause of Skin Disorders in Consumers.

    Science.gov (United States)

    Corazza, Monica; Minghetti, Sara; Bertoldi, Alberto Maria; Martina, Emanuela; Virgili, Annarosa; Borghi, Alessandro

    2016-01-01

    : The modern conveniences and enjoyment brought about by electronic devices bring with them some health concerns. In particular, personal electronic devices are responsible for rising cases of several skin disorders, including pressure, friction, contact dermatitis, and other physical dermatitis. The universal use of such devices, either for work or recreational purposes, will probably increase the occurrence of polymorphous skin manifestations over time. It is important for clinicians to consider electronics as potential sources of dermatological ailments, for proper patient management. We performed a literature review on skin disorders associated with the personal use of modern technology, including personal computers and laptops, personal computer accessories, mobile phones, tablets, video games, and consoles.

  8. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  9. Magnetic tunnel junction device having an intermediate layer

    NARCIS (Netherlands)

    2001-01-01

    A magnetic tunnel junction device has a multi-layer structure including a pair of electrode layers of a ferromagnetic material and a tunnel barrier layer of an insulating material between the electrode layers. In order to realize a low resistance, the multi-layer structure also includes an

  10. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    International Nuclear Information System (INIS)

    Assili, M; Haddad, S

    2013-01-01

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT) 2 I 3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed. (paper)

  11. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    Science.gov (United States)

    Assili, M.; Haddad, S.

    2013-09-01

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.

  12. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones.

    Science.gov (United States)

    Assili, M; Haddad, S

    2013-09-11

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.

  13. 24 h stability of thick multilayer silicene in air

    International Nuclear Information System (INIS)

    De Padova, Paola; Ottaviani, Carlo; Quaresima, Claudio; Generosi, Amanda; Paci, Barbara; Le Lay, Guy; Olivieri, Bruno; Imperatori, Patrizia; Salomon, Eric; Angot, Thierry; Quagliano, Lucia; Romano, Claudia; Vona, Alessandro; Muniz-Miranda, Maurizio

    2014-01-01

    Thick epitaxial multilayer silicene films with a √3 × √3R(30°) surface structure show only mild surface oxidation after 24 h in air, as measured by Auger electron spectroscopy. X-ray diffraction and Raman spectroscopy measurements performed in air without any protective capping, as well as, for comparison, with a thin Al 2 O 3 cap, showed the (002) reflection and the G, D and 2D Raman structures, which are unique fingerprints of thick multilayer silicene. (letter)

  14. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  15. Synthesis and properties of chemical bath deposited ZnS multilayer films

    International Nuclear Information System (INIS)

    Kamoun Allouche, N.; Ben Nasr, T.; Turki Kamoun, N.; Guasch, C.

    2010-01-01

    Zinc sulphide multilayer films are prepared by chemical bath deposition from different host solutions. X-ray diffraction and scanning electron microscopy are used to characterize the structural properties of the films. The surface composition of the films is studied by Auger electrons spectroscopy, and optical properties are studied by spectrophotometric measurements. X-ray diffraction patterns reveal distinct single crystalline phase with preferential orientation along the (1 1 1) plane of the zinc blende structure for the ZnS multilayer. The spacing between (1 1 1) planes of ZnS is well matched to the spacing between (1 1 2) planes of the chalcopyrite CuInS 2 . After heat treatment all films show a near stoichiometric surface composition as indicated in their AES data. UV-vis measurements show that ZnS multilayer films prepared from the zinc sulphate solution have more than 70% transmission in the wavelengths above 350 nm and an optical band gap of about 3.76 eV.

  16. Multiparametric electronic devices based on nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany)], E-mail: FINK@HMI.DE; Saad, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Basic Science Department, Faculty of Science, Al Balqa University, Salt (Jordan); Dhamodaran, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Chandra, A. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Fahrner, W.R. [Chair of Electronic Devices, Institute of Electrotechnique, Fernuniversitaet, Hagen (Germany); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, GPO Box 4, ACT (Australia)

    2008-08-15

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r{sub ROI} around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1{mu}m leading to nanometric TEMPOS structures.

  17. Multiparametric electronic devices based on nuclear tracks

    International Nuclear Information System (INIS)

    Fink, D.; Saad, A.; Dhamodaran, S.; Chandra, A.; Fahrner, W.R.; Hoppe, K.; Chadderton, L.T.

    2008-01-01

    An overview is given on a family of novel electronic devices consisting of an insulating layer containing conducting or semiconducting nuclear tracks, deposited on a semiconducting substrate, and connected by at least one back and two surface contacts. Conducting and semiconducting latent tracks may emerge directly from swift heavy ion irradiation. Etched tracks in insulators can be filled with adequate materials to make them conducting or semiconducting. For this purpose metallic or semiconducting nanoclusters were deposited. We have denoted termed these devices made with latent tracks as 'tunable electronic anisotropic material on semiconductor' (TEAMS), if based on latent ion tracks, and as 'tunable electronic material in pores in oxide on semiconductor' (TEMPOS), if based on etched tracks. Depending on the band-to-band transition between tracks and substrate and on the ratio of surface to track conductivity, the current/voltage characteristics of TEAMS and TEMPOS structures can be modified in many different ways leading to tunable resistors, capacitors and diodes. Both devices show negative differential resistances. This should enable tunable tunneldiodes. TEAMS or TEMPOS structures can be controlled by various external physical and/or chemical parameters leading to sensors. It is even possible to combine different input currents and/or external parameters according to AND/OR logics. The currents through a clustered layer on a TEMPOS structure can be described by the Barbasi-Albert model of network theory enabling to calculate a 'radius of influence'r ROI around each surface contact, beyond which neighboring contacts do not influence each other. The radius of influence can be well below 1μm leading to nanometric TEMPOS structures

  18. Humidity effects on the electronic transport properties in carbon based nanoscale device

    International Nuclear Information System (INIS)

    He, Jun; Chen, Ke-Qiu

    2012-01-01

    By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.

  19. 77 FR 15390 - Certain Mobile Electronic Devices Incorporating Haptics; Receipt of Amended Complaint...

    Science.gov (United States)

    2012-03-15

    ... INTERNATIONAL TRADE COMMISSION [DN 2875] Certain Mobile Electronic Devices Incorporating Haptics.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices...

  20. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  1. On the OSL curve shape and preheat treatment of electronic components from portable electronic devices

    DEFF Research Database (Denmark)

    Woda, Clemens; Greilich, Steffen; Beerten, Koen

    2010-01-01

    The shape of the OSL decay curve and the effect of longer time delays between accidental exposure and readout of alumina-rich electronic components from portable electronic devices are investigated. The OSL decay curve follows a hyperbolic decay function, which is interpreted as an approximation ...

  2. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  3. An analysis of radiation effects on electronics and soi-mos devices as an alternative

    International Nuclear Information System (INIS)

    Ikraiam, F. A.

    2013-01-01

    The effects of radiation on semiconductors and electronic components are analyzed. The performance of such circuitry depends upon the reliability of electronic devices where electronic components will be unavoidably exposed to radiation. This exposure can be detrimental or even fatal to the expected function of the devices. Single event effects (SEE), in particular, which lead to sudden device or system failure and total dose effects can reduce the lifetime of electronic devices in such systems are discussed. Silicon-on-insulator (SOI) technology is introduced as an alternative for radiation-hardened devices. I-V Characteristics Curves for SOI-MOS devices subjected to a different total radiation doses are illustrated. In addition, properties of some semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, and AlGaN/GaN are compared with those of SOI devices. The recognition of the potential usefulness of SOI-MOS semiconductor materials for harsh environments is discussed. A summary of radiation effects, impacts and mitigation techniques is also presented. (authors)

  4. Fabrication and Characteristics of Al/PTFE Multilayers and Application in Micro-initiator

    Science.gov (United States)

    Zhang, Yuxin; Jiang, Hongchuan; Zhao, Xiaohui; Zhang, Wanli; Li, Yanrong

    2017-12-01

    In this paper, a micro-initiator was designed and fabricated by integrating Al/PTFE multilayers with a Cu film bridge. The regularity layer structure and interface composition of Al/PTFE multilayers was analysed by transmission electron microscope and X-ray photoelectron spectroscopy, respectively. The heat release reaction in Al/PTFE multilayers can be triggered with reaction temperature of 430 °C, and the overall heat of reaction is 3192 J/g. Al/PTFE multilayers with bilayer thickness of 200 nm was alternately deposited on a Cu film bridge to improve the electric explosion performances. Compared to Cu film bridge, the Al/PTFE/Cu integrated film bridge exhibits improved performances with longer explosion duration time, more violent explosion phenomenon and larger quantities of ejected product particles.

  5. Ion-beam mixing and tribology of Fe/B multilayers

    International Nuclear Information System (INIS)

    Hu, R.; Rehn, L.E.; Baldo, P.M.; Fenske, G.R.

    1990-01-01

    This paper reports the interdiffusion of Fe and B trilayer specimens during 1-MeV Kr + bombardment studied using Rutherford backscattering and electron microscopy. The square of the interdiffusion distance during mixing at 300 degrees C was found to depend linearly on the irradiation dose. Arrhenius behavior with an apparent activation enthalpy of 0.7 eV was observed for the mixing between 200 and 500 degrees C. Electron microscopy of ion-beam mixed multilayer specimens revealed that two crystalline compounds, Fe 2 B and Fe 3 B, formed during bombardment at 450 degrees C, while two different amorphous Fe/B phases formed at 300 degrees C. Substantially improved adhesion and reduced friction were observed for Fe/B multilayers ion-beam mixed onto M50 steel substrates at 450 degrees C

  6. Design of Control System Device for Electron Gun Power Supply of 350 keV/10 mA Electron Beam Machine

    International Nuclear Information System (INIS)

    Eko Priyono; Budi Santosa; Taxwim

    2003-01-01

    The electron gun power supply control system of electron beam machine has been designed. Using this design regulator device for the electron gun power supply will be constructed. This regulator device was designed that it can be operated manually or automatically. Beside that, this was also provided with the safety system which is useful to scram the MBE when something wrong happened. The main components of the device are remote data communication system using infra red and fiber optic module, DC motor driver system, regulated transformer coupled by DC motor and operation panel system. (author)

  7. Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films.

    Science.gov (United States)

    Lian, Qing; Chen, Mu; Mokhtar, Muhamad Z; Wu, Shanglin; Zhu, Mingning; Whittaker, Eric; O'Brien, Paul; Saunders, Brian R

    2018-05-07

    Blends of semiconducting nanocrystals and conjugated polymers continue to attract major research interest because of their potential applications in optoelectronic devices, such as solar cells, photodetectors and light-emitting diodes. In this study we investigate the surface structure, morphological and optoelectronic properties of multilayer films constructed from ZnO nanocrystals (NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV). The effects of layer number and ZnO concentration (C ZnO ) used on the multilayer film properties are investigated. An optimised solvent blend enabled well-controlled layers to be sequentially spin coated and the construction of multilayer films containing six ZnO NC (Z) and MDMO-PPV (M) layers (denoted as (ZM) 6 ). Contact angle data showed a strong dependence on C ZnO and indicated distinct differences in the coverage of MDMO-PPV by the ZnO NCs. UV-visible spectroscopy showed that the MDMO-PPV absorption increased linearly with the number of layers in the films and demonstrates highly tuneable light absorption. Photoluminescence spectra showed reversible quenching as well as a surprising red-shift of the MDMO-PPV emission peak. Solar cells were constructed to probe vertical photo-generated charge transport. The measurements showed that (ZM) 6 devices prepared using C ZnO = 14.0 mg mL -1 had a remarkably high open circuit voltage of ∼800 mV. The device power conversion efficiency was similar to that of a control bilayer device prepared using a much thicker MDMO-PPV layer. The results of this study provide insight into the structure-optoelectronic property relationships of new semiconducting multilayer films which should also apply to other semiconducting NC/polymer combinations.

  8. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices

    KAUST Repository

    Beljonne, David; Cornil, Jérôme; Muccioli, Luca; Zannoni, Claudio; Brédas, Jean-Luc; Castet, Frédéric

    2011-01-01

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational

  9. Microdiffraction imaging—a suitable tool to characterize organic electronic devices

    Directory of Open Access Journals (Sweden)

    Clemens Liewald

    2015-10-01

    Full Text Available Tailoring device architecture and active film morphology is crucial for improving organic electronic devices. Therefore, knowledge about the local degree of crystallinity is indispensable to gain full control over device behavior and performance. In this article, we report on microdiffraction imaging as a new tool to characterize organic thin films on the sub-micron length scale. With this technique, which was developed at the ID01 beamline at the ESRF in Grenoble, a focused X-ray beam (300 nm diameter, 12.5 keV energy is scanned over a sample. The beam size guarantees high resolution, while material and structure specificity is gained by the choice of Bragg condition.Here, we explore the possibilities of microdiffraction imaging on two different types of samples. First, we measure the crystallinity of a pentacene thin film, which is partially buried beneath thermally deposited gold electrodes and a second organic film of fullerene C60. The data shows that the pentacene film structure is not impaired by the subsequent deposition and illustrates the potential of the technique to characterize artificial structures within fully functional electronic devices. Second, we investigate the local distribution of intrinsic polymorphism of pentacene thin films, which is very likely to have a substantial influence on electronic properties of organic electronic devices. An area of 40 μm by 40 μm is scanned under the Bragg conditions of the thin-film phase and the bulk phase of pentacene, respectively. To find a good compromise between beam footprint and signal intensity, third order Bragg condition is chosen. The scans show complementary signal distribution and hence demonstrate details of the crystalline structure with a lateral resolution defined by the beam footprint (300 nm by 3 μm.The findings highlight the range of applications of microdiffraction imaging in organic electronics, especially for organic field effect transistors and for organic solar

  10. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  11. Interferential multi-layer mirrors for X-UV radiation: fabrication, characterization and applications

    International Nuclear Information System (INIS)

    Youn Ki Byoung

    1987-01-01

    This research thesis reports the fabrication of W/C, Ni/C and Mo/C interferential multi-layer mirrors which can be used in the X-UV domain. They have been manufactured by cathodic pulverisation by using a new system for the in-situ control of the thickness of deposited layers, based on the measurement, sampling and real time integration of the ionic current which goes through the target during the coating process. Different methods (X ray diffraction at different wavelengths, electron microscopy and diffraction, in situ electronic resistivity measurement) have been used to study the main parameters which govern the multi-layer reflectivity: structure, substrate and interface roughness, minimum thickness to be deposited to obtain a continuous layer, number of bi-layers, stacking evenness, rate of absorbent element thickness to the period. Absolute reflectivity measurements have been performed by using short wavelength synchrotron radiation and the S component of polarised soft X rays obtained after double reflection on two parallel multi-layer mirrors oriented according to the Brewster angle. Ferromagnetic properties of Ni/C multi-layers have been studied to investigate fundamental magnetic properties, and to obtain additional information on interface structure [fr

  12. Chemical interactions at the interfaces of Mo/B4C/Si/B4C multilayers upon low-temperature annealing

    NARCIS (Netherlands)

    Nyabero, S.L.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2012-01-01

    Interactions at interfaces in thin films and multilayers play an important role for present day nano-scaled devices. For example, reducing thermally induced interdiffusion between Mo and Si layers is a key challenge in developing Mo/Si multilayers as reflective coatings for projection lithography

  13. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  14. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Jiang, Jin-Wu; Wei, Ning; Zhang, Yong-Wei

    2016-01-07

    As a new two-dimensional (2D) material, phosphorene has drawn growing attention owing to its novel electronic properties, such as layer-dependent direct bandgaps and high carrier mobility. Herein we investigate the in-plane and cross-plane thermal conductivities of single- and multi-layer phosphorene, focusing on geometrical (sample size, orientation and layer number) and strain (compression and tension) effects. A strong anisotropy is found in the in-plane thermal conductivity with its value along the zigzag direction being much higher than that along the armchair direction. Interestingly, the in-plane thermal conductivity of multi-layer phosphorene is insensitive to the layer number, which is in strong contrast to that of graphene where the interlayer interactions strongly influence the thermal transport. Surprisingly, tensile strain leads to an anomalous increase in the in-plane thermal conductivity of phosphorene, in particular in the armchair direction. Both the in-plane and cross-plane thermal conductivities can be modulated by external strain; however, the strain modulation along the cross-plane direction is more effective and thus more tunable than that along the in-plane direction. Our findings here are of great importance for the thermal management in phosphorene-based nanoelectronic devices and for thermoelectric applications of phosphorene.

  15. Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future

    Science.gov (United States)

    Sampath, Sanjay

    2010-09-01

    Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.

  16. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    Directory of Open Access Journals (Sweden)

    D. Dey

    2011-01-01

    Full Text Available The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  17. Exploring the magnetization dynamics of NiFe/Pt multilayers in flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, M.A., E-mail: marciocorrea@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Dutra, R.; Marcondes, T.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil); Mori, T.J.A. [Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, 1000, Guará, 13083-100 Campinas, SP (Brazil); Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Sommer, R.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil)

    2016-09-15

    Highlights: • Magnetic properties of multilayers grown onto flexible substrates were investigated. • Experimental and theoretical magnetization dynamics results are presented. • The flexible substrates become promising candidate for rf-frequency devices. - Abstract: We investigate the structural and magnetic properties, and the magnetization dynamics in Ni{sub 81}Fe{sub 19}/Pt multilayer systems grown onto rigid and flexible substrates. The structural characterization shows evidence of a superlattice behavior, while the quasi-static magnetization characterization reveal a weak magnetic anisotropy induced in the multilayers. The magnetization dynamics is investigated through the magnetoimpedance effect. We employ a theoretical approach to describe the experimental magnetoimpedance effect and verify the influence of the effective damping parameter on the magnetization dynamics. Experimental data and theoretical results are in agreement and suggest that the multilayers present high effective damping parameter. Moreover, our experiments raise an interesting issue on the possibility of achieving considerable MI% values, even for systems with weak magnetic anisotropy and high damping parameter grown onto flexible substrates.

  18. TM-pass polarizer based on multilayer graphene polymer waveguide

    Science.gov (United States)

    Cai, Ke-su; Li, Yue-e.; Wei, Wen-jing; Mu, Xi-jiao; Ma, A.-ning; Wang, Zhong; Song, Dan-ming

    2018-05-01

    A TM-pass polarizer based on multilayer graphene polymer waveguide is proposed and theoretically analyzed. The mode properties, the extinction ratio, the insertion loss and the bandwidth are also discussed. The results show that a TM-pass polarizer, which only guides the TM mode, can be achieved by multilayer graphene polymer waveguide. With length of 150 μm, the proposed polarizer can achieve extinction ratio of 33 dB and insertion loss of 0.5 dB at optical wavelength of 1.55 μm. This device has an excellent performance, including large extinction ratio and low insertion loss within the spectral range from 1.45 μm to 1.6 μm.

  19. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  20. Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures

    DEFF Research Database (Denmark)

    Veluri, Badrinath (Badri); Jensen, Henrik Myhre

    2013-01-01

    Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress...

  1. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    Science.gov (United States)

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  2. Corrosion behaviour of sintered NdFeB coated with Al/Al{sub 2}O{sub 3} multilayers by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Huang Feng; Xie Tingting [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-02-15

    Al/Al{sub 2}O{sub 3} multilayers were deposited on sintered NdFeB magnets to improve the corrosion resistance. The amorphous Al{sub 2}O{sub 3} films were used to periodically interrupt the columnar growth of the Al layers. The structure of the multilayers was investigated by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). It was found that the columnar structure was effectively inhibited in the multilayers. Subsequent corrosion testing by potentiodynamic polarization in 3.5 wt.% NaCl and neutral salt spray test (NSS) revealed that the Al/Al{sub 2}O{sub 3} multilayers had much better corrosion resistance than the Al single layer. Furthermore, for multilayers with similar thickness, the corrosion resistance was improved as the period decreased.

  3. Electrical resistivity of thin metal films and multilayers

    International Nuclear Information System (INIS)

    Fenn, M.

    1999-01-01

    The electrical resistivity and temperature coefficient of resistivity (TCR) of thin films and multilayers of Cu, Nb and Zr have been measured over a wide range of layer thicknesses. The structure of the films has been characterised using transmission electron microscopy (TEM) and x-ray reflectivity. The experimental results have been compared with the semiclassical theory due to Dimmich. The values of the grain boundary reflectivity, R, in the single films has been found to be approximately 0.35 for Cu in agreement with the literature. The value of R for Nb and Zr has been found to vary with grain size, although it is approximately 0.55 for Nb and 0.925 for Zr over a wide range of grain sizes, and this is believed to be presented for the first time. The value of the interfacial specularity parameter, p, is not found to have a significant effect compared to R in the single films. Dimmich's theoretical expression for the TCR does not match experiment, but by adapting the resistivity expression of the theory to different temperatures a satisfactory fit has been obtained. It has been concluded that the assumption of the free electron model in the presence of grain boundary scattering is in error. The adapted theory predicts negative TCR in sufficiently thin films with experimentally plausible values of the input parameters, and this is believed to be demonstrated for the first time. The experimental resistivity of the multilayers was much lower than expected from the resistivity of the single films. A theoretical fit to the experimental resistivity and TCR of the multilayers was obtained by adjusting the parameter values obtained from single films, and the value of p was found to be significant. This procedure leads to a contradiction in the value of R for Nb. With a view to extending the above work to magnetic multilayers, an AC susceptometer has been designed, built and tested. The results indicate that this instrument would be suitable for work on magnetic

  4. Carbon Based Transistors and Nanoelectronic Devices

    Science.gov (United States)

    Rouhi, Nima

    Carbon based materials (carbon nanotube and graphene) has been extensively researched during the past decade as one of the promising materials to be used in high performance device technology. In long term it is thought that they may replace digital and/or analog electronic devices, due to their size, near-ballistic transport, and high stability. However, a more realistic point of insertion into market may be the printed nanoelectronic circuits and sensors. These applications include printed circuits for flexible electronics and displays, large-scale bendable electrical contacts, bio-membranes and bio sensors, RFID tags, etc. In order to obtain high performance thin film transistors (as the basic building block of electronic circuits) one should be able to manufacture dense arrays of all semiconducting nanotubes. Besides, graphene synthesize and transfer technology is in its infancy and there is plenty of room to improve the current techniques. To realize the performance of nanotube and graphene films in such systems, we need to economically fabricate large-scale devices based on these materials. Following that the performance control over such devices should also be considered for future design variations for broad range of applications. Here we have first investigated carbon nanotube ink as the base material for our devices. The primary ink used consisted of both metallic and semiconducting nanotubes which resulted in networks suitable for moderate-resistivity electrical connections (such as interconnects) and rfmatching circuits. Next, purified all-semiconducting nanotube ink was used to fabricate waferscale, high performance (high mobility, and high on/off ratio) thin film transistors for printed electronic applications. The parameters affecting device performance were studied in detail to establish a roadmap for the future of purified nanotube ink printed thin film transistors. The trade of between mobility and on/off ratio of such devices was studied and the

  5. Photon wavelength dependent valley photocurrent in multilayer MoS2

    Science.gov (United States)

    Guan, Hongming; Tang, Ning; Xu, Xiaolong; Shang, LiangLiang; Huang, Wei; Fu, Lei; Fang, Xianfa; Yu, Jiachen; Zhang, Caifeng; Zhang, Xiaoyue; Dai, Lun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2017-12-01

    The degree of freedom (DOF) of the K (K') valley in transition-metal dichalcogenides, especially molybdenum disulfide (MoS2), offers an opportunity for next-generation valleytronics devices. In this work, the K (K') valley DOF of multilayer MoS2 is studied by means of the photon wavelength dependent circular photogalvanic effect (CPGE) at room temperature upon a strong external out-of-plane electric field induced by an ionic liquid (IL) gate, which breaks the spatial-inversion symmetry. It is demonstrated that only on resonant excitations in the K (K') valley can the valley-related CPGE signals in multilayer MoS2 with an IL gate be detected, indicating that the valley contrast is indeed regenerated between the K and K' valleys when the electric field is applied. As expected, it can also be seen that the K (K') valley DOF in multilayer MoS2 can be modulated by the external electric field. The observation of photon wavelength dependent valley photocurrent in multilayer MoS2, with the help of better Ohmic contacts, may pave a way for optoelectronic applications of valleytronics in the future.

  6. Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly

    International Nuclear Information System (INIS)

    Rani, Adila; Oh, Kyoung Ah; Koo, Hyeyoung; Lee, Hyung jung; Park, Min

    2011-01-01

    Extremely thin sheets of carbon atoms called graphene have been predicted to possess excellent thermal properties, electrical conductivity, and mechanical stiffness. To harness such properties in composite materials for multifunctional applications, one would require the incorporation of graphene. In this study, new thin film composites were created using layer-by-layer (LBL) assembly of polymer-coated graphitic nanoplatelets. The positive and negative polyelectrolytes used to cover graphene sheets were poly allylamine hydrochloride (PAH) and poly sodium 4-styrenesulfonate (PSS). The synthesized poly allylamine hydrochloride-graphene (PAH-G) and poly sodium 4-styrenesulfonate-gaphene (PSS-G) were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and thermo gravimetric analysis (TGA). The multilayer films created by spontaneous sequential adsorption of PAH-G and PSS-G were characterized by ultra violet spectroscopy (UV-vis), scanning electron microscopy (SEM), and AFM. The electrical conductivity of the graphene/polyelectrolyte multilayer film composites measured by the four-point probe method was 0.2 S cm -1 , which was sufficient for the construction of advanced electro-optical devices and sensors.

  7. Measurements of hot spots and electron beams in Z-pinch devices

    International Nuclear Information System (INIS)

    Deeney, C.

    1988-04-01

    Hot spots and Electron Beams have been observed in different types of Z-pinches. There is, however, no conclusive evidence on how either are formed although there has been much theoretical interest in both these phenomena. In this thesis, nanosecond time resolved and time correlated, X-ray and optical diagnostics, are performed on two different types of Z-pinch: a 4 kJ, 30 kV Gas Puff Z-pinch and a 28 kJ, 60 kV Plasma Focus. The aim being to study hot spots and electron beams, as well as characterise the plasma, two different Z-pinch devices. Computer codes are developed to analyse the energy and time resolved data obtained in this work. These codes model both, X-ray emission from a plasma and X-ray emission due to electron beam bombardment of a metal surface. The hot spot and electron beam parameters are measured, from the time correlated X-ray data using these computer codes. The electron beams and the hot spots are also correlated to the plasma behaviour and to each other. The results from both devices are compared with each other and with the theoretical work on hot spot and electron beam formation. A previously unreported 3-5 keV electron temperature plasma is identified, in the gas puff Z-pinch plasma, prior to the formation of the hot spots. it is shown, therefore, that the hot spots are more dense but not hotter than the surrounding plasma. Two distinct periods of electron beam generation are identified in both devices. (author)

  8. 76 FR 72439 - Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of...

    Science.gov (United States)

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...

  9. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    KAUST Repository

    Eita, Mohamed S.; El, Labban Abdulrahman; Usman, Anwar; Beaujuge, Pierre; Mohammed, Omar F.

    2016-01-01

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc

  10. Flexible organic electronic devices: Materials, process and applications

    International Nuclear Information System (INIS)

    Logothetidis, Stergios

    2008-01-01

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs

  11. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  12. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  13. Mechanical and tribological properties of a-C/a-C:Ti multilayer films with various bilayer periods

    Energy Technology Data Exchange (ETDEWEB)

    Bai, W.Q.; Cai, J.B.; Wang, X.L., E-mail: wangxl@zju.edu.cn; Wang, D.H.; Gu, C.D.; Tu, J.P., E-mail: tujp@zju.edu.cn

    2014-05-02

    Thick a-C/a-C:Ti multilayer films with bilayer periods of 12–70 nm were deposited on Ti6Al4V alloy substrate by means of closed field unbalance magnetron sputtering. The morphology and microstructure of the multilayer films were investigated by scanning electron microscopy, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Nanocrystalline TiC was distributed in the a-C:Ti layer and at the interface between the two adjacent layers. The mechanical and tribological properties were evaluated by Rockwell and scratch tests, a nanoindentor and a ball-on-disk tribometer. The multilayer film with a bilayer period of 12 nm showed the highest adhesion strength, hardness (26 GPa) and elastic modulus (232 GPa); it also had the lowest average coefficient of friction (0.09) and a wear rate of 8.06 × 10{sup −17} m{sup 3} N{sup −1} m{sup −1}. - Highlights: • a-C/a-C:Ti multilayers with various bilayer periods were prepared. • Nanocrystalline TiCs were confirmed in the a-C:Ti layer and at the interface. • These multilayers show fine ability to comply with substrate deformation. • The multilayer with a bilayer period of 12 nm exhibits the best properties.

  14. Electronic firing systems and methods for firing a device

    Science.gov (United States)

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  15. 78 FR 52211 - Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing...

    Science.gov (United States)

    2013-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing Same; Commission Determination Not To Review an... States after importation of certain electronic devices having placeshifting or display replication...

  16. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    DEFF Research Database (Denmark)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik

    2017-01-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm...

  17. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    Science.gov (United States)

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  18. Influence of plasticity mismatch and porosity on mechanical behavior of nanoscale Ag/W multilayers

    International Nuclear Information System (INIS)

    Wen, S.P.; Zong, R.L.; Zeng, F.; Gao, Y.; Pan, F.

    2007-01-01

    Ag/W multilayers with periodicity ranging from 15 to 200 nm were deposited by direct current magnetron sputtering. The microstructure, hardness and elastic modulus were investigated by X-ray diffraction, Rutherford backscattering, X-ray fluorescence, scanning electron microscopy and nanoindentation. The results show that multilayers with periodicity less than 50 nm have columnar porous structure, which leads to low modulus and brittle fracture. Multilayers with periodicity larger than 50 nm have continuous laminated structure, and they are relatively ductile. All the multilayers have abnormal low hardness far less than a rule of mixture value, which has been attributed to porous structure and the deformation localization due to the plasticity mismatch between Ag and W

  19. A device for electron gun emittance measurement

    International Nuclear Information System (INIS)

    Aune, B.; Corveller, P.; Jablonka, M.; Joly, J.M.

    1985-05-01

    In order to improve the final emittance of the beam delivered by the ALS electron linac a new gun is going to be installed. To measure its emittance and evaluate the contribution of different factors to emittance growth we have developed an emittance measurement device. We describe the experimental and mathematical procedure we have followed, and give some results of measurements

  20. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  1. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  2. Electronic equipment and software for device 'FAZA'

    International Nuclear Information System (INIS)

    Avdeev, S.P.; Karnaukhov, V.A.; Kuznetsov, V.D.; Petrov, L.A.; Oeschler, H.; Lips, F.; Bart, R.

    1992-01-01

    Electronic equipment and software for the device FAZA are described. The device, designed for studying the nuclear multifragmentation process, consists of 5 time-of-flight telescopes, a position-sensitive avalanche chamber and 58 PM tubes. The time resolution of the time-of-flight telescopes is 0.5 ns, which allows a velocity resolution of 1.5%. The spatial resolution of the large avalanche counter is 4 mm, which allows angular resolution of 1 deg. Analogue signals from each PM tube come to two ADCs, to which strobes are supplied with a 400 ns shift. It allows codes corresponding to Cherenkov radiation and deexcitation of CsJ(Tl) to be distinguished in a two-dimensional plot. 8 refs.; 2 figs

  3. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    Directory of Open Access Journals (Sweden)

    Feifel Sven C

    2011-12-01

    Full Text Available Abstract Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET reaction cascades of cytochrome c (cyt c immobilized by the use of modified silica nanoparticles (SiNPs to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS, Fourier transformed infrared spectroscopy (FT-IR, Zeta-potential and transmission electron microscopy (TEM. The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the

  4. Recent development of transient electronics

    Directory of Open Access Journals (Sweden)

    Huanyu Cheng

    2016-01-01

    Full Text Available Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

  5. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    Science.gov (United States)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  6. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Ring-dot-shaped multilayer piezoelectric step-down transformers using PZT-based ceramics

    International Nuclear Information System (INIS)

    Kim, Insung; Joo, Hyeonkyu; Song, Jaesung; Jeong, Soonjong; Kim, Minsoo

    2010-01-01

    In this study, multilayer piezo stack transformers for switching mode power supply (SMPS) application were manufactured using 0.01Pb(Ni 1/3 Nb 2/3 )O 3 - 0.08Pb(Mn 1/3 Nb 2/3 )O 3 - 0.91Pb(Zr 0.505 Ti 0.495 )O 3 (PNN-PMN-PZT) ceramics. The voltage ratio of a multilayer piezo stack transformer showed a maximum at the resonance frequency of the input and then increased with increasing load resistance. The efficiency of the multilayer piezo stack transformer showed its highest value at around the matching load. The output power increased with increasing input voltage. The temperature of the multilayer piezo stack transformer increased with increasing output power and load resistance. The manufactured multilayer piezo stack transformer could be used up to 5 W at a resonance frequency of 70.25 kHz for SMPS application because the temperature rise from room temperature is believed to about 20 .deg. C and because the transformer is electrically stable. The newly-developed ring-dot-type step-down multilayer piezo stack transformer shows possible applications as SMPS for electronic power sources with excellent input-to-output properties.

  8. Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure

    International Nuclear Information System (INIS)

    Yoshioka, S; Shimizu, Y; Kinoshita, S; Matsuhana, B

    2013-01-01

    We investigated the structural color of the green wing of the lycaenid butterfly Chrysozephyrus brillantinus. Electron microscopy revealed that the bottom plate of the cover scale on the wing consists of an alternating air–cuticle multilayer structure. However, the thicknesses of the layers were not constant but greatly differed depending on the layer, unlike the periodic multilayer designs often adopted for artificial laser-reflecting mirrors. The agreement between the experimentally determined and theoretically calculated reflectance spectra led us to conclude that the multilayer interference in the aperiodic system is the primary origin of the structural color. We analyzed optical interference in this aperiodic system using a simple analytical model and found that two spectral peaks arise from constructive interference among different parts of the multilayer structure. We discuss the advantages and disadvantages of the aperiodic system over a periodic one. (paper)

  9. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    Science.gov (United States)

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  10. 3D Defect Localization on Exothermic Faults within Multi-Layered Structures Using Lock-In Thermography: An Experimental and Numerical Approach.

    Science.gov (United States)

    Bae, Ji Yong; Lee, Kye-Sung; Hur, Hwan; Nam, Ki-Hwan; Hong, Suk-Ju; Lee, Ah-Yeong; Chang, Ki Soo; Kim, Geon-Hee; Kim, Ghiseok

    2017-10-13

    Micro-electronic devices are increasingly incorporating miniature multi-layered integrated architectures. However, the localization of faults in three-dimensional structure remains challenging. This study involved the experimental and numerical estimation of the depth of a thermally active heating source buried in multi-layered silicon wafer architecture by using both phase information from an infrared microscopy and finite element simulation. Infrared images were acquired and real-time processed by a lock-in method. It is well known that the lock-in method can increasingly improve detection performance by enhancing the spatial and thermal resolution of measurements. Operational principle of the lock-in method is discussed, and it is represented that phase shift of the thermal emission from a silicon wafer stacked heat source chip (SSHSC) specimen can provide good metrics for the depth of the heat source buried in SSHSCs. Depth was also estimated by analyzing the transient thermal responses using the coupled electro-thermal simulations. Furthermore, the effects of the volumetric heat source configuration mimicking the 3D through silicon via integration package were investigated. Both the infrared microscopic imaging with the lock-in method and FE simulation were potentially useful for 3D isolation of exothermic faults and their depth estimation for multi-layered structures, especially in packaged semiconductors.

  11. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    Science.gov (United States)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  12. 78 FR 73563 - Certain Electronic Devices Having Placeshifting or Display Replication Functionality and Products...

    Science.gov (United States)

    2013-12-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having... AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has issued (1) a limited exclusion order against infringing electronic devices...

  13. Investigation of ceramic devices by analytical electron microscopy techniques

    International Nuclear Information System (INIS)

    Shiojiri, M.; Saijo, H.; Isshiki, T.; Kawasaki, M.; Yoshioka, T.; Sato, S.; Nomura, T.

    1999-01-01

    Ceramics are widely used as capacitors and varistors. Their electrical properties depend on the structure, which is deeply influenced not only by the composition of raw materials and additives but also by heating treatments in the production process. This paper reviews our investigations of SrTiO 3 ceramic devices, which have been performed using various microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), cathodoluminescence scanning electron microscopy (CLSEM), field emission SEM (FE-SEM), energy dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and high angle annular dark field (HAADF) imaging method in a FE-(scanning) transmission electron microscope(FE-(S)TEM). (author)

  14. Development of beam diagnostic devices for characterizing electron guns

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  15. Expert system for fault diagnostic in electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, G

    1984-03-01

    Troubleshooting of electronic devices and highly complex PCBS (printed circuit boards) is an area where expert systems can be used. In addition to the difficulties intrinsic to this area it is also impossible to integrate the amount of knowledge based on experience in a traditional model. 8 references.

  16. Innovative, wearable snap connector technology for improved device networking in electronic garments

    Science.gov (United States)

    Kostrzewski, Andrew A.; Lee, Kang S.; Gans, Eric; Winterhalter, Carole A.; Jannson, Tomasz P.

    2007-04-01

    This paper discusses Physical Optics Corporation's (POC) wearable snap connector technology that provides for the transfer of data and power throughout an electronic garment (e-garment). These connectors resemble a standard garment button and can be mated blindly with only one hand. Fully compatible with military clothing, their application allows for the networking of multiple electronic devices and an intuitive method for adding/removing existing components from the system. The attached flexible cabling also permits the rugged snap connectors to be fed throughout the standard webbing found in military garments permitting placement in any location within the uniform. Variations of the snap electronics/geometry allow for integration with USB 2.0 devices, RF antennas, and are capable of transferring high bandwidth data streams such as the 221 Mbps required for VGA video. With the trend towards providing military officers with numerous electronic devices (i.e., heads up displays (HMD), GPS receiver, PDA, etc), POC's snap connector technology will greatly improve cable management resulting in a less cumbersome uniform. In addition, with electronic garments gaining widespread adoption in the commercial marketplace, POC's technology is finding applications in such areas as sporting good manufacturers and video game technology.

  17. Stretchable electronics for wearable and high-current applications

    Science.gov (United States)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  18. Hydrogen doped thin film diamond. Properties and application for electronic devices

    International Nuclear Information System (INIS)

    Looi, H.J.

    2000-01-01

    The face centered cubic allotrope of carbon, diamond, is a semiconducting material which possesses a valuable combination of extreme properties such as super-hardness, highest thermal conductivity, chemical hardness, radiation hardness, wide bandgap and others. Advances in chemical vapour deposition (CVD) technology have lead to diamond becoming available in previously unattainable forms for example over large areas and with controllable purity. This has generated much research interest towards developing the knowledge and processing technology that would be necessary to fully exploit these extreme properties. Electronic devices fabricated on oxidised boron doped polycrystalline CVD diamond (PCD) displayed very poor and inconsistent characteristic. As a result, many electronic applications of polycrystalline diamond films were confined to ultra-violet (UV) and other forms of device which relied on the high intrinsic resistivity on undoped diamond films. If commercially accessible PCD films are to advance in areas which involve sophisticated electronic applications or to compete with existing semiconductors, the need for a more reliable and fully ionised dopant is paramount. This thesis describes a unique dopant discovered within the growth surface of PCD films. This dopant is related to hydrogen which arises during the growth of diamond films. The aim of this study is to characterise and identify possible applications for this form of dopant. The mechanism for carrier generation remains unknown and based on the experimental results in this work, a model is proposed. The Hall measurements conducted on this conductive layer revealed a p-type nature with promising properties for electronic device application. A more detail study based on electrical and surface science methods were carried out to identify the stability and operating conditions for this dopant. The properties of metal-semiconductor contacts on these surfaces were investigated. The fundamental knowledge

  19. Construction of pegylated multilayer architectures via (strept)avidin/biotin interactions

    International Nuclear Information System (INIS)

    Dai Zhifei; Wilson, John T.; Chaikof, Elliot L.

    2007-01-01

    Pegylated multilayer architectures were fabricated as films on planar substrates, as shells on colloidal particles, or as free-standing hollow capsules using layer-by-layer (LbL) self-assembly of biotinylated poly-L-lysine (PLL) and (strept)avidin. Poly(ethylene glycol) (PEG) was incorporated into the multilayer architectures by assembly with biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)(PPB). Stepwise growth of multilayers was followed by UV-vis spectroscopy and the formation of core-shells and hollow capsules characterized by means of confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Both absorbance and TEM data suggest that approximately two layers of FITC-avidin were adsorbed with each surface deposition. In contrast, use of unmodified PLL did not lead to formation of multilayer coatings, confirming that (strept)avidin-biotin interactions were responsible for film growth even in the presence of electrostatic repulsive forces between PLL and avidin and the steric hindrance of associated PEG chains. This technique provides new opportunities for the generation of robust films with tailored interfacial binding and transport properties

  20. Anisotropy of heat conduction in Mo/Si multilayers

    International Nuclear Information System (INIS)

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-01-01

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers

  1. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  2. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    Science.gov (United States)

    Yang, Xiaoyu; Yang, Jinghuan; Hu, Xiaoyong; Zhu, Yu; Yang, Hong; Gong, Qihuang

    2015-08-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  3. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    International Nuclear Information System (INIS)

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2015-01-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm 2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials

  4. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    Science.gov (United States)

    Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold

    2018-04-01

    We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional Co

  5. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    Directory of Open Access Journals (Sweden)

    Claudiu V. Falub

    2018-04-01

    Full Text Available We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.% and Co-4.5%Ta4%Zr (at.% amorphous alloys are deposited on 8” bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers to 52 % (e.g. FeCoB-based multilayers. We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD, but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the

  6. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  7. Principles of phosphorescent organic light emitting devices.

    Science.gov (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  8. Exploring coherent transport through π-stacked systems for molecular electronic devices

    DEFF Research Database (Denmark)

    Li, Qian; Solomon, Gemma

    2014-01-01

    Understanding electron transport across π-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron trans...

  9. Characterization of molybdenum/silicon X-ray multilayers

    CERN Document Server

    Nayak, M; Lodha, G S; Shrivastava, A K; Tripathi, P; Sinha, A K; Sawhney, K J S; Nandedkar, R V

    2003-01-01

    Mo/Si multilayers (MLs) with variable Mo thickness were fabricated using electron beam evaporator. Percolation thickness for Mo was determined experimentally. MLs with Mo thickness below percolation show low reflectivity due to discontinuous nature of Mo film. As the number of layer pair increases, the interfacial roughness increases, due to increase in correlated roughness. Extreme ultra violet reflectivity was measured using synchrotron radiation. The fitting result reveals that the graded interface layer exists at each interface. Cross-sectional transmission electron microscopy has been done on some of these MLs.

  10. Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands

    Science.gov (United States)

    Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.

    2018-06-01

    Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.

  11. 77 FR 14422 - Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt...

    Science.gov (United States)

    2012-03-09

    ... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...

  12. Multilayer optics for x-ray analysis: design - fabrication - application

    International Nuclear Information System (INIS)

    Dietsch, R.; Holz, Th.; Bruegemann, L.

    2002-01-01

    Full text: The use of multilayer optics induced a decisive extension of opportunities in laboratory based X-ray analysis. With the growing number of different applications, more and more dedicated X-ray optics are required, optimized for the spectral range they are intended to be used for. Both the characteristic of the used X-ray source and the design of the multilayer optics finally define the performance of the conditioned incident beam for the application. In any case, qualified spacer and absorber materials have to be selected for the deposition of the multilayer in respect to the designated X-ray wavelength. X-ray optical devices based on uniform multilayers have the advantage of a wide acceptance angle but show chromatic aberrations. This effect can be avoided by synthesizing a multilayer with a lateral thickness gradient. The gradient ensures that any beam of a certain wavelength emitted from an infinite narrow X-ray source impinging the multilayer optics fulfills the Bragg condition. Three different types of curvature of laterally graded multilayer mirrors are used for X-ray analysis experiments: parabolic, elliptic and planar, which result in parallel, focusing and divergent beam conditions, respectively. Furthermore, the X-ray beam characteristics: intensity, monochromasy, divergence, beam width and brilliance can be additionally conditioned by combining one multilayer optics with either a different optic and/or with a crystal monochromator. The deposition of nanometer-multilayers, used as X-ray optical components, result in extraordinary requirements of the deposition process concerning precision, reproducibility and long term stability. Across a stack of more than 150 individual layers with thicknesses in the range between 1 to 10 nm, a variation of single layer thickness considerably lower than σ D = 0.1 nm and an interface roughness below σ R = 0.25 nm have to be achieved. Thickness homogeneity Δd/d -8 have to be guaranteed across macroscopic

  13. 3D Design Tools for Vacuum Electron Devices

    International Nuclear Information System (INIS)

    Levush, Baruch

    2003-01-01

    A reduction of development costs will have a significant impact on the total cost of the vacuum electron devices. Experimental testing cycles can be reduced or eliminated through the use of simulation-based design methodology, thereby reducing the time and cost of development. Moreover, by use of modern optimization tools for automating the process of seeking specific solution parameters and for studying dependencies of performance on parameters, new performance capabilities can be achieved, without resorting to expensive cycles of hardware fabrication and testing. Simulation-based-design will also provide the basis for sensitivity studies for determining the manufacturing tolerances associated with a particular design. Since material properties can have a critical effect on the performance of the vacuum electron devices, the design tools require precise knowledge of material characteristics, such as dielectric properties of the support rods, loss profile etc. Sensitivity studies must therefore include the effects of materials properties variation on device performance. This will provide insight for choosing the proper technological processes in order to achieve these tolerances, which is of great importance for achieving cost reduction. A successful design methodology depends on the development of accurate and efficient design tools with predictive capabilities. These design tools must be based on realistic models capable of high fidelity representation of geometry and materials, they must have optimization capabilities, and they must be easy to use

  14. Multilayer bimetallic media as protection method of radioactive radiation

    International Nuclear Information System (INIS)

    Borts, B.V.; Tkachenko, V.I.; Tkachenko, I.V.

    2010-01-01

    Multilayer bimetallic media as means of protection of the earth's space vehicle from radioactive space radiation is described in the proposed paper. Evaluation of radiation losses of electron energy in inhomogeneous media is carried out; these media may be formed by layers of materials with different dielectric constants or they may be simulated by dielectric permittivity varying in space by harmonic law. It is shown that in such media the radiation losses of electron are proportional to the square of parameter of inhomogeneity, that is the losses are low. In the case when in periodic laminar medium with sharp boundaries the conditions of parametric union of self-waves of medium are satisfied, the losses of electron are proportional to the inhomogeneity parameter to first power and are comparable with losses that are caused by elementary events of scattering. The mean length of radiation losses of electron with energy 2(6) MeV in multilayer bimetallic medium tungsten-aluminum with period L ∼ 0,3 ·10 -6 cm is comparable with mean path of electron in such medium. The characteristic angles of radiation have the discrete character and are directed from 0 to 180 degree C. The power of losses increases with the radiation angle increase and is maximal for characteristic angles approaching 90 degree C.

  15. The design and investigation of hybrid ferromagnetic/silicon spin electronic devices

    International Nuclear Information System (INIS)

    Pugh, D.I.

    2001-01-01

    The focus of this study concerns the design and investigation of ferromagnetic/silicon hybrid spin electronic devices as part of a wider project to design a novel spin valve transistor. The key issue to obtain a room temperature spin electronic device is the electrical injection of a spin polarised current from a ferromagnetic contact into a semiconductor. Despite many attempts concentrating on GaAs and InAs only small (< 1%) effects have been observed, making it difficult to confirm spin injection. Lateral devices were designed and fabricated using standard device fabrication procedures to produce arrays of Co/Si/So junctions. Subsequent designs aimed to reduce the number of junctions and improve device isolation. Evidence for spin dependent MR of up to 0.56% was observed in Co/p-Si/Co junctions with silicon gaps up to 16 μm in length. The maximum MR was observed when the first Co/Si Schottky barrier was reverse biased forming a high resistance interface. Vertical devices were designed in an attempt to eliminate any alternative current paths by using a well defined, 1 μm thick silicon membrane. Despite attempts to include oxide barriers, no spin dependent MR was observed in these devices. However, a novel vertical silicon based design has been made which should facilitate further advanced studies of spin injection and transport. The spin diffusion length in n-type silicon has been calculated as a function of doping concentration and temperature by considering the spin relaxation mechanisms in the semiconductor. Discussion has been made concerning p-type silicon and comparisons made with GaAs, indicating that n-Si should show longer spin diffusion lengths. The key design criteria for designing room temperature spin electronic devices have been highlighted. These include the use of a high leakage Schottky barrier or tunnel barrier between the ferromagnet and p-Si and a contact to the silicon to enable appropriate biasing to each FM/Si interface. (author)

  16. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  17. Transmission electron microscopy of InP-based compound semiconductor materials and devices

    International Nuclear Information System (INIS)

    Chu, S.N.G.

    1990-01-01

    InP/InGaAsP-based heteroepitaxial structures constitute the major optoelectronic devices for state-of-the-art long wavelength optical fiber communication system.s Future advanced device structures will require thin heteroepitaxial quantum wells and superlattices a few tens of angstrom or less in thickness, and lateral dimensions ranging from a few tens angstrom for quantum dots and wires to a few μm in width for buried heterostructure lasers. Due to the increasing complexity of the device structure required by band-gap engineering, the performance of these devices becomes susceptible to any lattice imperfections present in the structure. Transmission electron microscopy (TEM), therefore, becomes the most important technique in characterizing the structural integrity of these materials. Cross-section transmission electron microscopy (XTEM) not only provides the necessary geometric information on the device structure; a careful study of the materials science behind the observed lattice imperfections provides directions for optimization of both the epitaxial growth parameters and device processing conditions. Furthermore, for device reliability studies, TEM is the only technique that unambiguously identifies the cause of device degradation. In this paper, the authors discuss areas of application of various TEM techniques, describe the TEM sample preparation technique, and review case studies to demonstrate the power of the TEM technique

  18. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    Science.gov (United States)

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p 90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  19. Nanosecond Surface Microdischarges in Multilayer Structures

    Science.gov (United States)

    Dubinov, A. E.; Lyubimtseva, V. A.

    2018-05-01

    Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.

  20. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Cai Kaiyong, E-mail: Kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Sui Xiaojing; Hu Yan [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Zhao Li [China National Centre for Biotechnology Development, No. 16, Xi Si Huan Zhong Lu, Haidian District, Beijing 100036 (China); Lai Min; Luo Zhong; Liu Peng; Yang Weihu [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2011-12-01

    To improve the corrosion resistance of magnesium alloy, we reported a novel approach for the fabrication of anticorrosive multilayers onto AZ91D substrates. The multilayers were composed of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS) and 8-hydroxyquinoline (8HQ). They were deposited onto AZ91D substrates via a spin-assisted layer-by-layer (LbL) technique. The multilayered structure was stabilized with glutaraldehyde (GA) as crossing linker. It was confirmed by Fourier transform infrared spectroscopy (FT-IR). Surface morphologies and elemental compositions of the formed anticorrosive multilayers were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion performance of the multilayer coated AZ91D substrates was characterized by hydrogen evolution. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements suggested that the multilayered coating improved the corrosion resistance of AZ91D substrates. In vitro study revealed that the multilayered coating was cytocompatible. The study provides a potential alternative for the fabrication of corrosion resistant magnesium alloy-based implants. Highlights: {yields} Corrosion protective multilayers have been constructed onto AZ91D substrates via layer by layer technique. {yields} The multilayered structured containing 8-hydroxyquinoline highly improves the corrosion resistance of AZ91D substrates. {yields} The novel multilayered coating is potentially important for developing corrosion resistant magnesium alloy-based implants.

  1. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique

    International Nuclear Information System (INIS)

    Cai Kaiyong; Sui Xiaojing; Hu Yan; Zhao Li; Lai Min; Luo Zhong; Liu Peng; Yang Weihu

    2011-01-01

    To improve the corrosion resistance of magnesium alloy, we reported a novel approach for the fabrication of anticorrosive multilayers onto AZ91D substrates. The multilayers were composed of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS) and 8-hydroxyquinoline (8HQ). They were deposited onto AZ91D substrates via a spin-assisted layer-by-layer (LbL) technique. The multilayered structure was stabilized with glutaraldehyde (GA) as crossing linker. It was confirmed by Fourier transform infrared spectroscopy (FT-IR). Surface morphologies and elemental compositions of the formed anticorrosive multilayers were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion performance of the multilayer coated AZ91D substrates was characterized by hydrogen evolution. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements suggested that the multilayered coating improved the corrosion resistance of AZ91D substrates. In vitro study revealed that the multilayered coating was cytocompatible. The study provides a potential alternative for the fabrication of corrosion resistant magnesium alloy-based implants. Highlights: → Corrosion protective multilayers have been constructed onto AZ91D substrates via layer by layer technique. → The multilayered structured containing 8-hydroxyquinoline highly improves the corrosion resistance of AZ91D substrates. → The novel multilayered coating is potentially important for developing corrosion resistant magnesium alloy-based implants.

  2. Chemical Doping Effects in Multilayer MoS2 and its Application in Complementary Inverter.

    Science.gov (United States)

    Yoo, Hocheon; Hong, Seongin; On, Sungmin; Ahn, Hyungju; Lee, Han-Koo; Hong, Young Ki; Kim, Sunkook; Kim, Jae-Joon

    2018-06-19

    Multilayer MoS2 has been gaining interests as a new semiconducting material for flexible displays, memory devices, chemical/bio sensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier (SB) and defects. Here, we demonstrate PDPP3T doping effects in multilayer MoS2, which results in improved electrical characteristics (~3.2X mobility compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy (XPS) and grazing-incidence wide-angle X-ray diffraction (GIWAXD) provides mechanisms that align the edge-on crystallites (97.5 %) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a hybrid CMOS inverter using the PDPP3T-doped MoS2 and organic DNTT transistors as n- and p-channels, respectively. The proposed hybrid inverter offers an ultra-high voltage gain of ~205 V/V.

  3. Spatial repellency of metofluthrin-impregnated multilayer paper strip against Aedes albopictus under outdoor conditions, Nagasaki, Japan

    OpenAIRE

    Argueta, Tamara Belzabel Obispo; Kawada, Hitoshi; Takagi, Masahiro

    2004-01-01

    Spatial repellency of a new device in which metofluthrin, a newly synthesized pyrethroid, is impregnated into a multilayer paper strip, against Aedes albopictus was evaluated under outdoor conditions. High spatial repellency (>80%) with the metofluthrin-impregnated (200 mg) device lasted for more than 6 weeks, while the repellency with the same device impregnated with the same amount of transfluthrin declined within 5 weeks after treatment.

  4. Ring-dot-shaped multilayer piezoelectric step-down transformers using PZT-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Insung; Joo, Hyeonkyu; Song, Jaesung; Jeong, Soonjong; Kim, Minsoo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2010-10-15

    In this study, multilayer piezo stack transformers for switching mode power supply (SMPS) application were manufactured using 0.01Pb(Ni{sub 1/3}Nb{sub 2/3})O{sub 3} - 0.08Pb(Mn{sub 1/3}Nb{sub 2/3})O{sub 3} - 0.91Pb(Zr{sub 0.505}Ti{sub 0.495})O{sub 3} (PNN-PMN-PZT) ceramics. The voltage ratio of a multilayer piezo stack transformer showed a maximum at the resonance frequency of the input and then increased with increasing load resistance. The efficiency of the multilayer piezo stack transformer showed its highest value at around the matching load. The output power increased with increasing input voltage. The temperature of the multilayer piezo stack transformer increased with increasing output power and load resistance. The manufactured multilayer piezo stack transformer could be used up to 5 W at a resonance frequency of 70.25 kHz for SMPS application because the temperature rise from room temperature is believed to about 20 .deg. C and because the transformer is electrically stable. The newly-developed ring-dot-type step-down multilayer piezo stack transformer shows possible applications as SMPS for electronic power sources with excellent input-to-output properties.

  5. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer

    International Nuclear Information System (INIS)

    Qin Haixia; Liu Jiyang; Chen Chaogui; Wang Jiahi; Wang Erkang

    2012-01-01

    Highlights: ► An electrochemical aptasensor for selective detection of peptide is constructed. ► This aptasensor is based on grapheme multilayer via layer-by-layer assembly. ► Such multilayer facilitates electron transfer and provides more adsorption sites. - Abstract: Here we demonstrate for the first time that by physically adsorbing aptamer onto conductive film assembled via alternate adsorption of graphene/polyelectrolyte and methylene blue/polyelectrolyte, a label-free electrochemical aptasensor with high sensitivity and selectivity for peptide detection is constructed. Graphene multilayer derived from layer-by-layer assembly has played significant roles in this sensing strategy: allowing accumulation of methylene blue, facilitating electron transfer and providing much more adsorption site. As compared to previous electrochemical aptasensors, the current sensor based on graphene multilayer alternated with electroactive molecule layer offers extremely high capability for sensitive detection of target without interference of environmental surrounding. This electroactive probe-confined graphene multilayer confers great flexibility to combine with differential pulse voltammetry (DPV) together. In the presence of target D entiomer of arginine vasopressin (D-VP), the binding of peptide to aptamer block the electron transfer process of MB, leading to decreased current peak of DPV. By this way, this electrochemical aptasensor based on electroactive molecule-intercalated graphene multilayer provide highly sensitive and specific detection of D-VP with the lowest detectable concentration of 1 ng mL −1 and a wide detection range from 1 to 265 ng mL −1 .

  6. Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

    Directory of Open Access Journals (Sweden)

    Adrian Iovan

    2012-12-01

    Full Text Available Patterning of materials at sub-10 nm dimensions is at the forefront of nanotechnology and employs techniques of various complexity, efficiency, areal scale, and cost. Colloid-based patterning is known to be capable of producing individual sub-10 nm objects. However, ordered, large-area nano-arrays, fully integrated into photonic or electronic devices have remained a challenging task. In this work, we extend the practice of colloidal lithography to producing large-area sub-10 nm point-contact arrays and demonstrate their circuit integration into spin-photo-electronic devices. The reported nanofabrication method should have broad application areas in nanotechnology as it allows ballistic-injection devices, even for metallic materials with relatively short characteristic relaxation lengths.

  7. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  8. Views of patients and professionals about electronic multicompartment medication devices: a qualitative study.

    Science.gov (United States)

    Hall, Jill; Bond, Christine; Kinnear, Moira; McKinstry, Brian

    2016-10-17

    To explore the perceived acceptability, advantages and disadvantages of electronic multicompartment medication devices. Qualitative study using 8 focus groups and 10 individual semistructured interviews. Recordings were transcribed and analysed thematically. Strategies were employed to ensure the findings were credible and trustworthy. Community pharmacists (n=11), general practitioners (n=9), community nurses (n=12) and social care managers (n=8) were recruited from the National Health Service (NHS) and local authority services. Patients (n=15) who were current conventional or electronic multicompartment medication device users or had medication adherence problems were recruited from community pharmacies. 3 informal carers participated. Electronic multicompartment medication devices which prompt the patient to take medication may be beneficial for selected individuals, particularly those with cognitive impairment, but who are not seriously impaired, provided they have a good level of dexterity. They may also assist individuals where it is important that medication is taken at fixed time intervals. These are likely to be people who are being supported to live alone. No single device suited everybody; smaller/lighter devices were preferred but their usefulness was limited by the small number/size of storage compartments. Removing medications was often challenging. Transportability was an important factor for patients and carers. A carer's alert if medication is not taken was problematic with multiple barriers to implementation and no consensus as to who should receive the alert. There was a lack of enthusiasm among professionals, particularly among pharmacists, due to concerns about responsibility and funding for devices as well as ensuring devices met regulatory standards for storage and labelling. This study provides indicators of which patients might benefit from an electronic multicompartment medication device as well as the kinds of features to consider when

  9. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Science.gov (United States)

    Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy, 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM's) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM's on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices.

  10. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  11. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  12. 77 FR 32995 - Certain Electronic Imaging Devices Corrected: Notice of Receipt of Complaint; Solicitation of...

    Science.gov (United States)

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices Corrected.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the...

  13. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  14. Subwavelength resolution from multilayered structure (Conference Presentation)

    Science.gov (United States)

    Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping

    2016-10-01

    Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.

  15. Front and backside processed thin film electronic devices

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  16. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  17. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  18. Modification of doping front migration in electrochemical devices and application to organic electronics

    International Nuclear Information System (INIS)

    Nolte, Marius; Wan Xianglong; Kopp, Olga; Hermes, Ina; Panz, Jan; Rahmanian, Afsaneh; Knoll, Meinhard

    2011-01-01

    Research highlights: → In this paper we demonstrate several ways of tuning the doping front migration process in polymer electronic multilayer structures for the first time. By altering the migration layer thickness the migration velocity may be controlled and it is possible to switch between migration mechanisms. The mechanism of delamination produces rapid jumps in migration velocity, while the addition of 2-hydroxyethylcellulose (HEC) can inhibit this effect. In case of vapor activation the migration velocity may be influenced by the relative humidity or by varying the concentration of hygroscopic salts added to the migration layer. The migration mechanisms can be explained in terms of diffusion, capillary transport, and delamination. Tuning the migration process may be used to construct polymer electronic structures such as enhancement and depletion type pseudo transistors and electrical switches (ON-OFF and OFF-ON) with an improved switching time of several minutes. The doping front width is determined by microscopic optical absorption spectroscopy and can be controlled by the concentration of the doping solution. In case of low concentrations the electrochromic effect of the double front is observed. - Abstract: We demonstrate several methods of modifying the doping front migration process in multilayer structures, enabling control of migration velocity and switching between different migration mechanisms. Sharp jumps in migration velocity may be induced using a delamination effect. The influence of migration layer thickness and composition is examined. Migration velocity may also be influenced by exposing the system to a defined relative humidity or by varying the concentration of a hygroscopic salt in the migration layer. The migration mechanisms can be explained in terms of diffusion, capillary transport, and delamination. By tailoring the migration process a variety of polymer electronic structures such as pseudo transistors (enhancement and depletion

  19. Corrosion surface protection by using titanium carbon nitride/titanium-niobium carbon nitride multilayered system

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: jcesarca@calima.univalle.edu.co [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Amaya, C. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Laboratorio de Recubrimientos Duros, CDT-ASTIN SENA, Cali (Colombia); Cabrera, G. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Esteve, J. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Aperador, W. [Universidad Militar Nueva Granada Bogota D.C (Colombia); Gomez, M.E. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Prieto, P. [Grupo de Peliculas Delgadas, Universidad del Valle, Cali (Colombia); Centro de Excelencia en Nuevos Materiales, CENM, Calle 13 100-00 Edificio 320, espacio 1026, Cali (Colombia)

    2011-07-29

    The aim of this work is the improvement of the electrochemical behavior of 4140 steel substrate using TiCN/TiNbCN multilayered system as a protective coating. We have grown [TiCN/TiNbCN]{sub n} multilayered via reactive r.f. magnetron sputtering technique in which was varied systematically the bilayer period ({Lambda}), and the bilayer number (n), maintaining constant the total thickness of the coatings ({approx} 3 {mu}m). The coatings were characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy and transmission electron microscopy assisted with selected area electron diffraction. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed a preferential growth in the face-centered cubic (111) crystal structure for [TiCN/TiNbCN]{sub n} multilayered coatings [1]. In this work was obtained the maximum corrosion resistance for the coating with ({Lambda}) equal to 15 nm, corresponding to n = 200 bilayered. The polarization resistance and corrosion rate were around 8.6 kOhm cm{sup 2} and 7.59 . 10{sup -4} mm/year, these values were 8.6 and 0.001 times better than those showed by the uncoated 4140 steel substrate (1.0 kOhm and 0.57 mm/year), respectively. The improvement of the electrochemical behavior of the 4140 coated with this TiCN/TiNbCN multilayered system can be attributed to the presence of several interfaces that act as obstacles for the inward and outward diffusions of Cl{sup -} ion species, generating an increment in the energy or potential required for translating the corrosive ions across the coating/substrate interface. Moreover, the interface systems affect the means free path on the ions toward the metallic substrate, due to the decreasing of the defects presented in the multilayered coatings.

  20. Corrosion surface protection by using titanium carbon nitride/titanium-niobium carbon nitride multilayered system

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Amaya, C.; Cabrera, G.; Esteve, J.; Aperador, W.; Gomez, M.E.; Prieto, P.

    2011-01-01

    The aim of this work is the improvement of the electrochemical behavior of 4140 steel substrate using TiCN/TiNbCN multilayered system as a protective coating. We have grown [TiCN/TiNbCN] n multilayered via reactive r.f. magnetron sputtering technique in which was varied systematically the bilayer period (Λ), and the bilayer number (n), maintaining constant the total thickness of the coatings (∼ 3 μm). The coatings were characterized by X-ray diffraction (XRD), optical microscopy, electron microscopy and transmission electron microscopy assisted with selected area electron diffraction. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed a preferential growth in the face-centered cubic (111) crystal structure for [TiCN/TiNbCN] n multilayered coatings [1]. In this work was obtained the maximum corrosion resistance for the coating with (Λ) equal to 15 nm, corresponding to n = 200 bilayered. The polarization resistance and corrosion rate were around 8.6 kOhm cm 2 and 7.59 . 10 -4 mm/year, these values were 8.6 and 0.001 times better than those showed by the uncoated 4140 steel substrate (1.0 kOhm and 0.57 mm/year), respectively. The improvement of the electrochemical behavior of the 4140 coated with this TiCN/TiNbCN multilayered system can be attributed to the presence of several interfaces that act as obstacles for the inward and outward diffusions of Cl - ion species, generating an increment in the energy or potential required for translating the corrosive ions across the coating/substrate interface. Moreover, the interface systems affect the means free path on the ions toward the metallic substrate, due to the decreasing of the defects presented in the multilayered coatings.

  1. 77 FR 31875 - Certain Electronic Imaging Devices; Notice of Receipt of Complaint; Solicitation of Comments...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2898] Certain Electronic Imaging Devices; Notice of... Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Electronic Imaging Devices, DN 2898; the Commission is...

  2. Personalized Remote Monitoring of the Atrial Fibrillation Patients with Electronic Implant Devices

    Directory of Open Access Journals (Sweden)

    Gokce B. Laleci

    2011-01-01

    Full Text Available Cardiovascular Implantable Electronic Devices (CIED are gaining popularity in treating patients with heart disease. Remote monitoring through care management systems enables continuous surveillance of such patients by checking device functions and clinical events. These care management systems include decision support capabilities based on clinical guidelines. Data input to such systems are from different information sources including medical devices and Electronic Health Records (EHRs. Although evidence-based clinical guidelines provides numerous benefits such as standardized care, reduced costs, efficient and effective care management, they are currently underutilized in clinical practice due to interoperability problems among different healthcare data sources. In this paper, we introduce the iCARDEA care management system for atrial fibrillation patients with implant devices and describe how the iCARDEA care plan engine executes the clinical guidelines by seamlessly accessing the EHR systems and the CIED data through standard interfaces.

  3. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.

    Science.gov (United States)

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.

  4. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    Full Text Available Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.

  5. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  6. In plane optical sensor based on organic electronic devices

    NARCIS (Netherlands)

    Koetse, M.M; Rensing, P.A.; Heck, G.T. van; Sharpe, R.B.A.; Allard, B.A.M.; Wieringa, F.P.; Kruijt, P.G.M.; Meulendijks, N.M.M.; Jansen, H.; Schoo, H.F.M.

    2008-01-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils

  7. Low power signal processing electronics for wearable medical devices.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  8. Energy monitoring device for 1.5-2.4 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Lavalle, M.; Martelli, A. [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O.Box 77, H-1525 Budapest (Hungary); Mehta, K. [Arbeiterstrandbad Strasse 72, Vienna, A-1210 (Austria); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France)

    2010-03-11

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  9. Energy monitoring device for 1.5-2.4 MeV electron beams

    Science.gov (United States)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  10. MOLED: Simulation of multilayer organic light emitting diodes

    Science.gov (United States)

    Houili, H.; Tutiš, E.; Lütjens, H.; Bussac, M. N.; Zuppiroli, L.

    2003-12-01

    MOLED solves the dynamics of electrons and holes in multilayer Organic Light Emitting Diodes (OLED). The carriers are injected on the positive and negative electrodes of the device by tunneling through a potential barrier. Thermal excitation processes across the barrier are also included. In the interior of the device the electron-hole recombination occurs when the two carriers are close enough, according to a model inspired from the one of Langevin. A fraction of these recombined pairs gives photons. The charge transport inside the organic material occurs through hopping. Several choices of mobility formulae are available in the code. MOLED can be used for OLEDs with an arbitrary number of layers. The output consists of numerous fields that describe the device performance. For example, there are the current, the recombination and the charge density distributions, the electric field distribution, the current-voltage characteristics and the device internal quantum efficiency. Program summaryTitle of program: MOLED Catalogue identifier: ADSG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating systems under which the program has been tested: Unix, Linux Programming language used: FORTRAN 90 Memory required to execute with typical data: 2 MB No. of bytes in distributed program: 26 942 No. of bits in a word: 64 Peripherals used: permanent disk storage No. of lines in distributed program, including test data, etc.: 3695 Distribution format: tar gzip file Nature of the physical problem: Injection of electrons and holes into an organic electroluminescent material occurs through tunneling from metal electrodes. The transport of carriers inside the molecular medium proceeds by hopping from one molecule to another. The emission of light is a result of their radiative Langevin recombination (for a review see [Scott et al., Synthetic Metals 111-112 (2000) 289; Friend et al

  11. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  12. Fast and accurate inductance and coupling calculation for a multi-layer Nb process

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Takahashi, Akitomo; Yoshikawa, Nobuyuki

    2015-01-01

    Currently, fabrication processes for superconductive integrated circuits are moving to multiple wiring and shielding layers, some of which are placed below the main ground plane (GP) and device layers. The Advanced Industrial Science and Technology advanced process (ADP2) was the first such multi-layer Nb process with planarized passive transmission line and GP layers below the junction layer, and is at the time of writing still the most developed. This process allows complex circuit designs, and accurate inductance extraction helps to push the boundaries of the layouts possible. We show that the position of ground connections between ground layers influences the inductance of structures for which these GPs act as return path, and that this needs to be accounted for in modelling. However, due to the number of wiring layers and GPs, full layout modelling of large cells causes long calculation times. In this paper we discuss methods with which to reduce model size, and calibrate InductEx calculations using these methods against measured results. We show that model reduction followed by calibration results in fast calculation times while good accuracy is maintained. We also show that InductEx correctly handles coupling between conductors in a multi-layer layout, and how to model layouts to gauge unwanted coupling between power lines and single flux quantum electronics. (paper)

  13. Quantitative analysis of Moessbauer backscatter spectra from multilayer films

    International Nuclear Information System (INIS)

    Bainbridge, J.

    1975-01-01

    The quantitative interpretation of Moessbauer backscatter spectra with particular reference to internal conversion electrons has been treated assuming that electron attenuation in a surface film can be satisfactorily described by a simple exponential law. The theory of Krakowski and Miller has been extended to include multi-layer samples, and a relation between the Moessbauer spectrum area and an individual layer thickness derived. As an example, numerical results are obtained for a duplex oxide film grown on pure iron. (Auth.)

  14. GaN nano-membrane for optoelectronic and electronic device applications

    KAUST Repository

    Ooi, Boon S.

    2014-01-01

    The ~25nm thick threading dislocation free GaN nanomembrane was prepared using ultraviolet electroless chemical etching method offering the possibility of flexible integration of (Al,In,Ga)N optoelectronic and electronic devices.

  15. Human Powered PiezoelectricBatteries to Supply Power to Wearable Electronic Devices.

    OpenAIRE

    Gonzalez, Jose' Luis; Rubio, Antonio; Moll, Francesc

    2002-01-01

    Consumer electronic equipments are becoming small, portable devices that provide users with a wide range of functionality, from communication to music playing. The battery technology and the power consumption of the device limit the size, weight and autonomous lifetime. One promising alternative to batteries (and fuel cells, that must be refueled as well) is to use the parasitic energy dissipated in the movement of the wearer of the device to power it. We analyze in this work the current stat...

  16. 77 FR 31876 - Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-836] Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not To Review Initial Determination To Amend... electronics and display devices and products containing the same by reason of infringement of U.S. Patent Nos...

  17. Observation of molecular level behavior in molecular electronic junction device

    Science.gov (United States)

    Maitani, Masato

    In this dissertation, I utilize AFM based scanning probe measurement and surface enhanced Raman scattering based vibrational spectroscopic analysis to directly characterize topographic, electronic, and chemical properties of molecules confined in the local area of M3 junction to elucidate the molecular level behavior of molecular junction electronic devices. In the introduction, the characterization of molecular electronic devices with different types of metal-molecule-metal (M3) structures based upon self-assembled monolayers (SAMs) is reviewed. A background of the characterization methods I use in this dissertation, conducting probe atomic force microscopy (cp-AFM) and surface enhanced Raman spectroscopy (SERS), is provided in chapter 1. Several attempts are performed to create the ideal top metal contacts on SAMs by metal vapor phase deposition in order to prevent the metal penetration inducing critical defects of the molecular electronic devices. The scanning probe microscopy (SPM), such as cp-AFM, contact mode (c-) AFM and non-contact mode (nc-) AFM, in ultra high vacuum conditions are utilized to study the process of the metal-SAM interface construction in terms of the correlation between the morphological and electrical properties including the metal nucleation and filament generation as a function of the functionalization of long-chain alkane thiolate SAMs on Au. In chapter 2, the nascent condensation process of vapor phase Al deposition on inert and reactive SAMs are studied by SPM. The results of top deposition, penetration, and filament generation of deposited Al are discussed and compared to the results previously observed by spectroscopic measurements. Cp-AFM was shown to provide new insights into Al filament formation which has not been observed by conventional spectroscopic analysis. Additionally, the electronic characteristics of individual Al filaments are measured. Chapter 3 reveals SPM characterization of Au deposition onto --COOH terminated SAMs

  18. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  19. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  20. Structural and magnetic properties of granular CoPd multilayers

    Science.gov (United States)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  1. Aloe vera in active and passive regions of electronic devices towards a sustainable development

    Science.gov (United States)

    Lim, Zhe Xi; Sreenivasan, Sasidharan; Wong, Yew Hoong; Cheong, Kuan Yew

    2017-07-01

    The increasing awareness towards sustainable development of electronics has driven the search for natural bio-organic materials in place of conventional electronic materials. The concept of using natural bio-organic materials in electronics provides not only an effective solution to address global electronic waste crisis, but also a compelling template for sustainable electronics manufacturing. This paper attempts to provide an overview of using Aloe vera gel as a natural bio-organic material for various electronic applications. Important concepts such as responses of living Aloe vera plant towards electrical stimuli and demonstrations of Aloe vera films as passive and active regions of electronic devices are highlighted in chronological order. The biodegradability and biocompatibility of Aloe vera can bring the world a step closer towards the ultimate goal of sustainable development of electronic devices from "all-natural" materials.

  2. In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures

    Science.gov (United States)

    Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng

    2014-04-01

    Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene ``painting'' on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.

  3. Nanocomposite multilayer capacitors comprising BaTiO3@TiO2 and poly(vinylidene fluoride-hexafluoropropylene for dielectric-based energy storage

    Directory of Open Access Journals (Sweden)

    Mojtaba Rahimabady

    2014-04-01

    Full Text Available Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO3@TiO2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene (P(VDF–HFP polymer matrix (20 vol%. The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m. The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.

  4. Electron energy device for LINAC based Pulse Radiolysis Facility of RPCD

    International Nuclear Information System (INIS)

    Toley, M.A.; Shinde, S.J.; Chaudhari, B.B.; Sarkar, S.K.

    2015-07-01

    The pulse radiolysis facility is the experimental centerpiece of the radiation chemistry activities of the Radiation and Photochemistry Division (RPCD) of Bhabha Atomic Research Centre. This facility was created in 1986 which is based on a 7 MeV Linear Electron Accelerator (LINAC) procured from M/s Radiation Dynamics Ltd., UK. The electron energy is one of the principal parameters that influence the dose distribution within the sample irradiated with a beam of energetic electrons. An easy-to-use and robust device has been developed that can reliably detect day-today small variations in the beam energy. It consists of two identical aluminum plates except for their thickness, which are electrically insulated from each other. The thickness of each plate is carefully selected depending on the electron beam energy. The charge (or current) collected by each plate, under irradiation is measured. The ratio of the charge (or current) signal from the front plate to the sum of the signals from the front and rear plates is very sensitive to the beam energy. The high sensitivity and robustness make this device quite suitable for Electron energy measurement for Pulse radiolysis Facility at RPCD. (author)

  5. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    Science.gov (United States)

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ferromagnetic resonance in gigahertz magneto-impedance of multilayer systems

    International Nuclear Information System (INIS)

    Cos, D. de; Garcia-Arribas, A.; Barandiaran, J.M.

    2006-01-01

    The effect of ferromagnetic resonance (FMR) on magneto-impedance (MI) of multilayer thin films is investigated. We present impedance measurements of an insulated multilayer film as a function of the applied magnetic field both in the plane of the sample and perpendicular to it, for frequencies from 300 kHz to 3 GHz. These measurements have been made using RF techniques, and the data have been treated using high-frequency models in order to minimize the contribution to the impedance of the test fixture. The results confirm that the FMR dominates the MI behavior at high frequency, allowing to reach higher MI ratios than those achieved at the quasistatic regime. However, the broad resonance lines cause a considerable drop of the sensitivity of the curves, and therefore the optimum operation frequency of GMI devices lays in the sub-GHz range

  7. Radiation effects and soft errors in integrated circuits and electronic devices

    CERN Document Server

    Fleetwood, D M

    2004-01-01

    This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metal-oxide-semiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes th

  8. Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Schmidt, Hans; Fluegge, Harald; Nikolayzik, Fabian; Baumann, Ihno; Schmale, Stephan; Johannes, Hans-Hermann; Rabe, Torsten [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Hamwi, Sami, E-mail: sami.hamwi@ihf.tu-bs.de [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Riedl, Thomas [Institute of Electronic Devices, Bergische Universitaet Wuppertal, Rainer-Gruenter Str. 21, 42119 Wuppertal (Germany); Kowalsky, Wolfgang [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany)

    2012-05-01

    We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 {Omega}/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm{sup 2} and exhibits efficiencies of 43 cd/A and 36 lm/W.

  9. Nanoporous metal film: An energy-dependent transmission device for electron waves

    International Nuclear Information System (INIS)

    Grech, S.; Degiovanni, A.; Lapena, L.; Morin, R.

    2011-01-01

    We measure electron transmission through free-standing ultrathin nanoporous gold films, using the coherent electron beam emitted by sharp field emission tips in a low energy electron projection microscope setup. Transmission coefficient versus electron wavelength plots show periodic oscillations between 75 and 850 eV. These oscillations result from the energy dependence of interference between paths through the gold and paths through the nanometer-sized pores of the film. We reveal that these films constitute high transmittance quantum devices acting on electron waves through a wavelength-dependent complex transmittance defined by the porosity and the thickness of the film.

  10. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  11. Laser micromachining of biofactory-on-a-chip devices

    Science.gov (United States)

    Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.

    2002-06-01

    Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.

  12. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2{prime}-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM{close_quote}s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM{close_quote}s on the Ag surface potential. {ital Ab} {ital initio} Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. {copyright} {ital 1996 The American Physical Society.}

  13. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    International Nuclear Information System (INIS)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L.; Barashkov, N.N.; Ferraris, J.P.

    1996-01-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM close-quote s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM close-quote s on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. copyright 1996 The American Physical Society

  14. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    Science.gov (United States)

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  15. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Tekgül, Atakan, E-mail: atakantekgul@gmail.com [Akdeniz University, Physics Department, Science Faculty, TR-07058 Antalya (Turkey); Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Alper, Mürsel [Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Kockar, Hakan [Balikesir University, Physics Department, Science and Literature Faculty, TR-10145 Balikesir (Turkey)

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current–time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of −0.3 and −1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices. - Highlights: • The much thinner (0.5 nm) Cu layer was used to obtain the GMR effect on the electrodeposited CoFe/Cu multilayers. • All samples exhibited GMR and the maximum GMR value was 5.5%. • The M{sub s} and the H{sub c} changed with increasing magnetic layer thickness.

  16. Time effects in the thermal annealing of Fe/V multilayers

    CERN Document Server

    Borges, J F M

    2003-01-01

    We report a study on the structural and magnetic properties of iron-vanadium thin films grown in multilayer form and mixed by thermal treatment. The multilayer samples were annealed at 610 deg. C for times ranging from 10 to 540 min. The samples were structurally characterized by means of x-ray diffraction (XRD) and by x-ray absorption spectroscopy (XAS). The magnetic characterization was carried out with a conventional alternating gradient magnetometer (AGM) and by conversion electron Moessbauer spectroscopy (CEMS). The XRD result for the as-deposited multilayer shows a high degree of crystallinity while the CEMS result suggests an abrupt interface, since no significant contribution from vanadium in iron is observed. After the thermal treatment, the results from XRD show a phase transformation of the disordered body-centred-cubic structure (alpha-phase) into a tetragonal structure (sigma-phase) and a subsequent return to the alpha-phase. This alpha-sigma-alpha oscillation is not reported in the literature av...

  17. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  18. Silicon based multilayer photoelectrodes for photoelectrolysis of water to produce hydrogen from the sun

    Science.gov (United States)

    Faruque, Faisal

    The main objective of this work is to study different materials for the direct photosynthesis of hydrogen from water. A variety of photocatalysts such as titanium dioxide, titanium oxy-nitride, silicon carbide, and gallium nitride are being investigated by others for the clean production of hydrogen for fuel cells and hydrogen economy. Our approach was to deposit suitable metallic regions on photocatalyst nanoparticles to direct the efficient synthesis of hydrogen to a particular site for convenient collection. We studied different electrode metals such as gold, platinum, titanium, palladium, and tungsten. We also studied different solar cell materials such as silicon (p- and n-types), silicon carbide and titanium dioxide semiconductors in order to efficiently generate electrons under illumination. We introduced a novel silicon-based multilayer photosynthesis device to take advantage of suitable properties of silicon and tungsten to efficiently produce hydrogen. The device consisted of a silicon (0.5mm) substrate, a deposited atomic layer of Al2O 3 (1nm), a doped polysilicon (0.1microm), and finally a tungsten nanoporous (5-10nm) layer acting as an interface electrode with water. The Al2O 3 layer was introduced to reduce leakage current and to prevent the spreading of the diffused p-n junction layer between the silicon and doped polysilicon layers. The surface of the photoelectrode was coated with nanotextured tungsten nanopores (TNP), which increased the surface area of the electrodes to the electrolyte, assisting in electron-hole mobility, and acting as a photocatalyst. The reported device exhibited a fill factor (%FF) of 27.22% and solar-to-hydrogen conversion efficiency of 0.03174%. This thesis describes the structures of the device, and offers a characterization and comparison between different photoelectrodes.

  19. Activating students' interest in lectures and practical courses using their electronic devices

    NARCIS (Netherlands)

    Wijtmans, M.; van Rens, L.; van Muijlwijk- Koezen, J.E.

    2014-01-01

    Interactive teaching with larger groups of students can be a challenge, but the use of mobile electronic devices by students (smartphones, tablets, laptops) can be used to improve classroom interaction. We have examined several types of tasks that can be electronically enacted in classes and

  20. Electron density measurement in an evolving plasma. Experimental devices

    International Nuclear Information System (INIS)

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  1. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  2. Microstructure and mechanical properties of sputter deposited Ni/Ni{sub 3}Al multilayer films at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Lu, Fenggui; Huang, Jian; Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2016-08-15

    Highlights: • Ni/Ni{sub 3}Al multilayers are prepared by magnetron sputtering. • Both grain size and phase constitution of annealed Ni/Ni{sub 3}Al multilayers are dependent on individual layer thickness. • The hardness of annealed Ni/Ni{sub 3}Al multilayers varies with individual layer thickness and annealing temperature. • 40 nm Ni/Ni{sub 3}Al multilayer exhibits excellent hardness at elevated temperature. - Abstract: Nano-structured Ni/Ni{sub 3}Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni{sub 3}Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni{sub 3}Al on strengthening mechanisms of Ni/Ni{sub 3}Al multilayers at elevated temperature are discussed.

  3. Vertical GaN Devices for Power Electronics in Extreme Environments

    Science.gov (United States)

    2016-03-31

    Vertical GaN Devices for Power Electronics in Extreme Environments Isik C. Kizilyalli (1), Robert J. Kaplar (2), O. Aktas (1), A. M. Armstrong (2...electronics applications. In this paper vertical p-n diodes and transistors fabricated on pseudo bulk low defect density (104 to 106 cm-2) GaN substrates are...discussed. Homoepitaxial MOCVD growth of GaN on its native substrate and being able to control doping has allowed the realization of vertical

  4. An electroluminescence device for printable electronics using coprecipitated ZnS:Mn nanocrystal ink

    International Nuclear Information System (INIS)

    Toyama, T; Hama, T; Adachi, D; Nakashizu, Y; Okamoto, H

    2009-01-01

    Electroluminescence (EL) devices for printable electronics using coprecipitated ZnS:Mn nanocrystal (NC) ink are demonstrated. The EL properties of these devices were investigated along with the structural and optical properties of ZnS:Mn NCs with an emphasis on their dependence on crystal size. Transmission electron microscopy and x-ray diffraction studies revealed that the NCs, with a crystal size of 3-4 nm, are nearly monodisperse; the crystal size can be controlled by the Zn 2+ concentration in the starting solution for coprecipitation. The results of optical studies indicate the presence of quantum confinement effects; in addition, the NC surfaces are well passivated, regardless of the crystal size. Finally, an increase in the luminance of EL devices with a decrease in crystal size is observed, which suggests the excitation mechanism of ZnS:Mn NC EL devices.

  5. Electronic Equipment of Self-Actuated Mobile Device for Load Carrying

    Directory of Open Access Journals (Sweden)

    T. Janecka

    1994-12-01

    Full Text Available The device dealt in this work is determined namely for carrying invalid persons on various types of stairs or other not flat surfaces. But it can serve also to other purposes.To enable fulfilling all given demands, the design was consulted with other research workers solving the tasks of similar features.Resulting mechanical device, enabling aspects of movement required, is controlled by electronic and microprocessor circuits that obtain the input information from sensitive units investigating the terrain.

  6. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    KAUST Repository

    Yu, Jiawei

    2016-09-07

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices.

  7. Spin orbit torques and Dzyaloshinskii-Moriya interaction in dual-interfaced Co-Ni multilayers

    KAUST Repository

    Yu, Jiawei; Qiu, Xuepeng; Wu, Yang; Yoon, Jungbum; Deorani, Praveen; Besbas, Jean Mourad; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. In addition, we find that the direction of the domain wall (DW) motion can be either along or against the electron flow depending on the DW tilting angle when there is a large DMI. Such an abnormal DW motion induces a large assist field required for hysteretic magnetization reversal. Our results provide insight into the role of DMI in SOT driven magnetization switching, and demonstrate the feasibility of achieving desirable SOT and DMI for spintronic devices.

  8. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  9. Characterization of electronics devices for computed tomography dosimetry

    International Nuclear Information System (INIS)

    Paschoal, Cinthia Marques Magalhaes

    2012-01-01

    Computed tomography (CT) is an examination of high diagnostic capability that delivers high doses of radiation compared with other diagnostic radiological examinations. The current CT dosimetry is mainly made by using a 100 mm long ionization chamber. However, it was verified that this extension, which is intended to collect ali scattered radiation of the single slice dose profile in CT, is not enough. An alternative dosimetry has been suggested by translating smaller detectors. In this work, commercial electronics devices of small dimensions were characterized for CT dosimetry. The project can be divided in five parts: a) pre-selection of devices; b) electrical characterization of selected devices; e) dosimetric characterization in Iaboratory, using radiation qualities specific to CT, and in a tomograph; d) evaluation of the dose profile in CT scanner (free in air and in head and body dosimetric phantom); e) evaluation of the new MSAD detector in a tomograph. The selected devices were OP520 and OP521 phototransistors and BPW34FS photodiode. Before the dosimetric characterization, three configurations of detectors, with 4, 2 and 1 OP520 phototransistor working as a single detector, were evaluated and the configuration with only one device was the most adequate. Hence, the following tests, for all devices, were made using the configuration with only one device. The tests of dosimetric characterization in laboratory and in a tomograph were: energy dependence, response as a function of air kerma (laboratory) and CTDI 100 (scanner), sensitivity variation and angular dependence. In both characterizations, the devices showed some energy dependence, indicating the need of correction factors depending on the beam energy; their response was linear with the air kerma and the CTDI 100 ; the OP520 phototransistor showed the largest variation in sensitivity with the irradiation and the photodiode was the most stable; the angular dependence was significant in the laboratory and

  10. Fabrication of tunnel junction-based molecular electronics and spintronics devices

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2012-01-01

    Tunnel junction-based molecular devices (TJMDs) are highly promising for realizing futuristic electronics and spintronics devices for advanced logic and memory operations. Under this approach, ∼2.5 nm molecular device elements bridge across the ∼2-nm thick insulator of a tunnel junction along the exposed side edge(s). This paper details the efforts and insights for producing a variety of TJMDs by resolving multiple device fabrication and characterization issues. This study specifically discusses (i) compatibility between tunnel junction test bed and molecular solutions, (ii) optimization of the exposed side edge profile and insulator thickness for enhancing the probability of molecular bridging, (iii) effect of fabrication process-induced mechanical stresses, and (iv) minimizing electrical bias-induced instability after the device fabrication. This research will benefit other researchers interested in producing TJMDs efficiently. TJMD approach offers an open platform to test virtually any combination of magnetic and nonmagnetic electrodes, and promising molecules such as single molecular magnets, porphyrin, DNA, and molecular complexes.

  11. Synthesis and characterization of Cu–Al–Ni shape memory alloy multilayer thin films

    International Nuclear Information System (INIS)

    Gómez-Cortés, J.F.; San Juan, J.; López, G.A.; Nó, M.L.

    2013-01-01

    Among active materials, shape memory alloys are well recognized for their work output density. Because of that, these alloys have attracted much attention to be used in micro/nano electromechanical systems. In the present work, the electron beam evaporation technique has been used to growth, by a multilayer method, two shape memory alloy thin films with different Cu–Al–Ni composition. Multilayers have been further thermally treated to produce the alloys by solid solution diffusion. The produced multilayers have been characterized and the presence of the martensite phase in the obtained thin films was studied. Furthermore, the influence of two different coatings onto the Si substrates, namely Si/SiO 2 and Si/Si 3 N 4 , was investigated. Mechanically stable, not detaching from the substrates, Cu–Al–Ni shape memory alloy thin films, about 1 micrometre thick, showing a martensitic transformation have been produced. - Highlights: ► Multilayer thin films of Cu–Al–Ni shape memory alloys produced by e-beam evaporation. ► SiN X 200 nm thick coating is good for high quality Cu–Al–Ni shape memory thin films. ► Thermal treatment renders Cu–Al–Ni multilayer in homogeneous martensite thin film

  12. 77 FR 49458 - Certain Mobile Electronic Devices Incorporating Haptics; Amendment of the Complaint and Notice of...

    Science.gov (United States)

    2012-08-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices.... 1337 in the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics, by reason of the infringement of claims of six...

  13. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  14. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Bredas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  15. Ageing under mechanical stress: first experiments for a silver based multilayer mirror

    Science.gov (United States)

    Lalo, Arnaud; Ravel, Guillaume; Ignat, Michel; Cousin, Bernard; Swain, Michael V.

    2017-11-01

    Improving materials and devices reliability is a major concern to the spatial industry. Results are reported for satellite mirrors-like specimens consisting in oxide-protected metal systems. Optical coatings were deposited by electron beam evaporation. Mechanical stress fields in multi-layered materials play an important role. The stress state can have far-reaching implications both in kinetics and thermodynamics. Therefore an integrated apparatus with four-point bending equipment was designed. The technique allowed us to exert stress into a film or a system of films on a substrate concurrently with thermal treatment. In order to achieve the first tests performed with the help of the apparatus, various preliminary characterizations were required. The article reports the preliminary micro-mechanical testing of the materials (ultra micro-indentation to evaluate the elastic modulus of the samples materials and wafer curvature technique to determine the specimen residual stress) and the first ageing experiment. Experimental evidence of accelerated ageing under stress is successfully reported.

  16. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    Science.gov (United States)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  17. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, David

    2016-01-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices. (paper)

  18. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    Science.gov (United States)

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  19. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    KAUST Repository

    Eita, Mohamed S.

    2016-08-04

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc oxide. The plurality of layers can be prepared by layer-by-layer processing in which alternating layers are built up step-by-step due to electrostatic attraction. The efficiency of the device can be increased by this processing method compared to a comparable method like sputtering. The number of layers can be controlled to improve device efficiency. Aqueous solutions can be used which is environmentally friendly. Annealing can be avoided. A quantum dot layer can be used next to the metal oxide layer to form a quantum dot heterojunction solar device.

  20. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A. [Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.