WorldWideScience

Sample records for multifunctional minimal genetic

  1. Robust dynamical pattern formation from a multifunctional minimal genetic circuit

    Directory of Open Access Journals (Sweden)

    Carrera Javier

    2010-04-01

    Full Text Available Abstract Background A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle. Results We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. Here, we show that our minimal system can behave as a biological clock or memory, and it exhibites an inherent robustness due to a quorum sensing mechanism. We analyze this property by accounting for molecular noise in an heterogeneous population. We also show how the period of the oscillations is tunable by environmental signals, and we study the bifurcations of the system by constructing different phase diagrams. Conclusions As this minimal circuit is based on a single transcriptional unit, it provides a new mechanism based on post-translational interactions to generate targeted spatio-temporal behavior.

  2. Evolved Minimal Frustration in Multifunctional Biomolecules.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  3. A multifunctional PVDF-based tactile sensor for minimally invasive surgery

    Science.gov (United States)

    Sokhanvar, S.; Packirisamy, M.; Dargahi, J.

    2007-08-01

    In this paper a multifunctional tactile sensor system using PVDF (polyvinylidene fluoride), is proposed, designed, analyzed, tested and validated. The working principle of the sensor is in such a way that it can be used in combination with almost any end-effectors. However, the sensor is particularly designed to be integrated with minimally invasive surgery (MIS) tools. In addition, the structural and transduction materials are selected to be compatible with micro-electro-mechanical systems (MEMS) technology, so that miniaturization would be possible. The corrugated shape of the sensor ensures the safe tissue grasping and compatibility with the traditional tooth-like end effectors of MIS tools. A unit of this sensor comprised of a base, a flexible beam and three PVDF sensing elements. Two PVDF sensing elements sandwiched at the end supports work in thickness mode to measure the magnitude and position of applied load. The third PVDF sensing element is attached to the beam and it works in the extensional mode to measure the softness of the contact object. The proposed sensor is modeled both analytically and numerically and a series of simulations are performed in order to estimate the characteristics of the sensor in measuring the magnitude and position of a point load, distributed load, and also the softness of the contact object. Furthermore, in order to validate the theoretical results, the prototyped sensor was tested and the results are compared. The results are very promising and proving the capability of the sensor for haptic sensing.

  4. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  5. Tool Sequence Trends in Minimally Invasive Surgery: Statistical Analysis and Implications for Predictive Control of Multifunction Instruments

    Directory of Open Access Journals (Sweden)

    Carl A. Nelson

    2012-01-01

    Full Text Available This paper presents an analysis of 67 minimally invasive surgical procedures covering 11 different procedure types to determine patterns of tool use. A new graph-theoretic approach was taken to organize and analyze the data. Through grouping surgeries by type, trends of common tool changes were identified. Using the concept of signal/noise ratio, these trends were found to be statistically strong. The tool-use trends were used to generate tool placement patterns for modular (multi-tool, cartridge-type surgical tool systems, and the same 67 surgeries were numerically simulated to determine the optimality of these tool arrangements. The results indicate that aggregated tool-use data (by procedure type can be employed to predict tool-use sequences with good accuracy, and also indicate the potential for artificial intelligence as a means of preoperative and/or intraoperative planning. Furthermore, this suggests that the use of multifunction surgical tools can be optimized to streamline surgical workflow.

  6. Minimalism

    CERN Document Server

    Obendorf, Hartmut

    2009-01-01

    The notion of Minimalism is proposed as a theoretical tool supporting a more differentiated understanding of reduction and thus forms a standpoint that allows definition of aspects of simplicity. This book traces the development of minimalism, defines the four types of minimalism in interaction design, and looks at how to apply it.

  7. Hybrid genetic algorithm for minimizing non productive machining ...

    African Journals Online (AJOL)

    user

    The movement of tool is synchronized with the help of these CNC codes. Total ... Lot of work has been reported for minimizing the productive time by ..... Optimal path for automated drilling operations by a new heuristic approach using particle.

  8. Hybrid genetic algorithm for minimizing non productive machining ...

    African Journals Online (AJOL)

    Minimization of non-productive time of tool during machining for 2.5 D milling significantly reduces the machining cost. The tool gets retracted and repositioned several times in multi pocket jobs during rough machining which consumes 15 to 30% of total machining time depending on the complexity of job. The automatic ...

  9. Multifunctional nanocrystals

    Science.gov (United States)

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  10. Factors influencing parents' decision to donate their healthy infant's DNA for minimal-risk genetic research.

    Science.gov (United States)

    Hatfield, Linda A; Pearce, Margaret M

    2014-11-01

    To examine factors that influence a parent's decision to donate their healthy infant's DNA for minimal-risk genetic research. Grounded theory, using semi-structured interviews conducted with 35 postpartum mother or mother-father dyads in an urban teaching hospital. Data were collected from July 2011 to January 2012. Audiorecorded semistructured interviews were conducted in private rooms with mothers or mother-father dyads 24 to 48 hr after the birth of their healthy, full-term infant. Data-driven content analysis using selected principles of grounded theory was performed. Parents' willingness to donate their healthy infant's DNA for minimal-risk pediatric genetic research emerged as a process involving three interacting components: the parents, the scientist, and the comfort of the child embedded within the context of benefit to the child. The purpose of the study and parents' perception of their commitment of time and resources determined their willingness to participate. The scientist's ability to communicate trust in the research process influenced parents' decisions. Physical discomfort of the child shaped parents' decision to donate DNA. Parental perception of a direct benefit to their child affected their willingness to discuss genetic research and its outcomes. Significant gaps and misunderstandings in parental knowledge of pediatric genetic research may affect parental willingness to donate their healthy child's DNA. Nurses knowledgeable about the decision-making process parents utilize to donate their healthy infant's DNA for minimal-risk genetic research and the factors influencing that decision are well positioned to educate parents about the role of genetics in health and illness and reassure potential research participants of the value and safeguards in pediatric genetic research. © 2014 Sigma Theta Tau International.

  11. A Hybrid Genetic Algorithm to Minimize Total Tardiness for Unrelated Parallel Machine Scheduling with Precedence Constraints

    Directory of Open Access Journals (Sweden)

    Chunfeng Liu

    2013-01-01

    Full Text Available The paper presents a novel hybrid genetic algorithm (HGA for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.

  12. Approximate k-NN delta test minimization method using genetic algorithms: Application to time series

    CERN Document Server

    Mateo, F; Gadea, Rafael; Sovilj, Dusan

    2010-01-01

    In many real world problems, the existence of irrelevant input variables (features) hinders the predictive quality of the models used to estimate the output variables. In particular, time series prediction often involves building large regressors of artificial variables that can contain irrelevant or misleading information. Many techniques have arisen to confront the problem of accurate variable selection, including both local and global search strategies. This paper presents a method based on genetic algorithms that intends to find a global optimum set of input variables that minimize the Delta Test criterion. The execution speed has been enhanced by substituting the exact nearest neighbor computation by its approximate version. The problems of scaling and projection of variables have been addressed. The developed method works in conjunction with MATLAB's Genetic Algorithm and Direct Search Toolbox. The goodness of the proposed methodology has been evaluated on several popular time series examples, and also ...

  13. Multifunction system

    International Nuclear Information System (INIS)

    Wauthier, J.; Fiori, R.

    1990-01-01

    The development, the characteristics and the applications of a multifunction system are presented. The system is used on the RBES laboratory pipes, at Marcoule. The system was developed in order to allow, without time loss, the modification of the circuit function by replacing only one component. The following elements form the multifunction system: a fixed base, which is part of the tube, a removable piece, which is inserted into the base, a cover plate and its locking system. The material, chosen among commercial trade marks, required small modifications in order to be used in the circuit [fr

  14. Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm

    Science.gov (United States)

    Paksi, A. B. N.; Ma'ruf, A.

    2016-02-01

    In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.

  15. Application of response surface methodology (RSM) and genetic algorithm in minimizing warpage on side arm

    Science.gov (United States)

    Raimee, N. A.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).

  16. Analysis of Informed Consent Document Utilization in a Minimal-Risk Genetic Study

    Science.gov (United States)

    Desch, Karl; Li, Jun; Kim, Scott; Laventhal, Naomi; Metzger, Kristen; Siemieniak, David; Ginsburg, David

    2012-01-01

    Background The signed informed consent document certifies that the process of informed consent has taken place and provides research participants with comprehensive information about their role in the study. Despite efforts to optimize the informed consent document, only limited data are available about the actual use of consent documents by participants in biomedical research. Objective To examine the use of online consent documents in a minimal-risk genetic study. Design Prospective sibling cohort enrolled as part of a genetic study of hematologic and common human traits. Setting University of Michigan Campus, Ann Arbor, Michigan. Participants Volunteer sample of healthy persons with 1 or more eligible siblings aged 14 to 35 years. Enrollment was through targeted e-mail to student lists. A total of 1209 persons completed the study. Measurements Time taken by participants to review a 2833-word online consent document before indicating consent and identification of a masked hyperlink near the end of the document. Results The minimum predicted reading time was 566 seconds. The median time to consent was 53 seconds. A total of 23% of participants consented within 10 seconds, and 93% of participants consented in less than the minimum predicted reading time. A total of 2.5% of participants identified the masked hyperlink. Limitation The online consent process was not observed directly by study investigators, and some participants may have viewed the consent document more than once. Conclusion Few research participants thoroughly read the consent document before agreeing to participate in this genetic study. These data suggest that current informed consent documents, particularly for low-risk studies, may no longer serve the intended purpose of protecting human participants, and the role of these documents should be reassessed. Primary Funding Source National Institutes of Health. PMID:21893624

  17. Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Wildi-Tremblay, P.; Gosselin, L. [Universite Laval, Quebec (Canada). Dept. de genie mecanique

    2007-07-15

    This paper presents a procedure for minimizing the cost of a shell-and-tube heat exchanger based on genetic algorithms (GA). The global cost includes the operating cost (pumping power) and the initial cost expressed in terms of annuities. Eleven design variables associated with shell-and-tube heat exchanger geometries are considered: tube pitch, tube layout patterns, number of tube passes, baffle spacing at the centre, baffle spacing at the inlet and outlet, baffle cut, tube-to-baffle diametrical clearance, shell-to-baffle diametrical clearance, tube bundle outer diameter, shell diameter, and tube outer diameter. Evaluations of the heat exchangers performances are based on an adapted version of the Bell-Delaware method. Pressure drops constraints are included in the procedure. Reliability and maintenance due to fouling are taken into account by restraining the coefficient of increase of surface into a given interval. Two case studies are presented. Results show that the procedure can properly and rapidly identify the optimal design for a specified heat transfer process. (author)

  18. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs

    Directory of Open Access Journals (Sweden)

    Sonia E. Eynard

    2018-01-01

    Full Text Available Genomic selection (GS is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations.

  19. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs.

    Science.gov (United States)

    Eynard, Sonia E; Croiseau, Pascal; Laloë, Denis; Fritz, Sebastien; Calus, Mario P L; Restoux, Gwendal

    2018-01-04

    Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC) strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations. Copyright © 2018 Eynard et al.

  20. Minimal approaches to genetic improvement of growth rates in white spruce

    Science.gov (United States)

    D.T. Lester

    1973-01-01

    Several features of central importance to genetic improvement of white spruce have been demonstrated by tree breeders. First, white spruce is genetically a highly variable species and much of the existent variation can be readily incorporated in planting stock (Jeffers 1969, Holst and Teich 1969). Second, local seed often is not the best for rapid growth (Nienstaedt...

  1. Occurrence and genetic characterization of Listeria spp. in minimally processed vegetables commercialized in Porto Alegre, Brazil

    OpenAIRE

    Verdin, Sylvia Elisa Frizzo; Silva, Silvia Regina Pavan da; Pereira, Dariane Castro; Schatkoski, Aline Modelski; Corção, Gertrudes

    2007-01-01

    Minimally processed vegetables go through many steps before they are refrigerated, selection, washing, peeling, cutting, disinfection and finally packaging. However, if no care is taken at the origin of the raw materials and in the processing stages, there is a chance of finding pathogenic bacteria, such as Listeria monocytogenes, which are able to grow at low temperatures. The aim of this research was to verify the occurrence of Listeria sp. in minimally processed vegetables sold in Porto Al...

  2. Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation

    Science.gov (United States)

    Tucker, Kimberly Pause; Hunter, Margaret E.; Bonde, Robert K.; Austin, James D.; Clark, Ann Marie; Beck, Cathy A.; McGuire, Peter M.; Oli, Madan K.

    2012-01-01

    Species of management concern that have been affected by human activities typically are characterized by low genetic diversity, which can adversely affect their ability to adapt to environmental changes. We used 18 microsatellite markers to genotype 362 Florida manatees (Trichechus manatus latirostris), and investigated genetic diversity, population structure, and estimated genetically effective population size (Ne). The observed and expected heterozygosity and average number of alleles were 0.455 ± 0.04, 0.479 ± 0.04, and 4.77 ± 0.51, respectively. All measures of Florida manatee genetic diversity were less than averages reported for placental mammals, including fragmented or nonideal populations. Overall estimates of differentiation were low, though significantly greater than zero, and analysis of molecular variance revealed that over 95% of the total variance was among individuals within predefined management units or among individuals along the coastal subpopulations, with only minor portions of variance explained by between group variance. Although genetic issues, as inferred by neutral genetic markers, appear not to be critical at present, the Florida manatee continues to face demographic challenges due to anthropogenic activities and stochastic factors such as red tides, oil spills, and disease outbreaks; these can further reduce genetic diversity of the manatee population.

  3. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  4. Order Batching in Warehouses by Minimizing Total Tardiness: A Hybrid Approach of Weighted Association Rule Mining and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Amir Hossein Azadnia

    2013-01-01

    Full Text Available One of the cost-intensive issues in managing warehouses is the order picking problem which deals with the retrieval of items from their storage locations in order to meet customer requests. Many solution approaches have been proposed in order to minimize traveling distance in the process of order picking. However, in practice, customer orders have to be completed by certain due dates in order to avoid tardiness which is neglected in most of the related scientific papers. Consequently, we proposed a novel solution approach in order to minimize tardiness which consists of four phases. First of all, weighted association rule mining has been used to calculate associations between orders with respect to their due date. Next, a batching model based on binary integer programming has been formulated to maximize the associations between orders within each batch. Subsequently, the order picking phase will come up which used a Genetic Algorithm integrated with the Traveling Salesman Problem in order to identify the most suitable travel path. Finally, the Genetic Algorithm has been applied for sequencing the constructed batches in order to minimize tardiness. Illustrative examples and comparisons are presented to demonstrate the proficiency and solution quality of the proposed approach.

  5. Minimizing makespan for a no-wait flowshop using genetic algorithm

    Indian Academy of Sciences (India)

    This paper explains minimization of makespan or total completion time .... lead to a natural reduction of the no-wait flow shop problem to the travelling sales- ... FCH can also be applied in real time scheduling and rescheduling for no-wait flow.

  6. Assessing genetically modified crops to minimize the risk of increased food allergy: A review

    NARCIS (Netherlands)

    Goodman, Richard E.; Hefle, Susan L.; Taylor, Steven L.; van Ree, Ronald

    2005-01-01

    The first genetically modified (GM) crops approved for food use ( tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have

  7. Minimization of cogging torque in permanent magnet motors by teeth pairing and magnet arc design using genetic algorithm

    International Nuclear Information System (INIS)

    Eom, J.-B.; Hwang, S.-M.; Kim, T.-J.; Jeong, W.-B.; Kang, B.-S.

    2001-01-01

    Cogging torque is often a principal source of vibration and acoustic noise in high precision spindle motor applications. In this paper, cogging torque is analytically calculated using energy method with Fourier series expansion. It shows that cogging torque is effectively minimized by controlling airgap permeance function with teeth pairing design, and by controlling flux density function with magnet arc design. For an optimization technique, genetic algorithm is applied to handle trade-off effects of design parameters. Results show that the proposed method can reduce the cogging torque effectively

  8. Reconfiguration of distribution networks to minimize loss and disruption costs using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, Juan Carlos; Kagan, Nelson [Department of Electrical Engineering, University of Sao Paulo, Escola Politecnica, Av. Prof. Luciano Gualberto, travessa 3 n 380 - CEP - 05508-970 - Sao Paulo (Brazil)

    2010-01-15

    In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (author)

  9. Assessing genetically modified crops to minimize the risk of increased food allergy: a review.

    Science.gov (United States)

    Goodman, Richard E; Hefle, Susan L; Taylor, Steven L; van Ree, Ronald

    2005-06-01

    The first genetically modified (GM) crops approved for food use (tomato and soybean) were evaluated for safety by the United States Food and Drug Administration prior to commercial production. Among other factors, those products and all additional GM crops that have been grown commercially have been evaluated for potential increases in allergenic properties using methods that are consistent with the current understanding of food allergens and knowledge regarding the prediction of allergenic activity. Although there have been refinements, the key aspects of the evaluation have not changed. The allergenic properties of the gene donor and the host (recipient) organisms are considered in determining the appropriate testing strategy. The amino acid sequence of the encoded protein is compared to all known allergens to determine whether the protein is a known allergen or is sufficiently similar to any known allergen to indicate an increased probability of allergic cross-reactivity. Stability of the protein in the presence of acid with the stomach protease pepsin is tested as a risk factor for food allergenicity. In vitro or in vivo human IgE binding are tested when appropriate, if the gene donor is an allergen or the sequence of the protein is similar to an allergen. Serum donors and skin test subjects are selected based on their proven allergic responses to the gene donor or to material containing the allergen that was matched in sequence. While some scientists and regulators have suggested using animal models, performing broadly targeted serum IgE testing or extensive pre- or post-market clinical tests, current evidence does not support these tests as being predictive or practical. Based on the evidence to date, the current assessment process has worked well to prevent the unintended introduction of allergens in commercial GM crops.

  10. Multi-objective optimization design of air distribution of grate cooler by entropy generation minimization and genetic algorithm

    International Nuclear Information System (INIS)

    Shao, Wei; Cui, Zheng; Cheng, Lin

    2016-01-01

    Highlights: • A multi-objective optimization model of air distribution of grate cooler by genetic algorithm is proposed. • Pareto Front is obtained and validated by comparing with operating data. • Optimal schemes are compared and selected by engineering background. • Total power consumption after optimization decreases 61.10%. • Thickness of clinker on three grate plates is thinner. - Abstract: The cooling air distributions of grate cooler exercise a great influence on the clinker cooling efficiency and power consumption of cooling fans. A multi-objective optimization model of air distributions of grate cooler with cross-flow heat exchanger analogy is proposed in this paper. Firstly, thermodynamic and flow models of clinker cooling process is carried out. Then based on entropy generation minimization analysis, modified entropy generation numbers caused by heat transfer and pressure drop are chosen as objective functions respectively which optimized by genetic algorithm. The design variables are superficial velocities of air chambers and thicknesses of clinker layers on different grate plates. A set of Pareto optimal solutions which two objectives are optimized simultaneously is achieved. Scattered distributions of design variables resulting in the conflict between two objectives are brought out. The final optimal air distribution and thicknesses of clinker layers are selected from the Pareto optimal solutions based on power consumption of cooling fans minimization and validated by measurements. Compared with actual operating scheme, the total air volumes of optimized schemes decrease 2.4%, total power consumption of cooling fans decreases 61.1% and the outlet temperature of clinker decreases 122.9 °C which shows a remarkable energy-saving effect on energy consumption.

  11. Multifunctional Nanotechnology Research

    Science.gov (United States)

    2016-03-01

    MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH MARCH 2016 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN-HOUSE...H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.,” Nanotechnology , vol

  12. Multifunctional cellulase and hemicellulase

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  13. Multifunctional centrifugal grinding unit

    Science.gov (United States)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  14. Multifunctional optical sensor

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a multifunctional optical sensor, having at least 2 areas which independently react to different input parameters, the sensor comprising a substrate and a polymeric layer comprising polymerized liquid crystal monomers having an ordered morphology, wherein the color, the

  15. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  16. MINIMIZACIÓN DE UNA FUNCIÓN DE ORDEN P MEDIANTE UN ALGORITMO GENÉTICO // MINIMIZING A FUNCTION OF ORDER P USING A GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Rómulo Castillo Cárdenas

    2013-06-01

    Full Text Available In this work we consider the problem OVO (order value optimization. The problem we address is to minimize f with x 2 by a genetic algorithm that by its very nature has the advantage over existing continuous optimization methods, to nd global minimizers. We illustrate the application of this algorithm on examples considered showing its e ectiveness in solving them.// RESUMEN En el presente trabajo consideramos el problema OVO (order value optimization. El problema que abordamos consiste entonces en minimizar f con x 2 por medio de un algoritmo gen etico que por su naturaleza intrínseca tiene la ventaja, sobre métodos de optimización continua existentes, de encontrar minimizadores globales. Ilus- tramos la aplicación de este algoritmo sobre ejemplos considerados mostrando su eficacia en la resolución de los mismos.

  17. Multifunctional Polymer/Inorganic Nanocomposites

    National Research Council Canada - National Science Library

    Manias, E

    2003-01-01

    ... in multifunctional nanocomposite materials. Understanding the structure/property relations in polymer/clay nanocomposites is of great importance in designing materials with desired sets of properties...

  18. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  19. Which individuals to choose to update the reference population? Minimizing the loss of genetic diversity in animal genomic selection programs

    NARCIS (Netherlands)

    Eynard, Sonia E.; Croiseau, Pascal; Laloë, Denis; Fritz, Sebastien; Calus, Mario P.L.; Restoux, Gwendal

    2018-01-01

    Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a

  20. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    Science.gov (United States)

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  1. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  2. Comet: Multifunction VOEvent broker

    Science.gov (United States)

    Swinbank, John

    2014-04-01

    Comet is a Python implementation of the VOEvent Transport Protocol (VTP). VOEvent is the IVOA system for describing transient celestial events. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. The core of Comet is a multifunction VOEvent broker, capable of receiving events either by subscribing to one or more remote brokers or by direct connection from authors; it can then both process those events locally and forward them to its own subscribers. In addition, Comet provides a tool for publishing VOEvents to the global VOEvent backbone.

  3. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  4. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  5. Minimal surfaces

    CERN Document Server

    Dierkes, Ulrich; Sauvigny, Friedrich; Jakob, Ruben; Kuster, Albrecht

    2010-01-01

    Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently

  6. Multi-functional composite structures

    Science.gov (United States)

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  7. Magnetically Attached Multifunction Maintenance Rover

    Science.gov (United States)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  8. Multifunctional centers in rural areas

    DEFF Research Database (Denmark)

    Svendsen, Gunnar Lind Haase

    2009-01-01

    abandoned. One outcome has been closings of schools in remote rural areas. This evidently contributes to exacerbate depopulation in these areas. To stop this tendency, we need new models for high-quality, cost effective public services in rural areas as those as we find in Denmark. This chapter introduces...... ideological roots in history pointing at 19th c. national civic movements and an early 20th c. transnational Garden City movement within urban planning as crucial. Drawing on contemporary case studies of multifunctional centers in Holland and Denmark, I then suggest that public and private donors should...... invest in multifunctional centers in which the local public school is the dynamo. This in order to increase local levels of social as well as human capital. Ideally, such centers should contain both public services such as school, library and health care, private enterprises as hairdressers and banks...

  9. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  10. Multifunctional Graphene Nanocomposite Foams for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials combined with a small amount of nanoparticles offer new possibilities in the synthesizing of multifunctional materials. One novel nanomaterial is graphene...

  11. Taxonomic minimalism.

    Science.gov (United States)

    Beattle, A J; Oliver, I

    1994-12-01

    Biological surveys are in increasing demand while taxonomic resources continue to decline. How much formal taxonomy is required to get the job done? The answer depends on the kind of job but it is possible that taxonomic minimalism, especially (1) the use of higher taxonomic ranks, (2) the use of morphospecies rather than species (as identified by Latin binomials), and (3) the involvement of taxonomic specialists only for training and verification, may offer advantages for biodiversity assessment, environmental monitoring and ecological research. As such, formal taxonomy remains central to the process of biological inventory and survey but resources may be allocated more efficiently. For example, if formal Identification is not required, resources may be concentrated on replication and increasing sample sizes. Taxonomic minimalism may also facilitate the inclusion in these activities of important but neglected groups, especially among the invertebrates, and perhaps even microorganisms. Copyright © 1994. Published by Elsevier Ltd.

  12. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  13. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  14. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  15. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  16. Generic Automated Multi-function Finger Design

    Science.gov (United States)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  17. Multifunctionalities driven by ferroic domains

    Science.gov (United States)

    Yang, J. C.; Huang, Y. L.; He, Q.; Chu, Y. H.

    2014-08-01

    Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.

  18. Genetically modified cellular vaccines against human papillomavirus type 16 (HPV16)-associated tumors: adjuvant treatment of minimal residual disease after surgery/chemotherapy

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan; Šímová, Jana

    2009-01-01

    Roč. 14, č. 1 (2009), s. 169-173 ISSN 1107-0625 R&D Projects: GA ČR GA301/06/0774; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Keywords : residual tumour disease * HPV16 * cellular vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.600, year: 2009

  19. Multifunctional composites for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  20. Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials.

    Science.gov (United States)

    Freund, Ralph; Lächelt, Ulrich; Gruber, Tobias; Rühle, Bastian; Wuttke, Stefan

    2018-03-27

    Green chemistry, in particular, the principle of atom economy, has defined new criteria for the efficient and sustainable production of synthetic compounds. In complex nanomaterials, the number of embedded functional entities and the energy expenditure of the assembly process represent additional compound-associated parameters that can be evaluated from an economic viewpoint. In this Perspective, we extend the principle of atom economy to the study and characterization of multifunctionality in nanocarriers, which we define as "multifunctional efficiency". This concept focuses on the design of highly active nanomaterials by maximizing integrated functional building units while minimizing inactive components. Furthermore, synthetic strategies aim to minimize the number of steps and unique reagents required to make multifunctional nanocarriers. The ultimate goal is to synthesize a nanocarrier that is highly specialized but practical and simple to make. Owing to straightforward crystal engineering, metal-organic framework (MOF) nanoparticles are an excellent example to illustrate the idea behind this concept and have the potential to emerge as next-generation drug delivery systems. Here, we highlight examples showing how the combination of the properties of MOFs ( e.g., their organic-inorganic hybrid nature, high surface area, and biodegradability) and induced systematic modifications and functionalizations of the MOF's scaffold itself lead to a nanocarrier with high multifunctional efficiency.

  1. Comparison of Channel Catfish and Blue Catfish Gut Microbiota Assemblages Shows Minimal Effects of Host Genetics on Microbial Structure and Inferred Function

    Directory of Open Access Journals (Sweden)

    Jacob W. Bledsoe

    2018-05-01

    Full Text Available The microbiota of teleost fish has gained a great deal of research attention within the past decade, with experiments suggesting that both host-genetics and environment are strong ecological forces shaping the bacterial assemblages of fish microbiomes. Despite representing great commercial and scientific importance, the catfish within the family Ictaluridae, specifically the blue and channel catfish, have received very little research attention directed toward their gut-associated microbiota using 16S rRNA gene sequencing. Within this study we utilize multiple genetically distinct strains of blue and channel catfish, verified via microsatellite genotyping, to further quantify the role of host-genetics in shaping the bacterial communities in the fish gut, while maintaining environmental and husbandry parameters constant. Comparisons of the gut microbiota among the two catfish species showed no differences in bacterial species richness (observed and Chao1 or overall composition (weighted and unweighted UniFrac and UniFrac distances showed no correlation with host genetic distances (Rst according to Mantel tests. The microbiota of environmental samples (diet and water were found to be significantly more diverse than that of the catfish gut associated samples, suggesting that factors within the host were further regulating the bacterial communities, despite the lack of a clear connection between microbiota composition and host genotype. The catfish gut communities were dominated by the phyla Fusobacteria, Proteobacteria, and Firmicutes; however, differential abundance analysis between the two catfish species using analysis of composition of microbiomes detected two differential genera, Cetobacterium and Clostridium XI. The metagenomic pathway features inferred from our dataset suggests the catfish gut bacterial communities possess pathways beneficial to their host such as those involved in nutrient metabolism and antimicrobial biosynthesis, while

  2. APROS multifunctional simulator applications for VVER-440

    International Nuclear Information System (INIS)

    Porkholm, K.; Kantee, H.; Tiihonen, O.

    2000-01-01

    Fortum Engineering Ltd and the Technical Research Centre of Finland have developed APROS simulation software since 1986. APROS is a multifunctional simulator, which is used for process and automation design, safety analysis and training simulator applications. APROS has unique features and models developed especially for VVER-440 reactors. At first the paper gives a short overview of APROS multifunctional simulator. The rest of the paper deals with different kind of applications of APROS in VVER-440 reactors' improvement and operation development. (author)

  3. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  4. Multifunctional design of footwear for hot environment condition

    Science.gov (United States)

    Dragcevic, Z.; Vujasinovic, E.; Hursa Sajatovic, A.

    2017-10-01

    For some time design of a new product is not connected only with aesthetic, artistic appearance but moreover with functionality and engineering (from rightful selection of materials, construction, and technological concept to prototyping). One good example of this is design of multifunctional footwear as well as hiking footwear, footwear for soldiers, police officers, first responders etc. All mentioned kinds of footwear have lot of specific requirements to fulfil starting from maintaining and enhancing mobility to maximizing protection and eliminating or minimizing the risk for the wearer. Therefore, designing appropriate footwear represents a great challenge not only for designers but for engineers as well. Having that entire in mind few years ago, Faculty of Textile Technology University of Zagreb started the research with the aim to develop 21st century multifunctional footwear for e.g. military, police, first respondents or any special human forces for different weather environment. The paper presents how it was done in the case of boots for hot environment conditions

  5. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  6. APROS - A multifunctional modelling environment

    International Nuclear Information System (INIS)

    Juslin, K.; Paljakka, M.

    1999-01-01

    The Advanced Process Simulation (APROS) environment has after more than a decade of dedicated product development and intense commercial use reached a level of maturity that is difficult to find with regard to similar products. One of the basic ideas behind this software tool is its multifunctional concept. The concept requires that the tool is suitable for modelling and simulation of the dynamics of a process plant during all phases of its life-span from pre-design to training and model supported operation and control. The implementation of this concept had a significant impact on the software structure. Several, sometimes contradictory requirements had to be encompassed. It should be suitable both for small simple models and full scope simulators. It should facilitate time-steps from milliseconds to minutes, for the same models, just depending on the scope of study. It should combine several modelling paradigms such as continuous, discrete, mechanistic and empirical. The intrinsic model building blocks should be comprehensively verified, but users' model equations should be accepted, as well. It should be easy to connect to external models or hardware, and to use both in master or slave mode. It should be easy to study and modify the internals of the models, their structures and parameters, but it should also be possible to disclose all delicate model information from unwanted access. The calculation should be optimised for current computer hardware, but the model specifications should be easily transportable to new platforms. And finally, it should be suited both for researchers, engineers and plant operators. How did we succeed? We had 20 years of comprehensive thermal hydraulic modelling tradition before starting the project. We had the key experts with the key knowledge. We dedicated more than 100 man years of efforts for the new software developments. Presently, we have a superb team maintaining and improving the software, complemented with new enthusiastic

  7. Biotic homogenization can decrease landscape-scale forest multifunctionality

    DEFF Research Database (Denmark)

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago

    2016-01-01

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a ...

  8. Planning multifunctional green infrastructure for compact cities

    DEFF Research Database (Denmark)

    Hansen, Rieke; Olafsson, Anton Stahl; van der Jagt, Alexander P.N.

    2018-01-01

    green space functions or the purposive design and management of multifunctional parks. Based on the findings, we arrive at five recommendations for promoting multifunctional urban green infrastructure in densifying urban areas: 1) undertake systematic spatial assessments of all urban green (and blue....... Further, spatial assessment, strategic planning and site design need to 4) consider synergies, trade-offs and the capacity of urban green spaces to provide functions as part of the wider green infrastructure network; and 5) largely benefit from cooperation between different sectors and public departments......Urban green infrastructure planning aims to develop green space networks on limited space in compact cities. Multifunctionality is considered key to achieving this goal as it supports planning practice that considers the ability of green spaces to provide multiple benefits concurrently. However...

  9. Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal

    DEFF Research Database (Denmark)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John

    2016-01-01

    Micropollutants present in water have many detrimental effects on the ecosystem. Membrane technology plays an important role in the removal of micropollutants, but there remain significant challenges such as concentration polarization, membrane fouling, and variable permeate quality. The work...... reported here uses a multifunctional membrane with rejection, adsorption, and catalysis functions to solve these problems. On the basis of mussel-inspired chemistry and biological membrane properties, a multifunctional membrane was prepared by applying "reverse filtration" of a laccase solution...... and subsequent "dopamine coating" on a nanofiltration (NF) membrane support, which was tested on bisphenol A (BPA) removal. Three NF membranes were chosen for the preparation of the multifunctional membranes on the basis of the membrane properties and enzyme immobilization efficiency. Compared with the pristine...

  10. One-step fabrication of multifunctional micromotors

    Science.gov (United States)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  11. Simple multifunction discriminator for multichannel triggers

    International Nuclear Information System (INIS)

    Maier, M.R.

    1982-10-01

    A simple version of a multifunction timing discriminator using only two integrated circuits is presented. It can be configured as a leading edge, a constant fraction, a zero cross or a dual threshold timing discriminator. Since so few parts are used, it is well suited for building multichannel timing discriminators. Two versions of this circuit are described: a quadruple multifunction discriminator and an octal constant fraction trigger. The different compromises made in these units are discussed. Results for walk and jitter obtained with these are presented and possible improvements are disussed

  12. Smart and multifunctional concrete toward sustainable infrastructures

    CERN Document Server

    Han, Baoguo; Ou, Jinping

    2017-01-01

    This book presents the latest research advances and findings in the field of smart/multifunctional concretes, focusing on the principles, design and fabrication, test and characterization, performance and mechanism, and their applications in infrastructures. It also discusses future challenges in the development and application of smart/multifunctional concretes, providing useful theory, ideas and principles, as well as insights and practical guidance for developing sustainable infrastructures. It is a valuable resource for researchers, scientists and engineers in the field of civil-engineering materials and infrastructures.

  13. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  14. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  15. New product development: A batik multifunctional chair

    Science.gov (United States)

    Indrawati, Sri; Sukmaningsih, Nias

    2017-11-01

    The biggest challenge facing by Batik industry in ASEAN Economic Community (AEC) era is the greater number of fashion competitors both domestically and internationally. Based on that condition, the development of new product variants by considering product performance and price is needed. This research was conducted to develop batik products with a new target market. Products that being developed is batik multifunctional chair using integrated value engineering and analytic hierarchy process methods. This research has been done in several stages, ie. Information stage, creative stage, value analysis and product prototyping. The results of this research shows that the batik multifunctional chair product criteria are aesthetic (29%), multifunctional (34%) and ergonomic (37%). There are three new product design alternatives that successfully being developed. Based on value analysis, the product design alternatives that have the highest value is alternative design 2, the value is 2,37. The production cost for this design is Rp. 500.000,-. Alternative design 2 specification are using Mahoni wood, Batik parang rusak pattern with natural coloring process, can be used as table and fit with customer's body anthropometry. Then a batik multifunctional chair prototype is developed based on the best alternative design.

  16. Multi-function nuclear weight scale system

    International Nuclear Information System (INIS)

    Zheng Mingquan; Sun Jinhua; Jia Changchun; Wang Mingqian; Tang Ke

    1998-01-01

    The author introduces the methods to contrive the hardware and software of a Multi-function Nuclear Weight Scale System based on the communication contract in compliance with RS485 between a master (industrial control computer 386) and a slave (single chip 8098) and its main functions

  17. Multifunctional floodplain management and biodiversity effects

    NARCIS (Netherlands)

    Schindler, Stefan; O’Neill, Fionnuala H.; Biró, Marianna; Damm, Christian; Gasso, Viktor; Kanka, Robert; Sluis, van der Theo; Krug, Andreas; Lauwaars, Sophie G.; Sebesvari, Zita; Pusch, Martin; Baranovsky, Boris; Ehlert, Thomas; Neukirchen, Bernd; Martin, James R.; Euller, Katrin; Mauerhofer, Volker; Wrbka, Thomas

    2016-01-01

    Floodplain ecosystems are biodiversity hotspots and supply multiple ecosystem services. At the same time they are often prone to human pressures that increasingly impact their intactness. Multifunctional floodplain management can be defined as a management approach aimed at a balanced supply of

  18. a minimal population-genetic model

    Indian Academy of Sciences (India)

    ... the last three decades aimed at its experimental verification, and many of ... Trivers±Willard hypothesis; maternal investment; sex ratio theory; optimal resource allocation; mathematical ... Though the qualitative predictions are almost self-.

  19. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  20. Economics of multifunctional biomass systems

    International Nuclear Information System (INIS)

    Ignaciuk, A.

    2006-01-01

    for the Bioelectricity sector. The main questions that are dealt within this chapter are: to what extent the multi-product crops increase the potential of bioelectricity production and how do they affect the prices of agricultural commodities. These questions are analyzed in the general equilibrium framework. This line of analysis is chosen because it allows comprising the bottom-up information about multi-productivity with the general setting of the whole economy in an applied computable general equilibrium (AGE) framework. This is important since energy policy responses influence main economic sectors and via feedback effects they influence the whole economy. The impact of climate policies on land use allocation, sectoral production and consumption levels and prices of land, food, electricity and other commodities, including the multiproductivity of crops is assessed. Moreover, this chapter provides an analysis to what extent competition for land can be reduced by using multi-product crops. In Chapter 5, the general equilibrium framework is further explored. The phytoremediation characteristics of willow plantations and forestry, thanks to which contaminated land can be cleaned up, are analyzed. The potentials of additional land for biomass production, which is currently not used due to its poor productivity characteristics or due to its high contamination with heavy metals, are calculated. Such land cannot be used for food production, therefore the analysis of the effects of an increased land quantity for biomass production is performed and an assessment of its impact on the environment and on the economy is done. Moreover, this chapter deals with the question to what extent the competition issues for land can be resolved by using the multifunctional characteristics of biomass and forestry crops. Chapter 6 deals with material substitution and resource cascading. Two different chemicals are dealt with, that are currently produced using fossil fuels; (1) nylon and (2

  1. Managing for Multifunctionality in Perennial Grain Crops

    Science.gov (United States)

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  2. New Multifunctional Hunting Landscapes in Denmark

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard; Svenningsen, Stig Roar; Lommer, Maria Sofie

    2014-01-01

    Between 1992 and 2008 subsidization of mandatory set aside land under the EU Common Agricultural Policy (CAP) gave rise to the establishment of a characteristic type of multifunctional hunting landscapes in Denmark, primarily located on fallow land in tilled valley bottoms. A national survey...... of their economic strategy. Implications for the ongoing discussion on land use policy concerning land sharing vs. land sparing is discussed....

  3. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  4. Multifunctional materials for bone cancer treatment

    Directory of Open Access Journals (Sweden)

    Marques C

    2014-05-01

    Full Text Available Catarina Marques,1 José MF Ferreira,1 Ecaterina Andronescu,2 Denisa Ficai,2 Maria Sonmez,3 Anton Ficai21Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, University of Aveiro, Aveiro, Portugal; 2Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Bucharest, Romania; 3National Research and Development Institute for Textiles and Leather, Bucharest, RomaniaAbstract: The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multifunctionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative, cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin, silver nanoparticles, antibiotics (anthracyclines, geldanamycin, and/or analgesics (ibuprofen, fentanyl. The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies.Keywords: bone graft, cancer, collagen, magnetite, cytostatics, silver

  5. Multifunctional Carbon Electromagnetic Materials - Motors & Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposal is to apply multifunctional carbon electromagnetic materials, including carbon nanotube electrical thread (replaces copper wire) and...

  6. Multifunctional Nanocomposites for Breast Cancer Imaging and Therapy

    National Research Council Canada - National Science Library

    Gayen, Swapan K; Balogh-Nair, Valeria

    2008-01-01

    The objective of the research was to explore the feasibility of concomitant detection and of breast cancer through the development of multifunctional nanocomposites that will enable early detection...

  7. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    Science.gov (United States)

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  8. A Novel Integrated Multifunction Micro-Sensor for Three-Dimensional Micro-Force Measurements

    Directory of Open Access Journals (Sweden)

    Yafei Qin

    2012-03-01

    Full Text Available An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10−3 KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  9. Regularity of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht

    2010-01-01

    "Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t

  10. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  11. Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme

    Czech Academy of Sciences Publication Activity Database

    Stránský, Jan; Koval, Tomáš; Podzimek, T.; Týcová, Anna; Lipovová, P.; Matoušek, Jaroslav; Kolenko, Petr; Fejfarová, Karla; Dušková, Jarmila; Skálová, Tereza; Hašek, Jindřich; Dohnálek, Jan

    2015-01-01

    Roč. 71, č. 11 (2015), s. 1408-1415 ISSN 2053-230X R&D Projects: GA MŠk LG14009; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 ; RVO:60077344 Keywords : tomato multifunctional nuclease * TBN1 * type I nuclease * superhelix Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.647, year: 2015

  12. Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme

    Czech Academy of Sciences Publication Activity Database

    Stránský, J.; Koval, Tomáš; Podzimek, T.; Týcová, A.; Lipovová, P.; Matoušek, J.; Kolenko, Petr; Fejfarová, Karla; Dušková, J.; Skálová, T.; Hašek, J.; Dohnálek, Jan

    2015-01-01

    Roč. 71, č. 11 (2015), s. 1408-1415 ISSN 2053-230X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : tomato multifunctional nuclease * TBN1 * type I nuclease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.647, year: 2015

  13. Requirements for a multifunctional code architecture

    Energy Technology Data Exchange (ETDEWEB)

    Tiihonen, O. [VTT Energy (Finland); Juslin, K. [VTT Automation (Finland)

    1997-07-01

    The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results are managed.

  14. Characterisation and Testing of Multifunctional Surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro

    the acronym stands for multifunctional. Produced by hard-turning followed by a highly controllable Robot Assisted Polishing process, MUFU surfaces feature reservoirs for providing extra-lubrication between the contacting parts as well as uppermost flat regions for ensuring the bearing capability...... filtered and aligned roughness profile that would be unrealistically distorted if current practice methods were used. Once an aligned profile is obtained, a further operation is introduced: feature separation. The surface features are separated with a newly developed algorithm and analysed independently...

  15. Requirements for a multifunctional code architecture

    International Nuclear Information System (INIS)

    Tiihonen, O.; Juslin, K.

    1997-01-01

    The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results are managed

  16. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization

    Science.gov (United States)

    Kotagiri, Nalinikanth; Sakon, Joshua; Han, Haewook; Zharov, Vladimir P.; Kim, Jin-Woo

    2016-06-01

    Cancer nanomedicines are opening new paradigms in cancer management and recent research points to how they can vastly improve imaging and therapy through multimodality and multifunctionality. However, challenges to achieving optimal efficacy are manifold starting from processing materials and evaluating their intended effectiveness on biological tissue, to developing new strategies aimed at improving transport of these materials through the biological milieu to the target tissue. Here, we report a fluorescent derivative of a beta-lactam antibiotic, ampicillin (termed iAmp) and its multifunctional physicobiochemical characteristics and potential as a biocompatible shielding agent and an effective dispersant. Carbon nanotubes (CNTs) were chosen to demonstrate the efficacy of iAmp. CNTs are known for their versatility and have been used extensively for cancer theranostics as photothermal and photoacoustic agents, but have limited solubility in water and biocompatibility. Traditional dispersants are associated with imaging artifacts and are not fully biocompatible. The chemical structure of iAmp is consistent with a deamination product of ampicillin. Although the four-membered lactam ring is intact, it does not retain the antibiotic properties. The iAmp is an effective dispersant and simultaneously serves as a fluorescent label for single-walled CNTs (SWNTs) with minimal photobleaching. The iAmp also enables bioconjugation of SWNTs to bio-ligands such as antibodies through functional carboxyl groups. Viability tests show that iAmp-coated SWNTs have minimal toxicity. Bio-stability tests under physiological conditions reveal that iAmp coating not only remains stable in a biologically relevant environment with high protein and salt concentrations, but also renders SWNTs transparent against nonspecific protein adsorption, also known as protein corona. Mammalian tissue culture studies with macrophages and opsonins validate that iAmp coating affords immunological resistance

  17. Multifunctional Converter Drive for Automotive Electric Power Steering Systems

    NARCIS (Netherlands)

    Hackner, T.J.

    2013-01-01

    In this thesis it is shown that in the case of an automotive electric power steering system, critical pulse power loads can be decoupled from the power net with a storage element and a multifunctional converter. A multifunctional converter system is proposed because it uses the motor drive system as

  18. Harness: Development of a multifunctional protective ship bulkhead

    NARCIS (Netherlands)

    Wal, R. van der; Meuers, R.J.C.

    2016-01-01

    HARNESS is a joint project between governments, industry and TNO with the objective to develop a multifunctional protective bulkhead for application on naval vessels. The multifunctional bulkhead aims at increasing the resilience of naval vessels, reduce damage and repair time and provide a safer

  19. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  20. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  1. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  2. Correlates of minimal dating.

    Science.gov (United States)

    Leck, Kira

    2006-10-01

    Researchers have associated minimal dating with numerous factors. The present author tested shyness, introversion, physical attractiveness, performance evaluation, anxiety, social skill, social self-esteem, and loneliness to determine the nature of their relationships with 2 measures of self-reported minimal dating in a sample of 175 college students. For women, shyness, introversion, physical attractiveness, self-rated anxiety, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. For men, physical attractiveness, observer-rated social skill, social self-esteem, and loneliness correlated with 1 or both measures of minimal dating. The patterns of relationships were not identical for the 2 indicators of minimal dating, indicating the possibility that minimal dating is not a single construct as researchers previously believed. The present author discussed implications and suggestions for future researchers.

  3. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  4. Hexavalent Chromium Minimization Strategy

    Science.gov (United States)

    2011-05-01

    Logistics 4 Initiative - DoD Hexavalent Chromium Minimization Non- Chrome Primer IIEXAVAJ ENT CHRO:M I~UMI CHROMIUM (VII Oil CrfVli.J CANCEfl HAnRD CD...Management Office of the Secretary of Defense Hexavalent Chromium Minimization Strategy Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2011 4. TITLE AND SUBTITLE Hexavalent Chromium Minimization Strategy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  5. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  6. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multi-functional energy plantation; Multifunktionella bioenergiodlingar

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal [Lund Univ. (Sweden). Environmental and Energy Systems Studies; Berndes, Goeran; Fredriksson, Fredrik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Physical Resource Theory; Kaaberger, Tomas [Ecotraffic, Goeteborg (Sweden)

    2002-02-01

    There exists a significant potential for utilising perennial energy plantations in protecting and restoring polluted water and land resources in Sweden. By optimising the design, location and management, several additional environmental services could be obtained which will increase the value of the energy plantations, thereby improving future market conditions for biomass. Multi-functional energy plantations (mainly Salix but also energy grass) can be divided into two categories, those designed for dedicated environmental services (e.g. vegetation filters for wastewater and sewage sludge treatment and shelter belts against soil erosion), and those generating more general benefits (e.g. soil carbon accumulation, increased soil fertility, cadmium removal and increased hunting potential). The practical potential of those two categories is estimated to be equivalent to up to 3% and more than 20% of the total Swedish arable land, respectively. The regional conditions of utilising multi-functional plantations vary, however, with the best possibilities in densely populated areas dominated by farmland. The economic value of multi-functional plantations is normally highest for those designed for dedicated environmental services. Purification of wastewater has the highest value, which could exceed the production cost in conventional Salix plantations, followed by treatment of polluted drainage water in vegetation filters and buffer zones (equivalent to more than half of the production cost), recirculation of sewage sludge (around half of the production cost), erosion control (around one fourth) and increased hunting potential (up to 15% of the production cost). The value of increased hunting potential varies due to nearness to larger cities and in which part of Sweden the plantation is located. The economic value of cadmium removal and increased soil fertility is equivalent to a few percent of the production cost, but the value of cadmium removal might increase in the

  8. Multifunctional porous silicon nanoparticles for cancer theranostics.

    Science.gov (United States)

    Wang, Chang-Fang; Sarparanta, Mirkka P; Mäkilä, Ermei M; Hyvönen, Maija L K; Laakkonen, Pirjo M; Salonen, Jarno J; Hirvonen, Jouni T; Airaksinen, Anu J; Santos, Hélder A

    2015-04-01

    Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Minimizing Mutual Couping

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna.......Disclosed herein are techniques, systems, and methods relating to minimizing mutual coupling between a first antenna and a second antenna....

  10. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail; Pottmann, Helmut; Grohs, Philipp

    2011-01-01

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ

  11. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures

    Science.gov (United States)

    Shin, Kwangsoo; Choi, Jin Woo; Ko, Giho; Baik, Seungmin; Kim, Dokyoon; Park, Ok Kyu; Lee, Kyoungbun; Cho, Hye Rim; Han, Sang Ihn; Lee, Soo Hong; Lee, Dong Jun; Lee, Nohyun; Kim, Hyo-Cheol; Hyeon, Taeghwan

    2017-07-01

    Tissue adhesives have emerged as an alternative to sutures and staples for wound closure and reconnection of injured tissues after surgery or trauma. Owing to their convenience and effectiveness, these adhesives have received growing attention particularly in minimally invasive procedures. For safe and accurate applications, tissue adhesives should be detectable via clinical imaging modalities and be highly biocompatible for intracorporeal procedures. However, few adhesives meet all these requirements. Herein, we show that biocompatible tantalum oxide/silica core/shell nanoparticles (TSNs) exhibit not only high contrast effects for real-time imaging but also strong adhesive properties. Furthermore, the biocompatible TSNs cause much less cellular toxicity and less inflammation than a clinically used, imageable tissue adhesive (that is, a mixture of cyanoacrylate and Lipiodol). Because of their multifunctional imaging and adhesive property, the TSNs are successfully applied as a hemostatic adhesive for minimally invasive procedures and as an immobilized marker for image-guided procedures.

  12. Next-Generation Multifunctional Electrochromic Devices.

    Science.gov (United States)

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy

  13. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  14. Nanoporous alumina as templates for multifunctional applications

    Science.gov (United States)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  15. Overview of GSE as a multifunctional GUI

    Science.gov (United States)

    Kurtovich, Boyan; Malangone, Fabio; Voss, David L.; Carssow, Douglas B.; Fritz, Theodore A.; Mavretic, Anton

    2009-08-01

    Ground Support Equipment (GSE) [1] is a versatile and multifunctional graphical user interface (GUI) and a software/hardware platform. It is a custom-designed system executed in the LabVIEW programming language to serve as an instrument health monitor for the Loss Cone Imager (LCI) satellite project. GSE mimics the behavior of the onboard Experiment Computer System (ECS). Its functions comprise the measurement of voltage, current, and power, as well as acting as a safety mechanism in case of any anomalous condition (e.g., over-current and/or over-voltage situation). Individual log files record the sessions during which data is gathered and analyzed. Safety/warning alarm flags shall be 'visible' from any individual window/tab. Analog-to-Digital Conversion (ADC) particle group measurements will be displayed on six individual panels. GSE will be supplemented with a comprehensive user's manual for added clarity.

  16. Characterisation of multifunctional surfaces with robust filters

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Godi, Alessandro; De Chiffre, Leonardo

    2011-01-01

    Research has shown that engineered surfaces containing lubrication pockets and directional surface texture can decrease wear and friction in sliding or rolling contacts. A new generation of multifunctional (MUFU) surfaces is achieved by hard machining followed by robot assisted polishing (RAP......). The novel production method allows for a large degree of freedom in specifying surface characteristics such as frequency, depth and volume of the lubricant retention valleys, as well as the amount of load bearing area and the surface roughness. The surfaces cannot readily be characterized by means...... of conventional roughness parameters due to the multi-process production method involved. A series of MUFU surfaces were characterized by using the ISO 13565 standard for stratified surfaces and it is shown that the standard in some cases is inadequate for characterisation of a MUFU surface. To improve...

  17. On Multifunctional Collaborative Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  18. Farm multifunctional diversification and agricultural landscape trasformations

    Directory of Open Access Journals (Sweden)

    Emilio Chiodo

    Full Text Available The work aims to analyze changes in agricultural landscape linked to transformations in agricultural productive system. The territory for analysis is situated along the “internal Marche ridge” of the Apennines, in the province of Ancona (Marche region, partly included in the Regional Natural Park “Gola della Rossa e Frassassi”. The work aims at elaborating an investigative methodology which can highlight the transformation of territorial structures and the dynamics that influence management of the territory and landscape in order to provide operative instructions for an integrated elaboration of instruments for urban planning and economic programming, specially for agricultural policies. Multi-functionality and diversification in agriculture are the instruments that can help agriculture to improve the economic value of products and at the same time to improve the quality of territory and landscape.

  19. 3D Multifunctional Ablative Thermal Protection System

    Science.gov (United States)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  20. Informatics derived materials databases for multifunctional properties

    International Nuclear Information System (INIS)

    Broderick, Scott; Rajan, Krishna

    2015-01-01

    In this review, we provide an overview of the development of quantitative structure–property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure–property relationships; and even more importantly we are now in a position to build materials databases based on design ‘intent’ and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications. (review)

  1. Multifunctional magnetic resonance imaging of cerebrovascular disease

    International Nuclear Information System (INIS)

    Grond, J. van der; Mali, W.P.T.M.

    1998-01-01

    Over the last few years magnetic resonance imaging (MRI) has developed into a multipurpose imaging technique. In addition to anatomical information, data can be obtained on perfusion, metabolism and imaging of the vascular anatomy. Especially in the field of neuroradiology the possibilities for obtaining multifunctional information from combined MR examinations are promising. In particular, stroke or stroke-related research benefits from these developments. This article reviews the current status and the potential of newly developed MR techniques with regard to the intracranial hemodynamic changes in patients with severe stenosis or occlusion of the internal carotid artery. The combination of MR angiography, perfusion-weighted MRI and MR spectroscopic imaging seems especially useful in the management of the individual patient. (orig.)

  2. Experience mapping and multifunctional golf course development

    DEFF Research Database (Denmark)

    Caspersen, Ole H.; Jensen, Frank Søndergaard; Jensen, Anne Mette Dahl

    This report describes the development of a method for mapping and describing recreational experiences on golf courses. The objective is to provide a planning tool that can facilitate development of a broader multifunctional use of the golf course landscape. The project has produced several results....... The main output is this report, which provides a detailed description of the mapping procedure. This process is illustrated using examples from five test golf courses. In addition to this mapping report, a catalogue has been developed providing hands-on guidance for adapting the method in a golf club...... without the use of a specialist. During the project period, the research team has participated in a number of workshops that included representatives from golf courses, STERF, the Norwegian Golf Federation and the Danish Golf Union. At these workshops, the method was presented and discussed. This has been...

  3. Multifunctional magnetic resonance imaging of cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Grond, J. van der; Mali, W.P.T.M. [Department of Radiology, University Hospital Utrecht, P. O. Box 85500, 3508 GA Utrecht (Netherlands)

    1998-06-02

    Over the last few years magnetic resonance imaging (MRI) has developed into a multipurpose imaging technique. In addition to anatomical information, data can be obtained on perfusion, metabolism and imaging of the vascular anatomy. Especially in the field of neuroradiology the possibilities for obtaining multifunctional information from combined MR examinations are promising. In particular, stroke or stroke-related research benefits from these developments. This article reviews the current status and the potential of newly developed MR techniques with regard to the intracranial hemodynamic changes in patients with severe stenosis or occlusion of the internal carotid artery. The combination of MR angiography, perfusion-weighted MRI and MR spectroscopic imaging seems especially useful in the management of the individual patient. (orig.) With 4 figs., 176 refs.

  4. Exploring the multifunctional role of farming systems

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Noe, Egon; Halberg, Niels

    2006-01-01

    Public expectations of farming practices are changing from a demand for environmentally "sustainable farming practices" to farming making an "enhanced contribution to the development of the rural areas", the so-called multifunctionality. Based on our research model of including farmers...... in the development of eco-friendly farming systems, we propose that the achievement of these changed expectations could be facilitated through an appropriate research and development initiative in several European regions. Key elements in such a project sould include: (i) the establishment of platforms for dialogue...... makers and administrators, grassroots movements and research staff. It is expected that such a coordinated research initiative can revitalize the contribution of farming to rural development and yield important insight to be used by the individual farmer in coping with future challenges....

  5. Managing adaptively for multifunctionality in agricultural systems

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  6. Managing adaptively for multifunctionality in agricultural systems.

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  7. Minimizing Exposure at Work

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticide Health and Safety Information Safe Use Practices Minimizing Exposure at Work Pesticides - Pennsylvania State University Cooperative Extension Personal Protective Equipment for Working

  8. Minimalism. Clip and Save.

    Science.gov (United States)

    Hubbard, Guy

    2002-01-01

    Provides background information on the art movement called "Minimalism" discussing why it started and its characteristics. Includes learning activities and information on the artist, Donald Judd. Includes a reproduction of one of his art works and discusses its content. (CMK)

  9. Ruled Laguerre minimal surfaces

    KAUST Repository

    Skopenkov, Mikhail

    2011-10-30

    A Laguerre minimal surface is an immersed surface in ℝ 3 being an extremal of the functional ∫ (H 2/K-1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces ℝ (φλ) = (Aφ, Bφ, Cφ + D cos 2φ) + λ(sin φ, cos φ, 0), where A,B,C,D ε ℝ are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. © 2011 Springer-Verlag.

  10. Minimal and careful processing

    OpenAIRE

    Nielsen, Thorkild

    2004-01-01

    In several standards, guidelines and publications, organic food processing is strongly associated with "minimal processing" and "careful processing". The term "minimal processing" is nowadays often used in the general food processing industry and described in literature. The term "careful processing" is used more specifically within organic food processing but is not yet clearly defined. The concept of carefulness seems to fit very well with the processing of organic foods, especially if it i...

  11. Multi-Functional All BN-BN Composites

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of multifunctional Boron Nitride nanotube-Boron Nitride (BN-BN) composites to provide novel energy transducers, thermal conductors, anti-penetrator/wear...

  12. Multifunctional landscape practice and accessibility in manorial landscapes

    DEFF Research Database (Denmark)

    Brandt, Jesper; Svenningsen, Stig Roar; Christensen, Andreas Aagaard

    . However classical manorial estates seems to represent an opposite trend. Allthough working at the same market conditions as other large specialized holdings developed through the process of structural rationalization, they have often maintained and elaborated a land use strategy based on a multifunctional...... use of the potential ecosystem services present within their domain. The targeted combination of agriculture, forestry, hunting rents, rental housing, and a variety of recreational activities influences makes a certain public accessibility to an integrated part of this strategy, diverging from...... the multifunctional landscape strategy supporting a certain public access. A study of this thesis is presented based on an analysis of multifunctionality, landscape development and accessibility in Danish Manorial landscapes and eventual linkages between their multifunctional landscape strategy, their history...

  13. Multifunctional Structural Composite Batteries for U.S. Army Applications

    National Research Council Canada - National Science Library

    Snyder, J. F; Carter, R. H; Xu, K; Wong, E. I; Nguyen, P. A; Hgo, E. H; Wetzel, E. D

    2007-01-01

    ... supplementary power for light load applications. To enable this concept, we have designed load-bearing properties directly into the battery electrodes and electrolyte such that each component is itself multifunctional...

  14. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes.

    Science.gov (United States)

    Miners, J Scott; Palmer, Jennifer C; Tayler, Hannah; Palmer, Laura E; Ashby, Emma; Kehoe, Patrick G; Love, Seth

    2014-01-01

    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.

  15. A review of multifunctional structure technology for aerospace applications

    Science.gov (United States)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  16. Multifunctional systems in vehicles:a usability evaluation

    OpenAIRE

    Rydström, Annie; Bengtsson, Peter; Grane, Camilla; Broström, Robert; Agardh, Johannes; Nilsson, Jennie

    2005-01-01

    Car Human-Machine Interaction (HMI) is becoming increasingly complex as the extension of functionality necessitates new interface concepts. Various multifunctional systems operated by haptic rotary switches, touch screen, and voice control have been developed. A usability study of multifunctional systems available on the market was carried out to evaluate and compare different manual interaction principles. The systems used in the study were the BMW iDrive and the Audi MMI, both operated by a...

  17. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    OpenAIRE

    Li, Dong-Xu; Liu, Wang; Hao, Dong

    2017-01-01

    Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections b...

  18. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  19. Measures of Noncircularity and Fixed Points of Contractive Multifunctions

    Directory of Open Access Journals (Sweden)

    Marrero Isabel

    2010-01-01

    Full Text Available In analogy to the Eisenfeld-Lakshmikantham measure of nonconvexity and the Hausdorff measure of noncompactness, we introduce two mutually equivalent measures of noncircularity for Banach spaces satisfying a Cantor type property, and apply them to establish a fixed point theorem of Darbo type for multifunctions. Namely, we prove that every multifunction with closed values, defined on a closed set and contractive with respect to any one of these measures, has the origin as a fixed point.

  20. Comparative review of multifunctionality and ecosystem services in sustainable agriculture.

    Science.gov (United States)

    Huang, Jiao; Tichit, Muriel; Poulot, Monique; Darly, Ségolène; Li, Shuangcheng; Petit, Caroline; Aubry, Christine

    2015-02-01

    Two scientific communities with broad interest in sustainable agriculture independently focus on multifunctional agriculture or ecosystem services. These communities have limited interaction and exchange, and each group faces research challenges according to independently operating paradigms. This paper presents a comparative review of published research in multifunctional agriculture and ecosystem services. The motivation for this work is to improve communication, integrate experimental approaches, and propose areas of consensus and dialog for the two communities. This extensive analysis of publication trends, ideologies, and approaches enables formulation of four main conclusions. First, the two communities are closely related through their use of the term "function." However, multifunctional agriculture considers functions as agricultural activity outputs and prefers farm-centred approaches, whereas ecosystem services considers ecosystem functions in the provision of services and prefers service-centred approaches. Second, research approaches to common questions in these two communities share some similarities, and there would be great value in integrating these approaches. Third, the two communities have potential for dialog regarding the bundle of ecosystem services and the spectrum of multifunctional agriculture, or regarding land sharing and land sparing. Fourth, we propose an integrated conceptual framework that distinguishes six groups of ecosystem services and disservices in the agricultural landscape, and combines the concepts of multifunctional agriculture and ecosystem services. This integrated framework improves applications of multifunctional agriculture and ecosystem services for operational use. Future research should examine if the framework can be readily adapted for modelling specific problems in agricultural management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  2. Design of multifunctional nanoparticles for combined in-vivo imaging and advanced drug delivery

    Science.gov (United States)

    Leary, James F.

    2018-02-01

    Design of multifunctional nanoparticles for multimodal in-vivo imaging and advanced targeting to diseased single cells for massive parallel processing nanomedicine approaches requires careful overall design and a multilayered approach. Initial core materials can include non-toxic metals which not only serve as an x-ray contrast agent for CAT scan imaging, but can contain T1 or T2 contrast agents for MRI imaging. One choice is superparamagnetic iron oxide NPs which also allow for convenient magnetic manipulation during manufacturing but also for re-positioning inside the body and for single cell hyperthermia therapies. To permit real-time fluorescence-guided surgery, fluorescence molecules can be included. Advanced targeting can be achieved by attaching antibodies, peptides, aptamers, or other targeting molecules to the nanoparticle in a multilayered approach producing "programmable nanoparticles" whereby the "programming" means controlling a sequence of multi-step targeting methods. Addition of membrane permeating peptides can facilitate uptake by the cell. Addition of "stealth" molecules (e.g. PEG or chitosan) to the outer surfaces of the nanoparticles can permit greatly enhanced circulation times in-vivo which in turn lead to lower amounts of drug exposure to the patient which can reduce undesirable side effects. Nanoparticles with incomplete layers can be removed by affinity purification methods to minimize mistargeting events in-vivo. Nanoscale imaging of these manufactured, multifunctional nanoparticles can be achieved either directly through superresolution microscopy or indirectly through single nanoparticle zeta-sizing or x-ray correlation microscopy. Since these multifunctional nanoparticles are best analyzed by technologies permitting analysis in aqueous environments, superresolution microscopy is, in most cases, the preferred method.

  3. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  4. Engineering of Multifunctional Nanomaterials for Cancer Theranostics

    Science.gov (United States)

    Goel, Shreya

    Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. Silica, "generally recognized as safe" (GRAS) by the Food and Drug Administration (FDA) of the United States, has emerged as one of the leading nanomaterials employed for molecular imaging and therapy of a wide variety of diseases, including cancer. However in vivo biodistribution and active targeting of silica-based nanomaterials has remained a relatively under explored area, based mainly on semi-quantitative techniques such as fluorescence imaging. In this dissertation, I explore the concept of radiolabeled silica nanoparticles for vasculature-targeted imaging of different tumor types. Both chelator-based and chelator-free radiolabeling techniques were employed for accurate and quantitative analysis of the in vivo pharmacokinetics of radiolabeled silica nanomaterials. (Chapters 2 and 3) The large surface area, ease of tunability and facile silica chemistry were employed to create multifunctional silica-based materials to simultaneously seek-and-treat cancers, by incorporating multiple components into a single nanoplatform. Photodynamic agent, porphyrin was loaded into the central cavity of hollow mesoporous silica nanoparticles, and the shell was decorated with photothermal nanoparticles, CuS, yielding a multimodal theranostic nanoplatform which could synergistically annihilate the tumor without relapse. (Chapter 4). A major hurdle in the successful clinical translation of nanomaterials is their rapid sequestration by the organs of the

  5. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  6. Surface-modified multifunctional MIP nanoparticles

    Science.gov (United States)

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2013-04-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity

  7. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  8. Minimal quantization and confinement

    International Nuclear Information System (INIS)

    Ilieva, N.P.; Kalinowskij, Yu.L.; Nguyen Suan Han; Pervushin, V.N.

    1987-01-01

    A ''minimal'' version of the Hamiltonian quantization based on the explicit solution of the Gauss equation and on the gauge-invariance principle is considered. By the example of the one-particle Green function we show that the requirement for gauge invariance leads to relativistic covariance of the theory and to more proper definition of the Faddeev - Popov integral that does not depend on the gauge choice. The ''minimal'' quantization is applied to consider the gauge-ambiguity problem and a new topological mechanism of confinement

  9. Minimal Composite Inflation

    DEFF Research Database (Denmark)

    Channuie, Phongpichit; Jark Joergensen, Jakob; Sannino, Francesco

    2011-01-01

    We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity, and that the u......We investigate models in which the inflaton emerges as a composite field of a four dimensional, strongly interacting and nonsupersymmetric gauge theory featuring purely fermionic matter. We show that it is possible to obtain successful inflation via non-minimal coupling to gravity...

  10. Minimalism and Speakers’ Intuitions

    Directory of Open Access Journals (Sweden)

    Matías Gariazzo

    2011-08-01

    Full Text Available Minimalism proposes a semantics that does not account for speakers’ intuitions about the truth conditions of a range of sentences or utterances. Thus, a challenge for this view is to offer an explanation of how its assignment of semantic contents to these sentences is grounded in their use. Such an account was mainly offered by Soames, but also suggested by Cappelen and Lepore. The article criticizes this explanation by presenting four kinds of counterexamples to it, and arrives at the conclusion that minimalism has not successfully answered the above-mentioned challenge.

  11. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  12. Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Genetically encoded tag is a powerful tool for protein research. Various kinds of tags have been developed: fluorescent proteins for live-cell imaging, affinity tags for protein isolation, and epitope tags for immunological detections. One of the major problems concerning the protein tagging is that many constructs with different tags have to be made for different applications, which is time- and resource-consuming. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel multifunctional green fluorescent protein (mfGFP tag which was engineered by inserting multiple peptide tags, i.e., octa-histidine (8xHis, streptavidin-binding peptide (SBP, and c-Myc tag, in tandem into a loop of GFP. When fused to various proteins, mfGFP monitored their localization in living cells. Streptavidin agarose column chromatography with the SBP tag successfully isolated the protein complexes in a native form with a high purity. Tandem affinity purification (TAP with 8xHis and SBP tags in mfGFP further purified the protein complexes. mfGFP was clearly detected by c-Myc-specific antibody both in immunofluorescence and immuno-electron microscopy (EM. These findings indicate that mfGFP works well as a multifunctional tag in mammalian cells. The tag insertion was also successful in other fluorescent protein, mCherry. CONCLUSIONS AND SIGNIFICANCE: The multifunctional fluorescent protein tag is a useful tool for a wide variety of protein research, and may have the advantage over other multiple tag systems in its higher expandability and compatibility with existing and future tag technologies.

  13. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  14. Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.

    Science.gov (United States)

    Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali

    2016-11-23

    Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.

  15. Multifunction waveform generator for EM receiver testing

    Science.gov (United States)

    Chen, Kai; Jin, Sheng; Deng, Ming

    2018-01-01

    In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.

  16. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  17. Multifunctional magnetoelectric materials for device applications

    International Nuclear Information System (INIS)

    Ortega, N; Katiyar, Ram S; Kumar, Ashok; Scott, J F

    2015-01-01

    Over the past decade magnetoelectric (ME) mutiferroic (MF) materials and their devices are one of the highest priority research topics that has been investigated by the scientific ferroics community to develop the next generation of novel multifunctional materials. These systems show the simultaneous existence of two or more ferroic orders, and cross-coupling between them, such as magnetic spin, polarisation, ferroelastic ordering, and ferrotoroidicity. Based on the type of ordering and coupling, they have drawn increasing interest for a variety of device applications, such as magnetic field sensors, nonvolatile memory elements, ferroelectric photovoltaics, nano-electronics etc. Since single-phase materials exist rarely in nature with strong cross-coupling properties, intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarises the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which the signal to noise ratio is good for device fabrication. We describe the possible applications of these materials. (topical review)

  18. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  19. Minimal model holography

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Gopakumar, Rajesh

    2013-01-01

    We review the duality relating 2D W N minimal model conformal field theories, in a large-N ’t Hooft like limit, to higher spin gravitational theories on AdS 3 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. (review)

  20. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  1. Hazardous waste minimization

    International Nuclear Information System (INIS)

    Freeman, H.

    1990-01-01

    This book presents an overview of waste minimization. Covers applications of technology to waste reduction, techniques for implementing programs, incorporation of programs into R and D, strategies for private industry and the public sector, and case studies of programs already in effect

  2. Minimally invasive distal pancreatectomy

    NARCIS (Netherlands)

    Røsok, Bård I.; de Rooij, Thijs; van Hilst, Jony; Diener, Markus K.; Allen, Peter J.; Vollmer, Charles M.; Kooby, David A.; Shrikhande, Shailesh V.; Asbun, Horacio J.; Barkun, Jeffrey; Besselink, Marc G.; Boggi, Ugo; Conlon, Kevin; Han, Ho Seong; Hansen, Paul; Kendrick, Michael L.; Kooby, David; Montagnini, Andre L.; Palanivelu, Chinnasamy; Wakabayashi, Go; Zeh, Herbert J.

    2017-01-01

    The first International conference on Minimally Invasive Pancreas Resection was arranged in conjunction with the annual meeting of the International Hepato-Pancreato-Biliary Association (IHPBA), in Sao Paulo, Brazil on April 19th 2016. The presented evidence and outcomes resulting from the session

  3. Minimal DBM Substraction

    DEFF Research Database (Denmark)

    David, Alexandre; Håkansson, John; G. Larsen, Kim

    In this paper we present an algorithm to compute DBM substractions with a guaranteed minimal number of splits and disjoint DBMs to avoid any redundance. The substraction is one of the few operations that result in a non-convex zone, and thus, requires splitting. It is of prime importance to reduce...

  4. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  5. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  6. Optineurin, a multifunctional protein involved in glaucoma

    Indian Academy of Sciences (India)

    MADHU

    Glaucomas are a heterogeneous group of neurodegenerative eye diseases that ... with normal tension glaucoma (a sub-type of adult onset primary open angle .... identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for.

  7. Minimal abdominal incisions

    Directory of Open Access Journals (Sweden)

    João Carlos Magi

    2017-04-01

    Full Text Available Minimally invasive procedures aim to resolve the disease with minimal trauma to the body, resulting in a rapid return to activities and in reductions of infection, complications, costs and pain. Minimally incised laparotomy, sometimes referred to as minilaparotomy, is an example of such minimally invasive procedures. The aim of this study is to demonstrate the feasibility and utility of laparotomy with minimal incision based on the literature and exemplifying with a case. The case in question describes reconstruction of the intestinal transit with the use of this incision. Male, young, HIV-positive patient in a late postoperative of ileotiflectomy, terminal ileostomy and closing of the ascending colon by an acute perforating abdomen, due to ileocolonic tuberculosis. The barium enema showed a proximal stump of the right colon near the ileostomy. The access to the cavity was made through the orifice resulting from the release of the stoma, with a lateral-lateral ileo-colonic anastomosis with a 25 mm circular stapler and manual closure of the ileal stump. These surgeries require their own tactics, such as rigor in the lysis of adhesions, tissue traction, and hemostasis, in addition to requiring surgeon dexterity – but without the need for investments in technology; moreover, the learning curve is reported as being lower than that for videolaparoscopy. Laparotomy with minimal incision should be considered as a valid and viable option in the treatment of surgical conditions. Resumo: Procedimentos minimamente invasivos visam resolver a doença com o mínimo de trauma ao organismo, resultando em retorno rápido às atividades, reduções nas infecções, complicações, custos e na dor. A laparotomia com incisão mínima, algumas vezes referida como minilaparotomia, é um exemplo desses procedimentos minimamente invasivos. O objetivo deste trabalho é demonstrar a viabilidade e utilidade das laparotomias com incisão mínima com base na literatura e

  8. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  9. Nuclear reactor core modelling in multifunctional simulators

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  10. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  11. Fractals via iterated functions and multifunctions

    International Nuclear Information System (INIS)

    Singh, S.L.; Prasad, Bhagwati; Kumar, Ashish

    2009-01-01

    Fractals have wide applications in biology, computer graphics, quantum physics and several other areas of applied sciences (see, for instance [Daya Sagar BS, Rangarajan Govindan, Veneziano Daniele. Preface - fractals in geophysics. Chaos, Solitons and Fractals 2004;19:237-39; El Naschie MS. Young double-split experiment Heisenberg uncertainty principles and cantorian space-time. Chaos, Solitons and Fractals 1994;4(3):403-09; El Naschie MS. Quantum measurement, information, diffusion and cantorian geodesics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 191-205; El Naschie MS. Iterated function systems, information and the two-slit experiment of quantum mechanics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 185-9; El Naschie MS, Rossler OE, Prigogine I. Forward. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995; El Naschie MS. A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. Fractal black holes and information. Chaos, Solitons and Fractals 2006;29:23-35; El Naschie MS. Superstring theory: what it cannot do but E-infinity could. Chaos, Solitons and Fractals 2006;29:65-8). Especially, the study of iterated functions has been found very useful in the theory of black holes, two-slit experiment in quantum mechanics (cf. El Naschie, as mentioned above). The intent of this paper is to give a brief account of recent developments of fractals arising from IFS. We also discuss iterated multifunctions.

  12. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems

    Science.gov (United States)

    Wang, Xueting; Wang, Ning; Li, Ning; Zhen, Yuanyuan; Wang, Ting

    2016-01-01

    ABSTRACT To overcome drawbacks of current injection vaccines, such as causing needle phobia, needing health professionals for inoculation, and generating dangerous sharps wastes, researchers have designed novel vaccines that are combined with various microneedle arrays (MAs), in particular, with the multifunctional particle-constructed MAs (MPMAs). MPMAs prove able to enhance vaccine stability through incorporating vaccine ingredients in the carrier, and can be painlessly inoculated by minimally trained workers or by self-administration, leaving behind no metal needle pollution while eliciting robust systemic and mucosal immunity to antigens, thanks to delivering vaccines to cutaneous or mucosal compartments enriched in professional antigen-presenting cells (APCs). Especially, MPMAs can be easily integrated with functional molecules fulfilling targeting vaccine delivery or controlling immune response toward a Th1 or Th2 pathway to generate desired immunity against pathogens. Herein, we introduce the latest research and development of various MPMAs which are a novel but promising vaccine adjuvant delivery system (VADS). PMID:27159879

  13. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Science.gov (United States)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  14. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  15. Structural evaluation of multifunctional flood defenses

    NARCIS (Netherlands)

    Voorendt, M.Z.; Kothuis, Baukje; Kok, Matthijs

    2017-01-01

    Flood risk reduction aims to minimize losses in low-lying areas. One of the ways to reduce flood risks is to protect land by means of flood defenses. The Netherlands has a long tradition of flood protection and, therefore, a wide variety of technical reports written

  16. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  17. Legal incentives for minimizing waste

    International Nuclear Information System (INIS)

    Clearwater, S.W.; Scanlon, J.M.

    1991-01-01

    Waste minimization, or pollution prevention, has become an integral component of federal and state environmental regulation. Minimizing waste offers many economic and public relations benefits. In addition, waste minimization efforts can also dramatically reduce potential criminal requirements. This paper addresses the legal incentives for minimizing waste under current and proposed environmental laws and regulations

  18. 78 FR 32427 - Notice of Issuance of Final Determination Concerning Multifunctional Digital Imaging Systems

    Science.gov (United States)

    2013-05-30

    ... multifunctional digital imaging systems for purposes of U.S. Government procurement. DATES: The final... Determination Concerning Multifunctional Digital Imaging Systems AGENCY: U.S. Customs and Border Protection... country of origin of certain multifunctional digital imaging systems. Based upon the facts presented, CBP...

  19. The economic impact of multifunctional agriculture in Dutch regions: An input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2013-01-01

    Multifunctional agriculture is a broad concept lacking a precise definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model was constructed for multifunctional agriculture

  20. The economic impact of multifunctional agriculture in The Netherlands: A regional input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2012-01-01

    Multifunctional agriculture is a broad concept lacking a precise and uniform definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model is constructed for multifunctional

  1. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  2. Convergence theorems for Banach space valued integrable multifunctions

    Directory of Open Access Journals (Sweden)

    Nikolaos S. Papageorgiou

    1987-01-01

    Full Text Available In this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω (1≤p≤∞. Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable multifunctions. Analogous convergence results are also proved for the sets of integrable selectors of those multifunctions. In the process of proving those convergence theorems we make some useful observations concerning the Kuratowski-Mosco convergence of sets.

  3. The ZOOM minimization package

    International Nuclear Information System (INIS)

    Fischler, Mark S.; Sachs, D.

    2004-01-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete

  4. Minimizing the Pacman effect

    International Nuclear Information System (INIS)

    Ritson, D.; Chou, W.

    1997-10-01

    The Pacman bunches will experience two deleterious effects: tune shift and orbit displacement. It is known that the tune shift can be compensated by arranging crossing planes 900 relative to each other at successive interaction points (lPs). This paper gives an analytical estimate of the Pacman orbit displacement for a single as well as for two crossings. For the latter, it can be minimized by using equal phase advances from one IP to another. In the LHC, this displacement is in any event small and can be neglected

  5. Minimally Invasive Parathyroidectomy

    Directory of Open Access Journals (Sweden)

    Lee F. Starker

    2011-01-01

    Full Text Available Minimally invasive parathyroidectomy (MIP is an operative approach for the treatment of primary hyperparathyroidism (pHPT. Currently, routine use of improved preoperative localization studies, cervical block anesthesia in the conscious patient, and intraoperative parathyroid hormone analyses aid in guiding surgical therapy. MIP requires less surgical dissection causing decreased trauma to tissues, can be performed safely in the ambulatory setting, and is at least as effective as standard cervical exploration. This paper reviews advances in preoperative localization, anesthetic techniques, and intraoperative management of patients undergoing MIP for the treatment of pHPT.

  6. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  7. Multi-functional Textiles for Military Applications

    Science.gov (United States)

    Malshe, Priyadarshini

    helped create a multi-functional fabric with an anti-bacterial bulk, hydrophilic back surface and repellent front surface for enhanced protective and aesthetic values.

  8. Multifunctional nanoparticles for MR and fluorescence imaging =

    Science.gov (United States)

    Pinho, Sonia Luzia Claro de

    In the past few years a new generation of multifunctional nanoparticles (NPs) has been proposed for biomedical applications, whose structure is more complex than the structure of their predecessor monofunctional counterparts. The development of these novel NPs aims at enabling or improving the performance in imaging, diagnosis and therapeutic applications. The structure of such NPs comprises several components exhibiting various functionalities that enable the nanoparticles to perform multiple tasks simultaneously, such as active targeting of certain cells or compartmentalization, imaging and delivery of active drugs. This thesis presents two types of bimodal bio-imaging probes and describes their physical and chemical properties, namely their texture, structure, and 1H dynamics and relaxometry, in order to evaluate their potential as MRI contrast agents. The photoluminescence properties of these probes are studied, aiming at assessing their interest as optical contrast agents. These materials combine the properties of the trivalent lanthanide (Ln3+) complexes and nanoparticles, offering an excellent solution for bimodal imaging. The designed T1- type contrast agent are SiO2 APS/DTPA:Gd:Ln or SiO2 APS/PMN:Gd:Ln (Ln= Eu or Tb) systems, bearing the active magnetic center (Gd3+) and the optically-active ions (Eu3+ and Tb3+) on the surface of silica NPs. Concerning the relaxometry properties, moderate r1 increases and significant r2 increases are observed in the NPs presence, especially at high magnetic fields, due to susceptibility effects on r2. The Eu3+ ions reside in a single low-symmetry site, and the photoluminescence emission is not influenced by the simultaneous presence of Gd3+ and Eu3+. The presence of Tb3+, rather than Eu3+ ion, further increases r1 but decreases r2. The uptake of these NPs by living cells is fast and results in an intensity increase in the T1-weighted MRI images. The optical features of the NPs in cellular pellets are also studied and

  9. Multifunctional Parylene-C Microfibrous Thin Films

    Science.gov (United States)

    Chindam, Chandraprakash

    Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all

  10. Minimal conformal model

    Energy Technology Data Exchange (ETDEWEB)

    Helmboldt, Alexander; Humbert, Pascal; Lindner, Manfred; Smirnov, Juri [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    The gauge hierarchy problem is one of the crucial drawbacks of the standard model of particle physics (SM) and thus has triggered model building over the last decades. Its most famous solution is the introduction of low-scale supersymmetry. However, without any significant signs of supersymmetric particles at the LHC to date, it makes sense to devise alternative mechanisms to remedy the hierarchy problem. One such mechanism is based on classically scale-invariant extensions of the SM, in which both the electroweak symmetry and the (anomalous) scale symmetry are broken radiatively via the Coleman-Weinberg mechanism. Apart from giving an introduction to classically scale-invariant models, the talk presents our results on obtaining a theoretically consistent minimal extension of the SM, which reproduces the correct low-scale phenomenology.

  11. Minimal Reducts with Grasp

    Directory of Open Access Journals (Sweden)

    Iris Iddaly Mendez Gurrola

    2011-03-01

    Full Text Available The proper detection of patient level of dementia is important to offer the suitable treatment. The diagnosis is based on certain criteria, reflected in the clinical examinations. From these examinations emerge the limitations and the degree in which each patient is in. In order to reduce the total of limitations to be evaluated, we used the rough set theory, this theory has been applied in areas of the artificial intelligence such as decision analysis, expert systems, knowledge discovery, classification with multiple attributes. In our case this theory is applied to find the minimal limitations set or reduct that generate the same classification that considering all the limitations, to fulfill this purpose we development an algorithm GRASP (Greedy Randomized Adaptive Search Procedure.

  12. Minimally extended SILH

    International Nuclear Information System (INIS)

    Chala, Mikael; Grojean, Christophe; Humboldt-Univ. Berlin; Lima, Leonardo de; Univ. Estadual Paulista, Sao Paulo

    2017-03-01

    Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.

  13. Minimally extended SILH

    Energy Technology Data Exchange (ETDEWEB)

    Chala, Mikael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Valencia Univ. (Spain). Dept. de Fisica Teorica y IFIC; Durieux, Gauthier; Matsedonskyi, Oleksii [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Lima, Leonardo de [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Estadual Paulista, Sao Paulo (Brazil). Inst. de Fisica Teorica

    2017-03-15

    Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory approach and develop a set of rules to estimate the size of the various operator coefficients, relating them to the parameters of the strong sector and its structural features. As a result, we obtain the patterns of new interactions affecting both the new singlet and the Higgs boson's physics. We identify the characteristics of the singlet field which cause its effects on Higgs physics to dominate over the ones inherited from the composite nature of the Higgs boson. Our effective field theory construction is supported by comparisons with explicit UV models.

  14. Genetic effects

    International Nuclear Information System (INIS)

    Kato, Hiroo

    1975-01-01

    In 1948-1953 a large scale field survey was conducted to investigate the possible genetic effects of A-bomb radiation on over 70,000 pregnancy terminations in the cities of Hiroshima and Nagasaki. The indices of possible genetic effect including sex ratio, birth weight, frequency of malformation, stillbirth, neonatal death, deaths within 9 months and anthropometric measurements at 9 months of age for these children were investigated in relation to their parent's exposure status to the A-bomb. There were no detectable genetic effects in this sample, except for a slight change in sex ratio which was in the direction to be expected if exposure had induced sex-linked lethal mutations. However, continued study of the sex ratio, based upon birth certificates in Hiroshima and Nagasaki for 1954-1962, did not confirm the earlier trend. Mortality in these children of A-bomb survivors is being followed using a cohort of 54,000 subjects. No clearly significant effect of parental exposure on survival of the children has been demonstrated up to 1972 (age 17 on the average). On the basis of the regression data, the minimal genetic doubling dose of this type of radiation for mutations resulting in death is estimated at 46 rem for the father and 125 rem for the mother. (auth.)

  15. Multifunctional cell therapeutics with plasmonic nanobubbles

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y.; Kashinath, Shruti; Lapotko, Dmitri O.

    2012-03-01

    We report our new discovery of the nanophenomenon called plasmonic nanobubbles to devise faster, safer and more accurate ways of manipulating the components of human tissue grafts. The reported work facilitates future cell and gene therapies by allowing specific cell subsets to be positively or negatively selected for culture, genetic engineering or elimination. The technology will have application for a wide range of human tissues that can be used to treat a multiplicity of human diseases.

  16. DMPD: Monocyte CD14: a multifunctional receptor engaged in apoptosis from both sides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10380893 Monocyte CD14: a multifunctional receptor engaged in apoptosis from both s...ides. Heidenreich S. J Leukoc Biol. 1999 Jun;65(6):737-43. (.png) (.svg) (.html) (.csml) Show Monocyte CD14: a multifunction...al receptor engaged in apoptosis from both sides. PubmedID 10380893 Title Monocyte CD14: a multifunction

  17. A multifunctional microwave plasma reaction apparatus and its applications

    International Nuclear Information System (INIS)

    Wang Xizhang; Wu Qiang; Hu Zheng; Xu Hua; Miao Shui; Chen Yi

    2000-01-01

    A multifunctional apparatus for microwave plasma reaction has been set up, which can be used in the fields such as chemical synthesis, surface modification, and heterogeneous catalysis. The apparatus has laid an experimental foundation for new methods, new technologies, and new train of thoughts to be explored

  18. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  19. Multifunction laser systems in clinical and resort practice

    OpenAIRE

    Zabulonov, Yuriy; Vladimirov, Alexander; Chukhraiev, Nikolay; Elmehsenawi, Yousry; Zukow, Walery

    2016-01-01

    SHUPYKNATIONALMEDICALACADEMY OF POSTGRADUATE EDUCATION UKRAINIANSOCIETY OFPHYSICAL AND REHABILITATION MEDICINE RADOM UNIVERSITY Yuriy Zabulonov, Alexander Vladimirov, Nikolay Chukhraiev, Yousry Elmehsenawi, Walery Zukow MULTIFUNCTION LASER SYSTEMS IN CLINICAL AND RESORT PRACTICE Edited by Yuriy Zabulonov, Alexander Vladimirov, Nikolay Chukhraiev, Yousry Elmehsenawi, Walery Zukow ...

  20. A Review of Acoustic Consideration in Public and Multifunctional ...

    African Journals Online (AJOL)

    It has been shown that acoustics in buildings depend mainly on the type and use of the buildings, therefore acoustic criteria and design parameters in public and multifunctional buildings should be such that it takes into consideration the room reverberation time, background noise and sound isolation to enhance speech ...

  1. Self-Assembling Multifunctional Peptide Dimers for Gene Delivery Systems

    Directory of Open Access Journals (Sweden)

    Kitae Ryu

    2015-01-01

    Full Text Available Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP consists of cellular penetrating peptide moiety (R8, matrix metalloproteinase-2 (MMP-2 specific sequence (GPLGV, pH-responsive moiety (H5, and hydrophobic moiety (palmitic acid (CR8GPLGVH5-Pal. MP was oxidized to form multifunctional peptide dimer (MPD by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.

  2. A multi-function low solide angle system

    International Nuclear Information System (INIS)

    Yan Sujuan; Yao Linong

    2001-01-01

    A multi-function low solid angle system for direct and indirect measurement of radioactivity or emission rate of most α, β and EC emitting nuclides are described in this paper. The measurement result of 241 Am and 90 Sr- 90 Y are given

  3. Hyper-Production: A New Metric of Multifunctionality

    Directory of Open Access Journals (Sweden)

    Brouder Patrick

    2015-09-01

    Full Text Available Multifunctionality has emerged as the dominant framework for understanding rural socioeconomic landscapes. The central claim of multifunctionality - that rural regions need to be understood as being made up of more than just traditional uses - has led to the incorporation of new rural activities into regional development plans, e.g., tourism. In some places, such post-productive activity is perceived to be slowly replacing productive uses of the land, e.g., agriculture/forestry. However, there is limited empirical evidence to support such claims. Drawing on previous research and data from the Swedish countryside this paper shows that, even as the number of persons employed within traditional activities decreases, the economic output per areal unit and per labour hour is increasing over time and traditional uses still occupy the majority of rural space. Hyper-production is introduced as a new metric for understanding multifunctional regions going forward. The complementary union of economic mainstays, such as agriculture, and newer activities with more quality-of-life benefits, such as tourism, is highlighted in terms of economic diversification, job creation and local social capital development, while the conflict-prone intersection of these two modes is also acknowledged. Understanding hyper-production as a key metric of multifunctionality is thus argued as integral to planning and developing resilient rural regions now and for the future.

  4. The role of farm advisors in multifunctional landscapes

    DEFF Research Database (Denmark)

    Vesterager, Jens Peter; Lindegaard, Klaus

    2012-01-01

    This study investigates the influence of farm advisors on farmers decisions regarding Multifunctional landscape commons, a concept covering environmental and landscape values that benefit the public but which depend on farmers management practices. The influence of advisors is analysed by combining...

  5. Multifunctionality: epistemic diversity and concept oriented research clusters

    NARCIS (Netherlands)

    Caron, P.; Reig, E.; Roep, D.; Hediger, W.; Cotty, le T.; Barthélemy, D.; Hadynska, A.; Hadynski, J.; Oostindië, H.A.; Sabourin, E.

    2008-01-01

    This paper provides a mapping of the different uses of the word multifunctionality. To explore the diversity of meanings and interpretations, a comparative analysis was conducted through five national case studies in France, the Netherlands, Poland, Spain and Switzerland. The analysis conducted at

  6. Minimal Marking: A Success Story

    Science.gov (United States)

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  7. Swarm robotics and minimalism

    Science.gov (United States)

    Sharkey, Amanda J. C.

    2007-09-01

    Swarm Robotics (SR) is closely related to Swarm Intelligence, and both were initially inspired by studies of social insects. Their guiding principles are based on their biological inspiration and take the form of an emphasis on decentralized local control and communication. Earlier studies went a step further in emphasizing the use of simple reactive robots that only communicate indirectly through the environment. More recently SR studies have moved beyond these constraints to explore the use of non-reactive robots that communicate directly, and that can learn and represent their environment. There is no clear agreement in the literature about how far such extensions of the original principles could go. Should there be any limitations on the individual abilities of the robots used in SR studies? Should knowledge of the capabilities of social insects lead to constraints on the capabilities of individual robots in SR studies? There is a lack of explicit discussion of such questions, and researchers have adopted a variety of constraints for a variety of reasons. A simple taxonomy of swarm robotics is presented here with the aim of addressing and clarifying these questions. The taxonomy distinguishes subareas of SR based on the emphases and justifications for minimalism and individual simplicity.

  8. Minimal dilaton model

    Directory of Open Access Journals (Sweden)

    Oda Kin-ya

    2013-05-01

    Full Text Available Both the ATLAS and CMS experiments at the LHC have reported the observation of the particle of mass around 125 GeV which is consistent to the Standard Model (SM Higgs boson, but with an excess of events beyond the SM expectation in the diphoton decay channel at each of them. There still remains room for a logical possibility that we are not seeing the SM Higgs but something else. Here we introduce the minimal dilaton model in which the LHC signals are explained by an extra singlet scalar of the mass around 125 GeV that slightly mixes with the SM Higgs heavier than 600 GeV. When this scalar has a vacuum expectation value well beyond the electroweak scale, it can be identified as a linearly realized version of a dilaton field. Though the current experimental constraints from the Higgs search disfavors such a region, the singlet scalar model itself still provides a viable alternative to the SM Higgs in interpreting its search results.

  9. Minimal mirror twin Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Riccardo [Institute of Theoretical Studies, ETH Zurich,CH-8092 Zurich (Switzerland); Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126 Pisa (Italy); Hall, Lawrence J.; Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States)

    2016-11-29

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z{sub 2} parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z{sub 2} breaking, can generate the Z{sub 2} breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals in Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z{sub 2} breaking from the vacuum expectation values of B−L breaking fields are also discussed.

  10. Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation

    Science.gov (United States)

    Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.

    1982-01-01

    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.

  11. MULTIFUNCTIONAL UTILIZATION OF PASTURES IN ROMANIA

    Directory of Open Access Journals (Sweden)

    N. DRAGOMIR

    2009-05-01

    Full Text Available Romanian pastures are characterized by a multitude of functions that may be used for human benefit: food and habitat for animals, development of some connected activities (collection and processing of apicultural products, medicinal plants, etc., natural reservoir providing biodiversity for more than 70% of the plant species (the preservation of this may assure an important germplasm fund for the next cultivars, the most efficient method of soil protection against erosion, provider of unconventional energy, accomplishment of efficient biological cycles of nitrogen, phosphorus, potassium and carbon dioxide (CO2, development of landscape tourism due to the plant and animal diversity that ennoble and beautify the environment. If only 60% of the permanent pasture area was used, with the application of minimal technological measures, it would provide the necessary food for at least 1.6 million cattle (57% of the current livestock and 12 million sheep and goats.

  12. Functional and Multifunctional Polymers: Materials for Smart Structures

    Science.gov (United States)

    Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.

    1996-01-01

    The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three

  13. Conformal growth method of ferroelectric materials for multifunctional composites

    Science.gov (United States)

    Bowland, Christopher Charles

    Multifunctional composites are the next generation of composites and aim to simultaneously meet multiple performance objectives to create system-level performance enhancements. Current fiber-reinforced composites have offered improved efficiency and performance through weight reduction and increased strength. However, these composites satisfy singular performance objectives. Therefore, the concept of multifunctional composites was developed as an approach to create components in a system that serve multiple functions. These composites aim to reduce the required components in a system by integrating unifunctional components together thus reducing the weight and complexity of the system as a whole. This work offers an approach to create multifunctional composites through the development of a structural, multifunctional fiber. This is achieved by synthesizing a ferroelectric material on the surface of carbon fiber. In this work, a two-step hydrothermal reaction is developed for synthesizing a conformal film of barium titanate (BaTiO3) on the surface of carbon fiber. A fundamental understanding of this hydrothermal process is performed on planar substrates leading to the development of processing parameters that result in epitaxial-type growth of highly-aligned BaTiO3 nanowires. This work establishes the hydrothermal reaction as a powerful synthesis technique for generating nanostructured BaTiO3 on carbon fiber creating a novel, multifunctional fiber. A reaction optimization process leads to the development of parameters that stabilize tetragonal phase BaTiO3 without the need for subsequent heat treatments. The application potential of these fibers is illustrated with both single fibers and woven fabrics. Single fiber cantilever beams are fabricated and subjected to vibrations to determine its voltage output with the ultimate goal of producing an air flow sensor. Carbon fiber reinforced composite integration is carried out by scaling up the hydrothermal reaction to

  14. Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload

    Science.gov (United States)

    Zhang, X.

    2018-04-01

    To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.

  15. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats

    Science.gov (United States)

    Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett

    2015-01-01

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115

  16. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  17. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Federico Perche

    2013-01-01

    Full Text Available Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor’s vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.

  18. Vitamin D binding protein: a multifunctional protein of clinical importance.

    Science.gov (United States)

    Speeckaert, Marijn M; Speeckaert, Reinhart; van Geel, Nanja; Delanghe, Joris R

    2014-01-01

    Since the discovery of group-specific component and its polymorphism by Hirschfeld in 1959, research has put spotlight on this multifunctional transport protein (vitamin D binding protein, DBP). Besides the transport of vitamin D metabolites, DBP is a plasma glycoprotein with many important functions, including sequestration of actin, modulation of immune and inflammatory responses, binding of fatty acids, and control of bone development. A considerable DBP polymorphism has been described with a specific allele distribution in different geographic area. Multiple studies have shed light on the interesting relationship between polymorphisms of the DBP gene and the susceptibility to diseases. In this review, we give an overview of the multifunctional character of DBP and describe the clinical importance of DBP and its polymorphisms. Finally, we discuss the possibilities to use DBP as a novel therapeutic agent.

  19. Multifunctionality of Organic Farming: Case Study from Southern Poland

    Directory of Open Access Journals (Sweden)

    Śpiewak Ruta

    2016-03-01

    Full Text Available The main goal of this article is to answer the question whether organic farming, which is developing in some parts of Poland, can be considered as a form of multifunctional farming and contribute so to non-commodity functions and the process of change in a particular territory of given areas. The analyses are based on data obtained from 2013 of several points in the south of Poland representing a cluster of organic market oriented farmers. The results show that namely market organic farming may serve as multifunctional one, but only under certain conditions and for a specific type of farming. Through specific functions, organic farming facilitates the changes, primarily on a local scale. The existence of a strong integrated organic farming sector might influences development and change, resulting in not only the improvement of economic welfare of organic farmers, but also of whole local communities, strengthening the bonds amongst them, mobilising the social resources.

  20. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    Science.gov (United States)

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers.

  1. Network Multifunctional Substation with Embedded System in Coal Mine

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-rong; HUO Yan; ZHOU Yong

    2006-01-01

    In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor and control system was proposed and designed. It is the architecture of a mining embedded network multifunctional substation. This paper presents the design of hardware and software of the substation in detail. Finally, the system's efficiency was validated through experimentation.

  2. 3D Printed Composites for Topology Transforming Multifunctional Devices

    Science.gov (United States)

    2017-01-26

    panels connected by hinges, which occupy infinitesimal space but control the angles between two panels. Figure 2.2.1-3 shows panels are connected by...observations that higher curing temperature yields to more compacted and better connected silver NPs. The Young’s moduli, however, are lower than that of...AFRL-AFOSR-VA-TR-2017-0021 3D Printed Composites for Topology -Transforming Multifunctional Devices Kurt Maute REGENTS OF THE UNIVERSITY OF COLORADO

  3. MULTIFUNCTIONAL ADHESIN PROTEINS AND THEIR DISPLAY IN MICROBIAL CELLS

    DEFF Research Database (Denmark)

    1999-01-01

    Recombinant cells expressing a multifunctional adhesin protein derived from a naturally occurring adhesin, containing a binding domain that is capable of binding to an organic receptor and a binding domain that is capable of binding to a compound to which the naturally occurring adhesin protein...... substantially does not bind. The cells or modified adhesin proteins, optionally in immobilized form, are useful for separating organic and inorganic compounds including toxic or precious metals from an environment....

  4. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis; Kelarakis, Antonios; Gong, Qianming; Da’ as, Eman H.; Giannelis, Emmanuel P.

    2011-01-01

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  5. Multifunctionality assessment of urban agriculture in Beijing City, China.

    Science.gov (United States)

    Peng, Jian; Liu, Zhicong; Liu, Yanxu; Hu, Xiaoxu; Wang, An

    2015-12-15

    As an important approach to the realization of agricultural sustainable development, multifunctionality has become a hot spot in the field of urban agriculture. Taking 13 agricultural counties of Beijing City as the assessing units, this study selects 10 assessing index from ecological, economic and social aspects, determines the index weight using Analytic Hierarchy Process (AHP) method, and establishes an index system for the integrated agricultural function. Based on standardized data from agricultural census and remote sensing, the integrated function and multifunctionality of urban agriculture in Beijing City are assessed through the index grade mapping. The results show that agricultural counties with the highest score in ecological, economic, and social function are Yanqing, Changping, and Miyun, respectively; and the greatest disparity among those counties is economic function, followed by social and ecological function. Topography and human disturbance may be the factors that affect integrated agricultural function. The integrated agricultural function of Beijing rises at the beginning then drops later with the increase of mean slope, average altitude, and distance from the city. The whole city behaves balance among ecological, economic, and social functions at the macro level, with 8 out of the 13 counties belonging to ecology-society-economy balanced areas, while no county is dominant in only one of the three functions. On the micro scale, however, different counties have their own functional inclination: Miyun, Yanqing, Mentougou, and Fengtai are ecology-society dominant, and Tongzhou is ecology-economy dominant. The agricultural multifunctionality in Beijing City declines from the north to the south, with Pinggu having the most significant agricultural multifunctionality. The results match up well with the objective condition of Beijing's urban agriculture planning, which has proved the methodological rationality of the assessment to a certain extent

  6. A Multifunctional Public Lighting Infrastructure, Design and Experimental Test

    OpenAIRE

    Marco Beccali; Valerio Lo Brano; Marina Bonomolo; Paolo Cicero; Giacomo Corvisieri; Marco Caruso; Francesco Gamberale

    2017-01-01

    Nowadays, the installation of efficient lighting sources and Information and Communications Technologies can provide economic benefits, energy efficiency, and visual comfort requirements. More advantages can be derived if the public lighting infrastructure integrates a smart grid. This study presents an experimental multifunctional infrastructure for public lighting, installed in Palermo. The system is able to provide smart lighting functions (hotspot Wi-Fi, video-surveillances, car and pedes...

  7. Multifunctional composites aircraft applications in Finmeccanica - Some examples

    Science.gov (United States)

    Iannone, Michele

    2016-05-01

    Some examples of multifunctional composite materials presently developed by Finmeccanica are described. The basic concept is to modify the material/structure by adding a further function to the structural basic one. The described examples refer to: improvement of processability; self-diagnostic capability; improvement of the allowables, acting on reduction of the knock down factor required to take in account the environmental ageing effects.

  8. Multi-Criteria Approach in Multifunctional Building Design Process

    Science.gov (United States)

    Gerigk, Mateusz

    2017-10-01

    The paper presents new approach in multifunctional building design process. Publication defines problems related to the design of complex multifunctional buildings. Currently, contemporary urban areas are characterized by very intensive use of space. Today, buildings are being built bigger and contain more diverse functions to meet the needs of a large number of users in one capacity. The trends show the need for recognition of design objects in an organized structure, which must meet current design criteria. The design process in terms of the complex system is a theoretical model, which is the basis for optimization solutions for the entire life cycle of the building. From the concept phase through exploitation phase to disposal phase multipurpose spaces should guarantee aesthetics, functionality, system efficiency, system safety and environmental protection in the best possible way. The result of the analysis of the design process is presented as a theoretical model of the multifunctional structure. Recognition of multi-criteria model in the form of Cartesian product allows to create a holistic representation of the designed building in the form of a graph model. The proposed network is the theoretical base that can be used in the design process of complex engineering systems. The systematic multi-criteria approach makes possible to maintain control over the entire design process and to provide the best possible performance. With respect to current design requirements, there are no established design rules for multifunctional buildings in relation to their operating phase. Enrichment of the basic criteria with functional flexibility criterion makes it possible to extend the exploitation phase which brings advantages on many levels.

  9. Isotope chirality in long-armed multifunctional organosilicon ("Cephalopod") molecules.

    Science.gov (United States)

    Barabás, Béla; Kurdi, Róbert; Zucchi, Claudia; Pályi, Gyula

    2018-07-01

    Long-armed multifunctional organosilicon molecules display self-replicating and self-perfecting behavior in asymmetric autocatalysis (Soai reaction). Two representatives of this class were studied by statistical methods aiming at determination of probabilities of natural abundance chiral isotopomers. The results, reported here, show an astonishing richness of possibilities of the formation of chiral isotopically substituted derivatives. This feature could serve as a model for the evolution of biological chirality in prebiotic and early biotic stereochemistry. © 2018 Wiley Periodicals, Inc.

  10. Improving Video Generation for Multi-functional Applications

    OpenAIRE

    Kratzwald, Bernhard; Huang, Zhiwu; Paudel, Danda Pani; Dinesh, Acharya; Van Gool, Luc

    2017-01-01

    In this paper, we aim to improve the state-of-the-art video generative adversarial networks (GANs) with a view towards multi-functional applications. Our improved video GAN model does not separate foreground from background nor dynamic from static patterns, but learns to generate the entire video clip conjointly. Our model can thus be trained to generate - and learn from - a broad set of videos with no restriction. This is achieved by designing a robust one-stream video generation architectur...

  11. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  12. Multifunctional Graphene/Platinum/Nafion Hybrids via Ice Templating

    KAUST Repository

    Estevez, Luis

    2011-04-27

    We report the synthesis of multifunctional hybrids in both films and bulk form, combining electrical and ionic conductivity with porosity and catalytic activity. The hybrids are synthesized by a two-step process: (a) ice templation of an aqueous suspension comprised of Nafion, graphite oxide, and chloroplatinic acid to form a microcellular porous network and (b) mild reduction in hydrazine or monosodium citrate which leads to graphene-supported Pt nanoparticles on a Nafion scaffold. © 2011 American Chemical Society.

  13. Multifunctional homojunction gallium arsenide n–p–m-structure

    Directory of Open Access Journals (Sweden)

    Karimov A. V.

    2009-11-01

    Full Text Available The brief information about created phototransistor nGaAs–рGaAs–Ag-structure are given. The processes of photogeneration of carriers in the base and in the space-charge layers of semiconductor junction as well as of metal — semiconductor junction are analyzed depending on the mode of inclusion. It is shown the multifunctionality of offered homojunction structure that is perspective for creating the optical receiver or the optical transformer.

  14. Assessing Ecosystem Services and Multifunctionality for Vineyard Systems

    Directory of Open Access Journals (Sweden)

    Klara J. Winkler

    2017-04-01

    Full Text Available Vineyards shape important economic, cultural, and ecological systems in many temperate biomes. Like other agricultural systems, they can be multifunctional landscapes that not only produce grapes, but also for example serve as wildlife habitat, sequester carbon, and are places of rich traditions. However, research and management practices often focus mostly on individual, specific ecosystem services, without considering multifunctionality. Therefore, we set out to meet four research objectives: (1 evaluate how frequently the ecosystem services approach has been applied in vineyard systems; (2 identify which individual ecosystem services have been most frequently studied in vineyard systems, (3 summarize knowledge on the key ecosystem services identified in (2, and (4 illustrate approaches to multifunctionality in vineyards to inform more holistic land management. For research objective (1, we identified 45 publications that used the term “ecosystem services” in relation to vineyards, but found that only seven fully apply the ecosystem service concept to their research. For research objective (2, we operationalized the Common International Classification of Ecosystem Services (CICES for 27 ecosystem services in vineyards, in order to consider provisioning, regulating, and cultural services through an analysis of more than 4,000 scientific papers that mentioned individual services. We found the six most frequently studied ecosystem services included (1 cultivated crops, (2 filtration, sequestration, storage and accumulation by the vineyards, (3 pest control and (4 disease control, (5 heritage, cultural and (6 scientific services. For research objective (3, we found that research on these six single ecosystem services is highly developed, but relationships between single ecosystem services are less studied. Therefore, we suggest that greater adoption of the ecosystem services approach could help scientists and practitioners to acknowledge the

  15. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  16. Multifunctional Composites for Future Energy Storage in Aerospace Structures

    Directory of Open Access Journals (Sweden)

    Till Julian Adam

    2018-02-01

    Full Text Available Multifunctionalization of fiber-reinforced composites, especially by adding energy storage capabilities, is a promising approach to realize lightweight structural energy storages for future transport vehicles. Compared to conventional energy storage systems, energy density can be increased by reducing parasitic masses of non-energy-storing components and by benefitting from the composite meso- and microarchitectures. In this paper, the most relevant existing approaches towards multifunctional energy storages are reviewed and subdivided into five groups by distinguishing their degree of integration and their scale of multifunctionalization. By introducing a modified range equation for battery-powered electric aircrafts, possible range extensions enabled by multifunctionalization are estimated. Furthermore, general and aerospace specific potentials of multifunctional energy storages are discussed. Representing an intermediate degree of structural integration, experimental results for a multifunctional energy-storing glass fiber-reinforced composite based on the ceramic electrolyte Li1.4Al0.4Ti1.6(PO43 are presented. Cyclic voltammetry tests are used to characterize the double-layer behavior combined with galvanostatic charge–discharge measurements for capacitance calculation. The capacitance is observed to be unchanged after 1500 charge–discharge cycles revealing a promising potential for future applications. Furthermore, the mechanical properties are assessed by means of four-point bending and tensile tests. Additionally, the influence of mechanical loads on the electrical properties is also investigated, demonstrating the storage stability of the composites.

  17. Global Analysis of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J

    2010-01-01

    Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of 'edge-crawling' along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integ

  18. Minimal Surfaces for Hitchin Representations

    DEFF Research Database (Denmark)

    Li, Qiongling; Dai, Song

    2018-01-01

    . In this paper, we investigate the properties of immersed minimal surfaces inside symmetric space associated to a subloci of Hitchin component: $q_n$ and $q_{n-1}$ case. First, we show that the pullback metric of the minimal surface dominates a constant multiple of the hyperbolic metric in the same conformal...... class and has a strong rigidity property. Secondly, we show that the immersed minimal surface is never tangential to any flat inside the symmetric space. As a direct corollary, the pullback metric of the minimal surface is always strictly negatively curved. In the end, we find a fully decoupled system...

  19. Multifunctional DNA Nanomaterials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Dick Yan Tam

    2015-01-01

    Full Text Available The rapidly emerging DNA nanotechnology began with pioneer Seeman’s hypothesis that DNA not only can carry genetic information but also can be used as molecular organizer to create well-designed and controllable nanomaterials for applications in materials science, nanotechnology, and biology. DNA-based self-assembly represents a versatile system for nanoscale construction due to the well-characterized conformation of DNA and its predictability in the formation of base pairs. The structural features of nucleic acids form the basis of constructing a wide variety of DNA nanoarchitectures with well-defined shapes and sizes, in addition to controllable permeability and flexibility. More importantly, self-assembled DNA nanostructures can be easily functionalized to construct artificial functional systems with nanometer scale precision for multipurposes. Apparently scientists envision artificial DNA-based nanostructures as tool for drug loading and in vivo targeted delivery because of their abilities in selective encapsulation and stimuli-triggered release of cargo. Herein, we summarize the strategies of creating multidimensional self-assembled DNA nanoarchitectures and review studies investigating their stability, toxicity, delivery efficiency, loading, and control release of cargos in addition to their site-specific targeting and delivery of drug or cargo molecules to cellular systems.

  20. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas.

    Science.gov (United States)

    Hansen, Rieke; Pauleit, Stephan

    2014-05-01

    Green infrastructure (GI) and ecosystem services (ES) are promoted as concepts that have potential to improve environmental planning in urban areas based on a more holistic understanding of the complex interrelations and dynamics of social-ecological systems. However, the scientific discourses around both concepts still lack application-oriented frameworks that consider such a holistic perspective and are suitable to mainstream GI and ES in planning practice. This literature review explores how multifunctionality as one important principle of GI planning can be operationalized by approaches developed and tested in ES research. Specifically, approaches developed in ES research can help to assess the integrity of GI networks, balance ES supply and demand, and consider trade-offs. A conceptual framework for the assessment of multifunctionality from a social-ecological perspective is proposed that can inform the design of planning processes and support stronger exchange between GI and ES research.

  1. Multifunctional Self-Aligning Reversible Joint using Space-Qualifiable Structural Fasteners, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group (CRG) proposes the development of a multifunctional reversible attachment scheme to facilitate modular in-space construction. CRG will...

  2. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    Science.gov (United States)

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  3. Innovative Processing Methods for the Affordable Manufacture of Multifunctional High Temperature Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed to investigate the feasibility of using advanced manufacturing techniques to enable the affordable application of multi-functional high...

  4. Multifunctional Metal/Polymer Composite Fiber for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovation Research Phase I Program, Syscom Technology, Inc. (STI) will fabricate a metallized multifunctional composite fiber from a...

  5. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  6. Guidelines for mixed waste minimization

    International Nuclear Information System (INIS)

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization

  7. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change

    Directory of Open Access Journals (Sweden)

    Knol Dirk L

    2006-08-01

    Full Text Available Abstract Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM. Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes.

  8. Waste minimization handbook, Volume 1

    International Nuclear Information System (INIS)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility's life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996

  9. Waste minimization handbook, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  10. Minimal Webs in Riemannian Manifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2008-01-01

    For a given combinatorial graph $G$ a {\\it geometrization} $(G, g)$ of the graph is obtained by considering each edge of the graph as a $1-$dimensional manifold with an associated metric $g$. In this paper we are concerned with {\\it minimal isometric immersions} of geometrized graphs $(G, g......)$ into Riemannian manifolds $(N^{n}, h)$. Such immersions we call {\\em{minimal webs}}. They admit a natural 'geometric' extension of the intrinsic combinatorial discrete Laplacian. The geometric Laplacian on minimal webs enjoys standard properties such as the maximum principle and the divergence theorems, which...... are of instrumental importance for the applications. We apply these properties to show that minimal webs in ambient Riemannian spaces share several analytic and geometric properties with their smooth (minimal submanifold) counterparts in such spaces. In particular we use appropriate versions of the divergence...

  11. Development & Characterization of Multifunctional Microfluidic Materials

    Science.gov (United States)

    Ucar, Ahmet Burak

    developing 'smart' windows and heat management. To better design new color changing elastomers, we investigated the role of the network geometry on liquid replacement efficiency with the aid of a multiphysics modeling and simulation software package, COMSOL. We simulated the liquid flow in various network geometries. Serpentine, parallel channel and lattice networks, as well as their tapered versions were compared. The comparison criteria were based on rapid and uniform liquid replacement with the least amount of dye/liquid required, for which we set multiple constraints such as constant inlet pressure or total channel area. We demonstrated that the tapered lattice type network provided the most rapid and uniform replacement with minimal liquid waste. Next, we designed a simple and inexpensive liquid dispensing microfluidic material which does not require complex micromachining techniques or automated actuators. It consisted of only a PDMS matrix with embedded chambers and channels. 'Pores/slits' were made on the surface and the liquid was released by contact on the dispensing surface of the material. We varied the network design, geometry, dimension, slit shape and length, and tested the material's liquid release performance. Promising preliminary results were obtained but for an end product with repeatable and reproducible performance, both material fabrication and characterization need to be improved further. Finally, we describe an alternative material/method for the fabrication of microfluidic materials. We aimed to replace the conventional fabrication material PDMS with Polyethylene (PE) sheets. The sheets were as transparent and flexible as PDMS, and also thinner. Channel patterns were drawn with a polymer solution of PolyVinylAlcohol (PVA), which is immiscible with PE, and captured in between the two PE sheets. After fusing the PE sheets on a hot press, PVA was washed off with water, so that the 'microfluidic channels' were successfully created. The produced channel

  12. Minimal Poems Written in 1979 Minimal Poems Written in 1979

    Directory of Open Access Journals (Sweden)

    Sandra Sirangelo Maggio

    2008-04-01

    Full Text Available The reading of M. van der Slice's Minimal Poems Written in 1979 (the work, actually, has no title reminded me of a book I have seen a long time ago. called Truth, which had not even a single word printed inside. In either case we have a sample of how often excentricities can prove efficient means of artistic creativity, in this new literary trend known as Minimalism. The reading of M. van der Slice's Minimal Poems Written in 1979 (the work, actually, has no title reminded me of a book I have seen a long time ago. called Truth, which had not even a single word printed inside. In either case we have a sample of how often excentricities can prove efficient means of artistic creativity, in this new literary trend known as Minimalism.

  13. Induction of Multifunctional Broadly Reactive T Cell Responses by a Plasmodium vivax Circumsporozoite Protein Recombinant Chimera.

    Science.gov (United States)

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa; Calvo-Calle, J Mauricio; Moreno, Alberto

    2015-09-01

    Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4(+) and CD8(+) PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development. Copyright © 2015, American Society for Microbiology. All

  14. Minimal Flavour Violation and Beyond

    CERN Document Server

    Isidori, Gino

    2012-01-01

    We review the formulation of the Minimal Flavour Violation (MFV) hypothesis in the quark sector, as well as some "variations on a theme" based on smaller flavour symmetry groups and/or less minimal breaking terms. We also review how these hypotheses can be tested in B decays and by means of other flavour-physics observables. The phenomenological consequences of MFV are discussed both in general terms, employing a general effective theory approach, and in the specific context of the Minimal Supersymmetric extension of the SM.

  15. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Thuot, J.R.; Moos, L.

    1996-01-01

    Environmental restoration, decontamination and decommissioning, and facility dismantlement projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized; however, there are significant areas where waste and cost can be reduced by careful planning and execution. Waste reduction can occur in three ways: beneficial reuse or recycling, segregation of waste types, and reducing generation of secondary waste

  16. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Moos, L.; Thuot, J.R.

    1996-01-01

    Environmental restoration, decontamination and decommissioning and facility dismantelment projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized. In fact, however, there are three significant areas where waste and cost can be reduced. Waste reduction can occur in three ways: beneficial reuse or recycling; segregation of waste types; and reducing generation of secondary waste. This paper will discuss several examples of reuse, recycle, segregation, and secondary waste reduction at ANL restoration programs

  17. Medical technology integration: CT, angiography, imaging-capable OR-table, navigation and robotics in a multifunctional sterile suite.

    Science.gov (United States)

    Jacob, A L; Regazzoni, P; Bilecen, D; Rasmus, M; Huegli, R W; Messmer, P

    2007-01-01

    Technology integration is an enabling technological prerequisite to achieve a major breakthrough in sophisticated intra-operative imaging, navigation and robotics in minimally invasive and/or emergency diagnosis and therapy. Without a high degree of integration and reliability comparable to that achieved in the aircraft industry image guidance in its different facets will not ultimately succeed. As of today technology integration in the field of image-guidance is close to nonexistent. Technology integration requires inter-departmental integration of human and financial resources and of medical processes in a dialectic way. This expanded techno-socio-economic integration has profound consequences for the administration and working conditions in hospitals. At the university hospital of Basel, Switzerland, a multimodality multifunction sterile suite was put into operation after a substantial pre-run. We report the lessons learned during our venture into the world of medical technology integration and describe new possibilities for similar integration projects in the future.

  18. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are

  19. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  20. Wilson loops in minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS 5 x S 5 . The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS 5 x S 5 gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface

  1. Classical strings and minimal surfaces

    International Nuclear Information System (INIS)

    Urbantke, H.

    1986-01-01

    Real Lorentzian forms of some complex or complexified Euclidean minimal surfaces are obtained as an application of H.A. Schwarz' solution to the initial value problem or a search for surfaces admitting a group of Poincare transformations. (Author)

  2. Minimal Gromov-Witten rings

    International Nuclear Information System (INIS)

    Przyjalkowski, V V

    2008-01-01

    We construct an abstract theory of Gromov-Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov-Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov-Witten theory of Fano varieties (of unspecified dimension). The Gromov-Witten theory of any quantum minimal variety is a homomorphism from this ring to C. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by 'prime two-pointed invariants'. We also find solutions of the differential equation of type DN for a Fano variety of dimension N in terms of the generating series of one-pointed Gromov-Witten invariants

  3. Wilson loops and minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS-CFT correspondence suggests that the Wilson loop of the large N gauge theory with N=4 supersymmetry in four dimensions is described by a minimal surface in AdS 5 xS 5 . We examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal surface in AdS 5 xS 5 gives a solution of the equation. We also discuss the zigzag symmetry of the loop operator. In the N=4 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. We will show how this is realized for the minimal surface. (c) 1999 The American Physical Society

  4. Minimal string theory is logarithmic

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka; Yamaguchi, Shun-ichi

    2005-01-01

    We study the simplest examples of minimal string theory whose worldsheet description is the unitary (p,q) minimal model coupled to two-dimensional gravity ( Liouville field theory). In the Liouville sector, we show that four-point correlation functions of 'tachyons' exhibit logarithmic singularities, and that the theory turns out to be logarithmic. The relation with Zamolodchikov's logarithmic degenerate fields is also discussed. Our result holds for generic values of (p,q)

  5. Annual Waste Minimization Summary Report

    International Nuclear Information System (INIS)

    Haworth, D.M.

    2011-01-01

    This report summarizes the waste minimization efforts undertaken by National Security TechnoIogies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2010. The NNSA/NSO Pollution Prevention Program establishes a process to reduce the volume and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment.

  6. Multifunctional data acquisition system based on USB and FPGA

    International Nuclear Information System (INIS)

    Huang Tuchen; Gong Hui; Shao Beibei

    2013-01-01

    A multifunctional data acquisition system based on USB and FPGA was developed. The system has four analog inputs digitalized by fast ADC. Based on flexibility of FPGA, different functions can be implemented such as waveform sampling, pulse counting, multi-channel pulse height analysis, and charge division readout process. The hardware communicates with host PC via USB interface. The Labview based user soft ware initializes the hardware, configures the running parameters, reads and processes the data as well as displays the result online. (authors)

  7. A multifunctional data acquisition and processing system based on microcomputer

    International Nuclear Information System (INIS)

    Chen Huaide; Pan Dajing; Zhu Cuiqin

    1988-01-01

    Introduced herein is a multifunctional MCA-computer system which can operate as a foreground and a background with capabilities of high resolution in γ-ray spectrum analysis, multiplex multi-scale, multi-scale, and the display system with resolution being high up to 8192 points. The MCA has 8192 channels with 20 bits and 8k buffer memory. Firstly, the acquisition data is stored into the buffer memory and then transformed into computer for processing. The system software consists of the management software, spectrum processing and multiplex multi-scale measurement software. The block diagram of the system, the specifications and testing results are given

  8. Multifunctional organophosphorus extractants: a status report on development and applications

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1988-01-01

    Up-to-date state of the development of science and technology of multifunctional organophosphorus extractants is considered. The detailed classification of these extractants is presented. They attracted pasticular interest because of affinity of some bifunctional phosphonates, phosphine oxides, carbamoylalkylphosphonates to trivalent Am, tetravalent and hexavalent actinides, trivalent lanthanides in strong mineral acids, and because of ability of some alkylpyrophosphoric acids to extract effectively U(4) from concentrated solutions of phosphoric acid. Application of these extractants for analytic purposes and in the field of nuclear technology is considered

  9. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  10. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  11. Riboflavina: uma vitamina multifuncional Riboflavin: a multifunctional vitamin

    Directory of Open Access Journals (Sweden)

    Ana Carolina Santos de Souza

    2005-10-01

    Full Text Available Riboflavin, a component of the B2 vitaminic complex, plays important roles in biochemistry, especially in redox reactions, due to the ability to participate in both one- and two-electron transfers as well as acting as a photosensitizer. Accordingly, low intakes of this vitamin have been associated with different diseases, including cancer and cardiovascular diseases. Riboflavin is thought to contribute to oxidative stress through its capacity to produce superoxide but, interestingly, it can also promote the reduction of hydroperoxides. This peculiar and multifunctional behavior allows riboflavin to take part in various biochemical pathways as a nucleophile and an electrophile, turning it into a versatile and important biological compound.

  12. Multi-Functional Distributed Generation Unit for Power Quality Enhancement

    DEFF Research Database (Denmark)

    Zeng, Zheng; Yang, Huan; Guerrero, Josep M.

    2015-01-01

    A multi-functional distributed generation unit (MFDGU) and its control strategy are proposed in this paper for the purpose of enhancing power quality in low-voltage networks. By using the 3H-bridge converter structure, an MFDGU can be applied in 3-phase 4-wire low-voltage distribution networks...... reference of the MFDGU, which can be easily implemented in three-phase networks. A 15kVA prototype consisting of three full bridge converters has been built and tested. Experimental results show the feasibility of the proposed topology and control strategy....

  13. A Multifunction Low-Power Preamplifier for MEMS Capacitive Microphones

    DEFF Research Database (Denmark)

    Jawed, Syed Arsalan; Nielsen, Jannik Hammel; Gottardi, Massimo

    2009-01-01

    A multi-function two-stage chopper-stabilized preamplifier (PAMP) for MEMS capacitive microphones (MCM) is presented. The PAMP integrates digitally controllable gain, high-pass filtering and offset control, adding flexibility to the front-end readout of MCMs. The first stage of the PAMP consists...... of a source-follower (SF) while the second-stage is a capacitive gain stage. The second-stage employs chopper-stabilization (CHS), while SF buffer shields the MCM sensor from the switching spurs. The PAMP uses M poly bias resistors for the second-stage, exploiting Miller effect to achieve flat audio...

  14. Multi-Functional Fibre-Optic Microwave Links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo

    1998-01-01

    The multi-functionality of microwave links based on remote heterodyne detection of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection in conjunction with optical intensity modulation is used to implement fibre......-optic microwave links. The resulting links are inherently transparent and mainly used for signal transmission. As opposed to direct detection links, remote heterodyne detection links can directly perform functionalities such as modulation, frequency conversion, and transparent signal recovery in addition...

  15. Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors

    Directory of Open Access Journals (Sweden)

    Fatima Abi-Ghaida

    2015-01-01

    Full Text Available A new class of multifunctional silica nanoparticles carrying boron clusters (10-vertex closo-decaborate and incorporating luminescent centers (fluorescein has been developed as potential probes/carriers for potential application in boron neutron capture therapy (BNCT. These silica nanoparticles were charged in situ with silylated-fluorescein fluorophores via the Stöber method and their surface was further functionalized with decaborate-triethoxysilane precursors. The resulting decaborate dye-doped silica nanoparticles were characterized by TEM, solid state NMR, DLS, nitrogen sorption, elemental analysis, and fluorescence spectroscopy.

  16. Characterization and robust filtering of multifunctional surfaces using ISO standards

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Godi, Alessandro; De Chiffre, Leonardo

    2011-01-01

    Engineered surfaces containing lubrication pockets and directional surface texture can decrease wear and friction in sliding or rolling contacts. A new generation of multifunctional (MUFU) surfaces has been created by hard machining followed by robot-assisted polishing. The production method allows...... for a large degree of freedom in specifying surface topography defined by frequency, depth and volume of the lubricant retention valleys, as well as the amount of load bearing area and the surface roughness. The surfaces cannot readily be characterized by means of conventional roughness parameters due...

  17. Multi-functional fitness chair for light weight trainer

    OpenAIRE

    Fan, Rong; Wu, Peng

    2016-01-01

    Nowadays, physical inactivity has become a global problem. According to the research, about 5.3 million deaths all over the world in 2008 could be attributed to inactivity [1]. However, it is enough to do a little exercise every day to reduce the risk of premature deaths by as much as 30 percent. Due to the increasing working pressure, people do not have enough time to go to gym and do exercises, which means that the design of multi-functional fitness chair is necessary so that people can do ...

  18. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer.

    Science.gov (United States)

    Fathi, Marziyeh; Majidi, Sima; Zangabad, Parham Sahandi; Barar, Jaleh; Erfan-Niya, Hamid; Omidi, Yadollah

    2018-05-30

    Nanotechnology as an emerging field has established inevitable impacts on nano-biomedicine and treatment of formidable diseases, inflammations, and malignancies. In this regard, substantial advances in the design of systems for delivery of therapeutic agents have emerged magnificent and innovative pathways in biomedical applications. Chitosan (CS) is derived via deacetylation of chitin as the second most abundant polysaccharide. Owing to the unique properties of CS (e.g., biocompatibility, biodegradability, bioactivity, mucoadhesion, cationic nature and functional groups), it is an excellent candidate for diverse biomedical and pharmaceutical applications such as drug/gene delivery, transplantation of encapsulated cells, tissue engineering, wound healing, antimicrobial purposes, etc. In this review, we will document, discuss, and provide some key insights toward design and application of miscellaneous nanoplatforms based on CS. The CS-based nanosystems (NSs) can be employed as advanced drug delivery systems (DDSs) in large part due to their remarkable physicochemical and biological characteristics. The abundant functional groups of CS allow the facile functionalization in order to engineer multifunctional NSs, which can simultaneously incorporate therapeutic agents, molecular targeting, and diagnostic/imaging capabilities in particular against malignancies. These multimodal NSs can be literally translated into clinical applications such as targeted diagnosis and therapy of cancer because they offer minimal systemic toxicity and maximal cytotoxicity against cancer cells and tumors. The recent developments in the CS-based NSs functionalized with targeting and imaging agents prove CS as a versatile polymer in targeted imaging and therapy. © 2018 Wiley Periodicals, Inc.

  19. Data path design and image quality aspects of the next generation multifunctional printer

    Science.gov (United States)

    Brassé, M. H. H.; de Smet, S. P. R. C.

    2008-01-01

    Multifunctional devices (MFDs) are increasingly used as a document hub. The MFD is used as a copier, scanner, printer, and it facilitates digital document distribution and sharing. This imposes new requirements on the design of the data path and its image processing. Various design aspects need to be taken into account, including system performance, features, image quality, and cost price. A good balance is required in order to develop a competitive MFD. A modular datapath architecture is presented that supports all the envisaged use cases. Besides copying, colour scanning is becoming an important use case of a modern MFD. The copy-path use case is described and it is shown how colour scanning can also be supported with a minimal adaptation to the architecture. The key idea is to convert the scanner data to an opponent colour space representation at the beginning of the image processing pipeline. The sub-sampling of chromatic information allows for the saving of scarce hardware resources without significant perceptual loss of quality. In particular, we have shown that functional FPGA modules from the copy application can also be used for the scan-to-file application. This makes the presented approach very cost-effective while complying with market conform image quality standards.

  20. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability

    Science.gov (United States)

    Huang, Li-Bo; Su, Pei-Yang; Liu, Jun-Min; Huang, Jian-Feng; Chen, Yi-Fan; Qin, Su; Guo, Jing; Xu, Yao-Wei; Su, Cheng-Yong

    2018-02-01

    This work proposes a new perovskite solar cell structure by inserting a polymer interlayer between perovskite and hole transporting material (HTM) to minimize the interface losses via interface engineering. The multifunctional interlayers improve the photovoltaic efficiency and device stability by shielding perovskite from moisture, suppressing charge combination, and promoting hole transport. The five different polymer layers are utilized to investigate the relationships of polymer structure, layer morphology and cell performance systematically. It is found that a reliable power conversion efficiency exceeding 19.0% is realized based on P3HT/spiro-OMeTAD composite structure, surpassing that of pure spiro-OMeTAD (15.0%). Moreover, the device with P3HT interlayer shows more brilliant long-term stability than that without interlayer when exposed into moisture. The enhanced device performance based on P3HT interlayer compared with the other polymers can be ascribed to the long hydrophobic alkyl chains and the small molecule monomers of P3HT, which contribute to self-assembly of the polymers into insulating layers and formation of the efficient π-π stacking in polymer/spiro-OMeTAD interface simultaneously. This study provides a practical route for the integration of a new class of easily-accessible, solution-processed interfacial polymer materials for high-performance and long-time stable PSC.

  1. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    Directory of Open Access Journals (Sweden)

    GhoshMitra Somesree

    2009-01-01

    Full Text Available Abstract Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol ethyl ether methacrylate-co-poly(ethylene glycol methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly-N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth even at high iron concentrations (6 mM, indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.

  2. EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.

    Science.gov (United States)

    Moore, Simon J; Lai, Hung-En; Kelwick, Richard J R; Chee, Soo Mei; Bell, David J; Polizzi, Karen Marie; Freemont, Paul S

    2016-10-21

    Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.

  3. Methodogical and conceptual issues in the study of multifunctionality and rural development

    NARCIS (Netherlands)

    Knickel, K.; Renting, H.

    2000-01-01

    The aim of this paper is to try and outline the complexity of rural development processes that specifically relate to the phenomenon of multifunctionality. 'Multifunctionality schemes' are introduced as a means for visualizing the complex interrelationships in rural development processes and to

  4. Recreation and Agroforestry: Examining New Dimensions of Multifunctionality in Family Farms

    Science.gov (United States)

    Barbieri, Carla; Valdivia, Corinne

    2010-01-01

    Multifunctionality serves as an analytical framework to recognize many services that farms provide to their surrounding communities and society. This study explores an often overlooked dimension of multifunctionality by examining different recreational services provided by landowners in Missouri and analyzing the relationship between recreational…

  5. Assembly language program design used in model DD80 multifunction microcomputer multichannel analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Yiziang, Wei; Ying, Chen; Xide, Zhao

    1985-05-01

    This paper describes the structures, features, flowcharts and design considerations of assembly language program used in Model DD80 (FH1920) multifunction microcomputer multichannel analyzer. On the Model TRS-80 (I) microcomputer with DD80 multifunction interface this program can be used in spectrum data acquisition, spectrum live display and some spectrum data processing.

  6. The assembly language program design used in model DD80 multifunction microcomputer multichannel analyzer

    International Nuclear Information System (INIS)

    Wei Yiziang; Chen Ying; Zhao Xide

    1985-01-01

    This paper describes the structures, features, flowcharts and design considerations of assembly language program used in Model DD80 (FH1920) multifunction microcomputer multichannel analyzer. On the Model TRS-80 (I) microcomputer with DD80 multifunction interface this program can be used in spectrum data acquisition, spectrum live display and some spectrum data processing

  7. DMPD: Multifunctional effects of bradykinin on glial cells in relation to potentialanti-inflammatory effects. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17669557 Multifunctional effects of bradykinin on glial cells in relation to potent... Epub 2007 Jun 27. (.png) (.svg) (.html) (.csml) Show Multifunctional effects of bradykinin on glial cells i...n relation to potentialanti-inflammatory effects. PubmedID 17669557 Title Multifunction

  8. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics.

    Science.gov (United States)

    Morsi, Rania E; Alsabagh, Ahmed M; Nasr, Shimaa A; Zaki, Manal M

    2017-04-01

    Multifunctional nanocomposites of chitosan with silver nanoparticles, copper nanoparticles and carbon nanotubes either as bi- or multifunctional nanocomposites were prepared. Change in the overall morphology of the prepared nanocomposites was observed; carbon nanotubes, Ag NPs and Cu NPs are distributed homogeneously inside the polymer matrix individually in the case of the bi-nanocomposites while a combination of different dimensional shapes; spherical NPs and nanotubes was observed in the multifunctional nanocomposite. Multifunctional nanocomposites has a higher antimicrobial activity, in relative short contact times, against both Gram negative and Gram positive bacteria; E. coli, Staphylococcus aureus; respectively in addition to the fungal strain; Aspergillus flavus isolated from local wastewater sample. The nanocomposites are highly differentiable at the low contact time and low concentration; 1% concentration of the multifunctional nanocomposite is very effective against the tested microbes at contact time of only 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Assessment of multifunctional bio fertilizers on tomato plants cultivated under a fertigation system

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Ahmad Nazrul Abdul Wahid; Khairuddin Abdul Rahim

    2012-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bio organic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG and PA and MF-BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N 2 -fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional bio fertilizers on tomato plants grown under a fertigation system. Multifunctional bio fertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional bio fertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. (author)

  10. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice.

    Science.gov (United States)

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-03-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.

  11. GOLD HULL AND INTERNODE2 Encodes a Primarily Multifunctional Cinnamyl-Alcohol Dehydrogenase in Rice1

    Science.gov (United States)

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-01-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis. PMID:16443696

  12. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Jarocki, Veronica M; Santos, Jerran; Tacchi, Jessica L; Raymond, Benjamin B A; Deutscher, Ania T; Jenkins, Cheryl; Padula, Matthew P; Djordjevic, Steven P

    2015-01-01

    Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ_0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ_0461 (rMHJ_0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ_0461 resides on the surface of M. hyopneumoniae. rMHJ_0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ_0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ_0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae.

  13. Minimal but non-minimal inflation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Racioppi, Antonio [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2016-10-07

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r≈10{sup −3}, typical of Higgs-inflation models, but in contrast yields a scalar spectral index n{sub s}≃0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  14. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  15. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    International Nuclear Information System (INIS)

    Zhang, Jianhua; Tao, Cuilian; Zhu, Yufang; Zhu, Min; Li, Jie; Hanagata, Nobutaka

    2013-01-01

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO 3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO 3 materials were investigated. Mesoporous Fe–CaSiO 3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO 3 materials, mesoporous Fe–CaSiO 3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO 3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO 3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO 3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. (paper)

  16. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application

    Science.gov (United States)

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Kim, Hye Hyun; Seo, Hansu; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications. PMID:29200851

  17. Synthesis of High-Molecular-Weight Multifunctional Glycerol Polyhydroxyurethanes PHUs

    Directory of Open Access Journals (Sweden)

    Bassam Nohra

    2016-09-01

    Full Text Available Glycerol carbonate acrylate is a 5-membered cyclic carbonate synthesized from glycerol that is used as a chemical coupling agent and has proven highly suitable for use in the synthesis of multifunctional polyhydroxyurethanes (PHUs. The multifunctionality of the structure of PHUs is determined by the density of the carbon-amine groups generated by the Aza-Michael reaction and that of the urethane groups and adjacent primary and secondary hydroxyl groups generated by aminolysis. Glycerol carbonate acrylate is polymerized with polyfunctional mono-, di-, tri, and tetra-amines, by type-AB polyaddition, either in bulk or in solution, through stepwise or one-pot reaction strategies in the absence of added catalysts. These approaches result in the generation of linear, interchain, and crosslinked structures, through the polyaddition of linear and branched amines to the ethylene and cyclic carbonate sites of glycerol carbonate acrylate. The resulting collection of organic molecules gives rise to polyethylene amino ester PHUs with a high molar mass, exceeding 20,000 g·mol−1, with uniform dispersity.

  18. Canon multifunction copier machines – now with onsite support!

    CERN Document Server

    2013-01-01

    Following a retendering process in 2012, the IT Department is pleased to announce that leased multifunction copier machines are now covered by onsite support, provided by Canon technicians via the CERN Service Desk support system.   You can now contact the Service Desk regarding any problems or requests for toner: Telephone: 77777 Email: Service-Desk@cern.ch Please remember to quote the machine printer name and/or serial number (marked on the side of the machine). The following submission forms are available online: Report a failure with a printer or copier Request for network printer or copier installation or move Request toner/ink for my printer or copier The website below details the range of models available, all of which include print, photocopy and scan-to-mail functions as standard. These multifunction copier machines are leased subject to a monthly charge (minimum of 48 months) plus a “per click” charge to cover consumables (except staples), leaving you noth...

  19. Assembling of Steel Angle Headframe of Multifunctional Purpose

    Science.gov (United States)

    Kassikhina, E. G.; Pershin, V. V.; Volkov, V. M.

    2017-10-01

    The article reviews new technical solution on equipment provision of vertical shaft utilizing steel headframe of multifunctional purpose. Practice of construction of coal and ore mines provides application of various designs for steel angle headframes which are divided into separate large assembly blocks and constructive elements during assembling operations. Design of these blocks and elements, their weight and dimensions effect the chose of the method of assembling on which economic and technological indicators, as well as duration of down-time, depend on during performance of construction operations in shaft. The technical solution on equipment provision for mine vertical shaft using headframe of multifunctional purpose will allow changing the management construction of vertical shaft. The proposed headframe combines the functions of sinking and operation that eliminates costs for assembling/dissembling of temporary headgear. The constructive design of the headgear allows application of the effective method of assembly and thus to provide improvement of the technical and economic indexes, and high calendar time rate of the shaft construction due to reduction of duration of works on equipment provision for the shaft and to refurbishment of the shaft in order to carry out horizontal mining.

  20. Potential Applications of Smart Multifunctional Wearable Materials to Gerontology.

    Science.gov (United States)

    Armstrong, David G; Najafi, Bijan; Shahinpoor, Mohsen

    2017-01-01

    Smart multifunctional materials can play a constructive role in addressing some very important aging-related issues. Aging affects the ability of older adults to continue to live safely and economically in their own residences for as long as possible. Thus, there will be a greater need for preventive, acute, rehabilitative, and long-term health care services for older adults as well as a need for tools to enable them to function independently during daily activities. The objective of this paper is, thus, to present a comprehensive review of some potential smart materials and their areas of applications to gerontology. Thus, brief descriptions of various currently available multifunctional smart materials and their possible applications to aging-related problems are presented. It is concluded that some of the most important applications to geriatrics may be in various sensing scenarios to collect health-related feedback or information and provide personalized care. Further described are the applications of wearable technologies to aging-related needs, including devices for home rehabilitation, remote monitoring, social well-being, frailty monitoring, monitoring of diabetes and wound healing and fall detection or prediction. It is also concluded that wearable technologies, when combined with an appropriate application and with appropriate feedback, may help improve activities and functions of older patients with chronic diseases. Finally, it is noted that methods developed to measure what one collectively manages in this population may provide a foundation to establish new definitions of quality of life. © 2017 S. Karger AG, Basel.

  1. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-01-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  2. Development of multi-functional telerobotic systems for reactor dismantlement

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Usui, Hozumi; Shinohara, Yoshikuni

    1992-01-01

    This report summarizes technological features of advanced telerobotic systems for reactor dismantling application developed at the Japan Atomic Energy Research Institute. Taking into consideration the special environmental conditions in reactor dismantling, major effort was made to develop multifunctional telerobotic system of high reliability which can be used to perform various complex tasks in an unstructured environment and operated in an easy and flexible manner. The system development was carried out through constructing three systems in seccession; a light-duty and a heavy-duty system as a prototype system for engineering test in cold environment, and a demonstration system for practical on-site application to dismantling highly radioactive reactor internals of an experimental boiling water reactor JPDR (Japan Power Demonstration Reactor). Each system was equipped with one or two amphibious manipulators which can be operated in either a push-button manual, a bilateral master-slave, a teach-and-playback or a programmed control mode. Different scheme was adopted in each system at designing the manipulator, transporter and man-machine interface so as to compare their advantages and disadvantages. According to the JPDR decommissioning program, the demonstration system was successfully operated to dismantle a portion of the radioactive reactor internals of the JPDR, which used underwater plasma arc cutting method and proved the usefulness of the multi-functional telerobotic system for reducing the occupational hazards and enhancing the work efficiency in the course of dismantling highly radioactive reactor components. (author)

  3. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    Science.gov (United States)

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  4. Multifunctional nanoparticle developments in cancer diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Sepideh Parvanian

    2017-04-01

    Full Text Available Nanotechnology, although still in the early stages, has the potential to revolutionize the early diagnosis, treatment, and monitoring of disease progression. Technological application of nanometer molecules in medicine with the aim of fighting and curing ailments is the globally definition of nanomedicine. The success of nanotechnology in the healthcare part is driven by the possibility to work at the same scale of several biological processes, cellular mechanisms, and organic molecules. With the growing understanding of methods to functionalize nanoparticles and the continued efforts of creative scientists to advance this technology, it is likely that functionalized nanoparticles will become an important tool in the above mentioned areas. This paper describes the role of multifunctional nanoparticle in diagnosis and treatment of cancer. Therefore, the aim of this review is to provide basic information on nanoparticles, describe previously developed methods to functionalize nanoparticles and discuss their potential applications in biomedical sciences and finally mention the therapeutic nanoparticle commercialization challenges. Keywords: Multifunctional nanoparticle, Cancer, Diagnosis, Treatment, Therapy

  5. Multifunctional polymeric nanoconstructs for biomedical applications (Conference Presentation)

    Science.gov (United States)

    Decuzzi, Paolo

    2016-09-01

    Multifunctional nanoconstructs are particle-based nano-scale systems designed for the `smart' delivery of therapeutic and imaging agents. The Laboratory of Nanotechnology for Precision Medicine at the Italian Institute of Technology synthesizes polymeric nanoconstructs with different sizes, ranging from a few tens of nanometers to a few microns; shapes, including spherical, cubical and discoidal; surface properties, with positive, negative, neutral coatings; and mechanical stiffness, varying from that of cells to rigid, inorganic materials, such as iron oxide. These are the 4S parameters - size, shape, surface, stiffness - which can be precisely tuned in the synthesis process enabling disease- and patient-specific designs of multifunctional nanoconstructs. In this lecture, the application of these nanoconstructs to the detection and treatment of cancer lesions and cardiovascular diseases, such as thrombosis and atherosclerosis, is discussed. The contribution of the 4S parameters in modulating nanoconstruct sequestration by the mononuclear phagocyte system, organ specific accumulation, and blood longevity is also critically presented. These polymeric nanoconstructs can be loaded with a variety of therapeutic payloads - anti-cancer molecules (docetaxel, paclitaxel, doxorubicin), anti-inflammatory molecules (curcumin, diclofenac, celecoxib) and small biologicals (peptides, siRNAs, miRNAs); and imaging agents - optical probes; Gd and iron oxide nanoparticles for MR imaging; and radio-isotopes for Nuclear Imaging.

  6. Multifunctional Single-Site Catalysts for Alkoxycarbonylation of Terminal Alkynes.

    Science.gov (United States)

    Chen, Xingkun; Zhu, Hejun; Wang, Wenlong; Du, Hong; Wang, Tao; Yan, Li; Hu, Xiangping; Ding, Yunjie

    2016-09-08

    A multifunctional copolymer (PyPPh2 -SO3 H@porous organic polymers, POPs) was prepared by combining acidic groups and heterogeneous P,N ligands through the copolymerization of vinyl-functionalized 2-pyridyldiphenylphosphine (2-PyPPh2 ) and p-styrene sulfonic acid under solvothermal conditions. The morphology and chemical structure of the copolymer were evaluated using a series of characterization techniques. Compared with traditional homogeneous Pd(OAc)2 /2-PyPPh2 / p-toluenesulfonic acid catalyst, the copolymer supported palladium catalyst (Pd-PyPPh2 -SO3 H@POPs) exhibited higher activity for alkoxycarbonylation of terminal alkynes under the same conditions. This phenomenon could be attributed to the synergistic effect between the single-site Pd centers, 2-PyPPh2 ligands, and SO3 H groups, the outstanding swelling properties as well as the high enrichment of the reactant concentration by the porous catalyst. In addition, the catalyst could be reused at least 4 times without any apparent loss of activity. The excellent catalytic reactivity and good recycling properties make it an attractive catalyst for industrial applications. This work paves the way for advanced multifunctional porous organic polymers as a new type of platform for heterogeneous catalysis in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multifunctional guest-host particles engineered by reversal nanoimprint lithography

    Science.gov (United States)

    Ha, Uh-Myong; Kaban, Burhan; Tomita, Andreea; Krekić, Kristijan; Klintuch, Dieter; Pietschnig, Rudolf; Ehresmann, Arno; Holzinger, Dennis; Hillmer, Hartmut

    2018-03-01

    Particulate polymeric microfibers with incorporated europium(III)oxide (Eu2O3) nanoparticles were introduced as a magneto-photoluminescent multifunctional material fabricated via reversal nanoimprint lithography. To specifically address the volume properties of these guest-host particles, the guest, Eu2O3, was milled down to an average particle size of 350 nm in diameter and mixed with the host-polymer, AMONIL®, before in situ hardening in the imprint stamp. The variation of the fabrication process parameters, i.e. delay time, spin coating speed, as well as the concentration of Eu2O3 nanoparticles was proven to have a significant impact on both the structure quality and the stamp release of the microfibers with respect to the formation of a thinner residual layer. Structural characterization performed by SEM revealed optimum fabrication process parameters for a homogeneous spatial distribution of Eu2O3 nanoparticles within the microfibers while simultaneously avoiding the formation of undesired agglomerates. The magneto-photoluminescent properties of Eu2O3 nanoparticles, i.e. a red emission at 613 nm and a paramagnetic response, were found to be superimposed to the optic and the diamagnetic behaviors of AMONIL®. The results imply that guest-host interdependence of these properties can be excluded and that the suggested technique enables for specific tailoring of particulate multifunctional materials with focus on their volume properties.

  8. Multifunctional polymer nano-composite based superhydrophobic surface

    Science.gov (United States)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  9. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  10. A Framework for Multifunctional Green Infrastructure Investment in Camden, NJ

    Directory of Open Access Journals (Sweden)

    Kate Zidar

    2017-09-01

    Full Text Available This study demonstrates a decision-support framework for planning Green Infrastructure (GI systems that maximize urban ecosystem services in Camden, NJ. Seven key ecosystem services are evaluated (urban agriculture expansion, combined sewer overflow reduction, heat island reduction, flooding reduction, capacity building/green jobs expansion, fitness expansion, and stress reduction, to produce a normalized value for each service for each drainage sub-basin within the city. Gaps in ecosystem services are then mapped and utilized to geographically prioritize different kinds of multifunctional GI. Conceptual designs are developed for four site typologies: parks, schools, vacant lots, and brownfield sites. For one demonstration site, additional analysis is presented on urban engagement, life cycle cost reduction, and new sources of funding. What results is an integrated, long-term vision where multifunctional GI systems can be readily customized to meet multiple needs within urban communities. This study provides a portable and replicable framework for leveraging the regulatory requirement to manage stormwater to meet broader urban revitalization goals, all through a decentralized network of green infrastructure assets.

  11. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    Science.gov (United States)

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  12. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application.

    Science.gov (United States)

    Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Kim, Hye Hyun; Seo, Hansu; Lee, Kang Dae; Oh, Junghwan

    2017-01-01

    In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications.

  13. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  14. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  15. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  16. Minimal modification to tribimaximal mixing

    International Nuclear Information System (INIS)

    He Xiaogang; Zee, A.

    2011-01-01

    We explore some ways of minimally modifying the neutrino mixing matrix from tribimaximal, characterized by introducing at most one mixing angle and a CP violating phase thus extending our earlier work. One minimal modification, motivated to some extent by group theoretic considerations, is a simple case with the elements V α2 of the second column in the mixing matrix equal to 1/√(3). Modifications by keeping one of the columns or one of the rows unchanged from tribimaximal mixing all belong to the class of minimal modification. Some of the cases have interesting experimentally testable consequences. In particular, the T2K and MINOS collaborations have recently reported indications of a nonzero θ 13 . For the cases we consider, the new data sharply constrain the CP violating phase angle δ, with δ close to 0 (in some cases) and π disfavored.

  17. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  18. Minimal Marking: A Success Story

    Directory of Open Access Journals (Sweden)

    Anne McNeilly

    2014-11-01

    Full Text Available The minimal-marking project conducted in Ryerson’s School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The “minimal-marking” concept (Haswell, 1983, which requires dramatically more student engagement, resulted in more successful learning outcomes for surface-level knowledge acquisition than the more traditional approach of “teacher-corrects-all.” Results suggest it would be effective, not just for grammar, punctuation, and word usage, the objective here, but for any material that requires rote-memory learning, such as the Associated Press or Canadian Press style rules used by news publications across North America.

  19. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  20. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    Energy Technology Data Exchange (ETDEWEB)

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  1. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  2. Non-minimal inflation revisited

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Shafizadeh, Somayeh

    2010-01-01

    We reconsider an inflationary model that inflaton field is non-minimally coupled to gravity. We study the parameter space of the model up to the second (and in some cases third) order of the slow-roll parameters. We calculate inflation parameters in both Jordan and Einstein frames, and the results are compared in these two frames and also with observations. Using the recent observational data from combined WMAP5+SDSS+SNIa datasets, we study constraints imposed on our model parameters, especially the non-minimal coupling ξ.

  3. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  4. Harm minimization among teenage drinkers

    DEFF Research Database (Denmark)

    Jørgensen, Morten Hulvej; Curtis, Tine; Christensen, Pia Haudrup

    2007-01-01

    AIM: To examine strategies of harm minimization employed by teenage drinkers. DESIGN, SETTING AND PARTICIPANTS: Two periods of ethnographic fieldwork were conducted in a rural Danish community of approximately 2000 inhabitants. The fieldwork included 50 days of participant observation among 13....... In regulating the social context of drinking they relied on their personal experiences more than on formalized knowledge about alcohol and harm, which they had learned from prevention campaigns and educational programmes. CONCLUSIONS: In this study we found that teenagers may help each other to minimize alcohol...

  5. Engineering the bio-nano interface using a multi-functional polymer coating

    Science.gov (United States)

    Wang, Wentao

    Interfacing inorganic nanoparticles with biological systems to develop a variety of novel imaging, sensing and diagnostic tools has generated great interest and much activity over the past two decades. However, the effectiveness of this approach hinges on the ability to prepare water dispersible nanoparticles, with compact size and long term colloidal stability in biological environments, and the development of controlled conjugation to various biomolecules. The primary focus of this dissertation is the design and synthesis, characterization and use of a series of new multidentate and multifunctional coordinating polymers as ligands that render various inorganic nanocrystals water soluble, In Chapter 1 we introduce the basic physical properties of quantum dots (QDs), gold nanocrystals and magnetic nanocrystals along with brief description of their syntheses. We then provide an overview of surface functionalization strategies and recent progress in the ligand chemistry, followed by highlights of a few conjugation approaches applied to nanoparticles in biology. We then discuss modulation of the optical and spectroscopic properties of QDs via energy and charge transfer interactions. We conclude by presenting a few related examples on the incorporation of QD-conjugates into sensor design and intracellular imaging. In Chapter 2, we report the design of a series of multifunctional polymers as ligands for surface engineering of QDs and facilitating their use in bioconjugation. First, we introduce a novel PEGylated polymer that combines the synergies of metal-chelation promoted by lipoic acid and imidazole groups, as effective coating for the surface functionalization of QDs; one of the goals was to address the problems associated with thiol oxidation and weak imidazole affinity. Second, to minimize the hydrodynamic radius of the QDs without sacrificing aqueous solubility, a set of polymer ligands appended with zwitterion and imidazole motifs have been synthesized applied

  6. Genetic conservation and paddlefish propagation

    Science.gov (United States)

    Sloss, Brian L.; Klumb, Robert A.; Heist, Edward J.

    2009-01-01

    The conservation of genetic diversity of our natural resources is overwhelmingly one of the central foci of 21st century management practices. Three recommendations related to the conservation of paddlefish Polyodon spathula genetic diversity are to (1) identify genetic diversity at both nuclear and mitochondrial DNA loci using a suggested list of 20 sampling locations, (2) use genetic diversity estimates to develop genetic management units, and (3) identify broodstock sources to minimize effects of supplemental stocking on the genetic integrity of native paddlefish populations. We review previous genetic work on paddlefish and described key principles and concepts associated with maintaining genetic diversity within and among paddlefish populations and also present a genetic case study of current paddlefish propagation at the U.S. Fish and Wildlife Service Gavins Point National Fish Hatchery. This study confirmed that three potential sources of broodfish were genetically indistinguishable at the loci examined, allowing the management agencies cooperating on this program flexibility in sampling gametes. This study also showed significant bias in the hatchery occurred in terms of male reproductive contribution, which resulted in a shift in the genetic diversity of progeny compared to the broodfish. This shift was shown to result from differential male contributions, partially attributed to the mode of egg fertilization. Genetic insights enable implementation of a paddlefish propagation program within an adaptive management strategy that conserves inherent genetic diversity while achieving demographic goals.

  7. Genetics of osteoarthritis.

    Science.gov (United States)

    Rodriguez-Fontenla, Cristina; Gonzalez, Antonio

    2015-01-01

    Osteoarthritis (OA) is a complex disease caused by the interaction of multiple genetic and environmental factors. This review focuses on the studies that have contributed to the discovery of genetic susceptibility factors in OA. The most relevant associations discovered until now are discussed in detail: GDF-5, 7q22 locus, MCF2L, DOT1L, NCOA3 and also some important findings from the arcOGEN study. Moreover, the different approaches that can be used to minimize the specific problems of the study of OA genetics are discussed. These include the study of microsatellites, phenotype standardization and other methods such as meta-analysis of GWAS and gene-based analysis. It is expected that these new approaches contribute to finding new susceptibility genetic factors for OA. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  8. Isoperimetric inequalities for minimal graphs

    International Nuclear Information System (INIS)

    Pacelli Bessa, G.; Montenegro, J.F.

    2007-09-01

    Based on Markvorsen and Palmer's work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal graphs in N x R. We also prove isoperimetric inequalities for submanifolds of Hadamard spaces with tamed second fundamental form. (author)

  9. A Defense of Semantic Minimalism

    Science.gov (United States)

    Kim, Su

    2012-01-01

    Semantic Minimalism is a position about the semantic content of declarative sentences, i.e., the content that is determined entirely by syntax. It is defined by the following two points: "Point 1": The semantic content is a complete/truth-conditional proposition. "Point 2": The semantic content is useful to a theory of…

  10. Torsional Rigidity of Minimal Submanifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, Vicente

    2006-01-01

    We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...

  11. The debate on minimal deterrence

    International Nuclear Information System (INIS)

    Arbatov, A.; Karp, R.C.; Toth, T.

    1993-01-01

    Revitalization of debates on minimal nuclear deterrence at the present time is induced by the end of the Cold War and a number of unilateral and bilateral actions by the great powers to curtail nuclear arms race and reduce nuclear weapons arsenals

  12. LLNL Waste Minimization Program Plan

    International Nuclear Information System (INIS)

    1990-01-01

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs

  13. Minimizing TLD-DRD differences

    International Nuclear Information System (INIS)

    Riley, D.L.; McCoy, R.A.; Connell, W.D.

    1987-01-01

    When substantial differences exist in exposures recorded by TLD's and DRD's, it is often necessary to perform an exposure investigation to reconcile the difference. In working with several operating plants, the authors have observed a number of causes for these differences. This paper outlines these observations and discusses procedures that can be used to minimize them

  14. Acquiring minimally invasive surgical skills

    NARCIS (Netherlands)

    Hiemstra, Ellen

    2012-01-01

    Many topics in surgical skills education have been implemented without a solid scientific basis. For that reason we have tried to find this scientific basis. We have focused on training and evaluation of minimally invasive surgical skills in a training setting and in practice in the operating room.

  15. Genetic Mapping

    Science.gov (United States)

    ... greatly advanced genetics research. The improved quality of genetic data has reduced the time required to identify a ... cases, a matter of months or even weeks. Genetic mapping data generated by the HGP's laboratories is freely accessible ...

  16. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  17. Genetic privacy.

    Science.gov (United States)

    Sankar, Pamela

    2003-01-01

    During the past 10 years, the number of genetic tests performed more than tripled, and public concern about genetic privacy emerged. The majority of states and the U.S. government have passed regulations protecting genetic information. However, research has shown that concerns about genetic privacy are disproportionate to known instances of information misuse. Beliefs in genetic determinacy explain some of the heightened concern about genetic privacy. Discussion of the debate over genetic testing within families illustrates the most recent response to genetic privacy concerns.

  18. Characterisation and full-scale production testing of multifunctional surfaces for deep drawing applications

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; De Chiffre, Leonardo

    2017-01-01

    assisted polishing. Advanced methods are employed to characterise the tools' surface topographies, detecting the surface features and analysing them separately according to their specific function. Four different multifunctional dies as well as two un-textured references are selected for testing. The tests......Full-scale deep drawing tests using tools featuring multifunctional surfaces are carried out in a production environment. Multifunctional tools display regularly spaced, transversal grooves for lubricant retention obtained by hard-turning, separated by smooth bearing plateaus realized by robot...

  19. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  20. Real-time multi-function entry / exit management system

    International Nuclear Information System (INIS)

    Hiyama, Kazuhisa; Kurosawa, Akihiko; Asano, Norikazu; Onoue, Ryuji; Eguchi, Shohei; Hanawa, Nobuhiro; Hori, Naohiko; Ueda, Hisao; Kanda, Hiroaki

    2012-01-01

    In order to prevent radiation accident and its expansion, more integrated management system is required to safety management for radiation workers in the nuclear facilities. Therefore, JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have developed innovative real-time multi-function entry/exit management system which managed worker's exposed dose and position under the joint developed patent. This system is sharing worker's data among workers and server manager who is inside of or outside of building, such as worker's positing, health condition and exposed dose. It consists of mobile equipments, receivers, LAN, and servers system. This report summarizes the system to be installed in the JMTR. (author)

  1. A Single MEMS Resonator for Reconfigurable Multifunctional Logic Gates

    KAUST Repository

    Tella, Sherif Adekunle

    2018-04-30

    Despite recent efforts toward true electromechanical resonator-based computing, achieving complex logics functions through cascading micro resonators has been deterred by challenges involved in their interconnections and the large required array of resonators. In this work we present a single micro electromechanical resonator with two outputs that enables the realization of multifunctional logic gates as well as other complex logic operations. As examples, we demonstrate the realization of the fundamental 2-bit logic gates of OR, XOR, AND, NOR, and a half adder. The device is based on a compound resonator consisting of a clamped-guided electrostatically actuated arch beam that is attached to another resonant beam from the side, which serves as an additional actuation electrode for the arch. The structure is also provided with an additional electrothermal tuning capability. The logic operations are based on the linear frequency modulations of the arch resonator and side microbeam. The device is compatible with CMOS fabrication process and works at room temperature

  2. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    Science.gov (United States)

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of multifunctional chitosan beads for fluoride removal

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamilnadu (India); Sairam Sundaram, C. [Department of Science and Humanities, Karaikal Polytechnic College, Karaikal 609 609, Puducherry (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamilnadu (India)

    2009-08-15

    Chitosan beads (CB) which have negligible defluoridation capacity (DC) have been chemically modified by introducing multifunctional groups, viz., NH{sub 3}{sup +} and COOH groups by means of protonation and carboxylation in order to utilize both amine and hydroxyl groups for fluoride removal. The protonated cum carboxylated chitosan beads (PCCB) showed a maximum DC of 1800 mg F{sup -}/kg whereas raw chitosan beads displayed only 52 mg F{sup -}/kg. Sorption process was found to be independent of pH and slightly influenced in the presence of other common anions. The fluoride sorption on modified forms was reasonably explained by Freundlich and Langmuir isotherms. The sorbents were characterised by FTIR and SEM with EDAX analysis. The sorption process follows pseudo-second-order and intraparticle diffusion kinetic models. The suitability of PCCB has been tested with field sample collected from a nearby fluoride endemic area.

  4. Advances in process intensification through multifunctional reactor engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Miller, James Edward; O' Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  5. Is recreational hunting important for landscape multi-functionality?

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Jensen, Frank Søndergaard

    2017-01-01

    Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity, and prese......Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity......, and preservation of valued and/or threatened animal and plant species. Recreational hunting may thus contribute to preserve and enhance landscape multifunctionality. Yet, little is known about the importance of hunting interests in motivating such landscape management. In this article, we seek to shed light...

  6. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors.

    Science.gov (United States)

    Panek, Dawid; Wichur, Tomasz; Godyń, Justyna; Pasieka, Anna; Malawska, Barbara

    2017-10-01

    The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-β-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with β-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-β-secretase or τ-antiaggregation activity.

  7. A Single MEMS Resonator for Reconfigurable Multifunctional Logic Gates

    KAUST Repository

    Tella, Sherif Adekunle; Alcheikh, Nouha; Younis, Mohammad I.

    2018-01-01

    Despite recent efforts toward true electromechanical resonator-based computing, achieving complex logics functions through cascading micro resonators has been deterred by challenges involved in their interconnections and the large required array of resonators. In this work we present a single micro electromechanical resonator with two outputs that enables the realization of multifunctional logic gates as well as other complex logic operations. As examples, we demonstrate the realization of the fundamental 2-bit logic gates of OR, XOR, AND, NOR, and a half adder. The device is based on a compound resonator consisting of a clamped-guided electrostatically actuated arch beam that is attached to another resonant beam from the side, which serves as an additional actuation electrode for the arch. The structure is also provided with an additional electrothermal tuning capability. The logic operations are based on the linear frequency modulations of the arch resonator and side microbeam. The device is compatible with CMOS fabrication process and works at room temperature

  8. TRIBOLAYER FORMED ON MULTIFUNCTIONAL COATINGS: INFLUENCE OF THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    José Daniel Biasoli de Mello

    2012-06-01

    Full Text Available Friction and wear control can be achieved primarily by considering the nature of the counter faces, together with the environmental conditions. In most cases, a transfer film is found on the sliding surfaces. Environment plays a crucial role on the kinetics of formation and on the composition of the transfer film, and thus strongly influences friction levels and wear rates. In this paper, the effect of the actual environment (refrigerant present in hermetic compressors on the tribological behaviour of a Si rich multifunctional DLC coating deposited on 1020 steel is analyzed. Unlubricated reciprocating pin-on- disk tests are performed using a High Pressure Tribometer under different atmospheres (Air, CO2 and R600a. Samples tested in R600a environment present the lowest friction coefficient and the lowest wear rate for both body and counter-body

  9. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  10. A Novel Approach to Calibrating Multifunctional Binocular Stereovision Sensor

    International Nuclear Information System (INIS)

    Xue, T; Zhu, J G; Wu, B; Ye, S H

    2006-01-01

    We present a novel multifunctional binocular stereovision sensor for various threedimensional (3D) inspection tasks. It not only avoids the so-called correspondence problem of passive stereo vision, but also possesses the uniform mathematical model. We also propose a novel approach to estimating all the sensor parameters with free-position planar reference object. In this technique, the planar pattern can be moved freely by hand. All the camera intrinsic and extrinsic parameters with coefficient of lens radial and tangential distortion are estimated, and sensor parameters are calibrated based on the 3D measurement model and optimized with the feature point constraint algorithm using the same views in the camera calibration stage. The proposed approach greatly reduces the cost of the calibration equipment, and it is flexible and practical for the vision measurement. It shows that this method has high precision by experiment, and the sensor measured relative error of space length excels 0.3%

  11. Multifunctional metal ferrite nanoparticles for MR imaging applications

    International Nuclear Information System (INIS)

    Joshi, Hrushikesh M.

    2013-01-01

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T 2 contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T 1 –T 2 and T 2 -thermal activation) metal ferrite nanoparticles.

  12. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  13. Development of a Computerized Multifunctional Form and Position Measurement Instrument

    International Nuclear Information System (INIS)

    Liu, P; Tian, W Y

    2006-01-01

    A model machine of multifunctional form and position measurement instrument controlled by a personal computer has been successfully developed. The instrument is designed in rotary table type with a high precision air bearing and the radial rotation error of the rotary table is 0.08 μm. Since a high precision vertical sliding carriage supported by an air bearing is used for the instrument, the straightaway motion error of the carriage is 0.3 μm/200 mm and the parallelism error of the motion of the carriage relative to the rotation axis of the rotary table is 0.4 μm/200 mm. The mathematical models have been established for assessing planar and spatial straightness, flatness, roundness, cylindricity, and coaxality errors. By radial deviation measurement, the instrument can accurately measure form and position errors of such workpieces as shafts, round plates and sleeves of medium or small dimensions with the tolerance grades mostly used in industry

  14. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  15. Multifunctional EuYVO4 nanoparticles coated with mesoporous silica

    International Nuclear Information System (INIS)

    Justino, Larissa G.; Nigoghossian, Karina; Capote, Ticiana S.O.; Scarel-Caminaga, Raquel M.; Ribeiro, Sidney J.L.; Caiut, José Maurício A.

    2016-01-01

    Mesoporous structures are interesting materials for the incorporation of dyes, drugs, and luminescent systems, leading to materials with important multifunctionalities. In a very unique way, these guest/host materials combine the high stability of inorganic systems, new guest-structuring features, and adsorption mechanisms in their well-defined pores. This work evaluates the luminescent properties of rare earth-doped YVO 4 nanoparticles coated with a mesoporous silica shell. The use of two different synthesis methodologies allowed for particle size control. The crystalline phase emerged without further heat treatment. The mesoporous shell decreased undesirable quenching effects on YVO 4 :Eu 3+ nanoparticles and rendered them biocompatible. The materials prepared herein could have interesting applications as luminescent markers or drug release systems.

  16. Development of multifunctional radiation monitoring instrument based on PLC technology

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhu Yuye; Zhuang Min

    2007-01-01

    This eight-channel multifunctional Radiation Monitoring Instrument is developed by making use of the built-in high-speed counters and the powerful instruction system of the SIEMES SIMATICS S7 series Programmable Logic Controllers (PLC) to record and process the pulse signal output by the detectors. The instrument with functions, such as analog and digital display, digital storage of digital data, pulse signal generator, network communication, can connect various types of pulse detectors. The initial process can be translated between Graduation Apparatus method and Formula method. the logicality of the high-dosage warning system is processed itself. The signal output will drive the alarm lights and bell directly. This paper mainly describes the configuration, programming and feature of the instrument. (authors)

  17. Multi-functional quantum router using hybrid opto-electromechanics

    Science.gov (United States)

    Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang

    2018-03-01

    Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.

  18. IL-10: A Multifunctional Cytokine in Viral Infections

    Directory of Open Access Journals (Sweden)

    José M. Rojas

    2017-01-01

    Full Text Available The anti-inflammatory master regulator IL-10 is critical to protect the host from tissue damage during acute phases of immune responses. This regulatory mechanism, central to T cell homeostasis, can be hijacked by viruses to evade immunity. IL-10 can be produced by virtually all immune cells, and it can also modulate the function of these cells. Understanding the effects of this multifunctional cytokine is therefore a complex task. In the present review we discuss the factors driving IL-10 production and the cellular sources of the cytokine during antiviral immune responses. We particularly focus on the IL-10 regulatory mechanisms that impact antiviral immune responses and how viruses can use this central regulatory pathway to evade immunity and establish chronic/latent infections.

  19. Quantification of landscape multifunctionality based on farm functionality indices

    DEFF Research Database (Denmark)

    Andersen, Peter Stubkjær; Vejre, Henrik; Dalgaard, Tommy

    2011-01-01

    ) wildlife habitats, and (4) recreation. At farm level each of these functions is defined by data on a number of farmers’ activities as well as farm characteristics which can be harvested by a selection of the interview questions. The selected interview questions are attached as indicators to the relevant...... present a bottom-up method in which landscape multifunctionality is quantified by using functional indices developed from farm questionaire data. The interview survey comprised 382 farms in a rural area of Denmark. The functional classes included in the method are: (1) production, (2) residence, (3...... function. A score spectrum is assigned to each indicator to enable a representation of its relative contribution to the function on each farm depending on the question responses from the interviewees. The values for each indicator are weighted in relation to each of the others and all the values are summed...

  20. Minimalism and the Pragmatic Frame

    Directory of Open Access Journals (Sweden)

    Ana Falcato

    2016-02-01

    Full Text Available In the debate between literalism and contextualism in semantics, Kent Bach’s project is often taken to stand on the latter side of the divide. In this paper I argue this is a misleading assumption and justify it by contrasting Bach’s assessment of the theoretical eliminability of minimal propositions arguably expressed by well-formed sentences with standard minimalist views, and by further contrasting his account of the division of interpretative processes ascribable to the semantics and pragmatics of a language with a parallel analysis carried out by the most radical opponent to semantic minimalism, i.e., by occasionalism. If my analysis proves right, the sum of its conclusions amounts to a refusal of Bach’s main dichotomies.

  1. Principle of minimal work fluctuations.

    Science.gov (United States)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  2. Optimizing Processes to Minimize Risk

    Science.gov (United States)

    Loyd, David

    2017-01-01

    NASA, like the other hazardous industries, has suffered very catastrophic losses. Human error will likely never be completely eliminated as a factor in our failures. When you can't eliminate risk, focus on mitigating the worst consequences and recovering operations. Bolstering processes to emphasize the role of integration and problem solving is key to success. Building an effective Safety Culture bolsters skill-based performance that minimizes risk and encourages successful engagement.

  3. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  4. [Minimally invasive coronary artery surgery].

    Science.gov (United States)

    Zalaquett, R; Howard, M; Irarrázaval, M J; Morán, S; Maturana, G; Becker, P; Medel, J; Sacco, C; Lema, G; Canessa, R; Cruz, F

    1999-01-01

    There is a growing interest to perform a left internal mammary artery (LIMA) graft to the left anterior descending coronary artery (LAD) on a beating heart through a minimally invasive access to the chest cavity. To report the experience with minimally invasive coronary artery surgery. Analysis of 11 patients aged 48 to 79 years old with single vessel disease that, between 1996 and 1997, had a LIMA graft to the LAD performed through a minimally invasive left anterior mediastinotomy, without cardiopulmonary bypass. A 6 to 10 cm left parasternal incision was done. The LIMA to the LAD anastomosis was done after pharmacological heart rate and blood pressure control and a period of ischemic pre conditioning. Graft patency was confirmed intraoperatively by standard Doppler techniques. Patients were followed for a mean of 11.6 months (7-15 months). All patients were extubated in the operating room and transferred out of the intensive care unit on the next morning. Seven patients were discharged on the third postoperative day. Duplex scanning confirmed graft patency in all patients before discharge; in two patients, it was confirmed additionally by arteriography. There was no hospital mortality, no perioperative myocardial infarction and no bleeding problems. After follow up, ten patients were free of angina, in functional class I and pleased with the surgical and cosmetic results. One patient developed atypical angina on the seventh postoperative month and a selective arteriography confirmed stenosis of the anastomosis. A successful angioplasty of the original LAD lesion was carried out. A minimally invasive left anterior mediastinotomy is a good surgical access to perform a successful LIMA to LAD graft without cardiopulmonary bypass, allowing a shorter hospital stay and earlier postoperative recovery. However, a larger experience and a longer follow up is required to define its role in the treatment of coronary artery disease.

  5. Minimal massive 3D gravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Merbis, Wout; Hohm, Olaf; Routh, Alasdair J; Townsend, Paul K

    2014-01-01

    We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra. (paper)

  6. Construction schedules slack time minimizing

    Science.gov (United States)

    Krzemiński, Michał

    2017-07-01

    The article presents two copyright models for minimizing downtime working brigades. Models have been developed for construction schedules performed using the method of work uniform. Application of flow shop models is possible and useful for the implementation of large objects, which can be divided into plots. The article also presents a condition describing gives which model should be used, as well as a brief example of optimization schedule. The optimization results confirm the legitimacy of the work on the newly-developed models.

  7. Acquiring minimally invasive surgical skills

    OpenAIRE

    Hiemstra, Ellen

    2012-01-01

    Many topics in surgical skills education have been implemented without a solid scientific basis. For that reason we have tried to find this scientific basis. We have focused on training and evaluation of minimally invasive surgical skills in a training setting and in practice in the operating room. This thesis has led to an enlarged insight in the organization of surgical skills training during residency training of surgical medical specialists.

  8. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  9. Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system

    International Nuclear Information System (INIS)

    Ssegane, Herbert; Negri, M. Cristina; Quinn, John; Urgun-Demirtas, Meltem

    2015-01-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. We developed an approach to design such landscapes at a field scale to minimize concerns of land use change, water quality, and greenhouse gas emissions associated with production of food and bioenergy. This study leverages concepts of nutrient recovery and phytoremediation to place bioenergy crops on the landscape to recover nutrients released to watersheds by commodity crops. Crop placement is determined by evaluating spatial variability of: 1) soils, 2) surface flow pathways, 3) shallow groundwater flow gradients, 4) subsurface nitrate concentrations, and 5) primary crop yield. A 0.8 ha bioenergy buffer was designed within a 6.5 ha field to intercept concentrated surface flow, capture and use nitrate leachate, and minimize use of productive areas. Denitrification-Decomposition (DNDC) simulations show that on average, a switchgrass (Panicum Virgatum L.) or willow (Salix spp.) buffer within this catchment according to this design could reduce annual leached NO 3 by 61 or 59% and N 2 O emission by 5.5 or 10.8%, respectively, produce 8.7 or 9.7 Mg ha −1 of biomass respectively, and displace 6.7 Mg ha −1 of corn (Zea mays L.) grain. Therefore, placement of bioenergy crops has the potential to increase environmental sustainability when the pairing of location and crop type result in minimal disruption of current food production systems and provides additional environmental benefits. - Highlights: • Design of a multifunctional landscape by integrating cellulosic biofuel production into an existing agricultural system. • The design does not adversely offset current grain production for bioenergy crops. • Maps of concentrated flow paths, subsurface flow direction, NO 3 –N hotspots, and intra-field corn yield variability.

  10. Creating and Understanding Hybrid Interfaces of Multifunctional Composite Laminates for Extreme Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to increasing needs for lightweight and multifunctional structures and materials that can operate at and sustain the extreme environment such as high temperature...

  11. A Reinforcement for Multifunctional Composites for Non-Parasitic Radiation Shielding, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation shielding is a requirement to protect humans from the hazards of space radiation during NASA missions. Multifunctional materials have the potential to...

  12. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  13. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  14. Multifunctional nanobiocomposite of Poly[(butylene succinate)-co-adipate] and clay

    CSIR Research Space (South Africa)

    Al-Thabaiti, SA

    2015-03-01

    Full Text Available The processing and characterization of multifunctional nanobiocomposite of biodegradable poly[(butylene succinate)-co-adipate] (PBSA) and organically modified synthetic fluorine mica (OSFM) are reported. The nanobiocomposite of PBSA with OSFM...

  15. MF-CRA: Multi-Function Cognitive Radio Architecture for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — EpiSys Science, Inc. and University of Arizona propose to develop, implement, and demonstrate Multi-Function Cognitive Radio Architecture (MF-CRA) for Space...

  16. Computational Design of an Additive Manufacturing Process to Produce Tailorable, Multifunctional Gradient Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, multifunctional structural materials technology has been identified as a critical strategic need by NASA and is the highest-priority materials challenge...

  17. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

    Science.gov (United States)

    Experimental studies show that local plant species loss decreases ecosystem functioning and services, but it remains unclear how other changes in biodiversity, such as spatial homogenization, alter multiple processes (multifunctionality) in natural ecosystems. We present a global analysis of eight ...

  18. Development of multi-functional streetscape green infrastructure using a performance index approach

    Czech Academy of Sciences Publication Activity Database

    Tiwary, A.; Williams, L. D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, Carlo

    2016-01-01

    Roč. 208, jan (2016), s. 209-220 ISSN 0269-7491 Institutional support: RVO:67179843 Keywords : Green infrastructure * Multi-functional * Pollution * Performance index * Streetscape Subject RIV: EH - Ecology, Behaviour Impact factor: 5.099, year: 2016

  19. Multifunctional management of mountain forests - Compromises between the protection and conservation functions

    Directory of Open Access Journals (Sweden)

    Marc Fuhr, Nicolas Clouet, Thomas Cordonnier and Frédéric Berger

    2011-03-01

    Full Text Available How can the balance between protection against natural hazards and biodiversity conservation be determined at each stage in forest development? This study provides a number of answers in view of improving multifunctional management.

  20. Multifunction Lidar for Air Data and Kinetic Air Hazard Measurement, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ophir proposes to develop a multifunction, low-cost lidar capable of accurately measuring kinetic air hazards, and air data, simultaneously. The innovation is...

  1. Multifunctional Shielding and Self-Healing HybridSil Smart Composites for Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary multifunctional, super lightweight, self-healing and radiation shielding carbon fiber reinforced polymer (CFRP) composites as a...

  2. The Multi-Functional Implement: A tool to jump-start development

    OpenAIRE

    Moore, Keith M.

    2013-01-01

    Metadata only record This article describes the advantages of the Multi-Functional Implement, a tool that can be used for a variety of farm tasks in the context of conservation agriculture. CCRA-8 (Technology Networks for Sustainable Innovation)

  3. Highest and best use of agricultural land in multifunctional land market evidence from South Africa

    CSIR Research Space (South Africa)

    Reed, L

    2010-01-01

    Full Text Available Traditionally, rural lands are important for agricultural production, land value strongly related to productive potential of land income based and measurable. Transition towards multifunctional rural environment, income from land not only...

  4. Risk of WMSDs in monofunctional and multifunctional workers in a Brazilian footwear company

    Directory of Open Access Journals (Sweden)

    Wilza Karla dos Santos Leite

    Full Text Available Abstract This study aimed to analyze the risk of musculoskeletal disorders in monofunctional and multifunctional workers in a footwear company. The sample comprised 114 workers in the shoe production sector. The method Occupational Repetitive Actions was used to assess the risk of work-related musculoskeletal disorders (WMSDs. Proportional odds models were constructed, relating the risk of WMSDs to the type of work and the worker’s level of multifunctionality. For monofunctional workers, exposure to the higher risk was related to cycle time and the technical actions within their activities, whereas for multifunctional workers, it was related to the range of motion, use of gloves and precision needed in activities. For monofunctional workers, greater risks were associated with a short activity cycle, whereas for multifunctional workers, they were associated with complementary and organizational factors. Moreover, workers whose intracellular activities were less than 30% of the total appeared to be less exposed to the risk of WMSDs.

  5. A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect

    DEFF Research Database (Denmark)

    Almeida, Patrick V.; Shahbazi, Mohammad-Ali; Correia, Alexandra

    2017-01-01

    Aim: To evaluate the chemotherapeutic potential of a novel multifunctional nanocomposite encapsulating both porous silicon (PSi) and gold (Au) nanoparticles in a polymeric nanocomplex. Materials & methods: The nanocomposite was physicochemically characterized and evaluated in vitro...

  6. Self-Sensing Thermal Management System Using Multifunctional Nano-Enhanced Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a thermal management system with self-sensing capabilities using new multifunctional nano-enhanced structures. Currently,...

  7. Designing multifunctional chemical sensors using Ni and Cu doped carbon nanotubes

    DEFF Research Database (Denmark)

    Mowbray, Duncan; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2010-01-01

    We demonstrate a “bottom up” approach to the computational design of a multifunctional chemical sensor. General techniques are employed for describing the adsorption coverage and resistance properties of the sensor based on density functional theory and non-equilibrium Green's function...... methodologies, respectively. Specifically, we show how Ni and Cu doped metallic (6,6) single-walled carbon nanotubes may work as effective multifunctional sensors for both CO and NH3....

  8. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    OpenAIRE

    Horais, Brian; Love, Lonnie; Dehoff, Ryan

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron ...

  9. Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing

    Science.gov (United States)

    2015-12-02

    Final Report: Multifunctional ZnO Nanomaterials for Efficient Energy Conversion and Sensing The views, opinions and/or findings contained in this...ADDRESS. Fisk University 1000 17th Avenue North Nashville, TN 37208 -3045 31-May-2015 ABSTRACT Final Report: Multifunctional ZnO Nanomaterials for...and reproducible nanomaterials growth/synthesis with control of nanostructure size, shape, and functionality, in uniform functionalization with both

  10. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

    OpenAIRE

    Allan, Eric; Manning, Pete; et al

    2015-01-01

    Global change, especially land-use intensification, affects human well-being by impacting the deliv-ery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is amajor component of global change effects on multifunctionality in real-world ecosystems, as inexperimental ones, remains unclear. Therefore, we assessed biodiversity, functional compositionand 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We alsointroduce five mu...

  11. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition.

    OpenAIRE

    Allan Eric; Manning Pete; Alt Fabian; Binkenstein Julia; Blaser Stefan; Blüthgen Nico; Böhm Stefan; Grassein Fabrice; Hölzel Norbert; Klaus Valentin H.; Kleinebecker Till; Morrys Elisabeth Kathryn; Oelmann Yvonne; Prati Daniel; Renner Sven C.

    2015-01-01

    Abstract Global change, especially land?use intensification, affects human well?being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real?world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land?use intensity. We also int...

  12. Multi-function radar emitter identification based on stochastic syntax-directed translation schema

    OpenAIRE

    Liu, Haijun; Yu, Hongqi; Sun, Zhaolin; Diao, Jietao

    2014-01-01

    To cope with the problem of emitter identification caused by the radar words’ uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema (SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases...

  13. Minimal families of curves on surfaces

    KAUST Repository

    Lubbes, Niels

    2014-01-01

    A minimal family of curves on an embedded surface is defined as a 1-dimensional family of rational curves of minimal degree, which cover the surface. We classify such minimal families using constructive methods. This allows us to compute the minimal

  14. Multifunctional natural forest silviculture economics revised: Challenges in meeting landowners’ and society's wants. A review

    International Nuclear Information System (INIS)

    Campos, P.; Caparrós, A.; Cerdá, E.; Diaz-Balteiro, L.; Herruzo, A.C.; Huntsinger, L.; Martín-Barroso, D.; Martínez-Jauregui, M.; Ovando, P.; Oviedo, J.L.; Pasalodos-Tato, M.; Romero, C.; Soliño, M.; Standiford, R.B.

    2017-01-01

    Aim of study: This paper objective focuses on the contribution of multifunctional natural forest silviculture, incorporating both private and public product managements, to forest and woodland economics. Area of study: Spain and California (USA). Material and methods: This conceptual article has developed a critical revision of the existing literature on the main economic issues about the multifunctional natural forest silviculture in the last decades. Main results: Multifunctional natural silviculture has secular roots as a local practice, but as a science of the natural environment applied to the economic management of forest lands it is still in the process of maturation. Timber silviculture remains the central concern of forest economics investment in scientific publications. By contrast, silvicultural modeling of the natural growth of firewood, browse and other non-timber forest products of trees and shrubs receives scant attention in scientific journals. Even rarer are publications on multifunctional natural silviculture of forest and woodland managements, including environmental services geared to people’s active and passive consumption. Under this umbrella, private environmental self-consumption is represented by the amenities enjoyed by private non-industrial landowners. As for environmental public products, the most relevant are carbon, water, mushrooms, recreation, landscape and threatened biodiversity. Research highlights: This paper is a good example about the conceptual research on forestry techniques and economic concepts applied to multifunctional silviculture in Mediterranean areas of Spain and California. The combination of technical knowledge and private and public economic behaviors definitively contributes to the multifunctional management of natural forest systems.

  15. Minimal families of curves on surfaces

    KAUST Repository

    Lubbes, Niels

    2014-11-01

    A minimal family of curves on an embedded surface is defined as a 1-dimensional family of rational curves of minimal degree, which cover the surface. We classify such minimal families using constructive methods. This allows us to compute the minimal families of a given surface.The classification of minimal families of curves can be reduced to the classification of minimal families which cover weak Del Pezzo surfaces. We classify the minimal families of weak Del Pezzo surfaces and present a table with the number of minimal families of each weak Del Pezzo surface up to Weyl equivalence.As an application of this classification we generalize some results of Schicho. We classify algebraic surfaces that carry a family of conics. We determine the minimal lexicographic degree for the parametrization of a surface that carries at least 2 minimal families. © 2014 Elsevier B.V.

  16. LLNL Waste Minimization Program Plan

    International Nuclear Information System (INIS)

    1990-05-01

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). Now legislation at the federal level is being introduced. Passage will result in new EPA regulations and also DOE orders. At the state level the Hazardous Waste Reduction and Management Review Act of 1989 was signed by the Governor. DHS is currently promulgating regulations to implement the new law. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements

  17. Symmetry breaking for drag minimization

    Science.gov (United States)

    Roper, Marcus; Squires, Todd M.; Brenner, Michael P.

    2005-11-01

    For locomotion at high Reynolds numbers drag minimization favors fore-aft asymmetric slender shapes with blunt noses and sharp trailing edges. On the other hand, in an inertialess fluid the drag experienced by a body is independent of whether it travels forward or backward through the fluid, so there is no advantage to having a single preferred swimming direction. In fact numerically determined minimum drag shapes are known to exhibit almost no fore-aft asymmetry even at moderate Re. We show that asymmetry persists, albeit extremely weakly, down to vanishingly small Re, scaling asymptotically as Re^3. The need to minimize drag to maximize speed for a given propulsive capacity gives one possible mechanism for the increasing asymmetry in the body plans seen in nature, as organisms increase in size and swimming speed from bacteria like E-Coli up to pursuit predator fish such as tuna. If it is the dominant mechanism, then this signature scaling will be observed in the shapes of motile micro-organisms.

  18. Provision of genetics services on Guam.

    Science.gov (United States)

    McWalter, Kirsty; Hasegawa, Lianne; Au, Sylvia Mann

    2013-12-01

    Guam's geographic isolation and lack of community resources have resulted in unique healthcare needs. In 2006, the Western States Genetic Services Collaborative (WSGSC) conducted a genetics needs assessment and found that professional development is limited, families lack access to genetic services, and improved coverage of genetic testing is needed. With funding from the WSGSC, a Guam genetics outreach clinic was established and staffed by genetic counselors and a medical geneticist from Hawaii. Four clinics have been held to date. Although several challenges have been encountered, including minimal coverage of genetic testing by Guam insurance companies, limited referrals for families with private insurance, and inappropriate referral indications, the outreach clinic has been successful at increasing access to genetic services and improving professional development. With more collaborative work by staff from Guam, Hawaii, and the WSGSC, provision and reimbursement of genetic services and testing will continue to improve.

  19. Multifunctionality of Urban Green Space -- An Analytical Framework and the Case Study of Greenbelt in Frankfurt am Main, Germany

    OpenAIRE

    Wei, Linlin

    2017-01-01

    This research emphasizes the significance of multifunctionality in urban green space planning practice and builds an analytical framework of multifunctionality for the holistic interpretation of the studied case, the Greenbelt Frankfurt am Main. Multifunctionality has been widely used in the context of urban green space planning practice and evaluation in recent years. It is considered as a key characteristic in several contemporary concepts like Green Infrastructure, Ecosystem Services a...

  20. Laparoscopic colonic resection in inflammatory bowel disease: minimal surgery, minimal access and minimal hospital stay.

    LENUS (Irish Health Repository)

    Boyle, E

    2008-11-01

    Laparoscopic surgery for inflammatory bowel disease (IBD) is technically demanding but can offer improved short-term outcomes. The introduction of minimally invasive surgery (MIS) as the default operative approach for IBD, however, may have inherent learning curve-associated disadvantages. We hypothesise that the establishment of MIS as the standard operative approach does not increase patient morbidity as assessed in the initial period of its introduction into a specialised unit, and that it confers earlier postoperative gastrointestinal recovery and reduced hospitalisation compared with conventional open resection.

  1. Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system

    Energy Technology Data Exchange (ETDEWEB)

    Ssegane, Herbert; Negri, M. Cristina; Quinn, John; Urgun-Demirtas, Meltem

    2015-09-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. We developed an approach to design such landscapes at a field scale to minimize concerns of land use change, water quality, and greenhouse gas emissions associated with production of food and bioenergy. This study leverages concepts of nutrient recovery and phytoremediation to place bioenergy crops on the landscape to recover nutrients released to watersheds by commodity crops. Crop placement is determined by evaluating spatial variability of: 1) soils, 2) surface flow pathways, 3) shallow groundwater flow gradients, 4) subsurface nitrate concentrations, and 5) primary crop yield. A 0.8 ha bioenergy buffer was designed within a 6.5 ha field to intercept concentrated surface flow, capture and use nitrate leachate, and minimize use of productive areas. Denitrification-Decomposition (DNDC) simulations show that on average, a switchgrass (Panicum Virgatum L.) or willow (Salix spp.) buffer within this catchment according to this design could reduce annual leached NO3 by 61 or 59% and N2O emission by 5.5 or 10.8%, respectively, produce 8.7 or 9.7 Mg ha-1 of biomass respectively, and displace 6.7 Mg ha-1 of corn (Zea mays L.) grain. Therefore, placement of bioenergy crops has the potential to increase environmental sustainability when the pairing of location and crop type result in minimal disruption of current food production systems and provides additional environmental benefits.

  2. A Nanotechnology Approach to Lightweight Multifunctional Polyethylene Composite Materials for Use Against the Space Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene-based composite materials are under consideration as multifunctional structural materials, with the expectation that they can provide radiation...

  3. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  4. A Multifunctional Reading Assistant for the Visually Impaired

    Directory of Open Access Journals (Sweden)

    Minetti Christophe

    2007-01-01

    Full Text Available In the growing market of camera phones, new applications for the visually impaired are nowadays being developed thanks to the increasing capabilities of these equipments. The need to access to text is of primary importance for those people in a society driven by information. To meet this need, our project objective was to develop a multifunctional reading assistant for blind community. The main functionality is the recognition of text in mobile situations but the system can also deal with several specific recognition requests such as banknotes or objects through labels. In this paper, the major challenge is to fully meet user requirements taking into account their disability and some limitations of hardware such as poor resolution, blur, and uneven lighting. For these applications, it is necessary to take a satisfactory picture, which may be challenging for some users. Hence, this point has also been considered by proposing a training tutorial based on image processing methods as well. Developed in a user-centered design, text reading applications are described along with detailed results performed on databases mostly acquired by visually impaired users.

  5. A multifunctional multimaterial system for on-demand protein release.

    Science.gov (United States)

    Tuncaboylu, Deniz Ceylan; Friess, Fabian; Wischke, Christian; Lendlein, Andreas

    2018-06-15

    In order to provide best control of the regeneration process for each individual patient, the release of protein drugs administered during surgery may need to be timely adapted and/or delayed according to the progress of healing/regeneration. This study aims to establish a multifunctional implant system for a local on-demand release, which is applicable for various types of proteins. It was hypothesized that a tubular multimaterial container kit, which hosts the protein of interest as a solution or gel formulation, would enable on-demand release if equipped with the capacity of diameter reduction upon external stimulation. Using devices from poly(ɛ-caprolactone) networks, it could be demonstrated that a shape-memory effect activated by heat or NIR light enabled on-demand tube shrinkage. The decrease of diameter of these shape-memory tubes (SMT) allowed expelling the payload as demonstrated for several proteins including SDF-1α, a therapeutically relevant chemotactic protein, to achieve e.g. continuous release with a triggered add-on dosing (open tube) or an on-demand onset of bolus or sustained release (sealed tube). Considering the clinical relevance of protein factors in (stem) cell attraction to lesions and the progress in monitoring biomarkers in body fluids, such on-demand release systems may be further explored e.g. in heart, nerve, or bone regeneration in the future. Copyright © 2018. Published by Elsevier B.V.

  6. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  7. Multifunctional MgO Layer in Perovskite Solar Cells.

    Science.gov (United States)

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Graphene/Epoxy Coating as Multifunctional Material for Aircraft Structures

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2015-06-01

    Full Text Available Recently, the use of graphene as a conductive nanofiller in the preparation of inorganic/polymer nanocomposites has attracted increasing interest in the aerospace field. The reason for this is the possibility of overcoming problems strictly connected to the aircraft structures, such as electrical conductivity and thus lightning strike protection. In addition, graphene is an ideal candidate to enhance the anti-corrosion properties of the resin, since it absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, graphene nanoflakes were incorporated into a water-based epoxy resin, and then the hybrid coating was applied to Al 2024-T3 samples. The addition of graphene considerably improved some physical properties of the hybrid coating as demonstrated by Electrochemical Impedance Spectroscopy (EIS analysis, ameliorating anti-corrosion performances of raw material. DSC measurements and Cross-cut Test showed that graphene did not affect the curing process or the adhesion properties. Moreover, an increment of water contact angle was displayed.

  9. Multifunctional structural lithium ion batteries for electrical energy storage applications

    Science.gov (United States)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  10. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    Science.gov (United States)

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-08

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

  11. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  12. A Multifunctional Reading Assistant for the Visually Impaired

    Directory of Open Access Journals (Sweden)

    Céline Mancas-Thillou

    2007-11-01

    Full Text Available In the growing market of camera phones, new applications for the visually impaired are nowadays being developed thanks to the increasing capabilities of these equipments. The need to access to text is of primary importance for those people in a society driven by information. To meet this need, our project objective was to develop a multifunctional reading assistant for blind community. The main functionality is the recognition of text in mobile situations but the system can also deal with several specific recognition requests such as banknotes or objects through labels. In this paper, the major challenge is to fully meet user requirements taking into account their disability and some limitations of hardware such as poor resolution, blur, and uneven lighting. For these applications, it is necessary to take a satisfactory picture, which may be challenging for some users. Hence, this point has also been considered by proposing a training tutorial based on image processing methods as well. Developed in a user-centered design, text reading applications are described along with detailed results performed on databases mostly acquired by visually impaired users.

  13. A Multifunctional Public Lighting Infrastructure, Design and Experimental Test

    Directory of Open Access Journals (Sweden)

    Marco Beccali

    2017-12-01

    Full Text Available Nowadays, the installation of efficient lighting sources and Information and Communications Technologies can provide economic benefits, energy efficiency, and visual comfort requirements. More advantages can be derived if the public lighting infrastructure integrates a smart grid. This study presents an experimental multifunctional infrastructure for public lighting, installed in Palermo. The system is able to provide smart lighting functions (hotspot Wi-Fi, video-surveillances, car and pedestrian access control, car parking monitoring and support for environmental monitoring. A remote control and monitoring platform called “Centro Servizi” processes the information coming from different installations as well as their status in real time, and sends commands to the devices (e.g. to control the luminous flux, each one provided with a machine to machine interface. Data can be reported either on the web or on a customised app. The study has shown the efficient operation of such new infrastructure and its capability to provide new functions and benefits to citizens, tourists, and public administration. Thus, this system represents a starting point for the implementation of many other lighting infrastructure features typical of a “smart city.”

  14. Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds

    Science.gov (United States)

    Gao, Hongyin; Zhou, Zhe; Kwon, Doo-Hyun; Coombs, James; Jones, Steven; Behnke, Nicole Erin; Ess, Daniel H.; Kürti, László

    2017-07-01

    Arylmetals are highly valuable carbon nucleophiles that are readily and inexpensively prepared from aryl halides or arenes and widely used on both laboratory and industrial scales to react directly with a wide range of electrophiles. Although C-C bond formation has been a staple of organic synthesis, the direct transfer of primary amino (-NH2) and hydroxyl (-OH) groups to arylmetals in a scalable and environmentally friendly fashion remains a formidable synthetic challenge because of the absence of suitable heteroatom-transfer reagents. Here, we demonstrate the use of bench-stable N-H and N-alkyl oxaziridines derived from readily available terpenoid scaffolds as efficient multifunctional reagents for the direct primary amination and hydroxylation of structurally diverse aryl- and heteroarylmetals. This practical and scalable method provides one-step synthetic access to primary anilines and phenols at low temperature and avoids the use of transition-metal catalysts, ligands and additives, nitrogen-protecting groups, excess reagents and harsh workup conditions.

  15. Polar octahedral rotations: A path to new multifunctional materials

    International Nuclear Information System (INIS)

    Benedek, Nicole A.; Mulder, Andrew T.; Fennie, Craig J.

    2012-01-01

    Perovskite ABO 3 oxides display an amazing variety of phenomena that can be altered by subtle changes in the chemistry and internal structure, making them a favorite class of materials to explore the rational design of novel properties. Here we highlight a recent advance in which rotations of the BO 6 octahedra give rise to a novel form of ferroelectricity – hybrid improper ferroelectricity. Octahedral rotations also strongly influence other structural, magnetic, orbital, and electronic degrees of freedom in perovskites and related materials. Octahedral rotation-driven ferroelectricity consequently has the potential to robustly control emergent phenomena with an applied electric field. The concept of ‘functional’ octahedral rotations is introduced and the challenges for materials chemistry and the possibilities for new rotation-driven phenomena in multifunctional materials are explored. - Graphical abstract: A 3 B 2 O 7 and (A/A′)B 2 O 6 are two types of layered perovskites in which octahedral rotations induce ferroelectricity. Highlights: ► Recent progress on achieving ferroelectricity from rotations of the BO 6 octahedra in ABO 3 perovskite oxides is reviewed. ► The atomic scale layering of Pnma perovskites in two different ways leads to alternative structure realizations. ► The concept of ‘functional’ octahedral rotations is introduced as a path to electric-field control of emergent phenomena.

  16. Microwave-Driven Multifunctional Capability of Membrane Structures

    Science.gov (United States)

    Choi, Sang H.; Chu, Sang-Hyong; Song, Kyo D.; King, Glen C.

    2002-01-01

    A large, ultra lightweight space structure, such as solar sails and Gossamer spacecrafts, requires a distributed power source to alleviate wire networks, unlike the localized on-board power infrastructures typically found in most small spacecrafts. The concept of microwave-driven multifunctional capability for membrane structures is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry and on-board power infrastructures. A rectenna array based on a patch configuration for high voltage output was developed to drive membrane actuators, sensors, probes, or other devices. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The use of patch rectennas adds a significant amount of rigidity to membrane flexibility and they are relatively heavy. A dipole rectenna array (DRA) appears to be ideal for thin-film membrane structures, since DRA is flexible and light. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time.

  17. Multifunction devices and their impacts on energy use

    Energy Technology Data Exchange (ETDEWEB)

    Amorosano, D.

    1995-12-01

    Integrated multifunctional office equipment will have ramifications for energy efficiency and use. Specifically discussed here is Canon`s Digital Imaging System, also known as the GP55 Series, currently under development. Integrated office equipment combines the capabilities of single-function, stand-alone devices, increasing efficiency by eliminating steps in the production and distribution of documents. Canon and other vendors are now introducing these products into the office equipment industry in response to four trends: (1) Implementation of local area networks (LANs). It`s estimated that by 1997, 73% of all personal computers (PCs) in offices will be networked in some way. Vendors are looking to tie their office equipment into that network connection and shared-resource capability. (2) Adoption of the {open_quotes}More with less{close_quotes} attitude by most companies is forcing new approaches to the way in which they increase efficiency. (3) Continuing workgroup requirements for both electronic and hard copy input/output capabilities. (4) Persistence of the {open_quotes}Sneaker{close_quotes} network. Research commissioned by Canon has shown that in spite of LAN penetration, this {open_quotes}Sneakernet{close_quotes} is still significant, meaning that users must still leave their desks an average of 11 times a day to make copies, send faxes, etc. The idea behind integrated technology is to eliminate those steps in the document processing procedure.

  18. OTRA-Based Multi-Function Inverse Filter Configuration

    Directory of Open Access Journals (Sweden)

    Abdhesh Kumar Singh

    2017-01-01

    Full Text Available A new OTRA-based multifunction Inverse filter configuration is presented which is capable of realizing low pass, high pass and band pass filters using only two OTRAs and five to six passive elements. To the best knowledge of the authors, any inverse filter configuration using OTRAs has not been reported in the literature earlier. The effect of the major parasitics of the OTRAs and their effect on the performance filter have been investigated and measured through simulation results and Monte-Carlo analysis. The workability of the proposed circuits has been confirmed by SPICE simulations using CMOS-based-OTRA realizable in 0.18 µm CMOS technology. The proposed circuits are the only ones which provide simultaneously the following features: use of reasonable number of active elements (only 2, realizability of all the three basic filter functions, employment of all virtually grounded resistors and capacitors and tunability of all filter parameters (except gain factor, H_0 for inverse high pass. The centre/cut-off frequency of the various filter circuits lying in the vicinity of 1 MHz have been found to be realizable, which has been verified through SPICE simulation results and have been found to be in good agreement with the theoretical results.

  19. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    Science.gov (United States)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  20. Antifungal activity of multifunctional Fe3O4-Ag nanocolloids

    International Nuclear Information System (INIS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R.V.; Mehta, R.V.

    2011-01-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3 O 4 -Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3 O 4 ) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: →Synthesis of Fe 3 O 4 -Ag core-shell nanocolloids. →Antifungal activity of Fe 3 O 4 -Ag nanocolloids against Aspergillus glaucus isolates. →The MIC value for A. glaucus is 2000 μg/mL. →Antifungal activity is better or comparable with most prominent antibiotics.

  1. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  2. Calcium fluoride based multifunctional nanoparticles for multimodal imaging

    Directory of Open Access Journals (Sweden)

    Marion Straßer

    2017-07-01

    Full Text Available New multifunctional nanoparticles (NPs that can be used as contrast agents (CA in different imaging techniques, such as photoluminescence (PL microscopy and magnetic resonance imaging (MRI, open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+ NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5–10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg−1·s−1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL−1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+ NPs are suitable for medical imaging.

  3. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  4. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  5. Multifunctional optimised scope simulators in Central and Eastern Europe

    International Nuclear Information System (INIS)

    Bartak, J.; Hauesberger, P.; Dalleur, J.P.; Houard, J.

    1999-01-01

    In the field of operator training, multiple functions have to be covered such as basic principles training, training on specific systems, operations training addressing operating procedures in normal, incidental and accidental situations, plant physical phenomena analysis. Training simulators are appropriate tools to meet theses needs. Optimisation of the scope of simulation is required to meet specific training objectives and produce cost-effective solutions that allow for possible future extensions. Training needs and training programs have to be identified with the participation of final users, leading to the development of appropriate training materials: 'multifunctional' (also called analytical) optimised scope simulators are a concrete solution to meeting this challenge. For these simulators, the quality of physical models used is equivalent to that used in the full-scope replica-type simulators. Moreover, all state-of-the-art technical requirements in terms of development of training simulators, must be satisfied: realism of modelling, tolerances, simulated incidents and accidents. Examples of this concept will be illustrated in the paper through the presentation of recent developments of simulators in Central and Eastern European NPPs (VVER-1000, VVER-440, RBMK, BN600, PWR 600). A brief presentation of the software workshop used to develop these simulators concludes the paper. (author)

  6. An invasive foundation species enhances multifunctionality in a coastal ecosystem.

    Science.gov (United States)

    Ramus, Aaron P; Silliman, Brian R; Thomsen, Mads S; Long, Zachary T

    2017-08-08

    While invasive species often threaten biodiversity and human well-being, their potential to enhance functioning by offsetting the loss of native habitat has rarely been considered. We manipulated the abundance of the nonnative, habitat-forming seaweed Gracilaria vermiculophylla in large plots (25 m 2 ) on southeastern US intertidal landscapes to assess impacts on multiple ecosystem functions underlying coastal ecosystem services. We document that in the absence of native habitat formers, this invasion has an overall positive, density-dependent impact across a diverse set of ecosystem processes (e.g., abundance and richness of nursery taxa, flow attenuation). Manipulation of invader abundance revealed both thresholds and saturations in the provisioning of ecosystem functions. Taken together, these findings call into question the focus of traditional invasion research and management that assumes negative effects of nonnatives, and emphasize the need to consider context-dependence and integrative measurements when assessing the impact of an invader, including density dependence, multifunctionality, and the status of native habitat formers. This work supports discussion of the idea that where native foundation species have been lost, invasive habitat formers may be considered as sources of valuable ecosystem functions.

  7. Multi-function magnetic jack control drive mechanism

    International Nuclear Information System (INIS)

    Bollinger, L.R.; Crawford, D.C.

    1986-01-01

    A multi-function magnetic jack control drive mechanism is described for controlling a nuclear reactor comprising: an elongate pressure housing; closely-spaced drive rods located in the pressure housing, the drive rod being connected to a reactor rod which is insertable in a reactor core; electrochemical stationary latch means which are selectively actuatable for holding a respective one of the drive rods stationary with respect to the pressure housing, the plurality of stationary latch means including at least one coil located about the pressure housing; longitudinally spaced electromechanical movable latch means, individually associated with one of the drive rods and each including a base for the drive rod associated therewith, for, when actuated, holding the associated drive rod stationary with respect to the base associated therewith, the movable latch means including an associated coil located about the pressure housing; and longitudinally spaced electromechanical lift means, individually associated with the base, for, when actuated, moving an associated base longitudinally along the pressure housing from a first position to a second position to thereby enable movement of one or more of the other drive rods longitudinally independently of the other drive rods in response to sequential and repeated operation of the electromechanical means, the lift means including an associated coil located about the pressure housing

  8. Peri-urbanisation and multifunctional adaptation of agriculture around Copenhagen

    DEFF Research Database (Denmark)

    Zasada, Ingo; Fertner, Christian; Piorr, Annette

    2011-01-01

    Peri-urbanisation, as a process of the physical expansion of settlement areas but also socio-economic transformation, has been recognised as a major spatial development beyond the urban fringes. Agriculture, the main land use actor in the hinterlands of many urban areas is increasingly affected b...... activities. Findings confirm that the differentiation of peri-urban processes is meaningful for the explanation of spatial distribution of farm adaptation strategies, particularly in the case of leisure and environmental oriented farm practices....... by urban encroachment, responds with adaptation strategies and farming activities to cope with the peri-urban framework conditions. Adaptation pathways encompass specialisation into horticulture as well as enhanced environmental and lifestyle orientation of farming – typical elements of multifunctional......Peri-urbanisation, as a process of the physical expansion of settlement areas but also socio-economic transformation, has been recognised as a major spatial development beyond the urban fringes. Agriculture, the main land use actor in the hinterlands of many urban areas is increasingly affected...

  9. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  10. Multifunctional Receptor Stabilin-1 in Homeostasis and Disease

    Directory of Open Access Journals (Sweden)

    Julia Kzhyshkowska

    2010-01-01

    Full Text Available The multifunctional scavenger receptor stabilin-1 (STAB1, FEEL-1, CLEVER-1, KIAA0246 is expressed on tissue macrophages and sinusoidal endothelial cells in healthy organisms, and its expression on both macrophages and different subtypes of endothelial cells is induced during chronic inflammation and tumor progression. Stabilin-1 is a type-1 transmembrane receptor that mediates endocytic and phagocytic clearance of “unwanted-self” components, intracellular sorting of the endogenously synthesized chitinase-like protein SI-CLP, and transcytosis of the growth hormone family member placental lactogen. The central sorting station for stabilin-1 trafficking seems to be the trans-Golgi network (TGN. Transport of stabilin-1 in the TGN requires interaction with GGA adaptors that bind to the classical DDSLL motif and a novel acidic cluster in its cytoplasmic tail. Degradation of stabilin-1 seems to depend on the interaction with sorting nexin 17. However, the mechanisms keeping stabilin-1 on the cell surface remain to be identified. This issue deserves specific attention due to the growing amount of data indicating that function of stabilin-1 in cell adhesion events is essential for inflammation and metastasis. Taking into consideration the complexity of stabilin-1—mediated processes, investigation of stabilin-1 functions in the animal models, as well as mathematic modeling of intracellular trafficking and extracellular contact, would enable prediction of stabilin-1 behavior in complex biological systems and would open perspectives for therapeutic targeting of stabilin-1 pathways in chronic inflammation and carcinogenesis.

  11. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  12. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  13. Synthesis of multifunctional gold nanoparticles for image guided therapy

    International Nuclear Information System (INIS)

    Laurent, Gautier

    2014-01-01

    The original properties of nanoparticles make them extremely attractive in the field of oncology. In fast, gold nanoparticles coated by macrocyclic ligands allow imaging and therapy with only one object. Therefore, multifunctional platforms are very promising for image-guided therapy, winch constitutes an important step towards personalization of treatment. This consists of stimulating the therapeutic activity of the nanoparticles when their accumulation is high within the tumor zone and low in healthy tissues. A higher selectivity of the treatment is therefore expected. Biodistribution study by SPECT/CT has shown free circulation, renal elimination and a moderate retention by the liver of the nanoparticles. However, this retention is not due to the opsonisation processes. The MRI study of rats' brain carrying a gliosarcoma has shown an accumulation of nanoparticles Au-at-FADOTAGA-Gd in the tumor. Moreover, the co-labeling of these nanoparticles by Ge and 64Cts2+ was successfully performed. As a result, PET/MRI images, a much researched combination but rarely achieved, were acquired on the same animal alter intravenous injection of the co-labeled nanoparticles. The radiosensitizing character of nanoparticles Au-at-TADOTAGA was confirmed by the follow up of tumor growth alter a treatment by MRT (microbeam irradiation) 15 minutes after intratumoral injection of nanoparticles. The therapeutic gain of this treatment has been validated by MRT 24 hours after intravenous injection of nanoparticles to rats carrying gliosarcoma (radioresistant tumor in radiosensitive organ). (author)

  14. Multifunctional porphyrinic materials encapsulated into macronets with photo chemotherapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ion, R. -M.; Fierascu, R. -C.; Dimitriu, I. [Valahia University, Materials Science Department, Targoviste (Romania)

    2008-07-01

    Supramolecidar chemistry is expected to keep a high developing advanced of molecular devices based on multifunctional materials. Porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. Such molecular materials contain a high porosity with large cavities and galleries that can be functionalization yielding to a desired chirality and structure. The functionalization implies inserting into macrocydic cavity, followed by auto-assembling as columnar aggregates. The obtained cavities are used as host for different molecular guests. H and J-aggregates of some porphyrins are based on the intermolecular interactions of 3-5 Kcal/mol per porphyrin face. The columnar structure formed by porphyrins has a length of 5 to 27 porphyrin unities. In this paper we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supra molecular structures constituted by a porphyrin (TSPPJ and a new and revolutionary method for stabilizing porphyrins (as organic part), by their incapsulation into supports with controlled porosity as macronets (as inorganic parts), obtaining some hybrids materials. Included are also their properties and potential applications. Key words: porphyrins, macronets, photochemotherapy.

  15. Evaluating multifunctional storage usage for the integration of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Koopmann, Simon; Wasowicz, Bartholomaeus; Raths, Stephan; Pollok, Thomas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. for High Voltage Technology

    2012-07-01

    Market and grid integration of the increasing share of renewable energy sources (RES) pose significant challenges to the electricity system in Germany. Energy storages are frequently discussed as one part of the solution. However, storage operators in a liberalized electricity market are profit maximizing actors, who are only interested in supporting the integration of RES, if it is economically attractive. A storage dispatch optimization model has been developed to comprehensively analyze the wide range of storage applications. Three storage operational modes are introduced and evaluated in this paper. The entirely market-focused multimarket operation is found to be the most profitable option for storage operators. Integration of RES is of minor importance in this operational mode. Using storage systems only for grid purposes in the grid supportive operational mode is found to be least profitable. A combined storage usage for market and grid applications in the multifunctional operation achieves similar benefits for the grid as in the grid supportive mode by better integrating RES, while also achieving profits from the markets. The current market and regulatory framework however, provides no incentives for storage operators to pursue this dispatch strategy, which is favorable for an improved RES integration.

  16. Soft Multifunctional Composites and Emulsions with Liquid Metals.

    Science.gov (United States)

    Kazem, Navid; Hellebrekers, Tess; Majidi, Carmel

    2017-07-01

    Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multi-functional Electric Module for a Vehicle

    Science.gov (United States)

    Bluethmann, William J. (Inventor); Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  18. Multifunctional Antenna with Reconfigurable Ultra-Wide Band Characteristics

    Directory of Open Access Journals (Sweden)

    A. Verma

    2017-09-01

    Full Text Available In this paper a multifunctional antenna is presented which offers an ultra-wideband (UWB operation, an UWB operation with two switchable notches and reconfigurable dual-band operation for WiMAX and WLAN applications, respectively. Total seven functions/states could be achieved from a single antenna using an electronic switching. The antenna uses dual slots on the ground plane to provide a wide bandwidth, ranging from 3.1 GHz to 10.6 GHz. U-Shaped slot and C-Shaped printed strip in the ground are used to generate two notches at 3.6 GHz(WiMAX and 5.2 GHz (WLAN/ WiFi bands, respectively. Moreover, four parasitic strips are added in the feed side to make antenna functional at either3.6 GHz or 5.2 GHz or both. Total Five PIN diodes are required to obtain seven operations from the proposed antenna. Seven structures are fabricated and measured to verify the seven states and results are found in good agreement with estimated results obtained from the simulation.

  19. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  20. Glypican-3 Targeting of Liver Cancer Cells Using Multifunctional Nanoparticles

    Directory of Open Access Journals (Sweden)

    James O. Park

    2011-01-01

    Full Text Available Imaging is essential in accurately detecting, staging, and treating primary liver cancer (hepatocellular carcinoma [HCC], one of the most prevalent and lethal malignancies. We developed a novel multifunctional nanoparticle (NP specifically targeting glypican-3 (GPC3, a proteoglycan implicated in promotion of cell growth that is overexpressed in most HCCs. Quantitative real-time polymerase chain reaction was performed to confirm the differential GPC3 expression in two human HCC cells, Hep G2 (high and HLF (negligible. These cells were treated with biotin-conjugated GPC3 monoclonal antibody (αGPC3 and subsequently targeted using superparamagnetic iron oxide NPs conjugated to streptavidin and Alexa Fluor 647. Flow cytometry demonstrated that only GPC3-expressing Hep G2 cells were specifically targeted using this αGPC3-NP conjugate (fourfold mean fluorescence over nontargeted NP, and magnetic resonance imaging (MRI experiments showed similar findings (threefold R2 relaxivity. Confocal fluorescence microscopy localized the αGPC3 NPs only to the cell surface of GPC3-expressing Hep G2 cells. Further characterization of this construct demonstrated a negatively charged, monodisperse, 50 nm NP, ideally suited for tumor targeting. This GPC3-specific NP system, with dual-modality imaging capability, may enhance pretreatment MRI, enable refined intraoperative HCC visualization by near-infrared fluorescence, and be potentially used as a carrier for delivery of tumor-targeted therapies, improving patient outcomes.

  1. Multifunctional hybrid materials for combined photo and chemotherapy of cancer.

    Science.gov (United States)

    Botella, Pablo; Ortega, Ilida; Quesada, Manuel; Madrigal, Roque F; Muniesa, Carlos; Fimia, Antonio; Fernández, Eduardo; Corma, Avelino

    2012-08-21

    Combined chemo and photothermal therapy in in vitro testing has been achieved by means of multifunctional nanoparticles formed by plasmonic gold nanoclusters with a protecting shell of porous silica that contains an antitumor drug. We propose a therapeutic nanoplatform that associates the optical activity of small gold nanoparticles aggregates with the cytotoxic activity of 20(S)-camptothecin simultaneously released for the efficient destruction of cancer cells. For this purpose, a method was used for the controlled assembly of gold nanoparticles into stable clusters with a tailored absorption cross-section in the vis/NIR spectrum, which involves aggregation in alkaline medium of 15 nm diameter gold colloids protected with a thin silica layer. Clusters were further encapsulated in an ordered homogeneous mesoporous silica coating that provides biocompatibility and stability in physiological fluids. After internalization in 42-MG-BA human glioma cells, these protected gold nanoclusters were able to produce effective photothermolysis under femtosecond pulse laser irradiation of 790 nm. Cell death occurred by combination of a thermal mechanism and mechanical disruption of the membrane cell due to induced generation of micrometer-scale bubbles by vaporizing the water inside the channels of the mesoporous silica coating. Moreover, the incorporation of 20(S)-camptothecin within the pores of the external shell, which was released during the process, provoked significant cell death increase. This therapeutic model could be of interest for application in the treatment and suppression of non-solid tumors.

  2. Minimally invasive aortic valve replacement

    DEFF Research Database (Denmark)

    Foghsgaard, Signe; Schmidt, Thomas Andersen; Kjaergard, Henrik K

    2009-01-01

    In this descriptive prospective study, we evaluate the outcomes of surgery in 98 patients who were scheduled to undergo minimally invasive aortic valve replacement. These patients were compared with a group of 50 patients who underwent scheduled aortic valve replacement through a full sternotomy...... operations were completed as mini-sternotomies, 4 died later of noncardiac causes. The aortic cross-clamp and perfusion times were significantly different across all groups (P replacement...... is an excellent operation in selected patients, but its true advantages over conventional aortic valve replacement (other than a smaller scar) await evaluation by means of randomized clinical trial. The "extended mini-aortic valve replacement" operation, on the other hand, is a risky procedure that should...

  3. Minimization over randomly selected lines

    Directory of Open Access Journals (Sweden)

    Ismet Sahin

    2013-07-01

    Full Text Available This paper presents a population-based evolutionary optimization method for minimizing a given cost function. The mutation operator of this method selects randomly oriented lines in the cost function domain, constructs quadratic functions interpolating the cost function at three different points over each line, and uses extrema of the quadratics as mutated points. The crossover operator modifies each mutated point based on components of two points in population, instead of one point as is usually performed in other evolutionary algorithms. The stopping criterion of this method depends on the number of almost degenerate quadratics. We demonstrate that the proposed method with these mutation and crossover operations achieves faster and more robust convergence than the well-known Differential Evolution and Particle Swarm algorithms.

  4. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  5. A minimally invasive smile enhancement.

    Science.gov (United States)

    Peck, Fred H

    2014-01-01

    Minimally invasive dentistry refers to a wide variety of dental treatments. On the restorative aspect of dental procedures, direct resin bonding can be a very conservative treatment option for the patient. When tooth structure does not need to be removed, the patient benefits. Proper treatment planning is essential to determine how conservative the restorative treatment will be. This article describes the diagnosis, treatment options, and procedural techniques in the restoration of 4 maxillary anterior teeth with direct composite resin. The procedural steps are reviewed with regard to placing the composite and the variety of colors needed to ensure a natural result. Finishing and polishing of the composite are critical to ending with a natural looking dentition that the patient will be pleased with for many years.

  6. Prussian blue/serum albumin/indocyanine green as a multifunctional nanotheranostic agent for bimodal imaging guided laser mediated combinatorial phototherapy.

    Science.gov (United States)

    Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong

    2016-08-28

    Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Genetic modification and genetic determinism

    Science.gov (United States)

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  8. Waste minimization in analytical methods

    International Nuclear Information System (INIS)

    Green, D.W.; Smith, L.L.; Crain, J.S.; Boparai, A.S.; Kiely, J.T.; Yaeger, J.S. Schilling, J.B.

    1995-01-01

    The US Department of Energy (DOE) will require a large number of waste characterizations over a multi-year period to accomplish the Department's goals in environmental restoration and waste management. Estimates vary, but two million analyses annually are expected. The waste generated by the analytical procedures used for characterizations is a significant source of new DOE waste. Success in reducing the volume of secondary waste and the costs of handling this waste would significantly decrease the overall cost of this DOE program. Selection of appropriate analytical methods depends on the intended use of the resultant data. It is not always necessary to use a high-powered analytical method, typically at higher cost, to obtain data needed to make decisions about waste management. Indeed, for samples taken from some heterogeneous systems, the meaning of high accuracy becomes clouded if the data generated are intended to measure a property of this system. Among the factors to be considered in selecting the analytical method are the lower limit of detection, accuracy, turnaround time, cost, reproducibility (precision), interferences, and simplicity. Occasionally, there must be tradeoffs among these factors to achieve the multiple goals of a characterization program. The purpose of the work described here is to add waste minimization to the list of characteristics to be considered. In this paper the authors present results of modifying analytical methods for waste characterization to reduce both the cost of analysis and volume of secondary wastes. Although tradeoffs may be required to minimize waste while still generating data of acceptable quality for the decision-making process, they have data demonstrating that wastes can be reduced in some cases without sacrificing accuracy or precision

  9. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    Genetic algorithms (GAs) are computational optimisation schemes with an ... The algorithms solve optimisation problems ..... Genetic Algorithms in Search, Optimisation and Machine. Learning, Addison-Wesley Publishing Company, Inc. 1989.

  10. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    artificial genetic system) string feature or ... called the genotype whereas it is called a structure in artificial genetic ... assigned a fitness value based on the cost function. Better ..... way it has produced complex, intelligent living organisms capable of ...

  11. About Genetic Counselors

    Science.gov (United States)

    ... clinical care in many areas of medicine. Assisted Reproductive Technology/Infertility Genetics Cancer Genetics Cardiovascular Genetics Cystic Fibrosis Genetics Fetal Intervention and Therapy Genetics Hematology Genetics Metabolic Genetics ...

  12. Cyclone Simulation via Action Minimization

    Science.gov (United States)

    Plotkin, D. A.; Weare, J.; Abbot, D. S.

    2016-12-01

    A postulated impact of climate change is an increase in intensity of tropical cyclones (TCs). This hypothesized effect results from the fact that TCs are powered subsaturated boundary layer air picking up water vapor from the surface ocean as it flows inwards towards the eye. This water vapor serves as the energy input for TCs, which can be idealized as heat engines. The inflowing air has a nearly identical temperature as the surface ocean; therefore, warming of the surface leads to a warmer atmospheric boundary layer. By the Clausius-Clapeyron relationship, warmer boundary layer air can hold more water vapor and thus results in more energetic storms. Changes in TC intensity are difficult to predict due to the presence of fine structures (e.g. convective structures and rainbands) with length scales of less than 1 km, while general circulation models (GCMs) generally have horizontal resolutions of tens of kilometers. The models are therefore unable to capture these features, which are critical to accurately simulating cyclone structure and intensity. Further, strong TCs are rare events, meaning that long multi-decadal simulations are necessary to generate meaningful statistics about intense TC activity. This adds to the computational expense, making it yet more difficult to generate accurate statistics about long-term changes in TC intensity due to global warming via direct simulation. We take an alternative approach, applying action minimization techniques developed in molecular dynamics to the WRF weather/climate model. We construct artificial model trajectories that lead from quiescent (TC-free) states to TC states, then minimize the deviation of these trajectories from true model dynamics. We can thus create Monte Carlo model ensembles that are biased towards cyclogenesis, which reduces computational expense by limiting time spent in non-TC states. This allows for: 1) selective interrogation of model states with TCs; 2) finding the likeliest paths for

  13. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests

    Science.gov (United States)

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C.; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, ‘complementarity' and ‘selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the ‘jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity–multifunctionality relationships in many of the world's ecosystems. PMID:27010076

  14. Minimalism through intraoperative functional mapping.

    Science.gov (United States)

    Berger, M S

    1996-01-01

    Intraoperative stimulation mapping may be used to avoid unnecessary risk to functional regions subserving language and sensori-motor pathways. Based on the data presented here, language localization is variable in the entire population, with only certainty existing for the inferior frontal region responsible for motor speech. Anatomical landmarks such as the anterior temporal tip for temporal lobe language sites and the posterior aspect of the lateral sphenoid wing for the frontal lobe language zones are unreliable in avoiding postoperative aphasias. Thus, individual mapping to identify essential language sites has the greatest likelihood of avoiding permanent deficits in naming, reading, and motor speech. In a similar approach, motor and sensory pathways from the cortex and underlying white matter may be reliably stimulated and mapped in both awake and asleep patients. Although these techniques require an additional operative time and equipment nominally priced, the result is often gratifying, as postoperative morbidity has been greatly reduced in the process of incorporating these surgical strategies. The patients quality of life is improved in terms of seizure control, with or without antiepileptic drugs. This avoids having to perform a second costly operative procedure, which is routinely done when extraoperative stimulation and recording is done via subdural grids. In addition, an aggressive tumor resection at the initial operation lengthens the time to tumor recurrence and often obviates the need for a subsequent reoperation. Thus, intraoperative functional mapping may be best alluded to as a surgical technique that results in "minimalism in the long term".

  15. Against explanatory minimalism in psychiatry

    Directory of Open Access Journals (Sweden)

    Tim eThornton

    2015-12-01

    Full Text Available The idea that psychiatry contains, in principle, a series of levels of explanation has been criticised both as empirically false but also, by Campbell, as unintelligible because it presupposes a discredited pre-Humean view of causation. Campbell’s criticism is based on an interventionist-inspired denial that mechanisms and rational connections underpin physical and mental causation respectively and hence underpin levels of explanation. These claims echo some superficially similar remarks in Wittgenstein’s Zettel. But attention to the context of Wittgenstein’s remarks suggests a reason to reject explanatory minimalism in psychiatry and reinstate a Wittgensteinian notion of level of explanation. Only in a context broader than the one provided by interventionism is the ascription of propositional attitudes, even in the puzzling case of delusions, justified. Such a view, informed by Wittgenstein, can reconcile the idea that the ascription mental phenomena presupposes a particular level of explanation with the rejection of an a priori claim about its connection to a neurological level of explanation.

  16. Against Explanatory Minimalism in Psychiatry.

    Science.gov (United States)

    Thornton, Tim

    2015-01-01

    The idea that psychiatry contains, in principle, a series of levels of explanation has been criticized not only as empirically false but also, by Campbell, as unintelligible because it presupposes a discredited pre-Humean view of causation. Campbell's criticism is based on an interventionist-inspired denial that mechanisms and rational connections underpin physical and mental causation, respectively, and hence underpin levels of explanation. These claims echo some superficially similar remarks in Wittgenstein's Zettel. But attention to the context of Wittgenstein's remarks suggests a reason to reject explanatory minimalism in psychiatry and reinstate a Wittgensteinian notion of levels of explanation. Only in a context broader than the one provided by interventionism is that the ascription of propositional attitudes, even in the puzzling case of delusions, justified. Such a view, informed by Wittgenstein, can reconcile the idea that the ascription mental phenomena presupposes a particular level of explanation with the rejection of an a priori claim about its connection to a neurological level of explanation.

  17. Robotic assisted minimally invasive surgery

    Directory of Open Access Journals (Sweden)

    Palep Jaydeep

    2009-01-01

    Full Text Available The term "robot" was coined by the Czech playright Karel Capek in 1921 in his play Rossom′s Universal Robots. The word "robot" is from the check word robota which means forced labor.The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK, FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc. redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System ® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist ® . It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naοve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions.

  18. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.

    Science.gov (United States)

    Angelakeris, M

    2017-06-01

    Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  20. [Pharmaceutical application of cyclodextrins as multi-functional drug carriers].

    Science.gov (United States)

    Uekama, Kaneto

    2004-12-01

    Owing to the increasingly globalized nature of the cyclodextrin (CyD)-related science and technology, development of the CyD-based pharmaceutical formulation is rapidly progressing. The pharmaceutically useful CyDs are classified into hydrophilic, hydrophobic, and ionic derivatives. Because of the multi-functional characteristics and bioadaptability, these CyDs are capable of alleviating the undesirable properties of drug molecules through the formation of inclusion complexes or the form of CyD/drug conjugates. This review outlines the current application of CyDs in drug delivery and pharmaceutical formulation, focusing on the following evidences. 1) The hydrophilic CyDs enhance the rate and extent of bioavailability of poorly water-soluble drugs. 2) The amorphous CyDs such as 2-hydroxypropyl-beta-CyD are useful for inhibition of polymorphic transition and crystallization rates of drugs during storage. 3) The delayed release formulation can be obtained by the use of enteric type CyDs such as O-carboxymethyl-O-ethyl-beta-CyD. 4) The hydrophobic CyDs are useful for modification of the release site and/or time profile of water-soluble drugs with prolonged therapeutic effects. 5) The branched CyDs are particularly effective in inhibiting the adsorption to hydrophobic surface of containers and aggregation of polypeptide and protein drugs. 6) The combined use of different CyDs and/or pharmaceutical additives can serve as more functional drug carriers, improving efficacy and reducing side effects. 7) The CyD/drug conjugates may provide a versatile means for the constructions of not only colonic delivery system but also site-specific drug release system, including gene delivery. On the basis of the above-mentioned knowledge, the advantages and limitations of CyDs in the design of advanced dosage forms will be discussed.

  1. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    Science.gov (United States)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  2. Multifunctional Dryland Forestry: Accumulating Experience From the East-Mediterranean

    Science.gov (United States)

    Osem, Y.; Shachack, M.; Moshe, I.

    2014-12-01

    Although small in size the landscapes of East Mediterranean Israel extend over a wide geo-climatic gradient ranging from dry sub-humid to hyper-arid lands. Thousands of years under intense human exploitation in this region, involving cutting, livestock grazing, agricultural practice and fire have resulted in severe degradation of these water limited ecosystems. The highly degraded state of the native vegetation as found by the new settlers coming to Israel in the beginning of the previous century, has provided the basic motivation for an extensive afforestation enterprise carried out during the last 100 years. This talk will present an overview on the accumulating experience in establishing and managing multifunctional forests in this dryland region. Given their very limited timber value, dryland forests are designed and managed under various goals the important of which are landscape aesthetics, recreation opportunities, grazing land, ecosystem restoration and soil conservation. Being subjected to water scarcity of high temporal and spatial variation, these manmade systems are managed to withstand water deficiency of unpredictable magnitude through the manipulation of both water input and water consumption. In the dry subhumid regions, forest management focuses mainly on controlling water consumption through the manipulation of vegetation structure using thinning and livestock grazing as primary silvicultural tools. Going into the semiarid zone, practices of rainfall redistribution and runoff harvesting become crucial for tree establishment and growth. The implementation of these practices varies depending on topography, rainfall amount and forest goals. The talk will provide a brief description of these unique silvicultural systems, review some of the recent scientific work in them and refer to critical gaps in knowledge. The relevancy to intercrop agroforestry in rainfed ecosystems will be discussed.

  3. Electrically driven hybrid photonic metamaterials for multifunctional control

    Science.gov (United States)

    Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.

    2017-08-01

    The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly

  4. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    Science.gov (United States)

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-10-16

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9.

  5. Minimally Invasive Follicular Thyroid Carcinoma in Pediatric Age

    International Nuclear Information System (INIS)

    Romero, Alfredo; Diaz, Julio; Messa Oscar; Chinchilla, Sandra; Gomez, Constanza; Restrepo, Ligia

    2009-01-01

    Thyroid carcinomas are rare during childhood and adolescence. They have increased recently probably due to a higher frequency radiation over the head, neck and mediastinum. The papillary carcinoma is the most common and true follicular carcinoma is far less common. Follicular thyroid carcinoma is associated with endemic goiter, genetic disorders, and increased TSH levels. Its morphological characteristics are peculiar and have been recently redefined, thus helping the diagnosis. A minimally invasive follicular thyroid carcinoma in 13 years old girl is described, presenting a hypocaptant thyroid nodule in the left lobe lower pole. The fine needle aspiration biopsy revealed a follicular cell lesion suspicious of malignancy. Thyroid lobectomy was performed reporting minimally invasive follicular carcinoma.

  6. Optimal Allocation of Renewable Energy Sources for Energy Loss Minimization

    Directory of Open Access Journals (Sweden)

    Vaiju Kalkhambkar

    2017-03-01

    Full Text Available Optimal allocation of renewable distributed generation (RDG, i.e., solar and the wind in a distribution system becomes challenging due to intermittent generation and uncertainty of loads. This paper proposes an optimal allocation methodology for single and hybrid RDGs for energy loss minimization. The deterministic generation-load model integrated with optimal power flow provides optimal solutions for single and hybrid RDG. Considering the complexity of the proposed nonlinear, constrained optimization problem, it is solved by a robust and high performance meta-heuristic, Symbiotic Organisms Search (SOS algorithm. Results obtained from SOS algorithm offer optimal solutions than Genetic Algorithm (GA, Particle Swarm Optimization (PSO and Firefly Algorithm (FFA. Economic analysis is carried out to quantify the economic benefits of energy loss minimization over the life span of RDGs.

  7. Is non-minimal inflation eternal?

    International Nuclear Information System (INIS)

    Feng, Chao-Jun; Li, Xin-Zhou

    2010-01-01

    The possibility that the non-minimal coupling inflation could be eternal is investigated. We calculate the quantum fluctuation of the inflaton in a Hubble time and find that it has the same value as that in the minimal case in the slow-roll limit. Armed with this result, we have studied some concrete non-minimal inflationary models including the chaotic inflation and the natural inflation, in which the inflaton is non-minimally coupled to the gravity. We find that the non-minimal coupling inflation could be eternal in some parameter spaces.

  8. Minimal nuclear energy density functional

    Science.gov (United States)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  9. Minimal models of multidimensional computations.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Fitzgerald

    2011-03-01

    Full Text Available The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.

  10. Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage

    Science.gov (United States)

    Loyselle, Patricia L.

    2018-01-01

    This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.

  11. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    Science.gov (United States)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-07

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.

  12. Multifunctional high-reflective and antireflective layer systems with easy-to-clean properties

    International Nuclear Information System (INIS)

    Gloess, D.; Frach, P.; Gottfried, C.; Klinkenberg, S.; Liebig, J.-S.; Hentsch, W.; Liepack, H.; Krug, M.

    2008-01-01

    High-reflective (HR) and even more antireflective (AR) layer systems are in use for widespread applications. Multifunctional layer systems providing high optical functionality with an easy-to-clean or a self-cleaning behaviour would be preferable for many applications to avoid soiling of the surface. In this paper, the feasibility of fabrication by highly productive pulse magnetron sputtering in an in-line coating plant is investigated. Easy-to-clean properties are achieved by a top layer of photocatalytic and photoinduced hydrophilic TiO 2 . Multifunctional HR layer systems were successfully deposited on glass and polyethylene terephthalate (PET) substrates at a low deposition temperature of 150 deg. C, demonstrating the possibility of coating certain polymer materials. Double-sided multifunctional AR layer systems with a single-sided photoinduced hydrophilic TiO 2 top coating have a resulting reflectivity of about 3% and transmittance of about 97% in the visible range of light

  13. Optimum Design of Multi-Function Robot Arm Gripper for Varying Shape Green Product

    Directory of Open Access Journals (Sweden)

    Razali Zol Bahri

    2016-01-01

    Full Text Available The project focuses on thorough experimentally studies of the optimum design of Multi-function Robot Arm Gripper for varying shape green product. The purpose of this project is to design a few of robot arm gripper for multi-functionally grip a green product with varying shape. The main character of the gripper is that it can automated adjust its finger to suit with the shape of the product. An optimum design of multi-function robot arm gripper is verified through experimental study. The expected result is a series of analytical results on the proposal of gripper design and material that will be selected for the gripper. The analysis of the gripper design proposal by using ANSYS and CATIA software is described in detail in this paper.

  14. Westinghouse Hanford Company waste minimization actions

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1988-09-01

    Companies that generate hazardous waste materials are now required by national regulations to establish a waste minimization program. Accordingly, in FY88 the Westinghouse Hanford Company formed a waste minimization team organization. The purpose of the team is to assist the company in its efforts to minimize the generation of waste, train personnel on waste minimization techniques, document successful waste minimization effects, track dollar savings realized, and to publicize and administer an employee incentive program. A number of significant actions have been successful, resulting in the savings of materials and dollars. The team itself has been successful in establishing some worthwhile minimization projects. This document briefly describes the waste minimization actions that have been successful to date. 2 refs., 26 figs., 3 tabs

  15. ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng

    2017-06-25

    In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the one from LOCO (Linear Optics from Closed Orbits) response matrix correction.

  16. Exploring the roles of women in the development of multifunctional entrepreneurship on family farms: an entrepreneurial learning approach

    NARCIS (Netherlands)

    Seuneke, P.L.M.; Bock, B.B.

    2015-01-01

    This paper analyses women’s roles in the learning process that accompanies the switch towards multi-functionality and multifunctional entrepreneurship: the process by which farmers gain the necessaryknowledge and skills ‘to do multifunctionality’, develop and adapt their identity as

  17. Organizational-economic model of formation of socio-commercial multifunctional complex in the construction of high-rise buildings

    Science.gov (United States)

    Kirillova, Ariadna; Prytkova, Oksana O.

    2018-03-01

    The article is devoted to the features of the formation of the organizational and economic model of the construction of a socio-commercial multifunctional complex for high-rise construction. Authors have given examples of high-altitude multifunctional complexes in Moscow, analyzed the advantages and disadvantages in the implementation of multifunctional complexes, stressed the need for a holistic strategic approach, allowing to take into account the prospects for the development of the city and the creation of a comfortable living environment. Based on the analysis of multifunctional complexes features, a matrix of SWOT analysis was compiled. For the development of cities and improving the quality of life of the population, it is proposed to implement a new type of multifunctional complexes of a joint social and commercial direction, including, along with the implementation of office areas - schools, polyclinics, various sports facilities and cultural and leisure centers (theatrical, dance, studio, etc.). The approach proposed in the article for developing the model is based on a comparative evaluation of the multifunctional complex project of a social and commercial direction implemented at the expense of public-private partnership in the form of a concession agreement and a commercial multifunctional complex being built at the expense of the investor. It has been proved by calculations that the obtained indicators satisfy the conditions of expediency of the proposed organizational-economic model and the project of the social and commercial multifunctional complex is effective.

  18. Organizational-economic model of formation of socio-commercial multifunctional complex in the construction of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Kirillova Ariadna

    2018-01-01

    Full Text Available The article is devoted to the features of the formation of the organizational and economic model of the construction of a socio-commercial multifunctional complex for high-rise construction. Authors have given examples of high-altitude multifunctional complexes in Moscow, analyzed the advantages and disadvantages in the implementation of multifunctional complexes, stressed the need for a holistic strategic approach, allowing to take into account the prospects for the development of the city and the creation of a comfortable living environment. Based on the analysis of multifunctional complexes features, a matrix of SWOT analysis was compiled. For the development of cities and improving the quality of life of the population, it is proposed to implement a new type of multifunctional complexes of a joint social and commercial direction, including, along with the implementation of office areas - schools, polyclinics, various sports facilities and cultural and leisure centers (theatrical, dance, studio, etc.. The approach proposed in the article for developing the model is based on a comparative evaluation of the multifunctional complex project of a social and commercial direction implemented at the expense of public-private partnership in the form of a concession agreement and a commercial multifunctional complex being built at the expense of the investor. It has been proved by calculations that the obtained indicators satisfy the conditions of expediency of the proposed organizational-economic model and the project of the social and commercial multifunctional complex is effective.

  19. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    Science.gov (United States)

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer ...Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition Report Term: 0-Other Email: pcappillino... Layer Electroless Deposition (ALED, Figure 1) is the ability to tune growth mechanism, hence growth morphology, by altering conditions. In this

  20. Multifunctional natural forest silviculture economics revised: Challenges in meeting landowners’ and society's wants. A review

    Directory of Open Access Journals (Sweden)

    Pablo Campos

    2017-10-01

    Full Text Available Aim of study: This paper objective focuses on the contribution of multifunctional natural forest silviculture, incorporating both private and public product managements, to forest and woodland economics. Area of study: Spain and California (USA. Material and methods: This conceptual article has developed a critical revision of the existing literature on the main economic issues for multifunctional natural forest silviculture in the last decades. Main results: Multifunctional natural silviculture has secular roots as a local practice, but as a science of the natural environment applied to the economic management of forest lands it is still in the process of maturation. Timber silviculture remains the central concern of forest economics investment in scientific publications. By contrast, silvicultural modeling of the natural growth of firewood, browse and other non-timber forest products from trees and shrubs receives scant attention in scientific journals. Even rarer are publications on multifunctional natural silviculture for forest and woodland managements, including environmental services geared to people’s active and passive consumption. Under this umbrella, private environmental self-consumption is represented by the amenities enjoyed by private non-industrial landowners. As for environmental public products, the most relevant are carbon, water, mushrooms, recreation, landscape and threatened biodiversity. Research highlights: This paper is a good example for the conceptual research on forestry techniques and economic concepts applied to multifunctional silviculture in Mediterranean areas of Spain and California. The combination of technical knowledge and private and public economic behaviors definitively contributes to the multifunctional management of natural forest systems.

  1. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    Science.gov (United States)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self

  2. Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva Pellosi, Diogo [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil); Calori, Italo Rodrigo [Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá (Brazil); Barcelos de Paula, Leonardo [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil); Hioka, Noboru [Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá (Brazil); Quaglia, Fabiana [Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesanto 49, 80131 Napoli (Italy); Tedesco, Antonio Claudio, E-mail: atedesco@usp.br [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil)

    2017-02-01

    Nanotechnology development provides new strategies to treat cancer by integration of different treatment modalities in a single multifunctional nanoparticle. In this scenario, we applied the multifunctional Pluronic P123/F127 mixed micelles for Verteporfin-mediated photodynamic therapy in PC3 and MCF-7 cancer cells. Micelles functionalization aimed the targeted delivery by the insertion of biotin moiety on micelle surface and fluorescence image-based through rhodamine-B dye conjugation in the polymer chains. Multifunctional Pluronics formed spherical nanoparticulated micelles that efficiently encapsulated the photosensitizer Verteporfin maintaining its favorable photophysical properties. Lyophilized formulations were stable at least for 6 months and readily reconstituted in aqueous media. The multifunctional micelles were stable in protein-rich media due to the dual Pluronic mixed micelles characteristic: high drug loading capacity provided by its micellar core and high kinetic stability due its biocompatible shell. Biotin surface functionalized micelles showed higher internalization rates due biotin-mediated endocytosis, as demonstrated by competitive cellular uptake studies. Rhodamine B-tagged micelles allowed monitoring cellular uptake and intracellular distribution of the formulations. Confocal microscopy studies demonstrated a larger intracellular distribution of the formulation and photosensitizer, which could drive Verteporfin to act on multiple cell sites. Formulations were not toxic in the dark condition, but showed high Verteporfin-induced phototoxicity against both cancer cell lines at low drug and light doses. These results point Verteporfin-loaded multifunctional micelles as a promising tool to further developments in photodynamic therapy of cancer. - Highlights: • We optimized the theranostic mixed micelles – verteporfin formulations. • Multifunctional Pluronic micelles formed nano-sized spherical nanoparticles. • Biotin surface conjugation

  3. Evaluation of a new multifunctional vitreoretinal twister for use in advanced proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Dikran G Hovaghimian

    2016-01-01

    Conclusion Epiretinal membrane dissection with the new multifunctional retinal twister appears to be a safe and effective technique in the management of epiretinal membranes. The new multifunctional retinal twister proved its efficacy and success in grasping, holding, twisting, pulling, and dissecting epiretinal membranes; further, the bipolar diathermy attachment for quick management of retinal bleeders was a great advantage for shortening the surgical time and providing a bloodless working field. The encouraging anatomic and functional outcome with the least complications met with during surgery favors its safe use. The twister proved to be a useful adjunct in the armamentarium of retinal microsurgical instruments.

  4. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Suh, Eric J. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  5. Synthesis and characterization of multifunctional silica core-shell nanocomposites with magnetic and fluorescent functionalities

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Nichkova, Mikaela; Dumas, Randy K.; Gee, Shirley J.; Hammock, Bruce D.; Liu Kai; Kennedy, Ian M.

    2009-01-01

    Multifunctional core-shell nanocomposites with a magnetic core and a silica shell doped with lanthanide chelate have been prepared by a simple method. First, citric acid-modified magnetite nanoparticles were synthesized by a chemical coprecipitation method. Then the magnetite nanoparticles were coated with silica shells doped with terbium (Tb 3+ ) complex by a modified Stoeber method based on hydrolyzing and condensation of tetraethyl orthosilicate (TEOS) and a silane precursor. These multifunctional nanocomposites are potentially useful in a variety of biological areas such as bio-imaging, bio-labeling and bioassays because they can be simultaneously manipulated with an external magnetic field and exhibit unique phosphorescence properties.

  6. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Kiyotaka Sasagawa

    2010-12-01

    Full Text Available In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities.

  7. Understanding genetics in neuroimaging.

    Science.gov (United States)

    Vasquez, Marina Lipkin; Renault, Ilana Zalcberg

    2015-02-01

    Gene expression is a process of DNA sequence reading into protein synthesis. In cases of problems in DNA repair/apoptosis mechanisms, cells accumulate genomic abnormalities and pass them through generations of cells. The accumulation of mutations causes diseases and even tumors. In addition to cancer, many other neurologic conditions have been associated with genetic mutations. Some trials are testing patients with epigenetic treatments. Epigenetic therapy must be used with caution because epigenetic processes and changes happen constantly in normal cells, giving rise to drug off-target effects. Scientists are making progress in specifically targeting abnormal cells with minimal damage to normal ones. Copyright © 2015. Published by Elsevier Inc.

  8. Acyrthosiphon pisum AQP2: a multifunctional insect aquaglyceroporin

    Czech Academy of Sciences Publication Activity Database

    Wallace, I. S.; Shakesby, A. J.; Hwang, J. H.; Choi, W. G.; Martínková, Natália; Douglas, A. E.; Roberts, D. M.

    2012-01-01

    Roč. 1818, č. 3 (2012), s. 627-635 ISSN 0005-2736 Institutional research plan: CEZ:AV0Z60930519 Keywords : aphid * Buchnera aphidicola * channel proteins * osmoregulation * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.389, year: 2012

  9. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  10. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Science.gov (United States)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  11. Filament Winding Multifunctional Carbon Nanotube Composites of Various Dimensionality

    Science.gov (United States)

    Wells, Brian David

    Carbon nanotubes (CNT) have been long considered an optimal material for composites due to their high strength, high modulus, and electrical/thermal conductivity. These composite materials have the potential to be used in the aerospace, computer, automotive, medical industry as well as many others. The nano dimensions of these structures make controlled alignment and distribution difficult using many production techniques. An area that shows promise for controlled alignment is the formation of CNT yarns. Different approaches have been used to create yarns with various winding angles and diameters. CNTs resemble traditional textile fiber structures due to their one-dimensional dimensions, axial strength and radial flexibility. One difference is, depending on the length, CNTs can have aspect ratios that far exceed those of traditional textile fibers. This can complicate processing techniques and cause agglomeration which prevents optimal structures from being created. However, with specific aspect ratios and spatial distributions a specific type of CNT, vertically aligned spinnable carbon nanotubes (VASCNTs), have interesting properties that allow carbon nanotubes to be drawn from an array in a continuous aligned web. This dissertation examines the feasibility of combining VASCNTs with another textile manufacturing process, filament winding, to create structures with various levels of dimensionality. While yarn formation with CNTs has been largely studied, there has not been significant work studying the use of VASCNTs to create composite materials. The studies that have been produces revolve around mixing CNTs into epoxy or creating uni-directional wound structures. In this dissertation VASCNTs are used to create filament wound materials with various degrees of alignment. These structures include 1 dimensional coatings applied to non-conductive polymer monofilaments, two dimensional multifunctional adhesive films, and three dimensional hybrid-nano composites. The

  12. A novel multifunctional oligonucleotide microarray for Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Chen Feng

    2010-10-01

    pilot scale to inform future array designs. Conclusions In addition to providing an initial global view of the T. gondii transcriptome across major lineages and permitting detailed resolution of recombination points in a historical sexual cross, the multifunctional nature of this array also allowed opportunities to exploit probes for purposes beyond their intended use, enhancing analyses. This array is in widespread use by the T. gondii research community, and several aspects of the design strategy are likely to be useful for other pathogens.

  13. Safe genetically engineered plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosellini, D; Veronesi, F [Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Universita degli Studi di Perugia, Borgo XX giugno 74, 06121 Perugia (Italy)

    2007-10-03

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  14. Safe genetically engineered plants

    International Nuclear Information System (INIS)

    Rosellini, D; Veronesi, F

    2007-01-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work

  15. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  16. Genetic Romanticism

    DEFF Research Database (Denmark)

    Tupasela, Aaro

    2016-01-01

    inheritance as a way to unify populations within politically and geographically bounded areas. Thus, new genetics have contributed to the development of genetic romanticisms, whereby populations (human, plant, and animal) can be delineated and mobilized through scientific and medical practices to represent...

  17. [Minimally invasive approach for cervical spondylotic radiculopathy].

    Science.gov (United States)

    Ding, Liang; Sun, Taicun; Huang, Yonghui

    2010-01-01

    To summarize the recent minimally invasive approach for cervical spondylotic radiculopathy (CSR). The recent literature at home and abroad concerning minimally invasive approach for CSR was reviewed and summarized. There were two techniques of minimally invasive approach for CSR at present: percutaneous puncture techniques and endoscopic techniques. The degenerate intervertebral disc was resected or nucleolysis by percutaneous puncture technique if CSR was caused by mild or moderate intervertebral disc herniations. The cervical microendoscopic discectomy and foraminotomy was an effective minimally invasive approach which could provide a clear view. The endoscopy techniques were suitable to treat CSR caused by foraminal osteophytes, lateral disc herniations, local ligamentum flavum thickening and spondylotic foraminal stenosis. The minimally invasive procedure has the advantages of simple handling, minimally invasive and low incidence of complications. But the scope of indications is relatively narrow at present.

  18. Corporate tax minimization and stock price reactions

    OpenAIRE

    Blaufus, Kay; Möhlmann, Axel; Schwäbe, Alexander

    2016-01-01

    Tax minimization strategies may lead to significant tax savings, which could, in turn, increase firm value. However, such strategies are also associated with significant costs, such as expected penalties and planning, agency, and reputation costs. The overall impact of firms' tax minimization strategies on firm value is, therefore, unclear. To investigate whether corporate tax minimization increases firm value, we analyze the stock price reaction to news concerning corporate tax avoidance or ...

  19. Safety control and minimization of radioactive wastes

    International Nuclear Information System (INIS)

    Wang Jinming; Rong Feng; Li Jinyan; Wang Xin

    2010-01-01

    Compared with the developed countries, the safety control and minimization of the radwastes in China are under-developed. The research of measures for the safety control and minimization of the radwastes is very important for the safety control of the radwastes, and the reduction of the treatment and disposal cost and environment radiation hazards. This paper has systematically discussed the safety control and the minimization of the radwastes produced in the nuclear fuel circulation, nuclear technology applications and the process of decommission of nuclear facilities, and has provided some measures and methods for the safety control and minimization of the radwastes. (authors)

  20. Perspectives of Extension Agents and Farmers toward Multifunctional Agriculture in the United States Corn Belt

    Science.gov (United States)

    Doudna, John W.; O'Neal, Matthew E.; Tyndall, John C.; Helmers, Matthew J.

    2015-01-01

    We surveyed the perspectives of farmers, crop professionals, and Extension agents and found that they have positive perspectives concerning multifunctional agriculture, including a positive effect of a nearby prairie to cropland productivity. The survey was conducted in central Iowa and included individuals predominantly from Iowa involved in…