WorldWideScience

Sample records for multidrug-resistant salmonella concord

  1. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    Science.gov (United States)

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  2. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan

    DEFF Research Database (Denmark)

    Lauderdale, T. L.; Aarestrup, Frank Møller; Chen, P. C.

    2006-01-01

    (41%) and was highly prevalent in Salmonella enterica serotype Typhimurium (72.7%, 176/242) the most common serotype. Additional resistance to trimethoprim was present in 155 (19.4% overall) of the ACSSuT R-type isolates from several serotypes. Reduced susceptibility to fluoroquinolone (FQ...... multiresistant to other antimicrobials. Studies are needed to determine the sources of different multidrug-resistant serotypes. Continued national surveillance is underway to monitor changes in resistance trends and to detect further emergence of resistant Salmonella serotypes in Taiwan. (c) 2006 Elsevier Inc...

  3. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  4. Prevalence and behavior of multidrug-resistant Salmonella strains on raw whole and cut nopalitos (Opuntia ficus-indica L.) and on nopalitos salads.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Gutiérrez-Alcántara, Eduardo J; Torres-Vitela, M Refugio; Rangel-Vargas, Esmeralda; Villarruel-López, Angelica; Castro-Rosas, Javier

    2017-09-01

    The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Nopalito is a cactaceous that is commonly consumed either raw or cooked in Mexico and other countries. The presence of antibiotic-resistant Salmonella strains on raw whole nopalitos (RWN, without prickles), raw nopalitos cut into squares (RNCS) and in cooked nopalitos salads (CNS) samples was determined. In addition, the behavior of multidrug-resistant Salmonella isolates on RWN, RNCS and CNS at 25° ± 2 °C and 3° ± 2 °C was investigated. One hundred samples of RWN, 100 of RNCS and 100 more of CNS were collected from public markets. Salmonella strains were isolated and identified in 30, 30 and 10% of the samples, respectively. Seventy multidrug-resistant Salmonella strains were isolated from all the nopalitos samples. Multidrug-resistant Salmonella isolates survived at least 15 days on RWN at 25° ± 2 °C or 3° ± 2 °C. Multidrug-resistant Salmonella isolates grew in the RNCS and CNS samples at 25° ± 2 °C. However, at 3° ± 2 °C the bacterial growth was inhibited. This is the first report about multidrug-resistant Salmonella isolation from raw nopalitos and nopalitos salads. Nopalitos from markets are very likely to be an important factor contributing to the endemicity of multidrug-resistant Salmonella-related gastroenteritis in Mexico. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Prevalence and multidrug resistance pattern of Salmonella isolated from resident wild birds of Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdullah Al Faruq

    2016-10-01

    Full Text Available Aim: Salmonellosis is one of the most common zoonotic diseases, and the presence of antimicrobial resistant Salmonella in wild birds is global public health threat. Throughout the last decades, multidrug resistance of Salmonella spp. has increased, particularly in developing countries. Therefore, a cross-sectional study was conducted to investigate the prevalence of Salmonella spp. and antimicrobial resistance pattern against Salmonella spp. from two species of resident wild birds namely house crow (Corvus splendens and Asian pied starling (Gracupica contra. Materials and Methods: Samples were collected from cloacal swabs of house crows and Asian pied starling for isolating Salmonella spp. (bacteriological culture methods followed by antimicrobial susceptibility testing (disk diffusion method against Salmonella spp. isolates during March to December 2014. Results: The prevalence of Salmonella in Asian pied starling and house crows were 67% and 65%, respectively. Within the category of samples from different species, the variation in prevalence was not varied significantly (p>0.05. Isolated Salmonella spp. was tested for resistance to six different antimicrobial agents. Among six antimicrobial tested, 100% resistance were found to penicillin, oxacillin, and clindamycin followed by erythromycin (50-93%, kanamycin (7-20%, and cephalothin (30-67% from both species of birds. Kanamycin remained sensitive in (70-73%, cephalothin (26-70%, and erythromycin appeared to be (0-30% sensitive against Salmonella spp. isolates. Isolated Salmonella spp. was multidrug resistant up to three of the six antimicrobials tested. Conclusion: It can be said that the rational use of antimicrobials needs to be adopted in the treatment of disease for livestock, poultry, and human of Bangladesh to limit the emergence of drug resistance to Salmonella spp.

  6. Multidrug-resistant Salmonella enterica serovar Typhimurium isolates are resistant to antibiotics that influence their swimming and swarming motility

    Science.gov (United States)

    Motile bacteria utilize one or more strategies for movement, such as darting, gliding, sliding, swarming, swimming, and twitching. The ability to move is considered a virulence factor in many pathogenic bacteria, including Salmonella. Multidrug-resistant (MDR) Salmonella encodes acquired factors t...

  7. Occurrence of multidrug-resistant Salmonella enterica serovar Enteritidis isolates from poultry in Iran

    Directory of Open Access Journals (Sweden)

    Ghaderi, R.

    2016-03-01

    Full Text Available Salmonella enterica is recognized as one of the major food-borne pathogens with more than 2,500 serotypes worldwide. The present study addresses antimicrobial resistance of Salmonella enterica serovar Enteritidis isolates in Iran. A collection of 151 Salmonella spp. isolates collected from poultry were serotyped to identify Salmonella Enteritidis. Sixty-one Salmonella Enteritidis were subsequently tested against 30 antimicrobials. A high frequency of antimicrobial resistance was observed against nitrofurantoin (n=55, 90.2% followed by nalidixic acid (n=41, 67.2%, and cephalexin (n=23, 37.7%. Multi-drug resistance were observed in 35 (57.4% out of 61 isolates. Twenty-six antimicrobial resistance patterns were observed among the 61 Salmonella Enteritidis. All isolates were susceptible to ofloxacin, imipenem, enrofloxacin, chloramphenicol, gentamicin, and 3rd and 4th generation cephalosporins. In conclusion, our results revealed that implementing new policies toward overuse of antimicrobial drugs in Iranian poultry industry are of great importance.

  8. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China.

    Directory of Open Access Journals (Sweden)

    Yan Lu

    Full Text Available A total of 310 Salmonella isolates were isolated from 6 broiler farms in Eastern China, serotyped according to the Kauffmann-White classification. All isolates were examined for susceptibility to 17 commonly used antimicrobial agents, representative isolates were examined for resistance genes and class I integrons using PCR technology. Clonality was determined by pulsed-field gel electrophoresis (PFGE. There were two serotypes detected in the 310 Salmonella strains, which included 133 Salmonella enterica serovar Indiana isolates and 177 Salmonella enterica serovar Enteritidis isolates. Antimicrobial sensitivity results showed that the isolates were generally resistant to sulfamethoxazole, ampicillin, tetracycline, doxycycline and trimethoprim, and 95% of the isolates sensitive to amikacin and polymyxin. Among all Salmonella enterica serovar Indiana isolates, 108 (81.2% possessed the blaTEM, floR, tetA, strA and aac (6'-Ib-cr resistance genes. The detected carriage rate of class 1 integrons was 66.5% (206/310, with 6 strains carrying gene integron cassette dfr17-aadA5. The increasing frequency of multidrug resistance rate in Salmonella was associated with increasing prevalence of int1 genes (rs = 0.938, P = 0.00039. The int1, blaTEM, floR, tetA, strA and aac (6'-Ib-cr positive Salmonella enterica serovar Indiana isolates showed five major patterns as determined by PFGE. Most isolates exhibited the common PFGE patterns found from the chicken farms, suggesting that many multidrug-resistant isolates of Salmonella enterica serovar Indiana prevailed in these sources. Some isolates with similar antimicrobial resistance patterns represented a variety of Salmonella enterica serovar Indiana genotypes, and were derived from a different clone.

  9. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline an...

  10. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan

    Directory of Open Access Journals (Sweden)

    Ayman A. Elshayeb

    2017-11-01

    Full Text Available Abstract Background Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. Objectives The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Methods Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. Results A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax − b. Minimum bactericidal concentration’s predication of resistance was given the exponential trend (y = n ex and the predictive coefficient R2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally. Conclusion This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current

  11. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  12. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan.

    Science.gov (United States)

    Elshayeb, Ayman A; Ahmed, Abdelazim A; El Siddig, Marmar A; El Hussien, Adil A

    2017-11-14

    Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax - b). Minimum bactericidal concentration's predication of resistance was given the exponential trend (y = n e x ) and the predictive coefficient R 2  > 0 current antimicrobial drug resistance patterns of community-acquired agents causing outbreaks.

  13. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Mohammed Abdel-Maksoud

    2015-05-01

    Full Text Available Background: Food-borne diseases pose serious health problems, affecting public health and economic development worldwide. Methods: Salmonella was isolated from samples of chicken parts, skin samples of whole chicken carcasses, raw egg yolks, eggshells and chicken faeces. Resulting isolates were characterised by serogrouping, serotyping, antimicrobial susceptibility testing and detection of extended-spectrum β-lactamase (ESBL production. Antibiotic resistance genes and integrons were identified by polymerase chain reaction (PCR. Results: The detection rates of Salmonella were 60%, 64% and 62% in chicken parts, skin, and faeces, respectively, whereas the egg yolks and eggshells were uniformly negative. Salmonella Kentucky and S. Enteritidis serotypes comprised 43.6% and 2.6% of the isolates, respectively, whilst S. Typhimurium was absent. Variable resistance rates were observed against 16 antibiotics; 97% were resistant to sulfamethoxazole, 96% to nalidixic acid and tetracycline and 76% to ampicillin. Multidrug resistance was detected in 82% (64/78 of the isolates and ESBL production was detected in 8% (6/78. The β-lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of the isolates, whilst the blaOXA gene was absent. The sul1gene was detected in 97.3% and the sul2 gene in 5.3% of the isolates. Sixty-four of the 78 isolates (82% were positive for the integrase gene (int I from class 1 integrons, whilst int II was absent. Conclusion: This study reveals the presence of an alarming number of multidrug-resistant Salmonella isolates in the local poultry markets in Cairo. The high levels of drug resistance suggest an emerging problem that could impact negatively on efforts to prevent and treat poultry and poultry-transmitted human diseases in Egypt.

  14. Antibacterial effect of roselle extracts (Hibiscus sabadariffa), sodium hypochlorite and acetic acid against multidrug-resistant Salmonella strains isolated from tomatoes.

    Science.gov (United States)

    Gutiérrez-Alcántara, E J; Rangel-Vargas, E; Gómez-Aldapa, C A; Falfan-Cortes, R N; Rodríguez-Marín, M L; Godínez-Oviedo, A; Cortes-López, H; Castro-Rosas, J

    2016-02-01

    Antibiotic-resistant Salmonella strains were isolated from saladette and red round type tomatoes, and an analysis done of the antibacterial activity of roselle calyx extracts against any of the identified strains. One hundred saladette tomato samples and 100 red round tomato samples were collected from public markets. Each sample consisted of four whole tomatoes. Salmonella was isolated from the samples by conventional culture procedure. Susceptibility to 16 antibiotics was tested for the isolated Salmonella strains by standard test. The antibacterial effect of four roselle calyx extracts (water, methanol, acetone and ethyl acetate), sodium hypochlorite and acetic acid against antibiotic-resistant Salmonella isolates was evaluated on contaminated tomatoes. Twenty-four Salmonella strains were isolated from 12% of each tomato type. Identified Salmonella serotypes were Typhimurium and Typhi. All isolated strains exhibited resistance to at least three antibiotics and some to as many as 12. Over contaminated tomatoes, the roselle calyx extracts produced a greater reduction (2-2·6 log) in antibiotic-resistant Salmonella strain concentration than sodium hypochlorite and acetic acid. The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Multidrug-resistant Salmonella strains were isolated from raw tomatoes purchased in public markets in Mexico and challenged with roselle Hibiscus sabdariffa calyx extracts, sodium hypochlorite and acetic acid. On tomatoes, the extracts caused a greater reduction in the concentration of antibiotic-resistant Salmonella strains than sodium hypochlorite and acetic acid. Roselle calyx extracts are a potentially useful addition to disinfection procedures of raw tomatoes in the field, processing plants, restaurants and homes. © 2015 The Society for Applied Microbiology.

  15. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim...... of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug......-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  16. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Parvej

    2016-01-01

    Full Text Available Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE. Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33% produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and

  17. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Lienemann, Taru; Frye, Jonathan G; Barro, Nicolas; Haukka, Kaisa

    2018-01-01

    Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Salmonella strains were isolated from poultry and patients using standard bacteriological methods described in previous studies. The strains were serotype according to Kaufmann-White scheme and tested for antibiotic susceptibility to 12 different antimicrobial agents using the disk diffusion method. The whole genome of the S. Typhimurium isolates was analyzed using Illumina technology and compared with 20 isolates of S. Typhimurium for which the ST has been deposited in a global MLST database.The ResFinder Web server was used to find the antibiotic resistance genes from whole genome sequencing (WGS) data. For comparative genomics, publicly available complete and draft genomes of different S. Typhimurium laboratory-adapted strains were downloaded from GenBank. All the tested Salmonella serotype Typhimurium were multiresistant to five commonly used antibiotics (ampicillin, chloramphenicol, streptomycin, sulfonamide, and trimethoprim). The multilocus sequence type ST313 was detected from all the strains. Our sequences were very similar to S. Typhimurium ST313 strain D23580 isolated from a patient with invasive non-typhoid Salmonella (NTS) infection in Malawi, also located in sub-Saharan Africa. The use of ResFinder web server on the whole genome of the strains showed a resistance to aminoglycoside associated with carriage of the following resistances genes: strA , strB , and aadA1 ; resistance to β-lactams associated with carriage of a bla TEM-1B genes; resistance to phenicol associated with carriage of catA1 gene; resistance to sulfonamide associated with carriage of sul1 and sul2 genes; resistance to tetracycline associated with carriage of tet B gene; and resistance to trimethoprim associated to dfrA1 gene

  18. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients

    Science.gov (United States)

    The objective of this study was to evaluate conjugative transfer of cephalosporin resistance among (n=100) strains of multi-drug resistant Escherichia coli (MDRE) to Salmonella Newport and E. coli DH5-alpha recipients. To accomplish this, phenotypic and genotypic profiles were determined for MDRE, ...

  19. International spread of multidrug-resistant Salmonella Schwarzengrund in food products

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hendriksen, Rene S.; Lockett, Jana

    2007-01-01

    We compared 581 Salmonella enterica serotype Schwarzengrund isolates from persons, food, and food animals in Denmark, Thailand, and the United States by antimicrobial drug susceptibility and pulsed-field gel electrophoresis (PFGE) typing. Resistance, including resistance to nalidixic acid......, was frequent among isolates from persons and chickens in Thailand, persons in the United States, and food imported from Thailand to Denmark and the United States. A total of 183 PFGE patterns were observed, and 136 (23.4%) isolates had the 3 most common patterns. Seven of 14 isolates from persons in Denmark...... had patterns found in persons and chicken meat in Thailand; 22 of 390 human isolates from the United States had patterns found in Denmark and Thailand. This study suggests spread of multidrug-resistant S. Schwarzengrund from chickens to persons in Thailand, and from imported Thai food products...

  20. Multidrug Resistance in Infants and Children

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2018-02-01

    Full Text Available Bacterial infections may cause disease and death. Infants and children are often subject to bacterial infections. Antimicrobials kill bacteria protecting the infected patients andreducing the risk of morbidity and mortality caused by bacteria. The antibiotics may lose their antibacterial activity when they become resistant to a bacteria. The resistance to different antibiotics in a bacteria is named multidrug-resistance. Gram-negative bacilli, especially Escherichia coli, Klebsiella, Enterobacter, Salmonella, Shigella, Pseudomonas, Streptococcus, and Haemophilus influenzae type b, may become resistant. Amikacin ampicillin, amoxicillin, amoxiclav, cefuroxime, cefotaxime, ceftazidime, cefoperazone tetracycline, chloramphenicol, ciprofloxacin, and gentamicin may cause bacterial-resistance. Resistance to bacteria for several pathogens makes complications in the treatment of infections caused by them. Salmonella strains may become resistant to ampicillin, cephalotin, ceftriaxone, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline. Shigella strains may become resistant to ampicillin, cotrimoxazole, chloramphenicol, and streptomycin. Multidrug-resistance of Streptococcus pneumoniae may be due to β-lactams, macrolides, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Multidrug-resistance of Pseudomonas aeruginosa may become resistant to β-lactams, chloramphenicol, trimethoprim-sulfamethoxazole, and tetracycline. The antibacterial activity against Haemophilus strains may occur with ampicillin, sulbactam-ampicillin, trimethoprim-sulfamethoxazole, gentamicin, chloramphenicol, and ciprofloxacin. Multidrug-resistance of the Klebsiella species may be due with ampicillin, cefotaxime, cefuroxime, co-amxilav, mezlocillin, chloramphenicol, gentamicin, and ceftazidime. Multidrug-resistance of Escherichia coli may be caused by ampicillin, cotrimoxazole, chloramphenicol, ceftriaxone, and ceftazidime. Vibrio

  1. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States.

    Science.gov (United States)

    Folster, Jason P; Campbell, Davina; Grass, Julian; Brown, Allison C; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A; Plumblee, Jodie R; Walker, Carrie; Fedorka-Cray, Paula J; Whichard, Jean M

    2015-05-01

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    Science.gov (United States)

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-06-22

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes.

  3. Phenotypic and genotypic profile of clinical and animal multidrug-resistant Salmonella enterica isolates from Mexico.

    Science.gov (United States)

    Aguilar-Montes de Oca, S; Talavera-Rojas, M; Soriano-Vargas, E; Barba-León, J; Vázquez-Navarrete, J; Acosta-Dibarrat, J; Salgado-Miranda, C

    2018-01-01

    The objective of this study was to obtain a phenotypic and genotypic profile of Salmonella enterica including multidrug-resistant (MDR) isolates from food-producing animals and clinical isolates, as well as their genetic relatedness in two different States of Mexico (Jalisco and State of Mexico). A total of 243 isolates were evaluated in terms of antimicrobial resistance (AMR) and related genes through a disk diffusion method and PCR respectively; we found 16 MDR isolates, all of them harbouring the bla CMY gene but not qnr genes, these isolates represent less than 10% of the collection. The pulsed-field gel electrophoresis revealed a higher genotypic similitude within isolates of State of Mexico than Jalisco. A low percentage of Salmonella isolates were resistant to relevant antibiotics in human health, nevertheless, the AMR and involved genes were similar despite the different serovars and origin of the isolates. This investigation provided an insight of the current status of AMR of Salmonella isolates in two States of Mexico and pinpoint the genes involved in AMR and their epidemiological relationship, the information could help to determine an adequate therapy in human and veterinary medicine. © 2017 The Society for Applied Microbiology.

  4. Multidrug Resistant Salmonella typhi in Asymptomatic Typhoid Carriers among Food Handlers in Namakkal District, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Senthilkumar B

    2005-01-01

    Full Text Available Purpose: to screen Salmonella typhi in asymptomatic typhoid carriers and to find out drug resistance and ability of the strains to transmit drug resistance to other bacteria. Methods: Cultural characters, biochemical tests, antibiotic sensitivity test (disc diffusion, agarose gel electrophoresis, and conjugation protocols were done. Thirty five stool samples were collected from the suspected food handlers for the study. Results: Among 35 samples, (17.14% yielded a positive result. Out of these 4 (20.0% were women and 2 (13.33% were men. The isolates were tested with a number of conventional antibiotics viz, amikacin, amoxicillin, ampicillin, chloramphenicol, ciprofloxacin, co-trimaxazole, rifampicin, gentamicin, nalidixic acid, ofloxacin and tetracycline. Five isolates were having the multidrug resistant character. Four (66.66% multidrug resistant isolates were found to have plasmids, while one (16.66% multidrug resistant isolate had no plasmid and the chromosome encoded the resistance. Only one strain (16.66% showed single antibiotic resistance in the study and had no plasmid DNA. The molecular weights of the plasmids were determined and found to be 120 kb.The mechanism of spreading of drug resistance through conjugation process was analyzed. In the conjugation studies, the isolates having R+ factor showed the transfer of drug resistance through conjugation, which was determined by the development of antibiotic resistance in the recipients. Conclusion: This study shows that drug resistant strains are able to transfer genes encoding drug resistance.

  5. Characterization of a multidrug-resistant Salmonella enterica serovar Heidelberg outbreak strain in commercial turkeys: Colonization, transmission, and host transcriptional response

    Science.gov (United States)

    In recent years, multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg has been associated with numerous human foodborne illness outbreaks due to consumption of poultry. For example, in 2011, an MDR S. Heidelberg outbreak associated with ground turkey sickened 136 individuals and resulted...

  6. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    Science.gov (United States)

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  7. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Maria Hoffmann

    2017-08-01

    Full Text Available Determinants of multidrug resistance (MDR are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI, and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about

  8. ramR Mutations Affecting Fluoroquinolone Susceptibility in Epidemic Multidrug-Resistant Salmonella enterica Serovar Kentucky ST198

    Directory of Open Access Journals (Sweden)

    Axel eCloeckaert

    2013-07-01

    Full Text Available A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n=30, covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.

  9. Prolonged restaurant-associated outbreak of multidrug-resistant Salmonella Typhimurium among patients from several European countries

    DEFF Research Database (Denmark)

    Ethelberg, S.; Lisby, M.; Torpdahl, M.

    2004-01-01

    This report concerns a prolonged restaurant-associated outbreak of infection caused by a multidrug-resistant (ASSuT) strain of Salmonella Typhimurium, phage-type U302, which took place during July and August 2003 and affected people from Denmark and neighbouring countries who had attended...... a specific restaurant. The outbreak comprised 67 laboratory-verified cases and ten probable cases; however, the actual number of patients was estimated to be more than 390. The outbreak strain was isolated from a buffet which was probably contaminated by an assistant chef who was found to excrete...

  10. Complete Sequences of Six IncA/C Plasmids of Multidrug-Resistant Salmonella enterica subsp. enterica Serotype Newport.

    Science.gov (United States)

    Cao, Guojie; Allard, Marc W; Hoffmann, Maria; Monday, Steven R; Muruvanda, Tim; Luo, Yan; Payne, Justin; Rump, Lydia; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick F; Brown, Eric W; Meng, Jianghong

    2015-02-26

    Multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Newport has been a long-standing public health concern in the United States. We present the complete sequences of six IncA/C plasmids from animal-derived MDR S. Newport ranging from 80.1 to 158.5 kb. They shared a genetic backbone with S. Newport IncA/C plasmids pSN254 and pAM04528. Copyright © 2015 Cao et al.

  11. Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil

    Science.gov (United States)

    Monte, Daniel F. M.; Tavares, Adassa G.; Albuquerque, Allan R.; Sampaio, Fábio C.; Oliveira, Tereza C. R. M.; Franco, Octavio L.; Souza, Evandro L.; Magnani, Marciane

    2014-01-01

    Multidrug-resistant Salmonella enterica isolates from human outbreaks or from poultry origin were investigated for their ability to develop direct-tolerance or cross-tolerance to sodium chloride, potassium chloride, lactic acid, acetic acid, and ciprofloxacin after habituation in subinhibitory amounts ( of the minimum inhibitory concentration – (MIC) and of the minimum inhibitory concentration – MIC) of Origanum vulgare L. essential oil (OVEO) at different time intervals. The habituation of S. enterica to OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by the modulation of MIC values. However, cells habituated to OVEO maintained or increased susceptibility to the tested antimicrobials agents, with up to fourfold double dilution decrease from previously determined MIC values. This study reports for the first time the non-inductive effect of OVEO on the acquisition of direct-tolerance or cross-tolerance in multidrug-resistant S. enterica strains to antimicrobial agents that are largely used in food preservation, as well as to CIP, the therapeutic drug of salmonellosis. PMID:25566231

  12. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104

    DEFF Research Database (Denmark)

    Molbak, K.; Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1999-01-01

    Background Food-borne salmonella infections have become a major problem in industrialized countries. The strain of Salmonella enterica serotype typhimurium known as definitive phage type 104 (DT104) is usually resistant to five drugs: ampicillin, chloramphenicol, streptomycin, sulfonamides......, and tetracycline. An increasing proportion of DT104 isolates also have reduced susceptibility to fluoroquinolones. Methods The Danish salmonella surveillance program determines the phage types of all typhimurium strains from the food chain, and in the case of suspected outbreaks, five-drug-resistant strains...... are characterized by molecular methods. All patients infected with five-drug-resistant typhimurium are interviewed to obtain clinical and epidemiologic data. In 1998, an outbreak of salmonella occurred, in which the strain of typhimurium DT104 was new to Denmark. We investigated this outbreak and report our...

  13. Antimicrobial Resistance Profiles of the Two Porcine Salmonella Typhimurium Isolates

    Directory of Open Access Journals (Sweden)

    Kemal METİNER

    2016-07-01

    Full Text Available The aim of the study is to detect the presence of the Salmonella species in swine with diarrhea, and to investigate their antimicrobial resistance and extended spectrum beta lactamase (ESBL and/or AmpC β-lactamase production. For this purpose, stool samples from three commercial pig farms in Istanbul and Tekirdag were collected and processed for Salmonella isolation by culture and isolates were identified by biochemical activity tests. Salmonella isolates were confirmed by PCR then serotyped. Antimicrobial resistance and ESBL and AmpC production of the isolates were determined according to the Clinical and Laboratory Standards Institute (CLSI standard. In the study, two hundred and thirty eight stool samples were examined. Salmonella spp. were obtained from 2 samples, and the isolation rate was determined as 0.8%. Both of the isolates were defined as Salmonella enterica subsp. enterica serovar Typhimurium (serotype 1, 4, [5], 12: I: 1, 2 by serotyping. Both of them were resistant to cefaclor, cloxacillin and lincomycin (100%. Multidrug resistance (resistance ≥3 antimicrobials observed in all isolates. ESBL and AmpC production were not detected in any of the isolates. To our knowledge, this is the first report of the isolation of S. Typhimurium in pigs with diarrhea in Turkey. This study also represents the first report of multi-drug resistant S. Typhimurium isolates from pig stools in Turkey.

  14. An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli.

    Science.gov (United States)

    Card, Roderick M; Cawthraw, Shaun A; Nunez-Garcia, Javier; Ellis, Richard J; Kay, Gemma; Pallen, Mark J; Woodward, Martin J; Anjum, Muna F

    2017-07-18

    The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase bla CTX-M1 We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections

  15. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue...

  16. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne; Andersen, Jens Strodl; Aabo, Søren

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue....

  17. Antimicrobial resistance of fecal isolates of salmonella and shigella ...

    African Journals Online (AJOL)

    Salmonellosis and Shigellosis coupled with increased levels of multidrug resistances are public health problems, especially in developing countries. This study was aimed at determining the prevalence of fecal Salmonella and Shigella spp and its antimicrobial resistance patterns. A retrospective study was conducted on ...

  18. Multidrug-resistant pathogens in the food supply.

    Science.gov (United States)

    Doyle, Marjorie E

    2015-04-01

    Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in

  19. International Spread of an Epidemic Population of Salmonella enterica Serotype Kentucky ST198 Resistant to Ciprofloxacin

    DEFF Research Database (Denmark)

    Le Hello, Simon; Hendriksen, Rene S.; Doublet, Benoit

    2011-01-01

    National Salmonella surveillance systems from France, England and Wales, Denmark, and the United States identified the recent emergence of multidrug-resistant isolates of Salmonella enterica serotype Kentucky displaying high-level resistance to ciprofloxacin. A total of 489 human cases were ident...

  20. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    Science.gov (United States)

    2013-01-01

    Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi

  1. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    Science.gov (United States)

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Doublet, Benoît

    2010-12-20

    The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives.

  3. Microarray-based analysis of IncA/C plasmid-associated genes from multidrug-resistant Salmonella enterica.

    Science.gov (United States)

    Lindsey, Rebecca L; Frye, Jonathan G; Fedorka-Cray, Paula J; Meinersmann, Richard J

    2011-10-01

    In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.

  4. Photoexcited quantum dots for killing multidrug-resistant bacteria

    Science.gov (United States)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  5. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.

    Science.gov (United States)

    Walther, Birgit; Tedin, Karsten; Lübke-Becker, Antina

    2017-02-01

    Although the problems associated with healthcare-associated infections (HAI) and the emergence of zoonotic and multidrug-resistant pathogens in companion animal (dogs, cats and horses) medicine have been well-known for decades, current progress with respect to practical implementation of infection control programs in veterinary clinics has been limited. Clinical outbreak events reported for methicillin-resistant Staphylooccus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and multidrug-resistant (MDR) Salmonella Serovars indicate the necessity of infection control strategies for protecting animal patients at risk as well as veterinary personnel. The close bond between humans and their companion animals provides opportunities for exchange of microorganisms, including MDR pathogens. This particular aspect of the "One Health" idea requires more representative surveillance efforts and infection control strategies with respect to animal-species specific characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sequence Analysis of IncA/C and IncI1 Plasmids Isolated from Multidrug-Resistant Salmonella Newport Using Single-Molecule Real-Time Sequencing.

    Science.gov (United States)

    Cao, Guojie; Allard, Marc; Hoffmann, Maria; Muruvanda, Tim; Luo, Yan; Payne, Justin; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick; Brown, Eric; Meng, Jianghong

    2018-04-05

    Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5 kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, bla CMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried bla CMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome

  7. Concordance of programmatic and laboratory-based multidrug-resistant tuberculosis treatment outcomes in Peru.

    Science.gov (United States)

    Alexy, E R; Podewils, L J; Mitnick, C D; Becerra, M C; Laserson, K F; Bonilla, C

    2012-01-01

    Confirmation of cure for multidrug-resistant tuberculosis (MDR-TB) patients requires laboratory tests for Mycobacterium tuberculosis growth on culture media. Outcome decisions dictate patient management, and inaccuracies place patients at an increased risk of morbidity and mortality, and may contribute to continued transmission of MDR-TB. To examine concordance between programmatic and laboratory-based MDR-TB treatment outcomes. The study population included 1658 MDR-TB patients in Peru treated between 1996 and 2002 with both program and laboratory-based outcomes. Laboratory-based outcomes were assigned according to international standards requiring at least five consecutive negative cultures in the last 12 months of treatment to confirm cure. Compared to the global culture-defined standard classification, only 1.1% of treatment successes, but 54.3% of failures, were misclassified programmatically. Overall, 10.4% of patients identified by a clinician as having a successful treatment outcome still had cultures positive for MDR-TB. Most patients with successful treatment outcomes by strict culture definitions were also classified by clinicians as having successful outcomes. However, many culture-confirmed failures were missed. In light of delays and incomplete access to culture in MDR-TB programs, efforts should be made to improve the accuracy of programmatically determined treatment outcomes.

  8. Non-typhoidal Salmonella serotypes, antimicrobial resistance and co-infection with parasites among patients with diarrhea and other gastrointestinal complaints in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Eguale, Tadesse; Gebreyes, Wondwossen A; Asrat, Daniel; Alemayehu, Haile; Gunn, John S; Engidawork, Ephrem

    2015-11-04

    isolates. Resistance to five or more antimicrobials was detected in 17 (25.4 %). Resistance to individual antimicrobials was found at varying proportions: streptomycin (50; 74.6 %), nitrofurantoin (27; 40.3 %), sulfisoxazole (26; 38.8 %), kanamycin (23; 34.3 %), cephalothin (12; 17.9 %), and ampicillin (11; 16.4 %) respectively. Two S. Kentucky, one S. Typhimurium and one S. Concord isolates were multi-drug resistant to more than 10 antimicrobials. The study demonstrated significant association of Salmonella infection with consumption of raw vegetables. There was no significant association of Salmonella infection with co-occurring parasites. The study also showed the dominance of S. Typhimurium and S. Virchow in primary health care units. Overall, prevalence of MDR was low compared to previous studies. Although their proportion was low, S. Kentucky and S. Concord demonstrated wider spectrum of MDR. Continuous monitoring of circulating serotypes, antimicrobial resistance profile and characterization on molecular resistance determinants is essential for proper treatment of patients and for identifying potential environmental origins of antimicrobial resistance.

  9. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Katsuhiko eHayashi

    2014-04-01

    Full Text Available Honey has a complex chemistry, and its broad-spectrum antimicrobial activity varies with floral source, climate, and harvesting conditions. Methylglyoxal was identified as the dominant antibacterial component of manuka honey. Although it has been known that methylglyoxal has antibacterial activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, there is not much information describing its activity against gram-negative bacteria. In this study, we report the effect of methylglyoxal against multidrug-resistant Pseudomonas aeruginosa (MDRP using 53 clinically isolated strains. We also assessed the effect of deleting the five multidrug efflux systems in P. aeruginosa, as well as the efflux systems in Escherichia coli and Salmonella enterica serovar Typhimurium, on MICs of methylglyoxal. Our results indicate that methylglyoxal inhibits the growth of MDRP at concentrations of 128–512 µg/ml (1.7–7.1 mM and is not recognized by drug efflux systems.

  10. Septic arthritis of the hip in a Cambodian child caused by multidrug-resistant Salmonella enterica serovar Typhi with intermediate susceptibility to ciprofloxacin treated with ceftriaxone and azithromycin.

    Science.gov (United States)

    Pocock, J M; Khun, P A; Moore, C E; Vuthy, S; Stoesser, N; Parry, C M

    2014-08-01

    Septic arthritis is a rare complication of typhoid fever. A 12-year-old boy without pre-existing disease attended a paediatric hospital in Cambodia with fever and left hip pain. A hip synovial fluid aspirate grew multidrug-resistant Salmonella enterica ser. Typhi with intermediate susceptibility to ciprofloxacin. Arthrotomy, 2 weeks of intravenous ceftriaxone and 4 weeks of oral azithromycin led to resolution of symptoms. The optimum management of septic arthritis in drug-resistant typhoid is undefined.

  11. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    Science.gov (United States)

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  12. Low-level quinolone-resistance in multi-drug resistant typhoid

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S H; Khan, M A [Armed Forces Inst. of Pathology, Rawalpindi (Pakistan). Dept. of Microbiolgy

    2008-01-15

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  13. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    Mirza, S.H.; Khan, M.A.

    2008-01-01

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  14. Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014

    DEFF Research Database (Denmark)

    Franco, Alessia; Leekitcharoenphon, Pimlapas; Feltrin, Fabiola

    2015-01-01

    We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013....... This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness...

  15. Antibiotic of resistence profile of Salmonella spp. serotypes isolated from retail beef in Mexico City.

    Directory of Open Access Journals (Sweden)

    Nova Nayarit-Ballesteros

    2016-05-01

    Full Text Available Objective. To determine the serotype and antibiotic resistance profile of Salmonella spp. isolated from retail ground beef in Mexico City. Materials and methods. A total of 100 samples of ground beef were analyzed. The pathogen was isolated by conventional methods and confirmed by PCR (invA gene, 284 bp. The antibiotic resistance profile was determined by the Kirby-Bauer method while serotyping was performed according to the Kauffman-White scheme. Results. We isolated a total of 19 strains of Lomita (6, Derby (4, Senftenberg (2, Javiana and Cannsttat (1 and undeter- mined (5 serotypes. The strains showed a high resistance rate to ampicillin (18/19, carbenicillin (16/19, tetracyclin (13/19, and trimethoprim-sulfamethoxazole (13/19. Multidrug resistance was observed in 14 isolates. Conclusions. Several Salmonella spp. serotypes of public health significance are circulating in ground beef sold in the major Mexican city. Some of these strains are multi-drug resistance.

  16. In-Feed Use of Heavy Metal Micronutrients in U.S. Swine Production Systems and Its Role in Persistence of Multidrug-Resistant Salmonellae

    Science.gov (United States)

    Medardus, Julius J.; Molla, Bayleyegn Z.; Nicol, Matthew; Morrow, W. Morgan; Rajala-Schultz, Paivi J.; Kazwala, Rudovick

    2014-01-01

    The study aimed to characterize the role of heavy metal micronutrients in swine feed in emergence of heavy-metal-tolerant and multidrug-resistant Salmonella organisms. We conducted a longitudinal study in 36 swine barns over a 2-year period. The feed and fecal levels of Cu2+ and Zn2+ were measured. Salmonella was isolated at early and late finishing. MICs of copper sulfate and zinc chloride were measured using agar dilution. Antimicrobial susceptibility was tested using the Kirby-Bauer method, and 283 isolates were serotyped. We amplified pcoA and czcD genes that encode Cu2+ and Zn2+ tolerance, respectively. Of the 283 isolates, 113 (48%) showed Cu2+ tolerance at 24 mM and 164 (58%) showed Zn2+ tolerance at 8 mM. In multivariate analysis, serotype and source of isolates were significantly associated with Cu2+ tolerance (P 20 mM MICs of Cu2+ than did “other” serotypes. More than 60% of Salmonella isolates with resistance type (R-type) AmStTeKm (32 of 53) carried pcoA; only 5% with R-type AmClStSuTe carried this gene. czcD gene carriage was significantly associated with a higher Zn2+ MIC (P < 0.05). The odds of having a high Zn2+ MIC (≥8 mM) were 14.66 times higher in isolates with R-type AmClStSuTe than in those with R-type AmStTeKm (P < 0.05). The findings demonstrate strong association between heavy metal tolerance and antimicrobial resistance, particularly among Salmonella serotypes important in public health. PMID:24487542

  17. Characterization and Antimicrobial Resistance of Salmonella Typhimurium Isolates from Clinically Diseased Pigs in Korea.

    Science.gov (United States)

    Oh, Sang-Ik; Kim, Jong Wan; Chae, Myeongju; Jung, Ji-A; So, Byungjae; Kim, Bumseok; Kim, Ha-Young

    2016-11-01

    This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes bla TEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.

  18. Molecular Characterization of Multidrug-Resistant Salmonella enterica subsp. enterica Serovar Typhimurium Isolates from Swine

    OpenAIRE

    Gebreyes, Wondwossen Abebe; Altier, Craig

    2002-01-01

    As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (the AmCmStSuTe phenotype; 36.2% of all isolates), mainly of the definitive type 104 (DT104) phage type (180 of 187 ...

  19. Characterization of integron mediated antimicrobial resistance in Salmonella isolated from diseased swine

    Science.gov (United States)

    White, David G.; Zhao, Shaohua; McDermott, Patrick F.; Ayers, Sherry; Friedman, Sharon; Sherwood, Julie; Breider-Foley, Missy; Nolan, Lisa K.

    2003-01-01

    Forty-two Salmonella isolates obtained from diseased swine were genetically characterized for the presence of specific antimicrobial resistance mechanisms. Twenty of these isolates were characterized as S. Typhimurium DT104 strains. Pulsed-field gel electrophoresis was used to determine genetic relatedness and revealed 20 distinct genetic patterns among the 42 isolates. However, all DT104 isolates fell within 2 closely related genetic clusters. Other Salmonella isolates were genetically grouped together according to serotype. All DT104 isolates displayed the penta-resistance phenotype to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline. Resistance to sulfamethoxazole, tetracycline, streptomycin, kanamycin, and ampicillin was most common among the non-DT104 Salmonella isolates. All DT104 strains contained 2 chromosomal integrons of 1000 and 1200 base pairs. The DNA sequencing revealed that the 2 integrons contained genes encoding a resistance to streptomycin and ampicillin, respectively. None of the non-DT104 strains showed the same pattern, although several strains possessed integrons of 1000 base pairs or larger. However, the majority of non-DT104 Salmonella strains did not possess any integrons. Two Salmonella isolates displayed tolerance to the organic solvent cyclohexane, indicating the possibility that they are overexpressing chromosomal regulatory genes marA or soxS or the associated multidrug efflux pump, acrAB. This research suggests that integrons contribute to antimicrobial resistance among specific swine Salmonella serotypes; however, they are not as widely disseminated among non-Typhimurium swine Salmonella serotypes as previously thought. PMID:12528827

  20. Resistance to antimicrobial agents among Salmonella isolates recovered from layer farms and eggs in the Caribbean region.

    Science.gov (United States)

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-12-01

    This investigation determined the frequency of resistance of 84 isolates of Salmonella comprising 14 serotypes recovered from layer farms in three Caribbean countries (Trinidad and Tobago, Grenada, and St. Lucia) to eight antimicrobial agents, using the disc diffusion method. Resistance among isolates of Salmonella was related to the country of recovery, type of sample, size of layer farms, and isolate serotype. Overall, all (100.0%) of the isolates exhibited resistance to one or more of seven antimicrobial agents tested, and all were susceptible to chloramphenicol. The resistance detected ranged from 11.9% to sulphamethoxazole-trimethoprim (SXT) to 100.0% to erythromycin. The difference was, however, not statistically significant (P = 0.23). Across countries, for types of samples that yielded Salmonella, significant differences in frequency of resistance were detected only to SXT (P = 0.002) in Trinidad and Tobago and to gentamycin (P = 0.027) in St. Lucia. For the three countries, the frequency of resistance to antimicrobial agents was significantly different for ampicillin (P = 0.001) and SXT (P = 0.032). A total of 83 (98.8%) of the 84 isolates exhibited 39 multidrug resistance patterns. Farm size significantly (P = 0.032) affected the frequency of resistance to kanamycin across the countries. Overall, among the 14 serotypes of Salmonella tested, significant (P resistance were detected to kanamycin, ampicillin, and SXT. Results suggest that the relatively high frequency of resistance to six of the antimicrobial agents (erythromycin, streptomycin, gentamycin, kanamycin, ampicillin, and tetracycline) tested and the multidrug resistance detected may pose prophylactic and therapeutic concerns for chicken layer farms in the three countries studied.

  1. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia.

    Science.gov (United States)

    Thung, Tze Y; Radu, Son; Mahyudin, Nor A; Rukayadi, Yaya; Zakaria, Zunita; Mazlan, Nurzafirah; Tan, Boon H; Lee, Epeng; Yeoh, Soo L; Chin, Yih Z; Tan, Chia W; Kuan, Chee H; Basri, Dayang F; Wan Mohamed Radzi, Che W J

    2017-01-01

    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S . Enteritidis and S . Typhimurium in the meat samples. The prevalence of Salmonella spp., S . Enteritidis and S . Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  2. Characterization of a multidrug resistant Salmonella enterica give ...

    African Journals Online (AJOL)

    Salmonella enterica Give is one of the serotypes that have been incriminated in Salmonella infections; sometimes associated with hospitalization and mortalities in humans and animals in some parts of the world. In this work, we characterized one Salmonella Give isolated from cloaca swab of an Agama agama lizard ...

  3. Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam.

    Directory of Open Access Journals (Sweden)

    Kathryn E Holt

    2011-01-01

    Full Text Available typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi, which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina assay to type 1,500 single nucleotide polymorphisms (SNPs and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005.the population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the Sông H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene.the H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2 observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam.

  4. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Molecular typing, antibiotic resistance, virulence gene and biofilm formation of different Salmonella enterica serotypes.

    Science.gov (United States)

    Turki, Yousra; Mehr, Ines; Ouzari, Hadda; Khessairi, Amel; Hassen, Abdennaceur

    2014-01-01

    Salmonella enterica isolates representing commonly isolated serotypes in Tunisia were analyzed using genotyping and phenotyping methods. ERIC and ITS-PCR applied to 48 Salmonella spp. isolates revealed the presence of 12 and 10 different profiles, respectively. The distribution of profiles among serotypes demonstrated the presence of strains showing an identical fingerprinting pattern. All Salmonella strains used in this study were positive for the sdiA gene. Three Salmonella isolates belonging to serotypes Anatum, Enteritidis and Amsterdam were negative for the invA gene. The spvC gene was detected in thirteen isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Gallinarum and Montevideo. Antibiotic resistance was frequent among the recovered Salmonella isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Zanzibar and Derby. The majority of these isolates exhibited resistance to at least two antibiotic families. Four multidrug-resistant isolates were recovered from food animals and poultry products. These isolates exhibited not only resistance to tetracycline, sulphonamides, and ampicillin, but also have shown resistance to fluoroquinolones. Common resistance to nalidixic acid, ciprofloxacin and ofloxacin in two S. Anatum and S. Zanzibar strains isolated from raw meat and poultry was also obtained. Furthermore, wastewater and human isolates exhibited frequent resistance to nalidixic acid and tetracycline. Of all isolates, 33.5% were able to form biofilm.

  6. Multidrug-Resistant Candida

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-01-01

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance...... can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients....... Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites...

  7. Multiplex TaqMan® detection of pathogenic and multi-drug resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2013-09-02

    Overuse of antibiotics in the medical and animal industries is one of the major causes for the development of multi-drug-resistant (MDR) food pathogens that are often difficult to treat. In the past few years, higher incidences of outbreaks caused by MDR Salmonella have been increasingly documented. The objective of this study was to develop a rapid multiplex real-time polymerase chain reaction (PCR) assay for simultaneous detection of pathogenic and MDR Salmonella spp. A multiplex TaqMan®real-time PCR was designed by targeting the invasin virulence gene (invA), and four commonly found antibiotic resistance genes, viz. ampicillin, chloramphenicol, streptomycin and tetracycline. To avoid false negative results and to increase the reliability of the assay, an internal amplification control (IAC) was added which was detected using a locked nucleic acid (LNA) probe. In serially diluted (5 ng-50 fg) DNA samples, the assay was able to detect 100 genomic equivalents of Salmonella, while in a multiplex format, the sensitivity was 1000 genomic equivalents. The assay performed equally well on artificially contaminated samples of beef trim, ground beef of different fat contents (73:27, 80:20, 85:15 and 93:7), chicken rinse, ground chicken, ground turkey, egg, spinach and tomato. While the detection limit for un-enriched inoculated food samples was 10(4) CFU/g, this was improved to 10 CFU/g after a 12-h enrichment in buffered peptone water, with 100% reproducibility. The multiplex real-time assay developed in this study can be used as a valuable tool to detect MDR virulent Salmonella, thus enhancing the safety of food. © 2013.

  8. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Background: Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. Objectives: This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta.

  9. Prevalence of antimicrobial resistance among Salmonella isolates from chicken in China.

    Science.gov (United States)

    Lu, Yan; Wu, Cong-Ming; Wu, Guo-Juan; Zhao, Hong-Yu; He, Tao; Cao, Xing-Yuan; Dai, Lei; Xia, Li-Ning; Qin, Shang-Shang; Shen, Jian-Zhong

    2011-01-01

    We evaluated the antimicrobial resistance of Salmonella isolated in 2008 from a chicken hatchery, chicken farms, and chicken slaughterhouses in China. A total of 311 Salmonella isolates were collected from the three sources, and two serogroups of Salmonella were detected, of which 133 (42.8%) consisted of Salmonella indiana and 178 (57.2%) of Salmonella enteritidis. The lowest percentage of S. indiana isolates was found in the chicken hatchery (4.2%), followed by the chicken farms (54.9%) and the slaughterhouses (71.4%). More than 80% of the S. indiana isolates were highly resistant to ampicillin (97.7%), amoxicillin/clavulanic acid (87.9%), cephalothin (87.9%), ceftiofur (85.7%), chloramphenicol (84.9%), florfenicol (90.9%), tetracycline (97.7%), doxycycline (98.5%), kanamycin (90.2%), and gentamicin (92.5%). About 60% of the S. indiana isolates were resistant to enrofloxacin (65.4%), norfloxacin (78.9%), and ciprofloxacin (59.4%). Of the S. indiana isolates, 4.5% were susceptible to amikacin and 5.3% to colistin. Of the S. enteritidis isolates, 73% were resistant to ampicillin, 33.1% to amoxicillin/clavulanic acid, 66.3% to tetracycline, and 65.3% to doxycycline, whereas all of these isolates were susceptible to the other drugs used in the study. The S. indiana isolates showed resistance to 16 antimicrobial agents. Strains of Salmonella (n = 108) carrying the resistance genes floR, aac(6')-Ib-cr, and bla(TEM) were most prevalent among the 133 isolates of S. indiana, at a frequency of 81.2%. The use of pulsed-field gel electrophoresis to analyze the S. indiana isolates that showed similar antimicrobial resistance patterns and carried resistance genes revealed six genotypes of these organisms. Most of these isolates had the common pulsed-field gel electrophoresis patterns found in the chicken hatchery, chicken farms, and slaughterhouses, suggesting that many multidrug-resistant isolates of S. indiana prevailed in the three sources. Some of these isolates were

  10. Molecular detection of Salmonella spp. isolated from apparently healthy pigeon in Mymensingh, Bangladesh and their antibiotic resistance pattern

    Directory of Open Access Journals (Sweden)

    Md. Khaled Saifullah

    2016-03-01

    Full Text Available Objectives: Here we determined the prevalence of Salmonella in cloacal swabs and pharyngeal swabs of apparently healthy pigeons sold in the live bird markets and villages in and around Bangladesh Agricultural University Campus, Mymensingh, Bangladesh. Materials and methods: A total of 50 samples, comprised of cloacal swabs (n=24 and pharyngeal swabs (n=26 were collected. The samples were processed, and Salmonella was isolated through a series of conventional bacteriological techniques and biochemical tests followed by polymerase chain reaction (PCR. Results: The prevalence rate of Salmonella was found to be 37.5% (n=9/24 in cloacal swabs and 30.77% (n=8/26 in pharyngeal swabs with an overall prevalence rate of 34% (n=17/50. The prevalence rate of Salmonella pigeon varied slightly among locations; 34.62% (n=9/26 in live bird markets, and 33.33% (n=8/24 in villages. Molecular detection of 17 Salmonella isolates obtained from biochemical test was performed by genus specific PCR, where all of them amplified a region of 496-bp segment of the histidine transport operon gene. Antibiogram study revealed multi-drug resistant traits in most of the isolates tested. The highest resistance was found against Ampicillin (88.23% followed by Cephalexin (82.35%. The rate of sensitivity of the isolates to Ciprofloxacin was 100% followed by Azithromycin (82.35%, Gentamicin (76.47% and Nalidixic acid (76.47%. Conclusion: Our findings suggest that pigeons carry multi-drug resistant Salmonella that may transfer to the humans and animals. [J Adv Vet Anim Res 2016; 3(1.000: 51-55

  11. Multidrug resistant Salmonellae isolated from blood culture samples ...

    African Journals Online (AJOL)

    This study investigates the prevalence of R-plasmids in Salmonella sp. isolated from blood samples of suspected typhoid patients in Warri, Nigeria. A total of 136 blood samples were collected between May and December,2009 and screened for the presence of Salmonellae using standard blood culture techniques of which ...

  12. Bovine salmonellosis in northeast of Iran: frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Science.gov (United States)

    Halimi, Hessam A; Seifi, Hesam A; Rad, Mehrnaz

    2014-01-01

    To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves' feces, adult cows' feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8% (two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  13. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Tze Y. Thung

    2018-01-01

    Full Text Available The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60 were randomly collected. The multiplex polymerase chain reaction (mPCR in combination with the most probable number (MPN method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%. Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70% exhibited the highest multiple antibiotic resistance (MAR index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100% were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  14. Antimicrobial resistance trends among Salmonella isolates obtained from horses in the northeastern United States (2001-2013).

    Science.gov (United States)

    Cummings, Kevin J; Perkins, Gillian A; Khatibzadeh, Sarah M; Warnick, Lorin D; Aprea, Victor A; Altier, Craig

    2016-05-01

    OBJECTIVE To describe the antimicrobial resistance patterns of Salmonella isolates obtained from horses in the northeastern United States and to identify trends in resistance to select antimicrobials over time. SAMPLE 462 Salmonella isolates from horses. PROCEDURES Retrospective data were collected for all Salmonella isolates obtained from equine specimens that were submitted to the Cornell University Animal Health Diagnostic Center between January 1, 2001, and December 31, 2013. Temporal trends in the prevalence of resistant Salmonella isolates were investigated for each of 13 antimicrobials by use of the Cochran-Armitage trend test. RESULTS The prevalence of resistant isolates varied among antimicrobials and ranged from 0% (imipenem) to 51.5% (chloramphenicol). During the observation period, the prevalence of resistant isolates decreased significantly for amoxicillin-clavulanic acid, ampicillin, cefazolin, cefoxitin, ceftiofur, chloramphenicol, and tetracycline and remained negligible for amikacin and enrofloxacin. Of the 337 isolates for which the susceptibility to all 13 antimicrobials was determined, 138 (40.9%) were pansusceptible and 192 (57.0%) were multidrug resistant (resistant to ≥ 3 antimicrobial classes). The most common serovar isolated was Salmonella Newport, and although the annual prevalence of that serovar decreased significantly over time, that decrease had only a minimal effect on the observed antimicrobial resistance trends. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that current antimicrobial use in horses is not promoting the emergence and dissemination of antimicrobial-resistant Salmonella strains in the region served by the laboratory.

  15. Incidence of Salmonella Infantis in poultry meat and products and the resistance of isolates to antimicrobials

    Science.gov (United States)

    Kalaba, V.; Golić, B.; Sladojević, Ž.; Kalaba, D.

    2017-09-01

    Globalisation, climate change, changes in eating habits and the food industry, modern animal husbandry and market demands often have a negative impact on quality assurance, food safety and animal health. After the eradication of some zoonotic diseases that previously often jeopardized the human population, today in developed countries, the focus is mainly on the control of zoonoses transmitted by food. Salmonella is one of the most common pathogens that can be transmitted from animals to humans, and its reservoirs are poultry, cattle and pigs, so one transmission route to humans is from contaminated food of animal origin. Multidrug-resistant isolates of Salmonella, which can transfer their resistance genes to other microorganisms, are considered a serious threat to public health. Control of Salmonella primarily depends on a good monitoring system and knowledge of the presence of serovars and strains in an epizootiological area. During the first nine months of 2016, 1321 samples of poultry meat and products were examined, among which 108 harboured Salmonella. Altogether, 29 of the 108 isolates (26.85%) were Salmonella Infantis. For all 29 S. Infantis isolates, antimicrobial resistance was tested by the disc diffusion method. The isolates showed 100% resistance to amoxicillin, and nalidixic acid.

  16. Prevalence and Antimicrobial Resistance of Salmonella Isolates from Chicken Carcasses in Retail Markets in Yangon, Myanmar.

    Science.gov (United States)

    Moe, Aung Zaw; Paulsen, Peter; Pichpol, Duangporn; Fries, Reinhard; Irsigler, Herlinde; Baumann, Maximilian P O; Oo, Kyaw Naing

    2017-06-01

    A cross-sectional investigation was conducted concerning prevalence, antimicrobial resistance, multidrug resistance patterns, and serovar diversity of Salmonella in chicken meat sold at retail in Yangon, Myanmar. The 141 chicken meat samples were collected at 141 retail markets in the Yangon Region, Myanmar, 1 November 2014 to 31 March 2015. Information on hygienic practices (potential risk factors) was retrieved via checklists. Salmonella was isolated and identified according to International Organization for Standardization methods (ISO 6579:2002) with minor modifications. Twelve antimicrobial agents belonging to eight pharmacological groups were used for antimicrobial susceptibility testing (disk diffusion method). Salmonella was recovered from 138 (97.9%) of the 141 samples. The isolates were most frequently resistant to trimethoprim-sulfamethoxazole (70.3% of isolates), tetracycline (54.3%), streptomycin (49.3%), and ampicillin (47.1%). Resistance was also found to chloramphenicol (29.7%), amoxicillin-clavulanic acid (17.4%), ciprofloxacin (9.4%), tobramycin (8.7%), gentamicin (8%), cefazolin (7.2%), lincomycin-spectinomycin (5.8%), and norfloxacin (0.7%). Among the 138 Salmonella isolates, 72 (52.2%) were resistant to three or more antimicrobial agents. Twenty-four serovars were identified among the 138 Salmonella-positive samples; serovars Albany, Kentucky, Braenderup, and Indiana were found in 38, 11, 10, and 8% of samples, respectively. None of the potential risk factors were significantly related to Salmonella contamination of chicken carcasses. This study provides new information regarding prevalence and antimicrobial resistance and Salmonella serovar diversity in retail markets in Yangon, Myanmar.

  17. Mechanism of Antibacterial Activities of a Rice Hull Smoke Extract (RHSE) Against Multidrug-Resistant Salmonella Typhimurium In Vitro and in Mice.

    Science.gov (United States)

    Kim, Sung Phil; Lee, Sang Jong; Nam, Seok Hyun; Friedman, Mendel

    2018-02-01

    The present study tested antibacterial activity of a rice hull smoke extract (RHSE) against a multidrug-resistant strain of Salmonella Typhimurium and examined its mode of suppressive action in vitro and in mice. In vitro studies showed that the minimum inhibitory concentration (MIC) value of RHSE was 1.29% (v/v). The inactivation was confirmed by complete loss of cell viability in the range of 10 4 to 10 7 colony forming units of the resistant Salmonella Typhimurium strain. Agarose and sodium dodecyl sulfate-polyacrylamide gel electrophoreses were used to evaluate the integrities of bacterial genomic DNA and total cellular protein profiles. The antibacterial action of RHSE results from a leakage of intracellular macromolecules following rupture of bacterial cells. Scanning electron microscopy of the cells shows that RHSE also induced deleterious morphological changes in the bacterial cell membrane of the pathogens. In vivo antibacterial activity of RHSE at a 1 × MIC concentration was examined in a bacterial gastroenteritis model using Balb/c mice orally infected with the Salmonella Typhimurium. The results show greatly decreased excretion of the bacteria into the feces and suppressed translocation of the bacteria to internal organs (cecum, mesenteric lymph node, spleen, and liver) compared with the infected mice not subjected to the RHSE treatment. Collectively, the present findings indicate that the mechanism of the antibacterial activities both in vitro and in the gastroenteritis environment of the animal model is the result of the direct disruption of cell structure, leading to cell death. RHSE has the potential to serve as a multifunctional food additive that might protect consumers against infections by antibiotic-resistant microorganisms. The rice hull derived liquid smoke has the potential to complement widely used wood-derived smoke as an antimicrobial flavor and health-promoting formulation for application in foods and feeds. Published 2017. This article

  18. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi.

    Science.gov (United States)

    Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir

    2013-07-01

    Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.

  19. Complete Genome Sequence of a Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Harboring a Multidrug Resistance IncA/C Plasmid and a blaCMY-2-Carrying IncF Plasmid.

    Science.gov (United States)

    Silva, Claudia; Calva, Edmundo; Calva, Juan J; Wiesner, Magdalena; Fernández-Mora, Marcos; Puente, José L; Vinuesa, Pablo

    2015-11-12

    Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.

  20. Prevalence and antimicrobial susceptibility of Salmonella isolated from a variety of raw meat sausages in Gaborone (Botswana) retail stores.

    Science.gov (United States)

    Samaxa, Ronald Gaelekolwe; Matsheka, Maitshwarelo Ignatius; Mpoloka, Sununguko Wata; Gashe, Berhanu Abegaz

    2012-04-01

    The objective of the study was to provide baseline data on the prevalence and antimicrobial susceptibility of Salmonella in different types of raw meat sausages directly accessible to the consumers in Gaborone, Botswana. A total of 300 raw sausages comprising 79 beef, 78 pork, 72 chicken, and 71 mutton samples were concurrently analyzed for the presence of Salmonella using a conventional culture method and a validated PCR method. The PCR assay results were in full concordance with those of the conventional culture method for the detection of Salmonella. Sixty-five (21.7%) of 300 samples were positive for Salmonella by both the conventional culture method and PCR assay. Even though more chicken samples contained Salmonella than did any other sausage type, the difference in the presence of Salmonella among the four sausages types was not significant. Eleven serotypes were identified, and Salmonella enterica subsp. salamae II was most prevalent in all the sausage types. Beef sausages generally had higher mesophilic bacterial counts than did the other three sausage types. However, higher microbial counts were not reflective of the presence of salmonellae. Susceptibility of the Salmonella enterica serotypes to 20 antimicrobial agents was determined, and Salmonella Muenchen was resistant to the widest array of agents and was mostly isolated from chicken sausages. Regardless of the meat of origin, all 65 Salmonella isolates were resistant to at least four antimicrobial agents: amikacin, gentamicin, cefuroxime, and tombramycin. This resistance profile group was the most common in all four sausage types, comprising 90% of all Salmonella isolates from beef, 71% from pork, 63% from mutton, and 35% from chicken. These results suggest that raw sausages pose a risk of transmitting multidrug-resistant Salmonella isolates to consumers.

  1. The attribution of human infections with antimicrobial resistant Salmonella bacteria in Denmark to sources of animal origin

    DEFF Research Database (Denmark)

    Hald, Tine; Lo Fo Wong, Danilo M. A.; Aarestrup, Frank Møller

    2007-01-01

    Based on the Danish Salmonella surveillance in 2000-2001, we developed a mathematical model for quantifying the contribution of each major animal-food sources to human salmonellosis caused by antimicrobial resistant bacteria. Domestic food products accounted for 53.1% of all cases, mainly caused......, but infections with multidrug- and quinolone-resistant isolates were more commonly caused by imported food products and travelling, emphasizing the need for a global perspective on food safety and antimicrobial usage....... by table eggs (37.6%). A large proportion (19%) of cases were travel related, while 18% could not be associated with any source. Imported food products accounted for 9.5% of all cases; the most important source being imported chicken. Multidrug and quinolone resistance was rarely found in cases acquired...

  2. The imaging feature of multidrug-resistant tuberculosis

    International Nuclear Information System (INIS)

    Yang Jun; Zhou Xinhua; Li Xi; Fu Yuhong; Zheng Suhua; Lv Pingxin; Ma Daqing

    2004-01-01

    Objective: To evaluate the imaging features of multidrug-resistant tuberculosis by collecting multidrug-resistant tuberculosis verified by test of drug-sensitivity, which defined as resistance to three anti-tuberculosis drugs. Methods:Fifty-one cases of multidrug-resistant tuberculosis were categorized as group of observed, and 46 cases of drug sensitive tuberculosis were categorized as control. Cultures were positive for Mycobacterium tuberculosis in all cases with no other illness such as diabetes mellitus. All patients had chest radiographs available for review, while 64 cases had tomography and 30 cases had CT during the same time. All images were analyzed by three of the radiologists, disagreement among them was discussed and a consensus was reached. Results: There was no difference in the distribution of lesions between the multidrug-resistant tuberculosis group and control group. However, the radiological findings in the multidrug-resistant tuberculosis group were significantly more common than in control group, such as multiple nodules (10 cases), disseminated foci (23 cases), cavity (9 cases), and complications (10 cases). Comparing the dynamic cases, deteriorating cases were more commonly seen in observed group than in control group, while improved cases were less in observed group than in control group. Conclusion: Multidrug-resistant tuberculosis is the most serious tuberculosis, which is characterized with significant activity, more disseminated foci, cavity, and complications. The lesion deteriorated while correct anti-tuberculosis treatment is applied. (authors)

  3. The consequences of a sudden demographic change on the seroprevalence pattern, virulence genes, identification and characterisation of integron-mediated antibiotic resistance in the Salmonella enterica isolated from clinically diarrhoeic humans in Egypt.

    Science.gov (United States)

    Osman, K M; Hassan, W M M; Mohamed, R A H

    2014-08-01

    The present study was undertaken to identify and characterise integrons and integrated resistance gene cassettes among eight multidrug-resistant (MDR) Salmonella serovars isolated from humans in Egypt. Virulotyping by polymerase chain reaction (PCR) was used for the detection of the presence of virulence genes. Integron PCR was used to detect the presence of class 1 in the MDR strains. The associated individual resistance gene cassettes were identified using specific PCRs. The isolated serovars were Salmonella Grampian (C1; 2/5), Larose (C1; 1/5), Hato (B; 1/5) and Texas (B; 1/5). Among the Salmonella serovars, five Salmonella isolates showed the highest resistance to amoxicillin, ampicillin, chloramphenicol, lincomycin, gentamicin, nalidixic acid, streptomycin and trimethoprim (100%), followed by neomycin, norfloxacin and tetracycline (80%), while the lowest resistance was recorded to colistin sulphate and ciprofloxacin in percentages of 20 and 40%, respectively. The invA, avrA, ssaQ, mgtC, siiD and sopB genes were detected in all isolates (100%), while the spvC and gipA genes were totally (100%) absent from all isolates. The remaining three virulence genes were diversely distributed as follows: the bcfC gene was detected in all isolates except Salmonella Hato (80%); the sodC1 gene was detected only in Salmonella Grampian and Salmonella Texas (60%); and the sopE1 gene was detected only in Salmonella Grampian, Hato and Texas (60%). Class 1 integrons were detected in 90% of the MDR isolates, comprising serovars Muenster, Florian, Noya, Grampian, Larose, Hato and Texas. Of the class 1 integron-positive isolates, 45% harboured Salmonella genomic island 1 (SGI1) either right junction or right and left junction having an A-C-S-T phenotype. Of the class 1 integron-positive isolates, 44% harboured integron gene cassette aadA2, while 11% harboured the floR gene present in multidrug resistance flanked by two integrons of SGI1. The results of the present study indicate that

  4. Multidrug resistant Salmonella enterica isolated from conventional pig farms using antimicrobial agents in preventative medicine programmes.

    Science.gov (United States)

    Cameron-Veas, Karla; Fraile, Lorenzo; Napp, Sebastian; Garrido, Victoria; Grilló, María Jesús; Migura-Garcia, Lourdes

    2018-04-01

    A longitudinal study was conducted to investigate the presence of multidrug antimicrobial resistance (multi-AR) in Salmonella enterica in pigs reared under conventional preventative medicine programmes in Spain and the possible association of multi-AR with ceftiofur or tulathromycin treatment during the pre-weaning period. Groups of 7-day-old piglets were treated by intramuscular injection with ceftiofur on four farms (n=40 piglets per farm) and with tulathromycin on another four farms (n=40 piglets per farm). A control group of untreated piglets (n=30 per farm) was present on each farm. Faecal swabs were collected for S. enterica culture prior to treatment, at 2, 7 and 180days post-treatment, and at slaughter. Minimal inhibitory concentrations of 14 antimicrobial agents, pulsed-field gel electrophoresis and detection of resistance genes representing five families of antimicrobial agents were performed. Plasmids carrying cephalosporin resistant (CR) genes were characterised. Sixty-six S. enterica isolates were recovered from five of eight farms. Forty-seven isolates were multi-AR and four contained bla CTX-M genes harboured in conjugative plasmids of the IncI1 family; three of these isolates were recovered before treatment with ceftiofur. The most frequent AR genes detected were tet(A) (51/66, 77%), sul1 (17/66, 26%); tet(B) (15/66, 23%) and qnrB (10/66, 15%). A direct relation between the use of ceftiofur in these conditions and the occurrence of CR S. enterica was not established. However, multi-AR was common, especially for ampicillin, streptomycin, sulphonamides and tetracycline. These antibiotics are used frequently in veterinary medicine in Spain and, therefore, should be used sparingly to minimise the spread of multi-AR. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the ... lactam resistance in multidrug resistant E. coli in ESBL and non-ESBL isolates. .... and decreased susceptibility to carbapenems, particularly ertapenem (Perez et al.,.

  6. Potential public health significance of faecal contamination and multidrug-resistant Escherichia coli and Salmonella serotypes in a lake in India.

    Science.gov (United States)

    Abhirosh, C; Sherin, V; Thomas, A P; Hatha, A A M; Mazumder, A

    2011-06-01

    To assess the prevalence of faecal coliform bacteria and multiple drug resistance among Escherichia coli and Salmonella serotypes from Vembanadu Lake. Systematic microbiological testing. Monthly collection of water samples were made from ten stations on the southern and northern parts of a salt water regulator constructed in Vembanadu Lake in order to prevent incursion of seawater during certain periods of the year. Density of faecal colifrom bacteria was estimated. E. coli and Salmonella were isolated and their different serotypes were identified. Antibiotic resistance analysis of E. coli and Salmonella serotypes was done and the MAR index of individual isolates was calculated. Density of faecal coliform bacteria ranged from mean MPN value 2900 -7100/100ml. Results showed multiple drug resistance pattern among the bacterial isolates. E. coli showed more than 50% resistance to amickacin, oxytetracycline, streptomycin, tetracycline and kanamycin while Salmonella showed high resistance to oxytetracycline, streptomycin, tetracycline and ampicillin. The MAR indexing of the isolates showed that they have originated from high risk source such as humans, poultry and dairy cows. The high density of faecal coliform bacteria and prevalence of multi drug resistant E. coli and Salmonella serotypes in the lake may pose severe public health risk through related water borne and food borne outbreaks. Copyright © 2011 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    Directory of Open Access Journals (Sweden)

    Rizwana Tasmin

    Full Text Available Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B and Kentucky (SK222_32B recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP analysis identified 2,432 (ST19 SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152 SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was

  8. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    OpenAIRE

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between ...

  9. Tetracycline promotes the expression of ten fimbrial operons in specific Salmonella enterica serovar Typhimurium isolates

    Science.gov (United States)

    Multidrug-resistant (MDR) Salmonella is associated with increased morbidity in humans and presents an important food safety concern. Antibiotic resistance among isolates of Salmonella enterica serovar Typhimurium has become especially prevalent as over 27 per cent of isolates from humans in the Unit...

  10. Frequency Of Isolation Of Salmonella From Commercial Poultry Feeds And Their Anti-Microbial Resistance Profiles, Imo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Okoli IC

    2006-09-01

    Full Text Available This study was conducted to determine the frequency of isolation of salmonella and their microbial resistance profiles across different commercial poultry feeds sold in Imo State, Nigeria. Thirty-six bulk feed samples were colleted from 154 bag across different feed types and brands which included Guinea (GF, Top (TF, Vital (VF, Extra (EF, Animal care (AF and livestock (LF feeds. The salmonella isolated were tested against 14 anti-microbial drugs using the disc diffusion method. Bacterial load enumeration of the samples indicated a range of <30 colony forming unit (CFU to overgrowth at 104 serial dilutions. Eight feed samples (22.2% which cuts across the entire feed brands expect EF were positive for salmonella. The highest prevalence of 28.8% and 25.0% were recorded for LF and TF respectively, while VF, GF and AF had 11.1 and 10.0% respectively. Salmonella isolates showed high rates of resistance (51-100% against nitrofurantoin, ampicillin, tetracycline and ceftriazole, while moderate rates (31-50% were recorded for chloramphenicol, oxfloxacin and cotrimoxazole. Low resistance rates (1-30% were on the other hand recorded against ciprofloxacin and amoxycillin clavulanate (Augumentine, whereas zero resistance was demonstrated against pefloxacin, gentamycin, streptomycin and nalidixic. Commercial feeds form important channels for the dissemination of multi-drug resistant salmonella in Imo State, Nigeria.

  11. Frequency, serotyping and antimicrobial resistance pattern of Salmonella from feces and lymph nodes of pigs

    Directory of Open Access Journals (Sweden)

    João B.P. Guerra Filho

    Full Text Available ABSTRACT: Salmonellosis is a foodborne disease caused by bacteria of the genus Salmonella, being pigs and pork-products potentially important for its occurrence. In recent decades, some serovars of Salmonella have shown increase of resistance to conventional antimicrobials used in human and animal therapy, with serious risks for public health. The aim of this study was to evaluate feces (n=50, mediastinal (n=50, mesenteric (n=50 and mandibular (n=50 lymph nodes obtained from slaughter houses for Salmonella spp. Positive samples were serotyped and subjected to an in vitro antimicrobial susceptibility test, including the extended-spectrum beta-lactamase (ESBL production. Salmonella species were identified in 10% (20/200 of total samples. From these, 20% (10/50 were identified in the submandibular lymph nodes, 18% (9/50 in the mesenteric lymph nodes, 2% (1/50 in feces and 0% (0/50 in the mediastinal lymph nodes. The serotypes found were Salonella Typhimurium (55%, S. enterica subsp. enterica 4,5,12: i: - (35%, S. Brandenburg and S. Derby with 5% (5% each. All strains showed resistance to at least one antimicrobial; 90% were resistant to four or more antimicrobials, and 15% were multidrug-resistant. Resistance to ciprofloxacin, tetracycline and nalidixic acid was particularly prevalent amongst the tested serovars. Here, we highlighted the impact of pigs in the epidemiological chain of salmonellosis in domestic animals and humans, as well as the high antimicrobial resistance rates of Salmonella strains, reinforcing the necessity for responsible use of antimicrobials for animals as an emergent One Health issue, and to keep these drugs for human therapy approaches.

  12. Characterization of a Multidrug Resistant Salmonella Enterica Give

    African Journals Online (AJOL)

    Dr Olaleye

    more than 535 cases of laboratory-confirmed Salmonella infections ... Serotyping of the isolate: The isolate was sub cultured into. TSA agar and ... Electrophoresis unit (Life Technologies). Determination of .... raw minced meat. (Girardin et al.

  13. Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Abeer Ahmed Rushdy

    Full Text Available OBJECTIVES: To study the potential factors include gene mutation, efflux pump and alteration of permeability associated with quinolone-resistance of Salmonella enterica strains isolated from patients with acute gastroenteritis and to evaluate the degree of synergistic activity of efflux pump inhibitors when combined with ciprofloxacin against resistant isolates. METHODS: Antimicrobial resistance patterns of fifty-eight Salmonella isolates were tested. Five isolates were selected to study the mechanism of resistance associated with quinolone group, including mutation in topoisomerase-encoding gene, altered cell permeability, and expression of an active efflux system. In addition, the combination between antibiotics and efflux pump inhibitors to overcome the microbial resistance was evaluated. RESULTS: Five Salmonella isolates totally resistant to all quinolones were studied. All isolates showed alterations in outer membrane proteins including disappearance of some or all of these proteins (Omp-A, Omp-C, Omp-D and Omp-F. Minimum inhibitory concentration values of ciprofloxacin were determined in the presence/absence of the efflux pump inhibitors: carbonyl cyanide m-chlorophenylhydrazone, norepinephrin and trimethoprim. Minimum inhibitory concentration values for two of the isolates were 2-4 fold lower with the addition of efflux pump inhibitors. All five Salmonella isolates were amplified for gyrA and parC genes and only two isolates were sequenced. S. Enteritidis 22 had double mutations at codon 83 and 87 in addition to three mutations at parC at codons 67, 76 and 80 whereas S. Typhimurium 57 had three mutations at codons 83, 87 and 119, but no mutations at parC. CONCLUSIONS: Efflux pump inhibitors may inhibit the major AcrAB-TolC in Salmonella efflux systems which are the major efflux pumps responsible for multidrug resistance in Gramnegative clinical isolates.

  14. Antimicrobial Resistance Percentages of Salmonella and Shigella in Seafood Imported to Jordan: Higher Percentages and More Diverse Profiles in Shigella.

    Science.gov (United States)

    Obaidat, Mohammad M; Bani Salman, Alaa E

    2017-03-01

    This study determined the prevalence and antimicrobial resistance of human-specific ( Shigella spp.) and zoonotic ( Salmonella enterica ) foodborne pathogens in internationally traded seafood. Sixty-four Salmonella and 61 Shigella isolates were obtained from 330 imported fresh fish samples from Egypt, Yemen, and India. The pathogens were isolated on selective media, confirmed by PCR, and tested for antimicrobial resistance. Approximately 79 and 98% of the Salmonella and Shigella isolates, respectively, exhibited resistance to at least one antimicrobial, and 8 and 49% exhibited multidrug resistance (resistance to three or more antimicrobial classes). Generally, Salmonella exhibited high resistance to amoxicillin-clavulanic acid, cephalothin, streptomycin, and ampicillin; very low resistance to kanamycin, tetracycline, gentamicin, chloramphenicol, nalidixic acid, sulfamethoxazole-trimethoprim, and ciprofloxacin; and no resistance to ceftriaxone. Meanwhile, Shigella spp. exhibited high resistance to tetracycline, amoxicillin-clavulanic acid, cephalothin, streptomycin, and ampicillin; low resistance to kanamycin, nalidixic acid, sulfamethoxazole-trimethoprim, and ceftriaxone; and very low resistance to gentamicin and ciprofloxacin. Salmonella isolates exhibited 14 resistance profiles, Shigella isolates 42. This study is novel in showing that a human-specific pathogen has higher antimicrobial resistance percentages and more diverse profiles than a zoonotic pathogen. Thus, the impact of antimicrobial use in humans is as significant as, if not more significant than, it is in animals in spreading antibiotic resistance through food. This study also demonstrates that locally derived antimicrobial resistance can spread and pose a public health risk worldwide through seafood trade and that high resistance would make a possible outbreak difficult to control. So, capacity building and monitoring harvest water areas are encouraged in fish producing countries.

  15. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana

    Directory of Open Access Journals (Sweden)

    Egle Kudirkiene

    2018-05-01

    Full Text Available In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either blaTEM52−B or blaCTX−M15 were present in two cephalosporin resistant isolates of S. Virchow and S. Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S. Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S. Typhimurium on plasmids of IncFII(S/IncFIB(S/IncQ1 type. In S. Virchow and in S. Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.

  16. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  17. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  18. Expression of multidrug resistance proteins in retinoblastoma

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  19. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.

  20. Relationship Between Substance Abuse and Multidrug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Sadya Afroz

    2012-07-01

    Full Text Available This case control study was conducted between January to June 2010 to determine the relationship between substance abuse and multidrug- resistant tuberculosis. A total of 73 cases were selected purposively, from culture- positive multidrug- resistant tuberculosis patients admitted in the National Institute of Diseases of the Chest and Hospital, Dhaka and compared with 81 un-matched controls, recruited from the cured patients of pulmonary tuberculosis who attended several DOTS centers of ‘Nagar Shastho Kendra’ under Urban Primary Health Care Project in Dhaka city. Data were collected by face to face interview and documents’ review, using a pre- tested structured questionnaire and a checklist. Multidrug- resistance was found to be associated with smoking status (χ2 = 11.76; p = 0.01 and panmasala use (χ2 = 8.28; p = 0.004. The study also revealed that alcohol consumption and other substance abuse such as jarda, sadapata, gul, snuff, heroine, cannabis, injectable drugs was not associated with the development of multidrug- resistant tuberculosis. Relationship between substance abuse and multidrug- resistant tuberculosis are more or less similar in the developing countries. Bangladesh is not out of this trend. The present study revealed the same fact, which warrants actions targeting specific factors. Further study is recommended to assess the magnitude and these factors related to the development of multidrug- resistant tuberculosis in different settings in our country. Ibrahim Med. Coll. J. 2012; 6(2: 50-54

  1. Multidrug resistance in enteric and other gram-negative bacteria.

    Science.gov (United States)

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  2. A pilot study on water pollution and characterization of multidrug-resistant superbugs from Byramangala tank, Ramanagara district, Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Lokesh, Priyanka; Rao, Reshma; Kumar, Arushi Umesh; Vasist, Kiran S; Narayanappa, Rajeswari

    2013-07-01

    Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6 × 10(6) to 8.2 × 10(6) colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p > 0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant "superbugs" and will be major health concern in South Bangalore, India.

  3. Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    Full Text Available Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM. The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.

  4. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats

    Science.gov (United States)

    Srisanga, Songsak; Angkititrakul, Sunpetch; Sringam, Patcharee; Le Ho, Phuong T.; Vo, An T. T.

    2017-01-01

    Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012–2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12-aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates (i.e., a serovar Krefeld and a serovar Enteritridis) carried blaTEM and blaCTX-M, and the blaTEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for blaPSE-1/orgA, cmlA/spaN, tolC, and sul1/tolC (p resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors. PMID:27586467

  5. Isolation, serotype diversity and antibiogram of Salmonella enterica isolated from different species of poultry in India

    Directory of Open Access Journals (Sweden)

    Irfan Ahmad Mir

    2015-07-01

    Conclusions: Occurrence of high proportion of serovars in our study which can cause serious gastroenteritis in humans is a matter of concern. Salmonella Altona has been detected for the first time in India from poultry. This serotype is known to cause serious outbreaks of gastroenteritis in humans. Multidrug resistant isolates were recovered at high percentage which can be attributed to non-judicious use of antibiotics both in prophylaxis and treatment regimen. This observation draws serious attention as poultry serves as an important source of transmission of these multidrug resistant Salmonella serovars to humans.

  6. Prevalence, risk factors and antimicrobial resistance of Salmonella diarrhoeal infection among children in Thi-Qar Governorate, Iraq.

    Science.gov (United States)

    Harb, A; O'Dea, M; Hanan, Z K; Abraham, S; Habib, I

    2017-12-01

    We conducted a hospital-based cross-sectional study among children aged Salmonella infection. From 320 diarrhoea cases enrolled between March and August 2016, 33 (10·3%, 95% confidence interval (CI) 8·4-12·4) cases were stool culture-positive for non-typhoidal Salmonella enterica. The most commonly identified serovar was Typhimurium (54%). Multivariable logistic regression analysis indicated that the odds of Salmonella infection in children from households supplied by pipe water was 4·7 (95% CI 1·6-13·9) times higher compared with those supplied with reverse osmosis treated water. Similarly, children from households with domestic animals were found to have a higher odds (OR 10·5; 95% CI 3·8-28·4) of being Salmonella stool culture-positive. The likelihood of Salmonella infection was higher (OR 3·9; 95% CI 1·0-6·4) among children belonging to caregiver with primary vs. tertiary education levels. Lower odds (OR 0·4; 95% CI 0·1-0·9) of Salmonella infection were associated with children exclusively breast fed as compared with those exclusively bottle fed. Salmonella infection was three times lower (95% CI 0·1-0·7) in children belonging to caregiver who reported always washing hands after cleaning children following defecation, vs. those belonging to caregivers who did not wash hands. The antimicrobial resistance profile by disc diffusion revealed that non-susceptibility to tetracycline (78·8%), azithromycin (66·7%) and ciprofloxacin (57·6%) were the most commonly seen, and 84·9% of Salmonella isolates were classified as multi-drug resistant. This is the first study on prevalence and antimicrobial resistance of Salmonella infection among children in this setting. This work provides specific epidemiological data which are crucial to understand and combat paediatric diarrhoea in Iraq.

  7. Prevalence and antimicrobial resistance of Salmonella in chicken carcasses at retail in 15 Brazilian cities Prevalencia y resistencia a los antimicrobianos de Salmonella en pollos congelados de venta al por menor en 15 ciudades del Brasil

    Directory of Open Access Journals (Sweden)

    Marcelo Augusto Nunes Medeiros

    2011-12-01

    Full Text Available OBJECTIVE: To describe the prevalence and antimicrobial resistance of Salmonella spp. in frozen chicken carcasses at retail from 15 Brazilian cities. METHODS: A descriptive study of data from the Brazilian National Program for Monitoring the Prevalence of Bacterial Resistance in Chicken (PREBAF was conducted from September 2004 to July 2006. The program collected chicken carcasses in 15 state capitals of Brazil in the five geographic regions of the country. Standardized methodologies were used to isolate Salmonella­spp. and identify serotypes. The minimal inhibitory concentration method was used to test resistance to 18 antimicrobials. RESULTS: In 2 679 carcasses examined, the prevalence of Salmonella spp. was 2.7% (range 0.0%-8.9%. São Paulo State produced 50.6% of positive samples. Eighteen serotypes were identified. The most frequently occurring were Salmonella Enteritidis (48.8%, Salmonella Infantis (7.6%, Salmonella Typhimurium (7.2%, and Salmonella Heidelberg (6.4%. All 250 strains tested were resistant to one or more antibiotics, and 133 (53.2% were multidrug resistant (≥ 3 classes. S. Heidelberg was resistant to ceftriaxone (75.0% and to ceftiofur(43.8%. CONCLUSIONS: The prevalence of Salmonella spp. found in this study was relatively low. However, there were a high proportion of multidrug-resistant strains, including third-generation cephalosporins used to treat invasive salmonellosis. The results confirm the relevanceof the PREBAF program. It is recommended that PREBAF be improved, including a timely data analysis. A review of permitted limits for Salmonella spp. in retail chicken in Brazil is also needed.OBJETIVO: Describir la prevalencia y la resistencia a los antibióticos de Salmonella spp. en canales de pollo congeladas de venta al por menor en 15 ciudades del Brasil. MÉTODOS: Entre septiembre del 2004 y julio del 2006 se llevó a cabo un estudio descriptivo de los datos del Programa Nacional Brasileño de Vigilancia de la

  8. Evolution of antimicrobial resistance of Salmonella enteritidis (1972–2005

    Directory of Open Access Journals (Sweden)

    Jermaine Khumalo

    2014-11-01

    Full Text Available With the extensive use of antibiotics in livestock production, surveillance revealed an increase in Salmonella resistance to the commonly used antimicrobials in veterinary and public health. This serious threat to health care is further exacerbated by the limited epidemiological information about the common zoonotic agent, Salmonella enteritidis, required to determine antibiotic therapy. The aim was to characterise the antimicrobial resistance patterns of S. enteritidis isolates across different timelines (1972–2005 with accompanying genetic changes being investigated. Thirty-seven stored S. enteritidis isolates were collected from the Central Veterinary Laboratory, Harare, with antimicrobial susceptibility determined against eight antibiotics. Plasmids were isolated to analyse any genetic variation. An overall significant increase in resistance (p < 0.05 to nalidixic acid (0% – 10%, ampicillin (14.3% – 50%, tetracycline (14.3% – 30% and erythromycin (71.4% – 100% was observed across the timeline. However, the highest rates of susceptibility were maintained for gentamicin, sulphamethoxazole-trimethoprim, kanamycin and chloramphenicol. We report an increase in multidrug resistance (MDR of 14.2% – 50% with an increase in resistotypes and plasmid profiles across the timeline. Eleven plasmid profiles were obtained in the 37 isolates studied with a minority of isolates (21.6%, 8/37 harbouring a 54 kb plasmid, commonly serovar-specific. A concerning increase in antimicrobial resistance to commonly administered drugs was observed across the timeline. The surge in MDR is of great concern and implies the need for consistent antimicrobial stewardship. No correlation was observed between the plasmid and antibiotic profiles.

  9. Multidrug resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Bolhuis, Hendrik

    1996-01-01

    Multidrug resistance (MDR) was initially recongnized as the major cause of the failure of the drug-based treatment of human cancers. It has become increasingly clear that MDR occurs in mammalian cells but also in lower eukaryotes and bacteria. The appearance of multiple antibiotic resistant

  10. Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand-Cambodia border provinces.

    Science.gov (United States)

    Trongjit, Suthathip; Angkititrakul, Sunpetch; Tuttle, R Emerson; Poungseree, Jiratchaya; Padungtod, Pawin; Chuanchuen, Rungtip

    2017-01-01

    This study aimed to examine the prevalence and antimicrobial resistance (AMR) of Salmonella isolates from broiler chickens, pigs and their associated meat products in the Thailand-Cambodia border provinces. A total of 941 samples were collected from pigs and broiler chickens at slaughter houses and from carcasses at local fresh markets in Sa Kaeo, Thailand (n = 554) and Banteay Meanchey, Cambodia (n = 387) in 2014 and 2015. From these samples, 345 Salmonella isolates were collected from Sa Keao (n = 145; 23%) and Banteay Meanchey (n = 200; 47%) and assayed for antimicrobial susceptibility, class 1 integrons and extended-spectrum β-lactamase (ESBL) genes. Serovars Typhimurium (29%) and Rissen (29%) were the most common serotypes found in Thai and Cambodian isolates, respectively. Multidrug resistance was detected in 34% and 52% of isolates from Sa Keao and Banteay Meanchey, respectively. The majority of the Thai isolates were resistant to ampicillin (72.4%), whereas most Cambodian isolates were resistant to sulfamethoxazole (71%). Eleven isolates from Sa Keao and 44 from Banteay Meanchey carried class 1 integrons comprising resistance gene cassettes. The most common gene cassette array was dfrA12-aadA2 (61.1%). Six isolates were ESBL producers. The β-lactamase genes found included bla TEM-1 , bla CTX-M-55 and bla CMY-2 . Some of these class 1 integrons and ESBL genes were located on conjugative plasmid. In conclusion, multidrug-resistant Salmonella are common in pigs, chickens and their products in the Thailand-Cambodia border provinces. Our findings indicate that class 1 integrons play a role in spread of AMR in the strains in this study. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  11. Comparative genomics of multidrug resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Pierre-Edouard Fournier

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  12. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island-the largest identified to date-in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  13. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    Science.gov (United States)

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  14. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  15. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  16. Antimicrobial resistance patterns of bovine Salmonella enterica isolates submitted to the Wisconsin Veterinary Diagnostic Laboratory: 2006-2015.

    Science.gov (United States)

    Valenzuela, J R; Sethi, A K; Aulik, N A; Poulsen, K P

    2017-02-01

    Salmonellosis on the dairy continues to have a significant effect on animal health and productivity and in the United States. Additionally, Salmonella enterica ssp. enterica causes an estimated 1.2 million cases of human illness annually. Contributing to the morbidity and mortality in both human and domestic animal species is emergence of antimicrobial resistance by Salmonella species and increased incidence of multidrug-resistant isolates. This study describes serotype distribution and the antimicrobial resistance patterns for various Salmonella serotypes isolated from bovine samples submitted to the Wisconsin Veterinary Diagnostic Laboratory (WVDL) over the past 10 yr. Salmonella serotyping and antimicrobial susceptibility testing data were obtained from the laboratory information management system at WVDL. Data from accessions were limited to bovine samples submitted to the WVDL between January 2006 and June 2015 and those that had both a definitive serotype and complete results for antimicrobial susceptibility testing. A total of 4,976 isolates were identified. Salmonella enterica ser. Dublin was the most prevalent serotype identified among bovine samples submitted to the WVDL, accounting for a total of 1,153 isolates (23% of total isolates) over the study period. Along with Dublin, Salmonella enterica ser. Cerro (795, 16%), Newport (720, 14%), Montevideo (421, 8%), Kentucky (419, 8%), and Typhimurium (202, 4%) comprised the top 6 most commonly isolated serotypes during that time. Overall, resistance of bovine Salmonella isolates in the study population remained stable, although decreases in resistance were noted for gentamicin, neomycin, and trimethoprim sulfamethoxazole during the study period. All isolates remained susceptible to enrofloxacin. These data show that antimicrobial susceptibility for bovine Salmonella has changed in the population served by WVDL in the past 10 yr. This information is important for understanding Salmonella disease ecology in

  17. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2008-10-28

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.  Created: 10/28/2008 by Emerging Infectious Diseases.   Date Released: 10/28/2008.

  18. Occurrence and antimicrobial susceptibility of Salmonella isolates recovered from the pig slaughter process in Romania.

    Science.gov (United States)

    Morar, Adriana; Sala, Claudia; Imre, Kálmán

    2015-01-15

    Reported human salmonellosis cases have increased in Romania. Antibiotic susceptibility testing of Salmonella strains isolated from pork and chicken meat indicate a worrying multidrug resistance pattern. This study aimed to investigate the occurrence of Salmonella and to evaluate the antibiotic resistance of Salmonella strains in a pig slaughterhouse-processing complex, which receives animals from 30% of the large industrialized swine farms in Romania. A total of 108 samples, including pork (n = 47), packaged pork products (n = 44), scald water sludge (n = 8), and detritus from the hair removal machine of the slaughterhouse (n = 9) were examined for the presence of Salmonella through standard methods. The antibiotic susceptibility of the isolated strains to 17 antibiotics was tested using the Vitek 2 system. Twenty-six (24.1%) samples were found to be Salmonella positive; this included 25.5% of meat samples and 15.9% of packaged products, as well as samples from two different points of the slaughter (41.2%). Resistance was observed against tetracycline (61.5%), ampicillin (50%), piperacillin (50%), trimethoprim-sulfamethoxazole (34.6%), amoxicillin/clavulanic acid (26.9%), nitrofurantion (23.1%), cefazolin (15.4%), piperacillin/tazobactam (7.7%), imipenem (3.8%), ciprofloxacin (3.8%), and norfloxacin (3.8%). No resistance towards cefoxitin, cefotaxime, ceftazidime, cefepime, amikacin, and gentamicin was found. Our study demonstrated the occurrence of multidrug-resistant Salmonella strains in the investigated pork production complex and highlighted it as a potential source of human infections. The results demonstrate the seriousness of antibiotic resistance of Salmonella in Romania, while providing a useful insight for the treatment of human salmonellosis by specialists.

  19. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China.

    Science.gov (United States)

    Zhu, Yuanting; Lai, Haimei; Zou, Likou; Yin, Sheng; Wang, Chengtao; Han, Xinfeng; Xia, Xiaolong; Hu, Kaidi; He, Li; Zhou, Kang; Chen, Shujuan; Ao, Xiaolin; Liu, Shuliang

    2017-10-16

    A total of 189 Salmonella isolates were recovered from 627 samples which were collected from cecal contents of broilers, chicken carcasses, chicken meat after cutting step and frozen broiler chicken products along the slaughtering process at a slaughterhouse in Sichuan province of China. The Salmonella isolates were subjected to antimicrobial susceptibility testing to 10 categories of antimicrobial agents using the Kirby-Bauer disk diffusion method. Those antibiotics-resistant isolates were further investigated for the occurrence of resistance genes, the presence of class 1 integron as well as the associated gene cassettes, and the mutations within the gyrA and parC genes. Consequently, the prevalence of Salmonella was 30.14% (47.96% for cecal content, 18.78% for chicken carcasses, 31.33% for cutting meat and 14.00% for frozen meat, respectively). The predominant serotypes were S. Typhimurium (15.34%) and S. Enteritidis (69.84%). High resistance rates to the following drugs were observed: nalidixic acid (99.5%), ampicillin (87.8%), tetracycline (51.9%), ciprofloxacin (48.7%), trimethoprim/sulfamethoxazole (48.1%), and spectinomycin (34.4%). Antimicrobial resistance profiling showed that 60.8% of isolates were multidrug resistant (MDR), and MDR strains increased from 44.7% to 78.6% along the slaughtering line. 94.6% (n=157) of beta-lactam-resistant isolates harbored at least one resistance gene of bla TEM or bla CTX-M . The relatively low prevalence of aminoglycoside resistance genes (aac(3)-II, aac(3)-IV, and ant(2″)-I) was found in 49 (66.2%) of antibiotic-resistant isolates. The tetracycline resistance genes (tet(A), tet(B), tet(C), and tet(G) and sulfonamide resistance genes (sul1, sul2, and sul3) were identified in 84 (85.7%) and 89 (97.8%) antibiotic-resistant isolates respectively. floR was identified in 44 (97.8%) florfenicol-resistant isolates. Class 1 integron was detected in 37.4% (n=43) of the MDR isolates. Two different gene cassettes, bla OXA-30 -aad

  20. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  1. [Impact of fluoroquinolone use on multidrug-resistant bacteria emergence].

    Science.gov (United States)

    Nseir, S; Ader, F; Marquette, C-H; Durocher, A

    2005-01-01

    During the last two decades, fluoroquinolone use has significantly increased in Europe and in the USA. This could be explained by the arrival of newer fluoroquinolones with antipneumoccal activity. Increased use of fluoroquinolones is associated with higher rates of bacterial resistance to these antibiotics. Resistance of Gram-negative bacilli to fluoroquinolones is increasing in industrialized countries. In addition, fluoroquinolone use has been identified as a risk factor for colonization and infection to methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanni, extending-spectrum beta-lactamase producing Gram negative bacilli, and multidrug-resistant bacteria. Nosocomial infections due to multidrug-resistant bacteria are associated with higher mortality and morbidity rates. This could be related to more frequent inappropriate initial antibiotic treatment in these patients. Limiting the use of fluoroquinolones, limiting the duration of treatment with fluoroquinolones, and using appropriate dosage of these antibiotics could be suggested to reduce resistance to these antibiotics and to reduce the emergence of multidrug-resistant bacteria.

  2. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  3. The radiological spectrum of pulmonary multidrug-resistant tuberculosis: in HIV-Negative patients

    International Nuclear Information System (INIS)

    Zahirifard, S.; Amiri, M.V.; Bakhshayesh Karam, M.; Mirsaeidi, S.M.; Ehsanpour, A.; Masjedi, M.R.

    2003-01-01

    Background: Multidrug-resistant tuberculosis is a major worldwide health problem. In countries where tuberculosis is of moderate to high prevalence, the issue of Multidrug-resistant tuberculosis carries significant importance. Multidrug-resistant tuberculosis, similar to drug-sensitive tuberculosis, is contagious. Meanwhile its treatment is not only more difficult but also more expensive with lower success rates. Regarding clinical findings, there is no significant difference between Multidrug-resistant tuberculosis and drug-sensitive tuberculosis. Therefore determination of characteristic radiological findings in cases of Multidrug-resistant tuberculosis might be of help in early detection, and hence appropriate management of this disease condition. Objective: To explain the radiological spectrum of pulmonary Multidrug-resistant tuberculosis. Patients and methods: We retrospectively evaluated the radiographic images of 35 patients with clinically-and microbiologically- proven Multidrug-resistant tuberculosis admitted to our tertiary-care tuberculosis unit over a period of 13 months. The latest chest x-ray of all patients and the conventional chest CT scan without contrast of 15 patients were reviewed by three expert radiologists who rendered consensus opinion. Results: Of the 35 patients with imaging studies, 23 (66%) were male and 12 (34%) were female. The mean±SD age of participants was 38.2±17.3 (range: 16-20) years. 33 patients were known as secondary and only 2 had primary Multidrug-resistant tuberculosis. Chest radiography revealed cavitary lesion in 80% pulmonary infiltration in 89% and nodules in 80% of the cases. Pleurisy was the rarest finding observed in only 5 (14%) patients. All of 15 chest CT scans revealed cavitation, 93% of which were bilateral and multiple. Pleural involvement was seen in 93% of patients. Conclusion: Presence of multiple cavities, especially in both lungs, nodular and infiltrative lesions, and pleural effusion are main features

  4. Occurrence of extended-spectrum and AmpC β-lactamases in multiple drug resistant Salmonella isolates from clinical samples in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Akinyemi KO

    2017-01-01

    Full Text Available KO Akinyemi,1 Bamidele Abiodun Iwalokun,2 Akeeb O Bola Oyefolu,1 CO Fakorede1 1Department of Microbiology, Lagos State University, Ojo, 2Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria Purpose: Salmonella spp. are important foodborne pathogens exhibiting increasing resistance to antimicrobial drugs. Resistance to broad-spectrum β-lactams, mediated by extended-spectrum β-lactamase (ESBL and AmpC β-lactamase enzymes is fast spreading and has had negative impacts on the clinical outcomes, particularly on third-generation cephalosporins. This study investigated the carriage of AmpC gene among multidrug-resistant Salmonella spp. from Lagos, Nigeria. Methods: Forty Salmonella spp. from clinical samples (S. typhi = 13; S. typhimurium = 10; S. enteritidis = 8; S. choleraesuis = 5; S. paratyphi = 4 were subjected to in vitro susceptibility test by disk diffusion methods. Isolates that were resistant to cefoxitin and third-generation cephalosporins were screened for ESBL (Double Disk Synergy Test Method and AmpC enzyme (AmpC disk test production. Detection of AmpC fox gene was carried out by polymerase chain reaction. Results: Thirty-two (80% of the Salmonella isolates were cefoxitin resistant. Plasmid-mediated AmpC β-lactamase and ESBL enzymes were recorded in 10/40 (25% and 16/40 (40% of the Salmonella isolates, respectively. Specifically, 16/40 (40% of the Salmonella isolates possessed 380 bp AmpC fox gene, with the highest occurrence found in S. typhi strains (43.8% followed by S. typhimurium (25%. There was no AmpC fox gene detected in S. paratyphi strains. Interestingly, coproduction of enzymes occurred in some of the isolates, raising fears of resistance to a multitude of antibiotics in the treatment of bacterial infections. Conclusion: Emergence of AmpC β-lactamase–producing Salmonella isolates in our environment was recorded for the first time, raising concern on increased

  5. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Directory of Open Access Journals (Sweden)

    Jody L. Andersen

    2015-01-01

    Full Text Available Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  6. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Science.gov (United States)

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  7. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    Science.gov (United States)

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  8. Combining essential oils and olive extract for control of multi-drug resistant Salmonella enterica on organic leafy greens

    Science.gov (United States)

    We investigated the combined antimicrobial effects of plant essential oils and olive extract against antibiotic resistant Salmonella enterica serovar Newport on organic leafy greens. Organic baby spinach, mature spinach, romaine lettuce, and iceberg lettuce were inoculated with S. Newport and dip-t...

  9. [Establishment of human multidrug-resistant lung carcinoma cell line (D6/MVP)].

    Science.gov (United States)

    Ma, Sheng-lin; Feng, Jian-guo; Gu, Lin-hui; Ling, Yu-tian

    2003-03-01

    To establish human multidrug-resistant lung carcinoma cell line (D6/MVP) with its characteristics studied. Intermittent administration of high-dose MMC, VDS and DDP (MVP) was used to induce human lung carcinoma cell line (D6) to a multidrug-resistant variety (D6/MVP). MTT assay was used to study the multidrug resistance of D6/MVP to multianticarcinogen. Flow cytometry was used to study the cell cycle distribution and the expression of P-gp, multidrug resistance-associated protein (MRP) and GSH/GST. 1. D6/MVP was resistant to many anti-tumor agents, with the IC(50) 13.3 times higher and the drug resistance 2 - 6 times higher than D6, 2. The multiplication time of D6/MVP was prolonged and the cell number of S-phase decreased while that of G1- and G(2)-phase increased and 3. The expression of P-gp and MRP was enhanced significantly (96.2% vs 51.7%), but the expression of GSH/GST kept stable. D6/MVP is a multidrug-resistant cell line possessing the basic characteristics of drug-resistance.

  10. Phenotypic and Genotypic Resistance of Salmonella Isolates from Healthy and Diseased Pigs in China During 2008-2015.

    Science.gov (United States)

    Jiu, Yueguang; Zhu, Shun; Khan, Sher Bahadar; Sun, Mengzhen; Zou, Geng; Meng, Xianrong; Wu, Bin; Zhou, Rui; Li, Shaowen

    2017-07-01

    The antimicrobial resistance of Salmonella strains is rapidly increasing worldwide, which poses significant threats to animal and public health. In this study, a total of 249 porcine Salmonella isolates collected in China during 2008-2015 were examined, including 155 clinical isolates from diseased pigs and 94 nonclinical isolates from healthy pigs. Based on the minimum inhibitory concentration of seven antimicrobial agents, 96.4% of the isolates were resistant to at least one of the tested antibiotics and 81.0% of them showed multidrug resistance. The highest antimicrobial resistance was observed for tetracycline (85.9%), and the lowest was found for cefotaxime (13.3%). The isolates from diseased pigs exhibited significantly higher levels of antimicrobial resistance than those from healthy pigs. Twenty-two isolates from healthy pigs were resistant to ciprofloxacin, which may inhibit the curative effectiveness of fluoroquinolones on bacterial food-borne poisoning and infections in humans caused by contaminated food. Moreover, cefotaxime resistance of the strains isolated from diseased pigs during 2013-2015 was significantly higher compared with the strains isolated during 2008-2010. Further study showed that the correlation between phenotypic and genotypic resistance varied among the isolates from different sources, and in many cases, the presence of resistance genes was not consistent with the resistance to the corresponding antimicrobials. These results are very significant for veterinary practice and public health.

  11. Diversity and antimicrobial resistance of Salmonella enterica isolates from surface water in Southeastern United States.

    Science.gov (United States)

    Li, Baoguang; Vellidis, George; Liu, Huanli; Jay-Russell, Michele; Zhao, Shaohua; Hu, Zonglin; Wright, Anita; Elkins, Christopher A

    2014-10-01

    A study of prevalence, diversity, and antimicrobial resistance of Salmonella enterica in surface water in the southeastern United States was conducted. A new scheme was developed for recovery of Salmonella from irrigation pond water and compared with the FDA's Bacteriological Analytical Manual (8th ed., 2014) (BAM) method. Fifty-one isolates were recovered from 10 irrigation ponds in produce farms over a 2-year period; nine Salmonella serovars were identified by pulsed-field gel electrophoresis analysis, and the major serovar was Salmonella enterica serovar Newport (S. Newport, n = 29), followed by S. enterica serovar Enteritidis (n = 6), S. enterica serovar Muenchen (n = 4), S. enterica serovar Javiana (n = 3), S. enterica serovar Thompson (n = 2), and other serovars. It is noteworthy that the PulseNet patterns of some of the isolates were identical to those of the strains that were associated with the S. Thompson outbreaks in 2010, 2012, and 2013, S. Enteritidis outbreaks in 2011 and 2013, and an S. Javiana outbreak in 2012. Antimicrobial susceptibility testing confirmed 16 S. Newport isolates of the multidrug resistant-AmpC (MDR-AmpC) phenotype, which exhibited resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), and to the 1st, 2nd, and 3rd generations of cephalosporins (cephalothin, amoxicillin-clavulanic acid, and ceftriaxone). Moreover, the S. Newport MDR-AmpC isolates had a PFGE pattern indistinguishable from the patterns of the isolates from clinical settings. These findings suggest that the irrigation water may be a potential source of contamination of Salmonella in fresh produce. The new Salmonella isolation scheme significantly increased recovery efficiency from 21.2 (36/170) to 29.4% (50/170) (P = 0.0002) and streamlined the turnaround time from 5 to 9 days with the BAM method to 4 days and thus may facilitate microbiological analysis of environmental water. Copyright © 2014, American Society for

  12. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment.

    Science.gov (United States)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-08-15

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients. Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites of infection/colonization, drug sequestration in the biofilm matrix, and, in the setting of outbreaks, suboptimal infection control. Moreover, recent research suggests that DNA mismatch repair gene mutations may facilitate acquisition of resistance mutations in C. glabrata specifically. Diagnosis of antifungal-resistant Candida infections is critical to the successful management of patients with these infections. Reduction of unnecessary use of antifungals via antifungal stewardship is critical to limit multidrug resistance emergence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Longitudinal study of distributions of similar antimicrobial-resistant Salmonella serovars in pigs and their environment in two distinct swine production systems.

    Science.gov (United States)

    Keelara, Shivaramu; Scott, H Morgan; Morrow, William M; Gebreyes, Wondwossen A; Correa, Maria; Nayak, Rajesh; Stefanova, Rossina; Thakur, Siddhartha

    2013-09-01

    The aim of this longitudinal study was to determine and compare the prevalences and genotypic profiles of antimicrobial-resistant (AR) Salmonella isolates from pigs reared in antimicrobial-free (ABF) and conventional production systems at farm, at slaughter, and in their environment. We collected 2,889 pig fecal and 2,122 environmental (feed, water, soil, lagoon, truck, and floor swabs) samples from 10 conventional and eight ABF longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and slaughter (postevisceration, postchill, and mesenteric lymph nodes [MLN]). In addition, we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter. A total of 1,090 Salmonella isolates were recovered from the samples; these were isolated with a significantly higher prevalence in conventionally reared pigs (4.0%; n = 66) and their environment (11.7%; n = 156) than in ABF pigs (0.2%; n = 2) and their environment (0.6%; n = 5) (P antimicrobial resistance (AR) were exhibited to tetracycline (71%), sulfisoxazole (42%), and streptomycin (17%). Multidrug resistance (resistance to ≥ 3 antimicrobials; MDR) was detected in 27% (n = 254) of the Salmonella isolates from the conventional system. Our study reports a low prevalence of Salmonella in both production systems in pigs on farms, while a higher prevalence was detected among the carcasses at slaughter. The dynamics of Salmonella prevalence in pigs and carcasses were reciprocated in the farm and slaughter environment, clearly indicating an exchange of this pathogen between the pigs and their surroundings. Furthermore, the phenotypic and genotypic fingerprint profile results underscore the potential role played by environmental factors in dissemination of AR Salmonella to pigs.

  14. Salmonella spp. in raw broiler parts: occurrence, antimicrobial resistance profile and phage typing of the Salmonella Enteritidis isolates Salmonella spp. em cortes de frango: ocorrência, resistência antimicrobiana e fagotipificação dos isolados de Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Aldemir Reginato Ribeiro

    2007-06-01

    Full Text Available The present study was carried out to evaluate the occurrence of Salmonellae in raw broiler parts and to determine the antimicrobial resistance profile of the isolated strains. Twenty-four (39.3% broiler parts samples were positive for Salmonella and twenty-five Salmonella strains were isolated, since two different serovars were detected in one single positive sample. Salmonella Enteritidis was the most prevalent serovar. Among Salmonella Enteritidis isolates, 95.2% belonged to Phage Type 4 (PT4 (20/21 and 4.8% to PT7 (1/21. Twenty-two (88% strains of Salmonella were resistant to at least one antimicrobial agent, generating eight different resistance patterns. The S. Typhimurium (n: 1 and S. Hadar (n: 3 isolates presented multiple resistance. Three S. Enteritidis isolates were susceptible to all antimicrobials tested, two were resistant only to tetracycline. The high prevalence of Salmonella in the broiler parts strenghtens the importance of the use of good manufacturing practices (GMP, and HACCP. The results also emphasize the need for the responsible use of antimicrobials in animal production.Este trabalho foi conduzido para avaliar a ocorrência de Salmonella em cortes de frango e para determinar o perfil de resistência antimicrobiana das cepas isoladas. Vinte e quatro (39,3% cortes de frango foram positivas para Salmonella, tendo sido isoladas vinte e cinco cepas de Salmonella, uma vez que em uma amostra isolaram-se dois sorovares. Salmonella Enteritidis foi o sorovar prevalente. Entre as Salmonella Enteritidis isoladas, 95,2% pertencem ao Fagotipo 4 (PT4 (20/21 e 4,8% ao PT7 (1/21. Vinte e duas (88% cepas de Salmonella foram resistentes a pelo menos um agente antimicrobiano e oito diferentes padrões de resistência foram observados. S. Typhimurium (n:1 e S. Hadar (n: 3, apresentaram múltipla resistência. Três cepas de S. Enteritidis foram sensíveis a todos os antimicrobianos e duas resistentes somente a tetraciclina. A elevada ocorr

  15. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Purpose: The rapid emergence of drug resistance among pathogenic bacteria, especially multidrugresistant bacteria, underlines the need to look for new antibiotics. Methods: In the present ...

  16. Amoxicillin / Clavulanic Acid and Cefotaxime Resistance in Salmonella Minnesota and Salmonella Heidelberg from Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Rodrigues IBBE

    2017-10-01

    Full Text Available This study investigated the resistance of various Salmonella strains to beta-lactam antibiotics. Salmonella Minnesota (36 strains and Salmonella Heidelberg (24 strains were isolated from broiler chickens and carcasses by the Disk Diffusion Test and resistance genes blaCTX-M-8, blaACC-1 and blaCMY-2 were detected by PCR. Of the 60 strains tested, 80% were resistant to at least one antibiotic. Specifically, 66.7% were resistant to amoxicillin/clavulanic acid and 75% were resistant to cefotaxime. Among the amoxicillin/clavulanic acid resistant strains, the blaCMY-2 gene was detected in 40%, blaACC-1 in 37.5% and blaCTX-M-8 in 7.5%. Among the cefotaxime resistant strains, we detected the genes blaCTX-M-8 in 13.3%, blaACC-1 in 33.3%, and blaCMY-2 in 31.1%. The presence of cefotaxime- and amoxicillin/clavulanic acid-resistant Salmonella in poultry, and the prevalence of extended spectrum betalactamases and AmpC-betalactamases in these strains are of huge concern to public health and economy.

  17. Multidrug resistance in pediatric urinary tract infections.

    Science.gov (United States)

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ).

  18. Tailoring Cytotoxicity of Antimicrobial Peptidomimetics with High Activity against Multidrug-Resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Sandberg-Schaal, Anne; Vissing, Karina Juul

    2014-01-01

    Infections with multidrug-resistant pathogens are an increasing concern for public health. Recently, subtypes of peptide-peptoid hybrids were demonstrated to display potent activity against multidrug-resistant Gram-negative bacteria. Here, structural variation of these antibacterial peptidomimetics...... cells. Thus, lead compounds with a high selectivity toward killing of clinically important multidrug-resistant E. coli were identified....

  19. Multidrug-resistant tuberculosis, Somalia, 2010-2011.

    Science.gov (United States)

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal; Zignol, Matteo

    2013-03-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia.

  20. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    OpenAIRE

    More, Arun Punaji; Nagdawane, Ramkrishna Panchamrao; Gangurde, Aniket K

    2013-01-01

    Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR) has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence...

  1. High-level fluoroquinolone resistant Salmonella enterica serovar Kentucky ST198 epidemic clone with IncA/C conjugative plasmid carrying bla(CTX-M-25) gene.

    Science.gov (United States)

    Wasyl, Dariusz; Kern-Zdanowicz, Izabela; Domańska-Blicharz, Katarzyna; Zając, Magdalena; Hoszowski, Andrzej

    2015-01-30

    Multidrug resistant Salmonella Kentucky strains have been isolated from turkeys in Poland since 2009. Multiple mutations within chromosomal genes gyrA and parC were responsible for high-level ciprofloxacin resistance. One of the isolates was extended spectrum β-lactamase- (ESBL) positive: the strain 1643/2010 carried a conjugative 167,779 bps plasmid of IncA/C family. The sequence analysis revealed that it carried a blaCTX-M-25 gene and an integron with another β-lactamase encoding gene-blaOXA-21. This is the first known report of a CTX-M-25 encoding gene both in Poland and in Salmonella Kentucky world-wide, as well as in the IncA/C plasmid. Analysis of the integron showed a novel arrangement of gene cassettes-aacA4, aacC-A1 and blaOXA-21 where the latter might result from an intergeneric gene transfer. The study confirmed Salmonella Kentucky population isolated in Poland belongs to global epidemics of high level fluoroquinolone resistant clone ST198 that can carry rare β-lactamase genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multidrug-Resistant Outbreak-Associated Salmonella Strains in Irrigation Water from the Metropolitan Region, Chile.

    Science.gov (United States)

    Martínez, M C; Retamal, P; Rojas-Aedo, J F; Fernández, J; Fernández, A; Lapierre, L

    2017-06-01

    Salmonella enterica (S. enterica) is the main cause of foodborne diseases in the Chilean population. With the aim of characterizing the presence of S. enterica in bodies of water, samples from 40 sources were obtained, including rivers and irrigation canals used by agricultural farms in the most populated regions of Chile. As result, 35 S. enterica isolates belonging to several serotypes were detected, with the highest frequency represented by Typhimurium and Enteritidis. All strains showed phenotypic antimicrobial resistance, and most of them were multiresistant to critically important antimicrobials. In addition, the pulse-field gel electrophoresis analysis using XbaI and BlnI endonucleases showed that seven Salmonella isolates belonging to serotypes Typhimurium, Enteritidis and Infantis had identical pulsotypes to outbreak-associated clinical isolates detected in the Chilean population, suggesting a public health risk of water pollution in this region. Among sampling sites, the higher detection rates were observed in rural than urban and peri-urban areas, suggesting that the animal husbandry might contribute for environmental dispersion of this pathogen. Future efforts should address the characterization of cause-and-effect relationship between water contamination and foodborne disease, including the implementation of surveillance programmes to tackle potential risks for both human and animal populations. © 2016 Blackwell Verlag GmbH.

  3. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  4. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002-2003.

    Science.gov (United States)

    Varma, Jay K; Marcus, Ruthanne; Stenzel, Sara A; Hanna, Samir S; Gettner, Sharmeen; Anderson, Bridget J; Hayes, Tameka; Shiferaw, Beletshachew; Crume, Tessa L; Joyce, Kevin; Fullerton, Kathleen E; Voetsch, Andrew C; Angulo, Frederick J

    2006-07-15

    A new multidrug-resistant (MDR) strain of Salmonella serotype Newport, Newport-MDRAmpC, has recently emerged. We sought to identify the medical, behavioral, and dietary risk factors for laboratory-confirmed Salmonella Newport infection, including that with Newport-MDRAmpC. A 12-month population-based case-control study was conducted during 2002-2003 in 8 sites of the Foodborne Diseases Active Surveillance Network (FoodNet), with 215 case patients with Salmonella Newport infection and 1154 healthy community control subjects. Case patients with Newport-MDRAmpC infection were more likely than control subjects to have taken an antimicrobial agent to which Newport-MDRAmpC is resistant during the 28 days before the onset of diarrheal illness (odds ratio [OR], 5.0 [95% confidence interval {CI}, 1.6-16]). Case patients with Newport-MDRAmpC infection were also more likely to have eaten uncooked ground beef (OR, 7.8 [95% CI, 1.4-44]) or runny scrambled eggs or omelets prepared in the home (OR, 4.9 [95% CI, 1.3-19]) during the 5 days before the onset of illness. International travel was not a risk factor for Newport-MDRAmpC infection but was a strong risk factor for pansusceptible Salmonella Newport infection (OR, 7.1 [95% CI, 2.0-24]). Case patients with pansusceptible infection were also more likely to have a frog or lizard in their household (OR, 2.9 [95% CI, 1.1-7.7]). Newport-MDRAmpC infection is acquired through the US food supply, most likely from bovine and, perhaps, poultry sources, particularly among persons already taking antimicrobial agents.

  5. Draft genome sequence of a multidrug-resistant Chryseobacterium indologenes isolate from Malaysia

    Directory of Open Access Journals (Sweden)

    Choo Yee Yu

    2016-03-01

    Full Text Available Chryseobacterium indologenes is an emerging pathogen which poses a threat in clinical healthcare setting due to its multidrug-resistant phenotype and its common association with nosocomial infections. Here, we report the draft genome of a multidrug-resistant C. indologenes CI_885 isolated in 2014 from Malaysia. The 908,704-kb genome harbors a repertoire of putative antibiotic resistance determinants which may elucidate the molecular basis and underlying mechanisms of its resistant to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession number LJOD00000000. Keywords: Chryseobacterium indologenes, Genome, Multi-drug resistant, blaIND, Next generation sequencing

  6. An association of genotypes and antimicrobial resistance patterns among Salmonella isolates from pigs and humans in Taiwan.

    Directory of Open Access Journals (Sweden)

    Hung-Chih Kuo

    Full Text Available We collected 110 Salmonella enterica isolates from sick pigs and determined their serotypes, genotypes using pulsed-field gel electrophoresis (PFGE, and antimicrobial susceptibility to 12 antimicrobials and compared the data with a collection of 18,280 isolates obtained from humans. The pig isolates fell into 12 common serovars for human salmonellosis in Taiwan; S. Typhimurium, S. Choleraesuis, S. Derby, S. Livingstone, and S. Schwarzengrund were the 5 most common serovars and accounted for a total of 84% of the collection. Of the 110 isolates, 106 (96% were multidrug resistant (MDR and 48 (44% had PFGE patterns found in human isolates. S. Typhimurium, S. Choleraesuis, and S. Schwarzengrund were among the most highly resistant serovars. The majority of the 3 serovars were resistant to 8-11 of the tested antimicrobials. The isolates from pigs and humans sharing a common PFGE pattern displayed identical or very similar resistance patterns and Salmonella strains that caused severe infection in pigs were also capable of causing infections in humans. The results indicate that pigs are one of the major reservoirs to human salmonellosis in Taiwan. Almost all of the pig isolates were MDR, which highlights the necessity of strictly regulating the use of antimicrobials in the agriculture sector in Taiwan.

  7. An association of genotypes and antimicrobial resistance patterns among Salmonella isolates from pigs and humans in Taiwan.

    Science.gov (United States)

    Kuo, Hung-Chih; Lauderdale, Tsai-Ling; Lo, Dan-Yuan; Chen, Chiou-Lin; Chen, Pei-Chen; Liang, Shiu-Yun; Kuo, Jung-Che; Liao, Ying-Shu; Liao, Chun-Hsing; Tsao, Chi-Sen; Chiou, Chien-Shun

    2014-01-01

    We collected 110 Salmonella enterica isolates from sick pigs and determined their serotypes, genotypes using pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility to 12 antimicrobials and compared the data with a collection of 18,280 isolates obtained from humans. The pig isolates fell into 12 common serovars for human salmonellosis in Taiwan; S. Typhimurium, S. Choleraesuis, S. Derby, S. Livingstone, and S. Schwarzengrund were the 5 most common serovars and accounted for a total of 84% of the collection. Of the 110 isolates, 106 (96%) were multidrug resistant (MDR) and 48 (44%) had PFGE patterns found in human isolates. S. Typhimurium, S. Choleraesuis, and S. Schwarzengrund were among the most highly resistant serovars. The majority of the 3 serovars were resistant to 8-11 of the tested antimicrobials. The isolates from pigs and humans sharing a common PFGE pattern displayed identical or very similar resistance patterns and Salmonella strains that caused severe infection in pigs were also capable of causing infections in humans. The results indicate that pigs are one of the major reservoirs to human salmonellosis in Taiwan. Almost all of the pig isolates were MDR, which highlights the necessity of strictly regulating the use of antimicrobials in the agriculture sector in Taiwan.

  8. Identificazione e caratterizzazione dei determinanti genetici di antibiotico-resistenza in ceppi di Salmonella enterica di origine animale

    Directory of Open Access Journals (Sweden)

    Cristina Pezzella

    2004-12-01

    Full Text Available Tetracyclines are broad-spectrum agents, exhibiting activity against a wide range of gram-positive and gram-negative bacteria and are currently used for therapy and prophylaxis of human infections and for the prevention and control of bacterial infections in veterinary medicine. Streptomycin has only limited current usage in clinical medicine, but this antibiotic remains important for therapeutic and growth promotion in animals and for the bacterial disease control in plants.The increasing incidence of resistance to streptomycin and tetracyclines has been reported worldwide in Salmonella spp. of human and animal origin. Fifty-eight multidrug-resistant Salmonella enterica strains of twenty different serotypes, were chosen among the collection of multidrug-resistant strains isolated from animals and food of animal origin at the Istituto Zooprofilattico Sperimentale delle Venezie and at the Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, during their routine surveillance activity in the 2000 and 2001 period.All strains showed resistance to at least three different antimicrobials: tetracycline and streptomycin resistances represent the 98% and 95% of the strains, respectively. Salmonella isolates were analyzed for the presence of genetic determinants conferring streptomycin and tetracyclines resistance by PCR for the tet(A and strA-strB genes, respectively.The strA-strB genes were highly prevalent in Salmonella strains of our collection, being detected in the 83% of the streptomycin resistant strains; the 68% of the tetracycline resistant strains were tet(A gene positive, indicating that this gene is widely diffused in Salmonella strains circulating in animals in Italy. Two prevalent repN- and repI1-resistance plasmids were identified in Salmonella isolates of our collection. In many strains, the strA-strB genes were linked to a particular Tn5393-derivative transposon, characterized by the presence of the insertion sequence IS1133

  9. Antibacterial Activities and Possible Modes of Action of Acacia nilotica (L. Del. against Multidrug-Resistant Escherichia coli and Salmonella

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal Sadiq

    2017-01-01

    Full Text Available Medicinal plants are frequently used for the treatment of various infectious diseases. The objective of this study was to evaluate the antibacterial activity and mode of action of Acacia nilotica and the antibiogram patterns of foodborne and clinical strains of Escherichia coli and Salmonella. The mechanism of action of acacia extracts against E. coli and Salmonella was elucidated by observing morphological damages including cell integrity and cell membrane permeability, as well as changes in cell structures and growth patterns in kill-time experiments. The clinical isolates of E. coli and Salmonella were found resistant to more of the tested antibiotics, compared to food isolates. Minimum inhibitory concentration and minimum bactericidal concentration of acacia leaf extracts were in the ranges of 1.56–3.12 mg/mL and 3.12–6.25 mg/mL, respectively, whereas pods and bark extracts showed somewhat higher values of 3.12–6.25 mg/mL and 6.25–12.5 mg/mL, respectively, against all tested pathogens. The release of electrolytes and essential cellular constituents (proteins and nucleic acids indicated that acacia extracts damaged the cellular membrane of the pathogens. These changes corresponded to simultaneous reduction in the growth of viable bacteria. This study indicates that A. nilotica can be a potential source of new antimicrobials, effective against antibiotic-resistant strains of pathogens.

  10. [Prevalence and antimicrobial susceptibility of Salmonella isolated from broiler whole production process in four provinces of China].

    Science.gov (United States)

    Li, W W; Bai, L; Zhang, X L; Xu, X J; Tang, Z; Bi, Z W; Guo, Y C

    2018-04-06

    Objective: To determine the prevalence and antimicrobial susceptibility of Salmonella isolated from broiler production process in 4 provinces of China. Methods: Using convenience sampling method, 238 sample sites from broiler whole production process were chosen in Henan, Jiangsu, Heilongjiang and Shandong provinces in 2012. A total of 11 592 samples were collected and detected to analyze prevalence baseline, including 2 090 samples from breeding chicken farms and hatcheries, 1 421 samples from broiler farms, 5 610 samples from slaughterhouses and 2 471 samples from distribution and retail stores. All Salmonella strains were isolated through selective enrichment, and were serotyped according to Kauffmann-White scheme. The antimicrobial susceptibilities of selected Salmonella strains were determined by the broth microdilution method and fourteen antimicrobial agents were examined. Results: During incubation course, the average prevalence of Salmonella was 5.5% in feces of breeding hens, feces of chicks, and hatching eggs, 123 Salmonella strains were isolated. During cultivation course, the prevalence of Salmonella was 8.0% in feces from broiler farms, soil, feed, and workers, 114 Salmonella strains were isolated. During slaughter course, the prevalence of Salmonella was 24.9% in swabs pre-slaughter, dressed broiler carcasses, pre-cooled broiler carcasses, water from precooling pool, cutter and chipping boards, frozen chicken portions, and workers, 1 438 Salmonella strains were isolated. During distribution and sale course, the prevalence of Salmonella was 20.9% in transport carts, frozen chicken portions, retail chicken portions and workers, 551 Salmonella strains were isolated. The dominant Salmonella serotypes were Salmonella Enteritidis ( n= 1 229) and Salmonella Indiana ( n= 621). Among 1 231 examined strains, 97.2% Salmonella isolates were resistant to at least one antimicrobial, 69.9% Salmonella strains were multi-drug resistant isolates. Conclusion: Our

  11. Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana.

    Science.gov (United States)

    Parry-Hanson Kunadu, Angela; Holmes, Mark; Miller, Eric L; Grant, Andrew J

    2018-07-20

    Consumer perception of poor hygiene of fresh milk products is a major barrier to promotion of milk consumption as an intervention to alleviate the burden of malnutrition in Ghana. Fresh milk is retailed raw, boiled, or processed into unfermented cheese and spontaneously fermented products in unlicensed outlets. In this study, we have determined microbiological quality of informally retailed fresh milk products and characterized the genomic diversity and antimicrobial resistance (AMR) patterns of non-typhoidal Salmonella (NTS) in implicated products. A total of 159 common dairy products were purchased from five traditional milk markets in Accra. Samples were analysed for concentrations of aerobic bacteria, total and fecal coliforms, Escherichia coli, staphylococci, lactic acid bacteria and yeast and moulds. The presence of Salmonella, E. coli O157:H7, Listeria monocytogenes and Staphylococcus aureus were determined. AMR of Salmonella against 18 antibiotics was experimentally determined. Genome sequencing of 19 Salmonella isolates allowed determination of serovars, antigenic profiles, prediction of AMR genes in silico and inference of phylogenetic relatedness between strains. Raw and heat-treated milk did not differ significantly in overall bacterial quality (P = 0.851). E. coli O157:H7 and Staphylococcus aureus were present in 34.3% and 12.9% of dairy products respectively. Multidrug resistant (MDR) Salmonella enterica serovars Muenster and Legon were identified in 11.8% and 5.9% of unfermented cheese samples respectively. Pan genome analysis revealed a total of 3712 core genes. All Salmonella strains were resistant to Trimethoprim/Sulfamethoxazole, Cefoxitin, Cefuroxime Axetil and Cefuroxime. Resistance to Chloramphenicol (18%) and Ciprofloxacin (100%), which are first line antibiotics used in treatment of NTS bacteremia in Ghana, was evident. AMR was attributed to presence and/or mutations in the following genes: golS, sdiA for cephalosporins, aac(6')-Iy, ant

  12. Study of multidrug resistance and radioresistance

    International Nuclear Information System (INIS)

    Kang, Yoon Koo; Yoo, Young Do

    1999-04-01

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance

  13. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon

    2016-01-01

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally struc...

  14. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  15. Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China

    KAUST Repository

    Abd El Ghany, Moataz; Shi, Xiaolu; Li, Yinghui; Ansari, Hifzur Rahman; Hill-Cawthorne, Grant A.; Ho, Y. S.; Naeem, Raeece; Pickard, Derek; Klena, John D.; Xu, Xuebing; Pain, Arnab; Hu, Qinghua

    2016-01-01

    Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with exposure to poultry flocks, farm environments, or contaminated food. The recent emergence of multidrug-resistant isolates has raised public

  16. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  17. Virulence characterisation of Salmonella enterica isolates of differing antimicrobial resistance recovered from UK livestock and imported meat samples.

    Directory of Open Access Journals (Sweden)

    Roderick eCard

    2016-05-01

    Full Text Available Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterised the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2, tetracycline (tet(A, tet(B, streptomycin (strA, strB, aminoglycoside (aadA1, aadA2, beta-lactam (blaTEM, and trimethoprim (dfrA17 were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 hours post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk.

  18. Management of multidrug-resistant tuberculosis in human immunodeficiency virus patients

    Science.gov (United States)

    Jamil, K. F.

    2018-03-01

    Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis(MTB). 10.4 million new TB cases will appear in 2015 worldwide. There were an estimated 1.4 million TB deaths in 2015, and an additional 0.4 million deaths resulting from TB disease among people living with human immunodeficiency virus (HIV). Multidrug- resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) are major public health concerns worldwide. 480.000 new cases of MDR-TB will appear in 2015 and an additional 100,000 people with rifampicin-resistant TB (RR-TB) who were also newly eligible for MDR-TB treatment. Their association with HIV infection has contributed to the slowing down of TB incidence decline over the last two decades, therefore representing one important barrier to reach TB elimination. Patients infected with MDR-TB require more expensive treatment regimens than drug-susceptible TB, with poor treatment.Patients with multidrug- resistant tuberculosis do not receive rifampin; drug interactions risk is markedly reduced. However, overlapping toxicities may limit options for co-treatment of HIV and multidrug- resistant tuberculosis.

  19. MarA-like regulator of multidrug resistance in Yersinia pestis.

    Science.gov (United States)

    Udani, Rupa A; Levy, Stuart B

    2006-09-01

    MarA47(Yp) from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47(Yp) gene was overexpressed. The findings suggest that marA47(Yp) is a marA ortholog in Y. pestis.

  20. Molecular characterization of multidrug-resistant Shigella spp. of food origin.

    Science.gov (United States)

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2015-02-02

    Shigella spp. are the causative agents of food-borne shigellosis, an acute enteric infection. The emergence of multidrug-resistant clinical isolates of Shigella presents an increasing challenge for clinicians in the treatment of shigellosis. Several studies worldwide have characterized the molecular basis of antibiotic resistance in clinical Shigella isolates of human origin, however, to date, no such characterization has been reported for Shigella spp. of food origin. In this study, we characterized the genetic basis of multidrug resistance in Shigella spp. isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets, and slaughterhouses in Egypt. Twenty-four out of 27 Shigella isolates (88.9%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The multidrug-resistant Shigella spp. were as follows: Shigella flexneri (66.7%), Shigella sonnei (18.5%), and Shigella dysenteriae (3.7%). The highest resistance was to streptomycin (100.0%), then to kanamycin (95.8%), nalidixic acid (95.8%), tetracycline (95.8%), spectinomycin (93.6%), ampicillin (87.5%), and sulfamethoxazole/trimethoprim (87.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes. Our results indicated that 11.1% and 74.1% of isolates were positive for class 1 and class 2 integrons, respectively. Beta-lactamase-encoding genes were identified in 77.8% of isolates, and plasmid-mediated quinolone resistance genes were identified in 44.4% of isolates. These data provide useful information to better understand the molecular basis of antimicrobial resistance in Shigella spp. To the best of our knowledge, this is the first report of the molecular characterization of antibiotic resistance in Shigella spp. isolated from food. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Presentation of life-threatening invasive nontyphoidal Salmonella disease in Malawian children: A prospective observational study.

    Science.gov (United States)

    MacLennan, Calman A; Msefula, Chisomo L; Gondwe, Esther N; Gilchrist, James J; Pensulo, Paul; Mandala, Wilson L; Mwimaniwa, Grace; Banda, Meraby; Kenny, Julia; Wilson, Lorna K; Phiri, Amos; MacLennan, Jenny M; Molyneux, Elizabeth M; Molyneux, Malcolm E; Graham, Stephen M

    2017-12-01

    Nontyphoidal Salmonellae commonly cause invasive disease in African children that is often fatal. The clinical diagnosis of these infections is hampered by the absence of a clear clinical syndrome. Drug resistance means that empirical antibiotic therapy is often ineffective and currently no vaccine is available. The study objective was to identify risk factors for mortality among children presenting to hospital with invasive Salmonella disease in Africa. We conducted a prospective study enrolling consecutive children with microbiologically-confirmed invasive Salmonella disease admitted to Queen Elizabeth Central Hospital, Blantyre, in 2006. Data on clinical presentation, co-morbidities and outcome were used to identify children at risk of inpatient mortality through logistic-regression modeling. Over one calendar year, 263 consecutive children presented with invasive Salmonella disease. Median age was 16 months (range 0-15 years) and 52/256 children (20%; 95%CI 15-25%) died. Nontyphoidal serovars caused 248/263 (94%) of cases. 211/259 (81%) of isolates were multi-drug resistant. 251/263 children presented with bacteremia, 6 with meningitis and 6 with both. Respiratory symptoms were present in 184/240 (77%; 95%CI 71-82%), 123/240 (51%; 95%CI 45-58%) had gastrointestinal symptoms and 101/240 (42%; 95%CI 36-49%) had an overlapping clinical syndrome. Presentation at Salmonella disease in Malawi is characterized by high mortality and prevalence of multi-drug resistant isolates, along with non-specific presentation. Young infants, children with dyspnea and HIV-infected children bear a disproportionate burden of the Salmonella-associated mortality in Malawi. Strategies to improve prevention, diagnosis and management of invasive Salmonella disease should be targeted at these children.

  2. Multidrug-Resistant Tuberculosis, Somalia, 2010–2011

    Science.gov (United States)

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal

    2013-01-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia. PMID:23621911

  3. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  4. Mechanisms of quinolone resistance in Salmonella spp. / Mecanismos de resistência às quinolonas em Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Rocha Moreira de Oliveira

    2010-07-01

    Full Text Available Salmonellosis is a common and widespread zoonotic disease of humans and a frequent cause of foodborne disease. Treatment of severe and systemic salmonellosis is usually done with fluoroquinolones. In this review resistance mechanisms of Salmonella to quinolones are discussed. Single point mutations in the quinolone resistant determining region (QRDR of the gyrA gene may be sufficient to generate high levels of resistance to non-fluorated quinolones and also may decrease the fluoroquinolones susceptibility. Other resistance mechanisms that should be considered are mutations in parC gene, the possibility of acquiring resistance through plasmidial transference and hyper-expression of efflux pumps. Fluoroquinolones resistance is still relatively uncommon in Salmonella compared to other species belonging to the Enterobacteriaceae family. However, the more careful use of fluoroquinolones in veterinary and human medicine is essential to decrease the selective pressure which can avoid the emergence and spread of resistant clones and consequently maintain the clinical efficacy of this group of antibiotics.A salmonelose é uma zoonose de importância mundial e uma das mais freqüentes doenças de origem alimentar. As fluoroquinolonas são a principal opção para o tratamento de salmoneloses graves ou sistêmicas. Esta revisão de literatura teve como objetivo apresentar os principais mecanismos envolvidos na resistência de Salmonella spp a estes antimicrobianos. Mutações de ponto na Região Determinante de Resistência à Quinolona (QRDR do gene gyrA podem gerar altos níveis de resistência a quinolonas não-fluoradas, além de reduzir a suscetibilidade as fluoroquinolonas. Outros mecanismos de resistência que também precisam ser considerados são as mutações no gene parC, a possibilidade do envolvimento de plasmídios de resistência e o sistema de efluxo ativo. A resistência às fluoroquinolonas ainda é incomum em Salmonella spp., quando

  5. Transcriptomic analysis of Salmonella desiccation resistance.

    Science.gov (United States)

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  6. Occurance and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands

    NARCIS (Netherlands)

    Essen-Zandbergen, van A.; Smith, H.E.; Veldman, K.T.; Mevius, D.J.

    2007-01-01

    Objectives: To determine the occurrence and transmission of class 1, 2 and 3 integrons in multidrug-resistant or sulfamethoxazole-resistant Salmonella from human and animal sources and in Campylobacter spp. and Escherichia coli from broilers isolated in the Netherlands in 2004. Methods: PCR,

  7. High incidence of multidrug-resistant strains of methicill inresistant ...

    African Journals Online (AJOL)

    Infections of methicillin-resistant Staphylococcus aureus (MRSA) are becoming an increasingly concerning clinical problem. The aim of this study was to assess the development of multidrug resistant strains of MRSA from clinical samples andpossibilities for reducing resistance. This study included a total of seventy-five (75) ...

  8. Beyond multidrug-resistant tuberculosis in Europe: a TBNET study

    NARCIS (Netherlands)

    Günther, G.; van Leth, F.; Altet, N.; Dedicoat, M.; Duarte, R.; Gualano, G.; Kunst, H.; Muylle, I.; Spinu, V.; Tiberi, S.; Viiklepp, P.; Lange, C.; Alexandru, S.; Cernenco, I.; Ciobanu, A.; Donica, A.; Cayla, J.; Fina, L.; Galvao, M. L. de Souza; Maldonado, J.; Avsar, K.; Bang, D.; Andersen, A. B.; Barbuta, R.; Dubceac, V.; Bothamley, G.; Crudu, V.; Davilovits, M.; Atunes, A.; de Lange, W.; Leimane, V.; Rusmane, L.; de Lorenzo, S.; Cuppen, F.; de Guchtenaire, I.; Magis-Escurra, C.; McLaughlin, A.-M.; Meesters, R.; te Pas, M.; Prins, B.; Mütterlein, R.; Kotrbova, J.; Polcová, V.; Vasakova, M.; Pontali, E.; Rumetshofer, R.; Rowhani, M.; Skrahina, A.; Avchinko, V.; Katovich, D.

    2015-01-01

    The emergence of drug-resistant tuberculosis (TB) is a challenge to TB control in Europe. We evaluated second-line drug susceptibility testing in Mycobacterium tuberculosis isolates from patients with multidrug-resistant, pre-extensively drug-resistant (pre-XDR-TB) and XDR-TB at 23 TBNET sites in 16

  9. Antimicrobial resistance among Salmonella enterica serovar Infantis from broiler carcasses in Serbia

    Science.gov (United States)

    Nikolić, A.; Baltić, T.; Velebit, B.; Babić, M.; Milojević, L.; Đorđević, V.

    2017-09-01

    This study aimed to investigate antimicrobial resistance of Salmonella Infantis isolates from poultry carcasses in Serbia. A total of 48 Salmonella isolates were examined for antimicrobial resistance. A panel of 10 antibiotics was selected for testing. Isolates showed resistance to sulfamethoxazole, ceftazidime and cefotaxime (100%). However, the highest number of Salmonella Infantis isolates were sensitive to chloramphenicol. The usage of antibiotics in food producing animals could result in antimicrobial resistance pathogenic bacteria especially Salmonella spp. in poultry, which may be transmitted to humans through the food chain and increase risk of treatment failures.

  10. Using next generation sequencing to tackle non-typhoidal Salmonella infections

    DEFF Research Database (Denmark)

    Wain, John; Keddy, Karen H.; Hendriksen, Rene S.

    2013-01-01

    The publication of studies using next generation sequencing to analyse large numbers of bacterial isolates from global epidemics is transforming microbiology, epidemiology and public health. The emergence of multidrug resistant Salmonella Typhimurium ST313 is one example. While the epidemiology...... in Africa appears to be human-to-human spread and the association with invasive disease almost absolute, more needs to be done to exclude the possibility of animal reservoirs and to transfer the ability to track all Salmonella infections to the laboratories in the front line. In this mini-review we...

  11. Multidrug-resistant hepatocellular carcinoma cells are enriched for ...

    African Journals Online (AJOL)

    Chemotherapy is a main treatment for cancer, while multidrug-resistance is the main reason for chemotherapy failure, and tumor relapse and metastasis. Cancer stem cells or cancer stem-like cells (CSCs) are a small subset of cancer cells, which may be inherently resistant to the cytotoxic effect of chemotherapy.

  12. Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.

    Science.gov (United States)

    Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan

    2015-12-01

    Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. Multidrug-resistant tuberculosis and migration to Europe

    DEFF Research Database (Denmark)

    Hargreaves, S.; Lönnroth, K.; Nellums, L. B.

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB) in low-incidence countries in Europe is more prevalent among migrants than the native population. The impact of the recent increase in migration to EU and EEA countries with a low incidence of TB (

  14. Distribution and Antimicrobial Susceptibility of Foodborne Salmonella Serovars in Eight Provinces in China from 2007 to 2012 (Except 2009).

    Science.gov (United States)

    Wang, Yin; Cao, Chenyang; Alali, Walid Q; Cui, Shenghui; Li, Fengqin; Zhu, Jianghui; Wang, Xin; Meng, Jianghong; Yang, Baowei

    2017-07-01

    One thousand four hundred ninety-one Salmonella isolates recovered from retail foods including chicken, beef, fish, pork, dumplings, and cold dishes in China in 2007, 2008, 2010, 2011, and 2012 were analyzed for distribution of serotype and antimicrobial susceptibility. A total of 129 Salmonella serotypes were detected among 1491 isolates. Salmonella Enteritidis (21.5%), Typhimurium (11.0%), Indiana (10.8%), Thompson (5.4%), Derby (5.1%), Agona (3.8%), and Shubra (3.0%) were the seven most important serotypes in 1491 isolates. For antibiotic susceptibility, except 16 (1.1%) isolates were susceptible to all tested antibiotics, 131 (8.8%) resisted 1-2 and 1344 (90.1%) resisted three or more antibiotics. One thousand forty-six (70.2%) of 1491 Salmonella isolates were identified as multidrug-resistant (MDR) isolates, which could resist three or more categories of antibiotics. Resistance to sulfisoxazole (78.1%) was most common among the tested Salmonella, followed by tetracycline (70.6%), trimethoprim/sulfamethoxazole (68.0%), and nalidixic acid (63.4%). Resistances to amikacin (20.0%), levofloxacin (18.7%), gatifloxacin (17.9%), ceftriaxone (17.7%), and cefoxitin (13.2%) were less frequently detected. Resistance to fluoroquinolones was most common among Salmonella Shubra and Indiana isolates, while resistance to cephalosporins was frequently detected among Salmonella Thompson isolates. The results highlighted the diversity of Salmonella serotypes and the high prevalence of Salmonella MDR isolates in China. Compared with Salmonella Enteritidis and Typhimurium isolates, the higher fluoroquinolones and cephalosporins resistance rates of some individual serotypes (Salmonella Shubra, Indiana, and Thompson) also provided more information for further study related to fluoroquinolones or cephalosporin-resistant Salmonella.

  15. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene

    NARCIS (Netherlands)

    van Veen, HW; Callaghan, R; Soceneantu, L; Sardini, A; Konings, WN; Higgins, CF

    1998-01-01

    Bacteria have developed many fascinating antibiotic-resistance mechanisms(1,2). A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane(3,4). Unlike other known bacterial multidrug-resistance

  16. The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Wallrodt, Inke; Leekitcharoenphon, Pimlapas

    2014-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in viru...

  17. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes

    NARCIS (Netherlands)

    Falzon, Dennis; Gandhi, Neel; Migliori, Giovanni B.; Sotgiu, Giovanni; Cox, Helen S.; Holtz, Timothy H.; Hollm-Delgado, Maria-Graciela; Keshavjee, Salmaan; Deriemer, Kathryn; Centis, Rosella; D'Ambrosio, Lia; Lange, Christoph G.; Bauer, Melissa; Menzies, Dick; Ahuja, S. D.; Ashkin, D.; Avendaño, M.; Banerjee, R.; Bauer, M.; Becerra, M. C.; Benedetti, A.; Burgos, M.; Centis, R.; Chan, E. D.; Chiang, C. Y.; Cobelens, F.; Cox, H.; D'Ambrosio, L.; de Lange, W. C. M.; DeRiemer, K.; Enarson, D.; Falzon, D.; Flanagan, K. L.; Flood, J.; Gandhi, N.; Garcia-Garcia, M. L.; Granich, R. M.; Hollm-Delgado, M. G.; Holtz, T. H.; Hopewell, P.; Iseman, M. D.; Jarlsberg, L. G.; Keshavjee, S.; Kim, H. R.; Koh, W. J.; Lancaster, J. L.; Lange, C.; Leimane, V.; Leung, C. C.; Li, J.

    2013-01-01

    A meta-analysis for response to treatment was undertaken using individual data of multidrug-resistant tuberculosis (MDR-TB) (resistance to isoniazid and rifampicin) patients from 26 centres. The analysis assessed the impact of additional resistance to fluoroquinolones and/or second-line injectable

  18. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  19. Multidrug Resistant Acinetobacter Infection and Their Antimicrobial ...

    African Journals Online (AJOL)

    Background: Acinetobacter baumannii, a non-glucose fermenting Gram negative bacillus, has emerged in the last three decades as a major etiological agent of hospital-associated infections giving rise to significant morbidity and mortality particularly in immunocompromised patients. Multidrug resistant A. baumannii ...

  20. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  1. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    Science.gov (United States)

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-04

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.

  2. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  3. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  4. Dominance of multidrug resistant CC271 clones in macrolide-resistant streptococcus pneumoniae in Arizona

    Directory of Open Access Journals (Sweden)

    Bowers Jolene R

    2012-01-01

    Full Text Available Abstract Background Rates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E and erm(B genes and post-vaccine clonal expansion of strains that carry them. Results Characterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E/erm(B-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E-positive, and 9% erm(B-positive strains. Conclusions The dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.

  5. Multidrug resistance 1 gene polymorphisms may determine Crohn's disease behavior in patients from Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Ana Teresa P. Carvalho

    2014-01-01

    Full Text Available OBJECTIVES: Conflicting data from studies on the potential role of multidrug resistance 1 gene polymorphisms in inflammatory bowel disease may result from the analysis of genetically and geographically distinct populations. Here, we investigated whether multidrug resistance 1 gene polymorphisms are associated with inflammatory bowel diseases in patients from Rio de Janeiro. METHODS: We analyzed 123 Crohn's disease patients and 83 ulcerative colitis patients to determine the presence of the multidrug resistance 1 gene polymorphisms C1236T, G2677T and C3435T. In particular, the genotype frequencies of Crohn's disease and ulcerative colitis patients were analyzed. Genotype-phenotype associations with major clinical characteristics were established, and estimated risks were calculated for the mutations. RESULTS: No significant difference was observed in the genotype frequencies of the multidrug resistance 1 G2677T/A and C3435T polymorphisms between Crohn's disease and ulcerative colitis patients. In contrast, the C1236T polymorphism was significantly more common in Crohn's disease than in ulcerative colitis (p = 0.047. A significant association was also found between the multidrug resistance 1 C3435T polymorphism and the stricturing form of Crohn's disease (OR: 4.13; p = 0.009, whereas no association was found with penetrating behavior (OR: 0.33; p = 0.094. In Crohn's disease, a positive association was also found between the C3435T polymorphism and corticosteroid resistance/refractoriness (OR: 4.14; p = 0.010. However, no significant association was found between multidrug resistance 1 gene polymorphisms and UC subphenotypic categories. CONCLUSION: The multidrug resistance 1 gene polymorphism C3435T is associated with the stricturing phenotype and an inappropriate response to therapy in Crohn's disease. This association with Crohn's disease may support additional pathogenic roles for the multidrug resistance 1 gene in regulating gut

  6. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery

    Directory of Open Access Journals (Sweden)

    H. Solís-Téllez

    2017-04-01

    Conclusions: The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit.

  7. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    Science.gov (United States)

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  8. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  9. Salmonella Heidelberg: Genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs).

    Science.gov (United States)

    Giuriatti, Jéssica; Stefani, Lenita Moura; Brisola, Maiara Cristina; Crecencio, Regiane Boaretto; Bitner, Dinael Simão; Faria, Gláucia Amorim

    2017-08-01

    The objective of this study was to evaluate the phenotypic and genotypic profile of antimicrobial susceptibility and the possible involvement of extended spectrum beta-lactamases (ESBLs) in the resistance profile of Salmonella Heidelberg (SH) isolated from chicken meat. We used 18 SH isolates from chicken meat produced in 2013 in the state of Paraná, Southern Brazil. The isolates were submitted to disk-diffusion tests and from these results it was possible to determine the number of isolates considered multiresistant and the index of multiple antimicrobial resistance (IRMA) against ten antimicrobials routinely used in human and veterinary medicine. It was considered multidrug resistant the isolate that showed resistance to three or more classes of antibiotics. Another test performed was the disc-approximation in order to investigate interposed zones of inhibition, indicative of ESBLs production. In the isolates that presented multidrug resistance (18/18), a search of resistance genes involved in the production of ESBLs was performed using PCR: blaCMY-2, blaSHV-1, blaTEM-1, blaCTX-M2, blaOXA-1, blaPSE-1 and AmpC. The overall antimicrobial resistance was 80.55%. The highest levels of resistance were observed for nalidixic acid and ceftiofur (100%). The most commonly resistance pattern found (42.1%) was A (penicillin-cephalosporin-quinolone-tetracycline). The results were negative for ghost zone formation, indicative of ESBLs. However, PCR technique was able to detect resistance genes via ESBLs where the blaTEM-1 gene showed the highest amplification (83.33%), and the second most prevalent genes were blaCMY-2 (38.88%) and AmpC gene (38.88%). The blaOXA-1 and blaPSE-1 genes were not detected. These results are certainly of concern since SH is becoming more prevalent in the South of Brazil and able to cause severe disease in immune compromised individuals, showing high antimicrobial resistance to those drugs routinely used in the treatment and control of human and

  10. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    The study was conducted with the objective of examining the outer membrane proteins and their involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the response of gram negative bacterial biomembrane alteration was studied using extended ...

  11. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris.

    Science.gov (United States)

    Kordalewska, Milena; Zhao, Yanan; Lockhart, Shawn R; Chowdhary, Anuradha; Berrio, Indira; Perlin, David S

    2017-08-01

    Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. Copyright © 2017 Kordalewska et al.

  12. Worldwide Endemicity of a Multidrug-Resistant Staphylococcus capitis Clone Involved in Neonatal Sepsis.

    Science.gov (United States)

    Butin, Marine; Martins-Simões, Patricia; Rasigade, Jean-Philippe; Picaud, Jean-Charles; Laurent, Frédéric

    2017-03-01

    A multidrug-resistant Staphylococcus capitis clone, NRCS-A, has been isolated from neonatal intensive care units in 17 countries throughout the world. S. capitis NRCS-A prevalence is high in some neonatal intensive care units in France. These data highlight the worldwide endemicity and epidemiologic relevance of this multidrug-resistant, coagulase-negative staphylococci clone.

  13. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia.

    Science.gov (United States)

    Shilangale, Renatus P; Di Giannatale, Elisabetta; Chimwamurombe, Percy M; Kaaya, Godwin P

    2012-01-01

    The occurrence of Salmonella is a global challenge in the public health and food production sectors. Our study investigated the prevalence, serovar and antimicrobial susceptibility of strains of Salmonella serovars isolated from animal feed (meat-and-bone and blood meal) samples from two commercial abattoirs in Namibia. A total of 650 samples (n=650) were examined for the presence of Salmonella. Results showed that 10.9% (n=71) were positive for Salmonella. Of the Salmonella serovars isolated, S. Chester was the most commonly isolated serovar (19.7%), followed by S. Schwarzengrund at 12.7%. From the Salmonella isolates, 19.7% (n=14) were resistant to one or more of the antimicrobials (nalidixic acid, trimethoprim-sulfamethoxazole, sulfisoxazole, streptomycin and/or tetracycline), whereas 80.3% (n=57) were susceptible to all 16 antimicrobials tested. Resistance to sulfisoxazole and the trimethroprimsuflamethoxazole combination were the most common. The resistant isolates belonged to ten different Salmonella serovars. The susceptibility of most of the Salmonella isolated to the antimicrobials tested indicates that anti-microbial resistance is not as common and extensive in Namibia as has been reported in many other countries. It also appears that there is a range of antimicrobials available that are effective in managing Salmonella infections in Namibia. However, there is some evidence that resistance is developing and this will need further monitoring to ensure it does not become a problem.

  14. Phenotypic and Genotypic Antibiotic Resistance of Salmonella from Chicken Carcasses Marketed at Ibague, Colombia

    Directory of Open Access Journals (Sweden)

    D Cortes Vélez

    Full Text Available ABSTRACT Salmonella enterica is responsible for alimentary toxic infections associated with the consumption of contaminated poultry products and the antimicrobial resistant patterns of Salmonella circulating in the Tolima region are currently unknown. To address this issue, both the phenotype and genotype antibiotic resistance patterns of 47 Salmonella isolated from raw chicken carcasses sold at the Ibague city were analyzed by the disc diffusion, microdilution and PCR assays. All 47 Salmonella isolates showed resistance to five or more antimicrobial agents. Resistance to Ampicillin (AMP, Amikacin (AMK, Gentamicin (GEN, Tobramycin (TOB, Cefazoline (CFZ, Cefoxitin (FOX, Nitrofurantoin (NIT, Trimethoprim-Sulfamethoxazole (SXT, Tetracycline (TET, Ciprofloxacin (CIP and Enrofloxacin (ENR was observed in 42.35% of Salmonella isolates. All tested S. Paratyphi B var Java isolates showed resistance to at least 12 antibiotics. S. Hvittingfoss showed resistance to 5 antibiotics, whereas S. Muenster showed resistance to seven antibiotics. Amplification of a number of antibiotic resistance genes showed that blaTEM (100% correlated well with resistance to Ampicilin and Cephalosporin, whereas aadB (87% correlated well with resistance to Aminoglycosides. It is concluded that Salmonella isolated from raw chicken meat marketed at Ibague showed MDR by both phenotypic and genotypic methods and they may represent an important threat to human health. Additional studies are needed to establish the relationship between antibiotic resistance in Salmonella from poultry products and clinical isolates.

  15. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence

    Directory of Open Access Journals (Sweden)

    Manuel Alcalde-Rico

    2016-09-01

    Full Text Available Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance, or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance. Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant process of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  16. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence.

    Science.gov (United States)

    Alcalde-Rico, Manuel; Hernando-Amado, Sara; Blanco, Paula; Martínez, José L

    2016-01-01

    Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  17. In vitro antibacterial activity of methanol and water extracts of adiantum capillus veneris and tagetes patula against multidrug resistant bacterial strains

    International Nuclear Information System (INIS)

    Hussain, M.M.; Ahmad, B.; Bashid, E.; Hashim, S.

    2014-01-01

    The aim of present study was to screen the antimicrobial activities of extracts of leaves and stems of Adiantum capillus veneris and Tagetes patula against multidrug-resistant (MDR) bacterial strains. Extracts from the leaves and stems of these plants were extracted with methanol and water and tested for their antibacterial activity by disc diffusion method against ten MDR bacterial strains i.e., Citrobacter freundii, Escherichia coli, Providencia, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella and Vibrio cholerae. Leaves methanol extract (LME) of Adiantum showed maximum Zone of Inhibition (ZI) against Providencia, Klebsiella pneumoniae, Shigella, Vibrio cholerae, Staphylococcus aureus, Proteus vulgaris and Salmonella typhi, whereas its stem methanol extract (SME) was very active against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi. Similarly LME of Tagetes showed highest ZI against Escherichia coli and Vibrio cholerae while SME showed highest ZI to Escherichia coli, Vibrio cholerae, Providencia, Shigella and Klebsiella pneumoniae. Leaves water extract (LWE) of Adiantum was very active against all ten bacterial strains while its stem water extract (SWE) showed maximum ZI against Escherichia coli, Klebsiella pneumoniae and Salmonella typhi, Shigella, Proteus vulgaris and Providencia. LWE of Tagetes was only active against Vibrio cholerae whereas SWE was very active against Salmonella typhi and active against P. vulgaris, Citrobacter freundii and Vibrio cholerae. It was concluded from this study that extracts of both Adiantum and Tagetes have prominent activities against most of the MDR bacterial strains and needs further studies for utmost benefits. (author)

  18. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2

    NARCIS (Netherlands)

    Hooijberg, J. H.; Broxterman, H. J.; Kool, M.; Assaraf, Y. G.; Peters, G. J.; Noordhuis, P.; Scheper, R. J.; Borst, P.; Pinedo, H. M.; Jansen, G.

    1999-01-01

    Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence

  19. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    Bukhari, Syed Z.; Ashshi, Ahmad M.; Hussain, Waleed M.; Fatani, Mohammad I.

    2008-01-01

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  20. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    Directory of Open Access Journals (Sweden)

    Arun P. More

    2013-03-01

    Full Text Available Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence ofcombined resistance to first and second-line anti-tuberculosis drugs is remarkably high. The isolates of M. tuberculosiswas identified and subjected to drug susceptibility testing. The patterns of drug susceptibility of isolates of M. tuberculosisduring the periods 2000 and 2004 were compared with drug susceptibility patterns of the organisms during theperiod 2008 to 2011.Results: The 260 isolates identified as M. tuberculosis show mean drug resistance prevalence of 45.6% for more than anytwo drugs and the MDR rate as 37% in the years 2000 to 2004 whereas 305 isolates of the organism show mean drugresistance prevalence of 30.2% and the MDR rate as 25% in the years 2008 to 2011.Conclusion: The researcher found that, though the prevalence of multidrug resistance to the drugs tested is remarkablyhigh, it has come down noticeably during the past seven years due to efforts of State Government and strict implementationof treatment guidelines of WHO by the physicians. J Microbiol Infect Dis 2013; 3(1: 12-17Key words: MDR-TB, XDR-TB, DOTS, drug-resistance prevalence rate.

  1. Antimicrobial sensitivity pattern of Salmonella: comparison of isolates from HIV-infected and HIV-uninfected patients.

    Science.gov (United States)

    Wolday, D; Erge, W

    1998-07-01

    A retrospective analysis of all cases of Salmonella infections occurring between 1991 and 1995 was undertaken in order to evaluate the antimicrobial sensitivity pattern of the isolates from both human immunodeficiency virus (HIV) infected and uninfected Ethiopian patients. During the 5-year study period, we identified 147 cases of Salmonella infections. Only in 49 cases was the HIV serostatus known; 22 (44.9%) of the infections were in HIV seronegative patients while 27 (55.9%) were in HIV seropositive patients. The strains were isolated from blood (71.4%), urine (18.4%) and stool (8.2%). Salmonella infection was found to be more frequent (55.15% versus 44.9%) among HIV positive than HIV-negative patients. Moreover, Salmonella isolates recovered from HIV-seropositive patients were significantly resistant to many of the antibiotics tested when compared to the isolates from HIV-seronegative patients. The only chloramphenicol resistant Salmonella typhi occurred in a patient who was seropositive for HIV. According to these results, Ethiopian patients infected with HIV may be at risk of acquiring infections, especially non-typhoidal salmonellas, that are multi-drug resistant (MDR) strains than HIV-uninfected subjects. The emergence of MDR Salmonella infection among HIV-positive patients requires reassessment of chemotherapeutic approaches in this patient population, and warrants continued laboratory surveillance.

  2. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    Science.gov (United States)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  3. Multidrug-resistant tuberculosis in Europe, 2010-2011

    DEFF Research Database (Denmark)

    Günther, Gunar; van Leth, Frank; Alexandru, Sofia

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis is challenging elimination of tuberculosis (TB). We evaluated risk factors for TB and levels of second-line drug resistance in M. tuberculosis in patients in Europe with multidrug-resistant (MDR) TB. A total of 380 patients with MDR TB and 376 patients...... with non-MDR TB were enrolled at 23 centers in 16 countries in Europe during 2010-2011. A total of 52.4% of MDR TB patients had never been treated for TB, which suggests primary transmission of MDR M. tuberculosis. At initiation of treatment for MDR TB, 59.7% of M. tuberculosis strains tested were...

  4. Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene.

    Science.gov (United States)

    Wang, Tieshan; Su, Jianrong

    2016-12-28

    Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii . Nineteen multidrug-resistant A. baumannii strains were clinifcally isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii . The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis . Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.

  5. Human isolates of Salmonella enterica serovar Typhimurium from Taiwan displayed significantly higher levels of antimicrobial resistance than those from Denmark.

    Science.gov (United States)

    Torpdahl, Mia; Lauderdale, Tsai-Ling; Liang, Shiu-Yun; Li, Ishien; Wei, Sung-Hsi; Chiou, Chien-Shun

    2013-02-01

    Salmonella enterica serovar Typhimurium is a major zoonotic pathogen with a high prevalence of antimicrobial resistance. This pathogen can disseminate across borders and spread far distances via the food trade and international travel. In this study, we compared the genotypes and antimicrobial resistance of 378 S. Typhimurium isolates collected in Taiwan and Denmark between 2009 and 2010. Genotyping revealed that many S. Typhimurium strains were concurrently circulating in Taiwan, Denmark and other countries in 2009 and 2010. When compared to the isolates collected from Denmark, the isolates from Taiwan displayed a significantly higher level of resistance to 11 of the 12 tested antimicrobials. Seven genetic clusters (A-G) were designated for the isolates. A high percentage of the isolates in genetic clusters C, F and G were multidrug-resistant. Of the isolates in cluster C, 79.2% were ASSuT-resistant, characterized by resistance to ampicillin, streptomycin, sulfamethoxazole, and tetracycline. In cluster F, 84.1% of the isolates were ACSSuT-resistant (resistant to ASSuT and chloramphenicol). Cluster G was unique to Taiwan and characterized in most isolates by the absence of three VNTRs (ST20, ST30 and STTR6) as well as a variety of multidrug resistance profiles. This cluster exhibited very high to extremely high levels of resistance to several first-line drugs, and among the seven clusters, it displayed the highest levels of resistance to cefotaxime and ceftazidime, ciprofloxacin and gentamicin. The high prevalence of antimicrobial resistance in S. Typhimurium from Taiwan highlights the necessity to strictly regulate the use of antimicrobials in the agriculture and human health care sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Candida auris: An emerging multidrug-resistant pathogen

    Directory of Open Access Journals (Sweden)

    David Sears

    2017-10-01

    Full Text Available Candida aurisis an emerging multidrug-resistant pathogen that can be difficult to identify using traditional biochemical methods. C. auris is capable of causing invasive fungal infections, particularly among hospitalized patients with significant medical comorbidities. Echinocandins are the empiric drugs of choice for C. auris, although not all isolates are susceptible and resistance may develop on therapy. Nosocomial C. auris outbreaks have been reported in a number of countries and aggressive infection control measures are paramount to stopping transmission.

  7. Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs

    Science.gov (United States)

    Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther

    2013-01-01

    We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1~5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered. PMID:23820161

  8. Multidrug resistant shigella flexneri infection simulating intestinal intussusception

    Directory of Open Access Journals (Sweden)

    Srirangaraj Sreenivasan

    2016-01-01

    Full Text Available Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone.

  9. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    Science.gov (United States)

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.; Dutta, Shanta; Agtini, Magdarina; Dong, Baiqing; Honghui, Yang; Anh, Dang Duc; Canh, Do Gia; Naheed, Aliya; Albert, M. John; Phetsouvanh, Rattanaphone; Newton, Paul N.; Basnyat, Buddha; Arjyal, Amit; La, Tran Thi Phi; Rang, Nguyen Ngoc; Phuong, Le Thi; Van Be Bay, Phan; von Seidlein, Lorenz; Dougan, Gordon; Clemens, John D.; Vinh, Ha; Hien, Tran Tinh; Chinh, Nguyen Tran; Acosta, Camilo J.; Farrar, Jeremy; Dolecek, Christiane

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between 1993 (4%) and 2005 (97%). In a cross-sectional sample of 381 serovar Typhi strains from 8 Asian countries, Bangladesh, China, India, Indonesia, Laos, Nepal, Pakistan, and central Vietnam, collected in 2002 to 2004, various rates of multidrug resistance (16 to 37%) and nalidixic acid resistance (5 to 51%) were found. The eight Asian countries involved in this study are home to approximately 80% of the world's typhoid fever cases. These results document the scale of drug resistance across Asia. The Ser83→Phe substitution in GyrA was the predominant alteration in serovar Typhi strains from Vietnam (117/127 isolates; 92.1%). No mutations in gyrB, parC, or parE were detected in 55 of these strains. In vitro time-kill experiments showed a reduction in the efficacy of ofloxacin against strains harboring a single-amino-acid substitution at codon 83 or 87 of GyrA; this effect was more marked against a strain with a double substitution. The 8-methoxy fluoroquinolone gatifloxacin showed rapid killing of serovar Typhi harboring both the single- and double-amino-acid substitutions. PMID:17908946

  10. Comparative genomics of the IncA/C multidrug resistance plasmid family.

    Science.gov (United States)

    Fricke, W Florian; Welch, Timothy J; McDermott, Patrick F; Mammel, Mark K; LeClerc, J Eugene; White, David G; Cebula, Thomas A; Ravel, Jacques

    2009-08-01

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.

  11. Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin P.; de Los Rios, Jorge M.; Gotuzzo, Eduardo; Vasilyeva, Irina; Leimane, Vaira; Andries, Koen; Bakare, Nyasha; de Marez, Tine; Haxaire-Theeuwes, Myriam; Lounis, Nacer; Meyvisch, Paul; de Paepe, Els; van Heeswijk, Rolf P. G.; Dannemann, Brian; Rolla, Valeria; Dalcomo, Margreth; Gripp, Karla; Escada, Rodrigo; Tavares, Isabel; Borga, Liamar; Thomas, Aleyamma; Rekha, Banu; Nair, Dina; Chandrasekar, Chockalingam; Parthasarathy, Ramavaran Thiruvengadaraj; Sekhar, Gomathi; Ganesh, Krishnamoorthy; Rajagopalan, Krishnakumar; Rajapandian, Gangadevi; Dorairajalu, Rajendran; Sharma, Surendra Kumar; Banavaliker, Jayant; Kadhiravan, Tamilarasu; Gulati, Vinay; Mahmud, Hanif; Gupta, Arvind; Bhatnagar, Anuj; Jain, Vipin; Hari, Smriti; Gupta, Yogesh Kumar; Vaid, Ashok; Cirule, Andra; Dravniece, Gunta; Skripconoka, Vija; Kuksa, Liga; Kreigere, Edite; Ramos, Carlos Rafael Seas; Amat y Leon, Ivan Arapovic

    2014-01-01

    BACKGROUND Bedaquiline (Sirturo, TMC207), a diarylquinoline that inhibits mycobacterial ATP synthase, has been associated with accelerated sputum-culture conversion in patients with multidrug-resistant tuberculosis, when added to a preferred background regimen for 8 weeks. METHODS In this phase 2b

  12. Antibiotic resistance, integrons and Salmonella genomic island 1 among non-typhoidal Salmonella serovars in The Netherlands.

    NARCIS (Netherlands)

    Vo, An T T; Duijkeren, Engeline van; Fluit, Ad C; Wannet, Wim J B; Verbruggen, Anjo J; Maas, Henny M E; Gaastra, Wim

    2006-01-01

    The objective of this study was to investigate the antimicrobial resistance patterns, integron characteristics and gene cassettes as well as the presence of Salmonella genomic island 1 (SGI1) in non-typhoidal Salmonella (NTS) isolates from human and animal origin. Epidemiologically unrelated Dutch

  13. Risk factors for multidrug resistant tuberculosis patients in Amhara ...

    African Journals Online (AJOL)

    Risk factors for multidrug resistant tuberculosis patients in Amhara National ... risk factors of MDR-TB patients in Amhara National Regional State, Ethiopia. ... strict adherence to directly observed therapy, appropriate management of TB ...

  14. Mobilome differences between Salmonella enterica serovars Anatum and Typhimurium isolated from cattle and humans and potential impact on virulence

    Science.gov (United States)

    Salmonella enterica subsp. enterica is an important group of pathogens capable of inhabiting a range of niches and hosts with varying degrees of impact, from commensal colonization to invasive infection. Recent outbreaks of multi-drug resistant S. enterica, attributed to consumption of contaminated ...

  15. Isolation, antibiogram and pathogenicity of Salmonella spp. Recovered from slaughtered food animals in Nagpur region of Central India

    Directory of Open Access Journals (Sweden)

    D. G. Kalambhe

    2016-02-01

    Full Text Available Aim: To determine the prevalence, antibiogram and pathogenicity of Salmonella spp. in the common food animals slaughtered for consumption purpose at government approved slaughter houses located in and around Nagpur region during a period of 2010-2012. Materials and Methods: A total of 400 samples comprising 50 each of blood and meat from each slaughtered male cattle, buffaloes, pigs and goats were collected. Isolation was done by pre-enrichment in buffered peptone water and enrichment in Rappaport-Vassiliadis broth with subsequent selective plating onto xylose lysine deoxycholate agar. Presumptive Salmonella colonies were biochemically confirmed and analyzed for pathogenicity by hemolysin production and Congo red dye binding assay (CRDA. An antibiotic sensitivity test was performed to assess the antibiotic resistance pattern of the isolates. Results: A total of 10 isolates of Salmonella spp. from meat (3 from cattle, 1 from buffaloes and 6 from pigs with an overall prevalence of 5% among food animals was recorded. No isolation was reported from any blood samples. Pathogenicity assays revealed 100% and 80% positivity for CRDA and hemolytic activity, respectively. Antimicrobial sensitivity test showed multi-drug resistance. The overall resistance of 50% was noted for trimethoprim followed by ampicillin (20%. A maximum sensitivity (80% was reported to gentamycin followed by 40% each to ampicillin and trimethoprim, 30% to amikacin and 10% to kanamycin. Conclusion: The presence of multidrug resistant and potentially pathogenic Salmonella spp. in slaughtered food animals in Nagpur region can be a matter of concern for public health.

  16. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  17. Prevalence and Characteristics of Salmonella Isolated from Free-Range Chickens in Shandong Province, China.

    Science.gov (United States)

    Zhao, Xiaonan; Gao, Yanxia; Ye, Chaoqun; Yang, Lingling; Wang, Tao; Chang, Weishan

    2016-01-01

    Compared with chickens raised in intensively managed breeding farms, free-range chickens in China are quite popular due to lower breeding density and less antibiotics usage. However, investigations about Salmonella enterica from free-range chickens are quite rare. The aim of the present study was to investigate prevalence and characteristics of Salmonella in free-range chickens in Shandong province, China. During the period of August and November 2015, 300 fresh fecal swabs from different broilers in three free-range chicken farms (100 samples per farm) were collected to isolate Salmonella , and then these isolates were subjected to serotyping, antibiotic sensitivity testing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and multilocus sequence typing (ST). A total of 38 Salmonella isolates (38/300, 12.7%) were recovered. The most common serotype was Enteritidis (81.6%), followed by Indiana (13.2%) and Typhimurium (5.3%). Twenty-two out of 38 isolates (57.9%) were resistant to ampicillin, the highest resistance rate, but resistance rates to cefazolin, cefotaxime, and ceftazidime were only 7.9%. The multidrug resistance (MDR) rate was 26.3%. Additionally, the Salmonella isolates could be classified into 25 genotypes by ERIC-PCR and were divided into three ST types (ST11, ST17, and ST19), with ST11 the highest isolation rate (81.6%). In summary, as with other poultry, free-ranging chickens may also serve as potential reservoir for antibiotic resistant Salmonella , thereby posing a threat to public health.

  18. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  19. Overcoming cellular multidrug resistance using classical nanomedicine formulations

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Blauz, A.; Möckel, D.; Theek, B.; Kiessling, F.; Etrych, Tomáš; Ulbrich, K.; van Bloois, L.; Storm, G.; Bartosz, G.; Rychlik, B.; Lammers, T.

    2012-01-01

    Roč. 45, č. 4 (2012), s. 421-428 ISSN 0928-0987 R&D Projects: GA AV ČR IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : cancer * nanomedicine * multidrug resistance Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.987, year: 2012

  20. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Background Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Results Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients’ and family caregivers’ needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients’ quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. Conclusion The institutional stakeholders’ perspectives and their suggestion of a case-based approach advance the development

  1. Understanding institutional stakeholders' perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study.

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Information lacks about institutional stakeholders' perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term "institutional stakeholder" includes persons in leading positions with responsibility in hospitals' multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders' individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients' and family caregivers' needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients' quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. The institutional stakeholders' perspectives and their suggestion of a case-based approach advance the development process of a patient-, family-, staff-, and institutional

  2. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  3. Serotypes and Antimicrobial Susceptibility of Salmonella spp. Isolated from Farm Animals in China

    Directory of Open Access Journals (Sweden)

    Yuan Zong Hui

    2015-06-01

    Full Text Available Salmonella spp. can indirectly infect humans via transfer from animals and animal-derived food products, and thereby cause potentially fatal diseases. Therefore, gaining an understanding of Salmonella infection in farm animals is increasingly important. The aim of this study was to identify the distribution of serotypes in Salmonella samples isolated from chickens (n = 837, pigs (n = 930, and dairy cows (n = 418 in central China (Henan, Hubei, and Hunan provinces in 2010–2011, and investigate the susceptibility of strains to antimicrobial agents. Salmonella isolates were identified by PCR amplification of the invA gene, serotypes were determined by using a slide agglutination test for O and H antigens, and susceptibility to 24 antimicrobials was tested using the agar dilution method. In total, 248 Salmonella strains were identified: 105, 105, and 38 from chickens, dairy cows, and pigs, respectively. Additionally, 209 strains were identified in unhealthy pigs from the Huazhong Agricultural University veterinary hospital. Among these 457 strains, the dominant serotypes were Typhimurium in serogroup B, IIIb in serogroup C, and Enteritidis in serogroup D. In antimicrobial susceptibility tests, 41.14% of Salmonella spp. were susceptible to all antimicrobial agents, 48.14% were resistant to at least one, and 34.72% were resistant to more than three classes. Strains were highly resistant to sulfamethoxazole-trimethoprim (39.61%, nalidixic acid (39.17%, doxycycline (28.22%, and tetracycline (27.58%. Resistance to cephalosporins and fluoroquinolones ranged from 5.25% to 7.44% and 19.04% to 24.51%, respectively. Among penicillin-resistant and cephalosporin-resistant strains, 25 isolates produced extended-spectrum β-lactamases (ESBLs. The multidrug-resistant and ESBL-producing Salmonella strains identified in healthy animals here will present a challenge for veterinary medicine and farm animal husbandry, and could also pose a threat to public health

  4. Effect of biocides on biofilms of some multidrug resistant clinical ...

    African Journals Online (AJOL)

    The ability of Escherichia coli and Klebsiella aerogenes to form biofilms was most affected. There was little inhibition of biofilm formation by the biocides on Staphylococcus aureus. This study has shown a relationship between biocide and multidrug resistance. Keywords: Biocides, Multi drug resistance, sodium hypochlorite, ...

  5. Risk factors associated with multidrug resistant tuberculosis among ...

    African Journals Online (AJOL)

    Background: Multidrug resistant tuberculosis (MDR-TB) remains is an important public health problem in developing world. We conducted this study to determine risk factors associated with MDR-TB and drug susceptibility pattern to second line drug among MDR TB patients in Tanzania. Methods: Unmatched case control ...

  6. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines

    NARCIS (Netherlands)

    Putman, M; van Veen, HW; Degener, JE; Konings, WN

    2001-01-01

    The active efflux of toxic compounds by (multi)drug transporters is one of the mechanisms that bacteria have developed to resist cytotoxic drugs. The authors describe the role of the lactococcal secondary multidrug transporter LmrP in the resistance to a broad range of clinically important

  7. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  8. Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe.

    Science.gov (United States)

    Mourão, Joana; Novais, Carla; Machado, Jorge; Peixe, Luísa; Antunes, Patrícia

    2015-06-01

    The occurrence of acquired metal tolerance genes in emerging MDR Salmonella enterica serotype 4,[5],12:i:- clones was assessed and their associated platforms and tolerance phenotype were characterised. Salmonella 4,[5],12:i:- from different sources belonging to European, Spanish and Southern European clones were studied. Screening for copper (pcoA-pcoD/tcrB), silver/copper (silA-silE), mercury (merA), arsenic (arsB) and tellurite (terF) tolerance genes was performed by PCR/sequencing. CuSO(4)/AgNO(3) MICs were determined in aerobic/anaerobic atmospheres by agar dilution. Conjugation assays, genomic location and plasmid analysis were performed by standard procedures. Most isolates from European (98%) and Spanish (74%) clones carried silA-silE, contrasting with the Southern European clone (26%). merA/62% (European and Spanish clones) and pcoA-pcoD/50% (European clone) were also detected. merA±pco+sil were chromosomally located in the European clone, whereas in Spanish and Southern European clones sil±merA were within plasmids, both with antibiotic resistance genes. The pcoA-pcoD/silA-silE(+) isolates showed higher MICCuSO(4) in anaerobiosis than those without these genes (MIC(50)=24-28 vs. 2 mM). Different MICAgNO(3) of silA-silE(+) (MIC(50)=0.25 mM) and silA-silE(-)(MIC(50)=0.16 mM) isolates were observed in both atmospheres, with an MIC increment after prior exposure to silver (>3 vs. 0.08-0.125 mM) in aerobiosis. A high frequency of copper and silver tolerance, particularly among the two major Salmonella 4,[5],12:i:- MDR clones (European/Spanish) circulating in Europe and causing human infections, might facilitate adaptation/expansion of these strains in metal-contaminated environments, particularly copper in anaerobiosis. Furthermore, metal toxic concentrations in food-animal environments can contribute to persistence of genetic platforms carrying metal/antibiotic resistance genes in this foodborne zoonotic pathogen. Copyright © 2015 Elsevier B.V. and the

  9. Mechanisms of resistance to quinolones and epidemiological significance of Salmonella spp.

    OpenAIRE

    Velhner, Maja

    2016-01-01

    Bacteria develop resistance to antimicrobial agents by a number of different mechanisms. The resistance to (fluoro)quinolones in Salmonella is of particular importance especially if therapy in humans is required. For decades there has been a significant interest in studying the biology of Salmonella because these bacteria are among the leading causes of foodborne illnesses around the globe. To this date, two main mechanisms of quinolone resistance have been established: alteration in the targ...

  10. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L.

  11. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  12. Genotypic homogeneity of multidrug resistant S. Typhimurium infecting distinct adult and childhood susceptibility groups in Blantyre, Malawi.

    Directory of Open Access Journals (Sweden)

    Chisomo L Msefula

    Full Text Available Nontyphoidal Salmonella (NTS serovars are a common cause of bacteraemia in young children and HIV-infected adults in Malawi and elsewhere in sub-Saharan Africa. These patient populations provide diverse host-immune environments that have the potential to drive bacterial adaptation and evolution. We therefore investigated the diversity of 27 multidrug resistant (MDR Salmonella Typhimurium strains isolated over 6 years (2002-2008 from HIV-infected adults and children and HIV-uninfected children. Sequence reads from whole-genome sequencing of these isolates using the Illumina GA platform were mapped to the genome of the laboratory strain S. Typhimurium SL1344 excluding homoplastic regions that contained prophage and insertion elements. A phylogenetic tree generated from single nucleotide polymorphisms showed that all 27 strains clustered with the prototypical MDR strain D23580. There was no clustering of strains based on host HIV status or age, suggesting that these susceptible populations acquire S. Typhimurium from common sources or that isolates are transmitted freely between these populations. However, 7/14 of the most recent isolates (2006/2008 formed a distinct clade that branched off 22 SNPs away from the cluster containing earlier isolates. These data suggest that the MDR bacterial population is not static, but is undergoing microevolution which might result in further epidemiology change.

  13. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis (MDR-TB) treated with second generation ...

  14. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis. (MDR-TB) treated with second ...

  15. Synthesis, Antiproliferative, and Multidrug Resistance Reversal Activities of Heterocyclic α,β-Unsaturated Carbonyl Compounds.

    Science.gov (United States)

    Sun, Ju-Feng; Hou, Gui-Ge; Zhao, Feng; Cong, Wei; Li, Hong-Juan; Liu, Wen-Shuai; Wang, Chunhua

    2016-10-01

    A series of heterocyclic α,β-unsaturated carbonyl compounds (1a-1d, 2a-2d, 3a-3d, 4a-3d, and 5a-5d) with 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore were synthesized for the development of anticancer and multidrug resistance reverting agents. The antiproliferative activities were tested against nine human cancer cell lines. Approximately 73% of the IC50 values were below 5 μm, while 35% of these figures were submicromolar, and compounds 3a-3d with 4-trifluoro methyl in the arylidene benzene rings were the most potent, since their IC50 values are between 0.06 and 3.09 μm against all cancer cell lines employed. Meanwhile, their multidrug resistance reversal properties and cellular uptake were further examined. The data displayed that all of these compounds could reverse multidrug resistance, particularly, compounds 3a and 4a demonstrated both potent multidrug resistance reverting properties and strong antiproliferative activities, which can be taken as leading molecules for further research of dual effect agents in tumor chemotherapy. © 2016 John Wiley & Sons A/S.

  16. Occurrence and antimicrobial resistance of Salmonella spp. isolated from food other than meat in Poland

    Directory of Open Access Journals (Sweden)

    Łukasz Mąka

    2015-09-01

    Full Text Available Introduction and objectives. Antimicrobial resistance of pathogenic bacteria can result in therapy failure, increased hospitalization, and increased risk of death. In Poland, [i]Salmonella[/i] spp. is a major bacterial agent of food poisoning. The majority of studies on antimicrobial resistance in [i]Salmonella[/i] spp. isolates from food have focused on meat products as the source of this pathogen. In comparison, this study examines the antimicrobial susceptibility of [i]Salmonella[/i] spp. isolated from retail food products other than meat in Poland. Materials and Methods. A collection of 122 [i]Salmonella[/i] spp. isolates were isolated in Poland in 2008–2012 from foods other than meat: confectionery products, eggs, fruits, vegetables, spices and others. The resistance of these isolates to 19 antimicrobial agents was tested using the disc diffusion method. Results. [i]Salmonella[/i] Enteritidis was the most frequently identified serotype (84.4% of all tested isolates. In total, 42.6% of the [i]Salmonella[/i] spp. isolates were resistant to antibiotics. The highest frequencies of resistance were observed in isolates from 2009 (60.0% and 2012 (59.5%. Antibiotic resistance was most prevalent among [i]Salmonella[/i] spp. isolated from egg-containing food samples (68.0%. Resistance to nalidixic acid was most common and was observed in 35.2% of all tested isolates. The isolates were less frequently resistant to sulphonamides (6.6%, ampicillin (4.9%, amoxicillin/clavulanic acid (2.5% and to streptomycin, cefoxitin, gentamicin and tetracycline (1.6%. Only one isolate showed resistance to chloramphenicol. Four isolates displayed multiresistance. Conclusions. Although, the level of resistance and multiresistance of [i]Salmonella[/i] spp. isolates from non-meat foods was lower than in those from meat products, the presence of these resistant bacteria poses a real threat to the health of consumers.

  17. Reversal of multidrug resistance by surfactants.

    Science.gov (United States)

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  18. Mixture model to assess the extent of cross-transmission of multidrug-resistant pathogens in hospitals.

    Science.gov (United States)

    Mikolajczyk, Rafael T; Kauermann, Göran; Sagel, Ulrich; Kretzschmar, Mirjam

    2009-08-01

    Creation of a mixture model based on Poisson processes for assessment of the extent of cross-transmission of multidrug-resistant pathogens in the hospital. We propose a 2-component mixture of Poisson processes to describe the time series of detected cases of colonization. The first component describes the admission process of patients with colonization, and the second describes the cross-transmission. The data set used to illustrate the method consists of the routinely collected records for methicillin-resistant Staphylococcus aureus (MRSA), imipenem-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii over a period of 3 years in a German tertiary care hospital. For MRSA and multidrug-resistant A. baumannii, cross-transmission was estimated to be responsible for more than 80% of cases; for imipenem-resistant P. aeruginosa, cross-transmission was estimated to be responsible for 59% of cases. For new cases observed within a window of less than 28 days for MRSA and multidrug-resistant A. baumannii or 40 days for imipenem-resistant P. aeruginosa, there was a 50% or greater probability that the cause was cross-transmission. The proposed method offers a solution to assessing of the extent of cross-transmission, which can be of clinical use. The method can be applied using freely available software (the package FlexMix in R) and it requires relatively little data.

  19. Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals

    Directory of Open Access Journals (Sweden)

    Reza Ranjbar

    2017-09-01

    Full Text Available Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using multilocus sequence typing (MLST. Methods: Clinical samples (urine, blood, and stool were collected from patients, who were admitted to 2 hospitals in Tehran between April and September, 2015. Salmonella Typhimurium strains were identified by conventional standard biochemical and serological testing. The antibiotic susceptibility patterns of the Salmonella Typhimurium isolates against 16 antibiotics was determined using the disk diffusion assay. The clonal relationship between the strains of Salmonella Typhimurium was analyzed using MLST. Results: Among the 68 Salmonella isolates, 31% (n=21 were Salmonella Typhimurium. Of the total 21 Salmonella Typhimurium isolates, 76% (n=16 were multidrug-resistant and showed resistance to 3 or more antibiotic families. The Salmonella Typhimurium isolates were assigned to 2 sequence types: ST19 and ST328. ST19 was more common (86%. Both sequence types were further assigned to 1 eBURST group. Conclusion: This is the first study of its kind in Iran to determine the sequence types of the clinical isolates of Salmonella Typhimurium in Tehran hospitals using MLST. ST19 was detected as the major sequence type of Salmonella Typhimurium.

  20. The prevalences of Salmonella Genomic Island 1 variants in human and animal Salmonella Typhimurium DT104 are distinguishable using a Bayesian approach.

    Directory of Open Access Journals (Sweden)

    Alison E Mather

    Full Text Available Throughout the 1990 s, there was an epidemic of multidrug resistant Salmonella Typhimurium DT104 in both animals and humans in Scotland. The use of antimicrobials in agriculture is often cited as a major source of antimicrobial resistance in pathogenic bacteria of humans, suggesting that DT104 in animals and humans should demonstrate similar prevalences of resistance determinants. Until very recently, only the application of molecular methods would allow such a comparison and our understanding has been hindered by the fact that surveillance data are primarily phenotypic in nature. Here, using large scale surveillance datasets and a novel Bayesian approach, we infer and compare the prevalence of Salmonella Genomic Island 1 (SGI1, SGI1 variants, and resistance determinants independent of SGI1 in animal and human DT104 isolates from such phenotypic data. We demonstrate differences in the prevalences of SGI1, SGI1-B, SGI1-C, absence of SGI1, and tetracycline resistance determinants independent of SGI1 between these human and animal populations, a finding that challenges established tenets that DT104 in domestic animals and humans are from the same well-mixed microbial population.

  1. Occurrence and phenotypic and molecular characterization of Listeriamonocytogenes and Salmonella spp. in slaughterhouses in southern Brazil.

    Science.gov (United States)

    Iglesias, Mariana Almeida; Kroning, Isabela Schneid; Decol, Luana Tombini; de Melo Franco, Bernadette Dora Gombossy; Silva, Wladimir Padilha da

    2017-10-01

    This study addressed the occurrence of Listeriamonocytogenes and Salmonella spp. in bovine carcasses at two slaughterhouses in southern Brazil. Then, the antimicrobial susceptibility profile and the virulence potential of the isolates were evaluated. Two hundred carcasses were sampled at four steps of the slaughter process, with L. monocytogenes being isolated in 12 and Salmonella spp. in 17 carcasses. All L. monocytogenes isolates carried the hlyA, prfA, plcA, plcB, actA, iap, mpl, inlA, inlB, inlC, and inlJ genes, while Salmonella spp. carried invA and hilA. Among the L. monocytogenes isolates, all of them presented virulence determinants and one showed multi-drug resistance. In relationship to Salmonella spp. isolates, many serogroups frequently related to outbreaks of foodborne diseases were identified and four isolates showed resistance to more than one antimicrobial agent. This data highlights the importance of a rigid hygienic-sanitary control during the slaughter process to reduce the risk of cross-contamination and lower the consumer exposure to L. monocytogenes and Salmonella spp. infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Antibiotic resistant Salmonella and Escherichia coli isolated from ...

    African Journals Online (AJOL)

    Results: A hundred and four indigenous chicken rectal swabs were analysed, of which 67.3% were contaminated with Escherichia coli and 12.5% with Salmonella typhimurium. Seventy Escherichia coli isolates showed resistance phenotypes to one, two or more antibiotics. The most common antimicrobial resistance pattern ...

  3. Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety.

    Science.gov (United States)

    Vital, Pierangeli G; Caballes, Marie Bernadine D; Rivera, Windell L

    2017-09-02

    Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers.

  4. Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients

    NARCIS (Netherlands)

    Bolhuis, Mathieu S.; van Altena, Richard; van Soolingen, Dick; de Lange, Wiel C. M.; Uges, Donald R. A.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2013-01-01

    The use of linezolid for the treatment of multidrug-resistant tuberculosis is limited by dose-and time-dependent toxicity. Recently, we reported a case of pharmacokinetic drug drug interaction between linezolid and clarithromycin that resulted in increased linezolid exposure. The aim of this

  5. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt.

    Science.gov (United States)

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-11-01

    Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Multidrug resistance was significantly associated with MBL production in P. aeruginosa . Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates.

  6. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery.

    Science.gov (United States)

    Solís-Téllez, H; Mondragón-Pinzón, E E; Ramírez-Marino, M; Espinoza-López, F R; Domínguez-Sosa, F; Rubio-Suarez, J F; Romero-Morelos, R D

    Surgical site infection is defined as an infection related to the surgical procedure in the area of manipulation occurring within the first 30 postoperative days. The diagnostic criteria include: purulent drainage, isolation of microorganisms, and signs of infection. To describe the epidemiologic characteristics and differences among the types of prophylactic regimens associated with hospital-acquired infections at the general surgery service of a tertiary care hospital. The electronic case records of patients that underwent general surgery at a tertiary care hospital within the time frame of January 1, 2013 and December 31, 2014 were reviewed. A convenience sample of 728 patients was established and divided into the following groups: Group 1: n=728 for the epidemiologic study; Group 2: n=638 for the evaluation of antimicrobial prophylaxis; and Group 3: n=50 for the evaluation of multidrug-resistant bacterial strains in the intensive care unit. The statistical analysis was carried out with the SPSS 19 program, using the Mann-Whitney U test and the chi-square test. A total of 728 procedures were performed (65.9% were elective surgeries). Three hundred twelve of the patients were males and 416 were females. Only 3.98% of the patients complied with the recommended antimicrobial prophylaxis, and multidrug-resistant bacterial strains were found in the intensive care unit. A single prophylactic dose is effective, but adherence to this recommendation was not adequate. The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  7. Antimicrobial Resistance of Enteric Salmonella in Bangui, Central African Republic

    Directory of Open Access Journals (Sweden)

    Christian Diamant Mossoro-Kpinde

    2015-01-01

    Full Text Available Introduction. The number of Salmonella isolated from clinical samples that are resistant to multiple antibiotics has increased worldwide. The aim of this study was to determine the prevalence of resistant Salmonella enterica isolated in Bangui. Methods. All enteric Salmonella strains isolated from patients in 2008 were identified and serotyped, and the phenotypes of resistance were determined by using the disk diffusion method. Nine resistance-associated genes, blaTEM, blaOXA, blaSHV, tetA, aadA1, catA1, dhfrA1, sul I, and sul II, were sought by genic amplification in seven S.e. Typhimurium strains. Results. The 94 strains isolated consisted of 47 S.e. Typhimurium (50%, 21 S.e. Stanleyville (22%, 18 S.e. Enteritidis (19%, 4 S.e. Dublin (4%, 4 S.e. Hadar (4%, and 1 S.e. Papuana (1%. Twenty-five (28% were multiresistant, including 20 of the Typhimurium serovar (80%. Two main phenotypes of resistance were found: four antibiotics (56% and to five antibiotics (40%. One S.e. Typhimurium isolate produced an extended-spectrum β-lactamase (ESBL. Only seven strains of S.e. Typhimurium could be amplified genically. Only phenotypic resistance to tetracycline and aminosides was found. Conclusion. S. Typhimurium is the predominant serovar of enteric S. enterica and is the most widely resistant. The search for resistance genes showed heterogeneity of the circulating strains.

  8. Active surveillance for asymptomatic colonisation by multidrug-resistant bacteria in patients transferred to a tertiary care hospital in the occupied Palestinian territory.

    Science.gov (United States)

    Taha, Adham Abu; Daoud, Ayman; Zaid, Sawsan; Sammour, Sajida; Belleh, Maram; Daifi, Refqa

    2018-02-21

    Active surveillance is important in infection control programmes, allowing the detection of patients colonised with multi-drug resistant organisms and preventing the spread of multi-drug resistant organisms. The aim of this study was to determine the rate of asymptomatic colonisation with multi-drug resistant organisms and the prevalence of each organism in patients transferred to An-Najah National University Hospital, Nablus, occupied Palestinian territory. Patients transferred from other hospitals between January and December, 2015, were screened at time of admission by taking nasal, groin, and axillary swabs. Swabs were cultured and assessed for the presence of multi-drug resistant organisms (extended spectrum β-lactamase producers, Pseudomonas aeroginosae, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and carbapenem-resistant enterobacteriaceae. Of the 822 screened patients, 265 (32%) had infections with multi-drug resistant organisms. 394 isolates of multi-drug resistant organisms were obtained: 131 (33%) isolates were extended spectrum β-lactamase producers, 119 (30%) isolates were P aeroginosae, 26 (9%) isolates were A baumannii, 94 (24%) isolates were methicillin-resistant S aureus, 13 (3%) isolates were vancomycin-resistant enterococci, and one (<1%) isolate was carbapenem-resistant enterobacteriaceae. We identified a high prevalence of asymptomatic colonisation with multidrug-resistant bacteria in transferred patients. These findings emphasise the need for a national strategy to combat the spread of multi-drug resistant organisms in the occupied Palestinian territory. An-Najah National University. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    Science.gov (United States)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-09-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 °C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 °C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation.

  10. Radiation sensitivity of Salmonella isolates relative to resistance to ampicillin, chloramphenicol or gentamicin

    International Nuclear Information System (INIS)

    Niemira, Brendan A.; Lonczynski, Kelly A.; Sommers, Christopher H.

    2006-01-01

    Antibiotic resistance of inoculated bacteria is a commonly used selective marker. Bacteria resistant to the antibiotic nalidixic acid have been shown to have an increased sensitivity to irradiation. The purpose of this research was to screen a collection of Salmonella isolates for antibiotic resistance and determine the association, if any, of antibiotic resistance with radiation sensitivity. Twenty-four clinical isolates of Salmonella were screened for native resistance to multiple concentrations of ampicillin (Amp), chloramphenicol (Chl), or gentamicin (Gm). Test concentrations were chosen based on established clinical minimum inhibitory concentration (MIC) levels, and isolates were classified as either sensitive or resistant based on their ability to grow at or above the MIC. Salmonella cultures were grown overnight at (37 o C) in antibiotic-amended tryptic soy broth (TSB). Native resistance to Gm was observed with each of the 24 isolates (100%). Eight isolates (33%) were shown to be resistant to Amp, while seven isolates (29%) were shown to be resistant to Chl. In separate experiments, Salmonella cultures were grown overnight (37 o C) in TSB, centrifuged, and the cell pellets were re-suspended in phosphate buffer. The samples were then gamma irradiated at doses up to 1.0 kGy. The D 10 values (the ionizing radiation dose required to reduce the viable number of microorganisms by 90%) were determined for the 24 isolates and they ranged from 0.181 to 0.359 kGy. No correlation was found between the D 10 value of the isolate and its sensitivity or resistance to each of the three antibiotics. Resistance to Amp or Chl is suggested as appropriate resistance marker for Salmonella test strains to be used in studies of irradiation

  11. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  12. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  13. Bedaquiline in the multidrug-resistant tuberculosis treatment: Belarus experience

    Directory of Open Access Journals (Sweden)

    Alena Skrahina

    2016-01-01

    Conclusion: Our interim results on safety and effectiveness of bedaquiline-containing regimens in multidrug and extensively drug-resistant tuberculosis (M/XDR-TB patients are encouraging. They will add value to understanding role and place of this new anti-TB drug in M/XDR-TB treatment.

  14. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections

    Science.gov (United States)

    Sjölund-Karlsson, Maria; Gordon, Melita A.; Parry, Christopher M.

    2015-01-01

    SUMMARY Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015. PMID:26180063

  15. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    Science.gov (United States)

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  16. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    Directory of Open Access Journals (Sweden)

    Ayse Karaaslan

    2014-12-01

    Full Text Available In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  17. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  18. Antimicrobial resistance, class 1 integrons, and genomic island 1 in Salmonella isolates from Vietnam.

    Directory of Open Access Journals (Sweden)

    An T T Vo

    Full Text Available BACKGROUND: The objective was to investigate the phenotypic and genotypic resistance and the horizontal transfer of resistance determinants from Salmonella isolates from humans and animals in Vietnam. METHODOLOGY/PRINCIPAL FINDINGS: The susceptibility of 297 epidemiologically unrelated non-typhoid Salmonella isolates was investigated by disk diffusion assay. The isolates were screened for the presence of class 1 integrons and Salmonella genomic island 1 by PCR. The potential for the transfer of resistance determinants was investigated by conjugation experiments. Resistance to gentamicin, kanamycin, chloramphenicol, streptomycin, trimethoprim, ampicillin, nalidixic acid, sulphonamides, and tetracycline was found in 13 to 50% of the isolates. Nine distinct integron types were detected in 28% of the isolates belonging to 11 Salmonella serovars including S. Tallahassee. Gene cassettes identified were aadA1, aadA2, aadA5, bla(PSE-1, bla(OXA-30, dfrA1, dfrA12, dfrA17, and sat, as well as open reading frames with unknown functions. Most integrons were located on conjugative plasmids, which can transfer their antimicrobial resistance determinants to Escherichia coli or Salmonella Enteritidis, or with Salmonella Genomic Island 1 or its variants. The resistance gene cluster in serovar Emek identified by PCR mapping and nucleotide sequencing contained SGI1-J3 which is integrated in SGI1 at another position than the majority of SGI1. This is the second report on the insertion of SGI1 at this position. High-level resistance to fluoroquinolones was found in 3 multiresistant S. Typhimurium isolates and was associated with mutations in the gyrA gene leading to the amino acid changes Ser83Phe and Asp87Asn. CONCLUSIONS: Resistance was common among Vietnamese Salmonella isolates from different sources. Legislation to enforce a more prudent use of antibiotics in both human and veterinary medicine should be implemented by the authorities in Vietnam.

  19. Add-On Therapy with Ertapenem in Infections with Multidrug Resistant Gram-Negative Bacteria: Pediatric Experience

    Directory of Open Access Journals (Sweden)

    Sevgen Tanır Basaranoglu

    2017-01-01

    Full Text Available Optimal therapy for infections with carbapenem resistant GNB is not well established due to the weakness of data. Patients presenting with bloodstream infections caused by multidrug resistant Klebsiella pneumoniae were treated with a combination treatment. Optimal therapy for infections with carbapenem resistant Gram-negative bacteria is a serious problem in pediatric patients. We presented three cases who were successfully treated with addition of ertapenem to the combination treatment for bacteremia with multidrug resistant Klebsiella pneumoniae. Dual carbapenem treatment approach is a new approach for these infections and requires more data in children.

  20. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    Directory of Open Access Journals (Sweden)

    Deep Pokharel

    2014-08-01

    Full Text Available Cancer multidrug resistance (MDR occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp, transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS, in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM; and cytoskeleton motor proteins within the MP cargo.

  1. Efficacy of biocides used in the modern food industry to control salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds.

    Science.gov (United States)

    Condell, Orla; Iversen, Carol; Cooney, Shane; Power, Karen A; Walsh, Ciara; Burgess, Catherine; Fanning, Séamus

    2012-05-01

    Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.

  2. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced...

  3. Health system factors influencing management of multidrug-resistant tuberculosis in four European Union countries - learning from country experiences

    Directory of Open Access Journals (Sweden)

    Gerard de Vries

    2017-04-01

    Full Text Available Abstract Background In the European Union and European Economic Area only 38% of multidrug-resistant tuberculosis patients notified in 2011 completed treatment successfully at 24 months’ evaluation. Socio-economic factors and patient factors such as demographic characteristics, behaviour and attitudes are associated with treatment outcomes. Characteristics of healthcare systems also affect health outcomes. This study was conducted to identify and better understand the contribution of health system components to successful treatment of multidrug-resistant tuberculosis. Methods We selected four European Union countries to provide for a broad range of geographical locations and levels of treatment success rates of the multidrug-resistant tuberculosis cohort in 2009. We conducted semi-structured interviews following a conceptual framework with representatives from policy and planning authorities, healthcare providers and civil society organisations. Responses were organised according to the six building blocks of the World Health Organization health systems framework. Results In the four included countries, Austria, Bulgaria, Spain, and the United Kingdom, the following healthcare system factors were perceived as key to achieving good treatment results for patients with multidrug-resistant tuberculosis: timely diagnosis of drug-resistant tuberculosis; financial systems that ensure access to a full course of treatment and support for multidrug-resistant tuberculosis patients; patient-centred approaches with strong intersectoral collaboration that address patients’ emotional and social needs; motivated and dedicated healthcare workers with sufficient mandate and means to support patients; and cross-border management of multidrug-resistant tuberculosis to secure continuum of care between countries. Conclusion We suggest that the following actions may improve the success of treatment for multidrug-resistant tuberculosis patients: deployment of

  4. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed, and one obvious approach involves antimicrobial peptides and mimics hereof. The impact of a- and ß-peptoid as well as ß(3)-amino acid modifications on the activity profile against ß-lactamase-producing...

  5. High prevalence of multidrug-resistant MRSA in a tertiary care hospital of northern India

    Directory of Open Access Journals (Sweden)

    Hare Krishna Tiwari

    2008-11-01

    Full Text Available Hare Krishna Tiwari1, Darshan Sapkota2, Malaya Ranjan Sen11Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India; 2Department of Microbiology, Universal College of Medical Sciences, Bhairahawa, NepalAbstract: Methicillin-resistant Staphylococcus aureus (MRSA is an important nosocomial and community pathogen. The objectives of this study were to estimate the prevalence of multidrug-resistant MRSA strains in clinical specimens and to investigate the sensitivity pattern of these strains against various antibiotics used for treating hospitalized and out patients. Strains were identified using standard procedures, and their sensitivity pattern was investigated using such techniques as disc diffusion, minimum inhibitory concentration (MIC, and the mecA gene PCR. Among 783 isolates of S. aureus, 301 (38.44% were methicillin-resistant, of which 217 (72.1% were found to be multidrug-resistant. Almost all MRSA strains were resistant to penicillin, 95.68% were resistant to cotrimoxazole, 92.36% were resistant to chloramphenicol, 90.7% were resistant to norfloxacin, 76.1% were resistant to tetracycline, and 75.75% were resistant to ciprofloxacin. Vancomycin was the most effective drug, with only 0.33% of MRSA strains being resistant to it. It is concluded that antibiotics other than vancomycin can be used as anti-MRSA agents after a sensitivity test so as to preclude the emergence of resistance to it and that prevailing problems in chemotherapy will escalate unless indiscriminate and irrational usage of antibiotics is checked.Keywords: multidrug-resistant MRSA, prevalence, India

  6. Drug resistance detection and mutation patterns of multidrug resistant tuberculosis strains from children in Delhi

    Directory of Open Access Journals (Sweden)

    Jyoti Arora

    2017-06-01

    Full Text Available A total of 312 sputum samples from pediatric patients presumptive of multidrug resistant tuberculosis were tested for the detection of drug resistance using the GenoTypeMTBDRplus assay. A total of 193 (61.8% patients were smear positive and 119 (38.1% were smear negative by Ziehl–Neelsen staining. Line probe assay (LPA was performed for 208 samples/cultures (193 smear positive samples and 15 cultures from smear negative samples. Valid results were obtained from 198 tests. Of these, 125/198 (63.1% were sensitive to both rifampicin (RIF and isoniazid (INH. 73/198 (36.9% were resistant to at least INH/RIF, out of which 49 (24.7% were resistant to both INH and RIF (multidrug resistant. Children with tuberculosis are often infected by someone close to them, so strengthening of contact tracing in the program may help in early diagnosis to identify additional cases within the household. There is a need to evaluate newer diagnostic assays which have a high sensitivity in the case of smear negative samples, additional samples other than sputum among young children not able to expectorate, and also to fill the gap between estimated and reported cases under the program.

  7. In vitro antibacterial activity of rifampicin in combination with imipenem, meropenem and doripenem against multidrug-resistant clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Hu, Yi-Fan; Liu, Chang-Pan; Wang, Nai-Yu; Shih, Shou-Chuan

    2016-08-24

    Multidrug-resistant Pseudomonas aeruginosa has emerged as one of the most important healthcare-associated pathogens. Colistin is regarded as the last-resort antibiotic for multidrug-resistant Gram-negative bacteria, but is associated with high rates of acute kidney injury. The aim of this in vitro study is to search for an alternative treatment to colistin for multidrug-resistant P. aeruginosa infections. Multidrug and carbapenem-resistant P. aeruginosa isolates were collected between January 2009 and December 2012 at MacKay Memorial Hospital. Minimal inhibitory concentrations (MICs) were determined for various antibiotic combinations. Carbapenemase-producing genes including bla VIM, other β-lactamase genes and porin mutations were screened by PCR and sequencing. The efficacy of carbapenems (imipenem, meropenem, doripenem) with or without rifampicin was correlated with the type of porin mutation (frameshift mutation, premature stop codon mutation) in multidrug-resistant P. aeruginosa isolates without carbapenemase-producing genes. Of the 71 multidrug-resistant clinical P. aeruginosa isolates, only six harboured the bla VIM gene. Imipenem, meropenem and doripenem were significantly more effective (reduced fold-change of MICs) when combined with rifampicin in bla VIM-negative isolates, especially in isolates with porin frameshift mutation. Imipenem + rifampicin combination has a low MIC against multidrug-resistant P. aeruginosa, especially in isolates with porin frameshift mutation. The imipenem + rifampicin combination may provide an alternative treatment to colistin for multidrug -resistant P. aeruginosa infections, especially for patients with renal insufficiency.

  8. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  9. Increased multi-drug resistant Escherichia coli from hospitals in ...

    African Journals Online (AJOL)

    Background: Multidrug-resistant Escherichia coli (MDR E. coli) has become a major public health concern in Sudan and many countries, causing failure in treatment with consequent huge health burden. Objectives: To determine the prevalence and susceptibility of MDR E. coli isolated from patients in hospitals at Khartoum ...

  10. Two Simple Rules for Improving the Accuracy of Empiric Treatment of Multidrug-Resistant Urinary Tract Infections.

    Science.gov (United States)

    Linsenmeyer, Katherine; Strymish, Judith; Gupta, Kalpana

    2015-12-01

    The emergence of multidrug-resistant (MDR) uropathogens is making the treatment of urinary tract infections (UTIs) more challenging. We sought to evaluate the accuracy of empiric therapy for MDR UTIs and the utility of prior culture data in improving the accuracy of the therapy chosen. The electronic health records from three U.S. Department of Veterans Affairs facilities were retrospectively reviewed for the treatments used for MDR UTIs over 4 years. An MDR UTI was defined as an infection caused by a uropathogen resistant to three or more classes of drugs and identified by a clinician to require therapy. Previous data on culture results, antimicrobial use, and outcomes were captured from records from inpatient and outpatient settings. Among 126 patient episodes of MDR UTIs, the choices of empiric therapy against the index pathogen were accurate in 66 (52%) episodes. For the 95 patient episodes for which prior microbiologic data were available, when empiric therapy was concordant with the prior microbiologic data, the rate of accuracy of the treatment against the uropathogen improved from 32% to 76% (odds ratio, 6.9; 95% confidence interval, 2.7 to 17.1; P tract (GU)-directed agents (nitrofurantoin or sulfa agents) were equally as likely as broad-spectrum agents to be accurate (P = 0.3). Choosing an agent concordant with previous microbiologic data significantly increased the chance of accuracy of therapy for MDR UTIs, even if the previous uropathogen was a different species. Also, GU-directed or broad-spectrum therapy choices were equally likely to be accurate. The accuracy of empiric therapy could be improved by the use of these simple rules. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  12. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  13. Prevalence of multidrug resistant pathogens in children with urinary tract infection: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Srinivasan S, Madhusudhan NS

    2014-11-01

    Full Text Available Urinary tract infection (UTI is one of the commonest medical problems in children. It can distress the child and may cause kidney damage. Prompt diagnosis and effective treatment can prevent complications in the child. But treatment of UTI in children has now become a challenge due to the emergence of multidrug resistant bacteria. Aims & Objectives: To know the bacteriological profile and susceptibility pattern of urinary tract infections in children and to know the prevalence of multidrug resistant uropathogens. Materials & Methods: A retrospective analysis was done on all paediatric urine samples for a period of one year. A total of 1581 samples were included in the study. Antimicrobial susceptibility testing was done on samples showing significant growth by Kirby-Bauer disc diffusion method. Statistical analysis: Prevalence and pattern were analyzed using proportions and percentages. Results: E.coli was the most predominant organism (56% causing UTI in children followed by Klebsiella sp (17%. Fifty three percent of gram negative organisms isolated from children were found to be multidrug resistant. Majority of E. coli isolates were found to be highly resistant to Ampicillin (91% and Cotrimoxazole (82% and highly sensitive to Imipenem (99% and Amikacin (93%. Conclusion: Paediatric UTI was common in children less than 5 years of age. Gram negative bacteria (E. coli and Klebsiella sp were more common than gram positive bacteria. Our study revealed that multidrug resistance was higher in E.coli.

  14. Infection by multidrug-resistant Elizabethkingia meningoseptica: case reports

    Directory of Open Access Journals (Sweden)

    Jailton Lobo da Costa Lima

    2014-12-01

    Full Text Available We report two cases of sepsis in critically ill patients in two tertiary care hospitals in Recife-PE, Brazil. The first case is an 87-year-old patient with chronic myeloid leukemia and sepsis; and the second case is a 93-year-old patient with prostate cancer and septic shock caused by multidrug-resistant (MDR Elizabethkingia meningoseptica.

  15. Multidrug resistance among new tuberculosis cases: detecting local variation through lot quality-assurance sampling.

    Science.gov (United States)

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-03-01

    Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored 3 classification systems- two-way static, three-way static, and three-way truncated sequential sampling-at 2 sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired.

  16. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis.

    Science.gov (United States)

    Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.

  17. Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Iqbal, Mazhar; Mirza, Osman

    2017-01-01

    . Research on the underlying causes of multidrug resistance in cancerous cells and later on in infectious bacteria revealed the involvement of integral membrane transporters, capable of recognizing a broad range of structurally different molecules as substrates and exporting them from the cell using cellular...... superfamilies, viz., ATP-binding cassette superfamily, major facilitator superfamily and resistance nodulation division superfamily are presented. Further, the future role of structural biology in improving our understanding of drug-transporter interactions and in designing novel inhibitors against MDR pump...... century, mankind has become aware and confronted with the emergence of antibiotic-resistant pathogens. In parallel to the failure of antibiotic therapy against infectious pathogens, there had been continuous reports of cancerous cells not responding to chemotherapy with increase in the duration of therapy...

  18. A case of multidrug-resistant monoarticular joint tuberculosis in a renal transplant recipient.

    Science.gov (United States)

    Regmi, A; Singh, P; Harford, A

    2014-01-01

    Tuberculosis (TB) is a common opportunistic infection after renal transplantation. The risk of TB in renal transplant recipients is reported to be 20 to 74 times higher than in the general population. Although extrapulmonary TB occurs frequently, isolated ankle joint TB is a rare form of extrapulmonary TB infection. It is often difficult to diagnose because of its atypical presentation; management is complex, especially with multidrug-resistant TB, the need for a prolonged course of therapy, and the risks of drug interactions and drug toxicity. We report herein a case of a 60-year-old female renal allograft recipient who developed multidrug-resistant ankle joint TB 11 months after her deceased donor renal transplantation. She presented to the emergency department with escalating pain and swelling of the left ankle, difficulty in ambulation, and a low-grade fever. An x-ray of the ankle revealed an effusion and soft tissue swelling. A synovial fluid culture was performed which tested positive for acid fast bacilli which grew a multidrug-resistant form of Mycobacterium tuberculosis. She was initially treated with isoniazid, rifampin, ethambutol, and pyrazinamide; then therapy was tailored secondary to the resistant nature of the organism. She received a combination of extensive debridement of the joint and institution of second-line anti-TB therapy with pyrazinamide, ethambutol, moxifloxacin, and ethionamide. To our knowledge, no other cases of multidrug-resistant TB have been reported in the literature after renal transplantation. This case shows both an atypical presentation of TB and the difficulties in managing a transplant patient with this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

    OpenAIRE

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity wa...

  20. Short communication: Multidrug-resistant Acinetobacter baumannii-calcoaceticus complex isolated from infant milk formula and utensils in a nursery in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Araújo, B C; Moraes, M S; Costa, L E O; Nascimento, J S

    2015-04-01

    Infant milk formulas are not sterile products, and pathogenic bacteria can survive and multiply in these products. This study was performed, initially, to detect the presence of Salmonella spp. in reconstituted infant milk formula and on utensils previously sanitized used in their preparation or distribution in a nursery of a public hospital in Rio de Janeiro. None of the samples tested carried Salmonellaspp. However, further identification of colonies growing on the selective media revealed the presence of several other gram-negative bacteria. Seventeen isolates were identified as belonging to Acinetobacter baumannii-calcoaceticus complex. Fourteen isolates presented a multidrug-resistance profile, by disc diffusion assays, and one of them--JE4--was also resistant to imipenem. The detection of Acinetobacter isolates in this work demonstrates inadequate hygiene practices in the preparation or distribution of infant milk formula. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    Science.gov (United States)

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  2. Multidrug-resistant tuberculosis in pregnancy

    International Nuclear Information System (INIS)

    Dhingra, V.K.; Arora, V.K.; Rajpal, S.

    2007-01-01

    This is a case report of 26 years old pregnant woman with multidrug-resistant tuberculosis (MDR TB), treated at outpatient department of New Delhi Tuberculosis (NDTB) Centre, India with second line agents. Before presentation at NDTB Centre, she had been treated with first line drugs for approximately one and-a-half-year, including category II re-treatment DOTS regimen under RNTCP. Patient conceived twice during her anti-TB treatment. The first one was during her category II treatment, when put on second line drugs. We describe congenital abnormalities documented in her second child exposed in-utero to second line anti-tubercular drugs with a brief review of treatment of MDR TB in pregnancy. (author)

  3. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons.

    Science.gov (United States)

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L; L'Abée-Lund, Trine M; Rudi, Knut

    2015-10-28

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.

  4. Prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia species isolates in ducks and geese.

    Science.gov (United States)

    Jamali, Hossein; Radmehr, Behrad; Ismail, Salmah

    2014-04-01

    The aims of this study were to determine the prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia spp. isolated from duck and goose intestinal contents. A total of 471 samples, including 291 duck and 180 goose intestinal contents, were purchased from wet markets between November 2008 and July 2010. Listeria, Salmonella, and Yersinia spp. were isolated from 58 (12.3%), 107 (22.7%), and 80 (17%) of the samples, respectively. It was concluded that Listeria ivanovii, Salmonella Thompson, and Yersinia enterocolitica were the predominant serovars among Listeria, Salmonella, and Yersinia spp., respectively. Moreover, resistance to tetracycline was common in Listeria (48.3%) and Salmonella spp. (63.6%), whereas 51.3% of the Yersinia spp. isolates were resistant to cephalothin. Therefore, continued surveillance of the prevalence of the pathogens and also of emerging antibiotic resistance is needed to render possible the recognition of foods that may represent risks and also ensure the effective treatment of listeriosis, salmonellosis, and yersiniosis.

  5. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Alharbe, Roaa; Almansour, Ayidh; Kwon, Dong H

    2017-10-01

    A major clinical impact of A. baumannii is hospital-acquired infections including ventilator-associated pneumonia. The treatment of this pathogen is often difficult due to its innate and acquired resistance to almost all commercially available antibiotics. Infections with carbapenem-associated multidrug resistant A. baumannii is the most problematic. Glutathione is a tripeptide thiol-antioxidant and antibacterial activity of exogenous glutathione was reported in some bacteria. However, clinical relevance and molecular details of the antibacterial activity of glutathione are currently unclear. Seventy clinical isolates of A. baumannii including 63 carbapenem-associated multidrug resistant isolates and a type strain A. baumannii ATCC 19606 were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Fractional inhibitory concentration (FIC) and time-killing activity with meropenem and/or glutathione were also determined in the carbapenem-associated multidrug resistant isolates. In addition, the roles of exogenous glutathione in multidrug efflux pumps and β-lactamase production were examined. Levels of MIC and MBC were ranged from 10 to 15mM of exogenous glutathione. All tested carbapenem-associated multidrug resistant isolates were sensitized by all tested antibiotics in combination with subinhibitory concentrations of glutathione. FIC levels of glutathione with carbapenem (meropenem) were allcarbapenem-associated multidrug resistant isolates were killed by subinhibitory concentrations of both glutathione and meropenem at>2log10 within 12h, suggesting glutathione synergistically interacts with meropenem. The roles of multidrug efflux pumps and β-lactamase production were excluded for the glutathione-mediated antibiotic susceptibility. Overall results demonstrate that the antibacterial activity of glutathione is clinically relevant and its synergism on antibiotics sensitizes clinical isolates of A. baumannii regardless

  6. Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria.

    Science.gov (United States)

    Mahfoud, Maysa; Al Najjar, Mona; Hamzeh, Abdul Rezzak

    2015-02-19

    Pseudomonas aeruginosa represents a serious clinical challenge due to its frequent involvement in nosocomial infections and its tendency towards multidrug resistance. This study uncovered antibiotic susceptibility patterns in 177 isolates from inpatients in three key hospitals in Aleppo, the largest city in Syria. Exceptionally low susceptibility to most routinely used antibiotics was uncovered; resistance to ciprofloxacin and gentamicin was 64.9% and 70.3%, respectively. Contrarily, susceptibility to colistin was the highest (89.1%). Multidrug resistance was rife, found at a rate of 53.67% among studied P. aeruginosa isolates.

  7. Isolation and Determination of Antibiotic Resistance Patterns in Nontyphoid Salmonella spp isolated from chicken

    Directory of Open Access Journals (Sweden)

    Seyyedeh Hoorieh Fallah

    2013-01-01

    Full Text Available Background: Salmonellosis is one of the most common food borne diseases in industrial and developing countries. In recent years, an increase in antimicrobial drug resistance, among non-typhoid Salmonella spp has been observed. Objectives: The aim of this study was to isolate and determine antibiotic resistance pattern in non-typhoid Salmonella spp. Materials and Methods: This descriptive study was done on 100 samples of chickens collected from 196 retail markets and was examined for the presence of Salmonella using standard bacteriological procedures and stereotyping kit. Antimicrobial susceptibility testing was performed by disk diffusion methods according to the National Committee for Clinical Laboratory Standards (CLSI. The data were analyzed by using the SPSS software version 18. Result: Forty- four percent of samples were contaminated with Salmonella infection and 56% didn’t have any contamination. The stereotyping results showed that 34 of 44 isolates of Salmonella belonged to Salmonella infantis (79.5 %, one strain (2.3% of group C and 8 strain (18.2% of group D. However, all these strains were sensitive to Cefotaxime and Ciprofloxacin, and 100% were resistant to Nalidixic acid, Tetracyclin and Sterptomycin. The most common resistance pattern (34.1% was towards six antibiotics, and 6.8% of strains were resistant to at least three antibiotics. Conclusion: High levels of resistance to antibiotics that are used commonly for human and poultry can be a warning for our community health and this information must be used to form important strategies for improvement of infection control.

  8. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  9. Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons.

    Science.gov (United States)

    Melendez, S N; Hanning, I; Han, J; Nayak, R; Clement, A R; Wooming, A; Hererra, P; Jones, F T; Foley, S L; Ricke, S C

    2010-12-01

    While considerable foodborne pathogen research has been conducted on conventionally produced broilers and turkeys, few studies have focused on free-range (organic) or pastured poultry. The current surveillance study was designed to isolate, identify and genetically characterize Salmonella from pastured poultry farm environment and from retail samples. In this study, 59 isolates were collected from two pastured poultry farms (n = 164; pens, feed, water and insect traps) and retail carcasses (n = 36) from a local natural foods store and a local processing plant. All isolates were serotyped and analysed phenotypically (antimicrobial resistance profiles) and genotypically (DNA fingerprints, plasmid profiles and integron analysis). Salmonella enterica was detected using standard microbiological methods. Salmonella Kentucky was the most prevalent serotype detected from the sampled sources (53%), followed by Salmonella Enteritidis (24%), Bareilly (10%), Mbandaka (7%), Montevideo (5%) or Newport (2%). All isolates were resistant to sulfisoxazole and novobiocin, and the majority (40/59) possessed class I integrons shown by PCR detection. Each Salmonella serotype elicited a distinct pulsed-field gel electrophoresis fingerprint profile, and unique differences were observed among the serotypes.  The findings of this study show that Salmonella serotypes isolated from pasture-raised poultry exhibit antimicrobial resistance and class I integrons.  This study demonstrates that despite the cessation of antibiotic usage in poultry production, antibiotic resistant Salmonella may still be recovered from the environment and poultry products. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  10. Resistance to antimicrobials drugs and control measures of Salmonella spp in the poultry industry

    Directory of Open Access Journals (Sweden)

    Velhner Maja

    2013-01-01

    Full Text Available The worldwide prevalence of multiple resistant Salmonella spp is described. Clonally distributed Salmonella Enteritidis PT4 and Salmonella Typhimurium DT104 are among the most pathogenic strains for humans. Recently there have been reports on the prevalence of ST “like” monophasic 4(5,12:i strains in some countries. Vaccination strategy and antimicorbial agent therapy is also briefly discussed. Products of animal origin must be safe and without the risk of antimicrobial resistance. Subsequently, the good management practice at farm level and HACCP in feed factories are required to cope with salmonella infections. Poultry producers in developed countries have been motivated to participate in salmonella control programs, because of public awareness on safe food and risks in the food chain. Export of poultry and poultry products is more successful in the regions where Salmonella Enteritidis and Salmonella Typhimurium have been eradicated. [Projekat Ministarstva nauke Republike Srbije, br. TR31071

  11. In Vitro activity of novel glycopolymer against clinical isolates of multidrug-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Vidya P Narayanaswamy

    Full Text Available The incidence of multidrug-resistant (MDR organisms, including methicillin-resistant Staphylococcus aureus (MRSA, is a serious threat to public health. Progress in developing new therapeutics is being outpaced by antibiotic resistance development, and alternative agents that rapidly permeabilize bacteria hold tremendous potential for treating MDR infections. A new class of glycopolymers includes polycationic poly-N (acetyl, arginyl glucosamine (PAAG is under development as an alternative to traditional antibiotic strategies to treat MRSA infections. This study demonstrates the antibacterial activity of PAAG against clinical isolates of methicillin and mupirocin-resistant Staphylococcus aureus. Multidrug-resistant S. aureus was rapidly killed by PAAG, which completely eradicated 88% (15/17 of all tested strains (6-log reduction in CFU in ≤ 12-hours at doses that are non-toxic to mammalian cells. PAAG also sensitized all the clinical MRSA strains (17/17 to oxacillin as demonstrated by the observed reduction in the oxacillin MIC to below the antibiotic resistance breakpoint. The effect of PAAG and standard antibiotics including vancomycin, oxacillin, mupirocin and bacitracin on MRSA permeability was studied by measuring propidium iodide (PI uptake by bacterial cells. Antimicrobial resistance studies showed that S. aureus developed resistance to PAAG at a rate slower than to mupirocin but similar to bacitracin. PAAG was observed to resensitize drug-resistant S. aureus strains sampled from passage 13 and 20 of the multi-passage resistance study, reducing MICs of mupirocin and bacitracin below their clinical sensitivity breakpoints. This class of bacterial permeabilizing glycopolymers may provide a new tool in the battle against multidrug-resistant bacteria.

  12. In Vitro activity of novel glycopolymer against clinical isolates of multidrug-resistant Staphylococcus aureus.

    Science.gov (United States)

    Narayanaswamy, Vidya P; Giatpaiboon, Scott A; Uhrig, John; Orwin, Paul; Wiesmann, William; Baker, Shenda M; Townsend, Stacy M

    2018-01-01

    The incidence of multidrug-resistant (MDR) organisms, including methicillin-resistant Staphylococcus aureus (MRSA), is a serious threat to public health. Progress in developing new therapeutics is being outpaced by antibiotic resistance development, and alternative agents that rapidly permeabilize bacteria hold tremendous potential for treating MDR infections. A new class of glycopolymers includes polycationic poly-N (acetyl, arginyl) glucosamine (PAAG) is under development as an alternative to traditional antibiotic strategies to treat MRSA infections. This study demonstrates the antibacterial activity of PAAG against clinical isolates of methicillin and mupirocin-resistant Staphylococcus aureus. Multidrug-resistant S. aureus was rapidly killed by PAAG, which completely eradicated 88% (15/17) of all tested strains (6-log reduction in CFU) in ≤ 12-hours at doses that are non-toxic to mammalian cells. PAAG also sensitized all the clinical MRSA strains (17/17) to oxacillin as demonstrated by the observed reduction in the oxacillin MIC to below the antibiotic resistance breakpoint. The effect of PAAG and standard antibiotics including vancomycin, oxacillin, mupirocin and bacitracin on MRSA permeability was studied by measuring propidium iodide (PI) uptake by bacterial cells. Antimicrobial resistance studies showed that S. aureus developed resistance to PAAG at a rate slower than to mupirocin but similar to bacitracin. PAAG was observed to resensitize drug-resistant S. aureus strains sampled from passage 13 and 20 of the multi-passage resistance study, reducing MICs of mupirocin and bacitracin below their clinical sensitivity breakpoints. This class of bacterial permeabilizing glycopolymers may provide a new tool in the battle against multidrug-resistant bacteria.

  13. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections.

    Science.gov (United States)

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-06-26

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections.

  14. Antimicrobial resistance in E. coli and Salmonella spp. isolates from calves in southern Chile

    Directory of Open Access Journals (Sweden)

    Luis Hervé-Claude

    2017-09-01

    Full Text Available Objective: Description of antimicrobial resistance in E. coli and Salmonella spp. isolates from calves <30 days of age from southern Chile. Material and methods: Necropsy and microbiology reports of 107 calves <30 days of age received at the Animal Pathology Institute between 2002 and 2015 were considered. Additionally, an antimicrobial resistance score was generated to allow comparisons among isolates with different antimicrobial susceptibility profiles. Results: There was no clear trend in antimicrobial resistance during the study period, with similar levels of resistance for E. coli, β-hemolytic E. coli and Salmonella spp. Approximately 50% of isolates were sensitive to antimicrobials, and between 19 and 36% of samples showed possible extended- or pan- drug resistance. Multiple different antimicrobial resistance patterns were found, including 32 for E. coli, 17 for β-hemolytic E. coli and 10 for Salmonella spp. Conclusions: Overall, E. coli samples were most sensitive to ceftriaxone; β-hemolytic E. coli to florfenicol; and Salmonella spp. to gentamicin. In contrast, these agents were resistant to amoxicillin, ampicillin and oxytetracycline respectively. This study is unique in its approach and provides useful information for veterinarians and producers on the antibiotic resistance patterns of bacteria posing a serious threat to calves. These results can help field veterinarians to control and treat bacterial diarrhea in calves.

  15. Optimizing the Safety of Multidrug-resistant Tuberculosis Therapy in Namibia

    NARCIS (Netherlands)

    Sagwa, Evans

    2017-01-01

    Introduction: Multidrug-resistant tuberculosis (MDR-TB), a growing global menace, is seriously undermining the previous successes made in the elimination of TB. MDR-TB treatment takes a long time, is complex, and is frequently associated with the occurrence of adverse drug reactions, some of which

  16. Doripenem: an expected arrival in the treatment of infections caused by multidrug-resistant Gram-negative pathogens.

    Science.gov (United States)

    Poulakou, Garyphallia; Giamarellou, Helen

    2008-05-01

    Potent new drugs against multidrug-resistant Gram-negative bacteria, namely Pseudomonas aeruginosa and Acinetobacter spp. and pan-drug-resistant Klebsiella pneumoniae, which constitute an increasing medical threat, are almost absent from the future pharmaceutical pipeline. This drug evaluation focuses on the position of doripenem, a novel forthcoming carbapenem. Mechanisms of resistance and new drugs with anti-Gram-negative activity are also briefly reviewed. Literature search was performed for new carbapenems, new antibiotics, doripenem, metallo-beta-lactamase inhibitors, multidrug-resistant pathogens, antipseudomonal antibiotics and multidrug-resistant epidemiology. Doripenem possesses a broad spectrum of activity against Gram-negative bacteria, similar to that of meropenem, while retaining the spectrum of imipenem against Gram-positive pathogens. Against P. aeruginosa, doripenem exhibits rapid bactericidal activity with 2 - 4-fold lower MIC values, compared to meropenem. Exploitation of pharmacokinetic/pharmacodynamic applications could offer a treatment opportunity against strains exhibiting borderline resistance to doripenem. Stability against numerous beta-lactamases, low adverse event potential and more potent in vitro antibacterial activity against P. aeruginosa and A. baumanni compared to the existing carbapenems, are its principal features.

  17. Metabolic Reprogramming During Multidrug Resistance in Leukemias

    Directory of Open Access Journals (Sweden)

    Raphael Silveira Vidal

    2018-04-01

    Full Text Available Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.

  18. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Yoko Miyasaki

    Full Text Available The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.

  19. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia.

    Science.gov (United States)

    Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S

    2016-08-01

    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. © 2016 Poultry Science Association Inc.

  20. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  1. Prevalence and Diversity of Salmonella Serotypes in Ecuadorian Broilers at Slaughter Age.

    Directory of Open Access Journals (Sweden)

    Christian Vinueza-Burgos

    Full Text Available Salmonella is frequently found in poultry and represent an important source for human gastrointestinal infections worldwide. The aim of this study was to investigate the prevalence, genotypes and antimicrobial resistance of Salmonella serotypes in broilers from Ecuador. Caeca content from 388 at random selected broiler batches were collected in 6 slaughterhouses during 1 year and analyzed by the ISO 6579/Amd1 protocol for the isolation for Salmonella. Isolates were serotyped and genotypic variation was acceded by pulsed field gel electrophoresis. MIC values for sulfamethoxazole, gentamicin, ciprofloxacin, ampicillin, cefotaxime, ceftazidime, tetracycline, streptomycin, trimethropim, chloramphenicol, colistin, florfenicol, kanamycin and nalidixic acid were obtained. Presence of blaCTX-M, blaTEM, blaSHV and blaCMY; and mcr-1 plasmid genes was investigated in resistant strains to cefotaxime and colistin respectively. Prevalence at batch level was 16.0%. The most common serotype was S. Infantis (83.9% followed by S. Enteritidis (14.5% and S. Corvallis (1.6%. The pulsed field gel electrophoresis analysis showed that S. Corvallis, S. Enteritidis and S. Infantis isolates belonged to 1, 2 and 12 genotypes respectively. S. Infantis isolates showed high resistance rates to 12 antibiotics ranging from 57.7% (kanamycin up to 98.1% (nalidixic acid and sulfamethoxazole. All S. Enteritidis isolates showed resistance to colistin. High multiresistant patterns were found for all the serotypes. The blaCTX-M gene was present in 33 S. Infantis isolates while mcr-1 was negative in 10 colistin resistant isolates. This study provides the first set of scientific data on prevalence and multidrug-resistant Salmonella coming from commercial poultry in Ecuador.

  2. Resistance of Salmonella enteritidis variety typhimurium to gamma radiation

    International Nuclear Information System (INIS)

    Norberg, A.N.; Maliska, C.

    1988-01-01

    The use of ionizing radiations to kill microrganisms responsible for food deterioration, and toxinfections is an example of peaceful use of nuclear energy. Food toxinfections are, amongus, produced mostly by Salmonella enteritidis var. typhimurium. Due to the pauncity of information on the resistance to gamma radiation of Salmonella enteritidis var. typhimurium this paper has the aim to define the 60-Cobalt gamma radiation lethal dose to these bacteria, in experimentally contaminated milk by samples recovered from our geographycal area. One hundred nineteen samples of milk containing about 150.000 bacteria per ml were irradiated with doses ranging from 100 to 1.100 Gy. Two samples of surving bacteria were again irradiated by doses up to 2.500 Gy. The bacteria not previously irradiated were killed by doses of 1.100 Gy. It was concluded that the 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy. The surviving strains to smaller doses than 1.200 Gy when re-irradiated prompt the forthcoming of more radio-resistant germs. (author) [pt

  3. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  4. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Alsaad, Noor; Wilffert, Bob; van Altena, Richard; de Lange, Wiel C. M.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2014-01-01

    Treatment of multidrug-resistant (MDR) tuberculosis (TB) is challenging because of the high toxicity of second-line drugs and the longer treatment duration than for drug-susceptible TB patients. In order to speed up novel treatment for MDR-TB, we suggest considering expanding the indications of

  5. Individualizing Risk of Multidrug-Resistant Pathogens in Community-Onset Pneumonia

    OpenAIRE

    Falcone, Marco; Russo, Alessandro; Giannella, Maddalena; Cangemi, Roberto; Scarpellini, Maria Gabriella; Bertazzoni, Giuliano; Alarc?n, Jos? Mart?nez; Taliani, Gloria; Palange, Paolo; Farcomeni, Alessio; Vestri, Annarita; Bouza, Emilio; Violi, Francesco; Venditti, Mario

    2015-01-01

    Introduction The diffusion of multidrug-resistant (MDR) bacteria has created the need to identify risk factors for acquiring resistant pathogens in patients living in the community. Objective To analyze clinical features of patients with community-onset pneumonia due to MDR pathogens, to evaluate performance of existing scoring tools and to develop a bedside risk score for an early identification of these patients in the Emergency Department. Patients and Methods This was an open, observation...

  6. Characterization of novel bacteriophage phiC119 capable of lysing multidrug-resistant Shiga toxin-producing Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    Luis Amarillas

    2016-09-01

    Full Text Available Background Shiga toxin-producing Escherichia coli (STEC is one of the most common and widely distributed foodborne pathogens that has been frequently implicated in gastrointestinal and urinary tract infections. Moreover, high rates of multiple antibiotic-resistant E. coli strains have been reported worldwide. Due to the emergence of antibiotic-resistant strains, bacteriophages are considered an attractive alternative to biocontrol pathogenic bacteria. Characterization is a preliminary step towards designing a phage for biocontrol. Methods In this study, we describe the characterization of a bacteriophage designated phiC119, which can infect and lyse several multidrug-resistant STEC strains and some Salmonella strains. The phage genome was screened to detect the stx-genes using PCR, morphological analysis, host range was determined, and genome sequencing were carried out, as well as an analysis of the cohesive ends and identification of the type of genetic material through enzymatic digestion of the genome. Results Analysis of the bacteriophage particles by transmission electron microscopy showed that it had an icosahedral head and a long tail, characteristic of the family Siphoviridae. The phage exhibits broad host range against multidrug-resistant and highly virulent E. coli isolates. One-step growth experiments revealed that the phiC119 phage presented a large burst size (210 PFU/cell and a latent period of 20 min. Based on genomic analysis, the phage contains a linear double-stranded DNA genome with a size of 47,319 bp. The phage encodes 75 putative proteins, but lysogeny and virulence genes were not found in the phiC119 genome. Conclusion These results suggest that phage phiC119 may be a good biological control agent. However, further studies are required to ensure its control of STEC and to confirm the safety of phage use.

  7. Antibacterial activity of local herbs collected from Murree (Pakistan) against multi-drug resistant Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus.

    Science.gov (United States)

    Mansoor, Qaisar; Shaheen, Saira; Javed, Uzma; Shaheen, Uzma; Iqrar, Irum; Ismail, Muhammad

    2013-07-01

    Exploring healing power in plants emerged in prehistory of human civilization. Sustaining good health has been achieved over the millions of years by use of plant products in various traditional sockets. A major contribution of medicinal plants to health care systems is their limitless possession of bioactive components that stimulate explicit physiological actions. Luckily Pakistan is blessed with huge reservoir of plants with medicinal potential and some of them; we focused in this study for their medicinal importance.In this study we checked the antibacterial activity inherent in Ricinus communis, Solanum nigrum, Dodonaea viscose and Berberis lyceum extracts for multidrug resistance bacterial strains Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus. MRSA showed sensitivity for Ricinus communis. Multidrug resistant Klebsiella pneumonae was sensitive with Pine roxburgii and Ricinus communis but weakly susceptible for Solanum nigrum. Multidrug resistant E. coli was resistant to all plant extracts. Treatment of severe infections caused by the bacterial strains used in this study with Ricinus communis, Pine roxburgii and Solanum nigrum can lower the undesired side effects of synthetic medicine and also reduce the economic burden.

  8. Increase in resistance to extended-spectrum cephalosporins in Salmonella isolated from retail chicken products in Japan.

    Science.gov (United States)

    Noda, Tamie; Murakami, Koichi; Etoh, Yoshiki; Okamoto, Fuyuki; Yatsuyanagi, Jun; Sera, Nobuyuki; Furuta, Munenori; Onozuka, Daisuke; Oda, Takahiro; Asai, Tetsuo; Fujimoto, Shuji

    2015-01-01

    Extended-spectrum β-lactamase (ESBL)-producing Salmonella are one of the most important public health problems in developed countries. ESBL-producing Salmonella strains have been isolated from humans in Asian countries neighboring Japan, along with strains harboring the plasmid-mediated extended-spectrum cephalosporin (ESC)-resistance gene, ampC (pAmpC). However, only a few studies have investigated the prevalence of ESC-resistant Salmonella in chicken products in Japan, which are the main vehicle of Salmonella transmission. The aim of this study was to investigate the prevalence of ESBL-producing, pAmpC-harboring, or carbapenem-resistant Salmonella in chicken products in Japan. In total, 355 out of 779 (45.6%) chicken product samples collected from 1996-2010 contained Salmonella, resulting in 378 distinct isolates. Of these isolates, 373 were tested for resistance to ESCs, cephamycins, or carbapenems. Isolates that showed resistance to one or more of these antimicrobials were then examined by PCR and DNA sequence analysis for the presence of the bla(CMY), bla(CTX-M), bla(TEM), and bla(SHV) resistance genes. Thirty-five resistant isolates were detected, including 26 isolates that contained pAmpC (bla(CMY-2)), and nine ESBL-producing isolates harboring bla(CTX-M) (n = 4, consisting of two bla(CTX-M-2) and two bla(CTX-M-15 genes)), bla(TEM) (n = 4, consisting of one bla(TEM-20) and three bla(TEM-52) genes), and bla(SHV) (n = 1, bla(SHV-12)). All pAmpC-harboring and ESBL-producing Salmonella isolates were obtained from samples collected after 2005, and the percentage of resistant isolates increased significantly from 0% in 2004 to 27.9% in 2010 (P for trend = 0.006). This increase was caused in part by an increase in the number of Salmonella enterica subsp. enterica serovar Infantis strains harboring an approximately 280-kb plasmid containing bla(CMY-2) in proximity to ISEcp1. The dissemination of ESC-resistant Salmonella containing plasmid-mediated bla(CMY-2) in

  9. Increase in resistance to extended-spectrum cephalosporins in Salmonella isolated from retail chicken products in Japan.

    Directory of Open Access Journals (Sweden)

    Tamie Noda

    Full Text Available Extended-spectrum β-lactamase (ESBL-producing Salmonella are one of the most important public health problems in developed countries. ESBL-producing Salmonella strains have been isolated from humans in Asian countries neighboring Japan, along with strains harboring the plasmid-mediated extended-spectrum cephalosporin (ESC-resistance gene, ampC (pAmpC. However, only a few studies have investigated the prevalence of ESC-resistant Salmonella in chicken products in Japan, which are the main vehicle of Salmonella transmission. The aim of this study was to investigate the prevalence of ESBL-producing, pAmpC-harboring, or carbapenem-resistant Salmonella in chicken products in Japan. In total, 355 out of 779 (45.6% chicken product samples collected from 1996-2010 contained Salmonella, resulting in 378 distinct isolates. Of these isolates, 373 were tested for resistance to ESCs, cephamycins, or carbapenems. Isolates that showed resistance to one or more of these antimicrobials were then examined by PCR and DNA sequence analysis for the presence of the bla(CMY, bla(CTX-M, bla(TEM, and bla(SHV resistance genes. Thirty-five resistant isolates were detected, including 26 isolates that contained pAmpC (bla(CMY-2, and nine ESBL-producing isolates harboring bla(CTX-M (n = 4, consisting of two bla(CTX-M-2 and two bla(CTX-M-15 genes, bla(TEM (n = 4, consisting of one bla(TEM-20 and three bla(TEM-52 genes, and bla(SHV (n = 1, bla(SHV-12. All pAmpC-harboring and ESBL-producing Salmonella isolates were obtained from samples collected after 2005, and the percentage of resistant isolates increased significantly from 0% in 2004 to 27.9% in 2010 (P for trend = 0.006. This increase was caused in part by an increase in the number of Salmonella enterica subsp. enterica serovar Infantis strains harboring an approximately 280-kb plasmid containing bla(CMY-2 in proximity to ISEcp1. The dissemination of ESC-resistant Salmonella containing plasmid-mediated bla(CMY-2 in chicken

  10. Increasing quinolone resistance in Salmonella enterica serotype enteritidis

    DEFF Research Database (Denmark)

    Mølbak, K.; Gerner-Smidt, P.; Wegener, Henrik Caspar

    2002-01-01

    Until recently, Salmonella enterica serotype Enteritidis has remained sensitive to most antibiotics. However, national surveillance data from Denmark show that quinolone resistance in S. Enteritidis has increased from 0.8% in 1995 to 8.5% in 2000. These data support concerns that the current use...... of quinolone in food animals leads to increasing resistance in S. Enteritidis and that action should be taken to limit such use....

  11. Mechanisms of antimicrobial resistant Salmonella enterica transmission associated with starling-livestock interactions.

    Science.gov (United States)

    Carlson, James C; Hyatt, Doreene R; Ellis, Jeremy W; Pipkin, David R; Mangan, Anna M; Russell, Michael; Bolte, Denise S; Engeman, Richard M; DeLiberto, Thomas J; Linz, George M

    2015-08-31

    Bird-livestock interactions have been implicated as potential sources for bacteria within concentrated animal feeding operations (CAFO). European starlings (Sturnus vulgaris) in particular are known to contaminate cattle feed and water with Salmonella enterica through their fecal waste. We propose that fecal waste is not the only mechanisms through which starlings introduce S. enterica to CAFO. The goal of this study was to assess if starlings can mechanically move S. enterica. We define mechanical movement as the transportation of media containing S. enterica, on the exterior of starlings within CAFO. We collected 100 starlings and obtained external wash and gastrointestinal tract (GI) samples. We also collected 100 samples from animal pens. Within each pen we collected one cattle fecal, feed, and water trough sample. Isolates from all S. enterica positive samples were subjected to antimicrobial susceptibility testing. All sample types, including 17% of external starling wash samples, contained S. enterica. All sample types had at least one antimicrobial resistant (AMR) isolate and starling GI samples harbored multidrug resistant S. enterica. The serotypes isolated from the starling external wash samples were all found in the farm environment and 11.8% (2/17) of isolates from positive starling external wash samples were resistant to at least one class of antibiotics. This study provides evidence of a potential mechanism of wildlife introduced microbial contamination in CAFO. Mechanical movement of microbiological hazards, by starlings, should be considered a potential source of bacteria that is of concern to veterinary, environmental and public health. Published by Elsevier B.V.

  12. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Hessam A. Halimi

    2014-01-01

    Conclusion: The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background.

  13. Functional imaging of the multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Lee, Jae Tae

    2001-01-01

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. 99m Tc-sestaMIBI and other 99m Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N- (11 C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo

  14. Antimicrobial Resistance Profiles and Diversity in Salmonella from Humans and Cattle, 2004-2011.

    Science.gov (United States)

    Afema, J A; Mather, A E; Sischo, W M

    2015-11-01

    Analysis of long-term anti-microbial resistance (AMR) data is useful to understand source and transmission dynamics of AMR. We analysed 5124 human clinical isolates from Washington State Department of Health, 391 cattle clinical isolates from the Washington Animal Disease Diagnostic Laboratory and 1864 non-clinical isolates from foodborne disease research on dairies in the Pacific Northwest. Isolates were assigned profiles based on phenotypic resistance to 11 anti-microbials belonging to eight classes. Salmonella Typhimurium (ST), Salmonella Newport (SN) and Salmonella Montevideo (SM) were the most common serovars in both humans and cattle. Multinomial logistic regression showed ST and SN from cattle had greater probability of resistance to multiple classes of anti-microbials than ST and SN from humans (P resistant ST and SN for people, occurrence of profiles unique to cattle and not observed in temporally related human isolates indicates these profiles are circulating in cattle only. We used various measures to assess AMR diversity, conditional on the weighting of rare versus abundant profiles. AMR profile richness was greater in the common serovars from humans, although both source data sets were dominated by relatively few profiles. The greater profile richness in human Salmonella may be due to greater diversity of sources entering the human population compared to cattle or due to continuous evolution in the human environment. Also, AMR diversity was greater in clinical compared to non-clinical cattle Salmonella, and this could be due to anti-microbial selection pressure in diseased cattle that received treatment. The use of bootstrapping techniques showed that although there were shared profiles between humans and cattle, the expected and observed number of profiles was different, suggesting Salmonella and associated resistance from humans and cattle may not be wholly derived from a common population. © 2014 The Authors. Zoonoses and Public Health Published by

  15. Prevalence, seasonal occurrence and antimicrobial resistance of Salmonella in poultry retail products in Greece.

    Science.gov (United States)

    Zdragas, A; Mazaraki, K; Vafeas, G; Giantzi, V; Papadopoulos, T; Ekateriniadou, L

    2012-10-01

    To detect the prevalence, the seasonal occurrence and distribution of Salmonella serotypes in poultry products and to determine the resistance profile of Salmonella isolates. A total of 96 skin-on chicken carcasses and 30 liver samples were analysed between May 2007 and May 2009 from twenty-two different commercial farm brands found in retail market countrywide. Salmonella was isolated from 38 (39·5%) of 96 chicken carcasses and from 10 (33·3%) of 30 liver samples. Higher isolation rate (60·4%) was observed in carcasses detected during summer (May to October), and lower isolation rate (18·7%) was observed in carcasses detected during winter (November to April); in liver samples, the positive rates were 53·4 and 13·2%, respectively. Twelve serotypes were detected with the serotypes Hadar, Enteritidis and Blockley being the most prevalent at 29·2, 22·9 and 12·5%, respectively. Nine of 11 Salm. Enteritidis isolates occurred during summer. Of 48 isolates, 38 (79%) were resistant to one or more of the antimicrobial agents used. The highest resistance rates were found to the following antimicrobials: streptomycin (64·5%), tetracycline (56·2%), nalidixic acid (39·5%), ampicillin and rifampicin (33·3%). The relatively high Salmonella spp. contamination rates of raw chicken meat and liver have been detected. Salm. Enteritidis isolates peaked in summer, increasing the risk to human health. Antibiotic resistance of Salmonella still remains a threat as resistance plasmids may be extensively shared between animal and humans. The study enabled us to improve the data on the seasonal occurrence of Salmonella and to determine the antimicrobial pattern profile and trends in Salmonella strains isolated from poultry retail products in Greece. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. Several Virulence Factors of Multidrug-Resistant Staphylococcus aureus Isolates From Hospitalized Patients in Tehran

    Directory of Open Access Journals (Sweden)

    Abdolmajid Ghasemian

    2015-05-01

    Full Text Available Background: Biofilm formation plays an important role in resistance of Staphylococcus aureus isolates; especially multidrug-resistant isolates are a threat to healthcare settings. Objectives: The aims of this study were to detect biofilm formation and presence of several related genes among multidrug-resistant (MDR isolates of Staphylococcus aureus. Patients and Methods: A total Of 209 S. aureus strains were isolated from patients and identified by conventional diagnostic tests. The multidrug-resistant MRSA isolates were detected by antibiotic susceptibility test. The phenotypic biofilm formation was detected by micro-titre tissue plate assay. The polymerase chain reaction (PCR was performed to detect the mecA, Staphylococcal Cassette Chromosome mec (SCCmec types, accessory gene regulatory (agr genes, the icaADBC and several genes encoding staphylococcal surface proteins including clfAB, fnbAB, fib, eno, can, ebps and bbp genes with specific primers. Results: Sixty-four (30.6% isolates were methicillin-resistant, among which thirty-six (56.2% were MDR. These isolates were resistant to amoxicillin, tetracycline, ciprofloxacin, gentamicin, erythromycin and trimethoprim-sulfamethoxazole (except to 6 isolates. All the isolates were susceptible to vancomycin and linezolid. All the MDR-MRSA harbored SCCmec type III. All the MDR- MRSA isolates were strong biofilm producers in the phenotypic test. The majority of MDR- MRSA was belonged to agrI (67%, n = 24, followed by agr II (17%, n = 6, agrIV (11%, n = 4 and agrIII (5.5%, n = 2. The frequency of icaADBC genes were 75% (n = 27, 61% (n = 22, 72% (n = 26 and 72% (n = 26, respectively. Furthermore, the prevalence of clfA, clfB, fnbA, fnbB, fib, can, eno, ebps and bbp genes was 100%, 100%, 67%, 56%, 80%, 63%, 78%, 7% and 0%, respectively. Furthermore, approximately all the MRSA was strong biofilm producers. Conclusions: Multidrug-resistant isolates produced biofilm strongly and the majority harbored most

  17. Pattern of intensive phase treatment outcomes of multi-drug resistant ...

    African Journals Online (AJOL)

    Pattern of intensive phase treatment outcomes of multi-drug resistant tuberculosis in University of Port Harcourt Treatment Centre: a review of records from ... Data on patients' age, sex, HIV status, treatment outcomes were extracted from the hospital book records into a computer data sheet at the UPTH treatment centre.

  18. Antimicrobial resistance and typing of Salmonella isolated from street vended foods and associated environment.

    Science.gov (United States)

    Anukampa; Shagufta, Bi; Sivakumar, M; Kumar, Surender; Agarwal, Rajesh Kumar; Bhilegaonkar, Kiran Narayan; Kumar, Ashok; Dubal, Zunjar Baburao

    2017-07-01

    The present study was carried out to find out the occurrence and types of Salmonella present in street vended foods and associated environment, and their resistance pattern against various antibiotics. About 1075 street vended food and associated environment samples were processed for isolation and confirmation of different Salmonella spp. by targeting gene specific inv A gene and serotype specific Sdf I, Via B and Spy genes by PCR. Selected Salmonella isolates were screened for antibiotic resistance by using Baeur-Kirby disk diffusion test. Out of 1075 samples, only 31 (2.88%) isolates could be amplified the inv A gene of which 19 could be recovered from meat vendors; 8 from egg vendors while remaining 4 from milk vendors. Though, majority of Salmonella recovered from raw foods the ready-to-eat food like chicken gravy and rasmalai also showed its presence which pose a serious public health threat. Overall, 19, 6 and 1 isolates of S. Typhimurium, S. Enteritidis and S. Typhi could be detected by PCR while remaining 5 isolates could not be amplified suggesting other type of Salmonella. Selected Salmonella isolates were completely resistance to Oxacillin (100%) followed by Cefoxitin (30.43%) and Ampicillin (26.10%). Thus, it is observed that the street vended foods of animal origin and associated environment play an important role in transmission of food borne pathogens including Salmonella .

  19. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium

    DEFF Research Database (Denmark)

    Bryant, Josephine M; Grogono, Dorothy M; Rodriguez-Rincon, Daniela

    2016-01-01

    Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality....

  20. Drug resistant Salmonella in broiler chicken sold at local market in ...

    African Journals Online (AJOL)

    user

    2015-10-28

    Oct 28, 2015 ... Key words: Antibiogram, Salmonellosis, PCR, broiler chicken, drug resistance. ... of zoonotic origin and have gained their resistance in an animal host ..... dynamics of Salmonella enterica serotypes in commercial egg and.

  1. Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients.

    Science.gov (United States)

    Modongo, Chawangwa; Pasipanodya, Jotam G; Zetola, Nicola M; Williams, Scott M; Sirugo, Giorgio; Gumbo, Tawanda

    2015-10-01

    Aminoglycosides, such as amikacin, are used to treat multidrug-resistant tuberculosis. However, ototoxicity is a common problem and is monitored using peak and trough amikacin concentrations based on World Health Organization recommendations. Our objective was to identify clinical factors predictive of ototoxicity using an agnostic machine learning method. We used classification and regression tree (CART) analyses to identify clinical factors, including amikacin concentration thresholds that predicted audiometry-confirmed ototoxicity among 28 multidrug-resistant pulmonary tuberculosis patients in Botswana. Amikacin concentrations were measured for all patients. The quantitative relationship between predictive factors and the probability of ototoxicity were then identified using probit analyses. The primary predictors of ototoxicity on CART analyses were cumulative days of therapy, followed by cumulative area under the concentration-time curve (AUC), which improved on the primary predictor by 87%. The area under the receiver operating curve was 0.97 on the test set. Peak and trough were not predictors in any tree. When algorithms were forced to pick peak and trough as primary predictors, the area under the receiver operating curve fell to 0.46. Probit analysis revealed that the probability of ototoxicity increased sharply starting after 6 months of therapy to near maximum at 9 months. A 10% probability of ototoxicity occurred with a threshold cumulative AUC of 87,232 days · mg · h/liter, while that of 20% occurred at 120,000 days · mg · h/liter. Thus, cumulative amikacin AUC and duration of therapy, and not peak and trough concentrations, should be used as the primary decision-making parameters to minimize the likelihood of ototoxicity in multidrug-resistant tuberculosis. Copyright © 2015, Modongo et al.

  2. IncA/C Conjugative Plasmids Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-O1/Non-O139 Isolates from Haiti.

    Science.gov (United States)

    Carraro, Nicolas; Rivard, Nicolas; Ceccarelli, Daniela; Colwell, Rita R; Burrus, Vincent

    2016-07-19

    Mobile genetic elements play a pivotal role in the adaptation of bacterial populations, allowing them to rapidly cope with hostile conditions, including the presence of antimicrobial compounds. IncA/C conjugative plasmids (ACPs) are efficient vehicles for dissemination of multidrug resistance genes in a broad range of pathogenic species of Enterobacteriaceae ACPs have sporadically been reported in Vibrio cholerae, the infectious agent of the diarrheal disease cholera. The regulatory network that controls ACP mobility ultimately depends on the transcriptional activation of multiple ACP-borne operons by the master activator AcaCD. Beyond ACP conjugation, AcaCD has also recently been shown to activate the expression of genes located in the Salmonella genomic island 1 (SGI1). Here, we describe MGIVchHai6, a novel and unrelated mobilizable genomic island (MGI) integrated into the 3' end of trmE in chromosome I of V. cholerae HC-36A1, a non-O1/non-O139 multidrug-resistant clinical isolate recovered from Haiti in 2010. MGIVchHai6 contains a mercury resistance transposon and an integron In104-like multidrug resistance element similar to the one of SGI1. We show that MGIVchHai6 excises from the chromosome in an AcaCD-dependent manner and is mobilized by ACPs. Acquisition of MGIVchHai6 confers resistance to β-lactams, sulfamethoxazole, tetracycline, chloramphenicol, trimethoprim, and streptomycin/spectinomycin. In silico analyses revealed that MGIVchHai6-like elements are carried by several environmental and clinical V. cholerae strains recovered from the Indian subcontinent, as well as from North and South America, including all non-O1/non-O139 clinical isolates from Haiti. Vibrio cholerae, the causative agent of cholera, remains a global public health threat. Seventh-pandemic V. cholerae acquired multidrug resistance genes primarily through circulation of SXT/R391 integrative and conjugative elements. IncA/C conjugative plasmids have sporadically been reported to

  3. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yonatan Moges Mesfin

    Full Text Available BACKGROUND: Human immunodeficiency virus (HIV, multi-drug resistant tuberculosis (MDR is emerging as major challenge facing tuberculosis control programs worldwide particularly in Asia and Africa. Findings from different studies on associations of HIV co-infection and drug resistance among patients with TB have been contradictory (discordant. Some institution based studies found strongly increased risks for multi-drug resistant TB (MDR TB among patients co-infected with TB and HIV, whereas other studies found no increased risk (it remains less clear in community based studies. The aim was to conduct a systematic review and meta-analysis of the association between multi-drug resistant tuberculosis and HIV infection. METHODS AND FINDINGS: Systematic review of the published literature of observational studies was conducted. Original studies were identified using databases of Medline/Pubmed, Google Scholar and HINARI. The descriptions of original studies were made using frequency and forest plot. Publication bias was assessed using Funnel plot graphically and Egger weighted and Begg rank regression tests statistically. Heterogeneity across studies was checked using Cochrane Q test statistic and I(2. Pool risk estimates of MDR-TB and sub-grouping analysis were computed to analyze associations with HIV. Random effects of the meta-analysis of all 24 observational studies showed that HIV is associated with a marginal increased risk of multi-drug resistant tuberculosis (estimated Pooled OR 1.24; 95%, 1.04-1.43. Subgroup analyses showed that effect estimates were higher (Pooled OR 2.28; 95%, 1.52-3.04 for primary multi-drug resistance tuberculosis and moderate association between HIV/AIDS and MDR-TB among population based studies and no significant association in institution settings. CONCLUSIONS: This study demonstrated that there is association between MDR-TB and HIV. Capacity for diagnosis of MDR-TB and initiating and scale up of antiretroviral

  4. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  5. Multidrug-Resistant Escherichia fergusonii: a Case of Acute Cystitis▿

    Science.gov (United States)

    Savini, Vincenzo; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Pompetti, Franca; Favaro, Marco; Fontana, Carla; Febbo, Fabio; Balbinot, Andrea; Di Berardino, Fabio; Di Bonaventura, Giovanni; Di Zacomo, Silvia; Esattore, Francesca; D'Antonio, Domenico

    2008-01-01

    We report a case in which Escherichia fergusonii, an emerging pathogen in various types of infections, was associated with cystitis in a 52-year-old woman. The offending strain was found to be multidrug resistant. Despite in vitro activity, beta-lactam treatment failed because of a lack of patient compliance with therapy. The work confirms the pathogenic potential of E. fergusonii. PMID:18256229

  6. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda.

    Directory of Open Access Journals (Sweden)

    Josephine A Afema

    Full Text Available In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm-water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95% while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be

  7. ANTIMICROBIAL ACTIVITY OF PINEAPPLE (ANANAS COMOSUS L. MERR EXTRACT AGAINST MULTIDRUG-RESISTANT OF PSEUDOMONAS AERUGINOSA: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Rahmat Sayyid Zharfan

    2017-08-01

    Full Text Available Pseudomonas aeruginosa is the main cause of nosocomial infection which is responsible for 10% of hospital-acquired infection. Pseudomonas aeruginosa tends to mutate and displays potential for development of antibiotic resistance. Approximately, 10% of global bacterial isolates are found as Multidrug-resistant Pseudomonas aeruginosa. Pseudomonas aeruginosa have a quite tremendous severity index, especially on pneumonia and urinary tract infections, even sepsis, which 50% mortality rate. Pineapple (Ananas comosus L. Merr has antimicrobial properties. The active antimicrobial compounds in Ananas comosus L. Merr include saponin and bromelain. This research aims to find the potency of antimicrobial effect of pineapple (Ananas comosus L. Merr extract towards Multidrug-resistant Pseudomonas aeruginosa. Multidrug-resistant Pseudomonas aeruginosa specimen is obtained from patient’s pus in orthopaedic department, Dr Soetomo Public Hospital, Surabaya. Multidrug-resistant Pseudomonas aeruginosa specimen is resistant to all antibiotic agents except cefoperazone-sulbactam. This research is conducted by measuring the Minimum Inhibitory Concentration (MIC through dilution test with Mueller-Hinton broth medium. Pineapple extract (Ananas comosus L. Merr. is dissolved in aquadest, then poured into test tube at varying concentrations (6 g/ml; 3 g/ml; 1.5 g/ml; 0.75 g/ml, 0.375 g/ml; and 0.1875 g/ml. After 24 hours’ incubation, samples are plated onto nutrient agar plate, to determine the Minimum Bactericidal Concentration (MBC. The extract of pineapple (Ananas comosus L. Merr has antimicrobial activities against Multidrug-resistant Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC could not be determined, because turbidity changes were not seen. The Minimum Bactericidal Concentration (MBC of pineapple extract (Ananas comosus L. Merr to Multidrug-resistant Pseudomonas aeruginosa is 0.75 g/ml. Further study of in vivo is needed.

  8. Multidrug resistance in amoebiasis patients.

    Science.gov (United States)

    Bansal, Devendra; Sehgal, Rakesh; Chawla, Yogesh; Malla, Nancy; Mahajan, R C

    2006-08-01

    Amoebiasis, caused by Entamoeba sp. a protozoan parasite, is a major public health problem in tropical and subtropical countries. The symptomatic patients are treated by specific chemotherapy. However, there are reports of treatment failure in some cases suggesting the possibility of drug resistance. The present study was therefore planned to assess the presence and expression of mRNA of multidrug resistance (MDR) gene in clinical isolates of Entamoeba histolytica and E. dispar. Forty five clinical isolates of Entamoeba sp. [E. histolytica (15) and E. dispar (30)] were maintained in polyxenic followed by monoxenic medium. DNA and total RNA were extracted from clinical isolates of Entamoeba sp. and from sensitive strain of E. histolytica (HM1: IMSS) and subjected to polymerase chain reaction (PCR) and multiplex reverse transcription (RT)-PCR techniques. The 344 bp segment of E. histolytica DNA was seen by PCR using primers specific to EhPgp1 in all clinical isolates and sensitive strain of E. histolytica. Over expression of EhPgp1 was observed only in resistant mutant of E. histolytica; however, transcription of EhPgp1 was not seen in any clinical isolates and sensitive strain of E. histolytica. The findings of the present study indicate that, so far, drug resistance in clinical isolates of E. histolytica does not seem to be a major problem in this country. However, susceptibility of clinical isolates of E. histolytica against various antiamoebic drugs needs to be investigated for better management.

  9. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

    Directory of Open Access Journals (Sweden)

    Gabriella Spengler

    2017-03-01

    Full Text Available Multidrug resistance (MDR has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.

  10. Plasmid-mediated quinolone resistance in Salmonella serotypes isolated from chicken carcasses in Turkey

    Directory of Open Access Journals (Sweden)

    Zafer Ata

    2014-01-01

    Full Text Available Quinolones have been extensively used for treatment of a variety of invasive and systemic infections of salmonellosis. Widespread use of these agents has been associated with the emergence and dissemination of quinolone-resistant pathogens. The quinolone resistance and plasmid-mediated quinolone resistance determinants (qnrA, qnrB, qnrS and aac(6’-Ib-cr of 85 Salmonella isolates from chicken carcasses were investigated in this study. Isolates were serotyped according to the Kauffman-White-Le Minor scheme, and broth microdilution method was used to determine quinolone resistance. Plasmid-mediated quinolone resistance genes were investigated by real-time PCR and positive results were confirmed by sequencing. Among the Salmonella isolates, 30/85 (35% and 18/85 (21% were found to be resistant to enrofloxacin (MIC ≥ 2 mg/ml, and danofloxacin (MIC ≥ 2 mg/ml, respectively. All the isolates were negative for qnrA, qnrB and aac(6’-Ib-cr genes, nevertheless 2% (S. Brandenburg and S. Dabou were positive for qnrS (qnrS1 determinant. This study is the first and unique investigating the plasmid- mediated quinolone resistance determinants of Salmonella isolated from chicken carcasses in Turkey.

  11. Antimicrobial resistant Salmonella enterica and Escherichia coli recovered from dairy operations

    Science.gov (United States)

    Antimicrobial resistance has become a major public health concern and animal agriculture is often implicated as a source of resistant bacteria. The primary objective of this study was to determine prevalence of antimicrobial resistance in Salmonella and E. coli from healthy animals on dairy farms i...

  12. Priorities in the prevention and control of multidrug-resistant Enterobacteriaceae in hospitals.

    LENUS (Irish Health Repository)

    Khan, A S

    2012-10-01

    Multidrug-resistant Enterobacteriaceae (MDE) are a major public health threat due to international spread and few options for treatment. Furthermore, unlike meticillin-resistant Staphylococcus aureus (MRSA), MDE encompass several genera and multiple resistance mechanisms, including extended-spectrum beta-lactamases and carbapenemases, which complicate detection in the routine diagnostic laboratory. Current measures to contain spread in many hospitals are somewhat ad hoc as there are no formal national or international guidelines.

  13. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance.

    Science.gov (United States)

    Coon, J S; Knudson, W; Clodfelter, K; Lu, B; Weinstein, R S

    1991-02-01

    A recently developed non-ionic surfactant called Solutol HS 15 (poly-oxyethylene esters of 12-hydroxystearic acid), with low toxicity in vivo, was shown to reverse completely the multidrug resistance of KB 8-5 and KB 8-5-11 human epidermoid carcinoma cells in vitro but did not potentiate drug toxicity in drug-sensitive KB 3-1 cells. At a concentration of 10% of its own IC50 (mean concentration of drug that causes 50% inhibition of cell growth compared to controls), Solutol HS 15 produced a 35-, 28-, and 42-fold reduction in the resistance of KB 8-5-11 cells to colchicine, vinblastine, and doxorubicin, respectively. Solutol HS 15 was relatively much more potent than the prototypic reversing agent, verapamil, for reversing colchicine resistance, compared to the ability of each agent to reverse colchicine resistance, compared to the ability of each agent to reverse vinblastine resistance. Like verapamil, Solutol HS 15 promoted a 50-fold accumulation of rhodamine 123 in KB 8-5-11 cells, as measured by flow cytometry. Also, Solutol HS 15 and verapamil reduced the efflux of rhodamine 123 from KB 8-5-11 cells previously loaded with rhodamine 123 to a similar low rate. Solutol HS 15 did not affect the transport of alanine or glucose into KB 8-5-11 cells, indicating that its effect upon membrane active transport is not entirely nonspecific. Considering their different structure and different relative potency for reversing colchicine resistance, Solutol HS 15 and verapamil probably reverse multidrug resistance by different mechanisms. Solutol HS 15 merits consideration as a potential therapeutic agent because of its effectiveness for reversing multidrug resistance in vitro and its low toxicity in vivo.

  14. Salmonella Species' Persistence and Their High Level of Antimicrobial Resistance in Flooded Man-Made Rivers in China.

    Science.gov (United States)

    Song, Qifa; Zhang, Danyang; Gao, Hong; Wu, Junhua

    2018-05-11

    Man-made rivers, owing to proximity to human habitats, facilitate transmission of salmonellosis to humans. To determine the contamination situation by Salmonella in flooded man-made rivers and thereafter the exposure risk to public health, we investigated the prevalence of Salmonella species and their antimicrobial resistance in such rivers, as well as the relationship between the incidence of local infectious diarrhea cases and the number of Salmonella isolates from patients. After a heavy flood, 95 isolates of 13 Salmonella serotypes were isolated from 80 river water samples. The two most prevalent serotypes were Typhimurium and Derby. Eight Salmonella serotypes were newly detected after the flood. Overall, 50 isolates were resistant to ampicillin and/or cefotaxime and carried at least bla TEM . Twelve isolates of serotypes Typhimurium, Derby, Rissen, and Indiana were extended-spectrum β-lactamase (ESBL) producing and carried at least one of bla OXA and bla CTX-M-like genes. Twelve isolates of serotypes Typhimurium, Derby, Agona, Rissen, and Indiana were resistant to ciprofloxacin and had gyrA mutations. Isolates of Typhimurium, Derby, and Indiana were concurrently ciprofloxacin resistant and ESBL producing. Pulsed-field gel electrophoresis illustrates the circulation of two dominant clones of Salmonella Typhimurium isolates among patients, river, and food. High prevalence of various highly pathogenic and antimicrobial-resistant Salmonella serotypes shows that man-made rivers are prone to heavy contamination with Salmonella, and as a result put public health at greater risk.

  15. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  16. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  17. Multidrug-Resistant Bacteroides fragilis Bacteremia in a US Resident: An Emerging Challenge

    Directory of Open Access Journals (Sweden)

    Cristian Merchan

    2016-01-01

    Full Text Available We describe a case of Bacteroides fragilis bacteremia associated with paraspinal and psoas abscesses in the United States. Resistance to b-lactam/b-lactamase inhibitors, carbapenems, and metronidazole was encountered despite having a recent travel history to India as the only possible risk factor for multidrug resistance. Microbiological cure was achieved with linezolid, moxifloxacin, and cefoxitin.

  18. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica.

    Science.gov (United States)

    Neuert, Saskia; Nair, Satheesh; Day, Martin R; Doumith, Michel; Ashton, Philip M; Mellor, Kate C; Jenkins, Claire; Hopkins, Katie L; Woodford, Neil; de Pinna, Elizabeth; Godbole, Gauri; Dallman, Timothy J

    2018-01-01

    Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England's Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile ( n = 231; 27.24%). For isolates with this profile, all but one were S . Typhimurium and 94.81% ( n = 219) had the resistance determinants bla TEM-1, strA-strB, sul2 and tet (A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.

  19. ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES: SENSITIVITY OF DIFFERENT SALMONELLA SEROVARS

    Directory of Open Access Journals (Sweden)

    Carmen eLosasso

    2014-05-01

    Full Text Available Salmonella spp. is one of the main causes of foodborne illnesses in humans worldwide. Consequently, great interest exists in reducing its impact on human health by lowering its prevalence in the food chain. Antimicrobial formulations in the form of nanoparticles exert bactericidal action due to their enhanced reactivity resultant from their high surface/volume ratio. Silver nanoparticles (AgNPs are known to be highly toxic to Gram-negative and Gram-positive microorganisms, including multidrug resistant bacteria. However, few data concerning their success against different Salmonella serovars are available. Aims of the present study were to test the antimicrobial effectiveness of AgNPs, against Salmonella Enteritidis, Hadar and Senftenberg, and to investigate the causes of their different survival abilities from a molecular point of view.Results showed an immediate, time-limited and serovar-dependent reduction of bacterial viability. In the case of S. Senftenberg, the reduction in numbers was observed for up to 4 h of incubation in the presence of 200 mg/L of AgNPs; on the contrary, S. Enteritidis and S. Hadar resulted to be inhibited for up to 48 h. RT-PCR experiments demonstrated the constitutive expression of the plasmidic silver resistance determinant (SilB by S. Senftenberg, thus suggesting the importance of a cautious use of AgNPs.

  20. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    Directory of Open Access Journals (Sweden)

    Heckel M

    2017-10-01

    Full Text Available Maria Heckel,1 Franziska A Herbst,2 Thomas Adelhardt,3 Johanna M Tiedtke,4 Alexander Sturm,5 Stephanie Stiel,2 Christoph Ostgathe1 1Department of Palliative Medicine, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Universitätsklinikum Erlangen, Bavaria, Germany; 2Institute for General Practice, Hannover Medical School, Hannover, Germany; 3Division of Health Management, School of Business and Economics, Institute of Management (IFM, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Bavaria, Germany; 4Institute of Psychogerontology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Bavaria, Germany; 5Department of General Internal and Geriatric Medicine, Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Hospital of the Order of St John of God Regensburg, Bavaria, Germany Background: Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods: Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external

  1. Genomic Signature of Multidrug-Resistant Salmonella enterica Serovar Typhi Isolates Related to a Massive Outbreak in Zambia between 2010 and 2012

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana

    2015-01-01

    ). The isolates belonged to MLST ST1 and a new variant of the haplotype, H58B. Most isolates contained a chromosomally translocated region containing seven antimicrobial resistance genes, catA1, blaTEM-1, dfrA7, sul1, sul2, strA, and strB, and fragments of the incompatibility group Q1 (IncQ1) plasmid replicon......Retrospectively, we investigated the epidemiology of a massive Salmonella enterica serovar Typhi outbreak in Zambia during 2010 to 2012. Ninety-four isolates were susceptibility tested by MIC determinations. Whole-genome sequence typing (WGST) of 33 isolates and bioinformatic analysis identified...

  2. Comparison of the pharmacokinetics of two dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis patients.

    NARCIS (Netherlands)

    Alffenaar, J.W.C.; Altena, R. van; Harmelink, I.M.; Filguera, P.; Molenaar, E.; Wessels, A.M.; Soolingen, D. van; Kosterink, J.G.W.; Uges, D.R.A.; Werf, T.S. van der

    2010-01-01

    BACKGROUND AND OBJECTIVES: For the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB), potent new drugs are urgently needed. Linezolid is a promising drug, but its use is limited by adverse effects with prolonged administration of 600 mg twice daily. In

  3. Comparison of the Pharmacokinetics of Two Dosage Regimens of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis Patients

    NARCIS (Netherlands)

    Alffenaar, Jan-Willem C.; van Altena, Richard; Harmelink, Ilse M.; Filguera, Patricia; Molenaar, Esther; Wessels, A. Mireille A.; van Soolingen, Dick; Kosterink, Jos G. W.; Uges, Donald R. A.; van der Werf, Tjip S.

    2010-01-01

    Background and Objectives: For the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB), potent new drugs are urgently needed. Linezolid is a promising drug, but its use is limited by adverse effects with prolonged administration of 600 mg twice daily. In

  4. Antibiotic resistant Salmonella and Escherichia coli isolated from ...

    African Journals Online (AJOL)

    Objective: To characterise and investigate antimicrobial resistance of Esherichia coli and salmonella strains isolated from indigenous Gallus gallus in a leading slaughterhouse/market outlet in Nairobi-Kenya. Design: A repeated cross sectional study and based on random sampling was used. Setting: The study was carried ...

  5. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen.

    Science.gov (United States)

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya

    2014-08-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...

  7. Molecular detection of multidrug-resistant Mycobacterium leprae from Indian leprosy patients.

    Science.gov (United States)

    Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal; Das, Loretta; Kumar, Archana; Darlong, Joydeepa; Nathan, Rajeev; Maseey, Asha

    2018-03-01

    The emergence of multidrug-resistant (MDR) organisms for any infectious disease is a public health concern. Global efforts to control leprosy by intensive chemotherapy have led to a significant decrease in the number of registered patients. Currently recommended control measures for treating leprosy with multidrug therapy (MDT) were designed to prevent the spread of dapsone-resistant Mycobacterium leprae strains. Here we report the identification of MDR M. leprae from relapse leprosy patients from endemic regions in India. Resistance profiles to rifampicin, dapsone and ofloxacin of the isolated strains were confirmed by identification of mutations in genes previously shown to be associated with resistance to each drug. Between 2009-2016, slit-skin smear samples were collected from 239 relapse and 11 new leprosy cases from hospitals of The Leprosy Mission across India. DNA was extracted from the samples and was analysed by PCR targeting the rpoB, folP and gyrA genes associated with resistance to rifampicin, dapsone and ofloxacin, respectively, in M. leprae. M. leprae Thai-53 (wild-type) and Zensho-4 (MDR) were used as reference strains. Fifteen strains showed representative mutations in at least two resistance genes. Two strains showed mutations in all three genes responsible for drug resistance. Seven, seven and one strain, respectively, showed mutations in genes responsible for rifampicin and dapsone resistance, for dapsone and ofloxacin resistance and for rifampicin and ofloxacin resistance. This study showed the emergence of MDR M. leprae in MDT-treated leprosy patients from endemic regions of India. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  8. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    Science.gov (United States)

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Non-p-glycoprotein-mediated multidrug resistance in detransformed rat cells selected for resistance to methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Weber, J M; Sircar, S; Horvath, J; Dion, P

    1989-11-01

    Three independent variants (G2, G4, G5), resistant to methylglyoxal bis(guanylhydrazone), an anticancer drug, have been isolated by single step selection from an adenovirus-transformed rat brain cell line (1). These variants display selective cross-resistance to several natural product drugs of dissimilar structure and action. Multidrug resistance has recently been shown to be caused by overexpression of the membrane-associated p-glycoprotein, most often caused by amplification of the mdr gene. Several types of experiments were conducted to determine whether the observed drug resistance in our cell lines could be due to changes at the mdr locus. The following results were obtained: (a) the mdr locus was not amplified; (b) transcription of the mdr gene and p-glycoprotein synthesis were not increased; (c) multidrug resistance cell lines, which carry an amplified mdr locus, were not cross-resistant to methylglyoxal bis(guanylhydrazone); (d) verapamil did not reverse the resistance of G cells or mdr cells to methylglyoxal bis(guanylhydrazone), nor that of G cells to vincristine; and (e) methylglyoxal bis(guanylhydrazone) resistance was recessive and depended on a block to drug uptake, as opposed to mdr cells which are dominant and express increased drug efflux. The results obtained suggest that the drug resistance in the G2, G4, and G5 cells was atypical and may be due to a mechanism distinct from that mediated by the mdr locus.

  10. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections

    OpenAIRE

    Shankar Thangamani; Waleed Younis; Mohamed N. Seleem

    2015-01-01

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methic...

  11. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium

    NARCIS (Netherlands)

    Paganelli, Fernanda L.; van de Kamer, Tim; Brouwer, Ellen C.; Leavis, Helen L.; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA)

  12. Evaluation of GenoType® MTBDRplus assay for rapid detection of drug susceptibility testing of multi-drug resistance tuberculosis in Northern India

    Directory of Open Access Journals (Sweden)

    Anand Kumar Maurya

    2013-01-01

    Full Text Available Background: The problem of multi-drug resistance tuberculosis (MDR-TB is growing in several hotspots throughout the world. Rapid and accurate diagnosis of MDR-TB is crucial to facilitate early treatment and to reduce its spread in the community. The aim of the present study was to evaluate the new, novel GenoType® MTBDRplus assay for rapid detection of drug susceptibility testing (DST of MDR-TB cases in Northern India. Materials and Methods: A total of 550 specimens were collected from highly suspected drug resistant from pulmonary and extra-pulmonary TB cases. All the specimens were processed by Ziehl- Neelsen staining, culture, differentiation by the GenoType® CM assay, first line DST using BacT/ALERT 3D system and GenoType® MTBDRplus assay. The concordance of the GenoType® MTBDRplus assay was calculated in comparison with conventional DST results. Results: Overall the sensitivity for detection of rifampicin, isoniazid and MDR-TB resistance by GenoType® MTBDRplus assay was 98.0%, 98.4% and 98.2% respectively. Out of 55 MDR-TB strains, 45 (81.8%, 52 (94.5% and 17 (30.9% strains showed mutation in rpoB, katG and inhA genes respectively (P < 0.05. The most prominent mutations in rpoB, katG and inhA genes were; 37 (67.3% in S531L, 52 (94.5% in S315T1 and 11 (20% in C15T regions respectively (P < 0.05. Conclusions: Our study demonstrated a high concordance between the GenoType® MTBDRplus assay resistance patterns and those were observed by conventional DST with good sensitivity, specificity with short turnaround times and to control new cases of MDR-TB in countries with a high prevalence of MDR-TB.

  13. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells.

    Science.gov (United States)

    Saeed, Mohamed E M; Meyer, Marion; Hussein, Ahmed; Efferth, Thomas

    2016-06-20

    Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. The bioactivity of South African medicinal plants may represent a basis for the development

  14. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia

    Directory of Open Access Journals (Sweden)

    Tadesse Eguale

    2017-01-01

    Full Text Available Abstract Background Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. However, little is known on the genetic basis of resistance to these drugs in Salmonella isolates from Ethiopia. Methods Salmonella isolates with reduced susceptibility to beta-lactams (n = 43 were tested for genes encoding for beta-lactamase enzymes, and those resistant to quinolones (n = 29 for mutations in the quinolone resistance determining region (QRDR as well as plasmid mediated quinolone resistance (PMQR genes using PCR and sequencing. Results Beta-lactamase genes (bla were detected in 34 (79.1% of the isolates. The dominant bla gene was blaTEM, recovered from 33 (76.7% of the isolates, majority being TEM-1 (24, 72.7% followed by TEM-57, (10, 30.3%. The blaOXA-10 and blaCTX-M-15 were detected only in a single S. Concord human isolate. Double substitutions in gyrA (Ser83-Phe + Asp87-Gly as well as parC (Thr57-Ser + Ser80-Ile subunits of the quinolone resistance determining region (QRDR were detected in all S. Kentucky isolates with high level resistance to both nalidixic acid and ciprofloxacin. Single amino acid substitutions, Ser83-Phe (n = 4 and Ser83-Tyr (n = 1 were also detected in the gyrA gene. An isolate of S. Miami susceptible to nalidixic acid but intermediately resistant to ciprofloxacin had Thr57-Ser and an additional novel mutation (Tyr83-Phe in the parC gene. Plasmid mediated quinolone resistance (PMQR genes investigated were not detected in any of the isolates. In some isolates with decreased susceptibility to ciprofloxacin and/or nalidixic acid, no mutations in QRDR or PMQR genes were detected. Over half of the quinolone resistant isolates in the current study 17 (58.6% were also resistant to at least one of the beta-lactam antimicrobials

  15. Genetic relatedness and molecular characterization of multidrug resistant Acinetobacter baumannii isolated in central Ohio, USA

    Directory of Open Access Journals (Sweden)

    Tadesse Daniel

    2009-06-01

    Full Text Available Abstract Background Over the last decade, nosocomial infections due to Acinetobacter baumannii have been described with an increasing trend towards multidrug resistance, mostly in intensive care units. The aim of the present study was to determine the clonal relatedness of clinical isolates and to elucidate the genetic basis of imipenem resistance. Methods A. baumannii isolates (n = 83 originated from two hospital settings in central Ohio were used in this study. Pulsed-field gel electrophoresis genotyping and antimicrobial susceptibility testing for clinically relevant antimicrobials were performed. Resistance determinants were characterized by using different phenotypic (accumulation assay for efflux and genotypic (PCR, DNA sequencing, plasmid analysis and electroporation approaches. Results The isolates were predominantly multidrug resistant (>79.5% and comprised of thirteen unique pulsotypes, with genotype VII circulating in both hospitals. The presence of blaOXA-23 in 13% (11/83 and ISAba1 linked blaOXA-66 in 79.5% (66/83 of clinical isolates was associated with high level imipenem resistance. In this set of OXA producing isolates, multidrug resistance was bestowed by blaADC-25, class 1 integron-borne aminoglycoside modifying enzymes, presence of sense mutations in gyrA/parC and involvement of active efflux (with evidence for the presence of adeB efflux gene. Conclusion This study underscores the major role of carbapenem-hydrolyzing class D β-lactamases, and in particular the acquired OXA-23, in the dissemination of imipenem-resistant A. baumannii. The co-occurrence of additional resistance determinant could also be a significant threat.

  16. Emerging nalidixic acid and ciprofloxacin resistance in non-typhoidal Salmonella isolated from patients having acute diarrhoeal disease

    International Nuclear Information System (INIS)

    Panhotra, B.R.; Saxena, A.K.; Al-Arabi, Ali M.

    2004-01-01

    Non-typhoidal Salmonella are one of the key etiological agents of diarrhoeal disease. The appearence of multiple drung resistance along with resistance to quinolones in this bacterium poses a serious therapeutic problem. We determined the prevalence of nalidixic acid and ciprofloxacin resistance in non-typhodial Salmonella isolated from faecal samples of patients with acute diarroheal disease attending the outpatient and inpatient department of a hospital in Saudi Arabia during the years 1999 to 2002. Non-typhodial Salmonella were isolated from faecal samples. Antimicrobial susceptibility was tested by the disc diffusion test. MICs to nalidixic acid and ciprofloxacinwere determined by the agar dilution method. During the study period , 524 strains of non-typhoidal Salmonella were isolated. Strains belonging to serogroup C1were the commonest (41.4%) followed by serogroups B and D (15.6% and 14.5%, respectively). Resistance to ampicillin was observed in 22.9% and to trimethoprim/sulphamethoxazole in 18.5%of the strains. Nalidixic acid resistance was encounterd in 9.9% and ciprofloxacin esistance in 2.3% of the strains. Resistance to nalidixic acid significantly increased from 0.1% in 1999 to 5.51% in 2002 ( p=0.0007)and ciprofloxacin resistance increased significantly from 0.1% in 1999 to 0.9% in 2002( p=0.0001). MICs to nalidixic acid and ciprofloxacin were determined among 29 nalidixic acid-resistant strains of non-typhoidal salmonella isolated during 2002. The MIC was >256 ug /ml to nalidixic acid and 8 to 16 ug/ml to ciprofloxacin. The increasing rate of antimicrobial resistance encountered among non-tyophoidal Salmonella necessiate the judicious use of these drugs in humans. Moreover, these findings support the concern that the use of quinolones in animal feed may lead to an increasein resistance and should should be restricted. (author)

  17. Salmonella Bacteremia Among Children in Central and Northwest Nigeria, 2008–2015

    Science.gov (United States)

    Obaro, Stephen K.; Hassan-Hanga, Fatimah; Olateju, Eyinade K.; Umoru, Dominic; Lawson, Lovett; Olanipekun, Grace; Ibrahim, Sadeeq; Munir, Huda; Ihesiolor, Gabriel; Maduekwe, Augustine; Ohiaeri, Chinatu; Adetola, Anthony; Shetima, Denis; Jibir, Binta W.; Nakaura, Hafsat; Kocmich, Nicholas; Ajose, Therasa; Idiong, David; Masokano, Kabir; Ifabiyi, Adeyemi; Ihebuzor, Nnenna; Chen, Baojiang; Meza, Jane; Akindele, Adebayo; Rezac-Elgohary, Amy; Olaosebikan, Rasaq; Suwaid, Salman; Gambo, Mahmoud; Alter, Roxanne; Davies, Herbert D.; Fey, Paul D.

    2015-01-01

    Background. Etiologic agents of childhood bacteremia remain poorly defined in Nigeria. The absence of such data promotes indiscriminate use of antibiotics and delays implementation of appropriate preventive strategies. Methods. We established diagnostic laboratories for bacteremia surveillance at regional sites in central and northwest Nigeria. Acutely ill children aged <5 years with clinically suspected bacteremia were evaluated at rural and urban clinical facilities in the Federal Capital Territory, central region and in Kano, northwest Nigeria. Blood was cultured using the automated Bactec incubator system. Results. Between September 2008 and April 2015, we screened 10 133 children. Clinically significant bacteremia was detected in 609 of 4051 (15%) in the northwest and 457 of 6082 (7.5%) in the central region. Across both regions, Salmonella species account for 24%–59.8% of bacteremias and are the commonest cause of childhood bacteremia, with a predominance of Salmonella enterica serovar Typhi. The prevalence of resistance to ampicillin, chloramphenicol, and cotrimoxazole was 38.11%, with regional differences in susceptibility to different antibiotics but high prevalence of resistance to readily available oral antibiotics. Conclusions. Salmonella Typhi is the leading cause of childhood bacteremia in central Nigeria. Expanded surveillance is planned to define the dynamics of transmission. The high prevalence of multidrug-resistant strains calls for improvement in environmental sanitation in the long term and vaccination in the short term. PMID:26449948

  18. Draft Genome Sequences of Six Multidrug-Resistant Clinical Strains of Acinetobacter baumannii, Isolated at Two Major Hospitals in Kuwait.

    Science.gov (United States)

    Nasser, Kother; Mustafa, Abu Salim; Khan, Mohd Wasif; Purohit, Prashant; Al-Obaid, Inaam; Dhar, Rita; Al-Fouzan, Wadha

    2018-04-19

    Acinetobacter baumannii is an important opportunistic pathogen in global health care settings. Its dissemination and multidrug resistance pose an issue with treatment and outbreak control. Here, we present draft genome assemblies of six multidrug-resistant clinical strains of A. baumannii isolated from patients admitted to one of two major hospitals in Kuwait. Copyright © 2018 Nasser et al.

  19. Antimicrobial resistance of Salmonella and E. coli from Pennsylvania dairy herds

    Science.gov (United States)

    Antimicrobial resistance in bacterial pathogens is an increasing public health concern. The objective of this study was to examine antimicrobial resistance in Salmonella and E. coli isolates from Pennsylvania dairy herds. Manure composite samples were collected from 76 farms: on each farm one sample...

  20. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    Science.gov (United States)

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  1. Sobrevivência e perfil de resistência a antimicrobianos de Salmonella sp. isoladas em um sistema de tratamento de dejetos de suínos Survival and resistance patterns of Salmonella sp. isolated in a pig slurry treatment plant

    Directory of Open Access Journals (Sweden)

    Verônica Schmidt

    2003-10-01

    Full Text Available No presente estudo, foi avaliada a sobrevivência de Salmonella sp., presente em dejetos suínos, durante tratamento em um sistema de separação física e lagoas de estabilização ligadas em série. Nas amostras de Salmonella sp. isoladas foi determinado o perfil de resistência pelo método de difusão em ágar, usando 14 antimicrobianos. Das 20 coletas realizadas, foi possível isolar Salmonella sp. em 13 coletas no ponto correspondente ao início do sistema de tratamento e em apenas uma no ponto final do mesmo. Amostras de Salmonella sp. isoladas (161/163 pertenciam ao sorotipo Typhimurium e demonstraram resistência contra sulfonamida (100%, tetraciclina (99,4%, estreptomicina (90,1%, sulfa/trimetoprima (84,5%, ácido nalidíxico (77,6%, ampicilina (76,4%, cloranfenicol (29,2%, cefaclor (25,5%, tobramicina (13,7%, gentamicina (6,2%, amoxacilina/ácido clavulânico (5%, neomicina (5% e amicacina (3,7%. A maioria (94,5% das amostras isoladas foram resistente a 4 ou mais antimicrobianos e apresentaram grande variabilidade nos perfis de resistência. O nível de resistência e a variabilidade dos perfis mantiveram-se em nível semelhante ao longo do sistema.The survival of Salmonella sp. in pig slurry submitted to treatment in successive stabilization ponds on a pig-breeding farm was investigated. Furthermore, the isolated Salmonella strains were tested for their resistance against 14 antibiotics, using the agar diffusion method. Of a total of 20 samples taken from different points in the stabilization ponds system, 13 were positive for Salmonella sp. in the beginning and only one at the end of the system. Most of the isolated Salmonella strains (161/163 belonged to sorovar Typhimurium. These strains were resistant to sulfonamide (100%, tetracycline (9.4%, sulfamethoxazole/trimethoprin (84.5%, ampicillin (76.4%, cloramphenicol (29.2%, streptomycin (90.1%, nalidixic acid (77.6%, tobramycin (13.7%, neomycin (5%, amikacin (3.7%, cefaclor (25

  2. Antibiotic resistance in Salmonella Enteritidis isolated from broiler carcasses Resistência antimicrobiana em Salmonella Enteritidis isoladas de carcaças de frango

    Directory of Open Access Journals (Sweden)

    Martha Oliveira Cardoso

    2006-09-01

    Full Text Available Eighty Salmonella Enteritidis strains isolated from broiler carcasses between May 1995 and April 1996 in the State of Rio Grande do Sul, Brazil, were tested for antibiotic susceptibility using the disk diffusion method. Resistance to colistin, novobiocin, erythromycin and tetracycline was observed in 100% of the isolates. The strains showed intermediate resistance at different levels to kanamycin (1.25%, enrofloxacin (3.75%, neomycin (3.75%, fosfomycin (20%, sulphonamides (86.25% and nitrofurantoin (90%. Resistance to ciprofloxacin, norfloxacin, gentamicin, polymyxin B, sulphametrim and sulphazotrim was not found. Since resistance to antibiotics especially those introduced in the last decades, was detected, it is recommended that their use must be based on the results of resistance tests or minimum inhibitory concentration tests.Oitenta amostras de Salmonella Enteritidis isoladas de carcaças de frango no período entre maio de 1995 a abril de 1996 no Estado do Rio Grande do Sul, Brasil foram testados para susceptibilidade antimicrobiana pelo método de antibiograma. O antibiograma das amostras apresentou 100% de resistência a colistina, novobiocina, eritromicina e tetraciclina. Tiveram resistência em diferentes níveis a canamicina (1,25%, enrofloxacina (3,75%, neomicina (3,75%, fosfomicina (20%, sulfonamida (86,25% e nitrofurantoína (90% e por outro lado não apresentaram resistência a ciprofloxacina, norfloxacina, gentamicina, polimixina B, sulfametrim e sulfazotrim. A constatação de resistência a antibióticos, inclusive àqueles introduzidos na última década, enfatiza a necessidade de uso responsável de antibióticos, e com base em antibiograma ou concentração inibitória mínima.

  3. Genome-wide re-sequencing of multidrug-resistant Mycobacterium leprae Airaku-3.

    Science.gov (United States)

    Singh, P; Benjak, A; Carat, S; Kai, M; Busso, P; Avanzi, C; Paniz-Mondolfi, A; Peter, C; Harshman, K; Rougemont, J; Matsuoka, M; Cole, S T

    2014-10-01

    Genotyping and molecular characterization of drug resistance mechanisms in Mycobacterium leprae enables disease transmission and drug resistance trends to be monitored. In the present study, we performed genome-wide analysis of Airaku-3, a multidrug-resistant strain with an unknown mechanism of resistance to rifampicin. We identified 12 unique non-synonymous single-nucleotide polymorphisms (SNPs) including two in the transporter-encoding ctpC and ctpI genes. In addition, two SNPs were found that improve the resolution of SNP-based genotyping, particularly for Venezuelan and South East Asian strains of M. leprae. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  4. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice

    Directory of Open Access Journals (Sweden)

    Vinodkumar C

    2008-07-01

    Full Text Available Drug resistance is the major cause of increase in morbidity and mortality in neonates. One thousand six hundred forty-seven suspected septicemic neonates were subjected for microbiological analysis over a period of 5 years. Forty-two P. aeruginosa were isolated and the antibiogram revealed that 28 P. aeruginosa were resistant to almost all the common drugs used (multidrug-resistant. The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. As a result, a novel and most effective approaches for treating infection caused by multidrug-resistant bacteria are urgently required. In this context, one intriguing approach is to use bacteriophages (viruses that kill bacteria in the treatment of infection caused by drug-resistant bacteria. In the present study, the utility of lytic bacteriophages to rescue septicemic mice with multidrug-resistant (MDR P. aeruginosa infection was evaluated. MDR P. aeruginosa was used to induce septicemia in mice by intraperitoneal (i.p. injection of 10 7 CFU. The resulting bacteremia was fatal within 48 hrs. The phage strain used in this study had lytic activity against a wide range of clinical isolates of MDR P. aeruginosa. A single i.p. injection of 3 x 10 9 PFU of the phage strain, administered 45 min after the bacterial challenge, was sufficient to rescue 100% of the animals. Even when treatment was delayed to the point where all animals were moribund, approximately 50% of them were rescued by a single injection of this phage preparation. The ability of this phage to rescue septicemic mice was demonstrated to be due to the functional capabilities of the phage and not to a nonspecific immune effect. The rescue of septicemic mice could be affected only by phage strains able to grow in vitro on the bacterial host used to infect the animals and when such strains are heat-inactivated, they lose their ability to rescue the infected mice. Multidrug-resistant bacteria have

  5. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  6. STUDY ON THE ANTIBIOTIC-RESISTANCE IN STRAINS OF SALMONELLA ISOLATES IN FOOD FROM 2003 TO 2010

    Directory of Open Access Journals (Sweden)

    F. Capuano

    2012-08-01

    Full Text Available A survey on the antibiotics resistance on salmonella strains of food origin was carried out. Four hundred thirty five different strains of Salmonella detected during eight years since 2003 were tested with the protocols of the National Committee for Clinical Laboratory Standard (NCCLS. One hundred twenty Salmonella strains were of cow origin, 166 from swine, 92 from poultry and the remaining 57 from shellfish. Starting from 2007 a reduction in the resistance was evident on the total isolates.

  7. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. Copyright © 2015. Published by Elsevier Ltd.

  8. Prevalence and antibiotic resistance of Salmonella spp. in meat products, meat preparations and minced meat

    Science.gov (United States)

    Rašeta, M.; Mrdović, B.; Janković, V.; Bečkei, Z.; Lakićević, B.; Vidanović, D.; Polaček, V.

    2017-09-01

    This study aimed to determine Salmonella spp. prevalence in meat products, meat preparations and minced meat. Over a period of three years, a total of 300 samples were taken (100 RTE meat products, 100 meat preparations and 100 minced meat) and examined for the presence of Salmonella spp. Sampling was carried out at the warehouses of the food manufacturers. Salmonella spp. were not detected in RTE meat products, while 7% of semi-finished meat products (fresh sausages, grill meat formed and unformed) contained Salmonella, as did 18% of minced meats (minced pork II category, minced beef II category, mixed minced meat). The 25 Salmonella isolates obtained were examined for antibiotic resistance by the disk diffusion test, according to the NCCLS and CLSI guidelines. Isolates showed resistance to ampicillin and nalidixic acid (80%), tetracycline (72%), cefotaxime/clavulanic acid (48%), but not to gentamicin (8%) or trimethoprim/sulfamethoxazole (0%).

  9. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010

    Directory of Open Access Journals (Sweden)

    Velca Botti

    2013-06-01

    Full Text Available Salmonella is an important zoonotic pathogen of economic importance. In Europe, salmonellosis is the second food-borne infection, in Italy, Salmonella is still the major cause of food-borne outbreaks. In Europe, there are many Salmonella surveillance plans on farmed animals, while Salmonella survey of wild animals is occasionally performed. The aim of this study was to investigate the presence of Salmonella including the antibiotic-resistant strains in wild animals. Between 2002 and 2010, 2,713 wild animals (canids, mustelids, birds, rodents, ungulates, were collected in north-western Italy and tested for Salmonella by classical microbiological culture method followed by serological and biochemical typing. One hundred and seventeen wild animals (63 canids, 25 mustelids, 24 birds, 5 ungulates were found positive for Salmonella (4.3%. One hundred and thirty strains, belonging to several serotypes were isolated, and S. Typhimurium was the most common serotype found. Antibiotic susceptibility was tested by disk-diffusion test on 88 strains. Almost all the analyzed strains (97.7% showed resistance/intermediate resistance to at least one class of antibiotics and the highest resistance values were observed for the tetracycline class. In conclusion, zoonotic and antibiotic-resistant serotypes were found in many species of wildlife.

  10. Antibiotic Resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil

    Directory of Open Access Journals (Sweden)

    Fátima C. T. Carvalho

    2013-01-01

    Full Text Available This study investigated the presence and antibiotic resistance of Salmonella spp. in a shrimp farming environment in Northeast Region of Brazil. Samples of water and sediments from two farms rearing freshwater-acclimated Litopenaeus vannamei were examined for the presence of Salmonella. Afterwards, Salmonella isolates were serotyped, the antimicrobial resistance was determined by a disk diffusion method, and the plasmid curing was performed for resistant isolates. A total of 30 (16.12% of the 186 isolates were confirmed to be Salmonella spp., belonging to five serovars: S. serovar Saintpaul, S. serovar Infantis, S. serovar Panama, S. serovar Madelia, and S. serovar Braenderup, along with 2 subspecies: S. enterica serovar houtenae and S. enterica serovar enterica. About twenty-three percent of the isolates were resistant to at least one antibiotic, and twenty percent were resistant to at least two antibiotics. Three strains isolated from water samples (pond and inlet canal exhibited multiresistance to ampicillin, tetracycline, oxytetracycline, and nitrofurantoin. One of them had a plasmid with genes conferring resistance to nitrofurantoin and ampicillin. The incidence of bacteria pathogenic to humans in a shrimp farming environment, as well as their drug-resistance pattern revealed in this study, emphasizes the need for a more rigorous attention to this area.

  11. Intestinal carriage of multidrug-resistant bacteria among healthcare professionals in Germany

    Directory of Open Access Journals (Sweden)

    Jozsa, Katalin

    2017-11-01

    Full Text Available Healthcare professionals (HCP might be at increased risk of acquisition of multidrug-resistant bacteria (MDRB, i.e., methillicin-resistant (MRSA, vancomycin-resistant enterococci (VRE, and multidrug-resistant gram-negative bacteria (MDRGN and could be an unidentified source of MDRB transmission.The aim of this study was to determine the prevalence as well as risk factors of MDRB colonization among HCP.HCP (n=107 taking part in an antibiotic stewardship program, were voluntarily recruited to perform a rectal swab and to fill in a questionnaire to identify risk factors of MDRB carriage, i.e. being physician, gender, travel abroad within the previous 12 months, vegetarianism, regular consumption of raw meat, contact to domestic animals, household members with contact to livestock, work or fellowship abroad, as well as medical treatment abroad and antibiotic therapy within the previous 12 months. Selective solid media were used to determine the colonization rate with MRSA, VRE and MDRGN. MDRGN were further characterized by molecular analysis of underlying β-lactamases. None of the participants had an intestinal colonization with MRSA or VRE. 3.7% of the participants were colonized with extended-spectrum beta-lactamase (ESBL-producing , predominantly type. Neither additional flouroquinolone resistance nor carbapenem resistance was detected in any of these isolates. No risk factors were identified to have a significant impact of MDRB carriage among HCP.A colonization rate of 3.7% with ESBL-producing is of interest, but comparing it to previously published data with similar colonization rates in the healthy population in the same geographic area, it is probably less an occupational risk.

  12. Complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from Klebsiella pneumoniae isolated in 1969.

    Science.gov (United States)

    Doublet, Benoît; Boyd, David; Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Mulvey, Michael R

    2012-10-01

    To determine the complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from a clinical Klebsiella pneumoniae strain that was isolated from a urinary tract infection in 1969 in a French hospital and compare it with those of contemporary emerging IncA/C plasmids. The plasmid was purified and sequenced using a 454 sequencing approach. After draft assembly, additional PCRs and walking reads were performed for gap closure. Sequence comparisons and multiple alignments with other IncA/C plasmids were done using the BLAST algorithm and CLUSTAL W, respectively. Plasmid pR55 (170 810 bp) revealed a shared plasmid backbone (>99% nucleotide identity) with current members of the IncA/C(2) multidrug resistance plasmid family that are widely disseminating antibiotic resistance genes. Nevertheless, two specific multidrug resistance gene arrays probably acquired from other genetic elements were identified inserted at conserved hotspot insertion sites in the IncA/C backbone. A novel transposon named Tn6187 showed an atypical mixed transposon configuration composed of two mercury resistance operons and two transposition modules that are related to Tn21 and Tn1696, respectively, and an In0-type integron. IncA/C(2) multidrug resistance plasmids have a broad host range and have been implicated in the dissemination of antibiotic resistance among Enterobacteriaceae from humans and animals. This typical IncA/C(2) genetic scaffold appears to carry various multidrug resistance gene arrays and is now also a successful vehicle for spreading AmpC-like cephalosporinase and metallo-β-lactamase genes, such as bla(CMY) and bla(NDM), respectively.

  13. Infective endocarditis caused by multidrug-resistant Streptococcus mitis in a combined immunocompromised patient: an autopsy case report.

    Science.gov (United States)

    Matsui, Natsuko; Ito, Makoto; Kuramae, Hitoshi; Inukai, Tomomi; Sakai, Akiyoshi; Okugawa, Masaru

    2013-04-01

    An autopsy case of infective endocarditis caused by multidrug-resistant Streptococcus mitis was described in a patient with a combination of factors that compromised immune status, including autoimmune hemolytic anemia, post-splenectomy state, prolonged steroid treatment, and IgA deficiency. The isolated S. mitis strain from blood culture was broadly resistant to penicillin, cephalosporins, carbapenem, macrolides, and fluoroquinolone. Recurrent episodes of bacterial infections and therapeutic use of several antibiotics may underlie the development of multidrug resistance for S. mitis. Because clinically isolated S. mitis strains from chronically immunocompromised patients have become resistant to a wide spectrum of antibiotics, appropriate antibiotic regimens should be selected when treating invasive S. mitis infections in these compromised patients.

  14. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  15. Epidemiology, clinical presentation, and patterns of drug resistance of Salmonella Typhi in Karachi, Pakistan.

    Science.gov (United States)

    Khan, M Imran; Soofi, Sajid Bashir; Ochiai, R Leon; Khan, Mohammad Jawed; Sahito, Shah Muhammad; Habib, Mohammad Atif; Puri, Mahesh K; Von Seidlein, Lorenz; Park, Jin Kyung; You, Young Ae; Ali, Mohammad; Nizami, S Qamarudding; Acosta, Camilo J; Sack, R Bradley; Clemens, John D; Bhutta, Zulfiqar A

    2012-10-19

    Enteric fever remains a major public health problem in Asia. Planning appropriate preventive measures such as immunization requires a clear understanding of disease burden. We conducted a community-based surveillance for Salmonella Typhi infection in children in Karachi, Pakistan. A de jure household census was conducted at baseline in the study setting to enumerate all individuals. A health-care facility-based passive surveillance system was used to capture episodes of fever lasting three or more 3 days in children 2 to 16 years old. A total of 7,401 blood samples were collected for microbiological confirmation, out of which 189 S. Typhi and 32 S. Paratyphi A isolates were identified with estimated annual incidences of 451/100,000 (95% CI: 446 - 457) and 76/100,000 (95% CI: 74 - 78) respectively. At the time of presentation, after adjusting for age, there was an association between the duration of fever and temperature at presentation, and being infected with multidrug-resistant S. Typhi. Of 189 isolates 83 were found to be resistant to first-line antimicrobial therapy. There was no statistically significant difference in clinical presentation of blood culture sensitive and resistant S. Typhi isolates. Incidence of S. Typhi in children is high in urban squatter settlements of Karachi, Pakistan. Findings from this study identified duration of fever and temperature at the time of presentation as important symptoms associated with blood culture-confirmed typhoid fever. Preventive strategies such as immunization and improvements in water and sanitation conditions should be the focus of typhoid control in urban settlements of Pakistan.

  16. The effects of different enrofloxacin dosages on clinical efficacy and resistance development in chickens experimentally infected with Salmonella Typhimurium.

    Science.gov (United States)

    Li, Jun; Hao, Haihong; Cheng, Guyue; Wang, Xu; Ahmed, Saeed; Shabbir, Muhammad Abu Bakr; Liu, Zhenli; Dai, Menghong; Yuan, Zonghui

    2017-09-15

    To investigate the optimal dosage which can improve clinical efficacy and minimize resistance, pharmacokinetics/pharmacodynamics model of enrofloxacin was established. Effect of enrofloxacin treatments on clearance of Salmonella in experimentally infected chickens and simultaneously resistance selection in Salmonella and coliforms were evaluated in three treatment groups (100, PK/PD designed dosage of 4, 0.1 mg/kg b.w.) and a control group. Treatment duration was three rounds of 7-day treatment alternated with 7-day withdrawal. Results showed that 100 mg/kg b.w. of enrofloxacin completely eradicated Salmonella, but resistant coliforms (4.0-60.8%) were selected from the end of the second round's withdrawal period till the end of the experiment (days 28-42). PK/PD based dosage (4 mg/kg b.w.) effectively reduced Salmonella for the first treatment duration. However upon cessation of medication, Salmonella repopulated chickens and persisted till the end with reduced susceptibility (MIC CIP  = 0.03-0.25 mg/L). Low frequency (5-9.5%) of resistant coliforms was selected (days 39-42). Enrofloxacin at dosage of 0.1 mg/kg b.w. was not able to eliminate Salmonella and selected coliforms with slight decreased susceptibility (MIC ENR  = 0.25 mg/L). In conclusion, short time treatment (7 days) of enrofloxacin at high dosage (100 mg/kg b.w.) could be effective in treating Salmonella infection while minimizing resistance selection in both Salmonella and coliforms.

  17. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  18. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  19. Decrease in the prevalence of extended-spectrum cephalosporin-resistant Salmonella following cessation of ceftiofur use by the Japanese poultry industry.

    Science.gov (United States)

    Shigemura, Hiroaki; Matsui, Mari; Sekizuka, Tsuyoshi; Onozuka, Daisuke; Noda, Tamie; Yamashita, Akifumi; Kuroda, Makoto; Suzuki, Satowa; Kimura, Hirokazu; Fujimoto, Shuji; Oishi, Kazunori; Sera, Nobuyuki; Inoshima, Yasuo; Murakami, Koichi

    2018-06-02

    Extended-spectrum cephalosporin (ESC)-resistant Salmonella in chicken meat is a significant food safety concern. We previously reported that the prevalence of ESC-resistant Salmonella in chicken meat, giblets, and processed chicken (chicken meat products) increased in Japan between 2005 and 2010, with 27.9% (17/61) of Salmonella isolated from chicken meat products in 2010 showing resistance to ESC. The aims of the present study were to clarify trends in the prevalence of ESC-resistant Salmonella in chicken meat products in Japan between 2011 and 2015, and to determine the genetic profiles of bla-harboring plasmids, including replicon types, using next-generation sequencing. Our results showed that the prevalence of ESC-resistant Salmonella, mainly consisting of AmpC β-lactamase CMY-2-producing isolates, in chicken meat products had increased to 45.5% (10/22) by 2011. However, following the voluntary cessation of ceftiofur use by the Japanese poultry industry in 2012, the prevalence of ESC-resistant Salmonella steadily decreased each year, to 29.2% (7/24), 18.2% (4/22), 10.5% (2/19), and 10.5% (2/19) in 2012, 2013, 2014, and 2015, respectively. Furthermore, no AmpC β-lactamase CMY-2-producing isolates were identified in 2014 and 2015. However, the prevalence of Salmonella enterica subspecies enterica serovar Manhattan isolates harboring a bla TEM-52 -carrying IncX1 plasmid remained steady even after the cessation of ceftiofur use. Therefore, continuous monitoring of ESC resistance amongst Salmonella isolates from chicken meat products is required for food safety. Copyright © 2018. Published by Elsevier B.V.

  20. Quinolone Resistance among Salmonella enterica from Cattle, Broilers and Swine in Denmark

    DEFF Research Database (Denmark)

    Wiuff, C.; Baggesen, Dorte Lau; Madsen, M.

    2000-01-01

    This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... that quinolone-resistant isolates have emerged in recent years among food-producing animals, especially among S. Enteritidis from broilers in Denmark, and that the resistance mainly is associated with mutations in gyrA.......This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... to quinolones. A single (1.1%) S. Typhimurium isolate from 1995 and three (5.9%) from 1998 were resistant to nalidixic acid. Six (9.0%) S. Dublin isolates from 1996, four (4.2%) from 1997, and one (1.7%) from 1998 were resistant to nalidixic acid. Resistance was not observed among isolates from cattle in 1999...

  1. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant

    OpenAIRE

    Martins , A.; Spengler , G.; Martins , M.; Rodrigues , L.; Viveiros , M.; Davin-Regli , A.; Chevalier , J.; Couto , I.; Pagès , J.M.; Amaral , L.

    2010-01-01

    Abstract Enterobacter aerogenes predominates among Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum ?-lactamases. Although this mechanism of resistance to ?-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Among these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestin...

  2. The demise of multidrug-resistant HIV-1: the national time trend in Portugal.

    Science.gov (United States)

    Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Aguas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge

    2013-04-01

    Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7-8.4) in 2001-03, 6.0% (95% CI: 4.9-7.2) in 2003-05, 3.7% (95% CI: 2.8-4.8) in 2005-07 and 1.6% (95% CI: 1.1-2.2) in 2007-09 down to 0.6% (95% CI: 0.3-0.9) in 2009-12 [OR=0.80 (95% CI: 0.75-0.86); P<0.001]. In July 2011 the last new case of MDR was seen. The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains.

  3. Role of Risk Factors in the Incidence of Multidrug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Alya Putri Khairani

    2017-09-01

    Full Text Available Objective: To determine the risk factors that played roles in the incidence of multidrug-resistant tuberculosis (MDR-TB in such patients. Multidrug-Resistant Tuberculosis is a form of tuberculosis caused by Mycobacterium tuberculosis that is resistant to at least isoniazid and rifampicin. Methods: This was a case control study to compare MDR-TB to non-MDR-TB pulmonary tuberculosis outpatients in Dr. Hasan Sadikin General Hospital, Bandung on August–September 2014. Fifty MDR-TB outpatients were included as the cases and 50 non-MDR-TB outpatients as controls. Data was collected by questionnaires and patient’s registration forms. Bivariate and multivariate analyses were performed using chi-square test and multiple logistic regression test, with p<0.05 considered significant. Results: From bivariate analysis, number of previous tuberculosis treatments, regularity of previous treatment, and burden of cost were significant risk factors for developing MDR-TB (p<0.05; while from multivariate analysis, number of previous TB treatments was the only risk factor that played a significant role in the incidence of MDR-TB (OR 24.128 95% CI 6.771-85,976. Conclusions: Patients and medication factors are risk factors that play roles in the incidence of MDR-TB. The significant risk factor is the number of previous TB treatment.

  4. Membrane vesicles from multidrug-resistant human carcinoma cells contain a specific 150,000-170,000 dalton protein detected by photoaffinity labeling

    International Nuclear Information System (INIS)

    Cornwell, M.M.; Safa, A.R.; Felsted, R.L.; Gottesman, M.M.; Pastan, I.

    1986-01-01

    The authors have selected multidrug-resistant human KB carcinoma cells in high levels of colchicine (KB-C4) or vinblastine (KB-V1) which are cross-resistant to many other structurally unrelated chemotheraputic agents. To determine the mechanism of reduced drug accumulation, they measured 3 H-vinblastine ( 3 H-VBL) association with membrane vesicles made from parental drug sensitive, drug-resistant and revertant cells. Membrane vesicles from highly multidrug resistant cells exhibited increased specific and saturable binding of vinblastine, (Kd = 1 μM) that was temperature dependent and trypsin sensitive. To identify the molecules which bind vinblastine, membrane vesicles were exposed to two photo-activatable analogs of vinblastine, (N-P-(azido-3,5,-[ 3 H]-benzoyl)-N'-β-aminoethylvindisine ( 3 H-NAB) and N-P-(azido-3-[ 125 I]-solicyl)-N'-β-aminoethylvindesine ( 125 I-NASV). The specific labeling of a 150,000-170,000 dalton protein in membrane vesicles from multidrug-resistant KB-C4 and KB-V1 cells was found. 125 I-NASV labeling was inhibited by vinblastine, vincrinstine and verapamil but not by colchicine or dexamethasone. The 150,000-170,000 dalton protein may have an important role in the multidrug resistance phenotype

  5. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    Science.gov (United States)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  6. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle Jr.

    2015-07-01

    Conclusions: P. betle had the greatest potential value against both Gram-negative and Gram-positive multidrug-resistant bacteria. Favorable antagonistic activities were also exhibited by the ethanol extracts of Psidium guajava, Phyllanthus niruri and Ehretia microphylla.

  7. Antibiotic resistance determinants and genetic analysis of Salmonella enterica isolated from food in Morocco.

    Science.gov (United States)

    Murgia, Manuela; Bouchrif, Brahim; Timinouni, Mohammed; Al-Qahtani, Ahmed; Al-Ahdal, Mohammed N; Cappuccinelli, Pietro; Rubino, Salvatore; Paglietti, Bianca

    2015-12-23

    Antimicrobial-resistant non-typhoidal Salmonella (NTS) are an important cause of infection in Africa, but there is a lack of information on their molecular mechanisms of resistance and epidemiology. This study contributes to fill this gap through the characterization by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), plasmid profiling and analysis of antibiotic-resistance determinants of 94 Salmonella enterica strains isolated from food in Morocco. PFGE revealed considerable heterogeneity among the strains, showing 32 pulsotypes. MLST of strains representative of the different serovars evidenced 13 sequence types (STs), three of which were newly identified (ST1694, ST1768 and ST1818) and nine not previously reported in Morocco. Thirty-four strains harbored from one to four plasmids, of IncI1 group in S. Mbandaka, IncFIIA in S. Typhimurium, IncL/M in S. Hadar and S. Blockley. For the first time in Morocco an intact Salmonella Genomic Island 1 (SGI1) carrying the resistance genes aadA2, floR, tetG, blaPSE-1 and sul1 was detected in S. Typhimurium DT104. In serovar Hadar resistance to ampicillin, tetracycline and streptomycin was associated to blaTEM-1, tetA and strA genes respectively, whereas one mutation in gyrA (Asp87Asn) and one in parC (Thr54Ser) genes conferred resistance to nalidixic acid. These findings improve the information on foodborne Salmonella in Morocco, evidencing the presence of MDR strains potentially dangerous to humans, and provide useful data for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Spread of multidrug-resistant Escherichia coli harboring integron via swine farm waste water treatment plant.

    Science.gov (United States)

    Park, Jin-Hyeong; Kim, Young-Ji; Binn-Kim; Seo, Kun-Ho

    2018-03-01

    Wastewater treatment plants (WWTPs) that release treated wastewater into the environment have emerged as a major threat to public health. In this study, we investigated Escherichia coli load and antibiotic-resistance profiles across different treatment processes at a swine farm WWTP. The frequency of the detection of class 1 and 2 integrons, and their association with antibiotic resistance, were also analyzed. Samples were obtained at each of five sampling sites that represented each processing step within the WWTP. The largest decrease in E. coli load was observed during the anaerobic digestion step (from 4.86 to 2.89log CFU/mL). Isolates resistant to β-lactam antibiotics were efficiently removed after a series of treatment steps, whereas the proportions of isolates resistant to non-β-lactam antibiotics and multidrug-resistant strains were maintained across treatments. The occurrence of integron-positive strains was not significantly different at the various sampling sites (43.4-70%; p>0.05). Of the class 1 integron-positive isolates, 17.9% harbored the integron-associated gene cassettes aadA2, aadA12, aadA22, and dfrA15. To the best of our knowledge, this is the first description of a class 1 integron containing the aadA12 gene cassette from a swine farm and the presence of a class 1 integron containing dfrA15 in E. coli. This suggests that novel antibiotic-resistance gene cassette arrays could be generated in swine farm WWTPs. Moreover, 75% of integron-positive strains were categorized as multidrug resistant, whereas only 15.4% of integron-negative strains were multidrug resistant (pswine farm WWTPs in terms of the spread of antibiotic-resistant bacteria to the aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Photodynamic therapy of cancer — Challenges of multidrug resistance

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-01-01

    Full Text Available Photodynamic therapy (PDT of cancer is a two-step drug-device combination modality, which involves the topical or systemic administration of a photosensitizer followed by light illumination of cancer site. In the presence of oxygen molecules, the light illumination of photosensitizer (PS can lead to the generation of cytotoxic reactive oxygen species (ROS and consequently destroy cancer. Similar to many other anticancer therapies, PDT is also subject to intrinsic cancer resistance mediated by multidrug resistance (MDR mechanisms. This paper will review the recent progress in understanding the interaction between MDR transporters and PS uptake. The strategies that can be used in a clinical setting to overcome or bypass MDR will also be discussed.

  10. Conspicuous multidrug-resistant Mycobacterium tuberculosis cluster strains do not trespass country borders in Latin America and Spain.

    Science.gov (United States)

    Ritacco, Viviana; Iglesias, María-José; Ferrazoli, Lucilaine; Monteserin, Johana; Dalla Costa, Elis R; Cebollada, Alberto; Morcillo, Nora; Robledo, Jaime; de Waard, Jacobus H; Araya, Pamela; Aristimuño, Liselotte; Díaz, Raúl; Gavin, Patricia; Imperiale, Belen; Simonsen, Vera; Zapata, Elsa M; Jiménez, María S; Rossetti, Maria L; Martin, Carlos; Barrera, Lucía; Samper, Sofia

    2012-06-01

    Multidrug-resistant Mycobacterium tuberculosis strain diversity in Ibero-America was examined by comparing extant genotype collections in national or state tuberculosis networks. To this end, genotypes from over 1000 patients with multidrug-resistant tuberculosis diagnosed from 2004 through 2008 in Argentina, Brazil, Chile, Colombia, Venezuela and Spain were compared in a database constructed ad hoc. Most of the 116 clusters identified by IS6110 restriction fragment length polymorphism were small and restricted to individual countries. The three largest clusters, of 116, 49 and 25 patients, were found in Argentina and corresponded to previously documented locally-epidemic strains. Only 13 small clusters involved more than one country, altogether accounting for 41 patients, of whom 13 were, in turn, immigrants from Latin American countries different from those participating in the study (Peru, Ecuador and Bolivia). Most of these international clusters belonged either to the emerging RD(Rio) LAM lineage or to the Haarlem family of M. tuberculosis and four were further split by country when analyzed with spoligotyping and rifampin resistance-conferring mutations, suggesting that they did not represent ongoing transnational transmission events. The Beijing genotype accounted for 1.3% and 10.2% of patients with multidrug-resistant tuberculosis in Latin America and Spain, respectively, including one international cluster of two cases. In brief, Euro-American genotypes were widely predominant among multidrug-resistant M. tuberculosis strains in Ibero-America, reflecting closely their predominance in the general M. tuberculosis population in the region, and no evidence was found of acknowledged outbreak strains trespassing country borders. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Surveillance of multidrug resistant suppurative infection causing bacteria in hospitalized patients in an Indian tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Nabakishore Nayak

    2014-01-01

    Conclusions: Of these S. aureus, particularly the methicillin resistant strain predominates, followed by strains of S. pyogenes and P. aeruginosa that were in the higher proportions of multidrug resistance.

  12. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review

    Directory of Open Access Journals (Sweden)

    Turki M. Dawoud

    2017-06-01

    Full Text Available In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.

  13. Impact of Clinical Salmonellosis in Veal Calves on the Recovery of Salmonella in Lymph Nodes at Harvest.

    Science.gov (United States)

    Muñoz-Vargas, Lohendy; Finney, Sarah K; Hutchinson, Holden; Masterson, Margaret A; Habing, Greg

    2017-11-01

    The objective of this study was to determine the prevalence, serotypes, antimicrobial resistance phenotypes, and pulsed-field gel electrophoresis (PFGE) patterns of Salmonella recovered in feces and mesenteric and prefemoral lymph nodes (LNs) from cohorts of calves with and without a confirmed outbreak of salmonellosis. In a prospective cohort study, 160 calves from four farms without a reported outbreak (nonoutbreak farms) were sampled at farm and harvest. In addition, harvest samples from 80 calves of two farms with a confirmed outbreak (outbreak farms) were collected. A culture protocol for Salmonella isolation was applied for all samples and recovered isolates were further characterized by serotyping, antimicrobial susceptibility testing, and PFGE. Among nonoutbreak farms, Salmonella was recovered from 0% (0/160) farm fecal samples, 3.7% (6/160) harvest fecal swabs, 21.9% (35/160) mesenteric LNs, and 0.6% (1/160) prefemoral LNs. Serotypes identified in nonoutbreak herds included Salmonella Typhimurium, Cerro, Hartford, and Newport. Most isolates (64.3%, 27/42) exhibited a unique multidrug-resistant (MDR) phenotype, including resistance to extended-spectrum cephalosporins. Salmonella prevalence in harvest fecal samples and prefemoral LNs among calves from outbreak farms was numerically higher, but not significantly different than those without an outbreak. Serotypes recovered from outbreak farms included Salmonella Heidelberg and Typhimurium, and the monophasic Salmonella Typhimurium strains 4,5,12:i:- and 4,12:i:-, which have been also reported as highly pathogenic in humans. All isolates (33/33) exhibited an MDR phenotype. Salmonella strains recovered from ill calves in two outbreaks had indistinguishable PFGE patterns, suggesting between-farm transmission. In addition, the genotype of Salmonella Heidelberg causing an outbreak among calves was recovered from three prefemoral LNs of surviving members of the cohort at harvest. Implementation of preharvest

  14. Changing trends in antimicrobial resistance of Salmonella enterica serovar typhi and salmonella enterica serovar paratyphi A in Chennai

    Directory of Open Access Journals (Sweden)

    Krishnan Padma

    2009-10-01

    Full Text Available Background and Objectives: Chloramphenicol was considered the anti-microbial gold standard for typhoid treatment but, following the increasing worldwide frequency of antibiotic resistance, ciprofloxacin has been the mainstay of therapy since 1980. Recent studies have shown a shifting of susceptibility to conventional drugs like chloramphenicol, ampicillin and cotrimoxazole. The primary objective of the study was to evaluate the in vitro activity of chloramphenicol and other first-line drugs in comparison with cephalosporins and quinolones. Materials and Methods: Fifty isolates of Salmonella obtained from blood culture were subjected to serotyping at the Central Research Institute, Kasauli. Phage typing and biotyping was performed at the National Phage Typing Centre, New Delhi. Antibiotic sensitivity testing was carried out for 10 drugs by the Kirby-Bauer disc diffusion method and minimum inhibitory concentration by broth microdilution for nalidixic acid, chloramphenicol, ciprofloxacin, ceftriaxone, cefixime and ofloxacin. Multi-drug-resistant (MDR strains were checked for plasmid. Results: In the present study, 70 and 30% of the isolates were Salmonella enterica serovar typhi and paratyphi A, respectively. They were highly sensitive to chloramphenicol (86%, ampicillin (84% and cotrimoxazole (88%. Highest sensitivity was seen for cephalosporins, followed by quinolones. Seventeen/21 (81% and 100% of the Salmonella enterica serovar typhi strains belonged to E1 phage type and biotype 1, respectively. Antibiogram showed 2% of the strains to be sensitive to all the drugs tested and 12% were MDR and showed the presence of plasmids. Conclusion: The study indicates reemergence of chloramphenicol-susceptible Salmonella enterica serovar typhi and paratyphi A isolates, a significant decline in MDR strains and high resistance to nalidixic acid. E1 phage type and biotype 1 are found to be most prevalent in Chennai, India.

  15. Characterization of an IncA/C Multidrug Resistance Plasmid in Vibrio alginolyticus.

    Science.gov (United States)

    Ye, Lianwei; Li, Ruichao; Lin, Dachuan; Zhou, Yuanjie; Fu, Aisi; Ding, Qiong; Chan, Edward Wai Chi; Yao, Wen; Chen, Sheng

    2016-05-01

    Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with β-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis.

    Science.gov (United States)

    Tutuncu, E Ediz; Kuscu, Ferit; Gurbuz, Yunus; Ozturk, Baris; Haykir, Asli; Sencan, Irfan

    2010-09-01

    The treatment of post-surgical meningitis due to multidrug-resistant (MDR) Acinetobacter baumannii is a therapeutic dilemma. The cases of two patients with MDR A. baumannii meningitis secondary to surgical site infections, successfully treated with combination regimens including tigecycline, are presented. Copyright © 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter.

    OpenAIRE

    Neyfakh, A A; Borsch, C M; Kaatz, G W

    1993-01-01

    The gene of the Staphylococcus aureus fluoroquinolone efflux transporter protein NorA confers resistance to a number of structurally dissimilar drugs, not just to fluoroquinolones, when it is expressed in Bacillus subtilis. NorA provides B. subtilis with resistance to the same drugs and to a similar extent as the B. subtilis multidrug transporter protein Bmr does. NorA and Bmr share 44% sequence similarity. Both the NorA- and Bmr-conferred resistances can be completely reversed by reserpine.

  18. Serovariedades de Salmonella enterica subespecie enterica en porcinos de faena y su resistencia a los antimicrobianos Serovars of Salmonella enterica subspecies enterica and its antimicrobial resistance in slaughterhouse pigs

    Directory of Open Access Journals (Sweden)

    M. P. Ibar

    2009-09-01

    possible reservoir of resistance. From a total of 386 samples from four porcine slaughterhouses of Buenos Aires and Santa Fe Provinces (Argentina, 93 (24,1% Salmonella enterica subspecies enterica strains were identified, 52 (55,9% from cecal contents and 41 (44,1% from ileocecal lymph nodes. Thirteen serovars of S. enterica were found, the most prevalent were: S. Schwarzengrund, S. Heidelberg, S. subspecie I 6,8:e,h:-, S. Derby and S. Bredeney. Fifteen antimicrobials by the agar dilution method were tested: amikacin, gentamicin, ciprofloxacin, cephalotin, cefotaxime, enrofloxacin, fosfomycin, polimixin-B, tetracycline, chloramphenicol, streptomycin, trimethoprim-sulfamethoxazole, ampicillin, nitrofurantoin, and nalidixic acid. According to the CIM determination, 73% Salmonella enterica subspecies enterica strains were sensible to all the antimicrobials tested. Antimicrobial resistance was observed to tetracycline in 24 (25,8% of 93 strains, to chloramphenicol in 22 (23,7%, to streptomycin in 22 (23,7%, to trimethoprim-sulfamethoxazole in 20 (21,5%, to ampicillin in 18 (19,4%, to nitrofurantoin in 3 (3,2% and to nalidixic acid in 3 (3,2%. Some isolates of S. Typhimurium, S. Heidelberg, S. Derby, S. Orion showed multidrug resistance and carried the class 1 integrase gene. The highest percentage of resistance corresponded to the antimicrobials currently used in veterinary and porcine farms.

  19. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    Science.gov (United States)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  20. Previous treatment, sputum-smear nonconversion, and suburban living: The risk factors of multidrug-resistant tuberculosis among Malaysians.

    Science.gov (United States)

    Mohd Shariff, Noorsuzana; Shah, Shamsul Azhar; Kamaludin, Fadzilah

    2016-03-01

    The number of multidrug-resistant tuberculosis patients is increasing each year in many countries all around the globe. Malaysia has no exception in facing this burdensome health problem. We aimed to investigate the factors that contribute to the occurrence of multidrug-resistant tuberculosis among Malaysian tuberculosis patients. An unmatched case-control study was conducted among tuberculosis patients who received antituberculosis treatments from April 2013 until April 2014. Cases are those diagnosed as pulmonary tuberculosis patients clinically, radiologically, and/or bacteriologically, and who were confirmed to be resistant to both isoniazid and rifampicin through drug-sensitivity testing. On the other hand, pulmonary tuberculosis patients who were sensitive to all first-line antituberculosis drugs and were treated during the same time period served as controls. A total of 150 tuberculosis patients were studied, of which the susceptible cases were 120. Factors found to be significantly associated with the occurrence of multidrug-resistant tuberculosis are being Indian or Chinese (odds ratio 3.17, 95% confidence interval 1.04-9.68; and odds ratio 6.23, 95% confidence interval 2.24-17.35, respectively), unmarried (odds ratio 2.58, 95% confidence interval 1.09-6.09), living in suburban areas (odds ratio 2.58, 95% confidence interval 1.08-6.19), are noncompliant (odds ratio 4.50, 95% confidence interval 1.71-11.82), were treated previously (odds ratio 8.91, 95% confidence interval 3.66-21.67), and showed positive sputum smears at the 2nd (odds ratio 7.00, 95% confidence interval 2.46-19.89) and 6th months of treatment (odds ratio 17.96, 95% confidence interval 3.51-91.99). Living in suburban areas, positive sputum smears in the 2nd month of treatment, and was treated previously are factors that independently contribute to the occurrence of multidrug-resistant tuberculosis. Those with positive smears in the second month of treatment, have a history of previous

  1. Chinese hamster pleiotropic multidrug-resistant cells are not radioresistant

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Gamson, J.; Russo, A.; Friedman, N.; DeGraff, W.; Carmichael, J.; Glatstein, E.

    1988-01-01

    The inherent cellular radiosensitivity of a Chinese hamster ovary pleiotropic cell line that is multidrug resistant (CHRC5) was compared to that of its parental cell line (AuxB1). Radiation survival curve parameters n and D0 were 4.5 and 1.1 Gy, respectively, for the CHRC5 line and 5.0 and 1.2 Gy, respectively, for the parental line. Thus, the inherent radiosensitivity of the two lines was similar even though key intracellular free radical scavenging and detoxifying systems employing glutathione, glutathione transferase, and catalase produced enzyme levels that were 2.0-, 1.9-, and 1.9-fold higher, respectively, in the drug-resistant cell line. Glutathione depletion by buthionine sulfoximine resulted in the same extent of aerobic radiosensitization in both lines (approximately 10%). Incorporation of iododeoxyuridine into cellular DNA sensitized both cell lines to radiation. These studies indicate that pleiotropic drug resistance does not necessarily confer radiation resistance

  2. Detection of multidrug resistance using molecular nuclear technique

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Ahn, Byeong Cheol

    2004-01-01

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. 99 m-Tc-MIBI and other 99 m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-( 11 C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo

  3. Advantage and limitations of nitrofurantoin in multi-drug resistant Indian scenario

    Directory of Open Access Journals (Sweden)

    Laishram Shakti

    2015-01-01

    Full Text Available Infections caused by antibiotic resistant pathogens are of significant concern and are associated with higher mortality and morbidity. Nitrofurantoin is a broad-spectrum bactericidal antibiotic and is effectively used to treat urinary tract infections (UTIs caused by E. coli, Klebsiella sp., Enterobacter sp., Enterococcus sp. and Staphylococcus aureus. It interfere with the synthesis of cell wall, bacterial proteins and DNA of both Gram positive and Gram negative pathogens. Nitrofurantoin has been used successfully for treatment and prophylaxis of acute lower urinary tract infections. With the emergence of antibiotic resistance, nitrofurantoin has become the choice of agent for treating UTIs caused by multi-drug resistant pathogens.

  4. Distribution and physiology of ABC-Type transporters contributing to multidrug resistance in bacteria

    NARCIS (Netherlands)

    Lubelski, Jacek; Konings, Wil N.; Driessen, Arnold J. M.

    Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukalyotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms.

  5. Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production.

    Science.gov (United States)

    Mattiello, Samara P; Drescher, Guilherme; Barth, Valdir C; Ferreira, Carlos A S; Oliveira, Sílvia D

    2015-11-01

    Antimicrobial resistance profiles and presence of resistance determinants and integrons were evaluated in Salmonella enterica strains from Brazilian poultry. The analysis of 203 isolates showed that those from the poultry environment (88 isolates) were significantly more resistant to antimicrobials than isolates from other sources, particularly those isolated from poultry by-product meal (106 isolates). Thirty-seven isolates were resistant to at least three antimicrobial classes. Class 1 integrons were detected in 26 isolates, and the analysis of the variable region between the 5' conserved segment (CS) and 3' CS of each class 1 integron-positive isolate showed that 13 contained a typical 3' CS and 14 contained an atypical 3' CS. One Salmonella Senftenberg isolate harbored two class 1 integrons, showing both typical and atypical 3' CSs. The highest percentage of resistance was found to sulfonamides, and sul genes were detected in the majority of the resistant isolates. Aminoglycoside resistance was detected in 50 isolates, and aadA and aadB were present in 28 and 32 isolates, respectively. In addition, strA and strB were detected in 78.1 and 65.6% isolates resistant to streptomycin, respectively. Twenty-one isolates presented reduced susceptibility to β-lactams and harbored bla(TEM), bla(CMY), and/or bla(CTX-M). Forty isolates showed reduced susceptibility to tetracycline, and most presented tet genes. These results highlight the importance of the environment as a reservoir of resistant Salmonella, which may enable the persistence of resistance determinants in the poultry production chain, contributing, therefore, to the debate regarding the impacts that antimicrobial use in animal production may exert in human health.

  6. Position on mouse chromosome 1 of a gene that controls resistance to Salmonella typhimurium.

    Science.gov (United States)

    Taylor, B A; O'Brien, A D

    1982-06-01

    Ity is a gene which regulates the magnitude of Salmonella typhimurium growth in murine tissues and, hence, the innate salmonella resistance of mice. The results of a five-point backcross clearly showed that the correct gene order on chromosome 1 is fz-Idh-1-Ity-ln-Pep-3.

  7. Variability of cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant bacteria in two Brazilian intensive care units.

    Science.gov (United States)

    Damaceno, Quésia; Nicoli, Jacques R; Oliveira, Adriana

    2015-01-01

    To compare cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant organisms in two intensive care units. A prospective cohort study was performed in adult intensive care units of two hospitals in Belo Horizonte, Brazil (April 2012 to February 2013). Clinical and demographic data were first collected by reviewing patients' charts. Then, samples collected with nasal, groin, and perineum swabs were cultivated in selective media for 48 h at 37°C. After isolation, determination of antimicrobial susceptibility and biochemical identification were performed. A total of 53 cases of colonization were observed by the following bacteria in decreasing frequencies: imipenem-resistant Acinetobacter baumannii (50.9%), vancomycin-resistant Enterococcus faecalis (43.4%), extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (37.7%), imipenem-resistant Pseudomonas aeruginosa (32.1%), oxacillin-resistant Staphylococcus aureus (7.5%), and imipenem-resistant Klebsiella pneumoniae (5.7%). Among these colonization cases, 26 (49.0%) were followed by infection with bacteria phenotypically similar to those of the colonization. A relation between high population levels of colonization by most of the multidrug-resistant organisms at anatomical sites and a subsequent infection was observed. After colonization/infection, bacterial population levels decreased progressively and spontaneously until disappearance by day 45 in all the anatomical sites and for all the multidrug-resistant organisms. There was a correlation between high population levels of colonization by multidrug-resistant organisms at anatomical sites and a subsequent infection. Reduction in multidrug-resistant organism populations after colonization at anatomical sites could be a preventive measure to reduce evolution to infection as well as transmission of these bacteria between patients in intensive care unit.

  8. Evaluation of efficiency of nested multiplex allele-specific PCR assay for detection of multidrug resistant tuberculosis directly from sputum samples.

    Science.gov (United States)

    Mistri, S K; Sultana, M; Kamal, S M M; Alam, M M; Irin, F; Nessa, J; Ahsan, C R; Yasmin, M

    2016-05-01

    For an effective control of tuberculosis, rapid detection of multidrug resistant tuberculosis (MDR-TB) is necessary. Therefore, we developed a modified nested multiplex allele-specific polymerase chain reaction (MAS-PCR) method that enables rapid MDR-TB detection directly from sputum samples. The efficacy of this method was evaluated using 79 sputum samples collected from suspected tuberculosis patients. The performance of nested MAS-PCR method was compared with other MDR-TB detection methods like drug susceptibility testing (DST) and DNA sequencing. As rifampicin (RIF) resistance conforms to MDR-TB in greater than 90% cases, only the presence of RIF-associated mutations in rpoB gene was determined by DNA sequencing and nested MAS-PCR to detect MDR-TB. The concordance between nested MAS-PCR and DNA sequencing results was found to be 96·3%. When compared with DST, the sensitivity and specificity of nested MAS-PCR for RIF-resistance detection were determined to be 92·9 and 100% respectively. For developing- and high-TB burden countries, molecular-based tests have been recommended by the World Health Organization for rapid detection of MDR-TB. The results of this study indicate that, nested MAS-PCR assay might be a practical and relatively cost effective molecular method for rapid detection of MDR-TB from suspected sputum samples in developing countries with resource poor settings. © 2016 The Society for Applied Microbiology.

  9. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    Science.gov (United States)

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Complete genome sequence of Acinetobacter baumannii XH386 (ST208, a multi-drug resistant bacteria isolated from pediatric hospital in China

    Directory of Open Access Journals (Sweden)

    Youhong Fang

    2016-03-01

    Full Text Available Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR, while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb chromosome and 112-kb plasmid of A. baumannii XH386 (ST208, which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780. Keywords: Acinetobacter baumannii, Multi-drug resistance, Paediatric

  11. Phenotypic Characterization of Multidrug-resistant Escherichia Coli with Special Reference to Extended-spectrum-beta-lactamases and Metallo-beta-lactamases in a Tertiary Care Center

    Directory of Open Access Journals (Sweden)

    Basudha Shrestha

    2015-06-01

    Conclusions: Beta-lactamase mediated resistance mechanisms are accounting very high in the multidrug resistant isolates of E. coli. Therefore, early detection of beta lactamase mediated resistant strains and their current antibiotic susceptibility pattern is necessary to avoid treatment failure and prevent the spread of MDR. Keywords: e. coli; extended-spectrum-β-lactamase; metallo-β-lactamase; multidrug-resistance.

  12. The incidence and antibiotic resistance of Salmonella species isolated from cloacae of captive veiled chameleons

    Directory of Open Access Journals (Sweden)

    Silvia Barazorda Romero

    2015-01-01

    Full Text Available Salmonella can be present in the intestinal flora of captive reptiles without clinical disease or it can cause life threatening morbidity. The presence of certain species of Salmonella in reptiles is consistent with them being the source of contamination in some cases of human disease. Thus, Salmonella positive animals can be a potential public health concern even more when strains acquire resistance to antibiotics. The nature and extent of Salmonella harboured by different species of reptiles commonly kept in captivity are not known. The aims of this study were to analyse the incidence of Salmonella species in cloacae as an indicator of the intestinal flora in a cohort of healthy captive bred female veiled chameleons. A cloacal sample was taken from each of fifteen healthy captive bred, adult female veiled chameleons that were housed at a teaching and research clinic. Salmonella isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and positive cases were serotyped by slide agglutination test. Salmonella organisms were detected in 12 chameleons. Eighty percent of chameleons harboured 1 of 4 subspecies and serovars of Salmonella. All strains belonged to the species enterica, predominantly subspecies enterica (91.7 % and were distributed among 4 different serovars: S. Ago (58.3 %, S. Blijdorp (16.7 %, S. Tennessee (16.7 % and S. IV 45:g,z51:- (8.3 %. Antibiotic resistance to streptomycin was detected in one of 12 Salmonella strains: S. IV 45:g,z51:-. Our study extended the list of Salmonella found in healthy captive animals and included serovars S. Tennessee and S. IV 45:g,z51:- that have been associated with morbidity in humans.

  13. The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination.

    Science.gov (United States)

    Carraro, Nicolas; Matteau, Dominick; Luo, Peng; Rodrigue, Sébastien; Burrus, Vincent

    2014-10-01

    Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands.

  14. Antibacterial activity of methylglyoxal against multi-drug resistant Salmonella Typhi

    International Nuclear Information System (INIS)

    Afzal, R.K.; Ahmed, A.

    2018-01-01

    To evaluate the antibacterial activity of MGO against MDR Salmonella typhi isolated from blood culture specimens and compare this activity against non-MDR S. typhi and with other gram negative rods. Study Design: Experimental study. Place and Duration of Study: Department of Microbiology, University of Health Sciences Lahore, from Jul 2011 to Jun 2012. Material and Methods: A total of 157 isolates of S. typhi were collected from different hospitals of Lahore and kept stored at -80 degree C. Morphological, biochemical and serological identification and antibiotic susceptibility testing of the isolates was carried out as per CLSI 2011 guidelines. Agar dilution method was used for the determination of MICs of MGO, using a multi-point inoculator. The data was compiled and results were determined using SPSS version 17. Results: Ninety-seven out of 157 isolates (61.8%) were MDR S. Typhi, while 60 (38.2%) were non-MDR S. Typhi. MIC90 of MGO against MDR S. Typhi isolates was (0.20 mg/mL; 2.8 mM), against non-MDR S. Typhi and Gram negative rods each, it was (0.21 mg/mL; 3.0 mM). When MICs of MGO against MDR S. Typhi group were compared to those of non-MDR S. Typhi group, the p-value was 0.827 (p>0.05; statistically insignificant). Whereas, the p-value of MICs of MGO against MDR S. Typhi group was 0.023 (p<0.05; statistically significant) when compared to gram negative rods group. Conclusion: MGO has good antibacterial activity against MDR and non-MDR S. Typhi, and other genera of Gram negative rods. (author)

  15. Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel

    OpenAIRE

    Ben-Ami, Ronen; Berman, Judith; Novikov, Ana; Bash, Edna; Shachor-Meyouhas, Yael; Zakin, Shiri; Maor, Yasmin; Tarabia, Jalal; Schechner, Vered; Adler, Amos; Finn, Talya

    2017-01-01

    Candida auris and C. haemulonii are closely related, multidrug-resistant emerging fungal pathogens that are not readily distinguishable with phenotypic assays. We studied C. auris and C. haemulonii clinical isolates from 2 hospitals in central Israel. C. auris was isolated in 5 patients with nosocomial bloodstream infection, and C. haemulonii was found as a colonizer of leg wounds at a peripheral vascular disease clinic. Liberal use of topical miconazole and close contact among patients were ...

  16. Occurrence of Salmonella in ruminants and camel meat in Maiduguri, Nigeria and their antibiotic resistant pattern

    Directory of Open Access Journals (Sweden)

    Zakaria Musa

    2017-09-01

    Full Text Available Objective: This study was conducted to determine the occurrence of Salmonella in various meat products (beef from cattle, chevon from goats, mutton from sheep and jaziir from camel, by screening the various selling points which includes; meat retailers in abattoir, markets and shops in Maiduguri and its environs. Materials and methods: A total of 120 samples of fresh meat from cattle, sheep, goats and camels sampled from ten meat retailers in abattoir, markets and shops in the Maiduguri metropolis, using simple random sampling technique. All samples were processed and examined according to standard bacteriological protocols. Results: Percentage occurrence of Salmonella species had the highest value of 15 (50.1% from the market, found in sheep, while the lowest occurrence of Salmonella species was associated with 3(10.0% in goats sampled from shop meat.. Antibiotic susceptibility pattern of Salmonella species from cattle meat revealed high resistant to Erythromycin (52%. In sheep, the higher percentage of resistance occurred against Ampicillin (33.3% and less resistant to Amoxicillin (4% was obtained. The isolates from camel meat recorded 25% resistant against Ampicillin, Gentamycin and 12.5% to Streptomycin. A total of 28.4% of the isolates were resistant to Ampicillin, Gentamycin and 23.1% to Ofloxacin. Conclusion: The study has shown that Salmonella species are present in fresh meat sold in abattoir, retail markets and shops. We recommend strict hygienic measures in places where fresh meat are sold in Maiduguri metropolis, Nigeria to ensure consumers right to have safe food. [J Adv Vet Anim Res 2017; 4(3.000: 227-233

  17. Characterization of antibiotic resistance in Salmonella enterica isolates determined from ready-to-eat (RTE) salad vegetables.

    Science.gov (United States)

    Taban, Birce Mercanoglu; Aytac, Sait Aykut; Akkoc, Nefise; Akcelik, Mustafa

    2013-01-01

    In the last decade, ready-to-eat (RTE) salad vegetables are gaining increasing importance in human diet. However, since they are consumed fresh, inadequate washing during processing can bring on some foodborne illnesses, like salmonellosis, since these food items have natural contamination from soil and water. During 2009-2010, a total of 81 samples were purchased arbitrarily from local markets in Ankara, and were examined for Salmonella contamination. Salmonella screening was performed by using anti-Salmonella magnetic beads system and polymerase chain reaction (PCR) identification of the suspected colonies. Then, the antibiotic resistance profiles of four Salmonella strains identified (strains RTE-1, RTE-2, RTE-3, and RTE-4) were also investigated, since the mechanism by which Salmonella spp. have accumulated antibiotic resistance genes is of interest. All strains showed resistance against sulfonamides (MIC > 128 mg/L). Further results suggested that associated sulfonamide resistance genes were encoded by the 55.0 kb plasmid of strain RTE-1 that involves no integrons. As a result of using two primers (P1254 and P1283) in randomly amplified polymorphic DNA-PCR (RAPD-PCR) analysis, two common amplicons (364 bp and 1065 bp) were determined. The findings of this study provide support to the adoption of guidelines for the prudent use of antibiotics in order to reduce the number of pathogens present on vegetable and fruit farms. Besides, since it is shown that these bacteria started to gain resistance to antibiotics, it is necessary to further investigate the prevalence of them in foods.

  18. Characterization of antibiotic resistance in Salmonella enterica isolates determined from ready-to-eat (RTE salad vegetables

    Directory of Open Access Journals (Sweden)

    Birce Mercanoglu Taban

    2013-01-01

    Full Text Available In the last decade, ready-to-eat (RTE salad vegetables are gaining increasing importance in human diet. However, since they are consumed fresh, inadequate washing during processing can bring on some foodborne illnesses, like salmonellosis, since these food items have natural contamination from soil and water. During 2009-2010, a total of 81 samples were purchased arbitrarily from local markets in Ankara, and were examined for Salmonella contamination. Salmonella screening was performed by using anti-Salmonella magnetic beads system and polymerase chain reaction (PCR identification of the suspected colonies. Then, the antibiotic resistance profiles of four Salmonella strains identified (strains RTE-1, RTE-2, RTE-3, and RTE-4 were also investigated, since the mechanism by which Salmonella spp. have accumulated antibiotic resistance genes is of interest. All strains showed resistance against sulfonamides (MIC > 128 mg/L. Further results suggested that associated sulfonamide resistance genes were encoded by the 55.0 kb plasmid of strain RTE-1 that involves no integrons. As a result of using two primers (P1254 and P1283 in randomly amplified polymorphic DNA-PCR (RAPD-PCR analysis, two common amplicons (364 bp and 1065 bp were determined. The findings of this study provide support to the adoption of guidelines for the prudent use of antibiotics in order to reduce the number of pathogens present on vegetable and fruit farms. Besides, since it is shown that these bacteria started to gain resistance to antibiotics, it is necessary to further investigate the prevalence of them in foods.

  19. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia

    NARCIS (Netherlands)

    de Vries, EGE; van Putten, WLJ; Verdonck, LF; Ossenkoppele, GJ; Verhoef, GEG; Vellenga, E

    Despite treatment with intensive chemotherapy, a considerable number of patients with acute myeloid leukemia (AML) die from their disease due to the occurrence of resistance. Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein (MRP) 1 has been identified

  20. Functional analysis of P-glycoprotein and multidrug resistance associated protein related multidrug resistance in AML-blasts.

    Science.gov (United States)

    Brügger, D; Herbart, H; Gekeler, V; Seitz, G; Liu, C; Klingebiel, T; Orlikowsky, T; Einsele, H; Denzlinger, C; Bader, P; Niethammer, D; Beck, J F

    1999-05-01

    Despite the high effectiveness of various P-glycoprotein (P-gp) modulating substances in vitro their clinical value e.g. for combination treatment of acute myelogenous leukemias (AML) remains still unclear. This might be explainable by recent findings that other factors than P-gp (e.g. the multidrug resistance associated protein (MRP)) may also be involved in clinical occurring drug resistance. To study P-gp and MRP mediated MDR in AML blasts from patients with relapses at the functional level we measured rhodamine 123 (RHO) efflux in combination with a P-gp specific (SDZ PSC 833) or a MRP specific (MK571) modulator, respectively. Furthermore, direct antineoplastic drug action was monitored by determination of damaged cell fraction of a blast population using flow cytometry. We generally found strongly modulated RHO efflux by SDZ PSC 833 but slight RHO-efflux modulation by MK571 in blasts from relapsed states of AML expressing MDR1 or MRP mRNA at various levels. We could not demonstrate, though, significant PSC 833 or MK571 mediated modulation of the cytotoxic effects of etoposide. The results point to the possibility that combination of etoposide and a modulator might not improve responses to chemotherapy by targeting P-gp or MRP exclusively.

  1. Resistance phenotypes and genotypes of Salmonella enterica subsp. enterica isolates from feed, pigs, and carcasses in Brazil.

    Science.gov (United States)

    Lopes, Graciela Volz; Pissetti, Caroline; da Cruz Payão Pellegrini, Débora; da Silva, Luis Eduardo; Cardoso, Marisa

    2015-02-01

    Salmonella enterica subsp. enterica plays a role as a foodborne pathogen worldwide. The consumption of contaminated pork has been associated with human salmonellosis and the increase in antimicrobial resistance among Salmonella from pigs and pork products is a concern. A total of 225 Salmonella isolates from feed mills, the lairage environment, and the intestinal contents of pigs and carcasses were investigated for their antimicrobial susceptibility. A MIC for ciprofloxacin was screened by agar dilution, and antimicrobial resistance genes were investigated by PCR assays. Among the tested isolates, 171 (76%) showed resistance to at least one antimicrobial agent, and 91 (40.4%) were multiresistant. Resistance occurred most frequently to tetracycline (54.5%), sulfonamides (39.6%), and streptomycin (33.7%). Thirty-two (94.1%) nalidixic acid-resistant isolates exhibited decreased susceptibility to ciprofloxacin. The resistance genes found were blaTEM (ampicillin), tet(A) (tetracycline), tet(B) (tetracycline/minocycline), sul1, sul2, and sul3 (sulfonamides), catA1 (chloramphenicol), floR (florfenicol/chloramphenicol), strA and strB (streptomycin), aph(3')-Ia (kanamycin), aac(3)-IIa and aac(3)-IVa (apramycin/gentamicin), aadA variant (streptomycin/spectinomycin), and dfrA1 (trimethoprim). Salmonella isolates from pig feces and carcasses displayed a higher frequency of resistance to most antimicrobials tested than isolates from feed mills. Common resistance gene profiles were found in isolates from the lairage and the intestinal content of pigs and carcasses, demonstrating that resistance genes selected on farms may be found in pork.

  2. Contribution of AcrAB-ToIC to multidrug resistance in an Escherichia coli sequence type 131 isolate

    NARCIS (Netherlands)

    Schuster, Sabine; Vavra, Martina; Schweigger, Tobias M.; Rossen, John W. A.; Matsumura, Yasufumi; Kern, Winfried V.

    Drug efflux by resistance-nodulation-cell division (RND)-type transporters, such as AcrAB-ToIC of Escherichia can, is an important resistance mechanism in Gram-negative bacteria; however, its contribution to multidrug resistance (MDR) in clinical isolates is poorly defined. We inactivated acrB of a

  3. High prevalence of multidrug resistant tuberculosis in Djibouti: a retrospective study.

    Science.gov (United States)

    Boyer-Cazajous, Géraldine; Martinaud, Christophe; Déhan, Céline; Hassan, Mohammed Osman; Gaas, Yassin; Chenilleau-Vidal, Marie-Caroline; Soler, Charles

    2014-02-13

    The Republic of Djibouti is an African country that exhibits one of the highest incidence rate of tuberculosis in the world. The aim of this study was to evaluate the prevalence of multidrug-resistant tuberculosis among new cases. We studied retrospectively every tuberculosis case diagnosed over a 12-month period in patients hospitalized at the French Military Hospital of Bouffard. During this period, 1,274 samples from 675 patients were tested. We isolated 266 mycobacteria corresponding to 180 cases of tuberculosis. Thirty-three were fully susceptible and 57% met the tuberculosis criteria, with 46% primary resistance. No extensively-drug-resistant tuberculosis was found. Our results highlight a major concern about the situation in this part of the world.

  4. Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Noman Siddiqi

    1998-09-01

    Full Text Available A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.

  5. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance...... expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP...... was increased relative to thermosensitive sublines. Although it could be shown that the overexpressed ABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found...

  6. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  7. Control of multidrug resistant bacteria in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Jaggi Namita

    2012-06-01

    Full Text Available Abstract Background The objective of this study was to assess the impact of antimicrobial stewardship programs on the multidrug resistance patterns of bacterial isolates. The study comprised an initial retrospective analysis of multidrug resistance in bacterial isolates for one year (July 2007-June 2008 followed by prospective evaluation of the impact of Antimicrobial Stewardship programs on resistance for two years and nine months (July 2008-March 2011. Setting A 300-bed tertiary care private hospital in Gurgaon, Haryana (India Findings Methods Study Design • July 2007 to June 2008: Resistance patterns of bacterial isolates were studied. • July 2008: Phase I intervention programme Implementation of an antibiotic policy in the hospital. • July 2008 to June 2010: Assessment of the impact of the Phase I intervention programme. • July 2010 to March 2011: Phase II intervention programme: Formation and effective functioning of the antimicrobial stewardship committee. Statistical correlation of the Defined daily dose (DDD for prescribed drugs with the antimicrobial resistance of Gram negatives. Results Phase I intervention programme (July 2008 resulted in a decrease of 4.47% in ESBLs (E.coli and Klebsiella and a significant decrease of 40.8% in carbapenem-resistant Pseudomonas. Phase II intervention (July 2010 brought a significant reduction (24.7% in carbapenem-resistant Pseudomonas. However, the resistance in the other Gram negatives (E.coli, Klebsiella, and Acinetobacter rose and then stabilized. A positive correlation was observed in Pseudomonas and Acinetobacter with carbapenems and cefoperazone-sulbactam. Piperacillin-tazobactam showed a positive correlation with Acinetobacter only. E.coli and Klebsiella showed positive correlation with cefoparazone-sulbactam and piperacillin-tazobactam. Conclusion An antimicrobial stewardship programme with sustained and multifaceted efforts is essential to promote the judicious use of antibiotics.

  8. Animal experiment and clinical preliminary application of percutaneous 70% ethanol injection therapy in multi-drug resistant pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Liu Fuquan; Yue Zhendong; Gao Shunyu; Li YanSheng; Wei Guobin; Guo Weiyi; Chen Xijun; Li Baoyu

    2004-01-01

    Objective: To evaluate the clinical value of percutaneous injection of 70% ethanol in the treatment of multidrug resistant pulmonary tuberculosis. Methods: Percutaneous and transcatheter absolute ethanol, 70% ethanol, and 60% meglucamine diatrizoate(or distilled water) injection into the lung (25 cases) and the bronchi (25 cases) of healthy rabbits were performed, respectively.All specimens were studied with pathology. On the base of animals experiment, thirty-five patients with multi-drug resistant pulmonary tuberculosis were treated with percutaneous 70% ethanol injection. Every patient was treated by the same way for 1-3 times. Results: Pathological findings of the specimens of pulmonary tissue showed nonspecific inflammation, necrosis, and fibrosis. The chief pathological changes with percutaneous or transcatheter 70% ethanol injection were slighter than those with absolute ethanol injection. Pathological findings of the specimens of bronchi showed slight mucosal edema, nonspecific inflammation, and focal cytonecrosis. Recovery of the damaged bronchial mucosa occurred within 14-30 days after the treatment. All patients with multi-drug resistant pulmonary tuberculosis were followed up for 6 to 33 months. The sputum bacterial conversion to negative rate was 100% within 6 months after the treatment. Cavity closing, shrinking, and no changing rate were 47.1% (16/34), 50.0% (17/34), and 2.9% (1/34), respectively. Radiographic improvement rate was 94.3 % (33/35). No severe complications and adverse reactions occurred. Conclusion: Percutaneous 70% ethanol injection is safe, effective, and easy to perform in the treatment of multi-drug resistant pulmonary tuberculosis. (authors)

  9. The demise of multidrug-resistant HIV-1: the national time trend in Portugal

    Science.gov (United States)

    Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Águas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge; Mansinho, Kamal; Cláudia Miranda, Ana; Aldir, Isabel; Ventura, Fernando; Nina, Jaime; Borges, Fernando; Valadas, Emília; Doroana, Manuela; Antunes, Francisco; João Aleixo, Maria; João Águas, Maria; Botas, Júlio; Branco, Teresa; Vera, José; Vaz Pinto, Inês; Poças, José; Sá, Joana; Duque, Luis; Diniz, António; Mineiro, Ana; Gomes, Flora; Santos, Carlos; Faria, Domitília; Fonseca, Paula; Proença, Paula; Tavares, Luís; Guerreiro, Cristina; Narciso, Jorge; Faria, Telo; Teófilo, Eugénio; Pinheiro, Sofia; Germano, Isabel; Caixas, Umbelina; Faria, Nancy; Paula Reis, Ana; Bentes Jesus, Margarida; Amaro, Graça; Roxo, Fausto; Abreu, Ricardo; Neves, Isabel

    2013-01-01

    Objectives Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. Patients and methods We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. Results We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7–8.4) in 2001–03, 6.0% (95% CI: 4.9–7.2) in 2003–05, 3.7% (95% CI: 2.8–4.8) in 2005–07 and 1.6% (95% CI: 1.1–2.2) in 2007–09 down to 0.6% (95% CI: 0.3–0.9) in 2009–12 [OR = 0.80 (95% CI: 0.75–0.86); P < 0.001]. In July 2011 the last new case of MDR was seen. Conclusions The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains. PMID:23228933

  10. Characterization of Multidrug Resistant E. faecalis Strains from Pigs of Local Origin by ADSRRS-Fingerprinting and MALDI -TOF MS; Evaluation of the Compatibility of Methods Employed for Multidrug Resistance Analysis.

    Directory of Open Access Journals (Sweden)

    Aneta Nowakiewicz

    Full Text Available The aim of this study was to characterize multidrug resistant E. faecalis strains from pigs of local origin and to analyse the relationship between resistance and genotypic and proteomic profiles by amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI -TOF MS. From the total pool of Enterococcus spp. isolated from 90 pigs, we selected 36 multidrug resistant E. faecalis strains, which represented three different phenotypic resistance profiles. Phenotypic resistance to tetracycline, macrolides, phenicols, and lincomycin and high-level resistance to aminoglycosides were confirmed by the occurrence of at least one corresponding resistance gene in each strain. Based on the analysis of the genotypic and phenotypic resistance of the strains tested, five distinct resistance profiles were generated. As a complement of this analysis, profiles of virulence genes were determined and these profiles corresponded to the phenotypic resistance profiles. The demonstration of resistance to a wide panel of antimicrobials by the strains tested in this study indicates the need of typing to determine the spread of resistance also at the local level. It seems that in the case of E. faecalis, type and scope of resistance strongly determines the genotypic pattern obtained with the ADSRRS-fingerprinting method. The ADSRRS-fingerprinting analysis showed consistency of the genetic profiles with the resistance profiles, while analysis of data with the use of the MALDI- TOF MS method did not demonstrate direct reproduction of the clustering pattern obtained with this method. Our observations were confirmed by statistical analysis (Simpson's index of diversity, Rand and Wallace coefficients. Even though the MALDI -TOF MS method showed slightly higher discrimination power than ADSRRS-fingerprinting, only the latter method allowed reproduction of the

  11. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    Science.gov (United States)

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  12. The function of the thyroid gland in patients with multi-drug resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    S. L. Matveyeva

    2017-08-01

    Full Text Available Abstract Background Multidrug-resistant tuberculosis (MDRTB remains a health problem for many countries in the world. The share of MDRTB is 10–30% among newly diagnosed cases and 20–70% among relapses and treatment failure. The aim of the study is to define the side effects of second line drugs used in the treatment of MDRTB on thyroid function. Methods In 30 patients with multidrug resistant tuberculosis, echostructure of thyroid was studied by ultrasound imaging method. Indices of thyroid function: plasma levels of free thyroxin, thyroid stimulating hormone were studied before chemotherapy initiated, at the end of intensive phase and after the treatment finished. Results Decreasing of thyroid function under antituberculosis chemotherapy was approved. Monitoring and correction of thyroid function during antituberculosis chemotherapy was suggested. Conclusion Patients with MDRTB taking ethionamide and PAS are at increased risk for hypothyroidism and goiter, and therefore require monitoring of thyroid function at all stages of antituberculosis chemotherapy for its timely correction.

  13. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Arax Hovhannesyan

    2012-06-01

    Full Text Available OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute hazard ratios (HR. RESULTS: Sputum conversion from positive to negative was observed in 134 out of 195 cases (69%. Among these who converted the median time to conversion was 3.7 months. Factors independently associated with time to sputum conversion in the proportional hazards model were: male sex (HR=0.51, 95% CI 0.32-0.81, ofloxacin-resistant tuberculosis (HR = 0.45, 95% CI 0.26-0.78 and first period of recruitment into second-line treatment (HR= 0.69, 95% CI 0.47-1.01. CONCLUSION: Time to sputum conversion in patients with multidrug-resistant tuberculosis in Armenia was 5.8 months (range 0.5-17.0 months. High level of ofloxacin resistance was the main reason for compromised response to treatment. Patients with a poor resistance profile and males should be targeted with more aggressive initial therapy.

  14. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Arax Hovhannesyan

    2012-01-01

    Full Text Available OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute hazard ratios (HR. RESULTS: Sputum conversion from positive to negative was observed in 134 out of 195 cases (69%. Among these who converted the median time to conversion was 3.7 months. Factors independently associated with time to sputum conversion in the proportional hazards model were: male sex (HR=0.51, 95% CI 0.32-0.81, ofloxacin-resistant tuberculosis (HR = 0.45, 95% CI 0.26-0.78 and first period of recruitment into second-line treatment (HR= 0.69, 95% CI 0.47-1.01. CONCLUSION: Time to sputum conversion in patients with multidrug-resistant tuberculosis in Armenia was 5.8 months (range 0.5- 17.0 months. High level of ofloxacin resistance was the main reason for compromised response to treatment. Patients with a poor resistance profile and males should be targeted with more aggressive initial therapy.

  15. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants.

    Science.gov (United States)

    Wiesner, Magdalena; Calva, Edmundo; Fernández-Mora, Marcos; Cevallos, Miguel A; Campos, Freddy; Zaidi, Mussaret B; Silva, Claudia

    2011-01-11

    Salmonella Typhimurium ST213 was first detected in the Mexican Typhimurium population in 2001. It is associated with a multi-drug resistance phenotype and a plasmid-borne blaCMY-2 gene conferring resistance to extended-spectrum cephalosporins. The objective of the current study was to examine the association between the ST213 genotype and blaCMY-2 plasmids. The blaCMY-2 gene was carried by an IncA/C plasmid. ST213 strains lacking the blaCMY-2 gene carried a different IncA/C plasmid. PCR analysis of seven DNA regions distributed throughout the plasmids showed that these IncA/C plasmids were related, but the presence and absence of DNA stretches produced two divergent types I and II. A class 1 integron (dfrA12, orfF and aadA2) was detected in most of the type I plasmids. Type I contained all the plasmids carrying the blaCMY-2 gene and a subset of plasmids lacking blaCMY-2. Type II included all of the remaining blaCMY-2-negative plasmids. A sequence comparison of the seven DNA regions showed that both types were closely related to IncA/C plasmids found in Escherichia, Salmonella, Yersinia, Photobacterium, Vibrio and Aeromonas. Analysis of our Typhimurium strains showed that the region containing the blaCMY-2 gene is inserted between traA and traC as a single copy, like in the E. coli plasmid pAR060302. The floR allele was identical to that of Newport pSN254, suggesting a mosaic pattern of ancestry with plasmids from other Salmonella serovars and E. coli. Only one of the tested strains was able to conjugate the IncA/C plasmid at very low frequencies (10-7 to 10-9). The lack of conjugation ability of our IncA/C plasmids agrees with the clonal dissemination trend suggested by the chromosomal backgrounds and plasmid pattern associations. The ecological success of the newly emerging Typhimurium ST213 genotype in Mexico may be related to the carriage of IncA/C plasmids. We conclude that types I and II of IncA/C plasmids originated from a common ancestor and that the

  16. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Lan-Hui Li

    Full Text Available The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226. Silver nanoparticles (Ag NPs, 120 nm showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae.

  17. Antimicrobial-resistant patterns of Escherichia coli and Salmonella strains in the aquatic Lebanese environments

    International Nuclear Information System (INIS)

    Harakeh, Steve; Yassine, Hadi; El-Fadel, Mutasem

    2006-01-01

    This study is the first to be conducted in Lebanon on the isolation and molecular characterization and the antimicrobial resistance profile of environmental pathogenic bacterial strains. Fifty-seven samples of seawater, sediment, crab, and fresh water were collected during the spring and summer seasons of 2003. The isolation of Escherichia coli and Salmonella using appropriate selective media revealed that 94.7% of the tested samples were contaminated with one or both of the tested bacteria. The polymerase chain reaction (PCR) was then used to identify the species of both bacteria using various sets of primers. Many pathogenic E. coli isolates were detected by PCR out of which two were identified as O157:H7 E. coli. Similarly, the species of many of the Salmonella isolates was molecularly identified. The confirmed isolates of Salmonella and E. coli were then tested using the disk diffusion method for their susceptibility to four different antimicrobials revealing high rates of antimicrobial resistance. - First report of antibiotic resistance in bacteria in the environment in Lebanon

  18. Ability of polymer-bound P-glycoprotein inhibitor ritonavir to overcome multidrug resistance in various resistant neuroblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Chytil, Petr; Etrych, Tomáš; Janoušková, Olga

    2017-01-01

    Roč. 28, č. 10 (2017), s. 1126-1130 ISSN 0959-4973 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : drug-delivery polymers * multidrug resistance * N-(2-hydroxypropyl) methacrylamide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.320, year: 2016

  19. Emergence of Ciprofloxacin-Resistant Salmonella enterica Serovar Typhi in Italy.

    Directory of Open Access Journals (Sweden)

    Aurora García-Fernández

    Full Text Available In developed countries, typhoid fever is often associated with persons who travel to endemic areas or immigrate from them. Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi. Because of the emergence of antimicrobial resistance to standard first-line drugs, fluoroquinolones are the drugs of choice. Resistance to ciprofloxacin by this Salmonella serovar represents an emerging public health issue. Two S. enterica ser. Typhi strains resistant to ciprofloxacin (CIP were reported to the Italian surveillance system for foodborne and waterborne diseases (EnterNet-Italia in 2013. The strains were isolated from two Italian tourists upon their arrival from India. A retrospective analysis of 17 other S. enterica ser. Typhi strains isolated in Italy during 2011-2013 was performed to determine their resistance to CIP. For this purpose, we assayed for susceptibility to antimicrobial agents and conducted PCR and nucleotide sequence analyses. Moreover, all strains were typed using pulsed-field gel electrophoresis to evaluate possible clonal relationships. Sixty-eight percent of the S. enterica ser. Typhi strains were resistant to CIP (MICs, 0.125-16 mg/L, and all isolates were negative for determinants of plasmid-mediated quinolone resistance. Analysis of sequences encoding DNA gyrase and topoisomerase IV subunits revealed mutations in gyrA, gyrB, and parC. Thirteen different clonal groups were detected, and the two CIP-resistant strains isolated from the individuals who visited India exhibited the same PFGE pattern. Because of these findings, the emergence of CIP-resistant S. enterica ser. Typhi isolates in Italy deserves attention, and monitoring antibiotic susceptibility is important for efficiently managing cases of typhoid fever.

  20. Prevalência, quantificação e resistência a antimicrobianos de sorovares de Salmonella isolados de lingüiça frescal suína Prevalence, quantification, and antimicrobial drug resistance of Salmonella serovars isolated from fresh pork sausage

    Directory of Open Access Journals (Sweden)

    Denis Augusto Spricigo

    2008-12-01

    Full Text Available A Salmonella sp. é uma das principais causas mundiais de toxinfecção alimentar. Nos últimos anos, as preocupações têm se voltado para a carne e produtos suínos tanto no aspecto de saúde pública como na sua comercialização/exportação. O presente estudo tem como objetivos: 1 verificar a prevalência de sorovares de Salmonella sp. em lingüiças tipo frescal de matéria-prima suína comercializadas em Lages (SC, bem como o seu nível de contaminação; e 2 verificar o perfil de resistência aos antimicrobianos destes isolados. Para tanto, foram coletadas 200 amostras de nove marcas, em diferentes estabelecimentos comerciais. Foram isoladas Salmonella sp. em 27% (54, sendo o sorovar Derby o mais encontrado. Apenas uma amostra apresentou uma concentração de microorganismos maior que 1,100 NMP.g-1, valor normalmente tido como necessário para causar infecção por Salmonella do grupo não-tifóide. Posteriormente, os 60 isolados foram submetidos ao teste de susceptibilidade in vitro, frente a 14 antimicrobianos. Entre esses isolados, 56,67% apresentaram resistência a pelo menos um dos antimicrobianos testados e o perfil de multirresistência foi encontrado em 20%. A prevalência elevada de produtos positivos para Salmonella sp. pode representar um risco ao consumidor, principalmente considerando-se o alto número de isolados resistentes encontrado neste estudo.Salmonella sp. is one of the main causes of food poisoning. In the last years, the main focus has been on beef and swine products because of both public health concerns and commercialization/exportation. This study was conducted in order to: 1 verify the prevalence of Salmonella serovars in fresh pork sausages commercialized in Lages, state of Santa Catarina and analyze its level of contamination; and 2 determine the profile of antimicrobial resistance of Salmonella sp. isolates. For this purpose, 200 samples of nine brands were collected from different commercial stores

  1. Different phenotypic and molecular mechanisms associated with multidrug resistance in Gram-negative clinical isolates from Egypt

    Directory of Open Access Journals (Sweden)

    Helmy OM

    2017-12-01

    Full Text Available Omneya M Helmy, Mona T Kashef Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt Objectives: We set out to investigate the prevalence, different mechanisms, and clonal relatedness of multidrug resistance (MDR among third-generation cephalosporin-resistant Gram-negative clinical isolates from Egypt.Materials and methods: A total of 118 third-generation cephalosporin-resistant Gram-negative clinical isolates were included in this study. Their antimicrobial susceptibility pattern was determined using Kirby–Bauer disk diffusion method. Efflux pump-mediated resistance was tested by the efflux-pump inhibitor-based microplate assay using chlorpromazine. Detection of different aminoglycoside-, β-lactam-, and quinolone-resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using random amplification of polymorphic DNA.Results: Most of the tested isolates exhibited MDR phenotypes (84.75%. The occurrence of efflux pump-mediated resistance in the different MDR species tested was 40%–66%. Acinetobacter baumannii isolates showed resistance to most of the tested antibiotics, including imipenem. The blaOXA-23-like gene was detected in 69% of the MDR A. baumannii isolates. The MDR phenotype was detected in 65% of Pseudomonas aeruginosa isolates, of which only 23% exhibited efflux pump-mediated resistance. On the contrary, efflux-mediated resistance to piperacillin and gentamicin was recorded in 47.5% of piperacillin-resistant and 25% of gentamicin-resistant MDR Enterobacteriaceae. Moreover, the plasmid-mediated quinolone-resistance genes (aac(6’-Ib-cr, qnrB, and qnrS were detected in 57.6% and 83.33% of quinolone-resistant MDR Escherichia coli and Klebsiella pneumoniae isolates, respectively. The β-lactamase-resistance gene blaSHV-31 was detected for the first time in one MDR K. pneumoniae isolate from an endotracheal tube specimen in Egypt

  2. Emergence of Salmonella genomic island 1 (SGI1) among Proteus mirabilis clinical isolates in Dijon, France.

    Science.gov (United States)

    Siebor, Eliane; Neuwirth, Catherine

    2013-08-01

    Salmonella genomic island 1 (SGI1) is often encountered in antibiotic-resistant Salmonella enterica and exceptionally in Proteus mirabilis. We investigated the prevalence of SGI1-producing clinical isolates of P. mirabilis in our hospital (Dijon, France). A total of 57 strains of P. mirabilis resistant to amoxicillin and/or gentamicin and/or trimethoprim/sulfamethoxazole isolated from August 2011 to February 2012 as well as 9 extended-spectrum β-lactamase (ESBL)-producing P. mirabilis from our collection were tested for the presence of SGI1 by PCR. The complete SGI1 structure from positive isolates [backbone and multidrug resistance (MDR) region] was sequenced. SGI1 was detected in 7 isolates; 5 out of the 57 isolates collected during the study period (9%) and 2 out of the 9 ESBL-producing strains of our collection. The structures of the seven SGI1s were distinct. Three different backbones were identified: one identical to the SGI1 backbone from the epidemic Salmonella Typhimurium DT104, one with variations already described in SGI1-K from Salmonella Kentucky (deletion and insertion of IS1359 in the region spanning from S005 to S009) and one with a variation never detected before (deletion from S005 to S009). Six different MDR regions were identified: four simple variants containing resistance genes already described and two variants harbouring a very complex structure including regions derived from several transposons and IS26 elements with aphA1a never reported to date in SGI1. SGI1 variants are widely distributed among P. mirabilis clinical strains and might spread to other commensal Enterobacteriaceae. This would become a serious public health problem.

  3. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1.

    Science.gov (United States)

    Huguet, Kevin T; Gonnet, Mathieu; Doublet, Benoît; Cloeckaert, Axel

    2016-08-31

    The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.

  4. A Comparison of Non-Typhoidal Salmonella from Humans and Food Animals Using Pulsed-Field Gel Electrophoresis and Antimicrobial Susceptibility Patterns

    Science.gov (United States)

    Sandt, Carol H.; Fedorka-Cray, Paula J.; Tewari, Deepanker; Ostroff, Stephen; Joyce, Kevin; M’ikanatha, Nkuchia M.

    2013-01-01

    Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoidal Salmonella isolated from ill humans in Pennsylvania and from food animals before retail. Human clinical isolates were received from 2005 through 2011 during routine public health operations in Pennsylvania. Isolates from cattle, chickens, swine and turkeys were recovered during the same period from federally inspected slaughter and processing facilities in the northeastern United States. We found that subtyping Salmonella isolates by PFGE revealed differences in antimicrobial susceptibility patterns and, for human Salmonella, differences in sources and invasiveness that were not evident from serotyping alone. Sixteen of the 20 most common human Salmonella PFGE patterns were identified in Salmonella recovered from food animals. The most common human Salmonella PFGE pattern, Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS), was associated with more cases of invasive salmonellosis than all other patterns. In food animals, this pattern was almost exclusively (99%) found in Salmonella recovered from chickens and was present in poultry meat in every year of the study. Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS) was associated with susceptibility to all antimicrobial agents tested in 94.7% of human and 97.2% of food animal Salmonella isolates. In contrast, multidrug resistance (resistance to three or more classes of antimicrobial agents) was observed in five PFGE patterns. Typhimurium patterns JPXX01.0003 (JPXX01.0003 ARS) and JPXX01.0018 (JPXX01.0002 ARS), considered together, were associated with resistance to five or more classes of antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT), in 92% of human and 80% of food

  5. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.

    Science.gov (United States)

    Yılmaz, Çiğdem; Özcengiz, Gülay

    2017-06-01

    The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. However, shortly after they were introduced to clinical practice, the development of resistance was emerged. The decreasing interest from antibiotic industry in spite of rapid global emergence of antibiotic resistance is a tough dilemma from the pointview of public health. The efficiency of antimicrobial treatment is determined by both pharmacokinetics and pharmacodynamics. In spite of their selective toxicity, antibiotics still cause severe, life-threatening adverse reactions in host body mostly due to defective drug metabolism or excessive dosing regimen. The present article aims at updating current knowledge on pharmacokinetics/pharmacodynamics concepts and models, toxicity of antibiotics as well as antibiotic resistance mechanisms, resistome analyses and search for novel antibiotic resistance determinants with special emphasis given to the-state-of-the-art regarding multidrug efflux pumps and their additional physiological functions in stress adaptation and virulence of bacteria. All these issues are highly linked to each other and not only important for most efficient and prolonged use of current antibiotics, but also for discovery and development of new antibiotics and novel inhibitors of antibiotic resistance determinants of pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Chitosan as an effective inhibitor of multidrug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Costa, E M; Silva, S; Vicente, S; Veiga, M; Tavaria, F; Pintado, M M

    2017-12-15

    Over the last two decades worldwide levels of antibiotic resistance have risen leading to the appearance of multidrug resistant microorganisms. Acinetobacter baumannii is a known skin pathogen which has emerged as a major cause of nosocomial outbreaks due to its capacity to colonize indwelling medical devices and natural antibiotic resistance. With chitosan being an effective antimicrobial agent against antibiotic resistant microorganisms, the aim of this work was to access its potential as an alternative to traditional antimicrobials in the management of A. baumannii growth. What the results showed was that both chitosan MW's tested were active upon A. baumannii's planktonic and sessile growth. For planktonic growth MICs and MBCs were obtained at relatively low concentrations (0.5-2mg/mL) while for sessile growth chitosan proved to be an effective inhibitor of A. baumannii's adhesion and biofilm formation. Considering these results chitosan shows a high potential for control of A. baumannii infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Factors influencing survival in patients with multidrug-resistant Acinetobacter baumannii infection

    Directory of Open Access Journals (Sweden)

    Mariana Lima Prata-Rocha

    Full Text Available Multidrug-resistant (MDR Acinetobacter baumannii (Acb is a rapidly emerging pathogen in healthcare settings. The aim of this study was to evaluate the predictors of poor outcome in patients with MDR Acb. This is the first report documenting factors influencing survival in patients with MDR Acb in this tertiary hospital. This study is a prospective of the hospital epidemiology database. A total of 73 patients with 84 Acb isolates were obtained between August 2009 and October 2010 in this hospital. In the present study, the 30-day mortality rate was 39.7%. Of 84 Acb isolates, 50 (59% were MDR, nine (11% were pan-resistant, and 25 (30% were non-MDR. The non-MDR isolates were used as the control group. The factors significantly associated with multidrug resistance included previous surgeries, presence of comorbidity (renal disease, use of more than two devices, parenteral nutrition, and inappropriate antimicrobial therapy. Significant predictors of 30-day mortality in the univariate analysis included pneumonia, diabetes mellitus, renal disease, use of more than two devices, and inappropriate antimicrobial therapy administered within two days of the onset of infection. The factors associated with mortality in patients with MDR Acb infection in this study were: age > 60 years, pneumonia, diabetes mellitus, renal disease, use of more than two invasive procedures, and inappropriate antimicrobial therapy. Vigilance is needed to prevent outbreaks of this opportunistic and deadly pathogen.

  8. Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers

    Directory of Open Access Journals (Sweden)

    Brisebois Ronald

    2007-08-01

    Full Text Available Abstract Background Military members, injured in Afghanistan or Iraq, have returned home with multi-drug resistant Acinetobacter baumannii infections. The source of these infections is unknown. Methods Retrospective study of all Canadian soldiers who were injured in Afghanistan and who required mechanical ventilation from January 1 2006 to September 1 2006. Patients who developed A. baumannii ventilator associated pneumonia (VAP were identified. All A. baumannii isolates were retrieved for study patients and compared with A. baumannii isolates from environmental sources from the Kandahar military hospital using pulsed-field gel electrophoresis (PFGE. Results During the study period, six Canadian Forces (CF soldiers were injured in Afghanistan, required mechanical ventilation and were repatriated to Canadian hospitals. Four of these patients developed A. baumannii VAP. A. baumannii was also isolated from one environmental source in Kandahar – a ventilator air intake filter. Patient isolates were genetically indistinguishable from each other and from the isolates cultured from the ventilator filter. These isolates were resistant to numerous classes of antimicrobials including the carbapenems. Conclusion These results suggest that the source of A. baumannii infection for these four patients was an environmental source in the military field hospital in Kandahar. A causal linkage, however, was not established with the ventilator. This study suggests that infection control efforts and further research should be focused on the military field hospital environment to prevent further multi-drug resistant A. baumannii infections in injured soldiers.

  9. The value of microscopic-observation drug susceptibility assay in the diagnosis of tuberculosis and detection of multidrug resistance.

    Science.gov (United States)

    Sertel Şelale, Denİz; Uzun, Meltem

    2018-01-01

    Inexpensive, rapid, and reliable tests for detecting the presence and drug susceptibility of Mycobacterium tuberculosis complex (MTBC) are urgently needed to control the transmission of tuberculosis. In this study, we aimed to assess the accuracy and speed of the microscopic-observation drug susceptibility (MODS) assay in the identification of MTBC and detection of multidrug resistance. Sputum samples from patients suspected to have tuberculosis were simultaneously tested with MODS and conventional culture [Löwenstein-Jensen (LJ) culture, BACTEC MGIT™ 960 (MGIT) system], and drug susceptibility testing (MGIT system) methods. A total of 331 sputum samples were analyzed. Sensitivity and specificity of MODS assay for detection of MTBC strains were 96% and 98.8%, respectively. MODS assay detected multidrug resistant MTBC isolates with 92.3% sensitivity and 96.6% specificity. Median time to culture positivity was similar for MGIT (8 days) and MODS culture (8 days), but was significantly longer with LJ culture (20 days) (p tuberculosis and detection of multidrug resistance. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  10. Vaccination against Salmonella Infection: the Mucosal Way.

    Science.gov (United States)

    Gayet, Rémi; Bioley, Gilles; Rochereau, Nicolas; Paul, Stéphane; Corthésy, Blaise

    2017-09-01

    Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti- Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy. Copyright © 2017 American Society for Microbiology.

  11. Epidemiology of multi-drug resistant staphylococci in cats, dogs and people in Switzerland

    OpenAIRE

    Decristophoris, Paola Maria Aurelia

    2011-01-01

    Background: The human relationship with cats and dogs has been suggested to be of potential concern to public health because of the possible role of pets as reservoir of antibiotic resistant microorganisms. Here I suggest the “One Health” interdisciplinary approach to be helpful towards the understanding of the role of pets in antibiotic resistance spreading, considering also the socio-emotional context of the human-pet relationship. Methods: I investigated the presence of multi-drug resis...

  12. A comparison of cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn chicks and Salmonella-resistant mice

    Directory of Open Access Journals (Sweden)

    Bogomolnaya Lydia M

    2008-10-01

    Full Text Available Abstract Background Salmonellosis is one of the most important bacterial food borne illnesses worldwide. A major source of infection for humans is consumption of chicken or egg products that have been contaminated with Salmonella enterica serotype Typhimurium, however our knowledge regarding colonization and persistence factors in the chicken is small. Results We compared intestinal and systemic colonization of 1-week-old White Leghorn chicks and Salmonella-resistant CBA/J mice during infection with Salmonella enterica serotype Typhimurium ATCC14028, one of the most commonly studied isolates. We also studied the distribution of wild type serotype Typhimurium ATCC14028 and an isogenic invA mutant during competitive infection in the cecum of 1-week-old White Leghorn chicks and 8-week-old CBA/J mice. We found that although the systemic levels of serotype Typhimurium in both infected animal models are low, infected mice have significant splenomegaly beginning at 15 days post infection. In the intestinal tract itself, the cecal contents are the major site for recovery of serotype Typhimurium in the cecum of 1-week-old chicks and Salmonella-resistant mice. Additionally we show that only a small minority of Salmonellae are intracellular in the cecal epithelium of both infected animal models, and while SPI-1 is important for successful infection in the murine model, it is important for association with the cecal epithelium of 1-week-old chicks. Finally, we show that in chicks infected with serotype Typhimurium at 1 week of age, the level of fecal shedding of this organism does not reflect the level of cecal colonization as it does in murine models. Conclusion In our study, we highlight important differences in systemic and intestinal colonization levels between chick and murine serotype Typhimurium infections, and provide evidence that suggests that the role of SPI-1 may not be the same during colonization of both animal models.

  13. Prevalence and antimicrobial resistance of Salmonella serovars isolated from poultry in Ghana

    DEFF Research Database (Denmark)

    Andoh, Linda A.; Dalsgaard, Anders; Obiri-Danso, K.

    2016-01-01

    Poultry are possible sources of non-typhoidal Salmonella serovars which may cause foodborne human disease. We conducted a cross-sectional study to determine the prevalence of Salmonella serovars in egg-laying hens and broilers at the farm level and their susceptibility to antimicrobials commonly...... of antimicrobials). Of the resistant strains (n = 57), the most significant were to nalidixic acid (89·5%), tetracycline (80·7%), ciprofloxacin (64·9%), sulfamethazole (42·1%), trimethoprim (29·8%) and ampicillin (26·3%). All S. Kentucky strains were resistant to more than two antimicrobials and shared common...

  14. Multidrug-resistant Bacteroides fragilis group on the rise in Europe?

    DEFF Research Database (Denmark)

    Hartmeyer, G N; Sóki, J; Nagy, E

    2012-01-01

    We report a case of multidrug-resistance (MDR) in a strain of Bacteroides fragilis from a blood culture and abdominal fluid in a Danish patient. The patient had not been travelling for several years and had not received antibiotics prior to the present case. We also summarize the cases that have...... been reported to date of MDR B. fragilis group in Europe. As far as we know, a case like this with MDR B. fragilis has not been described in Scandinavia before....

  15. Surgery as an Adjunctive Treatment for Multidrug-Resistant Tuberculosis : An Individual Patient Data Metaanalysis

    NARCIS (Netherlands)

    Fox, Gregory J.; Mitnick, Carole D.; Benedetti, Andrea; Chan, Edward D.; Becerra, Mercedes; Chiang, Chen-Yuan; Keshavjee, Salmaan; Koh, Won-Jung; Shiraishi, Yuji; Viiklepp, Piret; Yim, Jae-Joon; Pasvol, Geoffrey; Robert, Jerome; Shim, Tae Sun; Shin, Sonya S.; Menzies, Dick; van der Werf, Tjip S.

    2016-01-01

    Background. Medical treatment for multidrug-resistant (MDR)-tuberculosis is complex, toxic, and associated with poor outcomes. Surgical lung resection may be used as an adjunct to medical therapy, with the intent of reducing bacterial burden and improving cure rates. We conducted an individual

  16. Perspectives on multidrug-resistant organisms at the end of life : A focus group study of staff members and institutional stakeholders.

    Science.gov (United States)

    Herbst, Franziska A; Heckel, Maria; Tiedtke, Johanna M; Adelhardt, Thomas; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2018-03-16

    There is a lack of research into how hospital staff and institutional stakeholders (i. e. institutional representatives from public health authorities, hospital hygiene, and the departments of microbiology, palliative care, and geriatrics) engage with patients who are carriers of multidrug-resistant organisms and receiving end-of-life care. Knowledge of their experiences, workload, and needs should be considered in dealing with hospitalized carriers of multidrug-resistant organisms as well as staff education. This study explored and compared staff members' and stakeholders' perspectives on multidrug-resistant organisms and on provision of end-of-life care to carrier patients. In this study four focus groups consisting of hospital staff members and institutional stakeholders were formed within a mixed-methods parent study in a palliative care unit at a university clinic and a geriatric ward of a Catholic and academic teaching hospital. Participants discussed results from staff and stakeholder interviews from a former study phase. Data were analyzed according to Grounded Theory and perspectives of staff members and institutional stakeholders were compared and contrasted. Key issues debated by staff members (N = 19) and institutional stakeholders (N = 10) were 1) the additional workload, 2) reasons for uncertainty about handling carrier patients, 3) the format of continuing education, and 4) the preferred management approach for dealing with multidrug-resistant organism carrier patients. Although similar barriers (e. g. colleagues' ambiguous opinions) were identified, both groups drew different conclusions concerning the management of these barriers. While institutional stakeholders recommended making decisions on hygiene measures under consideration of the specific patient situation, staff members preferred the use of standardized hygiene measures which should be applied uniformly to all patients. Staff members and institutional stakeholders

  17. Salmonella enterica serovars Typhimurium and Enteritidis causing mixed infections in febrile children in Mozambique

    Directory of Open Access Journals (Sweden)

    García V

    2018-01-01

    Full Text Available Vanesa García,1 Inácio Mandomando,2,3 Joaquim Ruiz,4 Silvia Herrera-León,5 Pedro L Alonso,3,4 M Rosario Rodicio1 1Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; 2Centro de Investigação em Saúde de Manhiça, 3Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique; 4ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, 5Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain Background and purpose: Invasive nontyphoidal salmonellosis, mostly caused by serovars Typhimurium and Enteritidis of Salmonella enterica, has emerged as a major public health problem in sub-Saharan Africa. The aim of this study was the clinical and microbiological characterization of nontyphoidal salmonellosis episodes affecting febrile children in Mozambique. Patients and methods: The clinical records of the patients were evaluated, and S. enterica isolates were characterized with regard to serovar, phage type, antimicrobial resistance (phenotype/responsible genes, plasmid content, pulsed-field gel electrophoresis, and multilocus sequence typing. Results: Fifteen S. Typhimurium and 21 S. Enteritidis isolates were recovered from blood samples of 25 children, the majority with underlying risk factors. With regard to phage typing, most isolates were either untypeable or reacted but did not conform, revealing that a number of previously unrecognized patterns are circulating in Mozambique. Most isolates were multidrug-resistant, with nearly all of the responsible genes located on derivatives of serovar-specific virulence plasmids. ST313 and ST11 were the predominant sequence types associated with S. Typhimurium and S. Enteritidis, respectively, and the uncommon ST1479 was also detected in S. Enteritidis. A distinct XbaI fragment of ~350 kb was associated with pulsed-field gel electrophoresis patterns of

  18. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    OpenAIRE

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps i...

  19. A simple reduction-sensitive micelles co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance

    Directory of Open Access Journals (Sweden)

    Li J

    2017-11-01

    Full Text Available Jun Li,1,* Ruitong Xu,2,* Xiao Lu,3 Jing He,1 Shidai Jin1 1Department of Medical Oncology, 2Department of General Practice, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 3Department of Medical Oncology, Changshu No 1 People’s Hospital, Changshu, People’s Republic of China *These authors contributed equally to this work Abstract: Multidrug resistance (MDR is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX and dasatinib (DAS for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy. Keywords: redox responsive, overcoming multidrug resistant, co-delivery, paclitaxel, dasatinib 

  20. Effect of methylxanthines derived from pentoxifylline on P-glycoprotein mediated multidrug resistance

    International Nuclear Information System (INIS)

    Kupsakova, I.; Drobna, Z.; Breier, A.

    2001-01-01

    In this paper study of multidrug resistance (MDR) antitumor agents - P-glycoprotein (PGP) is presented. The ability of pentoxifylline (PTX) to depress resistance mediated by overexpression of PGP in mouse leukemic cell line L 121 ONCR resistant to vincristine (VCR) was described earlier. PTX depressed the resistance of these cells in a dose and time dependent manner. This effect was accompanied by increased level of [ 3 H]-vincristine accumulation by these cells. The methylxanthines with different length of this aliphatic side chain were synthesized and their capability to depress MDR was tested. The results indicated that the position of carbonyl group plays a crucial role for the ability of the derivative to depress MDR of L 121 ONCR cells. (authors)

  1. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa.

    Science.gov (United States)

    Pang, X Y; Yang, Y S; Yuk, H G

    2017-09-01

    This study aimed to evaluate the biofilm formation and disinfectant resistance of Salmonella cells in mono- and dual-species biofilms with Pseudomonas aeruginosa, and to investigate the role of extracellular polymeric substances (EPS) in the protection of biofilms against disinfection treatment. The populations of Salmonella in mono- or dual-species biofilms with P. aeruginosa on stainless steel (SS) coupons were determined before and after exposure to commercial disinfectant, 50 μg ml -1 chlorine or 200 μg ml -1 Ecolab ® Whisper™ V (a blend of four effective quaternary ammonium compounds (QAC)). In addition, EPS amount from biofilms was quantified and biofilm structures were observed using scanning electron microscopy (SEM). Antagonistic interactions between Salmonella and P. aeruginosa resulted in lower planktonic population level of Salmonella, and lower density in dual-species biofilms compared to mono-species biofilms. The presence of P. aeruginosa significantly enhanced disinfectant resistance of S. Typhimurium and S. Enteritidis biofilm cells for 2 days, and led to an average of 50% increase in polysaccharides amount in dual-species biofilms than mono-species biofilms of Salmonella. Microscopy observation showed the presence of large microcolonies covered by EPS in dual-species biofilms but not in mono-species ones. The presence of P. aeruginosa in dual-species culture inhibited the growth of Salmonella cells in planktonic phase and in biofilms, but protected Salmonella cells in biofilms from disinfection treatment, by providing more production of EPS in dual-species biofilms than mono-species ones. This study provides insights into inter-species interaction, with regard to biofilm population dynamics and disinfectant resistance. Thus, a sanitation protocol should be designed considering the protective role of secondary species to pathogens in biofilms on SS surface which has been widely used at food surfaces and manufacturers. © 2017 The Society

  2. Analysis of the protein profiles of the antibiotic-resistant Salmonella ...

    African Journals Online (AJOL)

    The emergent Salmonella typhimurium definitive phage type (DT) 104 is of particular global concern due to its frequent isolation and multiple antibiotic resistances. There is thus a need to know the kind of proteins expressed by S. typhimurium DT104 so as to provide a basis for developing an intervention. This study ...

  3. Multidrug Resistance Among New Tuberculosis Cases Detecting Local Variation Through Lot Quality-assurance Sampling

    NARCIS (Netherlands)

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-01-01

    Background: Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper

  4. Genotyping and serotyping of macrolide and multidrug resistant Streptococcus pneumoniae isolated from carrier children

    Directory of Open Access Journals (Sweden)

    S F Swedan

    2016-01-01

    Full Text Available Aims: Streptococcus pneumoniae, an opportunistic pathogen commonly carried asymptomatically in the nasopharynx of children, is associated with increasing rates of treatment failures due to a worldwide increase in drug resistance. We investigated the carriage of S. pneumoniae in children 5 years or younger, the identity of prevalent serotypes, the rates of resistance to macrolides and other antimicrobial agents and the genotypes responsible for macrolide resistance. Materials and Methods: Nasopharyngeal swabs were collected from 157 children under 5 years for cultural isolation of S. pneumoniae. Antibiogram of isolates  was determined using the disk diffusion test, and the minimal inhibitory concentration to macrolides was determined using the E-test. Isolate serotypes and macrolide resistance genes, erm(B and mef(E, were identified using multiplex polymerase chain reactions. Results: S. pneumoniae was recovered from 33.8% of children; 41.9% among males and 21.9% among females (P = 0.009. The highest carriage rate occurred among age groups 7-12 months and 49-60 months. Most frequent serotypes were 19F, 6A/B, 11A, 19A, 14 and 15B/C.  Resistance to macrolides was 60.4%. Resistance to oxacillin, trimethoprim/sulfamethoxazole and clindamycin was present among 90.6%, 54.7% and 32.1% of isolates, respectively. All isolates were susceptible to chloramphenicol, levofloxacin and vancomycin. Isolates resistant to one or more macrolide drugs were more likely to be multidrug resistant. Resistance to clindamycin or oxacillin coexisted with macrolide resistance. Among the erythromycin-resistant isolates, erm(B, mef(E and erm(B and mef(E genes were present at rates of 43.8%, 37.5% and 6.3%, respectively. Erm(B and mef(E were associated with very high level and moderate-to-high level resistance to macrolides, respectively. Conclusion: A significant proportion of children harboured macrolide and multidrug-resistant S. pneumoniae.

  5. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mouse ATP-Binding Cassette (ABC) Transporters Conferring Multi-Drug Resistance

    Science.gov (United States)

    Shuaizhang, L I; Zhang, Wen; Yin, Xuejiao; Xing, Shilai; Xie, Qunhui; Cao, Zhengyu; Zhao, Bin

    2015-04-28

    The ABC (ATP-binding cassette) transporter is one of the largest and most ancient protein families with members functioning from protozoa to human. The resistance of cancer and tumor cells to anticancer drugs is due to the over-expression of some ABC transporters, which may finally lead to chemotherapy failure. The mouse ABC transporters are classified into seven subfamilies by phylogenetic analysis. The mouse ABC transporter gene, alias, chromosomal location and function have been determined. Within the ABC super-family, the MDR transporters (Abcb1, Abcc1, Abcg2) in mouse models have been proved to be valuable to investigate the biochemistry and physiological functions. This review concentrates on the multidrug resistance of mouse ABC transporters in cancer and tumor cells.

  7. Identification of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy Farm Environmental Samples.

    Science.gov (United States)

    Cummings, K J; Rodriguez-Rivera, L D; Norman, K N; Ohta, N; Scott, H M

    2017-06-01

    A recent increase in plasmid-mediated quinolone resistance (PMQR) has been detected among Salmonella isolated from humans in the United States, and it is necessary to determine the sources of human infection. We had previously isolated Salmonella from dairy farm environmental samples collected in Texas, and isolates were tested for anti-microbial susceptibility. Two isolates, serotyped as Salmonella Muenster, showed the discordant pattern of nalidixic acid susceptibility and intermediate susceptibility to ciprofloxacin. For this project, whole-genome sequencing of both isolates was performed to detect genes associated with quinolone resistance. The plasmid-mediated qnrB19 gene and IncR plasmid type were identified in both isolates. To our knowledge, this is the first report of PMQR in Salmonella isolated from food animals or agricultural environments in the United States. © 2016 Blackwell Verlag GmbH.

  8. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    Science.gov (United States)

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  9. Distribution of extended-spectrum cephalosporin resistance determinants in Salmonella enterica and Escherichia coli isolated from broilers in southern Japan.

    Science.gov (United States)

    Shahada, F; Chuma, T; Kosugi, G; Kusumoto, M; Iwata, T; Akiba, M

    2013-06-01

    This study was conducted to investigate the distribution and diversity of extended-spectrum cephalosporin (ESC) resistance determinants in Salmonella enterica and Escherichia coli obtained from the same cecal samples and to provide evidence of transmission of the resistance determinants among these bacteria in broiler farms in southern Japan. Salmonella enterica and E. coli were characterized by serotyping and multilocus sequence typing, respectively. An antimicrobial susceptibility test, plasmid analysis, and identification and localization of resistance genes were performed to determine the relatedness of ESC resistance determinants among the isolates. Of 48 flocks examined, 14 had S. enterica. In total, 57 S. enterica isolates were obtained, 45 of which showed ESC resistance. Extended-spectrum cephalosporin-resistant E. coli were also obtained from all of these ESC-resistant Salmonella-positive samples. β-Lactamase genes, blaTEM-52 (38 isolates), blaCTX-M-14 (1 isolate), and blaCMY-2 (6 isolates), were carried by conjugative untypable or IncP plasmids detected in the S. enterica serovars Infantis and Manhattan. The β-lactamase genes blaCTX-M-14 (3 isolates), blaCTX-M-15 (3 isolates), blaSHV-2 (1 isolate), blaSHV-12 (2 isolates), and blaCMY-2 (32 isolates) associated with IncI1-Iγ, IncFIB, IncFIC, IncK, IncB/O, and IncY plasmids were detected in E. coli co-isolates. Restriction mapping revealed similar plasmids in Salmonella Infantis and Salmonella Manhattan and in different sequence types of E. coli. Intraspecies transmission of plasmids was suggested within S. enterica and E. coli populations, whereas interspecies transmission was not observed. This study highlights the importance of plasmids as carriers of ESC resistance determinants.

  10. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    Science.gov (United States)

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  11. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance

    Directory of Open Access Journals (Sweden)

    Ebrahim Babapour

    2016-06-01

    Conclusions: Since most of the multidrug resistant strains produce biofilm, it seems necessary to provide continuous monitoring and determination of antibiotic susceptibility of clinical A. baumannii. This would help to select the most appropriate antibiotic for treatment.

  12. [Antimicrobial susceptibility of animal and food isolates of Salmonella enterica].

    Science.gov (United States)

    Junod, Tania; López-Martin, Juana; Gädicke, Paula

    2013-03-01

    Bacterial resistance to one or more antimicrobiak is worrisome. To determine the susceptibility to antimicrobials of Salmonella entérica isolates from animáis and food, from the Laboratory of Veterinary Microbiology at the University of Concepción. The samples were isolated according to traditional microbiological methods standardized protocols. Resistance was determined by the Kirby-Bauer method and minimal inhibitory concentration (MIC), following Clinical and Laboratory Standards Institute recommendations (2008). Nine serotypes were identified among the 68 isolates. Strains were resistant to one or more antibiotics and 11 patterns of resistance were identified. Multidrug resistance (MDR) was observed in 20.5% of the strains tested. The most common was Oxytetracycline resistance (69.1%). Infood, the predominant serotype was S. Derby (2.9%) and S. Senftenberg (2.9%), which is commonly found infood intended for animal consumption. In samples of animal origin, the predominant serotypes were S. infantis (33.8%) and S. Group E (3.9;-;-) (23.5%). The frequeney of resistance found and the impending risk that these strains could reach humans through the food chain, should prompt a follow-up study of this pathogen.

  13. Draft Genome Sequence of an Invasive Multidrug-Resistant Strain, Pseudomonas aeruginosa BK1, Isolated from a Keratitis Patient

    KAUST Repository

    Jeganathan, Lakshmi Priya; Prakash, Logambiga; Neelamegam, Sivakumar; Antony, Aju; Alqarawi, Sami; Prajna, Lalitha; Devarajan, Bharanidharan; Mohankumar, Vidyarani

    2014-01-01

    Pseudomonas aeruginosa infections are difficult to treat due to the presence of a multitude of virulence factors and antibiotic resistance. Here, we report the draft genome sequence of P. aeruginosa BK1, an invasive and multidrug-resistant strain

  14. Synthesis of multidrug resistance modulator LY335979 labeled with deuterium and tritium

    International Nuclear Information System (INIS)

    Czeskis, B.A.

    1997-01-01

    DIDEUTERO AND DITRITIOISOTOPOMERS OF THE MULTIDRUG RESISTANCE MODULATOR LY335979 WERE PREPARED BY INITIAL BROMINATION OF 5-HYDROXYQUINOLINE UNDER ACIDIC CONDITIONS FOLLOWED BY MITSUNOBU COUPLING OF 6,8-DIBROMO-5-HYDROXYQUINOLINE WITH (S)-GLYCIDOL. OPENING OF THE RESULTING EPOXIDE WITH DIBENZOSUBERYLPIPERAZINE LY335995 RESULTED IN DIBROMOANALOG OF LY335979, WHICH WAS FINALLY REDUCTIVELY DEBROMINATED WITH DEUTERIUM OR TRITIUM IN THE PRESENCE OF PALLADIUM ON CARBON. (AUTHOR)

  15. Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Jia; Wu, Lei; Kou, Longfa; Xu, Meng; Sun, Jin; Wang, Yongjun; Fu, Qiang; Zhang, Peng; He, Zhonggui

    2016-11-20

    Novel enoxaparin sodium-PLGA hybrid nanocarries (EPNs) were successfully designed for sustained delivery of hydrophilic cationic doxorubicin hydrochloride (DOX) and to overcome multidrug resistance (MDR). By incorporation of the negative polymer of enoxaparin sodium (ES), DOX was highly encapsulated into EPNs with an encapsulation efficiency of 92.49%, and ES effectively inhibited the proliferation of HUVEC cell lines. The in vivo pharmacokinetics study after intravenous injection indicated that DOX-loaded EPNs (DOX-EPNs) exhibited a higher area under the curve (AUC) and a longer half-life (t 1/2 ) in comparison with DOX solution (DOX-Sol). The biodistribution study demonstrated that DOX-EPNs increased the DOX level in plasma and decreased the accumulation of DOX in liver and spleen. Compared with DOX-Sol, DOX-EPNs increased the cytotoxicity in P-gp over-expressing MCF-7/Adr cells, attributed to the higher intracellular efficiency of DOX produced by the EPNs. DOX-EPNs entered into resistant tumor cells by multiple endocytosis pathways, which resulted in overcoming the multidrug resistance of MCF-7/Adr cells by escaping the efflux induced by P-gp transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Visualization of multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Hendrikse, N.H.; Franssen, E.J.F.; Graaf, W.T.A. van der; Vries, E.G.E. de; Vaalburg, W.

    1999-01-01

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other 99m Tc radiopharmaceuticals, such as 99m Tc-tetrofosmin and several 99 Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [ 11 C]colchicine, [ 11 C]verapamil and [ 11 C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumours. Uptake of [ 11 C]colchicine and [ 11 C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[ 11 C]acetyl-leukotriene E 4 provides an opportunity to study MRP

  17. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance.

    Science.gov (United States)

    Korytny, Alexander; Riesenberg, Klaris; Saidel-Odes, Lisa; Schlaeffer, Fransisc; Borer, Abraham

    2016-01-01

    The prevalence of antimicrobial co-resistance among ESBL-producing Enterobactereaceae is extremely high in Israel. Multidrug-resistant Proteus mirabilis strains (MDR-PM), resistant to almost all antibiotic classes have been described. The aim was to determine the risk factors for bloodstream infections caused by MDR-PM and clinical outcomes. A retrospective case-control study. Adult patients with PM bacteremia during 7 years were identified retrospectively and their files reviewed for demographics, underlying diseases, Charlson Comorbidity Index, treatment and outcome. One hundred and eighty patients with PM-bloodstream infection (BSI) were included; 90 cases with MDR-PM and 90 controls with sensitive PM (S-PM). Compared to controls, cases more frequently were from nursing homes, had recurrent hospital admissions in the past year and received antibiotic therapy in the previous 3 months, were bedridden and suffered from peripheral vascular disease and peptic ulcer disease (p < 0.001). Two-thirds of the MDR-PM isolates were ESBL-producers vs 4.4% of S-PM isolates (p < 0.001, OR = 47.6, 95% CI = 15.9-142.6). In-hospital crude mortality rate of patients with MDR-PM BSI was 37.7% vs 23.3% in those with S-PM BSI (p = 0.0359, OR = 2, 95% CI = 1.4-3.81). PM bacteremia in elderly and functionally-dependent patients is likely to be caused by nearly pan-resistant PM strains in the institution; 51.8% of the patients received inappropriate empiric antibiotic treatment. The crude mortality rate of patients with MDR-PM BSI was significantly higher than that of patients with S-PM BSI.

  18. Topicality of the problem of combined course of multi-drug resistant pulmonary tuberculosis with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    O. M. Raznatovska

    2017-08-01

    Full Text Available According to the World Health Organization, today in the world among the infectious chronic diseases one of the leading places and causes of death is multi-drug resistant tuberculosis of the lungs, and chronic non-communicable diseases – diabetes mellitus. The situation is complicated by the fact that the number of patients with combined course of these two heavy separate illnesses that complicate each other increases. It is established that with increasing severity of diabetes mellitus, tuberculosis process in the lungs becomes more complicate and deteriorates, and vice versa, the specific process complicates the course of diabetes mellitus, contributing to the development of diabetic complications. Against this background, the effectiveness of treatment of patients suffering from multi-drug resistant tuberculosis of the lungs in our country remains very low, mainly due to the toxic adverse reactions to antimycobacterial drugs of the reserve line, and in the case of adding diabetes mellitus, it deteriorates even more. The aim of this study was to review the scientific literature to determine the relevance of the study of combined course of multi-drug resistant tuberculosis of the lungs with diabetes mellitus and perspectives of innovative methods of diagnosis of diabetes mellitus. Early diagnosis of pre-diabetes, and autoimmune diseases will allow the use of timely correction techniques that prevents the development of diabetes mellitus, depending on its type, and in the future the development of serious irreversible processes, allow timely applying appropriate methods of correction of the revealed violations. Results. Very little amount of work is dedicated to the problem of combined course of multi-drug resistant tuberculosis of the lungs with diabetes mellitus, regardless of its type, the theme is relevant for today, in Ukraine there are no data regarding its study. This combined course of very difficult in the treatment diseases requires

  19. Contamination of the Clinical Microbiology Laboratory with Vancomycin-Resistant Enterococci and Multidrug- Resistant Enterobacteriaceae: Implications for Hospital and Laboratory Workers

    Science.gov (United States)

    Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.

    2001-01-01

    We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615

  20. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    Science.gov (United States)

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received 3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  1. Prevalence of Salmonella serovars, Listeria monocytogenes, and Escherichia coli O157:H7 in Mediterranean ready-to-eat meat products in Jordan.

    Science.gov (United States)

    Osaili, Tareq M; Al-Nabulsi, Anas A; Shaker, Reyad R; Jaradat, Ziad W; Taha, Mohammad; Al-Kherasha, Mohammed; Meherat, Mervet; Holley, Richard

    2014-01-01

    The presence of Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7 in ready-to-eat (RTE) meat products is considered a major concern for food control authorities worldwide. The aims of this study were to determine (i) the prevalence of Salmonella, L. monocytogenes, and E. coli O157:H7 in Mediterranean RTE chicken and beef (CB) products sold in Jordanian restaurants and (ii) the susceptibility of the isolates to antibiotics. A total of 1,028 samples of various types of RTE CB products (550 RTE chicken and 478 RTE beef products) were analyzed by methods described by the International Organization for Standardization followed by molecular confirmation of the isolates. The VITEK2 automated system was used for testing antibiotic susceptibility of the isolates. The overall prevalence of Salmonella serovars in RTE CB products was 0.5%, with 0.8 and 0.2% in RTE chicken and RTE beef, respectively. The overall prevalence of L. monocytogenes in RTE CB products was 2%, with 2.7 and 1.5% in RTE chicken and RTE beef products, respectively. E. coli O157:H7 was not isolated from any of the tested samples. Multidrug-resistant Salmonella and L. monocytogenes isolates were found. The majority of Salmonella isolates were sensitive to most of the tested antibiotics, and all of the isolates were resistant to more than one antibiotic. Similarly, more than 85% of L. monocytogenes isolates were sensitive to nine antibiotics, and the majority of L. monocytogenes isolates were resistant to fosfomycin and oxacillin.

  2. Occurrence and antimicrobial resistance of Salmonella spp. isolated from food other than meat in Poland

    Directory of Open Access Journals (Sweden)

    Łukasz Mąka

    2015-09-01

    Although, the level of resistance and multiresistance of Salmonella spp. isolates from non-meat foods was lower than in those from meat products, the presence of these resistant bacteria poses a real threat to the health of consumers.

  3. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Science.gov (United States)

    Fernández-Alarcón, Claudia; Singer, Randall S; Johnson, Timothy J

    2011-01-01

    Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  4. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Directory of Open Access Journals (Sweden)

    Claudia Fernández-Alarcón

    Full Text Available Incompatibility group A/C (IncA/C plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2 gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2 plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  5. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  6. Fecal Microbiota Transfer for Multidrug-Resistant Gram-Negatives: A Clinical Success Combined With Microbiological Failure.

    Science.gov (United States)

    Stalenhoef, Janneke E; Terveer, Elisabeth M; Knetsch, Cornelis W; Van't Hof, Peter J; Vlasveld, Imro N; Keller, Josbert J; Visser, Leo G; Kuijper, Eduard J

    2017-01-01

    Combined fecal microbiota transfer and antibiotic treatment prevented recurrences of urinary tract infections with multidrug-resistant (MDR) Pseudomonas aeruginosa , but it failed to eradicate intestinal colonization with MDR Escherichia coli . Based on microbiota analysis, failure was not associated with distinct diminished microbiota diversity.

  7. Prevalência e perfil de resistência a antimicrobianos de sorovares de Salmonella isolados de lingüiças suínas tipo frescal em Lages, SC Prevalence and profile of resistance to antimicrobials of Salmonella serovars isolated from raw pork sausage in Lages, SC

    Directory of Open Access Journals (Sweden)

    D.A. Spricigo

    2008-04-01

    Full Text Available The prevalence and profile of resistance to antimicrobials of Salmonella serovars isolated from raw pork sausage were studied in Lages county, Santa Catarina, Brazil. A total of 125 samples of 12 trademarks were collected in different commercial establishments. Salmonella sp. was present in 12.8% (16/125 of the samples and Typhimurium serovar was the most prevalent. Fourteen different antimicrobials were tested and most of the samples showed resistance to sulfonamide and tetracycline (81.2%. Eight positive samples (50% were resistant at least to four antimicrobials, being considered as multi-resistant Salmonella. Seven (58.3% trademarks were disagreement with the Brazilian law, representing a risk to the public health. The high level of resistance to the antimicrobials should produce a concern by the pig industry and veterinarians in order to prevent the transmission of resistant strains through the food chain.

  8. Recovery of Cephalosporin Resistant Escherichia coli and Salmonella from Pork, Beef and Chicken Marketed in Nova Scotia

    Directory of Open Access Journals (Sweden)

    Kevin R Forward

    2004-01-01

    Full Text Available BACKGROUND: Antimicrobial use in farm animals is a potentially important contributor to the emergence of antimicrobial resistance. Resistant Salmonella may lead to serious human infections and resistant Escherichia coli may transfer plasmid-encoded resistance genes to other pathogens.

  9. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  10. Antimicrobial resistance in Salmonella spp. recovered from patients admitted to six different hospitals in Tehran, Iran from 2007 to 2008

    DEFF Research Database (Denmark)

    Tajbakhsh, Mercedeh; Hendriksen, Rene S.; Nochi, Zahra

    2012-01-01

    were screened for the presence of Salmonella, serotyped, tested for antimicrobial susceptibility using disk diffusion and examined for the presence of relevant resistance genes and integrons by PCR. A total of 1,120 patients were screened for the presence of Salmonella. Out of 71 Salmonella isolates...... recovered, the following serovars were identified: 17 Typhi, 14 Paratyphi C, 13 Enteritidis, 11 Paratyphi B, 10 Paratyphi A and six Infantis. Most resistance was observed towards sulfamethoxazole (30%), tetracyclines (25%), nalidixic acid (22%), spectinomycin (17%), trimethoprim (15%), ampicillin (14......%) and kanamycin (14%). The tetracycline resistance genes tet(A), tet(B), and tet(G) were found in 28%, 14% and 6% of the tetracycline resistant isolates, respectively. The genes aadA, aadB, strA, strB and aphA1-Iab were present in 83%, 55%, 34%, 1% and 17% of the aminoglycoside resistant isolates, respectively...

  11. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group

    DEFF Research Database (Denmark)

    Iacono, M.; Villa, L.; Fortini, D.

    2008-01-01

    The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA-58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes...

  12. Prevalence and Antimicrobial Resistance of Salmonella Isolates Recovered from Retail Pork in Major Village Markets in Tai'an Region, China.

    Science.gov (United States)

    Miao, Zengmin; Li, Song; Qin, Kun; Zhou, Yufa

    2017-10-01

    The current study was undertaken to evaluate Salmonella contamination in retail pork at major village markets of the Tai'an region, China. In total, 200 retail pork samples were collected from four village markets between June 2015 and February 2016, of which 69 samples (34.5%) were determined to be positive for Salmonella. Eleven serotypes were identified from the 69 Salmonella isolates, and Salmonella Derby was the most common (18 of 69, 26.1%), followed by Typhimurium (17 of 69, 24.6%) and Meleagridis (11 of 69, 15.9%). Antimicrobial susceptibility testing showed that antimicrobial resistance against tetracycline was the most prevalent (42 of 69, 60.9%), but antimicrobial resistance against both ceftriaxone and cefotaxime was 1.4% (1 of 69) and 2.9% (2 of 69), respectively. Multilocus sequence typing revealed that the 69 Salmonella isolates were divided into 11 sequence types (STs), among which ST40 (18 of 69, 26.1%) was the most common, followed by ST34 (15 of 69, 21.7%) and ST64 (13 of 69, 18.8%). Collectively, retail pork at village markets in the Tai'an region has a high Salmonella contamination rate, and these isolates exhibit broad-spectrum antimicrobial resistance. However, the absence of a dominant ST demonstrates that the Salmonella isolates from retail pork may be of diverse origins.

  13. Development of a real-time PCR melt curve assay for simultaneous detection of virulent and antibiotic resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2014-12-01

    Multiple drug resistance in Salmonella is an emerging problem in the area of food safety. Depending on the virulence and antibiotic resistance characteristics of the Salmonella strain, infections of varying severity could result. In this study, a multiplex melt curve real-time PCR assay for the detection of virulent and antibiotic resistance strains of Salmonella was developed with two primer sets. The first set targets the virulence gene, invasin (invA), and tetracycline (tetG), streptomycin (aadA2) and sulphonamide (sulI) antibiotic resistance genes, and the second set amplifies ampicillin (blaPSE,blaTEM) and chloramphenicol (floR) resistance genes. The multiplex assay was evaluated using 41 Salmonella strains and was further tested on eight different artificially inoculated food samples. The fluorescent DNA intercalating dye, SYTO9, generated high resolution melt curve peaks and, hence, was used for the development of the assay. This multiplex assay worked efficiently over a DNA concentration range of 20 ng-200 fg and showed a sensitivity of 290 CFU/mL with serially diluted broth cultures. The detection limit for un-enriched artificially inoculated food samples was 10(4) CFU/g, but an enrichment period of 6 h allowed for detection of 10 CFU/g of cells in the samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bodipy-FL-Verapamil: A Fluorescent Probe for the Study of Multidrug Resistance Proteins

    Directory of Open Access Journals (Sweden)

    Anna Rosati

    2004-01-01

    Full Text Available Most of the substances used as fluorescent probes to study drug transport and the effect of efflux blockers in multidrug resistant cells have many drawbacks, such as toxicity, unspecific background, accumulation in mitochondria. New fluorescent compounds, among which Bodipy‐FL‐verapamil (BV, have been therefore proposed as more useful tools. The uptake of BV has been evaluated by cytofluorimetry and fluorescence microscopy using cell lines that overexpress P‐glycoprotein (P388/ADR and LLC‐PK1/ADR or MRP (multidrug resistance‐related protein (PANC‐1 and clinical specimens from patients. The effect of specific inhibitors for P‐glycoprotein (verapamil and vinblastine or MRP (MK571 and probenecid has been also studied. BV intracellular concentrations were significantly lower in the two P‐glycoprotein overexpressing cell lines in comparison with the parental lines. In addition, verapamil and vinblastine increased the intracellular concentrations of the dye; MK571 and probenecid, two MRP inhibitors, increased BV levels in PANC‐1 cells, that express this protein. These findings were confirmed in clinical specimens from patients. Fluorescence microscopy revealed a faint fluorescence emission in P‐glycoprotein or MRP expressing cell lines; however, treatment with specific inhibitors significantly increased the fluorescence. BV is a useful tool for studying multidrug resistance proteins with different techniques such as cytofluorimetry and fluorescence microscopy, but does not discriminate between P‐glycoprotein and MRP. In comparison with other classic fluorescent probes, the assay with this dye is extremely rapid, simple, not toxic for cells, devoid of fluorescent background, and can be useful in the clinical settings.

  15. Development of novel strategies to combat multidrug resistance mediated by efflux transporters and intracellular bacteria

    OpenAIRE

    Kuriakose, Jerrin

    2014-01-01

    Multidrug resistance (MDR) is the condition where cancer cells or microorganisms cease to respond to multiple drugs. MDR conferred by efflux transporters, that deprive the bioavailability of drugs at their site of action, are a threat to cancer and malarial chemotherapy. Specifically, the mammalian ABC transporter Pglycoprotein (P-gp) has undermined many drugs in treatment of cancer and other disease states. Mutations in the parasitic transporter Plasmodium falciparum chloroquine resistance t...

  16. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  17. Lung abscess following bronchoscopy due to multidrug-resistant Capnocytophaga sputigena adjacent to lung cancer with high PD-L1 expression.

    Science.gov (United States)

    Migiyama, Yohei; Anai, Moriyasu; Kashiwabara, Kosuke; Tomita, Yusuke; Saeki, Sho; Nakamura, Kazuyoshi; Okamoto, Shinichiro; Ichiyasu, Hidenori; Fujii, Kazuhiko; Kohrogi, Hirotsugu

    2018-04-24

    Lung abscess following flexible bronchoscopy is a rare and sometimes fatal iatrogenic complication. Here, we report the first case of a lung abscess caused by multidrug-resistant Capnocytophaga sputigena following bronchoscopy. A 67-year-old man underwent bronchoscopy to evaluate a lung mass. Seven days after transbronchial lung biopsy, he presented with an abscess formation in a lung mass. Empirical antibiotic therapy, including with garenoxacin, ampicillin/sulbactam, clindamycin and cefepime, was ineffective. Percutaneous needle aspiration of lung abscess yielded C. sputigena resistant to multiple antibiotics but remained susceptible to carbapenem. He was successfully treated by the combination therapy with surgery and with approximately 6 weeks of intravenous carbapenem. Finally he was diagnosed with a lung abscess with adenocarcinoma expressing high levels of programmed cell death ligand 1. The emergence of multidrug-resistant Capnocytophaga species is a serious concern for effective antimicrobial therapy. Clinicians should consider multidrug-resistant C. sputigena as a causative pathogen of lung abscess when it is refractory to antimicrobial treatment. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report

    Directory of Open Access Journals (Sweden)

    Beieler Alison M

    2009-02-01

    Full Text Available Abstract Introduction Multidrug-resistant Acinetobacter baumannii has become a significant cause of healthcare-associated infections, but few reports have addressed Acinetobacter baumannii infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants. Case presentation The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive Enterococcus and Acinetobacter baumannii (sensitive only to amikacin and imipenem. The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive Enterococcus and coagulase-negative Staphylococcus but no multidrug-resistant Acinetobacter baumannii. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem. Conclusion We describe the successful treatment of an acute infection from multidrug-resistant Acinetobacter baumannii with debridement and retention of the total hip arthroplasty, using

  19. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Kostka, Libor; Sivák, Ladislav; Cuchalová, Lucie; Hvězdová, Zuzana; Laga, Richard; Filippov, Sergey K.; Černoch, Peter; Pechar, Michal; Janoušková, Olga; Šírová, Milada; Etrych, Tomáš

    2017-01-01

    Roč. 245, 10 January (2017), s. 41-51 ISSN 0168-3659 R&D Projects: GA MZd(CZ) NV16-28600A; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : multidrug resistance * P-glycoprotein inhibitor * EPR effect Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 7.786, year: 2016

  20. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    Science.gov (United States)

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278