WorldWideScience

Sample records for multidrug resistance-linked abcg2

  1. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2.

    Science.gov (United States)

    Wang, De-Shen; Patel, Atish; Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J; Robey, Robert W; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T; Bates, Susan E; Ambudkar, Suresh V; Xu, Rui-Hua; Chen, Zhe-Sheng

    2014-06-30

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients.

  2. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    OpenAIRE

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2007-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plu...

  3. The naphthoquinones, vitamin K3 and its structural analog plumbagin, are substrates of the multidrug resistance-linked ABC drug transporter ABCG2

    Science.gov (United States)

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V.

    2008-01-01

    Vitamin K3 (Menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2 which are essential for blood clotting. The naturally occurring structural analog of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We, here, report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette (ABC) drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone, but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). They inhibited the binding of [125I]-Iodoarylazidoprazosin (IAAP), a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC50 values of 7.3 and 22.6 μM, respectively, but had no effect on the binding of this photoaffinity analog to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of this transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared to the control cells, suggesting that they are substrates of this transporter. Collectively, these data demonstrate for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function. PMID:18065489

  4. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance linked ATP binding cassette drug transporter ABCG2.

    Science.gov (United States)

    Shukla, Suneet; Wu, Chung-Pu; Nandigama, Krishnamachary; Ambudkar, Suresh V

    2007-12-01

    Vitamin K3 (menadione; 2-methyl-1,4-naphthoquinone) is a structural precursor of vitamins K1 and K2, which are essential for blood clotting. The naturally occurring structural analogue of this vitamin, plumbagin (5-hydroxy-menadione), is known to modulate cellular proliferation, apoptosis, carcinogenesis, and radioresistance. We here report that both vitamin K3 and plumbagin are substrates of the multidrug resistance-linked ATP binding cassette drug transporter, ABCG2. Vitamin K3 and plumbagin specifically inhibited the ABCG2-mediated efflux of mitoxantrone but did not have any effect on the ABCB1-mediated efflux of rhodamine 123. This inhibition of ABCG2 function was due to their interaction at the substrate-binding site(s). Vitamin K3 and plumbagin inhibited the binding of [(125)I]iodoarylazidoprazosin, a substrate of ABCG2, to this transporter in a concentration-dependent manner with IC(50) values of 7.3 and 22.6 micromol/L, respectively, but had no effect on the binding of the photoaffinity analogue to ABCB1. Both compounds stimulated ABCG2-mediated ATP hydrolysis and also inhibited the mitoxantrone-stimulated ATPase activity of the ABCG2 transporter, but did not have any significant effect on the ATPase activity of ABCB1. In a cytotoxicity assay, ABCG2-expressing HEK cells were 2.8- and 2.3-fold resistant to plumbagin and vitamin K3, respectively, compared with the control cells, suggesting that they are substrates of this transporter. Collectively, these data show for the first time that vitamin K3 is a substrate of the ABCG2 transporter. Thus, ABCG2 may have a role in the regulation of vitamin K3 levels in the body. In addition, vitamin K3 and its structural derivative, plumbagin, could potentially be used to modulate ABCG2 function.

  5. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

    Science.gov (United States)

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-11-01

    Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and delta 9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (-)-11-nor-9-carboxy-delta 9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates.

  6. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2

    DEFF Research Database (Denmark)

    Jackson, Scott M; Manolaridis, Ioannis; Kowal, Julia

    2018-01-01

    requires high-resolution structural insight. Here, we present cryo-EM structures of human ABCG2 bound to synthetic derivatives of the fumitremorgin C-related inhibitor Ko143 or the multidrug resistance modulator tariquidar. Both compounds are bound to the central, inward-facing cavity of ABCG2, blocking...

  7. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells

    DEFF Research Database (Denmark)

    Ozvegy, C.; Litman, Thomas; Szakacs, G.

    2001-01-01

    ABCG2 (also called MXR (3), BCRP (4), or ABCP (5) is a recently-identified ABC half-transporter, which causes multidrug resistance in cancer. Here we report that the expression of the ABCG2 protein in Sf9 insect cells resulted in a high-capacity, vanadate-sensitive ATPase activity in isolated...

  8. Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters

    Science.gov (United States)

    Zhang, Yun-Kai; Zhang, Guan-Nan; Wang, Yi-Jun; Patel, Bhargav A.; Talele, Tanaji T.; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-05-01

    ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment.

  9. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Vicky Goler-Baron

    2011-01-01

    Full Text Available Multidrug resistance (MDR is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and

  10. Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug transporter: implications for the emergence and reversal of cancer drug resistance.

    Science.gov (United States)

    Hegedüs, Csilla; Truta-Feles, Krisztina; Antalffy, Géza; Várady, György; Német, Katalin; Ozvegy-Laczka, Csilla; Kéri, György; Orfi, László; Szakács, Gergely; Settleman, Jeffrey; Váradi, András; Sarkadi, Balázs

    2012-08-01

    Human ABCG2 is a plasma membrane glycoprotein that provides physiological protection against xenobiotics. ABCG2 also significantly influences biodistribution of drugs through pharmacological tissue barriers and confers multidrug resistance to cancer cells. Moreover, ABCG2 is the molecular determinant of the side population that is characteristically enriched in normal and cancer stem cells. Numerous tumors depend on unregulated EGFR signaling, thus inhibition of this receptor by small molecular weight inhibitors such as gefitinib, and the novel second generation agents vandetanib, pelitinib and neratinib, is a promising therapeutic option. In the present study, we provide detailed biochemical characterization regarding the interaction of these EGFR inhibitors with ABCG2. We show that ABCG2 confers resistance to gefitinib and pelitinib, whereas the intracellular action of vandetanib and neratinib is unaltered by the presence of the transporter. At higher concentrations, however, all these EGFR inhibitors inhibit ABCG2 function, thereby promoting accumulation of ABCG2 substrate drugs. We also report enhanced expression of ABCG2 in gefitinib-resistant non-small cell lung cancer cells, suggesting potential clinical relevance of ABCG2 in acquired drug resistance. Since ABCG2 has important impact on both the pharmacological properties and anti-cancer efficiencies of drugs, our results regarding the novel EGFR inhibitors should provide useful information about their therapeutic applicability against ABCG2-expressing cancer cells depending on EGFR signaling. In addition, the finding that these EGFR inhibitors efficiently block ABCG2 function may help to design novel drug-combination therapeutic strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    Science.gov (United States)

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing

  12. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... analysis revealed overexpression of the ABCG2 gene. Western blot confirmed overexpression of ABCG2; neither P-glycoprotein nor MRP overexpression was detected. These results suggest that ABCG2 plays a role in resistance to flavopiridol....

  13. Role of Abcg2 During Mouse Embroyonic Stem Cell Diffferentiation

    Science.gov (United States)

    Role of Abcg2 During Mouse Embryonic Stem Cell Differentiation. Abcg2 is a multidrug resistance ATP-binding cassette (ABC) transporter whose activity may be considered a hallmark of stem cell plasticity. The role of Abcg2 during early embryogenesis, however, is unclear. Studies...

  14. ABCG2 inhibition as a therapeutic approach for overcoming ...

    Indian Academy of Sciences (India)

    2016-02-16

    Feb 16, 2016 ... Breast cancer resistance protein (BCRP, ABCP or MXR)/ATP-binding cassette subfamily G member 2 (ABCG2) was characterized as a multidrug resistance efflux transporter in 1998. ABCG2 physiologically acts as a part of a self- defence mechanism for the organism; it enhances eliminating of toxic ...

  15. ABCG2 Inhibition as a Therapeutic Approach for Overcoming ...

    Indian Academy of Sciences (India)

    Breast cancer resistance protein (BCRP, ABCP or MXR) / ATP-binding cassette subfamily G member 2 (ABCG2) was characterized as a multidrug resistance efflux transporter in 1998. ABCG2 physiologically acts as a part of a self-defense mechanism for the organism; it enhances eliminating of toxic xenobiotic substances ...

  16. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind

    2015-01-01

    transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...

  17. Inhibition of breast cancer resistance protein (ABCG2 in human myeloid dendritic cells induces potent tolerogenic functions during LPS stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-O Jin

    Full Text Available Breast cancer resistance protein (ABCG2, a member of the ATP-binding cassette transporters has been identified as a major determinant of multidrug resistance (MDR in cancer cells, but ABC transporter inhibition has limited therapeutic value in vivo. In this research, we demonstrated that inhibition of efflux transporters ABCG2 induced the generation of tolerogenic DCs from human peripheral blood myeloid DCs (mDCs. ABCG2 expression was present in mDCs and was further increased by LPS stimulation. Treatment of CD1c+ mDCs with an ABCG2 inhibitor, Ko143, during LPS stimulation caused increased production of IL-10 and decreased production of pro-inflammatory cytokines and decreased expression of CD83 and CD86. Moreover, inhibition of ABCG2 in monocyte-derived DCs (MDDCs abrogated the up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in these cells in response to LPS. Furthermore, CD1c+ mDCs stimulated with LPS plus Ko143 inhibited the proliferation of allogeneic and superantigen-specific syngenic CD4+ T cells and promoted expansion of CD25+FOXP3+ regulatory T (Treg cells in an IL-10-dependent fashion. These tolerogenic effects of ABCG2 inhibition could be abolished by ERK inhibition. Thus, we demonstrated that inhibition of ABCG2 in LPS-stimulated mDCs can potently induce tolerogenic potentials in these cells, providing crucial new information that could lead to development of better strategies to combat MDR cancer.

  18. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides

    NARCIS (Netherlands)

    Sesink, A.L.A.; Arts, I.C.W.; Boer, de V.C.J.; Breedveld, P.; Schellens, J.H.M.; Hollman, P.C.H.; Russel, F.G.M.

    2005-01-01

    The intestinal absorption of the flavonoid quercetin in rats is limited by the secretion of glucuronidated metabolites back into the gut lumen. The objective of this study was to determine the role of the intestinal efflux transporters breast cancer resistance protein (Bcrp1)/Abcg2 and multidrug

  19. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides.

    NARCIS (Netherlands)

    Sesink, A.L.; Arts, I.C.; Boer, V.C. de; Breedveld, P.; Schellens, J.H.; Hollman, P.C.H.; Russel, F.G.M.

    2005-01-01

    The intestinal absorption of the flavonoid quercetin in rats is limited by the secretion of glucuronidated metabolites back into the gut lumen. The objective of this study was to determine the role of the intestinal efflux transporters breast cancer resistance protein (Bcrp1)/Abcg2 and multidrug

  20. Voruciclib, a Potent CDK4/6 Inhibitor, Antagonizes ABCB1 and ABCG2-Mediated Multi-Drug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Pranav Gupta

    2018-02-01

    Full Text Available Background/Aims: The overexpression of ATP-Binding Cassette (ABC transporters has known to be one of the major obstacles impeding the success of chemotherapy in drug resistant cancers. In this study, we evaluated voruciclib, a CDK 4/6 inhibitor, for its chemo-sensitizing activity in ABCB1- and ABCG2- overexpressing cells. Methods: Cytotoxicity and reversal effect of voruciclib was determined by MTT assay. The intracellular accumulation and efflux of ABCB1 and ABCG2 substrates were measured by scintillation counter. The effects on expression and intracellular localization of ABCB1 and ABCG2 proteins were determined by Western blotting and immunofluorescence, respectively. Vanadate-sensitive ATPase assay was done to determine the effect of voruciclib on the ATPase activity of ABCB1 and ABCG2. Flow cytometric analysis was done to determine the effect of voruciclib on apoptosis of ABCB1 and ABCG2-overexpressing cells and docking analysis was done to determine the interaction of voruciclib with ABCB1 and ACBG2 protein. Results: Voruciclib significantly potentiated the effect of paclitaxel and doxorubicin in ABCB1-overexpressing cells, as well as mitoxantrone and SN-38 in ABCG2-overexpressing cells. Voruciclib moderately sensitized ABCC10- overexpressing cells to paclitaxel, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, voruciclib increased the intracellular accumulation and decreased the efflux of substrate anti-cancer drugs from ABCB1- or ABCG2-overexpressing cells. However, voruciclib did not alter the expression or the sub-cellular localization of ABCB1 or ABCG2. Voruciclib stimulated the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner. Lastly, voruciclib exhibited a drug-induced apoptotic effect in ABCB1- or ABCG2- overexpressing cells. Conclusion: Voruciclib is currently a phase I clinical trial drug. Our findings strongly support its potential use in combination with conventional anti

  1. Identification of intra- and intermolecular disulfide bridges in the multidrug resistance transporter ABCG2

    DEFF Research Database (Denmark)

    Henriksen, Ulla Birk; Fog, Jacob U; Litman, Thomas

    2005-01-01

    cysteines predicted to be on the extracellular face of ABCG2. Upon mutation of Cys-592 or Cys-608 to alanine (C592A and C608A), ABCG2 migrated as a dimer in SDS-PAGE under non-reducing conditions; however, mutation of Cys-603 to Ala (C603A) caused the transporter to migrate as a single monomeric band....... Despite this change, C603A displayed efficient membrane targeting and preserved transport function. Because the transporter migrated as a dimer in SDS-PAGE, when only Cys-603 was present (C592A-C608A), the data suggest that Cys-603 forms a symmetrical intermolecular disulfide bridge in the ABCG2 homodimer...

  2. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    Science.gov (United States)

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  3. Effect of Walker A mutation (K86M) on oligomerization and surface targeting of the multidrug resistance transporter ABCG2

    DEFF Research Database (Denmark)

    Henriksen, Ulla Birk; Gether, Ulrik; Litman, Thomas

    2005-01-01

    The ATP binding cassette (ABC) half-transporter ABCG2 (MXR/BCRP/ABCP) is associated with mitoxantrone resistance accompanied by cross-resistance to a broad spectrum of cytotoxic drugs. Here we investigate the functional consequences of mutating a highly conserved lysine in the Walker A motif...

  4. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells.

    Science.gov (United States)

    Muthiah, Divya; Callaghan, Richard

    2017-11-15

    ZSTK474 is a potent phosphoinositide 3-kinase (PI3K) inhibitor that reduces cell proliferation via G 1 -arrest. However, there is little information on the susceptibility of this anticancer drug to resistance conferred by the multidrug pumps P-glycoprotein (ABCB1) and ABCG2. We have demonstrated that ZSTK474 generated cytotoxicity in cells over-expressing either pump with potency similar to that in drug sensitive cells. In addition, the co-administration of ZSTK474 with the cytotoxic anti-cancer drugs vinblastine and mitoxantrone caused a potentiated cytotoxic effect in both drug sensitive and efflux pump expressing cells. These observations suggest that ZSTK474 is unaffected by the presence of multidrug efflux pumps and may circumvent their activities. Indeed, ZSTK474 increased the cellular accumulation of calcein-AM and mitoxantrone in cells expressing ABCB1 and ABCG2, respectively. ZSTK474 treatment also resulted in reduced expression of both efflux pumps in multidrug resistant cancer cells. Measurement of ABCB1 or ABCG2 mRNA levels demonstrated that the reduction was not due to altered transcription. Similarly, inhibitor studies showed that the proteasomal degradation pathway for ABCB1 and the lysosomal route for ABCG2 degradation were unaffected by ZSTK474. Thus the mechanism underlying reduced ABCB1 and ABCG2 levels caused by ZSTK474 was due to a reduction in overall protein synthesis; a process influenced by the PI3K pathway. In summary, ZSTK474 is not susceptible to efflux by the resistance mediators ABCB1 and ABCG2. Moreover, it inhibits the drug transport function of the pumps and leads to a reduction in their cellular expression levels. Our observations demonstrate that ZSTK474 is a powerful anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High ABCC2 and Low ABCG2 Gene Expression Are Early Events in the Colorectal Adenoma-Carcinoma Sequence

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Vogel, Lotte K.; Kopp, Tine Iskov

    2015-01-01

    Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds...

  6. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity

    Directory of Open Access Journals (Sweden)

    Gozzi GJ

    2015-07-01

    Full Text Available Gustavo Jabor Gozzi,1,2 Zouhair Bouaziz,3 Evelyn Winter,1,4 Nathalia Daflon-Yunes,1 Mylène Honorat,1 Nathalie Guragossian,3 Christelle Marminon,3 Glaucio Valdameri,1,2 Andre Bollacke,5 Jean Guillon,6 Noël Pinaud,7 Mathieu Marchivie,8 Silvia M Cadena,2 Joachim Jose,5 Marc Le Borgne,3 Attilio Di Pietro11Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France; 2Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; 3Faculty of Pharmacy – ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France; 4Department of Pharmaceutical Sciences, PGFAR, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; 5Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany; 6ARNA Laboratory, Pharmaceutical Sciences UFR, INSERM U869, University of Bordeaux, Bordeaux Cedex, France; 7ISM – CNRS UMR 5255, University of Bordeaux Cedex, France; 8ICMCB CNRS-UPR 9048, University of Bordeaux, Pessac Cedex, FranceAbstract: Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2 inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N5-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1, whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower

  7. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines.

    Directory of Open Access Journals (Sweden)

    Maricla Galetti

    Full Text Available BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism.The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes.Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake.Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells.

  8. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Almind Knudsen, Lina

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette...... with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies....... transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1...

  9. ABCG2-overexpressing S1-M1-80 cell xenografts in nude mice keep original biochemistry and cell biological properties.

    Science.gov (United States)

    Wang, Fang; Liang, Yong-Ju; Wu, Xing-Ping; Su, Xiao-Dong; Fu, Li-Wu

    2012-03-01

    S1-M1-80 cells, derived from human colon carcinoma S1 cells, are mitoxantrone-selected ABCG2-overexpressing cells and are widely used in in vitro studies of multidrug resistance(MDR). In this study, S1-M1-80 cell xenografts were established to investigate whether the MDR phenotype and cell biological properties were maintained in vivo. Our results showed that the proliferation, cell cycle, and ABCG2 expression level in S1-M1-80 cells were similar to those in cells isolated from S1-M1-80 cell xenografts (named xS1-M1-80 cells). Consistently, xS1-M1-80 cells exhibited high levels of resistance to ABCG2 substrates such as mitoxantrone and topotecan, but remained sensitive to the non-ABCG2 substrate cisplatin. Furthermore, the specific ABCG2 inhibitor Ko143 potently sensitized xS1-M1-80 cells to mitoxantrone and topotecan. These results suggest that S1-M1-80 cell xenografts in nude mice retain their original cytological characteristics at 9 weeks. Thus, this model could serve as a good system for further investigation of ABCG2-mediated MDR.

  10. Generation of an ABCG2GFPn-puro transgenic line - A tool to study ABCG2 expression in mice

    International Nuclear Information System (INIS)

    Orford, Michael; Mean, Richard; Lapathitis, George; Genethliou, Nicholas; Panayiotou, Elena; Panayi, Helen; Malas, Stavros

    2009-01-01

    The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.

  11. Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1).

    Science.gov (United States)

    Kort, Anita; Durmus, Selvi; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2015-07-01

    Regorafenib is a novel multikinase inhibitor, currently approved for the treatment of metastasized colorectal cancer and advanced gastrointestinal stromal tumors. We investigated whether regorafenib is a substrate for the multidrug efflux transporters ABCG2 and ABCB1 and whether oral availability, brain and testis accumulation of regorafenib and its active metabolites are influenced by these transporters. We used in vitro transport assays to assess human (h)ABCB1- or hABCG2- or murine (m)Abcg2-mediated active transport at high and low concentrations of regorafenib. To study the single and combined roles of Abcg2 and Abcb1a/1b in oral regorafenib disposition and the impact of Cyp3a-mediated metabolism, we used appropriate knockout mouse strains. Regorafenib was transported well by mAbcg2 and hABCG2 and modestly by hABCB1 in vitro. Abcg2 and to a lesser extent Abcb1a/1b limited brain and testis accumulation of regorafenib and metabolite M2 (brain only) in mice. Regorafenib oral availability was not increased in Abcg2(-/-);Abcb1a/1b(-/-) mice. Up till 2 h, metabolite M5 was undetectable in plasma and organs. Brain and testis accumulation of regorafenib and brain accumulation of metabolite M2 are restricted by Abcg2 and Abcb1a/1b. Inhibition of these transporters may be of clinical relevance for patients with brain (micro)metastases positioned behind an intact blood-brain barrier.

  12. Generation of an ABCG2{sup GFPn-puro} transgenic line - A tool to study ABCG2 expression in mice

    Energy Technology Data Exchange (ETDEWEB)

    Orford, Michael; Mean, Richard; Lapathitis, George; Genethliou, Nicholas; Panayiotou, Elena; Panayi, Helen [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios 2370, Nicosia (Cyprus); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios 2370, Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-06-26

    The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.

  13. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.

    Science.gov (United States)

    Khunweeraphong, Narakorn; Stockner, Thomas; Kuchler, Karl

    2017-10-23

    The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.

  14. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences.

    Science.gov (United States)

    Haider, Ameena J; Cox, Megan H; Jones, Natalie; Goode, Alice J; Bridge, Katherine S; Wong, Kelvin; Briggs, Deborah; Kerr, Ian D

    2015-07-17

    ABCG2 is an ABC (ATP-binding cassette) transporter with a physiological role in urate transport in the kidney and is also implicated in multi-drug efflux from a number of organs in the body. The trafficking of the protein and the mechanism by which it recognizes and transports diverse drugs are important areas of research. In the current study, we have made a series of single amino acid mutations in ABCG2 on the basis of sequence analysis. Mutant isoforms were characterized for cell surface expression and function. One mutant (I573A) showed disrupted glycosylation and reduced trafficking kinetics. In contrast with many ABC transporter folding mutations which appear to be 'rescued' by chemical chaperones or low temperature incubation, the I573A mutation was not enriched at the cell surface by either treatment, with the majority of the protein being retained in the endoplasmic reticulum (ER). Two other mutations (P485A and M549A) showed distinct effects on transport of ABCG2 substrates reinforcing the role of TM helix 3 in drug recognition and transport and indicating the presence of intracellular coupling regions in ABCG2. © 2015 Authors.

  15. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity.

    Science.gov (United States)

    Sag, Duygu; Cekic, Caglar; Wu, Runpei; Linden, Joel; Hedrick, Catherine C

    2015-02-27

    ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here we demonstrate a role of ABCG1 as a mediator of tumour immunity. Abcg1(-/-) mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumour growth in Abcg1(-/-) mice is myeloid cell intrinsic and is associated with a phenotypic shift of the macrophages from a tumour-promoting M2 to a tumour-fighting M1 within the tumour. Abcg1(-/-) macrophages exhibit an intrinsic bias towards M1 polarization with increased NF-κB activation and direct cytotoxicity for tumour cells in vitro. Overall, our study demonstrates that the absence of ABCG1 inhibits tumour growth through modulation of macrophage function within the tumour, and illustrates a link between cholesterol homeostasis and cancer.

  16. Correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistance in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Hong-mei ZHANG

    2015-11-01

    Full Text Available Objective To investigate the correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistant gastric cancer in humans. Methods Fifty-two patients who were confirmed to have advanced gastric cancer with the aid of electronic endoscopy and pathology in the Department of Gastroenterology, Affiliated Hospital of Weifang Medical College, were enrolled in the study. According to the effect of FOL-FOX4 chemotherapy that these patients had experienced, they were divided into three groups: CR+PR (complete remission+partial remission group, SD (stable disease group and PD (progressive disease group. The expression levels of HIF-2α, ABCG2, and OCT-4 mRNA and protein were assessed in different groups by using RT-PCR and immunocytochemistry. Results Two patients achieved CR , 19 achieved PR , 25 showed SD, and 6 showed PD. In other words, CR+PR were seen in 21 patients (40.4%, SD in 25(48.1%, PD in 6(11.5%. In CR+PR group, the expression levels of HIF-2α, ABCG2 and OCT4 mRNA and protein were low, but the above mentioned expressions were significantly increased in SD group and PD group. The expression levels of HIF-2α, ABCG2 and Oct-4 mRNA and protein were highest in the PD group, lower in the SD group, and lowest in the CR + PR groups (all P<0.05. Conclusions The expression of the markers HIF-2α, ABCG2 and OCT4 in human tumor tissues is related to the effect of chemotherapy for gastric cancer. A high expression of tumor markers is perhaps the main reason for low efficacy of chemotherapy due to drug resistance. DOI: 10.11855/j.issn.0577-7402.2015.10.09

  17. Mouse ATP-Binding Cassette (ABC) Transporters Conferring Multi-Drug Resistance

    Science.gov (United States)

    Shuaizhang, L I; Zhang, Wen; Yin, Xuejiao; Xing, Shilai; Xie, Qunhui; Cao, Zhengyu; Zhao, Bin

    2015-04-28

    The ABC (ATP-binding cassette) transporter is one of the largest and most ancient protein families with members functioning from protozoa to human. The resistance of cancer and tumor cells to anticancer drugs is due to the over-expression of some ABC transporters, which may finally lead to chemotherapy failure. The mouse ABC transporters are classified into seven subfamilies by phylogenetic analysis. The mouse ABC transporter gene, alias, chromosomal location and function have been determined. Within the ABC super-family, the MDR transporters (Abcb1, Abcc1, Abcg2) in mouse models have been proved to be valuable to investigate the biochemistry and physiological functions. This review concentrates on the multidrug resistance of mouse ABC transporters in cancer and tumor cells.

  18. Interaction with the 5D3 monoclonal antibody is regulated by intramolecular rearrangements but not by covalent dimer formation of the human ABCG2 multidrug transporter

    DEFF Research Database (Denmark)

    Özvegy-Laczka, Csilla; Laczkó, Rozália; Hegedűs, Csilla

    2008-01-01

    D3 monoclonal antibody shows a function-dependent reactivity to an extracellular epitope of the ABCG2 transporter. In the current experiments we have further characterized the 5D3-ABCG2 interaction. The effect of chemical cross-linking and the modulation of extracellular S-S bridges...... on the transporter function and 5D3 reactivity of ABCG2 were investigated in depth. We found that several protein cross-linkers greatly increased 5D3 labeling in ABCG2 expressing HEK cells; however, there was no correlation between covalent dimer formation, the inhibition of transport activity, and the increase in 5...

  19. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    Science.gov (United States)

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    2015-05-01

    Full Text Available Benznidazole (BZ is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzi strains. ATP-binding cassette (ABC transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison of TcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1 transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1 transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1 genes of BZ-susceptible and resistant strains were investigated by computational tools.

  1. Implications of ABCG2 Expression on Irinotecan Treatment of Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Palshof, Jesper Andreas; Bruenner, Nils

    2017-01-01

    Background: One of the main chemotherapeutic drugs used on a routine basis in patients with metastatic colorectal cancer ((m)CRC) is the topoisomerase-1 inhibitor, irinotecan. However, its usefulness is limited by the pre-existing or inevitable development of resistance. The ATP-binding cassette...... to irinotecan treatment in CRC patients. Results: Few studies have evaluated the association between ABCG2 gene or protein expression and prognosis in CRC patients. Discordant results were reported. The discrepancies might be explained by the use of different criteria for interpretation of results...... (ABC) transporter ABCG2/breast cancer resistance protein (BRCP) through its function in xenobiotic clearance might play an important role in irinotecan resistance. With a goal to evaluate the clinical significance of ABCG2 measurements, we here review the current literature on ABCG2 in relation...

  2. CORRELATION BETWEEN CHEMOTHERAPY RESPONSE AND EXPRESSION PROFILES OF TRANSMEMBRANE PROTEINS: P-GLYCOPROTEIN (ABCB1, MRP2 (ABCC2, BCRP (ABCG2 IN PATIENTS WITH INVASIVE BREAST CANCER

    Directory of Open Access Journals (Sweden)

    К. Yu. Khristenko

    2016-01-01

    Full Text Available Overexpression of ABC drug transporters can cause multidrug resistance (MDR in cancer cells, which is a major obstacle in the success of cancer chemotherapy. Our study revealed a correlation between the expression of invasive breast cancer resistance-associated proteins, such as P-glycoprotein (ABCB1, MRP2 (ABCC2, BCRP (ABCG2 in tumor cells and pathologic response to neoadjuvant chemotherapy. The response to neoadjuvant chemotherapy was shown to be associated with a lack of BCRP expression in tumor cells. The pathologic tumor response was correlated with the presence of positive MRP2 expression and the expression level of P-glycoprotein in cells of invasive breast cancer. 

  3. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2

    DEFF Research Database (Denmark)

    Litman, Thomas; Jensen, Ulla; Hansen, Alastair

    2002-01-01

    Recent studies have characterized the ABC half-transporter associated with mitoxantrone resistance in human cancer cell lines. Encoded by the ABCG2 gene, overexpression confers resistance to camptothecins, as well as to mitoxantrone. We developed four polyclonal antibodies against peptides corres...

  4. Expression of Potential Cancer Stem Cell Marker ABCG2 is Associated with Malignant Behaviors of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Guang Zhang

    2013-01-01

    Full Text Available Background. Despite improvement in treatment, the prognosis of hepatocellular carcinoma (HCC remains disastrous. Cancer stem cells (CSCs may be responsible for cancer malignant behaviors. ATP-binding cassette, subfamily G, member 2 (ABCG2 is widely expressed in both normal and cancer stem cells and may play an important role in cancer malignant behaviors. Methods. The expression of ABCG2 in HCC tissues and SMMC-7721 cells was examined, and the relevance of ABCG2 expression with clinical characteristics was analyzed. ABCG2+ and ABCG2− cells were sorted, and the potential of tumorigenicity was determined. Expression level of ABCG2 was manipulated by RNA interference and overexpression. Malignant behaviors including proliferation, drug resistance, migration, and invasion were studied in vitro. Results. Expression of ABCG2 was found in a minor group of cells in HCC tissues and cell lines. ABCG2 expression showed tendencies of association with unfavorable prognosis factors. ABCG2 positive cells showed a superior tumorigenicity. Upregulation of ABCG2 enhanced the capacity of proliferation, doxorubicin resistance, migration, and invasion potential, while downregulation of ABCG2 significantly decreased these malignant behaviors. Conclusion. Our results indicate that ABCG2 is a potential CSC marker for HCC. Its expression level has a close relationship with tumorigenicity, proliferation, drug resistance, and metastasis ability.

  5. Hedgehog Pathway Inhibitor HhAntag691 Is a Potent Inhibitor of ABCG2/BCRP and ABCB1/Pgp

    Directory of Open Access Journals (Sweden)

    Yimao Zhang

    2009-01-01

    Full Text Available HhAntag691 (GDC-0449, a low-molecular weight inhibitor of the tumor-promoting hedgehog (Hh signaling pathway, has been used to treat medulloblastoma in animal models and has recently entered clinical trials for a variety of solid tumors. Here, we show that HhAntag691 inhibits multiple ATP-binding cassette (ABC transporters. ATP-binding cassette transporters are within a family of membrane proteins, the overexpression of which is associated with multidrug resistance, a major impediment to successful cancer treatment. HhAntag691 is a potent inhibitor of two ABC transporters, ABCG2/BCRP and ABCB1/Pgp, and is a mild inhibitor of ABCC1/MRP1. In ABCG2-overexpressing HEK293 cells, HhAntag691 increased retention of the fluorescent ABCG2 substrate BODIPY-prazosin and resensitized these cells to mitoxantrone, an antineoplastic ABCG2 substrate. In Madin-Darby canine kidney II cells engineered to overexpress Pgp or MRP1, HhAntag691 increased the retention of calcein-AM and resensitized them to colchicine. HhAntag691 also resensitized human non-small cell lung carcinoma cells NCI-H460/par and NCI-H460/MX20, which overexpress ABCG2 in response to mitoxantrone, to mitoxantrone, and to topotecan or SN-38. The IC50 values of HhAntag691 for inhibition of ABCG2 and Pgp were ∼1.4 and ∼3.0 µM, respectively. Because ABC transporters are highly expressed at the blood-brain barrier and on many tumor cells, they contribute significantly to treatment failure of many types of cancer, particularly of those within the neuraxis. In addition to its effect on Hh signaling, the ability of HhAntag691 and related compounds to inhibit two key ABC transporters could contribute to their effectiveness in treating malignancies.

  6. Pharmacogenetic Aspects of the Interaction of AT1 Receptor Antagonists With ATP-Binding Cassette Transporter ABCG2

    Directory of Open Access Journals (Sweden)

    Anne Ripperger

    2018-05-01

    Full Text Available The ATP-binding cassette transporter ABCG2 (BCRP and MXR is involved in the absorption, distribution, and elimination of numerous drugs. Thus, drugs that are able to reduce the activity of ABCG2, e.g., antihypertensive AT1 receptor antagonists (ARBs, may cause drug-drug interactions and compromise drug safety and efficacy. In addition, genetic variability within the ABCG2 gene may influence the ability of the transporter to interact with ARBs. Thus, the aim of this study was to characterize the ARB-ABCG2 interaction in the light of naturally occurring variations (F489L, R482G or amino acid substitutions with in silico-predicted relevance for the ARB-ABCG2 interaction (Y469A; M483F; Y570A. For this purpose, ABCG2 variants were expressed in HEK293 cells and the impact of ARBs on ABCG2 activity was studied in vitro using the pheophorbide A (PhA efflux assay. First, we demonstrated that both the F489L and the Y469A substitution, respectively, reduced ABCG2 protein levels in these cells. Moreover, both substitutions enhanced the inhibitory effect of candesartan cilexetil, irbesartan, losartan, and telmisartan on ABCG2-mediated PhA efflux, whereas the R482G substitution blunted the inhibitory effect of candesartan cilexetil and telmisartan in this regard. In contrast, the ARB-ABCG2 interaction was not altered in cells expressing either the M483F or the Y570A variant, respectively. In conclusion, our data indicate that the third transmembrane helix and adjacent regions of ABCG2 may be of major importance for the interaction of ARBs with the ABC transporter. Moreover, we conclude from our data that individuals carrying the F489L polymorphism may be at increased risk of developing ABCG2-related drug-drug interactions in multi-drug regimens involving ARBs.

  7. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways.

    Science.gov (United States)

    Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M

    2015-07-01

    Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Gradient phenomenon of multidrug resistance gene expression in breast cancer during neoadjuvant chemotherapy is related to disease progression

    Directory of Open Access Journals (Sweden)

    N. V. Litviakov

    2013-01-01

    Full Text Available The paper examined 106 patients with breast cancer (BC treated with neoadjuvant chemotherapy (NАС. In the biopsy material, derived from primary tumor before NAC and surgical samples after chemotherapy the expression of 8 multidrug resistance genes (MDR ABCB1, АВСВ2, ABCC1, ABCC2, АВСС5, ABCG1, ABCG2 и MVP was evaluated using quantitative RT-PCR. During the NAC course 75 % of patients manifested gradient phenomenon for gene expression that means a unidirectional change in the expression of all five MDR genes ABCB1, ABCC1, ABCC2, ABCG1 и ABCG2 closely associated with the NAC efficacy: the reduction in MDR gene expression was related to good response to NAC while the expression increase associated with poor response to NAC. In 25% of patients there was no such change in studied gene expression that means the lack of a gradient phenomenon. The objective was to study whether gradient phenomenon for MDR gene expression during NAC is related to disease free survival in breast cancer patients. Five-year metastasis-free survival in patients having a gradient phenomenon was 73 % versus 39 % in patients who lack a gradient phenomenon (log-rank test p=0,0018. So, the presence of a gradient phenomenon in patients is appeared to be associated with a good disease prognosis. It is assumed that the gradiThe paper examined 106 patients with breast cancer (BC treated with neoadjuvant chemotherapy (NАС. In the biopsy material, derived from primary tumor before NAC and surgical samples after chemotherapy the expression of 8 multidrug resistance genes (MDR ABCB1, АВСВ2, ABCC1, ABCC2, АВСС5, ABCG1, ABCG2 и MVP was evaluated using quantitative RT-PCR. During the NAC course 75 % of patients manifested gradient phenomenon for gene expression that means a unidirectional change in the expression of all five MDR genes ABCB1, ABCC1, ABCC2, ABCG1 и ABCG2 closely associated with the NAC efficacy: the reduction in MDR gene expression was related to good

  9. Upregulated miR-132 in Lgr5+ gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway.

    Science.gov (United States)

    Zhang, Lanfang; Guo, Xiaohe; Zhang, Dezhong; Fan, Yingying; Qin, Lei; Dong, Shuping; Zhang, Lanfang

    2017-09-01

    Cisplatin resistance has long been a major problem that restricts its use. A novel paradigm in tumor biology suggests that gastric tumor chemo-resistance is driven by gastric cancer stem cell-like (GCSCs). Growing evidence has indicated that microRNAs (miRNAs) contributes to chemo-resistance in gastric cancer (GC). Here, Lgr5 + cells derived from gastric cancer cell lines displayed stem cell-like features. Flow cytometry demonstrated the presence of a variable fraction of Lgr5 in 19 out of 20 GC specimens. By comparing the miRNA expression profiles of Lgr5 + GCSCs and Lrg5 - cells, we established the upregulation of miR-132 in Lgr5 + GCSCs. The enhanced miR-132 expression correlated chemo-resistance in GC patients. Kaplan-Meier survival curve showed that patients with low miR-132 expression survived obviously longer. Functional assays results indicated that miR-132 promoted cisplatin resistance in Lgr5 + GCSCs in vitro and in vivo. Further dual-luciferase reporter gene assays revealed that SIRT1 was the direct target of miR-132. The expression of miR-132 was inversely correlated with SIRT1 in gastric cancer specimens. Furthermore, through PCR array we discovered ABCG2 was one of the downstream targets of SIRT1. Overexpression of SIRT1 down-regulated ABCG2 expression by promoting the de-acetylation of the transcription factor CREB. CREB was further activated ABCG2 via binding to the promoter of ABCG2 to induce transcription. Thus, we concluded that miR-132 regulated SIRT1/CREB/ABCG2 signaling pathway contributing to the cisplatin resistance and might serve as a novel therapeutic target against gastric cancer. © 2017 Wiley Periodicals, Inc.

  10. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells.

    Science.gov (United States)

    Saeed, Mohamed E M; Meyer, Marion; Hussein, Ahmed; Efferth, Thomas

    2016-06-20

    Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. The bioactivity of South African medicinal plants may represent a basis for the development

  11. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues

    DEFF Research Database (Denmark)

    Fetsch, Patricia A; Abati, Andrea; Litman, Thomas

    2006-01-01

    was consistently found in alveolar pneumocytes, sebaceous glands, transitional epithelium of bladder, interstitial cells of testes, prostate epithelium, endocervical cells of uterus, squamous epithelium of cervix, small and large intestinal mucosa/epithelial cells, islet and acinar cells of pancreas, zona...... ABCG2 have a significant secretory function. These data suggest a dual function for ABCG2 in some tissues: the excretion of toxins and xenobiotics including anti-cancer agents and a potential, as-yet undefined role in the secretion of endogenous substrates....

  12. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane.

    NARCIS (Netherlands)

    Huls, M.; Brown, C.D.; Windass, A.S.; Sayer, R.; Heuvel, J.J.M.W. van den; Heemskerk, S.; Russel, F.G.M.; Masereeuw, R.

    2008-01-01

    The Breast Cancer Resistance Protein (BCRP/ABCG2) is a transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. This transporter is highly expressed in many tissues; however, in human kidney, only the mRNA was found in contrast to the mouse kidney,

  13. Genistein and Glyceollin Effects on ABCC2 (MRP2 and ABCG2 (BCRP in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Chandler Schexnayder

    2015-12-01

    Full Text Available The goal of the present study was to determine the effects of glyceollins on intestinal ABCC2 (ATP Binding Cassette C2, multidrug resistance protein 2, MRP2 and ABCG2 (ATP Binding Cassette G2, breast cancer resistance protein, BCRP function using the Caco-2 cell intestinal epithelial cell model. Glyceollins are soy-derived phytoestrogens that demonstrate anti-proliferative activity in several sources of cancer cells. 5 (and 6-carboxy-2′,7′-dichloroflourescein (CDF was used as a prototypical MRP2 substrate; whereas BODIPY-prazosin provided an indication of BCRP function. Comparison studies were conducted with genistein. Glyceollins were shown to inhibit MRP2-mediated CDF transport, with activity similar to the MRP2 inhibitor, MK-571. They also demonstrated concentration-dependent inhibition BCRP-mediated efflux of BODIPY-prazosin, with a potency similar to that of the recognized BCRP inhibitor, Ko143. In contrast, genistein did not appear to alter MRP2 activity and even provided a modest increase in BCRP efflux of BODIPY-prazosin. In particular, glyceollin inhibition of these two important intestinal efflux transporters suggests the potential for glyceollin to alter the absorption of other phytochemicals with which it might be co-administered as a dietary supplement, as well as alteration of the absorption of pharmaceuticals that may be administered concomitantly.

  14. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the ... lactam resistance in multidrug resistant E. coli in ESBL and non-ESBL isolates. .... and decreased susceptibility to carbapenems, particularly ertapenem (Perez et al.,.

  15. Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.

    Science.gov (United States)

    Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan

    2015-12-01

    Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. MarA-like regulator of multidrug resistance in Yersinia pestis.

    Science.gov (United States)

    Udani, Rupa A; Levy, Stuart B

    2006-09-01

    MarA47(Yp) from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47(Yp) gene was overexpressed. The findings suggest that marA47(Yp) is a marA ortholog in Y. pestis.

  17. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2

    NARCIS (Netherlands)

    Hooijberg, J. H.; Broxterman, H. J.; Kool, M.; Assaraf, Y. G.; Peters, G. J.; Noordhuis, P.; Scheper, R. J.; Borst, P.; Pinedo, H. M.; Jansen, G.

    1999-01-01

    Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence

  18. Multidrug-Resistant Candida

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-01-01

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance...... can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients....... Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites...

  19. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.

  20. Relationship Between Substance Abuse and Multidrug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Sadya Afroz

    2012-07-01

    Full Text Available This case control study was conducted between January to June 2010 to determine the relationship between substance abuse and multidrug- resistant tuberculosis. A total of 73 cases were selected purposively, from culture- positive multidrug- resistant tuberculosis patients admitted in the National Institute of Diseases of the Chest and Hospital, Dhaka and compared with 81 un-matched controls, recruited from the cured patients of pulmonary tuberculosis who attended several DOTS centers of ‘Nagar Shastho Kendra’ under Urban Primary Health Care Project in Dhaka city. Data were collected by face to face interview and documents’ review, using a pre- tested structured questionnaire and a checklist. Multidrug- resistance was found to be associated with smoking status (χ2 = 11.76; p = 0.01 and panmasala use (χ2 = 8.28; p = 0.004. The study also revealed that alcohol consumption and other substance abuse such as jarda, sadapata, gul, snuff, heroine, cannabis, injectable drugs was not associated with the development of multidrug- resistant tuberculosis. Relationship between substance abuse and multidrug- resistant tuberculosis are more or less similar in the developing countries. Bangladesh is not out of this trend. The present study revealed the same fact, which warrants actions targeting specific factors. Further study is recommended to assess the magnitude and these factors related to the development of multidrug- resistant tuberculosis in different settings in our country. Ibrahim Med. Coll. J. 2012; 6(2: 50-54

  1. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Background: Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. Objectives: This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta.

  2. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  3. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  4. Expression of multidrug resistance proteins in retinoblastoma

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  5. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    Science.gov (United States)

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  6. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  7. Development of a model for functional studies of ABCG2 (breast cancer resistance protein) efflux employing a standard BeWo clone (B24).

    Science.gov (United States)

    Crowe, Andrew; Keelan, Jeffrey A

    2012-10-01

    Human choriocarcinoma-derived BeWo cells express high levels of breast cancer resistance protein (BCRP/ABCG2) with no functional P-glycoprotein (P-gp) (ABCB1) activity, making them a potential model to study bidirectional ABCG2-mediated drug transport. However, the original BeWo clone (B24) available to researchers does not form confluent monolayers with tight junctions required by the model. Our aim was to adapt culture conditions to attempt to generate confluent BeWo monolayers for drug transport studies using the standard B24 clone. BeWo cells (B24; American Type Culture collection [ATCC]) were cultured in six-well plates or polycarbonate millicell inserts in a number of media formulations, growth supplements, and basement membrane substitutes. Cells were examined for confluence by microscopy, and transepithelial electrical resistance (TEER) was measured daily; monolayer permeability was assessed when TEER had stabilized. Optimal growth rates were achieved in culture conditions consisting of Medium 199 (M199) supplemented with epidermal growth factor (EGF; 20 ng/mL), vitamin supplements, and 10% fetal calf serum (FCS) with collagen coating. A TEER of 170 Ω in 0.6 cm(2) inserts was achieved 2 weeks after seeding under optimal conditions. The cell-impermeable diffusion marker 5(6) carboxy-2,7dichlorodihydrofluorescein (C-DCDHF) had a permeability coefficient of 3.5×10(-6) cm/s, indicative of minimal paracellular permeability. ABCG2 expression, as determined by immunoblotting, remained unaffected by confluency. In conclusion, we describe culture conditions for the B24 BeWo clone that facilitate the formation of monolayers with tighter junctions and reduced paracellular transport compared to previously published models. These growth conditions provide a good model of ABCG2-mediated drug transport in a human placental cell line.

  8. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis (MDR-TB) treated with second generation ...

  9. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis. (MDR-TB) treated with second ...

  10. Multidrug Resistance in Infants and Children

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2018-02-01

    Full Text Available Bacterial infections may cause disease and death. Infants and children are often subject to bacterial infections. Antimicrobials kill bacteria protecting the infected patients andreducing the risk of morbidity and mortality caused by bacteria. The antibiotics may lose their antibacterial activity when they become resistant to a bacteria. The resistance to different antibiotics in a bacteria is named multidrug-resistance. Gram-negative bacilli, especially Escherichia coli, Klebsiella, Enterobacter, Salmonella, Shigella, Pseudomonas, Streptococcus, and Haemophilus influenzae type b, may become resistant. Amikacin ampicillin, amoxicillin, amoxiclav, cefuroxime, cefotaxime, ceftazidime, cefoperazone tetracycline, chloramphenicol, ciprofloxacin, and gentamicin may cause bacterial-resistance. Resistance to bacteria for several pathogens makes complications in the treatment of infections caused by them. Salmonella strains may become resistant to ampicillin, cephalotin, ceftriaxone, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline. Shigella strains may become resistant to ampicillin, cotrimoxazole, chloramphenicol, and streptomycin. Multidrug-resistance of Streptococcus pneumoniae may be due to β-lactams, macrolides, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Multidrug-resistance of Pseudomonas aeruginosa may become resistant to β-lactams, chloramphenicol, trimethoprim-sulfamethoxazole, and tetracycline. The antibacterial activity against Haemophilus strains may occur with ampicillin, sulbactam-ampicillin, trimethoprim-sulfamethoxazole, gentamicin, chloramphenicol, and ciprofloxacin. Multidrug-resistance of the Klebsiella species may be due with ampicillin, cefotaxime, cefuroxime, co-amxilav, mezlocillin, chloramphenicol, gentamicin, and ceftazidime. Multidrug-resistance of Escherichia coli may be caused by ampicillin, cotrimoxazole, chloramphenicol, ceftriaxone, and ceftazidime. Vibrio

  11. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  12. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    Science.gov (United States)

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2008-10-28

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.  Created: 10/28/2008 by Emerging Infectious Diseases.   Date Released: 10/28/2008.

  14. Polymorphisms in the xenobiotic transporter Multidrug Resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Østergaard, Mette; Christensen, Jane

    2009-01-01

    (rs5275) polymorphisms in the 3'-untranslated region. The polymorphisms were assessed together with lifestyle factors in a nested case-cohort study of 359 cases and a random cohort sample of 765 participants from the Danish prospective Diet, Cancer and Health study. Results Carriers of the variant......Background The xenobiotic transporters, Multidrug Resistance 1 (MDR1/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2) may restrict intestinal absorption of various carcinogens, including heterocyclic amines (HCA) and polycyclic aromatic hydrocarbons (PAH). Cyclooxygenase-2 (COX-2) derived...... prostaglandins promote gastrointestinal carcinogenesis, affecting angiogenesis, apoptosis, and invasiveness. The aim of this study was to investigate if polymorphisms in these genes were associated with risk of colorectal cancer (CRC), and to investigate possible interactions with lifestyle factors...

  15. [Establishment of human multidrug-resistant lung carcinoma cell line (D6/MVP)].

    Science.gov (United States)

    Ma, Sheng-lin; Feng, Jian-guo; Gu, Lin-hui; Ling, Yu-tian

    2003-03-01

    To establish human multidrug-resistant lung carcinoma cell line (D6/MVP) with its characteristics studied. Intermittent administration of high-dose MMC, VDS and DDP (MVP) was used to induce human lung carcinoma cell line (D6) to a multidrug-resistant variety (D6/MVP). MTT assay was used to study the multidrug resistance of D6/MVP to multianticarcinogen. Flow cytometry was used to study the cell cycle distribution and the expression of P-gp, multidrug resistance-associated protein (MRP) and GSH/GST. 1. D6/MVP was resistant to many anti-tumor agents, with the IC(50) 13.3 times higher and the drug resistance 2 - 6 times higher than D6, 2. The multiplication time of D6/MVP was prolonged and the cell number of S-phase decreased while that of G1- and G(2)-phase increased and 3. The expression of P-gp and MRP was enhanced significantly (96.2% vs 51.7%), but the expression of GSH/GST kept stable. D6/MVP is a multidrug-resistant cell line possessing the basic characteristics of drug-resistance.

  16. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions

    NARCIS (Netherlands)

    Breedveld, Pauline; Zelcer, Noam; Pluim, Dick; Sönmezer, Ozgür; Tibben, Matthijs M.; Beijnen, Jos H.; Schinkel, Alfred H.; van Tellingen, Olaf; Borst, Piet; Schellens, Jan H. M.

    2004-01-01

    The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1-4 (MRP1-4; ABCC1-4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an

  17. The imaging feature of multidrug-resistant tuberculosis

    International Nuclear Information System (INIS)

    Yang Jun; Zhou Xinhua; Li Xi; Fu Yuhong; Zheng Suhua; Lv Pingxin; Ma Daqing

    2004-01-01

    Objective: To evaluate the imaging features of multidrug-resistant tuberculosis by collecting multidrug-resistant tuberculosis verified by test of drug-sensitivity, which defined as resistance to three anti-tuberculosis drugs. Methods:Fifty-one cases of multidrug-resistant tuberculosis were categorized as group of observed, and 46 cases of drug sensitive tuberculosis were categorized as control. Cultures were positive for Mycobacterium tuberculosis in all cases with no other illness such as diabetes mellitus. All patients had chest radiographs available for review, while 64 cases had tomography and 30 cases had CT during the same time. All images were analyzed by three of the radiologists, disagreement among them was discussed and a consensus was reached. Results: There was no difference in the distribution of lesions between the multidrug-resistant tuberculosis group and control group. However, the radiological findings in the multidrug-resistant tuberculosis group were significantly more common than in control group, such as multiple nodules (10 cases), disseminated foci (23 cases), cavity (9 cases), and complications (10 cases). Comparing the dynamic cases, deteriorating cases were more commonly seen in observed group than in control group, while improved cases were less in observed group than in control group. Conclusion: Multidrug-resistant tuberculosis is the most serious tuberculosis, which is characterized with significant activity, more disseminated foci, cavity, and complications. The lesion deteriorated while correct anti-tuberculosis treatment is applied. (authors)

  18. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells.

    Science.gov (United States)

    Toussaint, Frédéric; Pierman, Baptiste; Bertin, Aurélie; Lévy, Daniel; Boutry, Marc

    2017-05-04

    Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia , which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min -1  mg -1 ) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  19. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  20. Activity of ABCG2 Is Regulated by Its Expression and Localization in DHT and Cyclopamine-Treated Breast Cancer Cells.

    Science.gov (United States)

    Chua, Vivian Y L; Larma, Irma; Harvey, Jennet; Thomas, Marc A; Bentel, Jacqueline M

    2016-10-01

    Elevated expression of the efflux transporter, ATP-binding cassette subfamily G isoform 2 (ABCG2) on the plasma membrane of cancer cells contributes to the development of drug resistance and is a key characteristic of cancer stem cells. In this study, gene expression analysis identified that treatment of the MCF-7 and T-47D breast cancer cell lines with the androgen, 5α-dihydrotestosterone (DHT), and the Hedgehog signaling inhibitor, cyclopamine downregulated ABCG2 mRNA levels. In MCF-7 cells, and in Hoechst 33342(lo) /CD44(hi) /CD24(lo) breast cancer stem-like cells isolated from MCF-7 cultures, ABCG2 was accumulated in cell-to-cell junction complexes and in large cytoplasmic aggresome-like vesicles. DHT treatments, which decreased cellular ABCG2 protein levels, led to diminished ABCG2 localization in both cell-to-cell junction complexes and in cytoplasmic vesicles. In contrast, cyclopamine, which did not alter ABCG2 protein levels, induced accumulation of ABCG2 in cytoplasmic vesicles, reducing its localization in cell-to-cell junction complexes. The reduced localization of ABCG2 at the plasma membrane of MCF-7 cells was associated with decreased efflux of the ABCG2 substrate, mitoxantrone, and increased sensitivity of cyclopamine-treated cultures to the cytotoxic effects of mitoxantrone. Together, these findings indicate that DHT and cyclopamine reduce ABCG2 activity in breast cancer cells by distinct mechanisms, providing evidence to advocate the adjunct use of analogous pharmaceutics to increase or prolong the efficacy of breast cancer treatments. J. Cell. Biochem. 117: 2249-2259, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143.

    Science.gov (United States)

    Abdel Gaber, Sara A; Müller, Patricia; Zimmermann, Wolfgang; Hüttenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud H; Stepp, Herbert

    2018-01-01

    Photodynamic therapy (PDT) of malignant brain tumors is a promising adjunct to standard treatment, especially if tumor stem cells thought to be responsible for tumor progression and therapy resistance were also susceptible to this kind of treatment. However, some photosensitizers have been reported to be substrates of ABCG2, one of the membrane transporters mediating resistance to chemotherapy. Here we investigate, whether inhibition of ABCG2 can restore sensitivity to photosensitizer chlorin e6-mediated PDT. Accumulation of chlorin e6 in wild type U87 and doxycycline-inducible U251 glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251 cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. Tumor sphere cultivation under low attachment conditions was used to enrich for cells with stem cell-like properties. PDT was done on monolayer cell cultures by irradiation with laser light at 665nm. Elevated levels of ABCG2 in U87 cells grown as tumor spheres or in U251 cells after ABCG2 induction led to a 6-fold lower accumulation of chlorin e6 and the light dose needed to reduce cell viability by 50% (LD50) was 2.5 to 4-fold higher. Both accumulation and PDT response can be restored by KO143, an efficient non-toxic inhibitor of ABCG2. Glioblastoma stem cells might escape phototoxic destruction by ABCG2-mediated reduction of photosensitizer accumulation. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The radiological spectrum of pulmonary multidrug-resistant tuberculosis: in HIV-Negative patients

    International Nuclear Information System (INIS)

    Zahirifard, S.; Amiri, M.V.; Bakhshayesh Karam, M.; Mirsaeidi, S.M.; Ehsanpour, A.; Masjedi, M.R.

    2003-01-01

    Background: Multidrug-resistant tuberculosis is a major worldwide health problem. In countries where tuberculosis is of moderate to high prevalence, the issue of Multidrug-resistant tuberculosis carries significant importance. Multidrug-resistant tuberculosis, similar to drug-sensitive tuberculosis, is contagious. Meanwhile its treatment is not only more difficult but also more expensive with lower success rates. Regarding clinical findings, there is no significant difference between Multidrug-resistant tuberculosis and drug-sensitive tuberculosis. Therefore determination of characteristic radiological findings in cases of Multidrug-resistant tuberculosis might be of help in early detection, and hence appropriate management of this disease condition. Objective: To explain the radiological spectrum of pulmonary Multidrug-resistant tuberculosis. Patients and methods: We retrospectively evaluated the radiographic images of 35 patients with clinically-and microbiologically- proven Multidrug-resistant tuberculosis admitted to our tertiary-care tuberculosis unit over a period of 13 months. The latest chest x-ray of all patients and the conventional chest CT scan without contrast of 15 patients were reviewed by three expert radiologists who rendered consensus opinion. Results: Of the 35 patients with imaging studies, 23 (66%) were male and 12 (34%) were female. The mean±SD age of participants was 38.2±17.3 (range: 16-20) years. 33 patients were known as secondary and only 2 had primary Multidrug-resistant tuberculosis. Chest radiography revealed cavitary lesion in 80% pulmonary infiltration in 89% and nodules in 80% of the cases. Pleurisy was the rarest finding observed in only 5 (14%) patients. All of 15 chest CT scans revealed cavitation, 93% of which were bilateral and multiple. Pleural involvement was seen in 93% of patients. Conclusion: Presence of multiple cavities, especially in both lungs, nodular and infiltrative lesions, and pleural effusion are main features

  3. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Directory of Open Access Journals (Sweden)

    Yi An

    Full Text Available It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP, which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  4. Multidrug resistance in pediatric urinary tract infections.

    Science.gov (United States)

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ).

  5. Multidrug-resistant tuberculosis, Somalia, 2010-2011.

    Science.gov (United States)

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal; Zignol, Matteo

    2013-03-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia.

  6. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  7. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  8. The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease

    Science.gov (United States)

    Sabeva, Nadezhda S.; Liu, Jingjing; Graf, Gregory A.

    2014-01-01

    Purpose of review This review summarizes recent developments in the activity, regulation, and physiology of the ABCG5 ABCG8 (G5G8) transporter and the use of its xenobiotic substrates, phytosterols, as cholesterol lowering agents in the treatment of cardiovascular disease. Recent progress has significant implications for the role of G5G8 and its substrates in complications associated with features of the metabolic syndrome. Recent findings Recent reports expand the clinical presentation of sitosterolemia to include platelet and adrenal dysfunction. The G5G8 sterol transporter is critical to hepatobiliary excretion of cholesterol under nonpathological conditions and has been linked to the cholesterol gallstone susceptibility. Finally, the cardiovascular benefits of cholesterol lowering through the use of phytosterol supplements were offset by vascular dysfunction, suggesting that alternative strategies to reduced cholesterol absorption offer greater benefit. Summary Insulin resistance elevates G5G8 and increases susceptibility to cholesterol gallstones. However, this transporter is critical for the exclusion of phytosterols from the absorptive pathways in the intestine. Challenging the limits of this protective mechanism through phytosterol supplementation diminishes the cardioprotective benefits of cholesterol lowering in mouse models of cardiovascular disease. PMID:19306529

  9. Multidrug resistance in enteric and other gram-negative bacteria.

    Science.gov (United States)

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  10. ABCG2 in peptic ulcer: gene expression and mutation analysis.

    Science.gov (United States)

    Salagacka-Kubiak, Aleksandra; Żebrowska, Marta; Wosiak, Agnieszka; Balcerczak, Mariusz; Mirowski, Marek; Balcerczak, Ewa

    2016-08-01

    The aim of this study was to evaluate the participation of polymorphism at position C421A and mRNA expression of the ABCG2 gene in the development of peptic ulcers, which is a very common and severe disease. ABCG2, encoded by the ABCG2 gene, has been found inter alia in the gastrointestinal tract, where it plays a protective role eliminating xenobiotics from cells into the extracellular environment. The materials for the study were biopsies of gastric mucosa taken during a routine endoscopy. For genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at position C421A, DNA was isolated from 201 samples, while for the mRNA expression level by real-time PCR, RNA was isolated from 60 patients. The control group of healthy individuals consisted of 97 blood donors. The dominant genotype in the group of peptic ulcer patients and healthy individuals was homozygous CC. No statistically significant differences between healthy individuals and the whole group of peptic ulcer patients and, likewise, between the subgroups of peptic ulcer patients (infected and uninfected with Helicobacter pylori) were found. ABCG2 expression relative to GAPDH expression was found in 38 of the 60 gastric mucosa samples. The expression level of the gene varies greatly among cases. The statistically significant differences between the intensity (p = 0.0375) of H. pylori infection and ABCG2 gene expression have been shown. It was observed that the more intense the infection, the higher the level of ABCG2 expression.

  11. Effect of levofloxacin, pazufloxacin, enrofloxacin, and meloxicam on the immunolocalization of ABCG-2 transporter protein in rabbit retina.

    Science.gov (United States)

    Khan, Adil Mehraj; Rampal, Satyavan; Sood, Naresh Kumar

    2018-03-01

    Adenosine triphosphate-binding cassette (ABC) sub-family G member-2 (ABCG-2) is a transporter protein, implicated for multi-drug efflux from tissues. This study evaluated the effect of fluoroquinolones; levofloxacin, pazufloxacin and enrofloxacin, and non-steroidal anti-inflammatory drug, meloxicam; on the immunolocalization of ABCG-2 transporter protein of rabbit retinas. Thirty-two male rabbits were randomly divided in to eight groups. Control group was gavaged, 2% benzyl alcohol in 5% dextrose since these chemicals are excipients of the drug preparations used in the treatment groups of this study. Four groups were exclusively gavaged, levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), pazufloxacin mesylate (10 mg/kg body weight b.i.d 12 h), enrofloxacin (20 mg/kg body weight o.d.), and meloxicam (0.2 mg/kg body weight o.d.), respectively. Three other groups were co-gavaged meloxicam with above fluoroquinolones, respectively. These drugs were administered for 21 days. ABCG-2 immunolocalization was mild in the retinas of control and levofloxacin-alone-treated groups. The immunolocalization intensity was significantly higher in meloxicam-alone-treated group when compared to control and levofloxacin-alone-treated groups. Immunolocalization of this transporter increased in the levofloxacin-meloxicam co-treated group when compared to the levofloxacin-alone-treated group. Highest immunolocalization was observed in the enrofloxacin-meloxicam co-treated group although the immunolocalization of all treatment groups, except the levofloxacin-alone-treated group, was significantly higher than the control and levofloxacin-alone-treated groups.

  12. Multidrug resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Bolhuis, Hendrik

    1996-01-01

    Multidrug resistance (MDR) was initially recongnized as the major cause of the failure of the drug-based treatment of human cancers. It has become increasingly clear that MDR occurs in mammalian cells but also in lower eukaryotes and bacteria. The appearance of multiple antibiotic resistant

  13. Multidrug-Resistant Tuberculosis, Somalia, 2010–2011

    Science.gov (United States)

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal

    2013-01-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia. PMID:23621911

  14. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    Science.gov (United States)

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  15. [Construction and identification of eukaryotic plasmid pGC-silencer-U6/Neo/GFP/ABCG2].

    Science.gov (United States)

    Yu, Yanping; Zhang, Song; Kong, Weijia

    2010-09-01

    To construct three short hairpin RNA (shRNA) interference expression plasmid vectors of human ABCG2 gene, to assay the expression of ABCG2 in a human nasopharyngeal carcinoma (NPC) cell line, CEN-2 cell line, and to detect the RNAi effect of shRNA. Targeting ABCG2 gene sequence, three plasmid expression vectors coding for shRNA and a control vector containing random DNA fragment were constructed. The recombinant plasmids were amplified in Ecoli. DH5 and then identified by restriction digestion, PCR and sequencing. The recombinant plasmids were transfected into CEN-2 cells. ABCG2 expression was assayed by real-time quantitative PCR and Western blot. The construction of pGC-silencer-U6/Neo/GFP/ABCG2 was succeed. The shRNA plasmids significantly down-regulated the ABCG2 expression in CEN-2 cells, at both mRNA level and protein level. Recombinant plasmid 1 had the strongest effect compared with plasmids 2 and 3 (P < 0.05), with an inhibition ratio of 75% at the mRNA level and 68% at the protein level. pGC-silencer-U6/Neo/GFP/ABCG2 has been successfully constructed and it can down-regulate ABCG2 expression after transfected into CEN-2 cells, which could help further studies of ABCG2 functions CEN-2 cell line and contribute to the NPC gene therapy.

  16. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  17. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene

    NARCIS (Netherlands)

    van Veen, HW; Callaghan, R; Soceneantu, L; Sardini, A; Konings, WN; Higgins, CF

    1998-01-01

    Bacteria have developed many fascinating antibiotic-resistance mechanisms(1,2). A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane(3,4). Unlike other known bacterial multidrug-resistance

  18. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  19. Hepatocyte SLAMF3 reduced specifically the multidrugs resistance protein MRP-1 and increases HCC cells sensitization to anti-cancer drugs.

    Science.gov (United States)

    Fouquet, Grégory; Debuysscher, Véronique; Ouled-Haddou, Hakim; Eugenio, Mélanie Simoes; Demey, Baptiste; Singh, Amrathlal Rabbind; Ossart, Christèle; Al Bagami, Mohammed; Regimbeau, Jean-Marc; Nguyen-Khac, Eric; Naassila, Mickael; Marcq, Ingrid; Bouhlal, Hicham

    2016-05-31

    Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.

  20. Contrasting roles of the ABCG2 Q141K variant in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sobek, Kathryn M. [Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Cummings, Jessica L. [Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Bacich, Dean J. [Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Department of Urology, University of Texas Health Science Center, San Antonio, TX (United States); O’Keefe, Denise S., E-mail: OKeefeD@uthscsa.edu [Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Department of Urology, University of Texas Health Science Center, San Antonio, TX (United States)

    2017-05-01

    ABCG2 is a membrane transport protein that effluxes growth-promoting molecules, such as folates and dihydrotestosterone, as well as chemotherapeutic agents. Therefore it is important to determine how variants of ABCG2 affect the transporter function in order to determine whether modified treatment regimens may be necessary for patients harboring ABCG2 variants. Previous studies have demonstrated an association between the ABCG2 Q141K variant and overall survival after a prostate cancer diagnosis. We report here that in patients with recurrent prostate cancer, those who carry the ABCG2 Q141K variant had a significantly shorter time to PSA recurrence post-prostatectomy than patients homozygous for wild-type ABCG2 (P=0.01). Transport studies showed that wild-type ABCG2 was able to efflux more folic acid than the Q141K variant (P<0.002), suggesting that retained tumoral folate contributes to the decreased time to PSA recurrence in the Q141K variant patients. In a seemingly conflicting study, it was previously reported that docetaxel-treated Q141K variant prostate cancer patients have a longer survival time. We found this may be due to less efficient docetaxel efflux in cells with the Q141K variant versus wild-type ABCG2. In human prostate cancer tissues, confocal microscopy revealed that all genotypes had a mixture of cytoplasmic and plasma membrane staining, with noticeably less staining in the two homozygous KK patients. In conclusion, the Q141K variant plays contrasting roles in prostate cancer: 1) by decreasing folate efflux, increased intracellular folate levels result in enhanced tumor cell proliferation and therefore time to recurrence decreases; and 2) in patients treated with docetaxel, by decreasing its efflux, intratumoral docetaxel levels and tumor cell drug sensitivity increase and therefore patient survival time increases. Taken together, these data suggest that a patient's ABCG2 genotype may be important when determining a personalized treatment

  1. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  2. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  3. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  4. Expressions of ABCG2, CD133, and Podoplanin in Salivary Adenoid Cystic Carcinoma

    Directory of Open Access Journals (Sweden)

    Wuwei Li

    2014-01-01

    Full Text Available Adenoid cystic carcinoma (ACC is one of the most common salivary gland malignant tumors with a high risk of recurrence and metastasis. Current studies on cancer stem cells (CSCs have verified that CSCs are the driving force behind tumor initiation and progression, suggesting that new cancer therapies may be established by effectively targeting and killing the CSCs. The primary goal of this study is to investigate the expression patterns of ABCG2, CD133, and podoplanin in ACC of minor salivary glands by immunohistochemistry analysis. We found that ABCG2 was weakly expressed in normal looking salivary gland tissues. A significant upregulation of ABCG2 expression in ACC was observed with a similar expression pattern of Ki-67. CD133 was detected in apical membrane of epithelial cells and podoplanin was expressed positively in myoepithelial cells of both normal looking tissue and ACC. However, no significant difference was found of the expression pattern of CD133 and podoplanin between normal looking tissues and ACC. Our observations suggest that CSCs may exist in quiescent cells with ABCG2 positive staining, which are surrounded by cells with positive expression of ABCG2 and Ki-67 in ACC, and costaining with ABCG2 and Ki-67 may help predict the location of CSCs.

  5. [Impact of fluoroquinolone use on multidrug-resistant bacteria emergence].

    Science.gov (United States)

    Nseir, S; Ader, F; Marquette, C-H; Durocher, A

    2005-01-01

    During the last two decades, fluoroquinolone use has significantly increased in Europe and in the USA. This could be explained by the arrival of newer fluoroquinolones with antipneumoccal activity. Increased use of fluoroquinolones is associated with higher rates of bacterial resistance to these antibiotics. Resistance of Gram-negative bacilli to fluoroquinolones is increasing in industrialized countries. In addition, fluoroquinolone use has been identified as a risk factor for colonization and infection to methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanni, extending-spectrum beta-lactamase producing Gram negative bacilli, and multidrug-resistant bacteria. Nosocomial infections due to multidrug-resistant bacteria are associated with higher mortality and morbidity rates. This could be related to more frequent inappropriate initial antibiotic treatment in these patients. Limiting the use of fluoroquinolones, limiting the duration of treatment with fluoroquinolones, and using appropriate dosage of these antibiotics could be suggested to reduce resistance to these antibiotics and to reduce the emergence of multidrug-resistant bacteria.

  6. Molecular characterization of multidrug-resistant Shigella spp. of food origin.

    Science.gov (United States)

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2015-02-02

    Shigella spp. are the causative agents of food-borne shigellosis, an acute enteric infection. The emergence of multidrug-resistant clinical isolates of Shigella presents an increasing challenge for clinicians in the treatment of shigellosis. Several studies worldwide have characterized the molecular basis of antibiotic resistance in clinical Shigella isolates of human origin, however, to date, no such characterization has been reported for Shigella spp. of food origin. In this study, we characterized the genetic basis of multidrug resistance in Shigella spp. isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets, and slaughterhouses in Egypt. Twenty-four out of 27 Shigella isolates (88.9%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The multidrug-resistant Shigella spp. were as follows: Shigella flexneri (66.7%), Shigella sonnei (18.5%), and Shigella dysenteriae (3.7%). The highest resistance was to streptomycin (100.0%), then to kanamycin (95.8%), nalidixic acid (95.8%), tetracycline (95.8%), spectinomycin (93.6%), ampicillin (87.5%), and sulfamethoxazole/trimethoprim (87.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes. Our results indicated that 11.1% and 74.1% of isolates were positive for class 1 and class 2 integrons, respectively. Beta-lactamase-encoding genes were identified in 77.8% of isolates, and plasmid-mediated quinolone resistance genes were identified in 44.4% of isolates. These data provide useful information to better understand the molecular basis of antimicrobial resistance in Shigella spp. To the best of our knowledge, this is the first report of the molecular characterization of antibiotic resistance in Shigella spp. isolated from food. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Functional non-synonymous variants of ABCG2 and gout risk.

    Science.gov (United States)

    Stiburkova, Blanka; Pavelcova, Katerina; Zavada, Jakub; Petru, Lenka; Simek, Pavel; Cepek, Pavel; Pavlikova, Marketa; Matsuo, Hirotaka; Merriman, Tony R; Pavelka, Karel

    2017-11-01

    Common dysfunctional variants of ATP binding cassette subfamily G member 2 (Junior blood group) (ABCG2), a high-capacity urate transporter gene, that result in decreased urate excretion are major causes of hyperuricemia and gout. In the present study, our objective was to determine the frequency and effect on gout of common and rare non-synonymous and other functional allelic variants in the ABCG2 gene. The main cohort recruited from the Czech Republic consisted of 145 gout patients; 115 normouricaemic controls were used for comparison. We amplified, directly sequenced and analysed 15 ABCG2 exons. The associations between genetic variants and clinical phenotype were analysed using the t-test, Fisher's exact test and a logistic and linear regression approach. Data from a New Zealand Polynesian sample set and the UK Biobank were included for the p.V12M analysis. In the ABCG2 gene, 18 intronic (one dysfunctional splicing) and 11 exonic variants were detected: 9 were non-synonymous (2 common, 7 rare including 1 novel), namely p.V12M, p.Q141K, p.R147W, p.T153M, p.F373C, p.T434M, p.S476P, p.D620N and p.K360del. The p.Q141K (rs2231142) variant had a significantly higher minor allele frequency (0.23) in the gout patients compared with the European-origin population (0.09) and was significantly more common among gout patients than among normouricaemic controls (odds ratio = 3.26, P gout (42 vs 48 years, P = 0.0143) and a greater likelihood of a familial history of gout (41% vs 27%, odds ratio = 1.96, P = 0.053). In a meta-analysis p.V12M exerted a protective effect from gout (P gout. Non-synonymous allelic variants of ABCG2 had a significant effect on earlier onset of gout and the presence of a familial gout history. ABCG2 should thus be considered a common and significant risk factor for gout. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment.

    Science.gov (United States)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-08-15

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients. Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites of infection/colonization, drug sequestration in the biofilm matrix, and, in the setting of outbreaks, suboptimal infection control. Moreover, recent research suggests that DNA mismatch repair gene mutations may facilitate acquisition of resistance mutations in C. glabrata specifically. Diagnosis of antifungal-resistant Candida infections is critical to the successful management of patients with these infections. Reduction of unnecessary use of antifungals via antifungal stewardship is critical to limit multidrug resistance emergence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs

    Science.gov (United States)

    Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther

    2013-01-01

    We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1~5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered. PMID:23820161

  10. Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin P.; de Los Rios, Jorge M.; Gotuzzo, Eduardo; Vasilyeva, Irina; Leimane, Vaira; Andries, Koen; Bakare, Nyasha; de Marez, Tine; Haxaire-Theeuwes, Myriam; Lounis, Nacer; Meyvisch, Paul; de Paepe, Els; van Heeswijk, Rolf P. G.; Dannemann, Brian; Rolla, Valeria; Dalcomo, Margreth; Gripp, Karla; Escada, Rodrigo; Tavares, Isabel; Borga, Liamar; Thomas, Aleyamma; Rekha, Banu; Nair, Dina; Chandrasekar, Chockalingam; Parthasarathy, Ramavaran Thiruvengadaraj; Sekhar, Gomathi; Ganesh, Krishnamoorthy; Rajagopalan, Krishnakumar; Rajapandian, Gangadevi; Dorairajalu, Rajendran; Sharma, Surendra Kumar; Banavaliker, Jayant; Kadhiravan, Tamilarasu; Gulati, Vinay; Mahmud, Hanif; Gupta, Arvind; Bhatnagar, Anuj; Jain, Vipin; Hari, Smriti; Gupta, Yogesh Kumar; Vaid, Ashok; Cirule, Andra; Dravniece, Gunta; Skripconoka, Vija; Kuksa, Liga; Kreigere, Edite; Ramos, Carlos Rafael Seas; Amat y Leon, Ivan Arapovic

    2014-01-01

    BACKGROUND Bedaquiline (Sirturo, TMC207), a diarylquinoline that inhibits mycobacterial ATP synthase, has been associated with accelerated sputum-culture conversion in patients with multidrug-resistant tuberculosis, when added to a preferred background regimen for 8 weeks. METHODS In this phase 2b

  11. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  12. Overcoming cellular multidrug resistance using classical nanomedicine formulations

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Blauz, A.; Möckel, D.; Theek, B.; Kiessling, F.; Etrych, Tomáš; Ulbrich, K.; van Bloois, L.; Storm, G.; Bartosz, G.; Rychlik, B.; Lammers, T.

    2012-01-01

    Roč. 45, č. 4 (2012), s. 421-428 ISSN 0928-0987 R&D Projects: GA AV ČR IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : cancer * nanomedicine * multidrug resistance Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.987, year: 2012

  13. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    Science.gov (United States)

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-04

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.

  14. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Purpose: The rapid emergence of drug resistance among pathogenic bacteria, especially multidrugresistant bacteria, underlines the need to look for new antibiotics. Methods: In the present ...

  15. Tailoring Cytotoxicity of Antimicrobial Peptidomimetics with High Activity against Multidrug-Resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Sandberg-Schaal, Anne; Vissing, Karina Juul

    2014-01-01

    Infections with multidrug-resistant pathogens are an increasing concern for public health. Recently, subtypes of peptide-peptoid hybrids were demonstrated to display potent activity against multidrug-resistant Gram-negative bacteria. Here, structural variation of these antibacterial peptidomimetics...... cells. Thus, lead compounds with a high selectivity toward killing of clinically important multidrug-resistant E. coli were identified....

  16. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    OpenAIRE

    More, Arun Punaji; Nagdawane, Ramkrishna Panchamrao; Gangurde, Aniket K

    2013-01-01

    Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR) has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence...

  17. Cichorium intybus L. promotes intestinal uric acid excretion by modulating ABCG2 in experimental hyperuricemia.

    Science.gov (United States)

    Wang, Yu; Lin, Zhijian; Zhang, Bing; Nie, Anzheng; Bian, Meng

    2017-01-01

    Excessive production and/or reduced excretion of uric acid could lead to hyperuricemia, which could be a major cause of disability. Hyperuricemia has received increasing attention in the last few decades due to its global prevalence. Cichorium intybus L., commonly known as chicory, is a perennial herb of the asteraceae family. It was previously shown to exert potent hypouricemic effects linked with decreasing uric acid formation in the liver by down-regulating the activity of xanthine oxidase, and increasing uric acid excretion by up-regulating the renal OAT3 mRNA expression. The present study aimed to evaluate its extra-renal excretion and possible molecular mechanism underlying the transporter responsible for intestinal uric acid excretion in vivo. Chicory was administered intragastrically to hyperuricemic rats induced by drinking 10% fructose water. The uricosuric effect was evaluated by determining the serum uric acid level as well as the intestinal uric acid excretion by HPLC. The location and expression levels of ATP-binding cassette transporter, sub-family G, member 2 (ABCG2) in jejunum and ileum were analyzed. The administration of chicory decreased the serum uric acid level significantly and increased the intestinal uric acid excretion obviously in hyperuricemic rats induced by 10% fructose drinking. Staining showed that ABCG2 was expressed in the apical membrane of the epithelium and glands of the jejunum and ileum in rats. Further examination showed that chicory enhanced the mRNA and protein expressions of ABCG2 markedly in a dose-dependent manner in jejunum and ileum. These findings indicate that chicory increases uric acid excretion by intestines, which may be related to the stimulation of intestinal uric acid excretion via down-regulating the mRNA and protein expressions of ABCG2.

  18. Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1.

    Science.gov (United States)

    Gromicho, Marta; Dinis, Joana; Magalhães, Marta; Fernandes, Alexandra R; Tavares, Purificação; Laires, António; Rueff, José; Rodrigues, António Sebastião

    2011-10-01

    About 20% of patients with chronic myeloid leukemia (CML) do not respond to treatment with imatinib either initially or because of acquired resistance. To study the development of CML drug resistance, an in vitro experimental system comprising cell lines with different resistance levels was established by exposing K562 cells to increasing concentrations of imatinib and dasatinib anticancer agents. The mRNA levels of BCR- ABL1 and of genes involved in drug transport or redistribution (ABCB1, ABCC1, ABCC3, ABCG2, MVP, and SLC22A1) were measured and the ABL1 kinase domain sequenced. Results excluded BCR- ABL1 overexpression and mutations as relevant resistance mechanisms. Most studied transporters were overexpressed in the majority of resistant cell lines. Their expression pattern was dynamic: varying with resistance level and chronic drug exposure. Studied efflux transporters may have an important role at the initial stages of resistance, but after prolonged exposure and for higher doses of drugs other mechanisms might take place.

  19. Multixenobiotic resistance in Mytilus edulis: Molecular and functional characterization of an ABCG2- type transporter in hemocytes and gills.

    Science.gov (United States)

    Ben Cheikh, Yosra; Xuereb, Benoit; Boulangé-Lecomte, Céline; Le Foll, Frank

    2018-02-01

    Among the cellular protection arsenal, ABC transporters play an important role in xenobiotic efflux in marine organisms. Two pumps belonging to B and C subfamily has been identified in Mytilus edulis. In this study, we investigated the presence of the third major subtype ABCG2/BCRP protein in mussel tissues. Transcript was expressed in hemocytes and with higher level in gills. Molecular characterization revealed that mussel ABCG2 transporter shares the sequence and organizational structure with mammalian and molluscan orthologs. Overall identity of the predicted amino acid sequence with corresponding homologs from other organisms was between 49% and 98%. Moreover, protein efflux activity was demonstrated using a combination of fluorescent allocrites and specific inhibitors. The accumulation of bodipy prazosin and pheophorbide A was heterogeneous in gills and hemocytes. Most of the used blockers enhanced probe accumulation at different levels, most significantly for bodipy prazosin. Moreover, Mrp classical blocker MK571 showed a polyspecificity. In conclusion, our data demonstrate that several ABC transporters contribute to MXR phenotype in the blue mussel including ABCG2 that forms an active pump in hemocytes and gills. Efforts are needed to distinguish between the different members and to explore their single function and specificity towards allocrites and chemosensitizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model

    International Nuclear Information System (INIS)

    Halwachs, Sandra; Schäfer, Ingo; Kneuer, Carsten; Seibel, Peter; Honscha, Walther

    2016-01-01

    In humans, the ATP-binding cassette efflux transporter ABCG2 contributes to the fetoprotective barrier function of the placenta, potentially limiting the toxicity of transporter substrates to the fetus. During testing of chemicals including pesticides, developmental toxicity studies are performed in rabbit. Despite its toxicological relevance, ABCG2-mediated transport of pesticides in rabbit placenta has not been yet elucidated. We therefore generated polarized MDCK II cells expressing the ABCG2 transporter from rabbit placenta (rbABCG2) and evaluated interaction of the efflux transporter with selected insecticides, fungicides, and herbicides. The Hoechst H33342 accumulation assay indicated that 13 widely used pesticidal active substances including azoxystrobin, carbendazim, chlorpyrifos, chlormequat, diflufenican, dimethoate, dimethomorph, dithianon, ioxynil, methiocarb, propamocarb, rimsulfuron and toclofos-methyl may be rbABCG2 inhibitors and/or substrates. No such evidence was obtained for chlorpyrifos-methyl, epoxiconazole, glyphosate, imazalil and thiacloprid. Moreover, chlorpyrifos (CPF), dimethomorph, tolclofos-methyl and rimsulfuron showed concentration-dependent inhibition of H33342 excretion in rbABCG2-transduced MDCKII cells. To further evaluate the role of rbABCG2 in pesticide transport across the placenta barrier, we generated polarized MDCKII-rbABCG2 monolayers. Confocal microscopy confirmed correct localization of rbABCG2 protein in the apical plasma membrane. In transepithelial flux studies, we showed the time-dependent preferential basolateral to apical (B > A) directed transport of [ 14 C] CPF across polarized MDCKII-rbABCG2 monolayers which was significantly inhibited by the ABCG2 inhibitor fumitremorgin C (FTC). Using this novel in vitro cell culture model, we altogether showed functional secretory activity of the ABCG2 transporter from rabbit placenta and identified several pesticides like the insecticide CPF as potential rbABCG2 substrates

  1. Assessment of ABCG2-mediated transport of pesticides across the rabbit placenta barrier using a novel MDCKII in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Halwachs, Sandra [Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, Leipzig (Germany); Schäfer, Ingo [Molecular Cell Therapy, Center for Biotechnology and Biomedicine, Faculty of Medicine, Universität Leipzig, Leipzig (Germany); Kneuer, Carsten [Federal Institute for Risk Assessment (BfR), Pesticide Safety, Max-Dohrn-Straße 8-10, D-10589 Berlin (Germany); Seibel, Peter [Molecular Cell Therapy, Center for Biotechnology and Biomedicine, Faculty of Medicine, Universität Leipzig, Leipzig (Germany); Honscha, Walther, E-mail: honscha@vetmed.uni-leipzig.de [Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, Leipzig (Germany)

    2016-08-15

    In humans, the ATP-binding cassette efflux transporter ABCG2 contributes to the fetoprotective barrier function of the placenta, potentially limiting the toxicity of transporter substrates to the fetus. During testing of chemicals including pesticides, developmental toxicity studies are performed in rabbit. Despite its toxicological relevance, ABCG2-mediated transport of pesticides in rabbit placenta has not been yet elucidated. We therefore generated polarized MDCK II cells expressing the ABCG2 transporter from rabbit placenta (rbABCG2) and evaluated interaction of the efflux transporter with selected insecticides, fungicides, and herbicides. The Hoechst H33342 accumulation assay indicated that 13 widely used pesticidal active substances including azoxystrobin, carbendazim, chlorpyrifos, chlormequat, diflufenican, dimethoate, dimethomorph, dithianon, ioxynil, methiocarb, propamocarb, rimsulfuron and toclofos-methyl may be rbABCG2 inhibitors and/or substrates. No such evidence was obtained for chlorpyrifos-methyl, epoxiconazole, glyphosate, imazalil and thiacloprid. Moreover, chlorpyrifos (CPF), dimethomorph, tolclofos-methyl and rimsulfuron showed concentration-dependent inhibition of H33342 excretion in rbABCG2-transduced MDCKII cells. To further evaluate the role of rbABCG2 in pesticide transport across the placenta barrier, we generated polarized MDCKII-rbABCG2 monolayers. Confocal microscopy confirmed correct localization of rbABCG2 protein in the apical plasma membrane. In transepithelial flux studies, we showed the time-dependent preferential basolateral to apical (B > A) directed transport of [{sup 14}C] CPF across polarized MDCKII-rbABCG2 monolayers which was significantly inhibited by the ABCG2 inhibitor fumitremorgin C (FTC). Using this novel in vitro cell culture model, we altogether showed functional secretory activity of the ABCG2 transporter from rabbit placenta and identified several pesticides like the insecticide CPF as potential rbABCG2

  2. Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice

    NARCIS (Netherlands)

    Plosch, Torsten; van der Veen, Jelske N.; Havinga, Rick; Huijkman, Nicolette C. A.; Bloks, Vincent W.; Kuipers, Folkert

    The ATP-binding cassette (ABC) half-transporters ABCG5 and ABCG8 heterodimerize into a functional complex that mediates the secretion of plant sterols and cholesterol by hepatocytes into bile and their apical efflux from enterocytes. We addressed the putative rate-controlling role of Abcg5/Abcg8 in

  3. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  4. Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na(+)/K(+)-ATPase.

    Science.gov (United States)

    Zeino, Maen; Brenk, Ruth; Gruber, Lisa; Zehl, Martin; Urban, Ernst; Kopp, Brigitte; Efferth, Thomas

    2015-06-01

    Cardiotonic steroids have long been in clinical use for treatment of heart failure and are now emerging as promising agents in various diseases, especially cancer. Their main target is Na(+)/K(+)-ATPase, a membrane protein involved in cellular ion homeostasis. Na(+)/K(+)-ATPase has been implicated in cancer biology by affecting several cellular events and signaling pathways in both sensitive and drug-resistant cancer cells. Hence, we investigated the cytotoxic activities of 66 cardiotonic steroids and cardiotonic steroid derivatives in sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. Data were then subjected to quantitative structure-activity relationship analysis (QSAR) and molecular docking into Na(+)/K(+)-ATPase, which both indicated a possible differential expression of the pump in the mentioned cell lines. This finding was confirmed by western blotting, intracellular potassium labeling and next generation sequencing which showed that Na(+)/K(+)-ATPase was less expressed in multidrug-resistant than in sensitive cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats.

    NARCIS (Netherlands)

    Masereeuw, R.; Notenboom, S.; Smeets, P.H.E.; Wouterse, A.C.; Russel, F.G.M.

    2003-01-01

    Previous studies with mutant transport-deficient rats (TR(-)), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is

  6. Draft genome sequence of a multidrug-resistant Chryseobacterium indologenes isolate from Malaysia

    Directory of Open Access Journals (Sweden)

    Choo Yee Yu

    2016-03-01

    Full Text Available Chryseobacterium indologenes is an emerging pathogen which poses a threat in clinical healthcare setting due to its multidrug-resistant phenotype and its common association with nosocomial infections. Here, we report the draft genome of a multidrug-resistant C. indologenes CI_885 isolated in 2014 from Malaysia. The 908,704-kb genome harbors a repertoire of putative antibiotic resistance determinants which may elucidate the molecular basis and underlying mechanisms of its resistant to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession number LJOD00000000. Keywords: Chryseobacterium indologenes, Genome, Multi-drug resistant, blaIND, Next generation sequencing

  7. Synthesis, Antiproliferative, and Multidrug Resistance Reversal Activities of Heterocyclic α,β-Unsaturated Carbonyl Compounds.

    Science.gov (United States)

    Sun, Ju-Feng; Hou, Gui-Ge; Zhao, Feng; Cong, Wei; Li, Hong-Juan; Liu, Wen-Shuai; Wang, Chunhua

    2016-10-01

    A series of heterocyclic α,β-unsaturated carbonyl compounds (1a-1d, 2a-2d, 3a-3d, 4a-3d, and 5a-5d) with 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore were synthesized for the development of anticancer and multidrug resistance reverting agents. The antiproliferative activities were tested against nine human cancer cell lines. Approximately 73% of the IC50 values were below 5 μm, while 35% of these figures were submicromolar, and compounds 3a-3d with 4-trifluoro methyl in the arylidene benzene rings were the most potent, since their IC50 values are between 0.06 and 3.09 μm against all cancer cell lines employed. Meanwhile, their multidrug resistance reversal properties and cellular uptake were further examined. The data displayed that all of these compounds could reverse multidrug resistance, particularly, compounds 3a and 4a demonstrated both potent multidrug resistance reverting properties and strong antiproliferative activities, which can be taken as leading molecules for further research of dual effect agents in tumor chemotherapy. © 2016 John Wiley & Sons A/S.

  8. ROLE OF ATP BINDING CASSETTE SUB-FAMILY MEMBER 2 (ABCG2) IN MOUSE EMBRYONIC STEM CELL DEVELOPMENT.

    Science.gov (United States)

    ATP binding cassette sub-family member 2 (ABCG2), is a member of the ABC transporter superfamily and a principal xenobiotic transporter. ABCG2 is also highly expressed in certain stem cell populations where it is thought to be related to stem cell plasticity, although the role o...

  9. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    Directory of Open Access Journals (Sweden)

    Arun P. More

    2013-03-01

    Full Text Available Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence ofcombined resistance to first and second-line anti-tuberculosis drugs is remarkably high. The isolates of M. tuberculosiswas identified and subjected to drug susceptibility testing. The patterns of drug susceptibility of isolates of M. tuberculosisduring the periods 2000 and 2004 were compared with drug susceptibility patterns of the organisms during theperiod 2008 to 2011.Results: The 260 isolates identified as M. tuberculosis show mean drug resistance prevalence of 45.6% for more than anytwo drugs and the MDR rate as 37% in the years 2000 to 2004 whereas 305 isolates of the organism show mean drugresistance prevalence of 30.2% and the MDR rate as 25% in the years 2008 to 2011.Conclusion: The researcher found that, though the prevalence of multidrug resistance to the drugs tested is remarkablyhigh, it has come down noticeably during the past seven years due to efforts of State Government and strict implementationof treatment guidelines of WHO by the physicians. J Microbiol Infect Dis 2013; 3(1: 12-17Key words: MDR-TB, XDR-TB, DOTS, drug-resistance prevalence rate.

  10. Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters

    NARCIS (Netherlands)

    Elferink, Ronald P. J. Oude; Ottenhoff, Roelof; Fricker, Gert; Seward, David J.; Ballatori, Nazzareno; Boyer, James

    2004-01-01

    The ABC transporters bile salt export pump ( BSEP; encoded by the ABCB11 gene), MDR3 P-glycoprotein (ABCB4), and sterolin 1 and 2 (ABCG5 and ABCG8) are crucial for the excretion of bile salt, phospholipid, and cholesterol, respectively, into the bile of mammals. The current paradigm is that

  11. Genetic relatedness and molecular characterization of multidrug resistant Acinetobacter baumannii isolated in central Ohio, USA

    Directory of Open Access Journals (Sweden)

    Tadesse Daniel

    2009-06-01

    Full Text Available Abstract Background Over the last decade, nosocomial infections due to Acinetobacter baumannii have been described with an increasing trend towards multidrug resistance, mostly in intensive care units. The aim of the present study was to determine the clonal relatedness of clinical isolates and to elucidate the genetic basis of imipenem resistance. Methods A. baumannii isolates (n = 83 originated from two hospital settings in central Ohio were used in this study. Pulsed-field gel electrophoresis genotyping and antimicrobial susceptibility testing for clinically relevant antimicrobials were performed. Resistance determinants were characterized by using different phenotypic (accumulation assay for efflux and genotypic (PCR, DNA sequencing, plasmid analysis and electroporation approaches. Results The isolates were predominantly multidrug resistant (>79.5% and comprised of thirteen unique pulsotypes, with genotype VII circulating in both hospitals. The presence of blaOXA-23 in 13% (11/83 and ISAba1 linked blaOXA-66 in 79.5% (66/83 of clinical isolates was associated with high level imipenem resistance. In this set of OXA producing isolates, multidrug resistance was bestowed by blaADC-25, class 1 integron-borne aminoglycoside modifying enzymes, presence of sense mutations in gyrA/parC and involvement of active efflux (with evidence for the presence of adeB efflux gene. Conclusion This study underscores the major role of carbapenem-hydrolyzing class D β-lactamases, and in particular the acquired OXA-23, in the dissemination of imipenem-resistant A. baumannii. The co-occurrence of additional resistance determinant could also be a significant threat.

  12. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    Science.gov (United States)

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-06-22

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes.

  13. Study of multidrug resistance and radioresistance

    International Nuclear Information System (INIS)

    Kang, Yoon Koo; Yoo, Young Do

    1999-04-01

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance

  14. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    Science.gov (United States)

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  15. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated

  16. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  17. Clusters of Multidrug-Resistant Mycobacterium tuberculosis Cases, Europe

    Science.gov (United States)

    Kremer, Kristin; Heersma, Herre; Van Soolingen, Dick

    2009-01-01

    Molecular surveillance of multidrug-resistant tuberculosis (MDR TB) was implemented in Europe as case reporting in 2005. For all new MDR TB cases detected from January 2003 through June 2007, countries reported case-based epidemiologic data and DNA fingerprint patterns of MDR TB strains when available. International clusters were detected and analyzed. From 2003 through mid-2007 in Europe, 2,494 cases of MDR TB were reported from 24 European countries. Epidemiologic and molecular data were linked for 593 (39%) cases, and 672 insertion sequence 6110 DNA fingerprint patterns were reported from 19 countries. Of these patterns, 288 (43%) belonged to 18 European clusters; 7 clusters (242/288 cases, 84%) were characterized by strains of the Beijing genotype family, including the largest cluster (175/288 cases, 61%). Both clustering and the Beijing genotype were associated with strains originating in eastern European countries. Molecular cluster detection contributes to identification of transmission profile, risk factors, and control measures. PMID:19624920

  18. Management of multidrug-resistant tuberculosis in human immunodeficiency virus patients

    Science.gov (United States)

    Jamil, K. F.

    2018-03-01

    Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis(MTB). 10.4 million new TB cases will appear in 2015 worldwide. There were an estimated 1.4 million TB deaths in 2015, and an additional 0.4 million deaths resulting from TB disease among people living with human immunodeficiency virus (HIV). Multidrug- resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) are major public health concerns worldwide. 480.000 new cases of MDR-TB will appear in 2015 and an additional 100,000 people with rifampicin-resistant TB (RR-TB) who were also newly eligible for MDR-TB treatment. Their association with HIV infection has contributed to the slowing down of TB incidence decline over the last two decades, therefore representing one important barrier to reach TB elimination. Patients infected with MDR-TB require more expensive treatment regimens than drug-susceptible TB, with poor treatment.Patients with multidrug- resistant tuberculosis do not receive rifampin; drug interactions risk is markedly reduced. However, overlapping toxicities may limit options for co-treatment of HIV and multidrug- resistant tuberculosis.

  19. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver

    NARCIS (Netherlands)

    Paulusma, C. C.; Kothe, M. J.; Bakker, C. T.; Bosma, P. J.; van Bokhoven, I.; van Marle, J.; Bolder, U.; Tytgat, G. N.; Oude Elferink, R. P.

    2000-01-01

    We have studied regulation of the multidrug resistance protein 2 (mrp2) during bile duct ligation (BDL) in the rat. In hepatocytes isolated after 16, 48, and 72 hours of BDL, mrp2-mediated dinitrophenyl-glutathione (DNP-GS) transport was decreased to 65%, 33%, and 33% of control values,

  20. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  1. High prevalence of multidrug-resistant MRSA in a tertiary care hospital of northern India

    Directory of Open Access Journals (Sweden)

    Hare Krishna Tiwari

    2008-11-01

    Full Text Available Hare Krishna Tiwari1, Darshan Sapkota2, Malaya Ranjan Sen11Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India; 2Department of Microbiology, Universal College of Medical Sciences, Bhairahawa, NepalAbstract: Methicillin-resistant Staphylococcus aureus (MRSA is an important nosocomial and community pathogen. The objectives of this study were to estimate the prevalence of multidrug-resistant MRSA strains in clinical specimens and to investigate the sensitivity pattern of these strains against various antibiotics used for treating hospitalized and out patients. Strains were identified using standard procedures, and their sensitivity pattern was investigated using such techniques as disc diffusion, minimum inhibitory concentration (MIC, and the mecA gene PCR. Among 783 isolates of S. aureus, 301 (38.44% were methicillin-resistant, of which 217 (72.1% were found to be multidrug-resistant. Almost all MRSA strains were resistant to penicillin, 95.68% were resistant to cotrimoxazole, 92.36% were resistant to chloramphenicol, 90.7% were resistant to norfloxacin, 76.1% were resistant to tetracycline, and 75.75% were resistant to ciprofloxacin. Vancomycin was the most effective drug, with only 0.33% of MRSA strains being resistant to it. It is concluded that antibiotics other than vancomycin can be used as anti-MRSA agents after a sensitivity test so as to preclude the emergence of resistance to it and that prevailing problems in chemotherapy will escalate unless indiscriminate and irrational usage of antibiotics is checked.Keywords: multidrug-resistant MRSA, prevalence, India

  2. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons.

    Science.gov (United States)

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L; L'Abée-Lund, Trine M; Rudi, Knut

    2015-10-28

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.

  3. Photoexcited quantum dots for killing multidrug-resistant bacteria

    Science.gov (United States)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  4. High incidence of multidrug-resistant strains of methicill inresistant ...

    African Journals Online (AJOL)

    Infections of methicillin-resistant Staphylococcus aureus (MRSA) are becoming an increasingly concerning clinical problem. The aim of this study was to assess the development of multidrug resistant strains of MRSA from clinical samples andpossibilities for reducing resistance. This study included a total of seventy-five (75) ...

  5. Beyond multidrug-resistant tuberculosis in Europe: a TBNET study

    NARCIS (Netherlands)

    Günther, G.; van Leth, F.; Altet, N.; Dedicoat, M.; Duarte, R.; Gualano, G.; Kunst, H.; Muylle, I.; Spinu, V.; Tiberi, S.; Viiklepp, P.; Lange, C.; Alexandru, S.; Cernenco, I.; Ciobanu, A.; Donica, A.; Cayla, J.; Fina, L.; Galvao, M. L. de Souza; Maldonado, J.; Avsar, K.; Bang, D.; Andersen, A. B.; Barbuta, R.; Dubceac, V.; Bothamley, G.; Crudu, V.; Davilovits, M.; Atunes, A.; de Lange, W.; Leimane, V.; Rusmane, L.; de Lorenzo, S.; Cuppen, F.; de Guchtenaire, I.; Magis-Escurra, C.; McLaughlin, A.-M.; Meesters, R.; te Pas, M.; Prins, B.; Mütterlein, R.; Kotrbova, J.; Polcová, V.; Vasakova, M.; Pontali, E.; Rumetshofer, R.; Rowhani, M.; Skrahina, A.; Avchinko, V.; Katovich, D.

    2015-01-01

    The emergence of drug-resistant tuberculosis (TB) is a challenge to TB control in Europe. We evaluated second-line drug susceptibility testing in Mycobacterium tuberculosis isolates from patients with multidrug-resistant, pre-extensively drug-resistant (pre-XDR-TB) and XDR-TB at 23 TBNET sites in 16

  6. ABCG2 inhibition as a therapeutic approach for overcoming

    Indian Academy of Sciences (India)

    2016-02-16

    Feb 16, 2016 ... the permeability of multi-protein channel complexes. (receptors) .... ABCG2 overexpression is likely to be the cause of high- ... with low or absent function. ..... derivatives, is a water-soluble topoisomerase I inhibitor that.

  7. Multidrug-resistant hepatocellular carcinoma cells are enriched for ...

    African Journals Online (AJOL)

    Chemotherapy is a main treatment for cancer, while multidrug-resistance is the main reason for chemotherapy failure, and tumor relapse and metastasis. Cancer stem cells or cancer stem-like cells (CSCs) are a small subset of cancer cells, which may be inherently resistant to the cytotoxic effect of chemotherapy.

  8. Prevalence and behavior of multidrug-resistant Salmonella strains on raw whole and cut nopalitos (Opuntia ficus-indica L.) and on nopalitos salads.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Gutiérrez-Alcántara, Eduardo J; Torres-Vitela, M Refugio; Rangel-Vargas, Esmeralda; Villarruel-López, Angelica; Castro-Rosas, Javier

    2017-09-01

    The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Nopalito is a cactaceous that is commonly consumed either raw or cooked in Mexico and other countries. The presence of antibiotic-resistant Salmonella strains on raw whole nopalitos (RWN, without prickles), raw nopalitos cut into squares (RNCS) and in cooked nopalitos salads (CNS) samples was determined. In addition, the behavior of multidrug-resistant Salmonella isolates on RWN, RNCS and CNS at 25° ± 2 °C and 3° ± 2 °C was investigated. One hundred samples of RWN, 100 of RNCS and 100 more of CNS were collected from public markets. Salmonella strains were isolated and identified in 30, 30 and 10% of the samples, respectively. Seventy multidrug-resistant Salmonella strains were isolated from all the nopalitos samples. Multidrug-resistant Salmonella isolates survived at least 15 days on RWN at 25° ± 2 °C or 3° ± 2 °C. Multidrug-resistant Salmonella isolates grew in the RNCS and CNS samples at 25° ± 2 °C. However, at 3° ± 2 °C the bacterial growth was inhibited. This is the first report about multidrug-resistant Salmonella isolation from raw nopalitos and nopalitos salads. Nopalitos from markets are very likely to be an important factor contributing to the endemicity of multidrug-resistant Salmonella-related gastroenteritis in Mexico. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Population-specific association between ABCG2 variants and tophaceous disease in people with gout.

    Science.gov (United States)

    He, Wendy; Phipps-Green, Amanda; Stamp, Lisa K; Merriman, Tony R; Dalbeth, Nicola

    2017-03-07

    Tophi contribute to musculoskeletal disability, joint damage and poor health-related quality of life in people with gout. The aim of this study was to examine the role of SLC2A9 and ABCG2 variants in tophaceous disease in people with gout. Participants (n = 1778) with gout fulfilling the 1977 American Rheumatism Association (ARA) classification criteria, who were recruited from primary and secondary care, attended a detailed study visit. The presence of palpable tophi was recorded. SLC2A9 rs11942223, ABCG2 rs2231142 and ABCG2 rs10011796 were genotyped. Data were analysed according to tophus status. Compared to participants without tophi, those with tophi were older, had longer disease duration and higher serum creatinine, and were more likely to be of Māori or Pacific (Polynesian) ancestry. SLC2A9 rs11942223 was not associated with tophi. However, the risk alleles for both ABCG2 single nucleotide polymorphisms (SNPs) were present more frequently in those with tophi (OR (95% CI) 1.24 (1.02-1.51) for rs2231142 and 1.33 (1.01-1.74) for rs10011796, p gout.

  10. Reversal of multidrug resistance by surfactants.

    Science.gov (United States)

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  11. Mixture model to assess the extent of cross-transmission of multidrug-resistant pathogens in hospitals.

    Science.gov (United States)

    Mikolajczyk, Rafael T; Kauermann, Göran; Sagel, Ulrich; Kretzschmar, Mirjam

    2009-08-01

    Creation of a mixture model based on Poisson processes for assessment of the extent of cross-transmission of multidrug-resistant pathogens in the hospital. We propose a 2-component mixture of Poisson processes to describe the time series of detected cases of colonization. The first component describes the admission process of patients with colonization, and the second describes the cross-transmission. The data set used to illustrate the method consists of the routinely collected records for methicillin-resistant Staphylococcus aureus (MRSA), imipenem-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii over a period of 3 years in a German tertiary care hospital. For MRSA and multidrug-resistant A. baumannii, cross-transmission was estimated to be responsible for more than 80% of cases; for imipenem-resistant P. aeruginosa, cross-transmission was estimated to be responsible for 59% of cases. For new cases observed within a window of less than 28 days for MRSA and multidrug-resistant A. baumannii or 40 days for imipenem-resistant P. aeruginosa, there was a 50% or greater probability that the cause was cross-transmission. The proposed method offers a solution to assessing of the extent of cross-transmission, which can be of clinical use. The method can be applied using freely available software (the package FlexMix in R) and it requires relatively little data.

  12. Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug resistant Pseudomonas aeruginosa in Malaysia.

    Science.gov (United States)

    Liew, Siew Mun; Rajasekaram, Ganeswrei; Puthucheary, Savithri D; Chua, Kek Heng

    2018-02-09

    The increasing incidence of carbapenem-resistant Pseudomonas aeruginosa along with the discovery of novel metallo-β-lactamases (MBLs) is of concern. In this study, the isolation of Malaysian MBL-producing P. aeruginosa clinical strains was investigated. Fifty-three P. aeruginosa clinical strains were isolated from different patients in Sultanah Aminah Hospital, Johor Bahru, Malaysia in 2015. Antimicrobial susceptibility test was conducted. Minimum inhibitory concentrations (MICs) of imipenem and meropenem were determined by Etest. The carbapenem-resistant strains were screened for MBL production by IMP-EDTA double disk synergy test (DDST), MBL imipenem/imipenem-inhibitor (IP/IPI) Etest and polymerase chain reaction (PCR). Genotyping was performed by multilocus sequence typing (MLST) analysis. Three (5.7%) clinical strains were identified as MBL producers. Multidrug resistance was observed in the three strains, and two were resistant to all the antimicrobials tested. Sequencing analysis confirmed the three strains to harbour carbapenemase genes: one with bla IMP-1 , one with bla VIM-2 and the other with bla NDM-1 genes. These multidrug resistant strains were identified as sequence type (ST) 235 and ST308. None of the bla IMP-1 and bla NDM-1 genes have been reported in Malaysian P. aeruginosa. The emergence of imipenemase 1 (IMP-1)- and New Delhi metallo-β-lactamase 1 (NDM-1)-producing P. aeruginosa in Malaysia maybe travel-associated. Copyright © 2018. Published by Elsevier Ltd.

  13. Multidrug-resistant tuberculosis and migration to Europe

    DEFF Research Database (Denmark)

    Hargreaves, S.; Lönnroth, K.; Nellums, L. B.

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB) in low-incidence countries in Europe is more prevalent among migrants than the native population. The impact of the recent increase in migration to EU and EEA countries with a low incidence of TB (

  14. PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug–drug interactions at the murine blood–brain barrier

    International Nuclear Information System (INIS)

    Vlaming, Maria L.H.; Läppchen, Tilman; Jansen, Harm T.; Kivits, Suzanne; Driel, Andy van; Steeg, Evita van de; Hoorn, José W. van der; Sio, Charles F.; Steinbach, Oliver C.; DeGroot, Jeroen

    2015-01-01

    Introduction: The efflux transporters P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) are expressed at the blood–brain barrier (BBB), and can limit the access of a wide range of drugs to the brain. In this study we developed a PET-CT imaging method for non-invasive, quantitative analysis of the effect of ABCB1 and ABCG2 on brain penetration of the anti-cancer drug gefitinib, and demonstrated the applicability of this method for identification and quantification of potential modulators of ABCB1 and ABCB2 using the dual inhibitor elacridar. Methods: In vitro cellular accumulation studies with [ 14 C]-gefitinib were conducted in LLC-PK1, MDCKII, and the corresponding ABCB1/Abcb1a and ABCG2/Abcg2 overexpressing cell lines. Subsequently, in vivo brain penetration of [ 18 F]-gefitinib was quantified by PET-CT imaging studies in wild-type, Abcg2 −/− , Abcb1a/1b −/− , and Abcb1a/1b;Abcg2 −/− mice. Results: In vitro studies showed that [ 14 C]-gefitinib is a substrate of the human ABCB1 and ABCG2 transporters. After i.v. administration of [ 18 F]-gefitinib (1 mg/kg), PET-CT imaging showed 2.3-fold increased brain levels of [ 18 F]-gefitinib in Abcb1a/1b;Abcg2 −/− mice, compared to wild-type. Levels in single knockout animals were not different from wild-type, showing that Abcb1a/1b and Abcg2 together limit access of [ 18 F]-gefitinib to the brain. Furthermore, enhanced brain accumulation of [ 18 F]-gefitinib after administration of the ABCB1 and ABCG2 inhibitor elacridar (10 mg/kg) could be quantified with PET-CT imaging. Conclusions: PET-CT imaging with [ 18 F]-gefitinib is a powerful tool to non-invasively assess potential ABCB1- and ABCG2-mediated drug–drug interactions (DDIs) in vivo. Advances in knowledge and implications for patient care: This minimally-invasive, [ 18 F]-based PET-CT imaging method shows the interplay of ABCB1 and ABCG2 at the BBB in vivo. The method may be applied in the future to assess ABCB1 and

  15. Multidrug resistance among new tuberculosis cases: detecting local variation through lot quality-assurance sampling.

    Science.gov (United States)

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-03-01

    Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored 3 classification systems- two-way static, three-way static, and three-way truncated sequential sampling-at 2 sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired.

  16. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.

    Science.gov (United States)

    Walther, Birgit; Tedin, Karsten; Lübke-Becker, Antina

    2017-02-01

    Although the problems associated with healthcare-associated infections (HAI) and the emergence of zoonotic and multidrug-resistant pathogens in companion animal (dogs, cats and horses) medicine have been well-known for decades, current progress with respect to practical implementation of infection control programs in veterinary clinics has been limited. Clinical outbreak events reported for methicillin-resistant Staphylooccus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and multidrug-resistant (MDR) Salmonella Serovars indicate the necessity of infection control strategies for protecting animal patients at risk as well as veterinary personnel. The close bond between humans and their companion animals provides opportunities for exchange of microorganisms, including MDR pathogens. This particular aspect of the "One Health" idea requires more representative surveillance efforts and infection control strategies with respect to animal-species specific characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes

    NARCIS (Netherlands)

    Falzon, Dennis; Gandhi, Neel; Migliori, Giovanni B.; Sotgiu, Giovanni; Cox, Helen S.; Holtz, Timothy H.; Hollm-Delgado, Maria-Graciela; Keshavjee, Salmaan; Deriemer, Kathryn; Centis, Rosella; D'Ambrosio, Lia; Lange, Christoph G.; Bauer, Melissa; Menzies, Dick; Ahuja, S. D.; Ashkin, D.; Avendaño, M.; Banerjee, R.; Bauer, M.; Becerra, M. C.; Benedetti, A.; Burgos, M.; Centis, R.; Chan, E. D.; Chiang, C. Y.; Cobelens, F.; Cox, H.; D'Ambrosio, L.; de Lange, W. C. M.; DeRiemer, K.; Enarson, D.; Falzon, D.; Flanagan, K. L.; Flood, J.; Gandhi, N.; Garcia-Garcia, M. L.; Granich, R. M.; Hollm-Delgado, M. G.; Holtz, T. H.; Hopewell, P.; Iseman, M. D.; Jarlsberg, L. G.; Keshavjee, S.; Kim, H. R.; Koh, W. J.; Lancaster, J. L.; Lange, C.; Leimane, V.; Leung, C. C.; Li, J.

    2013-01-01

    A meta-analysis for response to treatment was undertaken using individual data of multidrug-resistant tuberculosis (MDR-TB) (resistance to isoniazid and rifampicin) patients from 26 centres. The analysis assessed the impact of additional resistance to fluoroquinolones and/or second-line injectable

  18. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  19. Multidrug Resistant Acinetobacter Infection and Their Antimicrobial ...

    African Journals Online (AJOL)

    Background: Acinetobacter baumannii, a non-glucose fermenting Gram negative bacillus, has emerged in the last three decades as a major etiological agent of hospital-associated infections giving rise to significant morbidity and mortality particularly in immunocompromised patients. Multidrug resistant A. baumannii ...

  20. Lack of ABCG2 shortens latency of BRCA1-deficient mammary tumors and this is not affected by genistein or resveratrol

    NARCIS (Netherlands)

    Zander, Serge A. L.; Kersbergen, Ariena; Sol, Wendy; Gonggrijp, Maaike; van de Wetering, Koen; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2012-01-01

    In addition to their role in drug resistance, the ATP-binding cassette (ABC) transporters ABCG2 and ABCB1 have been suggested to protect cells from a broad range of substances that may foster tumorigenesis. Phytoestrogens or their metabolites are substrates of these transporters and the influence of

  1. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.

    Science.gov (United States)

    Yılmaz, Çiğdem; Özcengiz, Gülay

    2017-06-01

    The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. However, shortly after they were introduced to clinical practice, the development of resistance was emerged. The decreasing interest from antibiotic industry in spite of rapid global emergence of antibiotic resistance is a tough dilemma from the pointview of public health. The efficiency of antimicrobial treatment is determined by both pharmacokinetics and pharmacodynamics. In spite of their selective toxicity, antibiotics still cause severe, life-threatening adverse reactions in host body mostly due to defective drug metabolism or excessive dosing regimen. The present article aims at updating current knowledge on pharmacokinetics/pharmacodynamics concepts and models, toxicity of antibiotics as well as antibiotic resistance mechanisms, resistome analyses and search for novel antibiotic resistance determinants with special emphasis given to the-state-of-the-art regarding multidrug efflux pumps and their additional physiological functions in stress adaptation and virulence of bacteria. All these issues are highly linked to each other and not only important for most efficient and prolonged use of current antibiotics, but also for discovery and development of new antibiotics and novel inhibitors of antibiotic resistance determinants of pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt.

    Science.gov (United States)

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-11-01

    Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Multidrug resistance was significantly associated with MBL production in P. aeruginosa . Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates.

  3. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  4. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wanzhong; Wang, Ping; Wang, Xin [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China); Song, Wenzhi [Department of Stomatology, China-Japan Friendship Hospital, Jilin University, Changchun (China); Cui, Xiangyan; Yu, Hong; Zhu, Wei [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China)

    2013-06-12

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

  5. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    International Nuclear Information System (INIS)

    Yin, Wanzhong; Wang, Ping; Wang, Xin; Song, Wenzhi; Cui, Xiangyan; Yu, Hong; Zhu, Wei

    2013-01-01

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer

  6. New structure–activity relationships of chalcone inhibitors of breast cancer resistance protein: polyspecificity toward inhibition and critical substitutions against cytotoxicity

    Directory of Open Access Journals (Sweden)

    Rangel LP

    2013-09-01

    Full Text Available Luciana Pereira Rangel,1,2,* Evelyn Winter,1,3,* Charlotte Gauthier,1 Raphaël Terreux,4 Louise D Chiaradia-Delatorre,5 Alessandra Mascarello,5 Ricardo J Nunes,5 Rosendo A Yunes,5 Tania B Creczynski-Pasa,3 Sira Macalou,1 Doriane Lorendeau,1 Hélène Baubichon-Cortay,1 Antonio Ferreira-Pereira,2 Attilio Di Pietro11Equipe Labellisée Ligue 2013, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France; 2Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 3Department of Pharmaceutical Sciences, PPGFAR, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; 4Equipe BISI, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France; 5Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil*These authors contributed equally to this workAbstract: Adenosine triphosphate-binding cassette subfamily G member 2 (ABCG2 plays a major role in cancer cell multidrug resistance, which contributes to low efficacy of chemotherapy. Chalcones were recently found to be potent and specific inhibitors, but unfortunately display a significant cytotoxicity. A cellular screening against ABCG2-mediated mitoxantrone efflux was performed here by flow cytometry on 54 chalcone derivatives from three different series with a wide panel of substituents. The identified leads, with submicromolar IC50 (half maximal inhibitory concentration values, showed that the previously identified 2'-OH-4',6'-dimethoxyphenyl, as A-ring, could be efficiently replaced by a 2'-naphthyl group, or a 3',4'-methylenedioxyphenyl with lower affinity. Such a structural variability indicates polyspecificity of the multidrug transporter for inhibitors. At least two methoxyl groups were necessary on B-ring for optimal inhibition, but substitution at positions 3, 4, and 5 induced cytotoxicity

  7. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery.

    Science.gov (United States)

    Solís-Téllez, H; Mondragón-Pinzón, E E; Ramírez-Marino, M; Espinoza-López, F R; Domínguez-Sosa, F; Rubio-Suarez, J F; Romero-Morelos, R D

    Surgical site infection is defined as an infection related to the surgical procedure in the area of manipulation occurring within the first 30 postoperative days. The diagnostic criteria include: purulent drainage, isolation of microorganisms, and signs of infection. To describe the epidemiologic characteristics and differences among the types of prophylactic regimens associated with hospital-acquired infections at the general surgery service of a tertiary care hospital. The electronic case records of patients that underwent general surgery at a tertiary care hospital within the time frame of January 1, 2013 and December 31, 2014 were reviewed. A convenience sample of 728 patients was established and divided into the following groups: Group 1: n=728 for the epidemiologic study; Group 2: n=638 for the evaluation of antimicrobial prophylaxis; and Group 3: n=50 for the evaluation of multidrug-resistant bacterial strains in the intensive care unit. The statistical analysis was carried out with the SPSS 19 program, using the Mann-Whitney U test and the chi-square test. A total of 728 procedures were performed (65.9% were elective surgeries). Three hundred twelve of the patients were males and 416 were females. Only 3.98% of the patients complied with the recommended antimicrobial prophylaxis, and multidrug-resistant bacterial strains were found in the intensive care unit. A single prophylactic dose is effective, but adherence to this recommendation was not adequate. The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  9. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  10. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  11. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Katsuhiko eHayashi

    2014-04-01

    Full Text Available Honey has a complex chemistry, and its broad-spectrum antimicrobial activity varies with floral source, climate, and harvesting conditions. Methylglyoxal was identified as the dominant antibacterial component of manuka honey. Although it has been known that methylglyoxal has antibacterial activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, there is not much information describing its activity against gram-negative bacteria. In this study, we report the effect of methylglyoxal against multidrug-resistant Pseudomonas aeruginosa (MDRP using 53 clinically isolated strains. We also assessed the effect of deleting the five multidrug efflux systems in P. aeruginosa, as well as the efflux systems in Escherichia coli and Salmonella enterica serovar Typhimurium, on MICs of methylglyoxal. Our results indicate that methylglyoxal inhibits the growth of MDRP at concentrations of 128–512 µg/ml (1.7–7.1 mM and is not recognized by drug efflux systems.

  12. Dominance of multidrug resistant CC271 clones in macrolide-resistant streptococcus pneumoniae in Arizona

    Directory of Open Access Journals (Sweden)

    Bowers Jolene R

    2012-01-01

    Full Text Available Abstract Background Rates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E and erm(B genes and post-vaccine clonal expansion of strains that carry them. Results Characterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E/erm(B-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E-positive, and 9% erm(B-positive strains. Conclusions The dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.

  13. Multidrug resistance 1 gene polymorphisms may determine Crohn's disease behavior in patients from Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Ana Teresa P. Carvalho

    2014-01-01

    Full Text Available OBJECTIVES: Conflicting data from studies on the potential role of multidrug resistance 1 gene polymorphisms in inflammatory bowel disease may result from the analysis of genetically and geographically distinct populations. Here, we investigated whether multidrug resistance 1 gene polymorphisms are associated with inflammatory bowel diseases in patients from Rio de Janeiro. METHODS: We analyzed 123 Crohn's disease patients and 83 ulcerative colitis patients to determine the presence of the multidrug resistance 1 gene polymorphisms C1236T, G2677T and C3435T. In particular, the genotype frequencies of Crohn's disease and ulcerative colitis patients were analyzed. Genotype-phenotype associations with major clinical characteristics were established, and estimated risks were calculated for the mutations. RESULTS: No significant difference was observed in the genotype frequencies of the multidrug resistance 1 G2677T/A and C3435T polymorphisms between Crohn's disease and ulcerative colitis patients. In contrast, the C1236T polymorphism was significantly more common in Crohn's disease than in ulcerative colitis (p = 0.047. A significant association was also found between the multidrug resistance 1 C3435T polymorphism and the stricturing form of Crohn's disease (OR: 4.13; p = 0.009, whereas no association was found with penetrating behavior (OR: 0.33; p = 0.094. In Crohn's disease, a positive association was also found between the C3435T polymorphism and corticosteroid resistance/refractoriness (OR: 4.14; p = 0.010. However, no significant association was found between multidrug resistance 1 gene polymorphisms and UC subphenotypic categories. CONCLUSION: The multidrug resistance 1 gene polymorphism C3435T is associated with the stricturing phenotype and an inappropriate response to therapy in Crohn's disease. This association with Crohn's disease may support additional pathogenic roles for the multidrug resistance 1 gene in regulating gut

  14. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    Science.gov (United States)

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  15. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery

    Directory of Open Access Journals (Sweden)

    H. Solís-Téllez

    2017-04-01

    Conclusions: The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit.

  16. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  17. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    The study was conducted with the objective of examining the outer membrane proteins and their involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the response of gram negative bacterial biomembrane alteration was studied using extended ...

  18. Short communication: The gain-of-function Y581S polymorphism of the ABCG2 transporter increases secretion into milk of danofloxacin at the therapeutic dose for mastitis treatment.

    Science.gov (United States)

    Otero, J A; Barrera, B; de la Fuente, A; Prieto, J G; Marqués, M; Álvarez, A I; Merino, G

    2015-01-01

    The ATP-binding cassette transporter ABCG2 restricts the exposure of certain drugs and natural compounds in different tissues and organs. Its expression in the mammary gland is induced during lactation and is responsible for the active secretion of many compounds into milk, including antimicrobial agents. This particular function of ABCG2 may affect drug efficacy against mastitis and the potential presence of drug residues in the milk. Previous in vitro and in vivo studies showed increased transport of several compounds, including fluoroquinolones, by the bovine ABCG2 Y581S polymorphism. Our main purpose was to study the potential effect of this bovine ABCG2 polymorphism on the secretion into milk of the antimicrobial danofloxacin administered at the therapeutic dose of 6mg/kg used for mastitis treatment. In addition, the effect of this polymorphism on the relative mRNA and protein levels of ABCG2 by quantitative real-time PCR and Western blot were studied. Danofloxacin 18% (6mg/kg) was administered to 6 Y/Y homozygous and 5 Y/S heterozygous cows. Danofloxacin levels in milk and milk-to-plasma concentration ratios were almost 1.5- and 2-fold higher, respectively, in Y/S cows compared with the Y/Y cows, showing a higher capacity of this variant to transport danofloxacin into milk. Furthermore, the higher activity of this polymorphism is not linked to higher ABCG2 mRNA or protein levels. These results demonstrate the relevant effect of the Y581S polymorphism of the bovine ABCG2 transporter in the secretion into milk of danofloxacin after administration of 6mg/kg, with potentially important consequences for mastitis treatment and for milk residue handling. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Worldwide Endemicity of a Multidrug-Resistant Staphylococcus capitis Clone Involved in Neonatal Sepsis.

    Science.gov (United States)

    Butin, Marine; Martins-Simões, Patricia; Rasigade, Jean-Philippe; Picaud, Jean-Charles; Laurent, Frédéric

    2017-03-01

    A multidrug-resistant Staphylococcus capitis clone, NRCS-A, has been isolated from neonatal intensive care units in 17 countries throughout the world. S. capitis NRCS-A prevalence is high in some neonatal intensive care units in France. These data highlight the worldwide endemicity and epidemiologic relevance of this multidrug-resistant, coagulase-negative staphylococci clone.

  20. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence

    Directory of Open Access Journals (Sweden)

    Manuel Alcalde-Rico

    2016-09-01

    Full Text Available Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance, or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance. Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant process of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  1. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence.

    Science.gov (United States)

    Alcalde-Rico, Manuel; Hernando-Amado, Sara; Blanco, Paula; Martínez, José L

    2016-01-01

    Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  2. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2)

    DEFF Research Database (Denmark)

    Litman, Thomas; Brangi, M; Hudson, E

    2000-01-01

    by PCR, immunoblot assay and immunohistochemistry. These MXR overexpressing sublines were compared to cell lines with P-glycoprotein- and MRP-mediated resistance. High levels of cross-resistance were observed for mitoxantrone, the anthracyclines, bisantrene and topotecan. Reduced levels of mitoxantrone......, daunorubicin, bisantrene, topotecan, rhodamine 123 and prazosin were observed in the two sublines with high MXR expression. Neither the P-glycoprotein substrates vinblastine, paclitaxel, verapamil and calcein-AM, nor the MRP substrate calcein, were extruded from MCF-7 AdVp3000 and S1-M1-80 cells. Thus...

  3. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    Bukhari, Syed Z.; Ashshi, Ahmad M.; Hussain, Waleed M.; Fatani, Mohammad I.

    2008-01-01

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  4. Doripenem: an expected arrival in the treatment of infections caused by multidrug-resistant Gram-negative pathogens.

    Science.gov (United States)

    Poulakou, Garyphallia; Giamarellou, Helen

    2008-05-01

    Potent new drugs against multidrug-resistant Gram-negative bacteria, namely Pseudomonas aeruginosa and Acinetobacter spp. and pan-drug-resistant Klebsiella pneumoniae, which constitute an increasing medical threat, are almost absent from the future pharmaceutical pipeline. This drug evaluation focuses on the position of doripenem, a novel forthcoming carbapenem. Mechanisms of resistance and new drugs with anti-Gram-negative activity are also briefly reviewed. Literature search was performed for new carbapenems, new antibiotics, doripenem, metallo-beta-lactamase inhibitors, multidrug-resistant pathogens, antipseudomonal antibiotics and multidrug-resistant epidemiology. Doripenem possesses a broad spectrum of activity against Gram-negative bacteria, similar to that of meropenem, while retaining the spectrum of imipenem against Gram-positive pathogens. Against P. aeruginosa, doripenem exhibits rapid bactericidal activity with 2 - 4-fold lower MIC values, compared to meropenem. Exploitation of pharmacokinetic/pharmacodynamic applications could offer a treatment opportunity against strains exhibiting borderline resistance to doripenem. Stability against numerous beta-lactamases, low adverse event potential and more potent in vitro antibacterial activity against P. aeruginosa and A. baumanni compared to the existing carbapenems, are its principal features.

  5. Several Virulence Factors of Multidrug-Resistant Staphylococcus aureus Isolates From Hospitalized Patients in Tehran

    Directory of Open Access Journals (Sweden)

    Abdolmajid Ghasemian

    2015-05-01

    Full Text Available Background: Biofilm formation plays an important role in resistance of Staphylococcus aureus isolates; especially multidrug-resistant isolates are a threat to healthcare settings. Objectives: The aims of this study were to detect biofilm formation and presence of several related genes among multidrug-resistant (MDR isolates of Staphylococcus aureus. Patients and Methods: A total Of 209 S. aureus strains were isolated from patients and identified by conventional diagnostic tests. The multidrug-resistant MRSA isolates were detected by antibiotic susceptibility test. The phenotypic biofilm formation was detected by micro-titre tissue plate assay. The polymerase chain reaction (PCR was performed to detect the mecA, Staphylococcal Cassette Chromosome mec (SCCmec types, accessory gene regulatory (agr genes, the icaADBC and several genes encoding staphylococcal surface proteins including clfAB, fnbAB, fib, eno, can, ebps and bbp genes with specific primers. Results: Sixty-four (30.6% isolates were methicillin-resistant, among which thirty-six (56.2% were MDR. These isolates were resistant to amoxicillin, tetracycline, ciprofloxacin, gentamicin, erythromycin and trimethoprim-sulfamethoxazole (except to 6 isolates. All the isolates were susceptible to vancomycin and linezolid. All the MDR-MRSA harbored SCCmec type III. All the MDR- MRSA isolates were strong biofilm producers in the phenotypic test. The majority of MDR- MRSA was belonged to agrI (67%, n = 24, followed by agr II (17%, n = 6, agrIV (11%, n = 4 and agrIII (5.5%, n = 2. The frequency of icaADBC genes were 75% (n = 27, 61% (n = 22, 72% (n = 26 and 72% (n = 26, respectively. Furthermore, the prevalence of clfA, clfB, fnbA, fnbB, fib, can, eno, ebps and bbp genes was 100%, 100%, 67%, 56%, 80%, 63%, 78%, 7% and 0%, respectively. Furthermore, approximately all the MRSA was strong biofilm producers. Conclusions: Multidrug-resistant isolates produced biofilm strongly and the majority harbored most

  6. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yonatan Moges Mesfin

    Full Text Available BACKGROUND: Human immunodeficiency virus (HIV, multi-drug resistant tuberculosis (MDR is emerging as major challenge facing tuberculosis control programs worldwide particularly in Asia and Africa. Findings from different studies on associations of HIV co-infection and drug resistance among patients with TB have been contradictory (discordant. Some institution based studies found strongly increased risks for multi-drug resistant TB (MDR TB among patients co-infected with TB and HIV, whereas other studies found no increased risk (it remains less clear in community based studies. The aim was to conduct a systematic review and meta-analysis of the association between multi-drug resistant tuberculosis and HIV infection. METHODS AND FINDINGS: Systematic review of the published literature of observational studies was conducted. Original studies were identified using databases of Medline/Pubmed, Google Scholar and HINARI. The descriptions of original studies were made using frequency and forest plot. Publication bias was assessed using Funnel plot graphically and Egger weighted and Begg rank regression tests statistically. Heterogeneity across studies was checked using Cochrane Q test statistic and I(2. Pool risk estimates of MDR-TB and sub-grouping analysis were computed to analyze associations with HIV. Random effects of the meta-analysis of all 24 observational studies showed that HIV is associated with a marginal increased risk of multi-drug resistant tuberculosis (estimated Pooled OR 1.24; 95%, 1.04-1.43. Subgroup analyses showed that effect estimates were higher (Pooled OR 2.28; 95%, 1.52-3.04 for primary multi-drug resistance tuberculosis and moderate association between HIV/AIDS and MDR-TB among population based studies and no significant association in institution settings. CONCLUSIONS: This study demonstrated that there is association between MDR-TB and HIV. Capacity for diagnosis of MDR-TB and initiating and scale up of antiretroviral

  7. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections.

    Science.gov (United States)

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-06-26

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections.

  8. Multidrug-resistant tuberculosis in Europe, 2010-2011

    DEFF Research Database (Denmark)

    Günther, Gunar; van Leth, Frank; Alexandru, Sofia

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis is challenging elimination of tuberculosis (TB). We evaluated risk factors for TB and levels of second-line drug resistance in M. tuberculosis in patients in Europe with multidrug-resistant (MDR) TB. A total of 380 patients with MDR TB and 376 patients...... with non-MDR TB were enrolled at 23 centers in 16 countries in Europe during 2010-2011. A total of 52.4% of MDR TB patients had never been treated for TB, which suggests primary transmission of MDR M. tuberculosis. At initiation of treatment for MDR TB, 59.7% of M. tuberculosis strains tested were...

  9. Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene.

    Science.gov (United States)

    Wang, Tieshan; Su, Jianrong

    2016-12-28

    Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii . Nineteen multidrug-resistant A. baumannii strains were clinifcally isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii . The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis . Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.

  10. Candida auris: An emerging multidrug-resistant pathogen

    Directory of Open Access Journals (Sweden)

    David Sears

    2017-10-01

    Full Text Available Candida aurisis an emerging multidrug-resistant pathogen that can be difficult to identify using traditional biochemical methods. C. auris is capable of causing invasive fungal infections, particularly among hospitalized patients with significant medical comorbidities. Echinocandins are the empiric drugs of choice for C. auris, although not all isolates are susceptible and resistance may develop on therapy. Nosocomial C. auris outbreaks have been reported in a number of countries and aggressive infection control measures are paramount to stopping transmission.

  11. Multidrug resistant shigella flexneri infection simulating intestinal intussusception

    Directory of Open Access Journals (Sweden)

    Srirangaraj Sreenivasan

    2016-01-01

    Full Text Available Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone.

  12. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Alharbe, Roaa; Almansour, Ayidh; Kwon, Dong H

    2017-10-01

    A major clinical impact of A. baumannii is hospital-acquired infections including ventilator-associated pneumonia. The treatment of this pathogen is often difficult due to its innate and acquired resistance to almost all commercially available antibiotics. Infections with carbapenem-associated multidrug resistant A. baumannii is the most problematic. Glutathione is a tripeptide thiol-antioxidant and antibacterial activity of exogenous glutathione was reported in some bacteria. However, clinical relevance and molecular details of the antibacterial activity of glutathione are currently unclear. Seventy clinical isolates of A. baumannii including 63 carbapenem-associated multidrug resistant isolates and a type strain A. baumannii ATCC 19606 were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Fractional inhibitory concentration (FIC) and time-killing activity with meropenem and/or glutathione were also determined in the carbapenem-associated multidrug resistant isolates. In addition, the roles of exogenous glutathione in multidrug efflux pumps and β-lactamase production were examined. Levels of MIC and MBC were ranged from 10 to 15mM of exogenous glutathione. All tested carbapenem-associated multidrug resistant isolates were sensitized by all tested antibiotics in combination with subinhibitory concentrations of glutathione. FIC levels of glutathione with carbapenem (meropenem) were allcarbapenem-associated multidrug resistant isolates were killed by subinhibitory concentrations of both glutathione and meropenem at>2log10 within 12h, suggesting glutathione synergistically interacts with meropenem. The roles of multidrug efflux pumps and β-lactamase production were excluded for the glutathione-mediated antibiotic susceptibility. Overall results demonstrate that the antibacterial activity of glutathione is clinically relevant and its synergism on antibiotics sensitizes clinical isolates of A. baumannii regardless

  13. The demise of multidrug-resistant HIV-1: the national time trend in Portugal.

    Science.gov (United States)

    Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Aguas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge

    2013-04-01

    Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7-8.4) in 2001-03, 6.0% (95% CI: 4.9-7.2) in 2003-05, 3.7% (95% CI: 2.8-4.8) in 2005-07 and 1.6% (95% CI: 1.1-2.2) in 2007-09 down to 0.6% (95% CI: 0.3-0.9) in 2009-12 [OR=0.80 (95% CI: 0.75-0.86); P<0.001]. In July 2011 the last new case of MDR was seen. The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains.

  14. Antibody validation and scoring guidelines for ABCG2 immunohistochemical staining in formalin-fixed paraffin-embedded colon cancer tissue

    DEFF Research Database (Denmark)

    Cederbye, Camilla Natasha; Palshof, Jesper Andreas; Hansen, Tine Plato

    2016-01-01

    cancer (CRC), probably because of the use of different antibodies and scoring approaches. In this study, we systematically studied six commercially available anti-ABCG2 antibodies, using cell lines with up-regulation of ABCG2, and selected one antibody for validation in CRC tissue. Furthermore, we...... sections, especially when more than one core was used. In conclusion, here, we provide validated results to guide future studies on the associations between ABCG2 immunoreactivity in tumor cells and the benefits of chemotherapeutic treatment in patients with CRC...

  15. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    Directory of Open Access Journals (Sweden)

    Heckel M

    2017-10-01

    Full Text Available Maria Heckel,1 Franziska A Herbst,2 Thomas Adelhardt,3 Johanna M Tiedtke,4 Alexander Sturm,5 Stephanie Stiel,2 Christoph Ostgathe1 1Department of Palliative Medicine, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Universitätsklinikum Erlangen, Bavaria, Germany; 2Institute for General Practice, Hannover Medical School, Hannover, Germany; 3Division of Health Management, School of Business and Economics, Institute of Management (IFM, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Bavaria, Germany; 4Institute of Psychogerontology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Bavaria, Germany; 5Department of General Internal and Geriatric Medicine, Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU, Hospital of the Order of St John of God Regensburg, Bavaria, Germany Background: Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods: Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external

  16. Interaction of mammary bovine ABCG2 with AFB1 and its metabolites and regulation by PCB 126 in a MDCKII in vitro model.

    Science.gov (United States)

    Manzini, L; Halwachs, S; Girolami, F; Badino, P; Honscha, W; Nebbia, C

    2017-12-01

    The ATP-binding cassette efflux transporter ABCG2 plays a key role in the mammary excretion of drugs and toxins in humans and animals. Aflatoxins (AF) are worldwide contaminants of food and feed commodities, while PCB 126 is a dioxin-like PCB which may contaminate milk and dairy products. Both compounds are known human carcinogens. The interactions between AF and bovine ABCG2 (bABCG2) as well as the effects of PCB 126 on its efflux activity have been investigated by means of the Hoechst H33342 transport assay in MDCKII cells stably expressing mammary bABCG2. Both AFB1 and its main milk metabolite AFM1 showed interaction with bABCG2 even at concentrations approaching the legal limits in feed and food commodities. Moreover, PCB 126 significantly enhanced bABCG2 functional activity. Specific inhibitors of either AhR (CH233191) or ABCG2 (Ko143) were able to reverse the PCB 126-induced increase in bABCG2 transport activity, showing the specific upregulation of the efflux protein by the AhR pathway. The incubation of PCB 126-pretreated cells with AFM1 was able to substantially reverse such effect, with still unknown mechanism(s). Overall, results from this study point to AFB1 and AFM1 as likely bABCG2 substrates. The PCB 126-dependent increased activity of the transporter could enhance the ABCG2-mediated excretion into dairy milk of chemicals (i.e., drugs and toxins) potentially harmful to neonates and consumers. © 2017 John Wiley & Sons Ltd.

  17. Non-p-glycoprotein-mediated multidrug resistance in detransformed rat cells selected for resistance to methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Weber, J M; Sircar, S; Horvath, J; Dion, P

    1989-11-01

    Three independent variants (G2, G4, G5), resistant to methylglyoxal bis(guanylhydrazone), an anticancer drug, have been isolated by single step selection from an adenovirus-transformed rat brain cell line (1). These variants display selective cross-resistance to several natural product drugs of dissimilar structure and action. Multidrug resistance has recently been shown to be caused by overexpression of the membrane-associated p-glycoprotein, most often caused by amplification of the mdr gene. Several types of experiments were conducted to determine whether the observed drug resistance in our cell lines could be due to changes at the mdr locus. The following results were obtained: (a) the mdr locus was not amplified; (b) transcription of the mdr gene and p-glycoprotein synthesis were not increased; (c) multidrug resistance cell lines, which carry an amplified mdr locus, were not cross-resistant to methylglyoxal bis(guanylhydrazone); (d) verapamil did not reverse the resistance of G cells or mdr cells to methylglyoxal bis(guanylhydrazone), nor that of G cells to vincristine; and (e) methylglyoxal bis(guanylhydrazone) resistance was recessive and depended on a block to drug uptake, as opposed to mdr cells which are dominant and express increased drug efflux. The results obtained suggest that the drug resistance in the G2, G4, and G5 cells was atypical and may be due to a mechanism distinct from that mediated by the mdr locus.

  18. Risk factors for multidrug resistant tuberculosis patients in Amhara ...

    African Journals Online (AJOL)

    Risk factors for multidrug resistant tuberculosis patients in Amhara National ... risk factors of MDR-TB patients in Amhara National Regional State, Ethiopia. ... strict adherence to directly observed therapy, appropriate management of TB ...

  19. Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7.

    Science.gov (United States)

    Li, Wentao; Zhai, Baoping; Zhi, Hui; Li, Yuhong; Jia, Linjiao; Ding, Chao; Zhang, Bin; You, Wei

    2014-09-01

    Docetaxel is a first-line chemotherapeutic agent for treating advanced breast cancer. The development of chemoresistance or multidrug resistance (MDR), however, results in breast cancer chemotherapy failure. This study aims to explore the molecular mechanisms underlying docetaxel-resistance in treatment of breast cancer. The docetaxel-resistant subline MCF7/DOC, derived from the parental sensitive breast cancer cell line MCF7, was established by intermittent exposure to moderate concentrations of docetaxel, followed by examination of its phenotypes. The MCF7/DOC subline showed cross resistance against paclitaxel, doxorubicin, methotrexate, and 5-Fu. Compared to the parental MCF7, MCF7/DOC cells were enlarged with heterogeneous sizes and a cobblestone and polygonal appearance. They were arrested at G2/M phase and proliferated slowly. The colony formation potential of MCF7/DOC in soft agar was significantly increased. MCF7/DOC cells showed reduced intracellular accumulation and increased efflux of rhodamine 123. The mRNA expression level of adenosine triphosphate binding cassette (ABC) transporter family, i.e., ABCB1, ABCC1, ABCC2, ABCG2, and β tubulin isotypes were characterized by quantitative PCR. High-level expression of ABCB1, βI, and βIII tubulin mRNA in MCF7/DOC was detected. Downregulation of ABCB1, βI, and βIII tubulin mediated by three combined siRNAs resulted in stronger growth inhibition of MCF7/DOC than inhibition of the expression of individual genes. ABCB1, βI, and βIII tubulin might contribute to the MDR of MCF7/DOC and be potential therapeutic targets for overcoming MDR of breast cancer.

  20. Previous treatment, sputum-smear nonconversion, and suburban living: The risk factors of multidrug-resistant tuberculosis among Malaysians.

    Science.gov (United States)

    Mohd Shariff, Noorsuzana; Shah, Shamsul Azhar; Kamaludin, Fadzilah

    2016-03-01

    The number of multidrug-resistant tuberculosis patients is increasing each year in many countries all around the globe. Malaysia has no exception in facing this burdensome health problem. We aimed to investigate the factors that contribute to the occurrence of multidrug-resistant tuberculosis among Malaysian tuberculosis patients. An unmatched case-control study was conducted among tuberculosis patients who received antituberculosis treatments from April 2013 until April 2014. Cases are those diagnosed as pulmonary tuberculosis patients clinically, radiologically, and/or bacteriologically, and who were confirmed to be resistant to both isoniazid and rifampicin through drug-sensitivity testing. On the other hand, pulmonary tuberculosis patients who were sensitive to all first-line antituberculosis drugs and were treated during the same time period served as controls. A total of 150 tuberculosis patients were studied, of which the susceptible cases were 120. Factors found to be significantly associated with the occurrence of multidrug-resistant tuberculosis are being Indian or Chinese (odds ratio 3.17, 95% confidence interval 1.04-9.68; and odds ratio 6.23, 95% confidence interval 2.24-17.35, respectively), unmarried (odds ratio 2.58, 95% confidence interval 1.09-6.09), living in suburban areas (odds ratio 2.58, 95% confidence interval 1.08-6.19), are noncompliant (odds ratio 4.50, 95% confidence interval 1.71-11.82), were treated previously (odds ratio 8.91, 95% confidence interval 3.66-21.67), and showed positive sputum smears at the 2nd (odds ratio 7.00, 95% confidence interval 2.46-19.89) and 6th months of treatment (odds ratio 17.96, 95% confidence interval 3.51-91.99). Living in suburban areas, positive sputum smears in the 2nd month of treatment, and was treated previously are factors that independently contribute to the occurrence of multidrug-resistant tuberculosis. Those with positive smears in the second month of treatment, have a history of previous

  1. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  2. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  3. Characterization of an IncA/C Multidrug Resistance Plasmid in Vibrio alginolyticus.

    Science.gov (United States)

    Ye, Lianwei; Li, Ruichao; Lin, Dachuan; Zhou, Yuanjie; Fu, Aisi; Ding, Qiong; Chan, Edward Wai Chi; Yao, Wen; Chen, Sheng

    2016-05-01

    Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with β-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. IND-2, a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells.

    Science.gov (United States)

    Karthikeyan, Chandrabose; Lee, Crystal; Moore, Joshua; Mittal, Roopali; Suswam, Esther A; Abbott, Kodye L; Pondugula, Satyanarayana R; Manne, Upender; Narayanan, Narayanan K; Trivedi, Piyush; Tiwari, Amit K

    2015-02-01

    Naturally occurring condensed quinolines have anticancer properties. In efforts to find active analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline framework (IND series). The compounds were evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145), breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2) cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse embryonic fibroblast (NIH/3T3), and human embryonic kidney cells (HEK293). IND-2, a 4-chloro-2-methyl pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline, exhibited more than ten-fold selectivity and potent cytotoxic activity against colon cancer cells relative to the other cancer and non-cancer cells. With five additional colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo), IND-2 had similar cytotoxicity and selectivity, and sub-micromolar concentrations caused changes in the morphology of HCT-116 and HCT-15 cells. IND-2 did not activate the transactivating function of the pregnane X receptor (PXR), indicating that it does not induce PXR-regulated ABCB1 or ABCG2 transporters. Indeed, IND-2 was not a substrate of ABCB1 or ABCG2, and it induced cytotoxicity in HEK293 cells overexpressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. IND-2 was cytotoxic to resistant colon carcinoma S1-MI-80 cells, approximately three- and five-fold more than SN-38 and topotecan, respectively. In HCT-116 colon cancer cells, IND-2 produced concentration-dependent changes in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation. These findings suggest that, by increasing apoptosis, IND-2 has potential therapeutic efficacy for colorectal cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Background Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Results Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients’ and family caregivers’ needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients’ quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. Conclusion The institutional stakeholders’ perspectives and their suggestion of a case-based approach advance the development

  6. Understanding institutional stakeholders' perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study.

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Information lacks about institutional stakeholders' perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term "institutional stakeholder" includes persons in leading positions with responsibility in hospitals' multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders' individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients' and family caregivers' needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients' quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. The institutional stakeholders' perspectives and their suggestion of a case-based approach advance the development process of a patient-, family-, staff-, and institutional

  7. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  8. Complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from Klebsiella pneumoniae isolated in 1969.

    Science.gov (United States)

    Doublet, Benoît; Boyd, David; Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Mulvey, Michael R

    2012-10-01

    To determine the complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from a clinical Klebsiella pneumoniae strain that was isolated from a urinary tract infection in 1969 in a French hospital and compare it with those of contemporary emerging IncA/C plasmids. The plasmid was purified and sequenced using a 454 sequencing approach. After draft assembly, additional PCRs and walking reads were performed for gap closure. Sequence comparisons and multiple alignments with other IncA/C plasmids were done using the BLAST algorithm and CLUSTAL W, respectively. Plasmid pR55 (170 810 bp) revealed a shared plasmid backbone (>99% nucleotide identity) with current members of the IncA/C(2) multidrug resistance plasmid family that are widely disseminating antibiotic resistance genes. Nevertheless, two specific multidrug resistance gene arrays probably acquired from other genetic elements were identified inserted at conserved hotspot insertion sites in the IncA/C backbone. A novel transposon named Tn6187 showed an atypical mixed transposon configuration composed of two mercury resistance operons and two transposition modules that are related to Tn21 and Tn1696, respectively, and an In0-type integron. IncA/C(2) multidrug resistance plasmids have a broad host range and have been implicated in the dissemination of antibiotic resistance among Enterobacteriaceae from humans and animals. This typical IncA/C(2) genetic scaffold appears to carry various multidrug resistance gene arrays and is now also a successful vehicle for spreading AmpC-like cephalosporinase and metallo-β-lactamase genes, such as bla(CMY) and bla(NDM), respectively.

  9. Effect of biocides on biofilms of some multidrug resistant clinical ...

    African Journals Online (AJOL)

    The ability of Escherichia coli and Klebsiella aerogenes to form biofilms was most affected. There was little inhibition of biofilm formation by the biocides on Staphylococcus aureus. This study has shown a relationship between biocide and multidrug resistance. Keywords: Biocides, Multi drug resistance, sodium hypochlorite, ...

  10. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  11. Risk factors associated with multidrug resistant tuberculosis among ...

    African Journals Online (AJOL)

    Background: Multidrug resistant tuberculosis (MDR-TB) remains is an important public health problem in developing world. We conducted this study to determine risk factors associated with MDR-TB and drug susceptibility pattern to second line drug among MDR TB patients in Tanzania. Methods: Unmatched case control ...

  12. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines

    NARCIS (Netherlands)

    Putman, M; van Veen, HW; Degener, JE; Konings, WN

    2001-01-01

    The active efflux of toxic compounds by (multi)drug transporters is one of the mechanisms that bacteria have developed to resist cytotoxic drugs. The authors describe the role of the lactococcal secondary multidrug transporter LmrP in the resistance to a broad range of clinically important

  13. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  14. Expression of ABCG2 and Bmi-1 in oral potentially malignant lesions and oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Dalley, Andrew J; Pitty, Luke P; Major, Aidan G; AbdulMajeed, Ahmad A; Farah, Camile S

    2014-01-01

    Early diagnosis is vital for effective treatment of oral squamous cell carcinoma (OSCC). The optimal time for clinical intervention is prior to malignancy when patients present with oral potentially malignant lesions such as leukoplakia or erythroplakia. Transformation rates for oral dysplasia vary greatly and more rigorous methods are needed to predict the malignant potential of oral lesions. We hypothesized that the expression of two putative stem cell markers, ABCG2 and Bmi-1, would correlate with disease severity for non diseased, potentially malignant and OSCC specimens and cell lines derived from an equivalent range of tissues. We compared immunoreactive protein and relative gene expression of ABCG2 and Bmi-1 in eight cell lines derived from source tissues ranging in disease severity from normal (OKF6-TERT2) through mild and moderate/severe dysplasia (DOK, POE-9n) to OSCC (PE/CA-PJ15, SCC04, SCC25, SCC09, SCC15). We also analyzed immunoreactive protein expression of ABCG2 and Bmi-1 in 189 tissue samples with the same range of disease severity. A trend between oral lesion severity to ABCG2 and Bmi-1 immunostain intensity was observed. Flow cytometry of oral cell lines confirmed this trend and gave good correlation with RT-PCR results for ABCG2 (r = 0.919, P = 0.001; Pearson) but not Bmi-1 (r = −0.311). The results provide evidence of increased density of ABCG2 and Bmi-1-positive populations in malignant and oral potentially malignant lesions and derived cell lines, but that intragroup variability within IHC, flow cytometry, and RT-PCR results compromise the diagnostic potential of these techniques for discriminating oral dysplasia from normal tissue or OSCC

  15. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    Science.gov (United States)

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected.

  16. PDK2 and ABCG2 genes polymorphisms are correlated with blood glucose levels and uric acid in Tibetan gout patients.

    Science.gov (United States)

    Ren, Y C; Jin, T B; Sun, X D; Geng, T T; Zhang, M X; Wang, L; Feng, T; Kang, L L; Chen, C

    2016-02-11

    Previous studies have shown that the PDK2 and ABCG2 genes play important roles in many aspects of gout development in European populations. However, a detailed genotype-phenotype analysis was not performed. The aim of the present study was to investigate the potential association between variants in these two genes and metabolism-related quantitative phenotypes relevant to gout in a Chinese Tibetan population. In total, 316 Chinese Tibetan gout patients were recruited from rheumatology outpatient clinics and 6 single nucleotide polymorphisms in PDK2 and ABCG2 were genotyped, which were possible etiologic variants as identified in the HapMap Chinese Han Beijing population. A significant difference in blood glucose levels was detected between different genotypes of rs2728109 (P = 0.005) in the PDK2 gene. We also detected a significant difference in the mean serum uric levels between different genotypes of rs3114018 (P = 0.004) in the ABCG2 gene. All P values remained significant after Bonferroni's correction for multiple testing. Our data demonstrate potential roles for PDK2 and ABCG2 polymorphisms in the metabolic phenotypes of Tibetan gout patients, which may provide new insights into the etiology of gout. Further studies are required to confirm these findings.

  17. Spread of multidrug-resistant Escherichia coli harboring integron via swine farm waste water treatment plant.

    Science.gov (United States)

    Park, Jin-Hyeong; Kim, Young-Ji; Binn-Kim; Seo, Kun-Ho

    2018-03-01

    Wastewater treatment plants (WWTPs) that release treated wastewater into the environment have emerged as a major threat to public health. In this study, we investigated Escherichia coli load and antibiotic-resistance profiles across different treatment processes at a swine farm WWTP. The frequency of the detection of class 1 and 2 integrons, and their association with antibiotic resistance, were also analyzed. Samples were obtained at each of five sampling sites that represented each processing step within the WWTP. The largest decrease in E. coli load was observed during the anaerobic digestion step (from 4.86 to 2.89log CFU/mL). Isolates resistant to β-lactam antibiotics were efficiently removed after a series of treatment steps, whereas the proportions of isolates resistant to non-β-lactam antibiotics and multidrug-resistant strains were maintained across treatments. The occurrence of integron-positive strains was not significantly different at the various sampling sites (43.4-70%; p>0.05). Of the class 1 integron-positive isolates, 17.9% harbored the integron-associated gene cassettes aadA2, aadA12, aadA22, and dfrA15. To the best of our knowledge, this is the first description of a class 1 integron containing the aadA12 gene cassette from a swine farm and the presence of a class 1 integron containing dfrA15 in E. coli. This suggests that novel antibiotic-resistance gene cassette arrays could be generated in swine farm WWTPs. Moreover, 75% of integron-positive strains were categorized as multidrug resistant, whereas only 15.4% of integron-negative strains were multidrug resistant (pswine farm WWTPs in terms of the spread of antibiotic-resistant bacteria to the aquatic environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  19. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Chinese hamster pleiotropic multidrug-resistant cells are not radioresistant

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Gamson, J.; Russo, A.; Friedman, N.; DeGraff, W.; Carmichael, J.; Glatstein, E.

    1988-01-01

    The inherent cellular radiosensitivity of a Chinese hamster ovary pleiotropic cell line that is multidrug resistant (CHRC5) was compared to that of its parental cell line (AuxB1). Radiation survival curve parameters n and D0 were 4.5 and 1.1 Gy, respectively, for the CHRC5 line and 5.0 and 1.2 Gy, respectively, for the parental line. Thus, the inherent radiosensitivity of the two lines was similar even though key intracellular free radical scavenging and detoxifying systems employing glutathione, glutathione transferase, and catalase produced enzyme levels that were 2.0-, 1.9-, and 1.9-fold higher, respectively, in the drug-resistant cell line. Glutathione depletion by buthionine sulfoximine resulted in the same extent of aerobic radiosensitization in both lines (approximately 10%). Incorporation of iododeoxyuridine into cellular DNA sensitized both cell lines to radiation. These studies indicate that pleiotropic drug resistance does not necessarily confer radiation resistance

  1. The Human ABCG1 Transporter Mobilizes Plasma Membrane and Late Endosomal Non-Sphingomyelin-Associated-Cholesterol for Efflux and Esterification

    Directory of Open Access Journals (Sweden)

    Edward B. Neufeld

    2014-12-01

    Full Text Available We have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM and in late endosomes (LE mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM. ABCG1-mobilized non-SM-associated-cholesterol rapidly cycled between the PM and LE and effluxed from the PM to extracellular acceptors, or, relocated to intracellular sites of esterification. ABCG1 increased detergent-soluble pools of PM and LE cholesterol, generated detergent-resistant, non-SM-associated PM cholesterol, and increased resistance to both amphotericin B-induced (cholesterol-mediated and lysenin-induced (SM-mediated cytolysis, consistent with altered organization of both PM cholesterol and SM. ABCG1 itself resided in detergent-soluble membrane domains. We propose that PM and LE ABCG1 residing at the phase boundary between ordered (Lo and disordered (Ld membrane lipid domains alters SM and cholesterol organization thereby increasing cholesterol flux between Lo and Ld, and hence, the amount of cholesterol available for removal by acceptors on either side of the membrane bilayer for either efflux or esterification.

  2. T cell-based tracking of multidrug resistant tuberculosis infection after brief exposure.

    Science.gov (United States)

    Richeldi, Luca; Ewer, Katie; Losi, Monica; Bergamini, Barbara M; Roversi, Pietro; Deeks, Jonathan; Fabbri, Leonardo M; Lalvani, Ajit

    2004-08-01

    Molecular epidemiology indicates significant transmission of Mycobacterium tuberculosis after casual contact with infectious tuberculosis cases. We investigated M. tuberculosis transmission after brief exposure using a T cell-based assay, the enzyme-linked-immunospot (ELISPOT) for IFN-gamma. After childbirth, a mother was diagnosed with sputum smear-positive multidrug-resistant tuberculosis. Forty-one neonates and 47 adults were present during her admission on the maternity unit; 11 weeks later, all underwent tuberculin skin testing (TST) and ELISPOT. We correlated test results with markers of exposure to the index case. The participants, who were asymptomatic and predominantly had no prior tuberculosis exposure, had 6.05 hours mean exposure (range: 0-65 hours) to the index case. Seventeen individuals, including two newborns, were ELISPOT-positive, and ELISPOT results correlated significantly with three of four predefined measures of tuberculosis exposure. For each hour sharing room air with the index case, the odds of a positive ELISPOT result increased by 1.05 (95% CI: 1.02-1.09, p = 0.003). Only four adults were TST-positive and TST results did not correlate with exposure. Thus, ELISPOT, but not TST, suggested quite extensive nosocomial transmission of multidrug-resistant M. tuberculosis after brief exposure. These results help to explain the apparent importance of casual contact for tuberculosis transmission, and may have implications for prevention.

  3. Multidrug-resistant pathogens in the food supply.

    Science.gov (United States)

    Doyle, Marjorie E

    2015-04-01

    Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in

  4. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L.

  5. Ability of polymer-bound P-glycoprotein inhibitor ritonavir to overcome multidrug resistance in various resistant neuroblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Chytil, Petr; Etrych, Tomáš; Janoušková, Olga

    2017-01-01

    Roč. 28, č. 10 (2017), s. 1126-1130 ISSN 0959-4973 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : drug-delivery polymers * multidrug resistance * N-(2-hydroxypropyl) methacrylamide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.320, year: 2016

  6. Multidrug Resistant Salmonella typhi in Asymptomatic Typhoid Carriers among Food Handlers in Namakkal District, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Senthilkumar B

    2005-01-01

    Full Text Available Purpose: to screen Salmonella typhi in asymptomatic typhoid carriers and to find out drug resistance and ability of the strains to transmit drug resistance to other bacteria. Methods: Cultural characters, biochemical tests, antibiotic sensitivity test (disc diffusion, agarose gel electrophoresis, and conjugation protocols were done. Thirty five stool samples were collected from the suspected food handlers for the study. Results: Among 35 samples, (17.14% yielded a positive result. Out of these 4 (20.0% were women and 2 (13.33% were men. The isolates were tested with a number of conventional antibiotics viz, amikacin, amoxicillin, ampicillin, chloramphenicol, ciprofloxacin, co-trimaxazole, rifampicin, gentamicin, nalidixic acid, ofloxacin and tetracycline. Five isolates were having the multidrug resistant character. Four (66.66% multidrug resistant isolates were found to have plasmids, while one (16.66% multidrug resistant isolate had no plasmid and the chromosome encoded the resistance. Only one strain (16.66% showed single antibiotic resistance in the study and had no plasmid DNA. The molecular weights of the plasmids were determined and found to be 120 kb.The mechanism of spreading of drug resistance through conjugation process was analyzed. In the conjugation studies, the isolates having R+ factor showed the transfer of drug resistance through conjugation, which was determined by the development of antibiotic resistance in the recipients. Conclusion: This study shows that drug resistant strains are able to transfer genes encoding drug resistance.

  7. [Cluster of multidrug-resistant tuberculosis cases in a school of the district of Ica, Peru].

    Science.gov (United States)

    Torres, Julio; Sardón, Victoria; Soto, Mirtha G; Anicama, Rolado; Arroyo-Hernández, Hugo; Munayco, César V

    2011-01-01

    We describe the evolution and features of a cluster of Multidrug-resistant tuberculosis (MDR TB) cases that occurred in 2001, in a school located in a sub-urban area of the district of Ica, Peru. We identified 15 students related before becoming infected with tuberculosis. The mean age of the cluster was 15 years. A total of 12 students were MDR-TB cases and 7 were drug-resistant to 5 first-line drugs (RHEZS). Five out of the 15 cases received at least 3 different anti-tuberculosis treatment schemes. The average treatment duration was 37 months (minimum 21 and maximum 59 months). A total of 13 cases recovered and 2 died. This study describes a cluster of MDR -TB cases in an educational facility, which due to the epidemiological link and time presentation, is probably an outbreak of MDR TB with a satisfactory outcome after prolonged treatment.

  8. Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan; Xin, Beibei; Wang, Hui; He, Xiaodan [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China); Wei, Wei; Zhang, Ti [Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Tianjin 300060 (China); Shen, Xiaohong, E-mail: zebal2014@163.com [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China)

    2016-08-01

    Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues. Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.

  9. The demise of multidrug-resistant HIV-1: the national time trend in Portugal

    Science.gov (United States)

    Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Águas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge; Mansinho, Kamal; Cláudia Miranda, Ana; Aldir, Isabel; Ventura, Fernando; Nina, Jaime; Borges, Fernando; Valadas, Emília; Doroana, Manuela; Antunes, Francisco; João Aleixo, Maria; João Águas, Maria; Botas, Júlio; Branco, Teresa; Vera, José; Vaz Pinto, Inês; Poças, José; Sá, Joana; Duque, Luis; Diniz, António; Mineiro, Ana; Gomes, Flora; Santos, Carlos; Faria, Domitília; Fonseca, Paula; Proença, Paula; Tavares, Luís; Guerreiro, Cristina; Narciso, Jorge; Faria, Telo; Teófilo, Eugénio; Pinheiro, Sofia; Germano, Isabel; Caixas, Umbelina; Faria, Nancy; Paula Reis, Ana; Bentes Jesus, Margarida; Amaro, Graça; Roxo, Fausto; Abreu, Ricardo; Neves, Isabel

    2013-01-01

    Objectives Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. Patients and methods We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. Results We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7–8.4) in 2001–03, 6.0% (95% CI: 4.9–7.2) in 2003–05, 3.7% (95% CI: 2.8–4.8) in 2005–07 and 1.6% (95% CI: 1.1–2.2) in 2007–09 down to 0.6% (95% CI: 0.3–0.9) in 2009–12 [OR = 0.80 (95% CI: 0.75–0.86); P < 0.001]. In July 2011 the last new case of MDR was seen. Conclusions The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains. PMID:23228933

  10. Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients

    NARCIS (Netherlands)

    Bolhuis, Mathieu S.; van Altena, Richard; van Soolingen, Dick; de Lange, Wiel C. M.; Uges, Donald R. A.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2013-01-01

    The use of linezolid for the treatment of multidrug-resistant tuberculosis is limited by dose-and time-dependent toxicity. Recently, we reported a case of pharmacokinetic drug drug interaction between linezolid and clarithromycin that resulted in increased linezolid exposure. The aim of this

  11. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Active surveillance for asymptomatic colonisation by multidrug-resistant bacteria in patients transferred to a tertiary care hospital in the occupied Palestinian territory.

    Science.gov (United States)

    Taha, Adham Abu; Daoud, Ayman; Zaid, Sawsan; Sammour, Sajida; Belleh, Maram; Daifi, Refqa

    2018-02-21

    Active surveillance is important in infection control programmes, allowing the detection of patients colonised with multi-drug resistant organisms and preventing the spread of multi-drug resistant organisms. The aim of this study was to determine the rate of asymptomatic colonisation with multi-drug resistant organisms and the prevalence of each organism in patients transferred to An-Najah National University Hospital, Nablus, occupied Palestinian territory. Patients transferred from other hospitals between January and December, 2015, were screened at time of admission by taking nasal, groin, and axillary swabs. Swabs were cultured and assessed for the presence of multi-drug resistant organisms (extended spectrum β-lactamase producers, Pseudomonas aeroginosae, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and carbapenem-resistant enterobacteriaceae. Of the 822 screened patients, 265 (32%) had infections with multi-drug resistant organisms. 394 isolates of multi-drug resistant organisms were obtained: 131 (33%) isolates were extended spectrum β-lactamase producers, 119 (30%) isolates were P aeroginosae, 26 (9%) isolates were A baumannii, 94 (24%) isolates were methicillin-resistant S aureus, 13 (3%) isolates were vancomycin-resistant enterococci, and one (<1%) isolate was carbapenem-resistant enterobacteriaceae. We identified a high prevalence of asymptomatic colonisation with multidrug-resistant bacteria in transferred patients. These findings emphasise the need for a national strategy to combat the spread of multi-drug resistant organisms in the occupied Palestinian territory. An-Najah National University. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  14. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  15. Bedaquiline in the multidrug-resistant tuberculosis treatment: Belarus experience

    Directory of Open Access Journals (Sweden)

    Alena Skrahina

    2016-01-01

    Conclusion: Our interim results on safety and effectiveness of bedaquiline-containing regimens in multidrug and extensively drug-resistant tuberculosis (M/XDR-TB patients are encouraging. They will add value to understanding role and place of this new anti-TB drug in M/XDR-TB treatment.

  16. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    Directory of Open Access Journals (Sweden)

    Ayse Karaaslan

    2014-12-01

    Full Text Available In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  17. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  18. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  19. Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population.

    Science.gov (United States)

    Zhou, Danqiu; Liu, Yunqing; Zhang, Xinju; Gu, Xiaoye; Wang, Hua; Luo, Xinhua; Zhang, Jin; Zou, Hejian; Guan, Ming

    2014-05-22

    Gout is a common type of arthritis that is characterized by hyperuricemia, tophi and joint inflammation. Genetic variations in the ABCG2 gene have been reported to influence serum uric acid levels and to participate in the pathogenesis of gout, but no further data have been reported in the Han Chinese population. Peripheral blood DNA was isolated from 352 male patients with gout and 350 gout-free normal male controls. High-resolution melting analysis and Sanger sequencing were performed to identify the genetic polymorphisms V12M, Q141K and Q126X in the ABCG2 gene. Genotype and haplotype analyses were utilized to determine the disease odds ratios (ORs). A prediction model for gout risk using ABCG2 protein function was established based on the genotype combination of Q126X and Q141K. For Q141K, the A allele frequency was 49.6% in the gout patients and 30.9% in the controls (OR 2.20, 95% confidence interval (CI): 1.77-2.74, p=8.99×10⁻¹³). Regarding Q126X, the T allele frequency was 4.7% in the gout patients and 1.7% in the controls (OR 2.91, 95% CI: 1.49-5.68, p=1.57×10⁻³). The A allele frequency for V12M was lower (18.3%) in the gout patients than in the controls (29%) (OR 0.55, 95% CI 0.43-0.71, p=2.55×10⁻⁶). In the order of V12M, Q126X and Q141K, the GCA and GTC haplotypes indicated increased disease risk (OR=2.30 and 2.71, respectively). Patients with mild to severe ABCG2 dysfunction accounted for 78.4% of gout cases. The ABCG2 126X and 141K alleles are associated with an increased risk of gout, whereas 12M has a protective effect on gout susceptibility in the Han Chinese population. ABCG2 dysfunction can be used to evaluate gout risk.

  20. Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel

    OpenAIRE

    Ben-Ami, Ronen; Berman, Judith; Novikov, Ana; Bash, Edna; Shachor-Meyouhas, Yael; Zakin, Shiri; Maor, Yasmin; Tarabia, Jalal; Schechner, Vered; Adler, Amos; Finn, Talya

    2017-01-01

    Candida auris and C. haemulonii are closely related, multidrug-resistant emerging fungal pathogens that are not readily distinguishable with phenotypic assays. We studied C. auris and C. haemulonii clinical isolates from 2 hospitals in central Israel. C. auris was isolated in 5 patients with nosocomial bloodstream infection, and C. haemulonii was found as a colonizer of leg wounds at a peripheral vascular disease clinic. Liberal use of topical miconazole and close contact among patients were ...

  1. Add-On Therapy with Ertapenem in Infections with Multidrug Resistant Gram-Negative Bacteria: Pediatric Experience

    Directory of Open Access Journals (Sweden)

    Sevgen Tanır Basaranoglu

    2017-01-01

    Full Text Available Optimal therapy for infections with carbapenem resistant GNB is not well established due to the weakness of data. Patients presenting with bloodstream infections caused by multidrug resistant Klebsiella pneumoniae were treated with a combination treatment. Optimal therapy for infections with carbapenem resistant Gram-negative bacteria is a serious problem in pediatric patients. We presented three cases who were successfully treated with addition of ertapenem to the combination treatment for bacteremia with multidrug resistant Klebsiella pneumoniae. Dual carbapenem treatment approach is a new approach for these infections and requires more data in children.

  2. Cellular Localization and Trafficking of the Human ABCG1 Transporter

    Science.gov (United States)

    Neufeld, Edward B.; O’Brien, Katherine; Walts, Avram D.; Stonik, John A.; Demosky, Steven J.; Malide, Daniela; Combs, Christian A.; Remaley, Alan T.

    2014-01-01

    We have developed a suitable heterologous cell expression system to study the localization, trafficking, and site(s) of function of the human ABCG1 transporter. Increased plasma membrane (PM) and late endosomal (LE) cholesterol generated by ABCG1 was removed by lipoproteins and liposomes, but not apoA-I. Delivery of ABCG1 to the PM and LE was required for ABCG1-mediated cellular cholesterol efflux. ABCG1 LEs frequently contacted the PM, providing a collisional mechanism for transfer of ABCG1-mobilized cholesterol, similar to ABCG1-mediated PM cholesterol efflux to lipoproteins. ABCG1-mobilized LE cholesterol also trafficked to the PM by a non-vesicular pathway. Transfer of ABCG1-mobilized cholesterol from the cytoplasmic face of LEs to the PM and concomitant removal of cholesterol from the outer leaflet of the PM bilayer by extracellular acceptors suggests that ABCG1 mobilizes cholesterol on both sides of the lipid bilayer for removal by acceptors. ABCG1 increased uptake of HDL into LEs, consistent with a potential ABCG1-mediated cholesterol efflux pathway involving HDL resecretion. Thus, ABCG1 at the PM mobilizes PM cholesterol and ABCG1 in LE/LYS generates mobile pools of cholesterol that can traffic by both vesicular and non-vesicular pathways to the PM where it can also be transferred to extracellular acceptors with a lipid surface. PMID:25405320

  3. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    Directory of Open Access Journals (Sweden)

    Deep Pokharel

    2014-08-01

    Full Text Available Cancer multidrug resistance (MDR occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp, transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS, in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM; and cytoskeleton motor proteins within the MP cargo.

  4. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced...

  5. Health system factors influencing management of multidrug-resistant tuberculosis in four European Union countries - learning from country experiences

    Directory of Open Access Journals (Sweden)

    Gerard de Vries

    2017-04-01

    Full Text Available Abstract Background In the European Union and European Economic Area only 38% of multidrug-resistant tuberculosis patients notified in 2011 completed treatment successfully at 24 months’ evaluation. Socio-economic factors and patient factors such as demographic characteristics, behaviour and attitudes are associated with treatment outcomes. Characteristics of healthcare systems also affect health outcomes. This study was conducted to identify and better understand the contribution of health system components to successful treatment of multidrug-resistant tuberculosis. Methods We selected four European Union countries to provide for a broad range of geographical locations and levels of treatment success rates of the multidrug-resistant tuberculosis cohort in 2009. We conducted semi-structured interviews following a conceptual framework with representatives from policy and planning authorities, healthcare providers and civil society organisations. Responses were organised according to the six building blocks of the World Health Organization health systems framework. Results In the four included countries, Austria, Bulgaria, Spain, and the United Kingdom, the following healthcare system factors were perceived as key to achieving good treatment results for patients with multidrug-resistant tuberculosis: timely diagnosis of drug-resistant tuberculosis; financial systems that ensure access to a full course of treatment and support for multidrug-resistant tuberculosis patients; patient-centred approaches with strong intersectoral collaboration that address patients’ emotional and social needs; motivated and dedicated healthcare workers with sufficient mandate and means to support patients; and cross-border management of multidrug-resistant tuberculosis to secure continuum of care between countries. Conclusion We suggest that the following actions may improve the success of treatment for multidrug-resistant tuberculosis patients: deployment of

  6. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed, and one obvious approach involves antimicrobial peptides and mimics hereof. The impact of a- and ß-peptoid as well as ß(3)-amino acid modifications on the activity profile against ß-lactamase-producing...

  7. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2015-04-01

    Full Text Available Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1. Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.

  8. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    Science.gov (United States)

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  9. Drug resistance detection and mutation patterns of multidrug resistant tuberculosis strains from children in Delhi

    Directory of Open Access Journals (Sweden)

    Jyoti Arora

    2017-06-01

    Full Text Available A total of 312 sputum samples from pediatric patients presumptive of multidrug resistant tuberculosis were tested for the detection of drug resistance using the GenoTypeMTBDRplus assay. A total of 193 (61.8% patients were smear positive and 119 (38.1% were smear negative by Ziehl–Neelsen staining. Line probe assay (LPA was performed for 208 samples/cultures (193 smear positive samples and 15 cultures from smear negative samples. Valid results were obtained from 198 tests. Of these, 125/198 (63.1% were sensitive to both rifampicin (RIF and isoniazid (INH. 73/198 (36.9% were resistant to at least INH/RIF, out of which 49 (24.7% were resistant to both INH and RIF (multidrug resistant. Children with tuberculosis are often infected by someone close to them, so strengthening of contact tracing in the program may help in early diagnosis to identify additional cases within the household. There is a need to evaluate newer diagnostic assays which have a high sensitivity in the case of smear negative samples, additional samples other than sputum among young children not able to expectorate, and also to fill the gap between estimated and reported cases under the program.

  10. In vitro antibacterial activity of rifampicin in combination with imipenem, meropenem and doripenem against multidrug-resistant clinical isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Hu, Yi-Fan; Liu, Chang-Pan; Wang, Nai-Yu; Shih, Shou-Chuan

    2016-08-24

    Multidrug-resistant Pseudomonas aeruginosa has emerged as one of the most important healthcare-associated pathogens. Colistin is regarded as the last-resort antibiotic for multidrug-resistant Gram-negative bacteria, but is associated with high rates of acute kidney injury. The aim of this in vitro study is to search for an alternative treatment to colistin for multidrug-resistant P. aeruginosa infections. Multidrug and carbapenem-resistant P. aeruginosa isolates were collected between January 2009 and December 2012 at MacKay Memorial Hospital. Minimal inhibitory concentrations (MICs) were determined for various antibiotic combinations. Carbapenemase-producing genes including bla VIM, other β-lactamase genes and porin mutations were screened by PCR and sequencing. The efficacy of carbapenems (imipenem, meropenem, doripenem) with or without rifampicin was correlated with the type of porin mutation (frameshift mutation, premature stop codon mutation) in multidrug-resistant P. aeruginosa isolates without carbapenemase-producing genes. Of the 71 multidrug-resistant clinical P. aeruginosa isolates, only six harboured the bla VIM gene. Imipenem, meropenem and doripenem were significantly more effective (reduced fold-change of MICs) when combined with rifampicin in bla VIM-negative isolates, especially in isolates with porin frameshift mutation. Imipenem + rifampicin combination has a low MIC against multidrug-resistant P. aeruginosa, especially in isolates with porin frameshift mutation. The imipenem + rifampicin combination may provide an alternative treatment to colistin for multidrug -resistant P. aeruginosa infections, especially for patients with renal insufficiency.

  11. Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan-graft poly(caprolactone)-based nanoparticles.

    Science.gov (United States)

    Shi, Wei-Bin; Le, Van-Minh; Gu, Chun-Hua; Zheng, Yuan-Hong; Lang, Mei-Dong; Lu, Yan-Hua; Liu, Jian-Wen

    2014-04-01

    The principal limitations of chemotherapy are dose-limiting systemic toxicity and the development of multidrug-resistant phenotypes. The aim of this study was to investigate the efficiency of a new sustained drug delivery system based on chitosan and ε-caprolactone to overcome multidrug resistance in monolayer and drug resistance associated with the three-dimensional (3D) tumor microenvironment in our established 3D models. The 5-fluorouracil (5-FU)-loaded nanoparticles (NPs) were characterized by transmission electron microscope and dynamic light scattering, and its released property was determined at different pH values. 5-FU/NPs exhibited well-sustained release properties and markedly enhanced the cytotoxicity of 5-FU against HCT116/L-OHP or HCT8/VCR MDR cells in two-dimensional (2D) and its parental cells in 3D collagen gel culture with twofold to threefold decrease in the IC50 values, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst/propidium iodide staining and flow cytometry analysis. Furthermore, the possible mechanism was explored by high-performance liquid chromatography and rhodamine 123 accumulation experiment. Overall, the results demonstrated that 5-FU/NPs increase intracellular concentration of 5-FU and enhance its anticancer efficiency by inducing apoptosis. It was suggested that this novel NPs are a promising carrier to decrease toxic of 5-FU and has the potential to reverse the forms of both intrinsic and acquired drug resistance in 2D and 3D cultures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  13. Increased multi-drug resistant Escherichia coli from hospitals in ...

    African Journals Online (AJOL)

    Background: Multidrug-resistant Escherichia coli (MDR E. coli) has become a major public health concern in Sudan and many countries, causing failure in treatment with consequent huge health burden. Objectives: To determine the prevalence and susceptibility of MDR E. coli isolated from patients in hospitals at Khartoum ...

  14. Characterisation of multidrug-resistant Ehrlich ascites tumour cells selected in vivo for resistance to etoposide

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C; Eriksen, J

    2000-01-01

    -extractable immunoreactive topoisomerase IIalpha and beta in EHR2/VP16 was reduced by 30-40% relative to that in EHR2. The multidrug resistance-associated protein (MRP) mRNA was increased 20-fold in EHR2/VP16 as compared with EHR2, whereas the expression of P-glycoprotein was unchanged. In EHR2/VP16, the steady......M. ATPase activity was slightly stimulated by daunorubicin, whereas vinblastine, verapamil, and cyclosporin A had no effect. In conclusion, development of resistance to VP16 in EHR2 is accompanied by a significant reduction in topoisomerase II (alpha and beta) and by increased expression of MRP mRNA (20......-fold). MRP displays several points of resemblance to P-glycoprotein in its mode of action: 1) like P-glycoprotein, MRP causes resistance to a range of hydrophobic drugs; 2) MRP decreases drug accumulation in the cells and this decrease is abolished by omission of energy; and 3) MRP increases efflux...

  15. Mechanisms of first-line antimicrobial resistance in multi-drug and extensively drug resistant strains of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Navisha Dookie

    2016-10-01

    Full Text Available Abstract Background In South Africa, drug resistant tuberculosis is a major public health crisis in the face of the colossal HIV pandemic. Methods In an attempt to understand the distribution of drug resistance in our setting, we analysed the rpoB, katG, inhA, pncA and embB genes associated with resistance to key drugs used in the treatment of tuberculosis in clinical isolates of Mycobacterium tuberculosis in the KwaZulu-Natal province. Results Classical mutations were detected in the katG, inhA and embB genes associated with resistance to isoniazid and ethambutol. Diverse mutations were recorded in the multidrug resistant (MDR and extensively drug resistant (XDR isolates for the rpoB and pncA gene associated with resistance to rifampicin and pyrazinamide. Conclusions M.tuberculosis strains circulating in our setting display a combination of previously observed mutations, each mediating resistance to a different drug. The MDR and XDR TB isolates analysed in this study displayed classical mutations linked to INH and EMB resistance, whilst diverse mutations were linked to RIF and PZA resistance. The similarity of the XDR strains confirms reports of the clonality of the XDR epidemic. The successful dissemination of the drug resistant strains in the province underscores the need for rapid diagnostics to effectively diagnose drug resistance and guide treatment.

  16. Prevalence of multidrug resistant pathogens in children with urinary tract infection: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Srinivasan S, Madhusudhan NS

    2014-11-01

    Full Text Available Urinary tract infection (UTI is one of the commonest medical problems in children. It can distress the child and may cause kidney damage. Prompt diagnosis and effective treatment can prevent complications in the child. But treatment of UTI in children has now become a challenge due to the emergence of multidrug resistant bacteria. Aims & Objectives: To know the bacteriological profile and susceptibility pattern of urinary tract infections in children and to know the prevalence of multidrug resistant uropathogens. Materials & Methods: A retrospective analysis was done on all paediatric urine samples for a period of one year. A total of 1581 samples were included in the study. Antimicrobial susceptibility testing was done on samples showing significant growth by Kirby-Bauer disc diffusion method. Statistical analysis: Prevalence and pattern were analyzed using proportions and percentages. Results: E.coli was the most predominant organism (56% causing UTI in children followed by Klebsiella sp (17%. Fifty three percent of gram negative organisms isolated from children were found to be multidrug resistant. Majority of E. coli isolates were found to be highly resistant to Ampicillin (91% and Cotrimoxazole (82% and highly sensitive to Imipenem (99% and Amikacin (93%. Conclusion: Paediatric UTI was common in children less than 5 years of age. Gram negative bacteria (E. coli and Klebsiella sp were more common than gram positive bacteria. Our study revealed that multidrug resistance was higher in E.coli.

  17. Infection by multidrug-resistant Elizabethkingia meningoseptica: case reports

    Directory of Open Access Journals (Sweden)

    Jailton Lobo da Costa Lima

    2014-12-01

    Full Text Available We report two cases of sepsis in critically ill patients in two tertiary care hospitals in Recife-PE, Brazil. The first case is an 87-year-old patient with chronic myeloid leukemia and sepsis; and the second case is a 93-year-old patient with prostate cancer and septic shock caused by multidrug-resistant (MDR Elizabethkingia meningoseptica.

  18. Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Iqbal, Mazhar; Mirza, Osman

    2017-01-01

    . Research on the underlying causes of multidrug resistance in cancerous cells and later on in infectious bacteria revealed the involvement of integral membrane transporters, capable of recognizing a broad range of structurally different molecules as substrates and exporting them from the cell using cellular...... superfamilies, viz., ATP-binding cassette superfamily, major facilitator superfamily and resistance nodulation division superfamily are presented. Further, the future role of structural biology in improving our understanding of drug-transporter interactions and in designing novel inhibitors against MDR pump...... century, mankind has become aware and confronted with the emergence of antibiotic-resistant pathogens. In parallel to the failure of antibiotic therapy against infectious pathogens, there had been continuous reports of cancerous cells not responding to chemotherapy with increase in the duration of therapy...

  19. A case of multidrug-resistant monoarticular joint tuberculosis in a renal transplant recipient.

    Science.gov (United States)

    Regmi, A; Singh, P; Harford, A

    2014-01-01

    Tuberculosis (TB) is a common opportunistic infection after renal transplantation. The risk of TB in renal transplant recipients is reported to be 20 to 74 times higher than in the general population. Although extrapulmonary TB occurs frequently, isolated ankle joint TB is a rare form of extrapulmonary TB infection. It is often difficult to diagnose because of its atypical presentation; management is complex, especially with multidrug-resistant TB, the need for a prolonged course of therapy, and the risks of drug interactions and drug toxicity. We report herein a case of a 60-year-old female renal allograft recipient who developed multidrug-resistant ankle joint TB 11 months after her deceased donor renal transplantation. She presented to the emergency department with escalating pain and swelling of the left ankle, difficulty in ambulation, and a low-grade fever. An x-ray of the ankle revealed an effusion and soft tissue swelling. A synovial fluid culture was performed which tested positive for acid fast bacilli which grew a multidrug-resistant form of Mycobacterium tuberculosis. She was initially treated with isoniazid, rifampin, ethambutol, and pyrazinamide; then therapy was tailored secondary to the resistant nature of the organism. She received a combination of extensive debridement of the joint and institution of second-line anti-TB therapy with pyrazinamide, ethambutol, moxifloxacin, and ethionamide. To our knowledge, no other cases of multidrug-resistant TB have been reported in the literature after renal transplantation. This case shows both an atypical presentation of TB and the difficulties in managing a transplant patient with this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    Science.gov (United States)

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

    OpenAIRE

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity wa...

  2. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    Science.gov (United States)

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  3. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer.

    Science.gov (United States)

    Wang, Xiaohong; Xu, Chengfeng; Hua, Yitong; Sun, Leitao; Cheng, Kai; Jia, Zhongming; Han, Yong; Dong, Jianli; Cui, Yuzhen; Yang, Zhenlin

    2016-12-01

    Release of exosomes have been shown to play critical roles in drug resistance by delivering cargo. Targeting the transfer of exosomes from resistant cells to sensitive cells may be an approach to overcome some cases of drug resistance. In this study, we investigated the potential role of exosomes in the process of psoralen reverse multidrug resistance of MCF-7/ADR cells. Exosomes were isolated by differential centrifugation of culture media from MCF-7/ADR cells (ADR/exo) and MCF-7 parental cells (S/exo). Exosomes were characterized by morphology, exosomal markers and size distribution. The ability of ADR/exo to transfer multidrug resistance was assessed by MTT and real-time quantitative PCR. The different formation and secretion of exosomes were detected by immunofluorescence and transmission electron microscopy. Then we performed comparative transcriptomic analysis using RNA-Seq technology and real-time quantitative PCR to better understand the gene expression regulation in exosmes formation and release after psoralen treatment. Our data showed that exosomes derived from MCF-7/ADR cells were able to promote active sequestration of drugs and could induce a drug resistance phenotype by transferring drug-resistance-related gene MDR-1 and P-glycoprotein protein. Psoralen could reduce the formation and secretion of exosomes to overcome drug resistance. There were 21 differentially expressed genes. Gene ontology (GO) pathway analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most significantly expressed genes were linked to PPAR and P53 signaling pathways which were related to exosomes formation, secretion and cargo sorting. Psoralen can affect the exosomes and induce the reduction of resistance transmission via exosomes might through PPAR and P53 signaling pathways, which might provide a novel strategy for breast cancer resistance to chemotherapy in the future.

  4. Multidrug-resistant tuberculosis in pregnancy

    International Nuclear Information System (INIS)

    Dhingra, V.K.; Arora, V.K.; Rajpal, S.

    2007-01-01

    This is a case report of 26 years old pregnant woman with multidrug-resistant tuberculosis (MDR TB), treated at outpatient department of New Delhi Tuberculosis (NDTB) Centre, India with second line agents. Before presentation at NDTB Centre, she had been treated with first line drugs for approximately one and-a-half-year, including category II re-treatment DOTS regimen under RNTCP. Patient conceived twice during her anti-TB treatment. The first one was during her category II treatment, when put on second line drugs. We describe congenital abnormalities documented in her second child exposed in-utero to second line anti-tubercular drugs with a brief review of treatment of MDR TB in pregnancy. (author)

  5. Conspicuous multidrug-resistant Mycobacterium tuberculosis cluster strains do not trespass country borders in Latin America and Spain.

    Science.gov (United States)

    Ritacco, Viviana; Iglesias, María-José; Ferrazoli, Lucilaine; Monteserin, Johana; Dalla Costa, Elis R; Cebollada, Alberto; Morcillo, Nora; Robledo, Jaime; de Waard, Jacobus H; Araya, Pamela; Aristimuño, Liselotte; Díaz, Raúl; Gavin, Patricia; Imperiale, Belen; Simonsen, Vera; Zapata, Elsa M; Jiménez, María S; Rossetti, Maria L; Martin, Carlos; Barrera, Lucía; Samper, Sofia

    2012-06-01

    Multidrug-resistant Mycobacterium tuberculosis strain diversity in Ibero-America was examined by comparing extant genotype collections in national or state tuberculosis networks. To this end, genotypes from over 1000 patients with multidrug-resistant tuberculosis diagnosed from 2004 through 2008 in Argentina, Brazil, Chile, Colombia, Venezuela and Spain were compared in a database constructed ad hoc. Most of the 116 clusters identified by IS6110 restriction fragment length polymorphism were small and restricted to individual countries. The three largest clusters, of 116, 49 and 25 patients, were found in Argentina and corresponded to previously documented locally-epidemic strains. Only 13 small clusters involved more than one country, altogether accounting for 41 patients, of whom 13 were, in turn, immigrants from Latin American countries different from those participating in the study (Peru, Ecuador and Bolivia). Most of these international clusters belonged either to the emerging RD(Rio) LAM lineage or to the Haarlem family of M. tuberculosis and four were further split by country when analyzed with spoligotyping and rifampin resistance-conferring mutations, suggesting that they did not represent ongoing transnational transmission events. The Beijing genotype accounted for 1.3% and 10.2% of patients with multidrug-resistant tuberculosis in Latin America and Spain, respectively, including one international cluster of two cases. In brief, Euro-American genotypes were widely predominant among multidrug-resistant M. tuberculosis strains in Ibero-America, reflecting closely their predominance in the general M. tuberculosis population in the region, and no evidence was found of acknowledged outbreak strains trespassing country borders. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria.

    Science.gov (United States)

    Mahfoud, Maysa; Al Najjar, Mona; Hamzeh, Abdul Rezzak

    2015-02-19

    Pseudomonas aeruginosa represents a serious clinical challenge due to its frequent involvement in nosocomial infections and its tendency towards multidrug resistance. This study uncovered antibiotic susceptibility patterns in 177 isolates from inpatients in three key hospitals in Aleppo, the largest city in Syria. Exceptionally low susceptibility to most routinely used antibiotics was uncovered; resistance to ciprofloxacin and gentamicin was 64.9% and 70.3%, respectively. Contrarily, susceptibility to colistin was the highest (89.1%). Multidrug resistance was rife, found at a rate of 53.67% among studied P. aeruginosa isolates.

  7. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim...... of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug......-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  8. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  9. Synthesis of poly[N-(2-hydroxypropyl)methacrylamide] conjugates of inhibitors of the ABC transporter that overcome multidrug resistance in doxorubicin-resistant P388 cells in vitro

    Czech Academy of Sciences Publication Activity Database

    Šubr, Vladimír; Sivák, Ladislav; Koziolová, Eva; Braunová, Alena; Pechar, Michal; Strohalm, Jiří; Kabešová, Martina; Říhová, Blanka; Ulbrich, Karel; Kovář, Marek

    2014-01-01

    Roč. 15, č. 8 (2014), s. 3030-3043 ISSN 1525-7797 R&D Projects: GA ČR GAP301/12/1254; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : N-(2-hydroxypropyl)methacrylamide copolymers * multidrug resistance * P-glycoprotein inhibitors Subject RIV: CD - Macromolecular Chemistry; FD - Oncology ; Hematology (MBU-M) Impact factor: 5.750, year: 2014

  10. In Vitro activity of novel glycopolymer against clinical isolates of multidrug-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Vidya P Narayanaswamy

    Full Text Available The incidence of multidrug-resistant (MDR organisms, including methicillin-resistant Staphylococcus aureus (MRSA, is a serious threat to public health. Progress in developing new therapeutics is being outpaced by antibiotic resistance development, and alternative agents that rapidly permeabilize bacteria hold tremendous potential for treating MDR infections. A new class of glycopolymers includes polycationic poly-N (acetyl, arginyl glucosamine (PAAG is under development as an alternative to traditional antibiotic strategies to treat MRSA infections. This study demonstrates the antibacterial activity of PAAG against clinical isolates of methicillin and mupirocin-resistant Staphylococcus aureus. Multidrug-resistant S. aureus was rapidly killed by PAAG, which completely eradicated 88% (15/17 of all tested strains (6-log reduction in CFU in ≤ 12-hours at doses that are non-toxic to mammalian cells. PAAG also sensitized all the clinical MRSA strains (17/17 to oxacillin as demonstrated by the observed reduction in the oxacillin MIC to below the antibiotic resistance breakpoint. The effect of PAAG and standard antibiotics including vancomycin, oxacillin, mupirocin and bacitracin on MRSA permeability was studied by measuring propidium iodide (PI uptake by bacterial cells. Antimicrobial resistance studies showed that S. aureus developed resistance to PAAG at a rate slower than to mupirocin but similar to bacitracin. PAAG was observed to resensitize drug-resistant S. aureus strains sampled from passage 13 and 20 of the multi-passage resistance study, reducing MICs of mupirocin and bacitracin below their clinical sensitivity breakpoints. This class of bacterial permeabilizing glycopolymers may provide a new tool in the battle against multidrug-resistant bacteria.

  11. In Vitro activity of novel glycopolymer against clinical isolates of multidrug-resistant Staphylococcus aureus.

    Science.gov (United States)

    Narayanaswamy, Vidya P; Giatpaiboon, Scott A; Uhrig, John; Orwin, Paul; Wiesmann, William; Baker, Shenda M; Townsend, Stacy M

    2018-01-01

    The incidence of multidrug-resistant (MDR) organisms, including methicillin-resistant Staphylococcus aureus (MRSA), is a serious threat to public health. Progress in developing new therapeutics is being outpaced by antibiotic resistance development, and alternative agents that rapidly permeabilize bacteria hold tremendous potential for treating MDR infections. A new class of glycopolymers includes polycationic poly-N (acetyl, arginyl) glucosamine (PAAG) is under development as an alternative to traditional antibiotic strategies to treat MRSA infections. This study demonstrates the antibacterial activity of PAAG against clinical isolates of methicillin and mupirocin-resistant Staphylococcus aureus. Multidrug-resistant S. aureus was rapidly killed by PAAG, which completely eradicated 88% (15/17) of all tested strains (6-log reduction in CFU) in ≤ 12-hours at doses that are non-toxic to mammalian cells. PAAG also sensitized all the clinical MRSA strains (17/17) to oxacillin as demonstrated by the observed reduction in the oxacillin MIC to below the antibiotic resistance breakpoint. The effect of PAAG and standard antibiotics including vancomycin, oxacillin, mupirocin and bacitracin on MRSA permeability was studied by measuring propidium iodide (PI) uptake by bacterial cells. Antimicrobial resistance studies showed that S. aureus developed resistance to PAAG at a rate slower than to mupirocin but similar to bacitracin. PAAG was observed to resensitize drug-resistant S. aureus strains sampled from passage 13 and 20 of the multi-passage resistance study, reducing MICs of mupirocin and bacitracin below their clinical sensitivity breakpoints. This class of bacterial permeabilizing glycopolymers may provide a new tool in the battle against multidrug-resistant bacteria.

  12. Optimizing the Safety of Multidrug-resistant Tuberculosis Therapy in Namibia

    NARCIS (Netherlands)

    Sagwa, Evans

    2017-01-01

    Introduction: Multidrug-resistant tuberculosis (MDR-TB), a growing global menace, is seriously undermining the previous successes made in the elimination of TB. MDR-TB treatment takes a long time, is complex, and is frequently associated with the occurrence of adverse drug reactions, some of which

  13. A simple reduction-sensitive micelles co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance

    Directory of Open Access Journals (Sweden)

    Li J

    2017-11-01

    Full Text Available Jun Li,1,* Ruitong Xu,2,* Xiao Lu,3 Jing He,1 Shidai Jin1 1Department of Medical Oncology, 2Department of General Practice, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 3Department of Medical Oncology, Changshu No 1 People’s Hospital, Changshu, People’s Republic of China *These authors contributed equally to this work Abstract: Multidrug resistance (MDR is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX and dasatinib (DAS for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy. Keywords: redox responsive, overcoming multidrug resistant, co-delivery, paclitaxel, dasatinib 

  14. Metabolic Reprogramming During Multidrug Resistance in Leukemias

    Directory of Open Access Journals (Sweden)

    Raphael Silveira Vidal

    2018-04-01

    Full Text Available Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.

  15. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Yoko Miyasaki

    Full Text Available The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.

  16. Low-level quinolone-resistance in multi-drug resistant typhoid

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S H; Khan, M A [Armed Forces Inst. of Pathology, Rawalpindi (Pakistan). Dept. of Microbiolgy

    2008-01-15

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  17. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    Mirza, S.H.; Khan, M.A.

    2008-01-01

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  18. Emergence and Evolution of Multidrug-Resistant Klebsiella pneumoniae with both blaKPC and blaCTX-M Integrated in the Chromosome.

    Science.gov (United States)

    Huang, Weihua; Wang, Guiqing; Sebra, Robert; Zhuge, Jian; Yin, Changhong; Aguero-Rosenfeld, Maria E; Schuetz, Audrey N; Dimitrova, Nevenka; Fallon, John T

    2017-07-01

    The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae , we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, IS Ecp1 , whereas the bla KPC-2 gene was in the context of a Tn 4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn 4401a-bla KPC-2 -prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)- cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR- cas in K. pneumoniae strains and suggested that the evolving CRISPR- cas , with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae Additionally, the implications from this study also raise concerns for the application of a CRISPR- cas strategy against antimicrobial resistance. Copyright © 2017 American Society for Microbiology.

  19. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  20. Phytochemical analysis and cytotoxicity towards multidrug-resistant leukemia cells of essential oils derived from Lebanese medicinal plants.

    Science.gov (United States)

    Saab, Antoine M; Guerrini, Alessandra; Sacchetti, Gianni; Maietti, Silvia; Zeino, Maʼen; Arend, Joachim; Gambari, Roberto; Bernardi, Francesco; Efferth, Thomas

    2012-12-01

    Juniperus excelsa fruit essential oil as well as J. oxycedrus, Cedrus libani, and Pinus pinea wood essential oils have been obtained with yields between 2.2 ± 0.3 % to 3.4 ± 0.5 % and analyzed by gas chromatography. Sesquiterpenes mainly characterized C. libani and J. oxycedrus essential oils, while in P. pinea and J. excelsa, monoterpenes were the most abundant compounds. In J. oxycedrus, cis-calamenene (7.8 %), cuparene (3.8 %), and cis-thujopsenal (2.0 %) have been detected for the first time. The cytotoxic activity of these essential oils against drug-sensitive CCRF-CEM and multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells has been investigated (IC₅₀ values: 29.46 to 61.54 µg/mL). Remarkably, multidrug-resistant CEM/ADR5000 cells did not reveal cross-resistance, indicating that these essential oils might be useful to treat otherwise drug-resistant and refractory tumors. Georg Thieme Verlag KG Stuttgart · New York.

  1. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Alsaad, Noor; Wilffert, Bob; van Altena, Richard; de Lange, Wiel C. M.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2014-01-01

    Treatment of multidrug-resistant (MDR) tuberculosis (TB) is challenging because of the high toxicity of second-line drugs and the longer treatment duration than for drug-susceptible TB patients. In order to speed up novel treatment for MDR-TB, we suggest considering expanding the indications of

  2. Individualizing Risk of Multidrug-Resistant Pathogens in Community-Onset Pneumonia

    OpenAIRE

    Falcone, Marco; Russo, Alessandro; Giannella, Maddalena; Cangemi, Roberto; Scarpellini, Maria Gabriella; Bertazzoni, Giuliano; Alarc?n, Jos? Mart?nez; Taliani, Gloria; Palange, Paolo; Farcomeni, Alessio; Vestri, Annarita; Bouza, Emilio; Violi, Francesco; Venditti, Mario

    2015-01-01

    Introduction The diffusion of multidrug-resistant (MDR) bacteria has created the need to identify risk factors for acquiring resistant pathogens in patients living in the community. Objective To analyze clinical features of patients with community-onset pneumonia due to MDR pathogens, to evaluate performance of existing scoring tools and to develop a bedside risk score for an early identification of these patients in the Emergency Department. Patients and Methods This was an open, observation...

  3. Antibacterial activity of local herbs collected from Murree (Pakistan) against multi-drug resistant Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus.

    Science.gov (United States)

    Mansoor, Qaisar; Shaheen, Saira; Javed, Uzma; Shaheen, Uzma; Iqrar, Irum; Ismail, Muhammad

    2013-07-01

    Exploring healing power in plants emerged in prehistory of human civilization. Sustaining good health has been achieved over the millions of years by use of plant products in various traditional sockets. A major contribution of medicinal plants to health care systems is their limitless possession of bioactive components that stimulate explicit physiological actions. Luckily Pakistan is blessed with huge reservoir of plants with medicinal potential and some of them; we focused in this study for their medicinal importance.In this study we checked the antibacterial activity inherent in Ricinus communis, Solanum nigrum, Dodonaea viscose and Berberis lyceum extracts for multidrug resistance bacterial strains Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus. MRSA showed sensitivity for Ricinus communis. Multidrug resistant Klebsiella pneumonae was sensitive with Pine roxburgii and Ricinus communis but weakly susceptible for Solanum nigrum. Multidrug resistant E. coli was resistant to all plant extracts. Treatment of severe infections caused by the bacterial strains used in this study with Ricinus communis, Pine roxburgii and Solanum nigrum can lower the undesired side effects of synthetic medicine and also reduce the economic burden.

  4. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan

    DEFF Research Database (Denmark)

    Lauderdale, T. L.; Aarestrup, Frank Møller; Chen, P. C.

    2006-01-01

    (41%) and was highly prevalent in Salmonella enterica serotype Typhimurium (72.7%, 176/242) the most common serotype. Additional resistance to trimethoprim was present in 155 (19.4% overall) of the ACSSuT R-type isolates from several serotypes. Reduced susceptibility to fluoroquinolone (FQ...... multiresistant to other antimicrobials. Studies are needed to determine the sources of different multidrug-resistant serotypes. Continued national surveillance is underway to monitor changes in resistance trends and to detect further emergence of resistant Salmonella serotypes in Taiwan. (c) 2006 Elsevier Inc...

  5. Functional imaging of the multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Lee, Jae Tae

    2001-01-01

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. 99m Tc-sestaMIBI and other 99m Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N- (11 C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo

  6. Chitosan as an effective inhibitor of multidrug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Costa, E M; Silva, S; Vicente, S; Veiga, M; Tavaria, F; Pintado, M M

    2017-12-15

    Over the last two decades worldwide levels of antibiotic resistance have risen leading to the appearance of multidrug resistant microorganisms. Acinetobacter baumannii is a known skin pathogen which has emerged as a major cause of nosocomial outbreaks due to its capacity to colonize indwelling medical devices and natural antibiotic resistance. With chitosan being an effective antimicrobial agent against antibiotic resistant microorganisms, the aim of this work was to access its potential as an alternative to traditional antimicrobials in the management of A. baumannii growth. What the results showed was that both chitosan MW's tested were active upon A. baumannii's planktonic and sessile growth. For planktonic growth MICs and MBCs were obtained at relatively low concentrations (0.5-2mg/mL) while for sessile growth chitosan proved to be an effective inhibitor of A. baumannii's adhesion and biofilm formation. Considering these results chitosan shows a high potential for control of A. baumannii infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pattern of intensive phase treatment outcomes of multi-drug resistant ...

    African Journals Online (AJOL)

    Pattern of intensive phase treatment outcomes of multi-drug resistant tuberculosis in University of Port Harcourt Treatment Centre: a review of records from ... Data on patients' age, sex, HIV status, treatment outcomes were extracted from the hospital book records into a computer data sheet at the UPTH treatment centre.

  8. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium

    DEFF Research Database (Denmark)

    Bryant, Josephine M; Grogono, Dorothy M; Rodriguez-Rincon, Daniela

    2016-01-01

    Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality....

  9. DGAT1 and ABCG2 polymorphism in Indian cattle (Bos indicus and buffalo (Bubalus bubalis breeds

    Directory of Open Access Journals (Sweden)

    Mishra Bina

    2006-11-01

    Full Text Available Abstract Background Indian cattle (Bos indicus and riverine buffalo (Bubalus bubalis give a poor yield of milk but it has a high fat and protein percentage compared to taurine cattle. The identification of QTLs (Quantitative Trait Loci on BTA14 and BTA6 and its subsequent fine mapping has led to identification of two non conservative mutations affecting milk production and composition. Our objective was to estimate the frequency of K232A (DGAT1 – diacylglycerol – acyltransferase 1 and Y581S (ABCG2 – ATP binding cassette sub family G member 2 polymorphisms in diverse cattle and buffalo breeds of India having large variation in terms of milk production. Results We screened the reported missense mutations in six cattle and five buffalo breeds. The DGAT1K and ABCG2Y alleles were found to be fixed in Indian cattle and buffalo breeds studied. Conclusion This study provides an indirect evidence that all the Indian cattle and buffalo breeds have fixed alleles with respect to DGAT1 and ABCG2 genes reported to be responsible for higher milk fat yield, higher fat and protein percent.

  10. Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients.

    Science.gov (United States)

    Modongo, Chawangwa; Pasipanodya, Jotam G; Zetola, Nicola M; Williams, Scott M; Sirugo, Giorgio; Gumbo, Tawanda

    2015-10-01

    Aminoglycosides, such as amikacin, are used to treat multidrug-resistant tuberculosis. However, ototoxicity is a common problem and is monitored using peak and trough amikacin concentrations based on World Health Organization recommendations. Our objective was to identify clinical factors predictive of ototoxicity using an agnostic machine learning method. We used classification and regression tree (CART) analyses to identify clinical factors, including amikacin concentration thresholds that predicted audiometry-confirmed ototoxicity among 28 multidrug-resistant pulmonary tuberculosis patients in Botswana. Amikacin concentrations were measured for all patients. The quantitative relationship between predictive factors and the probability of ototoxicity were then identified using probit analyses. The primary predictors of ototoxicity on CART analyses were cumulative days of therapy, followed by cumulative area under the concentration-time curve (AUC), which improved on the primary predictor by 87%. The area under the receiver operating curve was 0.97 on the test set. Peak and trough were not predictors in any tree. When algorithms were forced to pick peak and trough as primary predictors, the area under the receiver operating curve fell to 0.46. Probit analysis revealed that the probability of ototoxicity increased sharply starting after 6 months of therapy to near maximum at 9 months. A 10% probability of ototoxicity occurred with a threshold cumulative AUC of 87,232 days · mg · h/liter, while that of 20% occurred at 120,000 days · mg · h/liter. Thus, cumulative amikacin AUC and duration of therapy, and not peak and trough concentrations, should be used as the primary decision-making parameters to minimize the likelihood of ototoxicity in multidrug-resistant tuberculosis. Copyright © 2015, Modongo et al.

  11. Animal experiment and clinical preliminary application of percutaneous 70% ethanol injection therapy in multi-drug resistant pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Liu Fuquan; Yue Zhendong; Gao Shunyu; Li YanSheng; Wei Guobin; Guo Weiyi; Chen Xijun; Li Baoyu

    2004-01-01

    Objective: To evaluate the clinical value of percutaneous injection of 70% ethanol in the treatment of multidrug resistant pulmonary tuberculosis. Methods: Percutaneous and transcatheter absolute ethanol, 70% ethanol, and 60% meglucamine diatrizoate(or distilled water) injection into the lung (25 cases) and the bronchi (25 cases) of healthy rabbits were performed, respectively.All specimens were studied with pathology. On the base of animals experiment, thirty-five patients with multi-drug resistant pulmonary tuberculosis were treated with percutaneous 70% ethanol injection. Every patient was treated by the same way for 1-3 times. Results: Pathological findings of the specimens of pulmonary tissue showed nonspecific inflammation, necrosis, and fibrosis. The chief pathological changes with percutaneous or transcatheter 70% ethanol injection were slighter than those with absolute ethanol injection. Pathological findings of the specimens of bronchi showed slight mucosal edema, nonspecific inflammation, and focal cytonecrosis. Recovery of the damaged bronchial mucosa occurred within 14-30 days after the treatment. All patients with multi-drug resistant pulmonary tuberculosis were followed up for 6 to 33 months. The sputum bacterial conversion to negative rate was 100% within 6 months after the treatment. Cavity closing, shrinking, and no changing rate were 47.1% (16/34), 50.0% (17/34), and 2.9% (1/34), respectively. Radiographic improvement rate was 94.3 % (33/35). No severe complications and adverse reactions occurred. Conclusion: Percutaneous 70% ethanol injection is safe, effective, and easy to perform in the treatment of multi-drug resistant pulmonary tuberculosis. (authors)

  12. Multidrug-Resistant Escherichia fergusonii: a Case of Acute Cystitis▿

    Science.gov (United States)

    Savini, Vincenzo; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Pompetti, Franca; Favaro, Marco; Fontana, Carla; Febbo, Fabio; Balbinot, Andrea; Di Berardino, Fabio; Di Bonaventura, Giovanni; Di Zacomo, Silvia; Esattore, Francesca; D'Antonio, Domenico

    2008-01-01

    We report a case in which Escherichia fergusonii, an emerging pathogen in various types of infections, was associated with cystitis in a 52-year-old woman. The offending strain was found to be multidrug resistant. Despite in vitro activity, beta-lactam treatment failed because of a lack of patient compliance with therapy. The work confirms the pathogenic potential of E. fergusonii. PMID:18256229

  13. Contamination of the Clinical Microbiology Laboratory with Vancomycin-Resistant Enterococci and Multidrug- Resistant Enterobacteriaceae: Implications for Hospital and Laboratory Workers

    Science.gov (United States)

    Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.

    2001-01-01

    We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615

  14. ANTIMICROBIAL ACTIVITY OF PINEAPPLE (ANANAS COMOSUS L. MERR EXTRACT AGAINST MULTIDRUG-RESISTANT OF PSEUDOMONAS AERUGINOSA: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Rahmat Sayyid Zharfan

    2017-08-01

    Full Text Available Pseudomonas aeruginosa is the main cause of nosocomial infection which is responsible for 10% of hospital-acquired infection. Pseudomonas aeruginosa tends to mutate and displays potential for development of antibiotic resistance. Approximately, 10% of global bacterial isolates are found as Multidrug-resistant Pseudomonas aeruginosa. Pseudomonas aeruginosa have a quite tremendous severity index, especially on pneumonia and urinary tract infections, even sepsis, which 50% mortality rate. Pineapple (Ananas comosus L. Merr has antimicrobial properties. The active antimicrobial compounds in Ananas comosus L. Merr include saponin and bromelain. This research aims to find the potency of antimicrobial effect of pineapple (Ananas comosus L. Merr extract towards Multidrug-resistant Pseudomonas aeruginosa. Multidrug-resistant Pseudomonas aeruginosa specimen is obtained from patient’s pus in orthopaedic department, Dr Soetomo Public Hospital, Surabaya. Multidrug-resistant Pseudomonas aeruginosa specimen is resistant to all antibiotic agents except cefoperazone-sulbactam. This research is conducted by measuring the Minimum Inhibitory Concentration (MIC through dilution test with Mueller-Hinton broth medium. Pineapple extract (Ananas comosus L. Merr. is dissolved in aquadest, then poured into test tube at varying concentrations (6 g/ml; 3 g/ml; 1.5 g/ml; 0.75 g/ml, 0.375 g/ml; and 0.1875 g/ml. After 24 hours’ incubation, samples are plated onto nutrient agar plate, to determine the Minimum Bactericidal Concentration (MBC. The extract of pineapple (Ananas comosus L. Merr has antimicrobial activities against Multidrug-resistant Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC could not be determined, because turbidity changes were not seen. The Minimum Bactericidal Concentration (MBC of pineapple extract (Ananas comosus L. Merr to Multidrug-resistant Pseudomonas aeruginosa is 0.75 g/ml. Further study of in vivo is needed.

  15. Multidrug resistance in amoebiasis patients.

    Science.gov (United States)

    Bansal, Devendra; Sehgal, Rakesh; Chawla, Yogesh; Malla, Nancy; Mahajan, R C

    2006-08-01

    Amoebiasis, caused by Entamoeba sp. a protozoan parasite, is a major public health problem in tropical and subtropical countries. The symptomatic patients are treated by specific chemotherapy. However, there are reports of treatment failure in some cases suggesting the possibility of drug resistance. The present study was therefore planned to assess the presence and expression of mRNA of multidrug resistance (MDR) gene in clinical isolates of Entamoeba histolytica and E. dispar. Forty five clinical isolates of Entamoeba sp. [E. histolytica (15) and E. dispar (30)] were maintained in polyxenic followed by monoxenic medium. DNA and total RNA were extracted from clinical isolates of Entamoeba sp. and from sensitive strain of E. histolytica (HM1: IMSS) and subjected to polymerase chain reaction (PCR) and multiplex reverse transcription (RT)-PCR techniques. The 344 bp segment of E. histolytica DNA was seen by PCR using primers specific to EhPgp1 in all clinical isolates and sensitive strain of E. histolytica. Over expression of EhPgp1 was observed only in resistant mutant of E. histolytica; however, transcription of EhPgp1 was not seen in any clinical isolates and sensitive strain of E. histolytica. The findings of the present study indicate that, so far, drug resistance in clinical isolates of E. histolytica does not seem to be a major problem in this country. However, susceptibility of clinical isolates of E. histolytica against various antiamoebic drugs needs to be investigated for better management.

  16. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

    Directory of Open Access Journals (Sweden)

    Gabriella Spengler

    2017-03-01

    Full Text Available Multidrug resistance (MDR has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.

  17. Priorities in the prevention and control of multidrug-resistant Enterobacteriaceae in hospitals.

    LENUS (Irish Health Repository)

    Khan, A S

    2012-10-01

    Multidrug-resistant Enterobacteriaceae (MDE) are a major public health threat due to international spread and few options for treatment. Furthermore, unlike meticillin-resistant Staphylococcus aureus (MRSA), MDE encompass several genera and multiple resistance mechanisms, including extended-spectrum beta-lactamases and carbapenemases, which complicate detection in the routine diagnostic laboratory. Current measures to contain spread in many hospitals are somewhat ad hoc as there are no formal national or international guidelines.

  18. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance.

    Science.gov (United States)

    Coon, J S; Knudson, W; Clodfelter, K; Lu, B; Weinstein, R S

    1991-02-01

    A recently developed non-ionic surfactant called Solutol HS 15 (poly-oxyethylene esters of 12-hydroxystearic acid), with low toxicity in vivo, was shown to reverse completely the multidrug resistance of KB 8-5 and KB 8-5-11 human epidermoid carcinoma cells in vitro but did not potentiate drug toxicity in drug-sensitive KB 3-1 cells. At a concentration of 10% of its own IC50 (mean concentration of drug that causes 50% inhibition of cell growth compared to controls), Solutol HS 15 produced a 35-, 28-, and 42-fold reduction in the resistance of KB 8-5-11 cells to colchicine, vinblastine, and doxorubicin, respectively. Solutol HS 15 was relatively much more potent than the prototypic reversing agent, verapamil, for reversing colchicine resistance, compared to the ability of each agent to reverse colchicine resistance, compared to the ability of each agent to reverse vinblastine resistance. Like verapamil, Solutol HS 15 promoted a 50-fold accumulation of rhodamine 123 in KB 8-5-11 cells, as measured by flow cytometry. Also, Solutol HS 15 and verapamil reduced the efflux of rhodamine 123 from KB 8-5-11 cells previously loaded with rhodamine 123 to a similar low rate. Solutol HS 15 did not affect the transport of alanine or glucose into KB 8-5-11 cells, indicating that its effect upon membrane active transport is not entirely nonspecific. Considering their different structure and different relative potency for reversing colchicine resistance, Solutol HS 15 and verapamil probably reverse multidrug resistance by different mechanisms. Solutol HS 15 merits consideration as a potential therapeutic agent because of its effectiveness for reversing multidrug resistance in vitro and its low toxicity in vivo.

  19. Type 2 diabetes mellitus and its influence in the development of multidrug resistance tuberculosis in patients from southeastern Mexico.

    Science.gov (United States)

    Pérez-Navarro, Lucia Monserrat; Fuentes-Domínguez, Francisco Javier; Zenteno-Cuevas, Roberto

    2015-01-01

    To determine the factors associated with the presence of pulmonary tuberculosis in patients with type 2 diabetes mellitus and the effect in the development of drug and multi-drug resistance, in a population with tuberculosis from the southeast of Mexico. This is a case-control study including 409 individuals, 146 with the binomial tuberculosis-type 2 diabetes mellitus and 263 individuals with tuberculosis. Demographic, epidemiological and outcome variables were collected. Risks were calculated. The factors associated with the presence of type 2 diabetes mellitus were age ≥35years, (OR=9.7; CI: 5.2-17.8), previous contact with a person infected with tuberculosis (OR=1.7; CI: 1.1-3.1). Body mass index ≥25 kg/m(2) (OR=2.2; CI: 1.1-4.3), and inherited family history of diabetes (OR=5.4; CI: 3.2-9.2). It was also found that patients with tuberculosis-type 2 diabetes mellitus presented a 4.7-fold (CI: 1.4-11.3) and 3.5-fold (CI: 1.1-11.1) higher risk of developing drug- and multidrug resistance tuberculosis, respectively. By last, individuals with tuberculosis-type 2 diabetes had a 2.3-fold (CI: 1.5-4.1) greater chance of persisting as tuberculosis-positive by the second month of treatment, delaying the resolution of the tuberculosis infection. Type 2 diabetes exerts a strong influence on the presentation and evolution of tuberculosis within the analyzed population and displays remarkable particularities, necessitating the development of dedicated tuberculosis-diabetes surveillance systems that consider the particular epidemiological characteristics of the population affected. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    Science.gov (United States)

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  1. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  2. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  3. Multidrug-Resistant Bacteroides fragilis Bacteremia in a US Resident: An Emerging Challenge

    Directory of Open Access Journals (Sweden)

    Cristian Merchan

    2016-01-01

    Full Text Available We describe a case of Bacteroides fragilis bacteremia associated with paraspinal and psoas abscesses in the United States. Resistance to b-lactam/b-lactamase inhibitors, carbapenems, and metronidazole was encountered despite having a recent travel history to India as the only possible risk factor for multidrug resistance. Microbiological cure was achieved with linezolid, moxifloxacin, and cefoxitin.

  4. Effect of polymorphisms in the ABCG2, LEPR and SCD1 genes on ...

    African Journals Online (AJOL)

    Sahand Rayaneh

    2016-06-24

    Jun 24, 2016 ... Abstract. This study was performed to investigate the association between polymorphisms in the ABCG2 (ATP- binding cassette sub-family G member 2), LEPR (leptin receptor) and SCD1 (stearoyl-coenzyme A desaturase 1) genes and milk production traits in Holstein dairy cows in Iran. The analysis was ...

  5. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco

    Directory of Open Access Journals (Sweden)

    Zakham F

    2013-11-01

    Full Text Available Fathiah Zakham,1,4 Imane Chaoui,1 Amina Hadbae Echchaoui,2 Fouad Chetioui,3 My Driss Elmessaoudi,3 My Mustapha Ennaji,4 Mohammed Abid,2 Mohammed El Mzibri11Unité de Biologie et Recherché Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN, Rabat, 2Laboratoire de Génétique Mycobacterienne, Institut Pasteur, Tangier, 3Laboratoire de Tuberculose Institut Pasteur, Casablanca, 4Laboratoire de Microbiologie, Hygiène et Virologie, Faculté des Sciences et Techniques, Mohammedia, MoroccoBackground: Tuberculosis (TB is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR and extensively drug resistant (XDR TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid.Methods: For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing.Results: Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%. Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a

  6. Comparison of the pharmacokinetics of two dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis patients.

    NARCIS (Netherlands)

    Alffenaar, J.W.C.; Altena, R. van; Harmelink, I.M.; Filguera, P.; Molenaar, E.; Wessels, A.M.; Soolingen, D. van; Kosterink, J.G.W.; Uges, D.R.A.; Werf, T.S. van der

    2010-01-01

    BACKGROUND AND OBJECTIVES: For the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB), potent new drugs are urgently needed. Linezolid is a promising drug, but its use is limited by adverse effects with prolonged administration of 600 mg twice daily. In

  7. Comparison of the Pharmacokinetics of Two Dosage Regimens of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis Patients

    NARCIS (Netherlands)

    Alffenaar, Jan-Willem C.; van Altena, Richard; Harmelink, Ilse M.; Filguera, Patricia; Molenaar, Esther; Wessels, A. Mireille A.; van Soolingen, Dick; Kosterink, Jos G. W.; Uges, Donald R. A.; van der Werf, Tjip S.

    2010-01-01

    Background and Objectives: For the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB), potent new drugs are urgently needed. Linezolid is a promising drug, but its use is limited by adverse effects with prolonged administration of 600 mg twice daily. In

  8. The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane

    DEFF Research Database (Denmark)

    Rocchi, E; Khodjakov, A; Volk, E L

    2000-01-01

    by Western blot and immunohistochemistry. This protein is highly overexpressed in several drug-resistant cell lines and localizes predominantly to the plasma membrane, instead of to intracellular membranes as seen with all other known half-transporters. Therefore, BCRP/MXR is unique among the ABC half......The products of the ABC gene family can be generally classified as either full-transporters of half-transporters. Full-transporters are expressed in the plasma membrane, whereas half-transporters are usually found in intracellular membranes. Recently, an ABC half-transporter, the ABCG2 gene product......-transporters by being localized to the plasma membrane....

  9. Comparative genomics of multidrug resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Pierre-Edouard Fournier

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  10. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island-the largest identified to date-in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  11. Expression and Activity of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Distal Lung Epithelial Cells In Vitro.

    Science.gov (United States)

    Nickel, Sabrina; Selo, Mohammed Ali; Fallack, Juliane; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2017-12-01

    Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line. BCRP expression levels in AT2 and AT1-like cells and in different passages of NCI-H441 cells were determined using q-PCR and immunoblot. Transporter localisation was confirmed by confocal laser scanning microscopy. Efflux and transport studies using the BCRP substrate BODIPY FL prazosin and the inhibitor Ko143 were carried out to assess BCRP activity in the different cell models. BCRP expression decreased during transdifferentiation from AT2 to AT1-like phenotype. Culturing NCI-H441 cells at an air-liquid interface or submersed did not change BCRP abundance, however, BCRP levels increased with passage number. BCRP was localised to the apical membrane and cytosol in NCI-H441 cells. In primary cells, the protein was found predominantly in the nucleus. Functional studies were consistent with expression data. BCRP is differently expressed in AT2 and AT1-like cells with lower abundance and activity in the latter ones. Nuclear BCRP might play a transcriptional role in distal lung epithelium. In NCI-H441 cells, BCRP is expressed in apical cell membranes and its activity is consistent with the localisation pattern.

  12. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen.

    Science.gov (United States)

    Iguchi, Atsushi; Nagaya, Yutaka; Pradel, Elizabeth; Ooka, Tadasuke; Ogura, Yoshitoshi; Katsura, Keisuke; Kurokawa, Ken; Oshima, Kenshiro; Hattori, Masahira; Parkhill, Julian; Sebaihia, Mohamed; Coulthurst, Sarah J; Gotoh, Naomasa; Thomson, Nicholas R; Ewbank, Jonathan J; Hayashi, Tetsuya

    2014-08-01

    Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...

  14. Molecular detection of multidrug-resistant Mycobacterium leprae from Indian leprosy patients.

    Science.gov (United States)

    Lavania, Mallika; Singh, Itu; Turankar, Ravindra P; Ahuja, Madhvi; Pathak, Vinay; Sengupta, Utpal; Das, Loretta; Kumar, Archana; Darlong, Joydeepa; Nathan, Rajeev; Maseey, Asha

    2018-03-01

    The emergence of multidrug-resistant (MDR) organisms for any infectious disease is a public health concern. Global efforts to control leprosy by intensive chemotherapy have led to a significant decrease in the number of registered patients. Currently recommended control measures for treating leprosy with multidrug therapy (MDT) were designed to prevent the spread of dapsone-resistant Mycobacterium leprae strains. Here we report the identification of MDR M. leprae from relapse leprosy patients from endemic regions in India. Resistance profiles to rifampicin, dapsone and ofloxacin of the isolated strains were confirmed by identification of mutations in genes previously shown to be associated with resistance to each drug. Between 2009-2016, slit-skin smear samples were collected from 239 relapse and 11 new leprosy cases from hospitals of The Leprosy Mission across India. DNA was extracted from the samples and was analysed by PCR targeting the rpoB, folP and gyrA genes associated with resistance to rifampicin, dapsone and ofloxacin, respectively, in M. leprae. M. leprae Thai-53 (wild-type) and Zensho-4 (MDR) were used as reference strains. Fifteen strains showed representative mutations in at least two resistance genes. Two strains showed mutations in all three genes responsible for drug resistance. Seven, seven and one strain, respectively, showed mutations in genes responsible for rifampicin and dapsone resistance, for dapsone and ofloxacin resistance and for rifampicin and ofloxacin resistance. This study showed the emergence of MDR M. leprae in MDT-treated leprosy patients from endemic regions of India. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  15. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains.

    Directory of Open Access Journals (Sweden)

    Peter M Jones

    Full Text Available ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs, which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration 'sandwich' dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD 'Switch' mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.

  16. Ex Vivo Activity of Endoperoxide Antimalarials, Including Artemisone and Arterolane, against Multidrug-Resistant Plasmodium falciparum Isolates from Cambodia

    Science.gov (United States)

    2014-10-01

    OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone...Prescribed by ANSI Std Z39-18 Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone and Arterolane, against Multidrug-Resistant...potent antimalarial activity (2, 3). Despite having a rapid mecha- nism of action, artemisinin resistance eventually emerged and was first detected

  17. Complete genome sequence of multidrug-resistant Staphylococcus cohnii ssp. urealyticus strain SNUDS-2 isolated from farmed duck, Republic of Korea.

    Science.gov (United States)

    Han, Jee Eun; Lee, Seungki; Jeong, Dae Gwin; Yoon, Sun-Woo; Kim, Doo-Jin; Lee, Moo-Seung; Kim, Hye Kwon; Park, Sung-Kyun; Kim, Ji Hyung; Park, Se Chang

    2017-09-01

    Staphylococcus cohnii has become increasingly recognized as a potential pathogen of clinically significant nosocomial and farm animal infections. This study was designed to determine the genome of a multidrug-resistant S. cohnii subsp. urealyticus strain SNUDS-2 isolated from a farmed duck in Korea. Genomic DNA was sequenced using the PacBio RS II system. The complete genome was annotated and the presence of antimicrobial resistance and virulence genes were identified. The annotated 2,625,703 bp genome contained various antimicrobial resistance genes conferring resistance to β-lactam, aminoglycosides, fluoroquinolones, phenicols and trimethoprim. The virulence-associated three synergistic hemolysins have been identified in the strain. To the best of our knowledge, this is the first complete genome of S. cohnii, and will provide important insights into the biodiversity of CoNS and valuable information for the control of this emerging pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  18. Visualization of multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Hendrikse, N.H.; Franssen, E.J.F.; Graaf, W.T.A. van der; Vries, E.G.E. de; Vaalburg, W.

    1999-01-01

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other 99m Tc radiopharmaceuticals, such as 99m Tc-tetrofosmin and several 99 Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [ 11 C]colchicine, [ 11 C]verapamil and [ 11 C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumours. Uptake of [ 11 C]colchicine and [ 11 C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[ 11 C]acetyl-leukotriene E 4 provides an opportunity to study MRP

  19. The prevalence of antiretroviral multidrug resistance in highly active antiretroviral therapy-treated patients with HIV/AIDS between 2004 and 2009 in South Korea.

    Science.gov (United States)

    Choi, Ju-yeon; Kwon, Oh-Kyung; Choi, Byeong-Sun; Kee, Mee-Kyung; Park, Mina; Kim, Sung Soon

    2014-06-01

    Highly active antiretroviral therapy (HAART) including protease inhibitors (PIs) has been used in South Korea since 1997. Currently, more than 20 types of antiretroviral drugs are used in the treatment of human immunodeficiency virus-infected/acquired immune deficiency syndrome patients in South Korea. Despite the rapid development of various antiretroviral drugs, many drug-resistant variants have been reported after initiating HAART, and the efficiency of HAART is limited by these variants. To investigate and estimate the annual antiretroviral drug resistance and prevalence of antiretroviral multi-class drug resistance in Korean patients with experience of treatment. The amplified HIV-1 pol gene in 535 patients requested for genotypic drug resistance testing from 2004 to 2009 by the Korea Centers for Disease Control and Prevention was sequenced and analyzed annually and totally. The prevalence of antiretroviral drug resistance was estimated based on "SIR" interpretation of the Stanford sequence database. Of viruses derived from 787 specimens, 380 samples (48.3%) showed at least one drug class-related resistance. Predicted NRTI drug resistance was highest at 41.9%. NNRTI showed 27.2% resistance with 23.3% for PI. The percent of annual drug resistance showed similar pattern and slightly declined except 2004 and 2005. The prevalence of multi-class drug resistance against each drug class was: NRTI/NNRTI/PI, 9.8%; NRTI/PI, 21.9%; NNRTI/PI, 10.4%; and NRTI/NNRTI, 21.5%. About 50% and less than 10% of patients infected with HIV-1 have multidrug and multiclass resistance linked to 16 antiretroviral drugs, respectively. The significance of this study lies in its larger-scale examination of the prevalence of drug-resistant variants and multidrug resistance in HAART-experienced patients in South Korea. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    OpenAIRE

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, Mar?a Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina In?s; Catania, Viviana Alicia; Ruiz, Mar?a Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of t...

  1. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole

    KAUST Repository

    Campos, Mônica C.

    2017-10-25

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.

  2. Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Jia; Wu, Lei; Kou, Longfa; Xu, Meng; Sun, Jin; Wang, Yongjun; Fu, Qiang; Zhang, Peng; He, Zhonggui

    2016-11-20

    Novel enoxaparin sodium-PLGA hybrid nanocarries (EPNs) were successfully designed for sustained delivery of hydrophilic cationic doxorubicin hydrochloride (DOX) and to overcome multidrug resistance (MDR). By incorporation of the negative polymer of enoxaparin sodium (ES), DOX was highly encapsulated into EPNs with an encapsulation efficiency of 92.49%, and ES effectively inhibited the proliferation of HUVEC cell lines. The in vivo pharmacokinetics study after intravenous injection indicated that DOX-loaded EPNs (DOX-EPNs) exhibited a higher area under the curve (AUC) and a longer half-life (t 1/2 ) in comparison with DOX solution (DOX-Sol). The biodistribution study demonstrated that DOX-EPNs increased the DOX level in plasma and decreased the accumulation of DOX in liver and spleen. Compared with DOX-Sol, DOX-EPNs increased the cytotoxicity in P-gp over-expressing MCF-7/Adr cells, attributed to the higher intracellular efficiency of DOX produced by the EPNs. DOX-EPNs entered into resistant tumor cells by multiple endocytosis pathways, which resulted in overcoming the multidrug resistance of MCF-7/Adr cells by escaping the efflux induced by P-gp transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections

    OpenAIRE

    Shankar Thangamani; Waleed Younis; Mohamed N. Seleem

    2015-01-01

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methic...

  4. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium

    NARCIS (Netherlands)

    Paganelli, Fernanda L.; van de Kamer, Tim; Brouwer, Ellen C.; Leavis, Helen L.; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA)

  5. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons

    OpenAIRE

    Anuradha Ravi; Ekaterina Avershina; Steven L. Foley; Jane Ludvigsen; Ola Storrø; Torbjørn Øien; Roar Johnsen; Anne L. McCartney; Trine M. L’Abée-Lund; Knut Rudi

    2015-01-01

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detect...

  6. Perspectives on multidrug-resistant organisms at the end of life : A focus group study of staff members and institutional stakeholders.

    Science.gov (United States)

    Herbst, Franziska A; Heckel, Maria; Tiedtke, Johanna M; Adelhardt, Thomas; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2018-03-16

    There is a lack of research into how hospital staff and institutional stakeholders (i. e. institutional representatives from public health authorities, hospital hygiene, and the departments of microbiology, palliative care, and geriatrics) engage with patients who are carriers of multidrug-resistant organisms and receiving end-of-life care. Knowledge of their experiences, workload, and needs should be considered in dealing with hospitalized carriers of multidrug-resistant organisms as well as staff education. This study explored and compared staff members' and stakeholders' perspectives on multidrug-resistant organisms and on provision of end-of-life care to carrier patients. In this study four focus groups consisting of hospital staff members and institutional stakeholders were formed within a mixed-methods parent study in a palliative care unit at a university clinic and a geriatric ward of a Catholic and academic teaching hospital. Participants discussed results from staff and stakeholder interviews from a former study phase. Data were analyzed according to Grounded Theory and perspectives of staff members and institutional stakeholders were compared and contrasted. Key issues debated by staff members (N = 19) and institutional stakeholders (N = 10) were 1) the additional workload, 2) reasons for uncertainty about handling carrier patients, 3) the format of continuing education, and 4) the preferred management approach for dealing with multidrug-resistant organism carrier patients. Although similar barriers (e. g. colleagues' ambiguous opinions) were identified, both groups drew different conclusions concerning the management of these barriers. While institutional stakeholders recommended making decisions on hygiene measures under consideration of the specific patient situation, staff members preferred the use of standardized hygiene measures which should be applied uniformly to all patients. Staff members and institutional stakeholders

  7. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    Science.gov (United States)

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  8. Draft Genome Sequences of Six Multidrug-Resistant Clinical Strains of Acinetobacter baumannii, Isolated at Two Major Hospitals in Kuwait.

    Science.gov (United States)

    Nasser, Kother; Mustafa, Abu Salim; Khan, Mohd Wasif; Purohit, Prashant; Al-Obaid, Inaam; Dhar, Rita; Al-Fouzan, Wadha

    2018-04-19

    Acinetobacter baumannii is an important opportunistic pathogen in global health care settings. Its dissemination and multidrug resistance pose an issue with treatment and outbreak control. Here, we present draft genome assemblies of six multidrug-resistant clinical strains of A. baumannii isolated from patients admitted to one of two major hospitals in Kuwait. Copyright © 2018 Nasser et al.

  9. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance

    Directory of Open Access Journals (Sweden)

    Dong K

    2016-10-01

    Full Text Available Kai Dong,1 Yan Yan,2 Pengchong Wang,2 Xianpeng Shi,2 Lu Zhang,2 Ke Wang,2 Jianfeng Xing,2 Yalin Dong1 1Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, 2School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA and a multidrug resistance (MDR reversal agent (D-α-tocopheryl polyethylene glycol succinate, TPGS. The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol monomethyl ether (MPEG and stearic acid (SA. The structure of the obtained polymer was similar to poly (ethylene glycol-phosphatidylethanolamine (PEG-PE. Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in

  10. Genome-wide re-sequencing of multidrug-resistant Mycobacterium leprae Airaku-3.

    Science.gov (United States)

    Singh, P; Benjak, A; Carat, S; Kai, M; Busso, P; Avanzi, C; Paniz-Mondolfi, A; Peter, C; Harshman, K; Rougemont, J; Matsuoka, M; Cole, S T

    2014-10-01

    Genotyping and molecular characterization of drug resistance mechanisms in Mycobacterium leprae enables disease transmission and drug resistance trends to be monitored. In the present study, we performed genome-wide analysis of Airaku-3, a multidrug-resistant strain with an unknown mechanism of resistance to rifampicin. We identified 12 unique non-synonymous single-nucleotide polymorphisms (SNPs) including two in the transporter-encoding ctpC and ctpI genes. In addition, two SNPs were found that improve the resolution of SNP-based genotyping, particularly for Venezuelan and South East Asian strains of M. leprae. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  11. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice

    Directory of Open Access Journals (Sweden)

    Vinodkumar C

    2008-07-01

    Full Text Available Drug resistance is the major cause of increase in morbidity and mortality in neonates. One thousand six hundred forty-seven suspected septicemic neonates were subjected for microbiological analysis over a period of 5 years. Forty-two P. aeruginosa were isolated and the antibiogram revealed that 28 P. aeruginosa were resistant to almost all the common drugs used (multidrug-resistant. The emergence of antibiotic-resistant bacterial strains is one of the most critical problems of modern medicine. As a result, a novel and most effective approaches for treating infection caused by multidrug-resistant bacteria are urgently required. In this context, one intriguing approach is to use bacteriophages (viruses that kill bacteria in the treatment of infection caused by drug-resistant bacteria. In the present study, the utility of lytic bacteriophages to rescue septicemic mice with multidrug-resistant (MDR P. aeruginosa infection was evaluated. MDR P. aeruginosa was used to induce septicemia in mice by intraperitoneal (i.p. injection of 10 7 CFU. The resulting bacteremia was fatal within 48 hrs. The phage strain used in this study had lytic activity against a wide range of clinical isolates of MDR P. aeruginosa. A single i.p. injection of 3 x 10 9 PFU of the phage strain, administered 45 min after the bacterial challenge, was sufficient to rescue 100% of the animals. Even when treatment was delayed to the point where all animals were moribund, approximately 50% of them were rescued by a single injection of this phage preparation. The ability of this phage to rescue septicemic mice was demonstrated to be due to the functional capabilities of the phage and not to a nonspecific immune effect. The rescue of septicemic mice could be affected only by phage strains able to grow in vitro on the bacterial host used to infect the animals and when such strains are heat-inactivated, they lose their ability to rescue the infected mice. Multidrug-resistant bacteria have

  12. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  13. Occurrence of multidrug-resistant Salmonella enterica serovar Enteritidis isolates from poultry in Iran

    Directory of Open Access Journals (Sweden)

    Ghaderi, R.

    2016-03-01

    Full Text Available Salmonella enterica is recognized as one of the major food-borne pathogens with more than 2,500 serotypes worldwide. The present study addresses antimicrobial resistance of Salmonella enterica serovar Enteritidis isolates in Iran. A collection of 151 Salmonella spp. isolates collected from poultry were serotyped to identify Salmonella Enteritidis. Sixty-one Salmonella Enteritidis were subsequently tested against 30 antimicrobials. A high frequency of antimicrobial resistance was observed against nitrofurantoin (n=55, 90.2% followed by nalidixic acid (n=41, 67.2%, and cephalexin (n=23, 37.7%. Multi-drug resistance were observed in 35 (57.4% out of 61 isolates. Twenty-six antimicrobial resistance patterns were observed among the 61 Salmonella Enteritidis. All isolates were susceptible to ofloxacin, imipenem, enrofloxacin, chloramphenicol, gentamicin, and 3rd and 4th generation cephalosporins. In conclusion, our results revealed that implementing new policies toward overuse of antimicrobial drugs in Iranian poultry industry are of great importance.

  14. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Xiang-hua Hou

    2015-09-01

    Full Text Available Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38 and class II integrons (10/38. All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX’ and aadA1 genes. β-lactam resistance was conferred through blaSHV (22/38, blaTEM (10/38, and blaCTX-M (7/38. The highly conserved blaKPC-2 (37/38 and blaOXA-23(1/38 alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38 and the plasmid-mediated qnrB gene (13/38 were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  15. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. Copyright © 2015. Published by Elsevier Ltd.

  16. Glycyrrhiza glabra HPLC fractions: identification of Aldehydo Isoophiopogonone and Liquirtigenin having activity against multidrug resistant bacteria.

    Science.gov (United States)

    Rahman, Hazir; Khan, Ilyas; Hussain, Anwar; Shahat, Abdelaaty Abdelaziz; Tawab, Abdul; Qasim, Muhammad; Adnan, Muhammad; Al-Said, Mansour S; Ullah, Riaz; Khan, Shahid Niaz

    2018-05-02

    Medicinal plants have been founded as traditional herbal medicine worldwide. Most of the plant's therapeutic properties are due to the presence of secondary metabolites such as alkaloids, glycosides, tannins and volatile oil. The present investigation analyzed the High-Pressure Liquid Chromatography (HPLC) fractions of Glycyrrhiza glabra (Aqueous, Chloroform, Ethanol and Hexane) against multidrug resistant human bacterial pathogens (Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa). All the fractions showed antibacterial activity, were subjected to LC MS/MS analysis for identification of bioactive compounds. Among total HPLC fractions of G. glabra (n = 20), three HPLC fractions showed potential activity against multidrug resistant (MDR) bacterial isolates. Fraction 1 (F1) of aqueous extracts, showed activity against A. baumannii (15 ± 0.5 mm). F4 from hexane extract of G. glabra showed activity against S. aureus (10 ± 0.2 mm). However, F2 from ethanol extract exhibited activity against S. aureus (10 ± 0.3 mm). These active fractions were further processed by LC MS/MS analysis for the identification of compounds. Ellagic acid was identified in the F1 of aqueous extract while 6-aldehydo-isoophiopogonone was present in F4 of hexane extract. Similarly, Liquirtigenin was identified in F2 of ethanol. Glycyrrhiza glabra extracts HPLC fractions showed anti-MDR activity. Three bioactive compounds were identified in the study. 6-aldehydo-isoophiopogonone and Liquirtigenin were for the first time reported in G. glabra. Further characterization of the identified compounds will be helpful for possible therapeutic uses against infectious diseases caused by multidrug resistant bacteria.

  17. Intestinal carriage of multidrug-resistant bacteria among healthcare professionals in Germany

    Directory of Open Access Journals (Sweden)

    Jozsa, Katalin

    2017-11-01

    Full Text Available Healthcare professionals (HCP might be at increased risk of acquisition of multidrug-resistant bacteria (MDRB, i.e., methillicin-resistant (MRSA, vancomycin-resistant enterococci (VRE, and multidrug-resistant gram-negative bacteria (MDRGN and could be an unidentified source of MDRB transmission.The aim of this study was to determine the prevalence as well as risk factors of MDRB colonization among HCP.HCP (n=107 taking part in an antibiotic stewardship program, were voluntarily recruited to perform a rectal swab and to fill in a questionnaire to identify risk factors of MDRB carriage, i.e. being physician, gender, travel abroad within the previous 12 months, vegetarianism, regular consumption of raw meat, contact to domestic animals, household members with contact to livestock, work or fellowship abroad, as well as medical treatment abroad and antibiotic therapy within the previous 12 months. Selective solid media were used to determine the colonization rate with MRSA, VRE and MDRGN. MDRGN were further characterized by molecular analysis of underlying β-lactamases. None of the participants had an intestinal colonization with MRSA or VRE. 3.7% of the participants were colonized with extended-spectrum beta-lactamase (ESBL-producing , predominantly type. Neither additional flouroquinolone resistance nor carbapenem resistance was detected in any of these isolates. No risk factors were identified to have a significant impact of MDRB carriage among HCP.A colonization rate of 3.7% with ESBL-producing is of interest, but comparing it to previously published data with similar colonization rates in the healthy population in the same geographic area, it is probably less an occupational risk.

  18. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance.

    Science.gov (United States)

    Korytny, Alexander; Riesenberg, Klaris; Saidel-Odes, Lisa; Schlaeffer, Fransisc; Borer, Abraham

    2016-01-01

    The prevalence of antimicrobial co-resistance among ESBL-producing Enterobactereaceae is extremely high in Israel. Multidrug-resistant Proteus mirabilis strains (MDR-PM), resistant to almost all antibiotic classes have been described. The aim was to determine the risk factors for bloodstream infections caused by MDR-PM and clinical outcomes. A retrospective case-control study. Adult patients with PM bacteremia during 7 years were identified retrospectively and their files reviewed for demographics, underlying diseases, Charlson Comorbidity Index, treatment and outcome. One hundred and eighty patients with PM-bloodstream infection (BSI) were included; 90 cases with MDR-PM and 90 controls with sensitive PM (S-PM). Compared to controls, cases more frequently were from nursing homes, had recurrent hospital admissions in the past year and received antibiotic therapy in the previous 3 months, were bedridden and suffered from peripheral vascular disease and peptic ulcer disease (p < 0.001). Two-thirds of the MDR-PM isolates were ESBL-producers vs 4.4% of S-PM isolates (p < 0.001, OR = 47.6, 95% CI = 15.9-142.6). In-hospital crude mortality rate of patients with MDR-PM BSI was 37.7% vs 23.3% in those with S-PM BSI (p = 0.0359, OR = 2, 95% CI = 1.4-3.81). PM bacteremia in elderly and functionally-dependent patients is likely to be caused by nearly pan-resistant PM strains in the institution; 51.8% of the patients received inappropriate empiric antibiotic treatment. The crude mortality rate of patients with MDR-PM BSI was significantly higher than that of patients with S-PM BSI.

  19. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Songzhe eHE

    2015-05-01

    Full Text Available Objective To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii.MethodsAn in vitro susceptibility test of 101 Acinetobacter baumannii was used to detect minimal inhibitory concentrations (MICs. A mouse lung infection model of multi-drug resistant Acinetobacter baumannii,established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities.Results Multi-drug resistant Acinetobacter baumannii showed high sensitivity to tigecycline (98% inhibition, polymyxin B (78.2% inhibition, and minocycline (74.2% inhibition. However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC counts in drug combination groups C (minocycline + amikacin and D (minocycline + rifampicin were significantly higher than in groups A (tigecycline and B (polymyxin B (P < 0.05, after administration of the drugs 24h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48h post infection. After three days of anti-infective therapy in groups A, B, C and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups (groups C and D were much lower than in groups A and B.ConclusionThe combination of minocycline with either rifampicin or amikacin is more effective against multidrug-resistant Acinetobacter baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.

  20. Infective endocarditis caused by multidrug-resistant Streptococcus mitis in a combined immunocompromised patient: an autopsy case report.

    Science.gov (United States)

    Matsui, Natsuko; Ito, Makoto; Kuramae, Hitoshi; Inukai, Tomomi; Sakai, Akiyoshi; Okugawa, Masaru

    2013-04-01

    An autopsy case of infective endocarditis caused by multidrug-resistant Streptococcus mitis was described in a patient with a combination of factors that compromised immune status, including autoimmune hemolytic anemia, post-splenectomy state, prolonged steroid treatment, and IgA deficiency. The isolated S. mitis strain from blood culture was broadly resistant to penicillin, cephalosporins, carbapenem, macrolides, and fluoroquinolone. Recurrent episodes of bacterial infections and therapeutic use of several antibiotics may underlie the development of multidrug resistance for S. mitis. Because clinically isolated S. mitis strains from chronically immunocompromised patients have become resistant to a wide spectrum of antibiotics, appropriate antibiotic regimens should be selected when treating invasive S. mitis infections in these compromised patients.

  1. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    Science.gov (United States)

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  2. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan

    Directory of Open Access Journals (Sweden)

    Ayman A. Elshayeb

    2017-11-01

    Full Text Available Abstract Background Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. Objectives The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Methods Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. Results A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax − b. Minimum bactericidal concentration’s predication of resistance was given the exponential trend (y = n ex and the predictive coefficient R2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally. Conclusion This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current

  3. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  4. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  5. Bioprospecting marine actinomycetes for multidrug-resistant pathogen control from Rameswaram coastal area, Tamil Nadu, India.

    Science.gov (United States)

    Wahaab, Femina; Subramaniam, Kalidass

    2018-01-01

    A potent Streptomyces bacillaris strain RAM25C4 was isolated for controlling methicillin-resistant Staphylococcus aureus and multidrug-resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa. A total of 131 actinomycetes were isolated from the Rameswaram coastal region, Tamil Nadu, India. Among 131 actinomycetes, maximum number of actinomycetes (55%) isolated at the distance of 3-6 m from seashore. Out of 131 actinomycetes, 85% of the actinomycetes exhibited different degree of antagonistic activity against test pathogens. The antagonistic activity evaluated using actinomycetes direct culture filtrate and culture filtrate extracts. Among these culture filtrate, extracts had supreme antagonistic activity against multidrug-resistant bacteria and the solvent ethyl acetate was the best for extracting secondary metabolites from actinomycetes. In HPTLC analysis, the presence of macrolides, terpenoids, and quinolones was identified in RAM25C4 extract. In GC-MS analysis, various potent compounds such as phenolic compound-2,6-di-tert-butylphenol, alkaloid compound-1H, 5H, pyrrolo (1' 2':3, 4) imidazo, and quinolone compound-1,4-benzenediol, 2,5-bis(1,1-dimethylethyl) were identified in the ethyl acetate extract of RAM25C4. The phylogenetic analysis of 16S rRNA gene sequence of RAM25C4 isolate was deposited in NCBI with name Streptomyces bacillaris strain RAM25C4 and accession number KM513543.

  6. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies

    Directory of Open Access Journals (Sweden)

    Li B

    2012-01-01

    Full Text Available Bo Li1, Hui Xu2, Zhen Li1, Mingfei Yao1, Meng Xie1, Haijun Shen1, Song Shen1, Xinshi Wang1, Yi Jin11College of Pharmaceutical sciences, Zhejiang University, Hangzhou, 2No. 202 Hospital of People's Liberation Army, Shenyang, ChinaBackground: Multidrug resistance (MDR mediated by the overexpression of adenosine triphosphate (ATP-binding cassette (ABC transporters, such as P-glycoprotein (P-gp, remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs, consisting of a dimethyldidodecylammonium bromide (DMAB-modified poly(lactic-co-glycolic acid (PLGA nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp.Methods: Doxorubicin (DOX, a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR cells.Results: This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50 value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT assay, correlated with the strong nuclear retention of the drug.Conclusion: The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR.Keywords: chemotherapy, drug delivery, polymeric nanoparticles, multidrug resistance

  7. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant

    OpenAIRE

    Martins , A.; Spengler , G.; Martins , M.; Rodrigues , L.; Viveiros , M.; Davin-Regli , A.; Chevalier , J.; Couto , I.; Pagès , J.M.; Amaral , L.

    2010-01-01

    Abstract Enterobacter aerogenes predominates among Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum ?-lactamases. Although this mechanism of resistance to ?-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Among these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestin...

  8. Role of Risk Factors in the Incidence of Multidrug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Alya Putri Khairani

    2017-09-01

    Full Text Available Objective: To determine the risk factors that played roles in the incidence of multidrug-resistant tuberculosis (MDR-TB in such patients. Multidrug-Resistant Tuberculosis is a form of tuberculosis caused by Mycobacterium tuberculosis that is resistant to at least isoniazid and rifampicin. Methods: This was a case control study to compare MDR-TB to non-MDR-TB pulmonary tuberculosis outpatients in Dr. Hasan Sadikin General Hospital, Bandung on August–September 2014. Fifty MDR-TB outpatients were included as the cases and 50 non-MDR-TB outpatients as controls. Data was collected by questionnaires and patient’s registration forms. Bivariate and multivariate analyses were performed using chi-square test and multiple logistic regression test, with p<0.05 considered significant. Results: From bivariate analysis, number of previous tuberculosis treatments, regularity of previous treatment, and burden of cost were significant risk factors for developing MDR-TB (p<0.05; while from multivariate analysis, number of previous TB treatments was the only risk factor that played a significant role in the incidence of MDR-TB (OR 24.128 95% CI 6.771-85,976. Conclusions: Patients and medication factors are risk factors that play roles in the incidence of MDR-TB. The significant risk factor is the number of previous TB treatment.

  9. Membrane vesicles from multidrug-resistant human carcinoma cells contain a specific 150,000-170,000 dalton protein detected by photoaffinity labeling

    International Nuclear Information System (INIS)

    Cornwell, M.M.; Safa, A.R.; Felsted, R.L.; Gottesman, M.M.; Pastan, I.

    1986-01-01

    The authors have selected multidrug-resistant human KB carcinoma cells in high levels of colchicine (KB-C4) or vinblastine (KB-V1) which are cross-resistant to many other structurally unrelated chemotheraputic agents. To determine the mechanism of reduced drug accumulation, they measured 3 H-vinblastine ( 3 H-VBL) association with membrane vesicles made from parental drug sensitive, drug-resistant and revertant cells. Membrane vesicles from highly multidrug resistant cells exhibited increased specific and saturable binding of vinblastine, (Kd = 1 μM) that was temperature dependent and trypsin sensitive. To identify the molecules which bind vinblastine, membrane vesicles were exposed to two photo-activatable analogs of vinblastine, (N-P-(azido-3,5,-[ 3 H]-benzoyl)-N'-β-aminoethylvindisine ( 3 H-NAB) and N-P-(azido-3-[ 125 I]-solicyl)-N'-β-aminoethylvindesine ( 125 I-NASV). The specific labeling of a 150,000-170,000 dalton protein in membrane vesicles from multidrug-resistant KB-C4 and KB-V1 cells was found. 125 I-NASV labeling was inhibited by vinblastine, vincrinstine and verapamil but not by colchicine or dexamethasone. The 150,000-170,000 dalton protein may have an important role in the multidrug resistance phenotype

  10. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    Science.gov (United States)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  11. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States.

    Science.gov (United States)

    Folster, Jason P; Campbell, Davina; Grass, Julian; Brown, Allison C; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A; Plumblee, Jodie R; Walker, Carrie; Fedorka-Cray, Paula J; Whichard, Jean M

    2015-05-01

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle Jr.

    2015-07-01

    Conclusions: P. betle had the greatest potential value against both Gram-negative and Gram-positive multidrug-resistant bacteria. Favorable antagonistic activities were also exhibited by the ethanol extracts of Psidium guajava, Phyllanthus niruri and Ehretia microphylla.

  13. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) accumulation in melanoma cells. Is FDG a substrate of multidrug resistance (MDR)?

    International Nuclear Information System (INIS)

    Yamada, Kiyoshi; Brink, I.; Engelhardt, R.

    2005-01-01

    In order to specify the influence of multidrug-resistance (MDR) on the accumulation of the PET tracer, F-18 FDG ([Fluorine-18]2-fluoro-2-deoxy-D-glucose, in melanoma cells, both the MDR function and expression of two human melanoma cell lines SK-MEL 23 and 24, were evaluated. The effects of MDR modulators on FDG accumulation and efflux were also investigated. A functional analysis using representative MDR fluorescent substrates and inhibitors clarified the following characteristics: SK-MEL 23 possesses a highly active function of multidrug resistance-associated protein (MRP), but not P-gp. SK-MEL 24 possesses weak functions of both MRP and P-gp. Western blot analysis using monoclonal antibodies for MDR expression demonstrated an exceedingly high MRP expression of SK-MEL 23 and only slight P-gp and MRP expression of SK-MEL 24, corresponding to the functional data. The efflux inhibition assay using F-18 FDG revealed a considerable retention of FDG in SK-MEL 23 in the presence of the MRP inhibitor probenecid. It was also found that the P-gp inhibitor verapamil depressed the FDG efflux of SK-MEL 24. Our present in vitro study suggests that FDG may be a substrate of MDR in some melanoma cells and further MDR may be one of the important factors affecting FDG-PET melanoma imaging. (author)

  14. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  15. Mobile phones and computer keyboards: unlikely reservoirs of multidrug-resistant organisms in the tertiary intensive care unit.

    Science.gov (United States)

    Smibert, O C; Aung, A K; Woolnough, E; Carter, G P; Schultz, M B; Howden, B P; Seemann, T; Spelman, D; McGloughlin, S; Peleg, A Y

    2018-03-02

    Few studies have used molecular epidemiological methods to study transmission links to clinical isolates in intensive care units. Ninety-four multidrug-resistant organisms (MDROs) cultured from routine specimens from intensive care unit (ICU) patients over 13 weeks were stored (11 meticillin-resistant Staphylococcus aureus (MRSA), two vancomycin-resistant enterococci and 81 Gram-negative bacteria). Medical staff personal mobile phones, departmental phones, and ICU keyboards were swabbed and cultured for MDROs; MRSA was isolated from two phones. Environmental and patient isolates of the same genus were selected for whole genome sequencing. On whole genome sequencing, the mobile phone isolates had a pairwise single nucleotide polymorphism (SNP) distance of 183. However, >15,000 core genome SNPs separated the mobile phone and clinical isolates. In a low-endemic setting, mobile phones and keyboards appear unlikely to contribute to hospital-acquired MDROs. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. MDM2 Antagonist Nutlin-3a Reverses Mitoxantrone Resistance by Inhibiting Breast Cancer Resistance Protein Mediated Drug Transport

    Science.gov (United States)

    Zhang, Fan; Throm, Stacy L.; Murley, Laura L.; Miller, Laura A.; Zatechka, D. Steven; Guy, R. Kiplin; Kennedy, Rachel; Stewart, Clinton F.

    2011-01-01

    Breast cancer resistance protein (BCRP; ABCG2), a clinical marker for identifying the side population (SP) cancer stem cell subgroup, affects intestinal absorption, brain penetration, hepatobiliary excretion, and multidrug resistance of many anti-cancer drugs. Nutlin-3a is currently under pre-clinical investigation in a variety of solid tumor and leukemia models as a p53 reactivation agent, and has been recently demonstrated to also have p53 independent actions in cancer cells. In the present study, we first report that nutlin-3a can inhibit the efflux function of BCRP. We observed that although the nutlin-3a IC50 did not differ between BCRP over-expressing and vector control cells, nutlin-3a treatment significantly potentiated the cells to treatment with the BCRP substrate mitoxantrone. Combination index calculations suggested synergism between nutlin-3a and mitoxantrone in cell lines over-expressing BCRP. Upon further investigation, it was confirmed that nutlin-3a increased the intracellular accumulation of BCRP substrates such as mitoxantrone and Hoechst 33342 in cells expressing functional BCRP without altering the expression level or localization of BCRP. Interestingly, nutlin-3b, considered virtually “inactive” in disrupting the MDM2/p53 interaction, reversed Hoechst 33342 efflux with the same potency as nutlin-3a. Intracellular accumulation and bi-directional transport studies using MDCKII cells suggested that nutlin-3a is not a substrate of BCRP. Additionally, an ATPase assay using Sf9 insect cell membranes over-expressing wild-type BCRP indicated that nutlin-3a inhibits BCRP ATPase activity in a dose-dependent fashion. In conclusion, our studies demonstrate that nutlin-3a inhibits BCRP efflux function, which consequently reverses BCRP-related drug resistance. PMID:21459080

  17. Photodynamic therapy of cancer — Challenges of multidrug resistance

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-01-01

    Full Text Available Photodynamic therapy (PDT of cancer is a two-step drug-device combination modality, which involves the topical or systemic administration of a photosensitizer followed by light illumination of cancer site. In the presence of oxygen molecules, the light illumination of photosensitizer (PS can lead to the generation of cytotoxic reactive oxygen species (ROS and consequently destroy cancer. Similar to many other anticancer therapies, PDT is also subject to intrinsic cancer resistance mediated by multidrug resistance (MDR mechanisms. This paper will review the recent progress in understanding the interaction between MDR transporters and PS uptake. The strategies that can be used in a clinical setting to overcome or bypass MDR will also be discussed.

  18. Multidrug-resistant Salmonella enterica serovar Typhimurium isolates are resistant to antibiotics that influence their swimming and swarming motility

    Science.gov (United States)

    Motile bacteria utilize one or more strategies for movement, such as darting, gliding, sliding, swarming, swimming, and twitching. The ability to move is considered a virulence factor in many pathogenic bacteria, including Salmonella. Multidrug-resistant (MDR) Salmonella encodes acquired factors t...

  19. Surveillance of multidrug resistant suppurative infection causing bacteria in hospitalized patients in an Indian tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Nabakishore Nayak

    2014-01-01

    Conclusions: Of these S. aureus, particularly the methicillin resistant strain predominates, followed by strains of S. pyogenes and P. aeruginosa that were in the higher proportions of multidrug resistance.

  20. N-linked glycans do not affect plasma membrane localization of multidrug resistance protein 4 (MRP4) but selectively alter its prostaglandin E2 transport activity.

    Science.gov (United States)

    Miah, M Fahad; Conseil, Gwenaëlle; Cole, Susan P C

    2016-01-22

    Multidrug resistance protein 4 (MRP4) is a member of subfamily C of the ATP-binding cassette superfamily of membrane transport proteins. MRP4 mediates the ATP-dependent efflux of many endogenous and exogenous solutes across the plasma membrane, and in polarized cells, it localizes to the apical or basolateral plasma membrane depending on the tissue type. MRP4 is a 170 kDa glycoprotein and here we show that MRP4 is simultaneously N-glycosylated at Asn746 and Asn754. Furthermore, confocal immunofluorescence studies showed that N-glycans do not affect MRP4's apical membrane localization in polarized LLC-PK1 cells or basolateral membrane localization in polarized MDCKI cells. However, vesicular transport assays showed that N-glycans differentially affect MRP4's ability to transport prostaglandin E2, but not estradiol glucuronide. Together these data indicate that N-glycosylation at Asn746 and Asn754 is not essential for plasma membrane localization of MRP4 but cause substrate-selective effects on its transport activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Molecular Characterization of Multidrug Resistant Uropathogenic E. Coli Isolates from Jordanian Patients.

    Science.gov (United States)

    Nairoukh, Yacoub R; Mahafzah, Azmi M; Irshaid, Amal; Shehabi, Asem A

    2018-01-01

    Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), fluoroquinolones mutated genes ( parC and gyrA ) and clone of ST131 type using PCR methods. A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15 , 76% for CTX-M-I and for 8% CTX-M-9 , respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), except of one isolate was positive for blaKPC-2 . This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.

  2. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Mohammed Abdel-Maksoud

    2015-05-01

    Full Text Available Background: Food-borne diseases pose serious health problems, affecting public health and economic development worldwide. Methods: Salmonella was isolated from samples of chicken parts, skin samples of whole chicken carcasses, raw egg yolks, eggshells and chicken faeces. Resulting isolates were characterised by serogrouping, serotyping, antimicrobial susceptibility testing and detection of extended-spectrum β-lactamase (ESBL production. Antibiotic resistance genes and integrons were identified by polymerase chain reaction (PCR. Results: The detection rates of Salmonella were 60%, 64% and 62% in chicken parts, skin, and faeces, respectively, whereas the egg yolks and eggshells were uniformly negative. Salmonella Kentucky and S. Enteritidis serotypes comprised 43.6% and 2.6% of the isolates, respectively, whilst S. Typhimurium was absent. Variable resistance rates were observed against 16 antibiotics; 97% were resistant to sulfamethoxazole, 96% to nalidixic acid and tetracycline and 76% to ampicillin. Multidrug resistance was detected in 82% (64/78 of the isolates and ESBL production was detected in 8% (6/78. The β-lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of the isolates, whilst the blaOXA gene was absent. The sul1gene was detected in 97.3% and the sul2 gene in 5.3% of the isolates. Sixty-four of the 78 isolates (82% were positive for the integrase gene (int I from class 1 integrons, whilst int II was absent. Conclusion: This study reveals the presence of an alarming number of multidrug-resistant Salmonella isolates in the local poultry markets in Cairo. The high levels of drug resistance suggest an emerging problem that could impact negatively on efforts to prevent and treat poultry and poultry-transmitted human diseases in Egypt.

  3. Overcoming multidrug resistance in Dox-resistant neuroblastoma cell lines via treatment with HPMA copolymer conjugates containing anthracyclines and P-gp inhibitors

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Janoušková, Olga; Cuchalová, Lucie; Hvězdová, Zuzana; Hraběta, J.; Eckschlager, T.; Sivák, Ladislav; Ulbrich, Karel; Etrych, Tomáš; Šubr, Vladimír

    2016-01-01

    Roč. 233, 10 July (2016), s. 136-146 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GAP301/12/1254; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : N-(2-hydroxypropyl)methacrylamide copolymers * multidrug resistance * P-glycoprotein inhibitors Subject RIV: CD - Macromolecular Chemistry ; FD - Oncology ; Hematology (MBU-M) Impact factor: 7.786, year: 2016

  4. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk.

    Science.gov (United States)

    Ishikawa, Toshihisa; Aw, Wanping; Kaneko, Kiyoko

    2013-11-04

    In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  5. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis.

    Science.gov (United States)

    Tutuncu, E Ediz; Kuscu, Ferit; Gurbuz, Yunus; Ozturk, Baris; Haykir, Asli; Sencan, Irfan

    2010-09-01

    The treatment of post-surgical meningitis due to multidrug-resistant (MDR) Acinetobacter baumannii is a therapeutic dilemma. The cases of two patients with MDR A. baumannii meningitis secondary to surgical site infections, successfully treated with combination regimens including tigecycline, are presented. Copyright © 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter.

    OpenAIRE

    Neyfakh, A A; Borsch, C M; Kaatz, G W

    1993-01-01

    The gene of the Staphylococcus aureus fluoroquinolone efflux transporter protein NorA confers resistance to a number of structurally dissimilar drugs, not just to fluoroquinolones, when it is expressed in Bacillus subtilis. NorA provides B. subtilis with resistance to the same drugs and to a similar extent as the B. subtilis multidrug transporter protein Bmr does. NorA and Bmr share 44% sequence similarity. Both the NorA- and Bmr-conferred resistances can be completely reversed by reserpine.

  7. Technetium-99m-hexakis-2-methoxyisobutylisonitrile scintigraphy and multidrug resistance-related protein expression in human primary lung cancer

    International Nuclear Information System (INIS)

    Duan Xiaoyi; Wang Jiansheng; Liu Min; Guo Youmin

    2008-01-01

    The occurrence of multidrug resistance (MDR) is a major cause of resistance to chemotherapeutic agents in patients with lung cancer, in part owing to the overexpression of MDR-related proteins. Technetium-99m-hexakis-2-methoxyisobutylisonitrile ( 99m Tc-MIBI) has been shown to be a substrate for some MDR-related proteins. The aim of this study is to evaluate the role of 99m Tc-MIBI scintigraphy for functional imaging of MDR-related protein phenotypes. To determine the correlation between 99m Tc-MIBI scintigraphy and the expression level of P-glycoprotein (Pgp), multidrug-resistance protein (MRP), and glutathione-S-transferase Pi (GSTπ), 26 patients (17 men and 9 women, median age 57.5 years) with primary lung cancer were investigated. Following intravenous administration of 925 MBq 99m Tc-MIBI, single-photon emission computed tomography (SPECT) and computed tomography (CT) were performed at 15 min and 2 h. On the basis of the fused images, tumor to background (T/B) ratio of both early and delayed images, and washout rate (WR%) of 99m Tc-MIBI were calculated. The immunohistochemical staining of Pgp, MRP, and GSTπ was performed, and the expression level was semiquantitated using a pathoimage analysis system. The imaging results were compared with the status of Pgp, MRP, and GSTπ expression. The WR% of 99m Tc-MIBI showed a significant positive correlation with Pgp expression (r=0.560, P=0.003), as no correlation was observed between WR% and MRP or GSTπ (r=0.354, P=0.076; r=0.324, P=0.106). Neither early T/B nor delayed T/B correlated with the expression level of Pgp, MRP, and GSTπ. WR%, Pgp, and GSTπ expression showed significant differences between squamous cell carcinoma (group A) and adenocarcinoma (group B). There was no significant difference among Pgp, MRP, and GSTπ expression levels in any cases (P>0.05). Our data confirmed that 99m Tc-MIBI scintigraphy is useful for determining the MDR caused by Pgp in patients with primary lung cancer. (author)

  8. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    Science.gov (United States)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  9. Detection of multidrug resistance using molecular nuclear technique

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Ahn, Byeong Cheol

    2004-01-01

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. 99 m-Tc-MIBI and other 99 m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-( 11 C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo

  10. Multidrug Resistance in Breast Cancer: From In Vitro Models to Clinical Studies

    International Nuclear Information System (INIS)

    Wind, N.S.; Holen, I.

    2011-01-01

    The development of multidrug resistance (MDR) and subsequent relapse on therapy is a widespread problem in breast cancer, but our understanding of the underlying molecular mechanisms is incomplete. Numerous studies have aimed to establish the role of drug transporter pumps in MDR and to link their expression to response to chemotherapy. The ATP-binding cassette (ABC) transporters are central to breast cancer MDR, and increases in ABC expression levels have been shown to correlate with decreases in response to various chemotherapy drugs and a reduction in overall survival. But as there is a large degree of redundancy between different ABC transporters, this correlation has not been seen in all studies. This paper provides an introduction to the key molecules associated with breast cancer MDR and summarises evidence of their potential roles reported from model systems and clinical studies. We provide possible explanations for why despite several decades of research, the precise role of ABC transporters in breast cancer MDR remains elusive

  11. Advantage and limitations of nitrofurantoin in multi-drug resistant Indian scenario

    Directory of Open Access Journals (Sweden)

    Laishram Shakti

    2015-01-01

    Full Text Available Infections caused by antibiotic resistant pathogens are of significant concern and are associated with higher mortality and morbidity. Nitrofurantoin is a broad-spectrum bactericidal antibiotic and is effectively used to treat urinary tract infections (UTIs caused by E. coli, Klebsiella sp., Enterobacter sp., Enterococcus sp. and Staphylococcus aureus. It interfere with the synthesis of cell wall, bacterial proteins and DNA of both Gram positive and Gram negative pathogens. Nitrofurantoin has been used successfully for treatment and prophylaxis of acute lower urinary tract infections. With the emergence of antibiotic resistance, nitrofurantoin has become the choice of agent for treating UTIs caused by multi-drug resistant pathogens.

  12. Distribution and physiology of ABC-Type transporters contributing to multidrug resistance in bacteria

    NARCIS (Netherlands)

    Lubelski, Jacek; Konings, Wil N.; Driessen, Arnold J. M.

    Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukalyotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms.

  13. The ABCG2 gene Q141K polymorphism contributes to an increased risk of gout: a meta-analysis of 2185 cases.

    Science.gov (United States)

    Qiu, Ya; Liu, Hua; Qing, Yufeng; Yang, Min; Tan, Xiaoyao; Zhao, Mingcai; Lin, Monica; Zhou, Jingguo

    2014-09-01

    Individual genetic association studies examining the relationship between the ABCG2 gene polymorphisms and gout have yielded inconsistent results. This study aims to evaluate the association between the ABCG2 gene variants and gout using meta-analysis. Relevant studies were identified by searching databases extensively. The odds ratio (OR) was calculated using a random-effect or fixed-effect model. A Q statistic was used to evaluate homogeneity, and Egger's test and funnel plot were used to assess publication bias. Subgroup analyses on ethnicities and sex were also performed. A total of 7 studies, including 2185 gout patients and 8028 controls from 5 countries or regions, were included and identified for the current meta-analysis. It was found that the A allele or AA genotype of the ABCG2 Q141K polymorphism (rs2231142) had an increased risk of gout in the general population (A allele, p gout (p gout.

  14. Study of tea polyphenol as a reversal agent for carcinoma cell lines' multidrug resistance (study of TP as a MDR reversal agent)

    International Nuclear Information System (INIS)

    Zhu Aizhi; Wang Xiangyun; Guo Zhenquan

    2001-01-01

    The aim of this study was to examine MDR1 expression product P-glycoprotein (Pgp) and study the effect and mechanism of tea polyphenol (TP) in reversion of multidrug resistance (MDR) in carcinoma cell lines. Immunocytochemical method was used for qualitative detection of Pgp. A comparative study of cytotoxicity and multidrug resistance reversion effect was made by MTT assay for tea polyphenol and quinidine in MCF-7 and MCF-7/Adr cell lines. The multidrug resistance reversion effect and mechanism were studied by measuring the uptake of 99m Tc-tetrofosmin in the carcinoma cell lines. (1) The Pgp overexpression in MCF-7/Adr cells was found to be strong positive, while the Pgp expression of MCF-7 was negative. (2) Although both tea polyphenol and quinidine could not remarkably change the toxicity of adriamycin to MCF-7, they could improve the sensitivity of MCF-7/Adr to adriamycin. The reversion index of tea polyphenol and quinidine was 3 and 10 respectively. (3) The cellular uptake of 99m Tc-tetrofosmin was remarkably lower in MCF-7/Adr than in MCF-7. The uptake of 99m Tc-tetrofosmin in MCF-7/Adr exhibited a 4, 13, 16 fold increase in the presence of 200, 400 and 500 μg/ml of tea polyphenol respectively. The uptake of 99m Tc-tetrofosmin in MCF-7/Adr exhibited only a 4-fold increase in the presence of 200 μM of quinidine. Immunocytochemistry can detect P-glycoprotein expression level qualitatively. Tea polyphenol is not only an anti-tumor agent, but also a multidrug resistant modulator similar to quinidine. The multidrug resistance reversion mechanism of tea polyphenol seems to be its inhibition of the activity of P-glycoprotein. Tea polyphenol has the advantage of very low toxicity in tumor treatment

  15. Variability of cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant bacteria in two Brazilian intensive care units.

    Science.gov (United States)

    Damaceno, Quésia; Nicoli, Jacques R; Oliveira, Adriana

    2015-01-01

    To compare cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant organisms in two intensive care units. A prospective cohort study was performed in adult intensive care units of two hospitals in Belo Horizonte, Brazil (April 2012 to February 2013). Clinical and demographic data were first collected by reviewing patients' charts. Then, samples collected with nasal, groin, and perineum swabs were cultivated in selective media for 48 h at 37°C. After isolation, determination of antimicrobial susceptibility and biochemical identification were performed. A total of 53 cases of colonization were observed by the following bacteria in decreasing frequencies: imipenem-resistant Acinetobacter baumannii (50.9%), vancomycin-resistant Enterococcus faecalis (43.4%), extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (37.7%), imipenem-resistant Pseudomonas aeruginosa (32.1%), oxacillin-resistant Staphylococcus aureus (7.5%), and imipenem-resistant Klebsiella pneumoniae (5.7%). Among these colonization cases, 26 (49.0%) were followed by infection with bacteria phenotypically similar to those of the colonization. A relation between high population levels of colonization by most of the multidrug-resistant organisms at anatomical sites and a subsequent infection was observed. After colonization/infection, bacterial population levels decreased progressively and spontaneously until disappearance by day 45 in all the anatomical sites and for all the multidrug-resistant organisms. There was a correlation between high population levels of colonization by multidrug-resistant organisms at anatomical sites and a subsequent infection. Reduction in multidrug-resistant organism populations after colonization at anatomical sites could be a preventive measure to reduce evolution to infection as well as transmission of these bacteria between patients in intensive care unit.

  16. How many sputum culture results do we need to monitor multidrug-resistant-tuberculosis (MDR-TB) patients during treatment?

    NARCIS (Netherlands)

    Janssen, Saskia; Padanilam, Xavier; Louw, Rianna; Mahanyele, Russel; Coetzee, Gerrit; Hänscheid, Thomas; Leenstra, Tjalling; Grobusch, Martin P.

    2013-01-01

    Discharge of a hospital patient after a single negative sputum culture may save money when treating multidrug-resistant tuberculosis. However, after initial sputum conversion in 336 South Africans, 11.6% and 5.4% reconverted after 1 and 2 months, respectively. These findings endorse the WHO

  17. Complete genome sequence of Acinetobacter baumannii XH386 (ST208, a multi-drug resistant bacteria isolated from pediatric hospital in China

    Directory of Open Access Journals (Sweden)

    Youhong Fang

    2016-03-01

    Full Text Available Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR, while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb chromosome and 112-kb plasmid of A. baumannii XH386 (ST208, which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780. Keywords: Acinetobacter baumannii, Multi-drug resistance, Paediatric

  18. Phenotypic Characterization of Multidrug-resistant Escherichia Coli with Special Reference to Extended-spectrum-beta-lactamases and Metallo-beta-lactamases in a Tertiary Care Center

    Directory of Open Access Journals (Sweden)

    Basudha Shrestha

    2015-06-01

    Conclusions: Beta-lactamase mediated resistance mechanisms are accounting very high in the multidrug resistant isolates of E. coli. Therefore, early detection of beta lactamase mediated resistant strains and their current antibiotic susceptibility pattern is necessary to avoid treatment failure and prevent the spread of MDR. Keywords: e. coli; extended-spectrum-β-lactamase; metallo-β-lactamase; multidrug-resistance.

  19. Testing of SNS-032 in a Panel of Human Neuroblastoma Cell Lines with Acquired Resistance to a Broad Range of Drugs12

    Science.gov (United States)

    Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich

    2013-01-01

    Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases. PMID:24466371

  20. Serum vitamin d level and susceptibility to multidrug-resistant tuberculosis among household contacts

    Science.gov (United States)

    Herlina, N.; Sinaga, B. Y. M.; Siagian, P.; Mutiara, E.

    2018-03-01

    Low levels of vitamin D is a predisposing factor for Multidrug-resistant tuberculosis. Family members in contact with the patient are also at risk of infection. Currently, there is no study that compares vitamin D levels between MDR-TB patients and household contact. This study aims to identify the association between level vitamin D within MDR-TB occurrence. This was a case-control study, with the number of samples in each group (MDR-TB) patients and household contactswere40 people. Each member of each group was checked for vitamin D levels using enzyme-linked immunosorbent assay (ELISA) technique. Statistical analysis was by using Chi-Square analysis using SPSS. Mean levels of vitamin D in MDR-TB patients were 32.21, household contact 31.7. There was anosignificant association between vitamin D levels and MDR-TB occurrence (p=1.0).No significant associationbetween vitamin D level with theMDR-TB occurrence.

  1. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients

    Science.gov (United States)

    The objective of this study was to evaluate conjugative transfer of cephalosporin resistance among (n=100) strains of multi-drug resistant Escherichia coli (MDRE) to Salmonella Newport and E. coli DH5-alpha recipients. To accomplish this, phenotypic and genotypic profiles were determined for MDRE, ...

  2. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia

    NARCIS (Netherlands)

    de Vries, EGE; van Putten, WLJ; Verdonck, LF; Ossenkoppele, GJ; Verhoef, GEG; Vellenga, E

    Despite treatment with intensive chemotherapy, a considerable number of patients with acute myeloid leukemia (AML) die from their disease due to the occurrence of resistance. Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein (MRP) 1 has been identified

  3. Comparative genomic analysis of multidrug-resistant Streptococcus pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Pan F

    2018-05-01

    Full Text Available Fen Pan,1 Hong Zhang,1 Xiaoyan Dong,2 Weixing Ye,3 Ping He,4 Shulin Zhang,4 Jeff Xianchao Zhu,5 Nanbert Zhong1,2,6 1Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China; 2Department of Respiratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China; 3Shanghai Personal Biotechnology Co., Ltd, Shanghai, China; 4Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 5Zhejiang Bioruida Biotechnology co. Ltd, Zhejiang, China; 6New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA Introduction: Multidrug resistance in Streptococcus pneumoniae has emerged as a serious problem to public health. A further understanding of the genetic diversity in antibiotic-resistant S. pneumoniae isolates is needed. Methods: We conducted whole-genome resequencing for 25 pneumococcal strains isolated from children with different antimicrobial resistance profiles. Comparative analysis focus on detection of single-nucleotide polymorphisms (SNPs and insertions and deletions (indels was conducted. Moreover, phylogenetic analysis was applied to investigate the genetic relationship among these strains. Results: The genome size of the isolates was ~2.1 Mbp, covering >90% of the total estimated size of the reference genome. The overall G+C% content was ~39.5%, and there were 2,200–2,400 open reading frames. All isolates with different drug resistance profiles harbored many indels (range 131–171 and SNPs (range 16,103–28,128. Genetic diversity analysis showed that the variation of different genes were associated with specific antibiotic resistance. Known antibiotic resistance genes (pbps, murMN, ciaH, rplD, sulA, and dpr were identified, and new genes (regR, argH, trkH, and PTS-EII closely related with antibiotic resistance were found, although these genes were primarily annotated

  4. Coexpression of multidrug resistance involve proteins: a flow cytometric analysis.

    Science.gov (United States)

    Boutonnat, J; Bonnefoix, T; Mousseau, M; Seigneurin, D; Ronot, X

    1998-01-01

    Cross resistance to multiple natural cytotoxic products represents a major obstacle in myeloblastic acute leukaemia (AML). Multidrug resistance (MDR) often involves overexpression of plasma membrane drug transporter P-glycoprotein (PGP) or the resistance associated protein (MRP). Recently, a protein overexpressed in a non-PGP MDR lung cancer cell line and termed lung resistance related protein (LRP) was identified. These proteins are known to be associated with a bad prognosis in AML. We have developed a triple indirect labelling analysed by flow cytometry to detect the coexpression of these proteins. Since no cell line expressing all three antigens is known, we mixed K562 cells (resistant to Adriblastine, PGP+, MRP-, LRP-) with GLC4 cells (resistant to Adriblastine, PGP-, MRP+, LRP+) to create a model system to test the method. The antibodies used were UIC2 for PGP, MRPm6 for MRP and LRP56 for LRP. They were revealed by Fab'2 coupled with Fluoresceine-isothiocyanate, Phycoerythrin or Tricolor with isotype specificity. Cells were fixed and permeabilized after PGP labelling because MRPm6 and LRP56 recognize intracellular epitopes. PGP and LRP were easily detected. MRP is expressed at relatively low levels and was more difficult to detect because in the triple labelling the non specific staining was higher than in a single labelling. Despite the increased background in the triple labelling we were able to detect coexpression of PGP, MRP, LRP by flow cytometry. This method appears to be very useful to detect coexpression of markers in AML. Such coexpression could modify the therapeutic approach with revertants.

  5. Functional analysis of P-glycoprotein and multidrug resistance associated protein related multidrug resistance in AML-blasts.

    Science.gov (United States)

    Brügger, D; Herbart, H; Gekeler, V; Seitz, G; Liu, C; Klingebiel, T; Orlikowsky, T; Einsele, H; Denzlinger, C; Bader, P; Niethammer, D; Beck, J F

    1999-05-01

    Despite the high effectiveness of various P-glycoprotein (P-gp) modulating substances in vitro their clinical value e.g. for combination treatment of acute myelogenous leukemias (AML) remains still unclear. This might be explainable by recent findings that other factors than P-gp (e.g. the multidrug resistance associated protein (MRP)) may also be involved in clinical occurring drug resistance. To study P-gp and MRP mediated MDR in AML blasts from patients with relapses at the functional level we measured rhodamine 123 (RHO) efflux in combination with a P-gp specific (SDZ PSC 833) or a MRP specific (MK571) modulator, respectively. Furthermore, direct antineoplastic drug action was monitored by determination of damaged cell fraction of a blast population using flow cytometry. We generally found strongly modulated RHO efflux by SDZ PSC 833 but slight RHO-efflux modulation by MK571 in blasts from relapsed states of AML expressing MDR1 or MRP mRNA at various levels. We could not demonstrate, though, significant PSC 833 or MK571 mediated modulation of the cytotoxic effects of etoposide. The results point to the possibility that combination of etoposide and a modulator might not improve responses to chemotherapy by targeting P-gp or MRP exclusively.

  6. Multidrug Resistant Tuberculosis involving the Clavicle, Spine and Ribs

    Directory of Open Access Journals (Sweden)

    H Krishnan

    2011-03-01

    Full Text Available This report describes an unusual case of multidrug resistant tuberculosis (MDR-TB, involving the right clavicle and multicentric aytpical spine involvement without any neurological deficit. The female patient presented with acute onset of right clavicular pain associated with a one-month history of lower backache with constitutional symptoms. The clavicular lesion and MRI spine findings were highly suggestive of TB. Anti TB drugs (ATD were started empirically as Sabah, Malaysia the patient’s home, is an endemic area for TB. Despite, 2 months of ATD administration, the patient did not respond well clinically and developed left sided chest wall abscesses arising from the left 3rd and 6th ribs. She was then treated for MDR-TB infection and has responded well to this treatment.

  7. Tissue expression pattern of ABCG transporter indicates functional roles in reproduction of Toxocara canis.

    Science.gov (United States)

    Luo, Yong-Li; Ma, Guang-Xu; Luo, Yong-Fang; Kuang, Ce-Yan; Jiang, Ai-Yun; Li, Guo-Qing; Zhou, Rong-Qiong

    2018-03-01

    Toxocara canis is a zoonotic parasite with worldwide distribution. ATP-binding cassette (ABC) transporters are integral membrane proteins which involve in a range of biological processes in various organisms. In present study, the full-length coding sequence of abcg-5 gene of T. canis (Tc-abcg-5) was cloned and characterized. A 633 aa polypeptide containing two conserved Walker A and Walker B motifs was predicted from a continuous 1902 nt open reading frame. Quantitative real-time PCR was employed to determine the transcriptional levels of Tc-abcg-5 gene in adult male and female worms, which indicated high mRNA level of Tc-abcg-5 in the reproductive tract of adult female T. canis. Tc-abcg-5 was expressed to produce rabbit polyclonal antiserum against recombinant TcABCG5. Indirect-fluorescence immunohistochemical assays were carried out to detect the tissue distribution of TcABCG5, which showed predominant distribution of TcABCG5 in the uterus (especially in the germ cells) of adult female T. canis. Tissue transcription and expression pattern of Tc-abcg-5 indicated that Tc-abcg-5 might play essential roles in the reproduction of this parasitic nematode.

  8. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk

    Directory of Open Access Journals (Sweden)

    Kiyoko Kaneko

    2013-11-01

    Full Text Available In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs, i.e., 421C>A (major and 376C>T (minor, in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  9. Contribution of AcrAB-ToIC to multidrug resistance in an Escherichia coli sequence type 131 isolate

    NARCIS (Netherlands)

    Schuster, Sabine; Vavra, Martina; Schweigger, Tobias M.; Rossen, John W. A.; Matsumura, Yasufumi; Kern, Winfried V.

    Drug efflux by resistance-nodulation-cell division (RND)-type transporters, such as AcrAB-ToIC of Escherichia can, is an important resistance mechanism in Gram-negative bacteria; however, its contribution to multidrug resistance (MDR) in clinical isolates is poorly defined. We inactivated acrB of a

  10. [18F]FDG is not transported by P-glycoprotein and breast cancer resistance protein at the rodent blood–brain barrier

    International Nuclear Information System (INIS)

    Wanek, Thomas; Traxl, Alexander; Bankstahl, Jens P.; Bankstahl, Marion; Sauberer, Michael; Langer, Oliver; Kuntner, Claudia

    2015-01-01

    Introduction: Transport of 2-[ 18 F]fluoro-2-deoxy-D-glucose ([ 18 F]FDG) by the multidrug efflux transporters P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood–brain barrier (BBB) may confound the interpretation of [ 18 F]FDG brain PET data. Aim of this study was to assess the influence of ABCB1 and ABCG2 at the BBB on brain distribution of [ 18 F]FDG in vivo by performing [ 18 F]FDG PET scans in wild-type and transporter knockout mice and by evaluating changes in [ 18 F]FDG brain distribution after transporter inhibition. Methods: Dynamic small-animal PET experiments (60 min) were performed with [ 18 F]FDG in groups of wild-type and transporter knockout mice (Abcb1a/b (−/−) , Abcg2 (−/−) and Abcb1a/b (−/−) Abcg2 (−/−) ) and in wild-type rats without and with i.v. pretreatment with the known ABCB1 inhibitor tariquidar (15 mg/kg, given at 2 h before PET). Blood was sampled from animals from the orbital sinus vein at the end of the PET scans and measured in a gamma counter. Brain uptake of [ 18 F]FDG was expressed as the brain-to-blood radioactivity concentration ratio in the last PET time frame (K b,brain ). Results: K b,brain values of [ 18 F]FDG were not significantly different between different mouse types both without and with tariquidar pretreatment. The blood-to-brain transfer rate constant of [ 18 F]FDG was significantly lower in tariquidar-treated as compared with vehicle-treated rats (0.350 ± 0.025 mL/min/g versus 0.416 ± 0.024 mL/min/g, p = 0.026, paired t-test) but K b,brain values were not significantly different between both rat groups. Conclusion: Our results show that [ 18 F]FDG is not transported by Abcb1 at the mouse and rat BBB in vivo. In addition we found no evidence for Abcg2 transport of [ 18 F]FDG at the mouse BBB. Advances in knowledge and implications for patient care: Our findings imply that functional activity of ABCB1 and ABCG2 at the BBB does not need to be taken into account when

  11. High prevalence of multidrug resistant tuberculosis in Djibouti: a retrospective study.

    Science.gov (United States)

    Boyer-Cazajous, Géraldine; Martinaud, Christophe; Déhan, Céline; Hassan, Mohammed Osman; Gaas, Yassin; Chenilleau-Vidal, Marie-Caroline; Soler, Charles

    2014-02-13

    The Republic of Djibouti is an African country that exhibits one of the highest incidence rate of tuberculosis in the world. The aim of this study was to evaluate the prevalence of multidrug-resistant tuberculosis among new cases. We studied retrospectively every tuberculosis case diagnosed over a 12-month period in patients hospitalized at the French Military Hospital of Bouffard. During this period, 1,274 samples from 675 patients were tested. We isolated 266 mycobacteria corresponding to 180 cases of tuberculosis. Thirty-three were fully susceptible and 57% met the tuberculosis criteria, with 46% primary resistance. No extensively-drug-resistant tuberculosis was found. Our results highlight a major concern about the situation in this part of the world.

  12. Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Noman Siddiqi

    1998-09-01

    Full Text Available A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.

  13. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis

    Directory of Open Access Journals (Sweden)

    I. Fernández-Natal

    2016-11-01

    Full Text Available Human infections associated with Corynebacterium kroppenstedtii are rarely reported, and this organism is usually described as antibiotic sensitive. Almost all published cases of C. kroppenstedtii infections have been associated with breast pathology in women and have been described in New Zealand, France, Canada, India and Japan. Here we describe the microbiologic characteristics of two strains isolated from two women diagnosed of granulomatous mastitis in Spain. One C. kroppenstedtii isolate was antibiotic sensitive while the other was multidrug resistant. Biochemical identification was possible using a wide battery of methods including API Coryne V2.0, API Strep, API NH, API NE, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene amplification and sequencing. Antimicrobial susceptibility to 28 antibiotics as determined by Etest showed one isolate being sensitive to benzylpenicillin, ciprofloxacin, moxifloxacin, gentamicin, vancomycin, clindamycin, tetracycline, linezolid and rifampin. The second isolate showed resistance to ciprofloxacin, moxifloxacin, clindamycin, tetracycline and rifampin. The multidrug-resistant isolate contained the erm(X, tet(W, cmx, aphA1-IAB, strAB and sul1 resistance genes known from the R plasmid pJA144188 of Corynebacterium resistens. These genes were absent in the genome of the antibiotic-sensitive isolate. This report confirms the tropism of this microorganism for women's breasts and presents the first description of a multidrug-resistant C. kroppenstedtii strain.

  14. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance...... expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP...... was increased relative to thermosensitive sublines. Although it could be shown that the overexpressed ABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found...

  15. IncA/C plasmids harboured in serious multidrug-resistant Vibrio cholerae serogroup O139 strains in China.

    Science.gov (United States)

    Wang, Ruibai; Yu, Dong; Zhu, Lianhui; Li, Jie; Yue, Junjie; Kan, Biao

    2015-03-01

    Vibrio cholerae serogroup O139 emerged in 1992 and is one of two major serogroups to have caused cholera epidemics. After 1998, serious multidrug-resistant (MDR) O139 strains quickly became common in China, showing a multidrug resistance profile to eight antibiotics. It is a great threat to public health, and elucidation of its mechanisms of resistance will provide a helpful guide for the clinical treatment and prevention of cholera. In this study, mega-plasmids from MDR V. cholerae O139 strains were identified by pulsed-field gel electrophoresis (PFGE) without enzyme digestion. One plasmid was isolated and sequenced, belonging to the IncA/C family. Ten antibiotic resistance genes were found in the MDR regions, including a blaTEM-20 gene, and these genes endowed the host with resistance to seven antibiotics. This kind of plasmid was positive in 71.2% (198/278) of toxigenic O139 strains, and the rate of plasmid positivity was consistent with the yearly change in MDR rates of these strains. This study reveals an important role of the IncA/C family plasmid in the spread of multiple antibiotic resistance of epidemic V. cholerae serogroup O139 strains, which has recombined with plasmids from different bacterial species and transferred among V. cholerae strains. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. Control of multidrug resistant bacteria in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Jaggi Namita

    2012-06-01

    Full Text Available Abstract Background The objective of this study was to assess the impact of antimicrobial stewardship programs on the multidrug resistance patterns of bacterial isolates. The study comprised an initial retrospective analysis of multidrug resistance in bacterial isolates for one year (July 2007-June 2008 followed by prospective evaluation of the impact of Antimicrobial Stewardship programs on resistance for two years and nine months (July 2008-March 2011. Setting A 300-bed tertiary care private hospital in Gurgaon, Haryana (India Findings Methods Study Design • July 2007 to June 2008: Resistance patterns of bacterial isolates were studied. • July 2008: Phase I intervention programme Implementation of an antibiotic policy in the hospital. • July 2008 to June 2010: Assessment of the impact of the Phase I intervention programme. • July 2010 to March 2011: Phase II intervention programme: Formation and effective functioning of the antimicrobial stewardship committee. Statistical correlation of the Defined daily dose (DDD for prescribed drugs with the antimicrobial resistance of Gram negatives. Results Phase I intervention programme (July 2008 resulted in a decrease of 4.47% in ESBLs (E.coli and Klebsiella and a significant decrease of 40.8% in carbapenem-resistant Pseudomonas. Phase II intervention (July 2010 brought a significant reduction (24.7% in carbapenem-resistant Pseudomonas. However, the resistance in the other Gram negatives (E.coli, Klebsiella, and Acinetobacter rose and then stabilized. A positive correlation was observed in Pseudomonas and Acinetobacter with carbapenems and cefoperazone-sulbactam. Piperacillin-tazobactam showed a positive correlation with Acinetobacter only. E.coli and Klebsiella showed positive correlation with cefoparazone-sulbactam and piperacillin-tazobactam. Conclusion An antimicrobial stewardship programme with sustained and multifaceted efforts is essential to promote the judicious use of antibiotics.

  17. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    International Nuclear Information System (INIS)

    Malur, Anagha; Huizar, Isham; Wells, Greg; Barna, Barbara P.; Malur, Achut G.; Thomassen, Mary Jane

    2011-01-01

    but improved significantly after lenti-ABCG1 treatment. Data demonstrate that in vivo instillation of lenti-ABCG1 in GM-CSF KO mice is sufficient to restore pulmonary homeostasis by: (1) upregulating ABCG1; (2) reducing intra and extracellular lipids; and (3) improving lung function. Results suggest that the ABCG1 lipid transporter is the key downstream target of GM-CSF-induced PPARγ necessary for surfactant catabolism.

  18. Characterization of Multidrug Resistant E. faecalis Strains from Pigs of Local Origin by ADSRRS-Fingerprinting and MALDI -TOF MS; Evaluation of the Compatibility of Methods Employed for Multidrug Resistance Analysis.

    Directory of Open Access Journals (Sweden)

    Aneta Nowakiewicz

    Full Text Available The aim of this study was to characterize multidrug resistant E. faecalis strains from pigs of local origin and to analyse the relationship between resistance and genotypic and proteomic profiles by amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI -TOF MS. From the total pool of Enterococcus spp. isolated from 90 pigs, we selected 36 multidrug resistant E. faecalis strains, which represented three different phenotypic resistance profiles. Phenotypic resistance to tetracycline, macrolides, phenicols, and lincomycin and high-level resistance to aminoglycosides were confirmed by the occurrence of at least one corresponding resistance gene in each strain. Based on the analysis of the genotypic and phenotypic resistance of the strains tested, five distinct resistance profiles were generated. As a complement of this analysis, profiles of virulence genes were determined and these profiles corresponded to the phenotypic resistance profiles. The demonstration of resistance to a wide panel of antimicrobials by the strains tested in this study indicates the need of typing to determine the spread of resistance also at the local level. It seems that in the case of E. faecalis, type and scope of resistance strongly determines the genotypic pattern obtained with the ADSRRS-fingerprinting method. The ADSRRS-fingerprinting analysis showed consistency of the genetic profiles with the resistance profiles, while analysis of data with the use of the MALDI- TOF MS method did not demonstrate direct reproduction of the clustering pattern obtained with this method. Our observations were confirmed by statistical analysis (Simpson's index of diversity, Rand and Wallace coefficients. Even though the MALDI -TOF MS method showed slightly higher discrimination power than ADSRRS-fingerprinting, only the latter method allowed reproduction of the

  19. A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein

    Science.gov (United States)

    Wang, W.; Takezawa, D.; Poovaiah, B. W.

    1996-01-01

    A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.

  20. The function of the thyroid gland in patients with multi-drug resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    S. L. Matveyeva

    2017-08-01

    Full Text Available Abstract Background Multidrug-resistant tuberculosis (MDRTB remains a health problem for many countries in the world. The share of MDRTB is 10–30% among newly diagnosed cases and 20–70% among relapses and treatment failure. The aim of the study is to define the side effects of second line drugs used in the treatment of MDRTB on thyroid function. Methods In 30 patients with multidrug resistant tuberculosis, echostructure of thyroid was studied by ultrasound imaging method. Indices of thyroid function: plasma levels of free thyroxin, thyroid stimulating hormone were studied before chemotherapy initiated, at the end of intensive phase and after the treatment finished. Results Decreasing of thyroid function under antituberculosis chemotherapy was approved. Monitoring and correction of thyroid function during antituberculosis chemotherapy was suggested. Conclusion Patients with MDRTB taking ethionamide and PAS are at increased risk for hypothyroidism and goiter, and therefore require monitoring of thyroid function at all stages of antituberculosis chemotherapy for its timely correction.

  1. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Arax Hovhannesyan

    2012-06-01

    Full Text Available OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute hazard ratios (HR. RESULTS: Sputum conversion from positive to negative was observed in 134 out of 195 cases (69%. Among these who converted the median time to conversion was 3.7 months. Factors independently associated with time to sputum conversion in the proportional hazards model were: male sex (HR=0.51, 95% CI 0.32-0.81, ofloxacin-resistant tuberculosis (HR = 0.45, 95% CI 0.26-0.78 and first period of recruitment into second-line treatment (HR= 0.69, 95% CI 0.47-1.01. CONCLUSION: Time to sputum conversion in patients with multidrug-resistant tuberculosis in Armenia was 5.8 months (range 0.5-17.0 months. High level of ofloxacin resistance was the main reason for compromised response to treatment. Patients with a poor resistance profile and males should be targeted with more aggressive initial therapy.

  2. Time to sputum conversion in multidrug-resistant tuberculosis patients in Armenia: retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Arax Hovhannesyan

    2012-01-01

    Full Text Available OBJECTIVE: To characterize time to sputum conversion among patients with multidrug resistant tuberculosis who were enrolled into second-line tuberculosis treatment program; to identify risk factors for delayed sputum conversion. DESIGN: Retrospective cohort study designed to identify the factors associated with sputum conversion. Survival analysis was performed using Kaplan-Meier estimator to compute estimates for median time to sputum conversion and Cox proportional hazards model to compute hazard ratios (HR. RESULTS: Sputum conversion from positive to negative was observed in 134 out of 195 cases (69%. Among these who converted the median time to conversion was 3.7 months. Factors independently associated with time to sputum conversion in the proportional hazards model were: male sex (HR=0.51, 95% CI 0.32-0.81, ofloxacin-resistant tuberculosis (HR = 0.45, 95% CI 0.26-0.78 and first period of recruitment into second-line treatment (HR= 0.69, 95% CI 0.47-1.01. CONCLUSION: Time to sputum conversion in patients with multidrug-resistant tuberculosis in Armenia was 5.8 months (range 0.5- 17.0 months. High level of ofloxacin resistance was the main reason for compromised response to treatment. Patients with a poor resistance profile and males should be targeted with more aggressive initial therapy.

  3. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Lan-Hui Li

    Full Text Available The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226. Silver nanoparticles (Ag NPs, 120 nm showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae.

  4. Different phenotypic and molecular mechanisms associated with multidrug resistance in Gram-negative clinical isolates from Egypt

    Directory of Open Access Journals (Sweden)

    Helmy OM

    2017-12-01

    Full Text Available Omneya M Helmy, Mona T Kashef Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt Objectives: We set out to investigate the prevalence, different mechanisms, and clonal relatedness of multidrug resistance (MDR among third-generation cephalosporin-resistant Gram-negative clinical isolates from Egypt.Materials and methods: A total of 118 third-generation cephalosporin-resistant Gram-negative clinical isolates were included in this study. Their antimicrobial susceptibility pattern was determined using Kirby–Bauer disk diffusion method. Efflux pump-mediated resistance was tested by the efflux-pump inhibitor-based microplate assay using chlorpromazine. Detection of different aminoglycoside-, β-lactam-, and quinolone-resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using random amplification of polymorphic DNA.Results: Most of the tested isolates exhibited MDR phenotypes (84.75%. The occurrence of efflux pump-mediated resistance in the different MDR species tested was 40%–66%. Acinetobacter baumannii isolates showed resistance to most of the tested antibiotics, including imipenem. The blaOXA-23-like gene was detected in 69% of the MDR A. baumannii isolates. The MDR phenotype was detected in 65% of Pseudomonas aeruginosa isolates, of which only 23% exhibited efflux pump-mediated resistance. On the contrary, efflux-mediated resistance to piperacillin and gentamicin was recorded in 47.5% of piperacillin-resistant and 25% of gentamicin-resistant MDR Enterobacteriaceae. Moreover, the plasmid-mediated quinolone-resistance genes (aac(6’-Ib-cr, qnrB, and qnrS were detected in 57.6% and 83.33% of quinolone-resistant MDR Escherichia coli and Klebsiella pneumoniae isolates, respectively. The β-lactamase-resistance gene blaSHV-31 was detected for the first time in one MDR K. pneumoniae isolate from an endotracheal tube specimen in Egypt

  5. International spread of multidrug-resistant Salmonella Schwarzengrund in food products

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hendriksen, Rene S.; Lockett, Jana

    2007-01-01

    We compared 581 Salmonella enterica serotype Schwarzengrund isolates from persons, food, and food animals in Denmark, Thailand, and the United States by antimicrobial drug susceptibility and pulsed-field gel electrophoresis (PFGE) typing. Resistance, including resistance to nalidixic acid......, was frequent among isolates from persons and chickens in Thailand, persons in the United States, and food imported from Thailand to Denmark and the United States. A total of 183 PFGE patterns were observed, and 136 (23.4%) isolates had the 3 most common patterns. Seven of 14 isolates from persons in Denmark...... had patterns found in persons and chicken meat in Thailand; 22 of 390 human isolates from the United States had patterns found in Denmark and Thailand. This study suggests spread of multidrug-resistant S. Schwarzengrund from chickens to persons in Thailand, and from imported Thai food products...

  6. Factors influencing survival in patients with multidrug-resistant Acinetobacter baumannii infection

    Directory of Open Access Journals (Sweden)

    Mariana Lima Prata-Rocha

    Full Text Available Multidrug-resistant (MDR Acinetobacter baumannii (Acb is a rapidly emerging pathogen in healthcare settings. The aim of this study was to evaluate the predictors of poor outcome in patients with MDR Acb. This is the first report documenting factors influencing survival in patients with MDR Acb in this tertiary hospital. This study is a prospective of the hospital epidemiology database. A total of 73 patients with 84 Acb isolates were obtained between August 2009 and October 2010 in this hospital. In the present study, the 30-day mortality rate was 39.7%. Of 84 Acb isolates, 50 (59% were MDR, nine (11% were pan-resistant, and 25 (30% were non-MDR. The non-MDR isolates were used as the control group. The factors significantly associated with multidrug resistance included previous surgeries, presence of comorbidity (renal disease, use of more than two devices, parenteral nutrition, and inappropriate antimicrobial therapy. Significant predictors of 30-day mortality in the univariate analysis included pneumonia, diabetes mellitus, renal disease, use of more than two devices, and inappropriate antimicrobial therapy administered within two days of the onset of infection. The factors associated with mortality in patients with MDR Acb infection in this study were: age > 60 years, pneumonia, diabetes mellitus, renal disease, use of more than two invasive procedures, and inappropriate antimicrobial therapy. Vigilance is needed to prevent outbreaks of this opportunistic and deadly pathogen.

  7. Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers

    Directory of Open Access Journals (Sweden)

    Brisebois Ronald

    2007-08-01

    Full Text Available Abstract Background Military members, injured in Afghanistan or Iraq, have returned home with multi-drug resistant Acinetobacter baumannii infections. The source of these infections is unknown. Methods Retrospective study of all Canadian soldiers who were injured in Afghanistan and who required mechanical ventilation from January 1 2006 to September 1 2006. Patients who developed A. baumannii ventilator associated pneumonia (VAP were identified. All A. baumannii isolates were retrieved for study patients and compared with A. baumannii isolates from environmental sources from the Kandahar military hospital using pulsed-field gel electrophoresis (PFGE. Results During the study period, six Canadian Forces (CF soldiers were injured in Afghanistan, required mechanical ventilation and were repatriated to Canadian hospitals. Four of these patients developed A. baumannii VAP. A. baumannii was also isolated from one environmental source in Kandahar – a ventilator air intake filter. Patient isolates were genetically indistinguishable from each other and from the isolates cultured from the ventilator filter. These isolates were resistant to numerous classes of antimicrobials including the carbapenems. Conclusion These results suggest that the source of A. baumannii infection for these four patients was an environmental source in the military field hospital in Kandahar. A causal linkage, however, was not established with the ventilator. This study suggests that infection control efforts and further research should be focused on the military field hospital environment to prevent further multi-drug resistant A. baumannii infections in injured soldiers.

  8. The value of microscopic-observation drug susceptibility assay in the diagnosis of tuberculosis and detection of multidrug resistance.

    Science.gov (United States)

    Sertel Şelale, Denİz; Uzun, Meltem

    2018-01-01

    Inexpensive, rapid, and reliable tests for detecting the presence and drug susceptibility of Mycobacterium tuberculosis complex (MTBC) are urgently needed to control the transmission of tuberculosis. In this study, we aimed to assess the accuracy and speed of the microscopic-observation drug susceptibility (MODS) assay in the identification of MTBC and detection of multidrug resistance. Sputum samples from patients suspected to have tuberculosis were simultaneously tested with MODS and conventional culture [Löwenstein-Jensen (LJ) culture, BACTEC MGIT™ 960 (MGIT) system], and drug susceptibility testing (MGIT system) methods. A total of 331 sputum samples were analyzed. Sensitivity and specificity of MODS assay for detection of MTBC strains were 96% and 98.8%, respectively. MODS assay detected multidrug resistant MTBC isolates with 92.3% sensitivity and 96.6% specificity. Median time to culture positivity was similar for MGIT (8 days) and MODS culture (8 days), but was significantly longer with LJ culture (20 days) (p tuberculosis and detection of multidrug resistance. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. Epidemiology of multi-drug resistant staphylococci in cats, dogs and people in Switzerland

    OpenAIRE

    Decristophoris, Paola Maria Aurelia

    2011-01-01

    Background: The human relationship with cats and dogs has been suggested to be of potential concern to public health because of the possible role of pets as reservoir of antibiotic resistant microorganisms. Here I suggest the “One Health” interdisciplinary approach to be helpful towards the understanding of the role of pets in antibiotic resistance spreading, considering also the socio-emotional context of the human-pet relationship. Methods: I investigated the presence of multi-drug resis...

  10. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China.

    Directory of Open Access Journals (Sweden)

    Yan Lu

    Full Text Available A total of 310 Salmonella isolates were isolated from 6 broiler farms in Eastern China, serotyped according to the Kauffmann-White classification. All isolates were examined for susceptibility to 17 commonly used antimicrobial agents, representative isolates were examined for resistance genes and class I integrons using PCR technology. Clonality was determined by pulsed-field gel electrophoresis (PFGE. There were two serotypes detected in the 310 Salmonella strains, which included 133 Salmonella enterica serovar Indiana isolates and 177 Salmonella enterica serovar Enteritidis isolates. Antimicrobial sensitivity results showed that the isolates were generally resistant to sulfamethoxazole, ampicillin, tetracycline, doxycycline and trimethoprim, and 95% of the isolates sensitive to amikacin and polymyxin. Among all Salmonella enterica serovar Indiana isolates, 108 (81.2% possessed the blaTEM, floR, tetA, strA and aac (6'-Ib-cr resistance genes. The detected carriage rate of class 1 integrons was 66.5% (206/310, with 6 strains carrying gene integron cassette dfr17-aadA5. The increasing frequency of multidrug resistance rate in Salmonella was associated with increasing prevalence of int1 genes (rs = 0.938, P = 0.00039. The int1, blaTEM, floR, tetA, strA and aac (6'-Ib-cr positive Salmonella enterica serovar Indiana isolates showed five major patterns as determined by PFGE. Most isolates exhibited the common PFGE patterns found from the chicken farms, suggesting that many multidrug-resistant isolates of Salmonella enterica serovar Indiana prevailed in these sources. Some isolates with similar antimicrobial resistance patterns represented a variety of Salmonella enterica serovar Indiana genotypes, and were derived from a different clone.

  11. Multidrug-resistant Bacteroides fragilis group on the rise in Europe?

    DEFF Research Database (Denmark)

    Hartmeyer, G N; Sóki, J; Nagy, E

    2012-01-01

    We report a case of multidrug-resistance (MDR) in a strain of Bacteroides fragilis from a blood culture and abdominal fluid in a Danish patient. The patient had not been travelling for several years and had not received antibiotics prior to the present case. We also summarize the cases that have...... been reported to date of MDR B. fragilis group in Europe. As far as we know, a case like this with MDR B. fragilis has not been described in Scandinavia before....

  12. Incidence of multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria in children hospitalized at Dr. Hasan Sadikin general hospital Bandung Indonesia

    Science.gov (United States)

    Adrizain, R.; Suryaningrat, F.; Alam, A.; Setiabudi, D.

    2018-03-01

    Antibiotic resistance has become a global issue, with 700,000 deaths attributable to multidrug-resistance (MDR) occurring each year. Centers for Disease Control and Prevention (CDC) show rapidly increasing rates of infection due to antibiotic-resistant bacteria. The aim of the study isto describe the incidence of MDR, extensively drug-resistant (XDR) and pan drug-resistant (PDR) in Enterococcus spp., Staphylococcus aureus, K. pneumonia, Acinetobacter baumanii, P. aeruginosin, and Enterobacter spp. (ESKAPE) pathogens in children admitted to Dr. Hasan Sadikin Hospital. All pediatric patients having blood culture drawn from January 2015 to December 2016 were retrospectively studied. Data include the number of drawn blood culture, number of positive results, type of bacteria, sensitivity pattern. International standard definitions for acquired resistance by ECDC and CDC was used as definitions for MDR, XDR and PDR bacteria. From January 2015 to December 2016, 299 from 2.542 (11.7%) blood culture was positive, with Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter spp., respectively 5, 6, 24, 5, 20 with total 60 (20%). The MDR and XDR pathogen found were 47 and 13 patients, respectively.

  13. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Lienemann, Taru; Frye, Jonathan G; Barro, Nicolas; Haukka, Kaisa

    2018-01-01

    Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Salmonella strains were isolated from poultry and patients using standard bacteriological methods described in previous studies. The strains were serotype according to Kaufmann-White scheme and tested for antibiotic susceptibility to 12 different antimicrobial agents using the disk diffusion method. The whole genome of the S. Typhimurium isolates was analyzed using Illumina technology and compared with 20 isolates of S. Typhimurium for which the ST has been deposited in a global MLST database.The ResFinder Web server was used to find the antibiotic resistance genes from whole genome sequencing (WGS) data. For comparative genomics, publicly available complete and draft genomes of different S. Typhimurium laboratory-adapted strains were downloaded from GenBank. All the tested Salmonella serotype Typhimurium were multiresistant to five commonly used antibiotics (ampicillin, chloramphenicol, streptomycin, sulfonamide, and trimethoprim). The multilocus sequence type ST313 was detected from all the strains. Our sequences were very similar to S. Typhimurium ST313 strain D23580 isolated from a patient with invasive non-typhoid Salmonella (NTS) infection in Malawi, also located in sub-Saharan Africa. The use of ResFinder web server on the whole genome of the strains showed a resistance to aminoglycoside associated with carriage of the following resistances genes: strA , strB , and aadA1 ; resistance to β-lactams associated with carriage of a bla TEM-1B genes; resistance to phenicol associated with carriage of catA1 gene; resistance to sulfonamide associated with carriage of sul1 and sul2 genes; resistance to tetracycline associated with carriage of tet B gene; and resistance to trimethoprim associated to dfrA1 gene

  14. Surgery as an Adjunctive Treatment for Multidrug-Resistant Tuberculosis : An Individual Patient Data Metaanalysis

    NARCIS (Netherlands)

    Fox, Gregory J.; Mitnick, Carole D.; Benedetti, Andrea; Chan, Edward D.; Becerra, Mercedes; Chiang, Chen-Yuan; Keshavjee, Salmaan; Koh, Won-Jung; Shiraishi, Yuji; Viiklepp, Piret; Yim, Jae-Joon; Pasvol, Geoffrey; Robert, Jerome; Shim, Tae Sun; Shin, Sonya S.; Menzies, Dick; van der Werf, Tjip S.

    2016-01-01

    Background. Medical treatment for multidrug-resistant (MDR)-tuberculosis is complex, toxic, and associated with poor outcomes. Surgical lung resection may be used as an adjunct to medical therapy, with the intent of reducing bacterial burden and improving cure rates. We conducted an individual

  15. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    Science.gov (United States)

    Lee, Spencer; Razqan, Ghaida Saleh Al; Kwon, Dong H

    2017-01-15

    Infections caused by Acinetobacter baumannii were responsive to conventional antibiotic therapy. However, recently, carbapenem-associated multidrug resistant isolates have been reported worldwide and present a major therapeutic challenge. Epigallocatechin-3-Gallate (EGCG) extracted from green tea exhibits antibacterial activity. We evaluated the antibacterial activity of EGCG and possible synergism with antibiotics in carbapenem-associated multidrug resistant A. baumannii. A potential mechanism for synergism was also explored. Seventy clinical isolates of A. baumannii collected from geographically different areas were analyzed by minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EGCG. Checkerboard and time-killing assays were performed to exam the synergism between EGCG and antibiotics. The effects of EGCG on a multidrug efflux pump inhibitor (1-[1-naphthylmethyl] piperazine; NMP) and β-lactamase production were also examined in A. baumannii. Sixty-three of 70 clinical isolates of A. baumannii carried carbapenemase-encoding genes with carbapenem-associated multidrug resistance. Levels of MIC and MBC of EGCG ranged from 64 to 512µg/ml and from 128 to ≥1024µg/ml, respectively among the clinical isolates. MIC 90 and MBC 86 levels were 256µg/ml and 512µg/ml of EGCG, respectively. Subinhibitory concentration of EGCG in combination with all antibiotics tested, including carbapenem, sensitized (MICs fall≤1.0µg/ml) all carbapenem-associated multidrug resistant isolates. Checkerboard and time-killing assays showed synergism between EGCG and meropenem (or carbenicillin) counted as fractional inhibitory concentration of 2log10 within 12h, respectively. EGCG significantly increased the effect of NMP but was unrelated to β-lactamase production in A. baumannii, suggesting EGCG may be associated with inhibition of efflux pumps. Overall we suggest that EGCG-antibiotic combinations might provide an alternative approach to treat

  16. Expression and Significance of Stem Cell Markers CK19, Notch3, CD133, P75NTR, STRO-1 and ABCG2 in Pulmonary Squamous Carcinomas

    Directory of Open Access Journals (Sweden)

    Xuyong LIN, , , , ,

    2009-04-01

    Full Text Available Background and objective Increasing reports showed that some tumor stem cells were selfrenewal and multi-lineage differentiated in tumors, similar to the normal stem cells in human body. The aim of this study is to observe the expression of stem cell markers in lung squamous carcinoma tissues. Methods Fifty-four lung cancer specimens from surgery were analyzed for CK19, Notch3, CD133, P75NTR, STRO-1 and ABCG2 expression by using S-P immunohistochemistry. In addition, ten normal lung tissue samples were included as control. Results CK19, Notch3, CD133 and ABCG2 were expressed in 54 Lung cancer tissues, without expression of P75NTR and STRO-1. The expressionrate of CK19, Notch3, CD133 and ABCG2 was 66.67% (36/54, 87.04% (47/54, 50% (27/54, and 61.11% (33/54 respectively. The levels of expression of Notch3, CD133 and ABCG2 were significantly lower in high differentiation group than those in moderate and low differentiation group (P <0.05. The levels of expression of CK19, CD133 and ABCG2 were significantly higher in lymph node metastasis group than those in non-metastasis group (P <0.05. The percentage of total positive cells of four stem cell markers in serial tissue sections was lower than 2%. Conclusion There was expression ofsome stem cell markers in pulmonary squamous carcinomas, and there was relationship between expression degree withdifferentiation degree and lymph node metastasis.

  17. Down-regulation of hepatic and intestinal Abcg5 and Abcg8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Bloks, VW; Bakker-van Waarde, WM; Verkade, HJ; Kema, IP; Wolters, H; Vink, E; Groen, AK; Kuipers, F

    Aim/hypothesis., Type I diabetes is associated with altered hepatic bile formation and increased intestinal cholesterol absorption. The aim of this study was to evaluate whether altered expression of the ATP-Binding Cassette half-transporters Abcg5 and Abcg8, recently implicated in control of both

  18. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice but improved significantly after lenti-ABCG1 treatment. Data demonstrate that in vivo instillation of lenti-ABCG1 in GM-CSF KO mice is sufficient to restore pulmonary homeostasis by: (1) upregulating ABCG1; (2) reducing intra and extracellular lipids; and (3) improving lung function. Results suggest that the ABCG1 lipid transporter is the key downstream target of GM-CSF-induced PPAR{gamma} necessary for surfactant catabolism.

  19. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    OpenAIRE

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps i...

  20. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Science.gov (United States)

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  1. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?

    Science.gov (United States)

    Callaghan, Richard; Luk, Frederick; Bebawy, Mary

    2014-04-01

    P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.

  2. Effect of methylxanthines derived from pentoxifylline on P-glycoprotein mediated multidrug resistance

    International Nuclear Information System (INIS)

    Kupsakova, I.; Drobna, Z.; Breier, A.

    2001-01-01

    In this paper study of multidrug resistance (MDR) antitumor agents - P-glycoprotein (PGP) is presented. The ability of pentoxifylline (PTX) to depress resistance mediated by overexpression of PGP in mouse leukemic cell line L 121 ONCR resistant to vincristine (VCR) was described earlier. PTX depressed the resistance of these cells in a dose and time dependent manner. This effect was accompanied by increased level of [ 3 H]-vincristine accumulation by these cells. The methylxanthines with different length of this aliphatic side chain were synthesized and their capability to depress MDR was tested. The results indicated that the position of carbonyl group plays a crucial role for the ability of the derivative to depress MDR of L 121 ONCR cells. (authors)

  3. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate.

    Science.gov (United States)

    Studzian, Maciej; Bartosz, Grzegorz; Pulaski, Lukasz

    2015-08-01

    ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effect of fractionated radiation on multidrug resistance in human ovarian cancer

    International Nuclear Information System (INIS)

    Kong Dejuan; Liu Xiaodong; Liang Bing; Jia Lili; Ma Shumei

    2012-01-01

    Objective: To investigate the effect of different subtypes of fractionated doses on multidrug resistance in ovarian cancer cells. Methods: The human ovarian cancer cell lines SKOV3 and its drug-resistant subtype SKVCR were divided into four groups i.e., sham-irradiated, single dose (10 Gy), fractionated dose (2 Gy × 5) and multi-fractionated dose (1 Gy × 2 × 5). Cell sensitivity to vincristine (VCR), etoposide (VP-16), pirarubicin (THP) and cisplatin (DDP) was measured by MTT assay. Western blot was applied to detect the expression of P-gp after irradiation. Results: The doubling time of SKVCR was about 1.8-fold of that of SKOV3 cells. P-gp was expressed in SKVCR but not in SKOV3. IC 50 values of SKVCR were higher than those of SKOV3. To SKOV3 cells, single dose irradiation decreased cell sensitivity to THP and DDP and fractionated irradiation decreased cell sensitivity to VCR, THP and VP-16. Multi-fractionated irradiation decreased cell sensitivity to VP-16. In SKVCR cells, all these irradiation treatments increased cell sensitivity to VCR and VP-16 but not to DDP. In addition, single and fractionated irradiation decreased P-gp expression in SKVCR cells. Conclusions: Single, fractionated and multi-fractionated radiation induced chemotherapy resistance in SKOV3 cells, while reversed drug resistance to VCR and VP-16 in SKVCR cells. (authors)

  5. Multidrug Resistance Among New Tuberculosis Cases Detecting Local Variation Through Lot Quality-assurance Sampling

    NARCIS (Netherlands)

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-01-01

    Background: Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper

  6. Genotyping and serotyping of macrolide and multidrug resistant Streptococcus pneumoniae isolated from carrier children

    Directory of Open Access Journals (Sweden)

    S F Swedan

    2016-01-01

    Full Text Available Aims: Streptococcus pneumoniae, an opportunistic pathogen commonly carried asymptomatically in the nasopharynx of children, is associated with increasing rates of treatment failures due to a worldwide increase in drug resistance. We investigated the carriage of S. pneumoniae in children 5 years or younger, the identity of prevalent serotypes, the rates of resistance to macrolides and other antimicrobial agents and the genotypes responsible for macrolide resistance. Materials and Methods: Nasopharyngeal swabs were collected from 157 children under 5 years for cultural isolation of S. pneumoniae. Antibiogram of isolates  was determined using the disk diffusion test, and the minimal inhibitory concentration to macrolides was determined using the E-test. Isolate serotypes and macrolide resistance genes, erm(B and mef(E, were identified using multiplex polymerase chain reactions. Results: S. pneumoniae was recovered from 33.8% of children; 41.9% among males and 21.9% among females (P = 0.009. The highest carriage rate occurred among age groups 7-12 months and 49-60 months. Most frequent serotypes were 19F, 6A/B, 11A, 19A, 14 and 15B/C.  Resistance to macrolides was 60.4%. Resistance to oxacillin, trimethoprim/sulfamethoxazole and clindamycin was present among 90.6%, 54.7% and 32.1% of isolates, respectively. All isolates were susceptible to chloramphenicol, levofloxacin and vancomycin. Isolates resistant to one or more macrolide drugs were more likely to be multidrug resistant. Resistance to clindamycin or oxacillin coexisted with macrolide resistance. Among the erythromycin-resistant isolates, erm(B, mef(E and erm(B and mef(E genes were present at rates of 43.8%, 37.5% and 6.3%, respectively. Erm(B and mef(E were associated with very high level and moderate-to-high level resistance to macrolides, respectively. Conclusion: A significant proportion of children harboured macrolide and multidrug-resistant S. pneumoniae.

  7. Ugly bugs in healthy guts! Carriage of multidrug-resistant and ESBL-producing commensal Enterobacteriaceae in the intestine of healthy Nepalese adults

    Directory of Open Access Journals (Sweden)

    Maharjan A

    2018-04-01

    Full Text Available Anjila Maharjan,1 Anjeela Bhetwal,1 Shreena Shakya,1 Deepa Satyal,1 Shashikala Shah,1 Govardhan Joshi,1,2 Puspa Raj Khanal,1 Narayan Prasad Parajuli1,3 1Department of Laboratory Medicine, Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal; 2Kathmandu Center for Genomics and Research Laboratory (KCGRL, Kathmandu, Nepal; 3Department of Clinical Laboratory Services, Manmohan Memorial Medical College and Teaching Hospital, Kathmandu, Nepal Background: Fecal carriage of multidrug-resistant and extended-spectrum β-lactamase (ESBL-producing Enterobacteriaceae is one of the important risk factors for infection with antibiotic-resistant bacteria. In this report, we examined the prevalence of multidrug-resistant and ESBL-producing common enterobacterial strains colonizing the intestinal tract of apparently healthy adults in Kathmandu, Nepal.Methods: During a 6-month period (February–July 2016, a total of 510 stool specimens were obtained from apparently healthy students of Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal. Stool specimens were cultured, and the most common enterobacterial isolates (Escherichia coli and Klebsiella species were subjected to antimicrobial susceptibility tests according to the standard microbiologic guidelines. Multidrug-resistant isolates were selected for ESBL confirmation by combined disk test and E-test methods. Molecular characterization of plasmid-borne ESBL genes was performed by using specific primers of cefotaximase Munich (CTX-M, sulfhydryl variant (SHV, and temoniera (TEM by polymerase chain reaction.Results: Among 510 bacterial strains, E. coli (432, 84.71% was the predominant organism followed by Klebsiella oxytoca (48, 9.41% and K. pneumoniae (30, 5.88%. ESBLs were isolated in 9.8% of the total isolates including K. oxytoca (29.17%, E. coli (7.87%, and K. pneumoniae (6.67%. Among ESBLs, bla-TEM was the predominant type (92% followed by bla-CTX-M (60% and bla-SHV (4%.Conclusion

  8. Betulinic Acid Exerts Cytotoxic Activity Against Multidrug-Resistant Tumor Cells via Targeting Autocrine Motility Factor Receptor (AMFR

    Directory of Open Access Journals (Sweden)

    Mohamed E. M. Saeed

    2018-05-01

    Full Text Available Betulinic acid (BetA is a naturally occurring pentacyclic triterpene isolated from the outer bark of white-barked birch trees and many other medicinal plants. Here, we studied betulinic acid's cytotoxic activity against drug-resistant tumor cell lines. P-glycoprotein (MDR1/ABCB1 and BCRP (ABCG2 are known ATP-binding cassette (ABC drug transporters that mediating MDR. ABCB5 is a close relative to ABCB1, which also mediates MDR. Constitutive activation of the EGF receptor is tightly linked to the development of chemotherapeutic resistance. BetA inhibited P-gp, BCRP, ABCB5 and mutation activated EGFR overexpressing cells with similar efficacy as their drug-sensitive parental counterparts. Furthermore, the mRNA expressions of ABCB1, BCRP, ABCB5 and EGFR were not related to the 50% inhibition concentrations (IC50 for BetA in a panel of 60 cell lines of the National Cancer Institute (NCI, USA. In addition to well-established MDR mechanisms, we attempted to identify other molecular mechanisms that play a role in mediating BetA's cytotoxic activity. For this reason, we performed COMPARE and hierarchical cluster analyses of the transcriptome-wide microarray-based mRNA expression of the NCI cell lines panel. Various genes significantly correlating to BetA's activity were involved in different biological processes, e.g., cell cycle regulation, microtubule formation, signal transduction, transcriptional regulation, chromatin remodeling, cell adhesion, tumor suppression, ubiquitination and proteasome degradation. Immunoblotting and in silico analyses revealed that the inhibition of AMFR activity might be one of the mechanisms for BetA to overcome MDR phenotypes. In conclusion, BetA may have therapeutic potential for the treatment of refractory tumors.

  9. Molecular screening of antibiotic-resistant determinants among multidrug-resistant clinical isolates of Proteus mirabilis from SouthWest Nigeria.

    Science.gov (United States)

    Alabi, Olumuyiwa Samuel; Mendonça, Nuno; Adeleke, Olufemi Ezekiel; da Silva, Gabriela Jorge

    2017-06-01

    Globally, and particularly in developing countries, the menace of anti-microbial resistance is an accelerating problem. In Nigeria, increase in bacterial resistance has been phenotypically established but due to high cost, few molecular studies have been reported. This study screened for presence of transferable resistance genes and mobile genetic elements (MGEs) such as integron among multi-drug resistant (MDR) P. mirabilis . A total of 108 P. mirabilis strains collected from five tertiary hospitals in SouthWest Nigeria were subjected to antibiotic susceptibility study using disc-diffusion method. Transferable resistance genes and MGEs were amplified using Polymerase chain reaction (PCR) analysis and amplicons sequenced. Varied resistance was observed against all the antibiotics tested. About 56% of the isolates were MDR including those from 0-12 years old children. PCR analysis revealed the presence of aac(6')-Ib (33.3%), plasmid mediated quinolone resistance (PMQR) genes [qnrA (36.7%), acc(6')-Ib-cr (5%)], TEM (48.3%), CTX-M (6.7%) and integrons class 1 (58.3%) and class 2 (26.7%). Sequencing analysis revealed bla TEM-1 , bla CTX-M-15 associated with IS Ecp1 and eight different arrays of gene cassettes: aadA1, aadA1-qacH, aadB-aadA2, aadA5, dfrA7, dfrA15, dfrA17, dfrA17-aadA5 . Transferable resistance genes in association with MGEs are present in Nigerian P. mirabilis thus their potential in disseminating resistance.

  10. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    Science.gov (United States)

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  11. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    Science.gov (United States)

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  12. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance

    Directory of Open Access Journals (Sweden)

    Ebrahim Babapour

    2016-06-01

    Conclusions: Since most of the multidrug resistant strains produce biofilm, it seems necessary to provide continuous monitoring and determination of antibiotic susceptibility of clinical A. baumannii. This would help to select the most appropriate antibiotic for treatment.

  13. Management of multidrug-resistant Pseudomonas aeruginosa in the intensive care unit: state of the art.

    Science.gov (United States)

    Maraolo, Alberto Enrico; Cascella, Marco; Corcione, Silvia; Cuomo, Arturo; Nappa, Salvatore; Borgia, Guglielmo; De Rosa, Francesco Giuseppe; Gentile, Ivan

    2017-09-01

    Pseudomonas aeruginosa (PA) is one of the most important causes of healthcare-related infections among Gram-negative bacteria. The best therapeutic approach is controversial, especially for multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains as well as in the setting of most severe patients, such as in the intensive care unit (ICU). Areas covered: This article addresses several points. First, the main microbiological aspects of PA, focusing on its wide array of resistance mechanisms. Second, risk factors and the worse outcome linked to MDR-PA infection. Third, the pharmacological peculiarity of ICU patients, that makes the choice of a proper antimicrobial therapy difficult. Eventually, the current therapeutic options against MDR-PA are reviewed, taking into account the main variables that drive antimicrobial optimization in critically ill patients. Literature search was carried out using Pubmed and Web of Science. Expert commentary: Methodologically rigorous studies are urgently needed to clarify crucial aspects of the treatment against MDR-PA, namely monotherapy versus combination therapy in empiric and targeted settings. In the meanwhile, useful options are represented by newly approved drugs, such as ceftolozane/tazobactam and ceftazidime/avibactam. In critically ill patients, at least as empirical approach, a combination therapy is a prudent choice when a MDR-PA strain is suspected.

  14. Draft Genome Sequence of an Invasive Multidrug-Resistant Strain, Pseudomonas aeruginosa BK1, Isolated from a Keratitis Patient

    KAUST Repository

    Jeganathan, Lakshmi Priya; Prakash, Logambiga; Neelamegam, Sivakumar; Antony, Aju; Alqarawi, Sami; Prajna, Lalitha; Devarajan, Bharanidharan; Mohankumar, Vidyarani

    2014-01-01

    Pseudomonas aeruginosa infections are difficult to treat due to the presence of a multitude of virulence factors and antibiotic resistance. Here, we report the draft genome sequence of P. aeruginosa BK1, an invasive and multidrug-resistant strain

  15. Rapid diagnosis of pyrazinamide-resistant multidrug-resistant tuberculosis using a molecular-based diagnostic algorithm.

    Science.gov (United States)

    Simons, S O; van der Laan, T; Mulder, A; van Ingen, J; Rigouts, L; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D

    2014-10-01

    There is an urgent need for rapid and accurate diagnosis of pyrazinamide-resistant multidrug-resistant tuberculosis (MDR-TB). No diagnostic algorithm has been validated in this population. We hypothesized that pncA sequencing added to rpoB mutation analysis can accurately identify patients with pyrazinamide-resistant MDR-TB. We identified from the Dutch national database (2007-11) patients with a positive Mycobacterium tuberculosis culture containing a mutation in the rpoB gene. In these cases, we prospectively sequenced the pncA gene. Results from the rpoB and pncA mutation analysis (pncA added to rpoB) were compared with phenotypic susceptibility testing results to rifampicin, isoniazid and pyrazinamide (reference standard) using the Mycobacterial Growth Indicator Tube 960 system. We included 83 clinical M. tuberculosis isolates containing rpoB mutations in the primary analysis. Rifampicin resistance was seen in 72 isolates (87%), isoniazid resistance in 73 isolates (88%) and MDR-TB in 65 isolates (78%). Phenotypic reference testing identified pyrazinamide-resistant MDR-TB in 31 isolates (48%). Sensitivity of pncA sequencing added to rpoB mutation analysis for detecting pyrazinamide-resistant MDR-TB was 96.8%, the specificity was 94.2%, the positive predictive value was 90.9%, the negative predictive value was 98.0%, the positive likelihood was 16.8 and the negative likelihood was 0.03. In conclusion, pyrazinamide-resistant MDR-TB can be accurately detected using pncA sequencing added to rpoB mutation analysis. We propose to include pncA sequencing in every isolate with an rpoB mutation, allowing for stratification of MDR-TB treatment according to pyrazinamide susceptibility. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  16. Synthesis of multidrug resistance modulator LY335979 labeled with deuterium and tritium

    International Nuclear Information System (INIS)

    Czeskis, B.A.

    1997-01-01

    DIDEUTERO AND DITRITIOISOTOPOMERS OF THE MULTIDRUG RESISTANCE MODULATOR LY335979 WERE PREPARED BY INITIAL BROMINATION OF 5-HYDROXYQUINOLINE UNDER ACIDIC CONDITIONS FOLLOWED BY MITSUNOBU COUPLING OF 6,8-DIBROMO-5-HYDROXYQUINOLINE WITH (S)-GLYCIDOL. OPENING OF THE RESULTING EPOXIDE WITH DIBENZOSUBERYLPIPERAZINE LY335995 RESULTED IN DIBROMOANALOG OF LY335979, WHICH WAS FINALLY REDUCTIVELY DEBROMINATED WITH DEUTERIUM OR TRITIUM IN THE PRESENCE OF PALLADIUM ON CARBON. (AUTHOR)

  17. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    International Nuclear Information System (INIS)

    Nielsen, Dorte; Maare, Christian; Eriksen, Jens; Litman, Thomas; Skovsgaard, Torben

    2001-01-01

    Purpose: To characterize irradiated murine tumor cells with respect to drug resistance, drug kinetics, and ATPase activity, and to evaluate the possible role of P-glycoprotein (PGP) and murine multidrug resistance associated protein (Mrp1) in the drug-resistant phenotype of these cells. Methods and Materials: Sensitive Ehrlich ascites tumor cells (EHR2) were in vitro exposed to fractionated irradiation (60 Gy). Western blot analysis was performed for determination of PGP and Mrp1, reverse transcriptase-polymerase chain reaction (RT-PCR) for determination of mdr1a + b mRNA, and semiquantitative RT-PCR for Mrp1 mRNA. The clonogenic assay was applied to investigate sensitivity, whereas the steady-state drug accumulation of daunorubicin (DNR), 3 H-vincristine (VCR), and 3 H-etoposide (VP16) was measured by spectrofluorometry and scintillation counting, respectively. For determining of ATPase activity, the release of inorganic phosphate from ATP was quantified using a colorimetric method. Results: Compared with EHR2, the irradiated cell line EHR2/irr showed increased expression of PGP (threefold), Mrp1 (eightfold), and Mrp1 mRNA (sixfold), and a slight reduction of mdr1b mRNA, whereas mdr1a was present in EHR2 but could not be detected in EHR2/irr. EHR2/irr developed sixfold resistance to VP16, twofold resistance to vincristine, but remained sensitive to DNR. Addition of the PGP inhibitor, verapamil (VER) or depletion of glutathione by buthionine sulfoximine (BSO) partly reversed the resistance in EHR2/irr. In EHR2/irr, the steady-state accumulation of 3 H-VCR and 3 H-VP16 was significantly decreased as compared with EHR2, whereas the accumulation of DNR was unchanged. The ATPase activity of plasma membrane vesicles prepared from EHR2/irr cells was similar to that of wild-type EHR2 cells. The ATPase activity was neither stimulated by vinblastine nor VER. Conclusion: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was

  18. Resistance patterns among multidrug-resistant tuberculosis patients in greater metropolitan Mumbai: trends over time.

    Science.gov (United States)

    Dalal, Alpa; Pawaskar, Akshay; Das, Mrinalini; Desai, Ranjan; Prabhudesai, Pralhad; Chhajed, Prashant; Rajan, Sujeet; Reddy, Deepesh; Babu, Sajit; Jayalakshmi, T K; Saranchuk, Peter; Rodrigues, Camilla; Isaakidis, Petros

    2015-01-01

    While the high burden of multidrug-resistant tuberculosis (MDR-TB) itself is a matter of great concern, the emergence and rise of advanced forms of drug-resistance such as extensively drug-resistant TB (XDR-TB) and extremely drug-resistant TB (XXDR-TB) is more troubling. The aim of this study was to investigate the trends over time of patterns of drug resistance in a sample of MDR-TB patients in greater metropolitan Mumbai, India. This was a retrospective, observational study of drug susceptibility testing (DST) results among MDR-TB patients from eight health care facilities in greater Mumbai between 2005 and 2013. We classified resistance patterns into four categories: MDR-TB, pre-XDR-TB, XDR-TB and XXDR-TB. A total of 340 MDR-TB patients were included in the study. Pre-XDR-TB was the most common form of drug-resistant TB observed overall in this Mumbai population at 56.8% compared to 29.4% for MDR-TB. The proportion of patients with MDR-TB was 39.4% in the period 2005-2007 and 27.8% in 2011-2013, while the proportion of those with XDR-TB and XXDR-TB was changed from 6.1% and 0% respectively to 10.6% and 5.6% during the same time period. During the same periods, the proportions of patients with ofloxacin, moxifloxacin and ethionamide resistance significantly increased from 57.6% to 75.3%, from 60.0% to 69.5% and from 24.2% to 52.5% respectively (pMumbai highlight the need for individualized drug regimens, designed on the basis of DST results involving first- and second-line anti-TB drugs and treatment history of the patient. A drug-resistant TB case-finding strategy based on molecular techniques that identify only rifampicin resistance will lead to initiation of suboptimal treatment regimens for a significant number of patients, which may in turn contribute to amplification of resistance and transmission of strains with increasingly advanced resistance within the community.

  19. Transmission of Multidrug-Resistant and Drug-Susceptible Tuberculosis within Households: A Prospective Cohort Study

    Science.gov (United States)

    Grandjean, Louis; Gilman, Robert H.; Martin, Laura; Soto, Esther; Castro, Beatriz; Lopez, Sonia; Coronel, Jorge; Castillo, Edith; Alarcon, Valentina; Lopez, Virginia; San Miguel, Angela; Quispe, Neyda; Asencios, Luis; Dye, Christopher; Moore, David A. J.

    2015-01-01

    Background The “fitness” of an infectious pathogen is defined as the ability of the pathogen to survive, reproduce, be transmitted, and cause disease. The fitness of multidrug-resistant tuberculosis (MDRTB) relative to drug-susceptible tuberculosis is cited as one of the most important determinants of MDRTB spread and epidemic size. To estimate the relative fitness of drug-resistant tuberculosis cases, we compared the incidence of tuberculosis disease among the household contacts of MDRTB index patients to that among the contacts of drug-susceptible index patients. Methods and Findings This 3-y (2010–2013) prospective cohort household follow-up study in South Lima and Callao, Peru, measured the incidence of tuberculosis disease among 1,055 household contacts of 213 MDRTB index cases and 2,362 household contacts of 487 drug-susceptible index cases. A total of 35/1,055 (3.3%) household contacts of 213 MDRTB index cases developed tuberculosis disease, while 114/2,362 (4.8%) household contacts of 487 drug-susceptible index patients developed tuberculosis disease. The total follow-up time for drug-susceptible tuberculosis contacts was 2,620 person-years, while the total follow-up time for MDRTB contacts was 1,425 person-years. Using multivariate Cox regression to adjust for confounding variables including contact HIV status, contact age, socio-economic status, and index case sputum smear grade, the hazard ratio for tuberculosis disease among MDRTB household contacts was found to be half that for drug-susceptible contacts (hazard ratio 0.56, 95% CI 0.34–0.90, p = 0.017). The inference of transmission in this study was limited by the lack of genotyping data for household contacts. Capturing incident disease only among household contacts may also limit the extrapolation of these findings to the community setting. Conclusions The low relative fitness of MDRTB estimated by this study improves the chances of controlling drug-resistant tuberculosis. However, fitter

  20. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Mocan L

    2017-03-01

    Full Text Available Lucian Mocan,1,2 Flaviu A Tabaran,3 Teodora Mocan,2,4 Teodora Pop,5 Ofelia Mosteanu,5 Lucia Agoston-Coldea,6 Cristian T Matea,2 Diana Gonciar,2 Claudiu Zdrehus,1,2 Cornel Iancu1 13rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2Department of Nanomedicine, “Octavian Fodor” Gastroenterology Institute, 3Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, 4Department of Physiology, 53rd Gastroenterology Department, 6Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: The issue of multidrug resistance (MDR has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. Keywords: bacteria, photo-thermal ablation, gold nanoparticles, antibiotic resistance

  1. Topicality of the problem of combined course of multi-drug resistant pulmonary tuberculosis with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    O. M. Raznatovska

    2017-08-01

    Full Text Available According to the World Health Organization, today in the world among the infectious chronic diseases one of the leading places and causes of death is multi-drug resistant tuberculosis of the lungs, and chronic non-communicable diseases – diabetes mellitus. The situation is complicated by the fact that the number of patients with combined course of these two heavy separate illnesses that complicate each other increases. It is established that with increasing severity of diabetes mellitus, tuberculosis process in the lungs becomes more complicate and deteriorates, and vice versa, the specific process complicates the course of diabetes mellitus, contributing to the development of diabetic complications. Against this background, the effectiveness of treatment of patients suffering from multi-drug resistant tuberculosis of the lungs in our country remains very low, mainly due to the toxic adverse reactions to antimycobacterial drugs of the reserve line, and in the case of adding diabetes mellitus, it deteriorates even more. The aim of this study was to review the scientific literature to determine the relevance of the study of combined course of multi-drug resistant tuberculosis of the lungs with diabetes mellitus and perspectives of innovative methods of diagnosis of diabetes mellitus. Early diagnosis of pre-diabetes, and autoimmune diseases will allow the use of timely correction techniques that prevents the development of diabetes mellitus, depending on its type, and in the future the development of serious irreversible processes, allow timely applying appropriate methods of correction of the revealed violations. Results. Very little amount of work is dedicated to the problem of combined course of multi-drug resistant tuberculosis of the lungs with diabetes mellitus, regardless of its type, the theme is relevant for today, in Ukraine there are no data regarding its study. This combined course of very difficult in the treatment diseases requires

  2. A gene-wide investigation on polymorphisms in the ABCG2/BRCP transporter and susceptibility to colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Campa, D.; Pardini, Barbara; Naccarati, Alessio; Vodičková, Ludmila; Novotný, J.; Försti, A.; Hemminki, K.; Barale, R.; Vodička, Pavel; Canzian, F.

    2008-01-01

    Roč. 645, 1-2 (2008), s. 56-60 ISSN 0027-5107 R&D Projects: GA ČR GA310/07/1430 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : ABCG2 * Transporter * Colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.198, year: 2008

  3. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    Science.gov (United States)

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received 3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  4. Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin a and verapamil on multidrug resistance in vitro and in vivo

    International Nuclear Information System (INIS)

    Watanabe, Toru; Tsuge, Harumi; Oh-Hara, Tomoko; Naito, Mikihiko; Tsuruo, Takashi

    1995-01-01

    A non-immunosuppressive cyclosporin, SDZ PSC 833 (PSC833), shows a reversal effect on multidrug resistance (MDR) by functional modulation of MDR1 gene product, P-glycoprotein. The objective of the present study was to compare the reversal efficacy of three multidrug resistance modulators, PSC833, cyclosporin A (CsA) and verapamil (Vp). PSC833 has approximately 3-10-fold greater potency than CsA and Vp with respect to the restoring effect on reduced accumulation of doxorubicin (ADM) and vincristine (VCR) in ADM-resistant K562 myelogenous leukemia cells (K562/ADM) in vitro and also on the sensitivity of K562/ADM to ADM and VCR in in vitro growth inhibition. The in vivo efficacy of a combination of modifiers (PSC833 and CsA: 50 mg/kg, Vp 100 mg/kg administered p.o. 4 h before the administration of anticancer drugs) with anticancer drugs (ADM 2.5 mg/kg i.p., Q4D days 1, 5 and 9, VCR 0.05 mg/kg i.p., QD days 1-5) was tested in ADM-resistant P388-bearing mice. PSC833 significantly enhanced the increase in life span by more than 80%, whereas CsA and Vp enhanced by less than 50%. This reversal potency, which exceeded that of CsA and Vp, was confirmed by therapeutic experiments using colon adenocarcinoma 26-bearing mice. These results demonstrated that PSC833 has significant potency to reverse MDR in vitro and in vivo, suggesting that PSC833 is a good candidate for reversing multidrug resistance in clinical situations. (orig.)

  5. Arabidopsis Lectin Receptor Kinases LecRK-IX.1 and LecRK-IX.2 Are Functional Analogs in Regulating Phytophthora Resistance and Plant Cell Death.

    Science.gov (United States)

    Wang, Yan; Cordewener, Jan H G; America, Antoine H P; Shan, Weixing; Bouwmeester, Klaas; Govers, Francine

    2015-09-01

    L-type lectin receptor kinases (LecRK) are potential immune receptors. Here, we characterized two closely-related Arabidopsis LecRK, LecRK-IX.1 and LecRK-IX.2, of which T-DNA insertion mutants showed compromised resistance to Phytophthora brassicae and Phytophthora capsici, with double mutants showing additive susceptibility. Overexpression of LecRK-IX.1 or LecRK-IX.2 in Arabidopsis and transient expression in Nicotiana benthamiana increased Phytophthora resistance but also induced cell death. Phytophthora resistance required both the lectin domain and kinase activity, but for cell death, the lectin domain was not needed. Silencing of the two closely related mitogen-activated protein kinase genes NbSIPK and NbNTF4 in N. benthamiana completely abolished LecRK-IX.1-induced cell death but not Phytophthora resistance. Liquid chromatography-mass spectrometry analysis of protein complexes coimmunoprecipitated in planta with LecRK-IX.1 or LecRK-IX.2 as bait, resulted in the identification of the N. benthamiana ABC transporter NbPDR1 as a potential interactor of both LecRK. The closest homolog of NbPDR1 in Arabidopsis is ABCG40, and coimmunoprecipitation experiments showed that ABCG40 associates with LecRK-IX.1 and LecRK-IX.2 in planta. Similar to the LecRK mutants, ABCG40 mutants showed compromised Phytophthora resistance. This study shows that LecRK-IX.1 and LecRK-IX.2 are Phytophthora resistance components that function independent of each other and independent of the cell-death phenotype. They both interact with the same ABC transporter, suggesting that they exploit similar signal transduction pathways.

  6. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  7. Characterization of multi-drug resistant ESBL producing nonfermenter bacteria isolated from patients blood samples using phenotypic methods in Shiraz (Iran

    Directory of Open Access Journals (Sweden)

    Maneli Amin Shahidi

    2015-10-01

    Full Text Available Background and Aim: The emergence of  nonfermenter bacteria that are resistant to multidrug resistant ESBL  are  nowadays a principal problem  for hospitalized patients. The present study aimed at surveying the emergence of nonfermenter bacteria resistant to multi-drug ESBL producing isolated from patients blood samples using BACTEC 9240 automatic system in Shiraz. Materials and Methods: In this cross-sectional study, 4825 blood specimens were collected from hospitalized patients in Shiraz (Iran, and positive samples were detected by means of  BACTEC 9240 automatic system. The isolates  containing nonfermenter bacteria were identified based on biochemical tests embedded in the API-20E system. Antibiotic sensitivity  test was performed  and identification of  ESBL producing strains were done  using phenotypic detection of extended spectrum beta-lactamase producing isolates(DDST according to CLSI(2013 guidelines.   Results: Out of 4825 blood samples, 1145 (24% specimen were gram-positive using BACTEC system. Among all isolated microorganisms, 206 isolates were non-fermenting gram- negative bacteria. The most common non-fermenter isolates were Pseudomonas spp. (48%, Acinetobacter spp. (41.7% ,and Stenotrophomonas spp. (8.2%. Seventy of them (81.4% were  Acinetobacter spp. which were ESBL positive. Among &beta-lactam antibiotics, Pseudomonas spp. showed  the best sensitivity to piperacillin-tazobactam (46.5%.  Conclusion: It was found that  &beta-lactam antibiotics are not effective against more than 40% of Pseudomonas spp. infections and 78% Acinetobacter infections. Emergence of multi-drug resistant strains that are resistant to most antibiotic classes is a major public health problem in Iran. To resolve this problem using of practical guidelines is critical.

  8. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  9. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2

    NARCIS (Netherlands)

    Sjostedt, N.; Heuvel, J.J.M.W. van den; Koenderink, J.B.; Kidron, H.

    2017-01-01

    PURPOSE: To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. METHODS: The transport activity of the

  10. Fecal Microbiota Transfer for Multidrug-Resistant Gram-Negatives: A Clinical Success Combined With Microbiological Failure.

    Science.gov (United States)

    Stalenhoef, Janneke E; Terveer, Elisabeth M; Knetsch, Cornelis W; Van't Hof, Peter J; Vlasveld, Imro N; Keller, Josbert J; Visser, Leo G; Kuijper, Eduard J

    2017-01-01

    Combined fecal microbiota transfer and antibiotic treatment prevented recurrences of urinary tract infections with multidrug-resistant (MDR) Pseudomonas aeruginosa , but it failed to eradicate intestinal colonization with MDR Escherichia coli . Based on microbiota analysis, failure was not associated with distinct diminished microbiota diversity.

  11. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  12. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  13. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group

    DEFF Research Database (Denmark)

    Iacono, M.; Villa, L.; Fortini, D.

    2008-01-01

    The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA-58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes...

  14. Genome-wide Identification and Expression Analysis of Half-size ABCG Genes in Malus × domestica

    Directory of Open Access Journals (Sweden)

    Juanjuan MA

    2018-03-01

    Full Text Available Half-size adenosine triphosphate-binding cassette transporter subgroup G (ABCG genes play crucial roles in regulating the movements of a variety of substrates and have been well studied in several plants. However, half-size ABCGs have not been characterized in detail in apple (Malus × domestica Borkh.. Here, we performed a genome-wide identification and expression analysis of the half-size ABCG gene family in apple. A total of 46 apple half-size ABCGs were identified and divided into six clusters according to the phylogenetic analysis. A gene structural analysis showed that most half-size ABCGs in the same cluster shared a similar exon–intron organization. A gene duplication analysis showed that segmental, tandem and whole-genome duplications could account for the expansion of half-size ABCG transporters in M. domestica. Moreover, a promoter scan, digital expression analysis and RNA-seq revealed that MdABCG21 may be involved in root's cytokinin transport and that ABCG17 may be involved in the lateral bud development of M. spectabilis ‘Bly114’ by mediating cytokinin transport. The data presented here lay the foundation for further investigations into the biological and physiological processes and functions of half-size ABCG genes in apple. Keywords: apple, ABCG gene, duplication, gene expression

  15. Bodipy-FL-Verapamil: A Fluorescent Probe for the Study of Multidrug Resistance Proteins

    Directory of Open Access Journals (Sweden)

    Anna Rosati

    2004-01-01

    Full Text Available Most of the substances used as fluorescent probes to study drug transport and the effect of efflux blockers in multidrug resistant cells have many drawbacks, such as toxicity, unspecific background, accumulation in mitochondria. New fluorescent compounds, among which Bodipy‐FL‐verapamil (BV, have been therefore proposed as more useful tools. The uptake of BV has been evaluated by cytofluorimetry and fluorescence microscopy using cell lines that overexpress P‐glycoprotein (P388/ADR and LLC‐PK1/ADR or MRP (multidrug resistance‐related protein (PANC‐1 and clinical specimens from patients. The effect of specific inhibitors for P‐glycoprotein (verapamil and vinblastine or MRP (MK571 and probenecid has been also studied. BV intracellular concentrations were significantly lower in the two P‐glycoprotein overexpressing cell lines in comparison with the parental lines. In addition, verapamil and vinblastine increased the intracellular concentrations of the dye; MK571 and probenecid, two MRP inhibitors, increased BV levels in PANC‐1 cells, that express this protein. These findings were confirmed in clinical specimens from patients. Fluorescence microscopy revealed a faint fluorescence emission in P‐glycoprotein or MRP expressing cell lines; however, treatment with specific inhibitors significantly increased the fluorescence. BV is a useful tool for studying multidrug resistance proteins with different techniques such as cytofluorimetry and fluorescence microscopy, but does not discriminate between P‐glycoprotein and MRP. In comparison with other classic fluorescent probes, the assay with this dye is extremely rapid, simple, not toxic for cells, devoid of fluorescent background, and can be useful in the clinical settings.

  16. Expression profiles of vault components MVP, TEP1 and vPARP and their correlation to other multidrug resistance proteins in ovarian cancer.

    Science.gov (United States)

    Szaflarski, Witold; Sujka-Kordowska, Patrycja; Pula, Bartosz; Jaszczyńska-Nowinka, Karolina; Andrzejewska, Małgorzata; Zawierucha, Piotr; Dziegiel, Piotr; Nowicki, Michał; Ivanov, Pavel; Zabel, Maciej

    2013-08-01

    Vaults are cytoplasmic ribonucleoprotein particles composed of three proteins (MVP, TEP1, vPARP) and vault‑associated RNAs (vRNAs). Although the cellular functions of vaults remain unclear, vaults are strongly linked to the development of multidrug resistance (MDR), the major obstacle to the efficient treatment of cancers. Available published data suggest that vaults and their components are frequently upregulated in broad variety of multidrug-resistant cancer cell lines and tumors of different histological origin. Here, we provide detailed analysis of vault protein expression in post-surgery ovarian cancer samples from patients that were not exposed to chemotherapy. Our analysis suggests that vault proteins are expressed in the ovaries of healthy individuals but their expression in cancer patients is changed. Specifically, MVP, TEP1 and vPARP mRNA levels are significantly decreased in cancer samples with tendency of lower expression in higher-grade tumors. The pattern of vault protein mRNA expression is strongly correlated with the expression of other MDR-associated proteins such as MDR1, MRP1 and BCRP. Surprisingly, the protein levels of MVP, TEP1 and vPARP are actually increased in the higher‑grade tumors suggesting existence of post-transcriptional regulation of vault component production.

  17. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer

    Directory of Open Access Journals (Sweden)

    Gao W

    2017-02-01

    Full Text Available Wei Gao,1 Guihua Ye,1 Xiaochuan Duan,1 Xiaoying Yang,1 Victor C Yang1,2 1Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics, School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA Abstract: The emergence of drug resistance is partially associated with overproduction of transferrin receptor (TfR. To overcome multidrug resistance (MDR and achieve tumor target delivery, we designed a novel biodegradable pH-sensitive micellar system modified with HAIYPRH, a TfR ligand (7pep. First, the polymers poly(l-histidine-coupled polyethylene glycol-2000 (PHIS-PEG2000 and 7pep-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (7pep-DSPE-PEG2000 were synthesized, and the mixed micelles were prepared by blending of PHIS-PEG2000 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2000 or 7pep-DSPE-PEG2000 (7-pep HD micelles. The micelles exhibited good size uniformity, high encapsulation efficiency, and a low critical micelle concentration. By changing the polymer ratio in the micellar formulation, the pH response range was specially tailored to pH ~6.0. When loaded with antitumor drug doxorubicin (DOX, the micelle showed an acid pH-triggering drug release profile. The cellular uptake and cytotoxicity study demonstrated that 7-pep HD micelles could significantly enhance the intracellular level and antitumor efficacy of DOX in multidrug-resistant cells (MCF-7/Adr, which attributed to the synergistic effect of poly(l-histidine-triggered endolysosom escape and TfR-mediated endocytosis. Most importantly, the in vivo imaging study confirmed the targetability of 7-pep HD micelles to MDR tumor. These findings indicated that 7-pep HD micelles would be a promising drug delivery system in the treatment of drug-resistant

  18. Development of novel strategies to combat multidrug resistance mediated by efflux transporters and intracellular bacteria

    OpenAIRE

    Kuriakose, Jerrin

    2014-01-01

    Multidrug resistance (MDR) is the condition where cancer cells or microorganisms cease to respond to multiple drugs. MDR conferred by efflux transporters, that deprive the bioavailability of drugs at their site of action, are a threat to cancer and malarial chemotherapy. Specifically, the mammalian ABC transporter Pglycoprotein (P-gp) has undermined many drugs in treatment of cancer and other disease states. Mutations in the parasitic transporter Plasmodium falciparum chloroquine resistance t...

  19. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  20. Lung abscess following bronchoscopy due to multidrug-resistant Capnocytophaga sputigena adjacent to lung cancer with high PD-L1 expression.

    Science.gov (United States)

    Migiyama, Yohei; Anai, Moriyasu; Kashiwabara, Kosuke; Tomita, Yusuke; Saeki, Sho; Nakamura, Kazuyoshi; Okamoto, Shinichiro; Ichiyasu, Hidenori; Fujii, Kazuhiko; Kohrogi, Hirotsugu

    2018-04-24

    Lung abscess following flexible bronchoscopy is a rare and sometimes fatal iatrogenic complication. Here, we report the first case of a lung abscess caused by multidrug-resistant Capnocytophaga sputigena following bronchoscopy. A 67-year-old man underwent bronchoscopy to evaluate a lung mass. Seven days after transbronchial lung biopsy, he presented with an abscess formation in a lung mass. Empirical antibiotic therapy, including with garenoxacin, ampicillin/sulbactam, clindamycin and cefepime, was ineffective. Percutaneous needle aspiration of lung abscess yielded C. sputigena resistant to multiple antibiotics but remained susceptible to carbapenem. He was successfully treated by the combination therapy with surgery and with approximately 6 weeks of intravenous carbapenem. Finally he was diagnosed with a lung abscess with adenocarcinoma expressing high levels of programmed cell death ligand 1. The emergence of multidrug-resistant Capnocytophaga species is a serious concern for effective antimicrobial therapy. Clinicians should consider multidrug-resistant C. sputigena as a causative pathogen of lung abscess when it is refractory to antimicrobial treatment. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan.

    Science.gov (United States)

    Elshayeb, Ayman A; Ahmed, Abdelazim A; El Siddig, Marmar A; El Hussien, Adil A

    2017-11-14

    Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax - b). Minimum bactericidal concentration's predication of resistance was given the exponential trend (y = n e x ) and the predictive coefficient R 2  > 0 current antimicrobial drug resistance patterns of community-acquired agents causing outbreaks.

  2. Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.

    Science.gov (United States)

    Currie, Erin; King, Brian; Lawrenson, Andrea L; Schroeder, Lena K; Kershner, Aaron M; Hermann, Greg J

    2007-11-01

    Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.

  3. Eradication of multidrug-resistant Acinetobacter baumannii in a female patient with total hip arthroplasty, with debridement and retention: a case report

    Directory of Open Access Journals (Sweden)

    Beieler Alison M

    2009-02-01

    Full Text Available Abstract Introduction Multidrug-resistant Acinetobacter baumannii has become a significant cause of healthcare-associated infections, but few reports have addressed Acinetobacter baumannii infections associated with orthopedic devices. The current recommended treatment for complicated infections due to orthopedic devices, including resistant gram-negative rods, consists of antimicrobial therapy with debridement and removal of implants. Case presentation The patient, a 47-year-old woman, had previously had a prior total hip arthroplasty at 16 years of age for a complex femoral neck fracture, and multiple subsequent revisions. This time, she underwent a fifth revision secondary to pain. Surgery was complicated by hypotension resulting in transfer to the intensive care unit and prolonged respiratory failure. She received peri-operative cefazolin but postoperatively developed surgical wound drainage requiring debridement of a hematoma. Cultures of this grew ampicillin-sensitive Enterococcus and Acinetobacter baumannii (sensitive only to amikacin and imipenem. The patient was started on imipenem. Removal of the total hip arthroplasty was not recommended because of the recent surgical complications, and the patient was eventually discharged home. She was seen weekly for laboratory tests and examinations and, after 4 months of therapy, the imipenem was discontinued. She did well clinically for 7 months before recurrent pain led to removal of the total hip arthroplasty. Intra-operative cultures grew ampicillin-sensitive Enterococcus and coagulase-negative Staphylococcus but no multidrug-resistant Acinetobacter baumannii. The patient received ampicillin for 8 weeks and had not had recurrent infection at the time of writing, 37 months after discontinuing imipenem. Conclusion We describe the successful treatment of an acute infection from multidrug-resistant Acinetobacter baumannii with debridement and retention of the total hip arthroplasty, using

  4. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Kostka, Libor; Sivák, Ladislav; Cuchalová, Lucie; Hvězdová, Zuzana; Laga, Richard; Filippov, Sergey K.; Černoch, Peter; Pechar, Michal; Janoušková, Olga; Šírová, Milada; Etrych, Tomáš

    2017-01-01

    Roč. 245, 10 January (2017), s. 41-51 ISSN 0168-3659 R&D Projects: GA MZd(CZ) NV16-28600A; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : multidrug resistance * P-glycoprotein inhibitor * EPR effect Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 7.786, year: 2016

  5. Data showing the circumvention of oxaliplatin resistance by vatalanib in colon cancer.

    Science.gov (United States)

    To, Kenneth K W; Poon, Daniel C; Wei, Yuming; Wang, Fang; Lin, Ge; Fu, Li-Wu

    2016-06-01

    We have recently reported that vatalanib, an orally active small molecule multi-tyrosine kinase inhibitor (Hess-Stumpp et al., 2005 [1]), can sensitize multidrug resistant (MDR) colon cancer cells to chemotherapy under hypoxia by inhibiting two MDR transporters ABCB1 and ABCG2 (To et al., 2015 [2]). This data article describes the possible circumvention of resistance to specifically platinum (Pt)-based anticancer drugs by vatalanib via inhibition of two other efflux transporters ABCC2 and ATP7A. Data from the flow cytometric transporter efflux assay showed specific inhibition of ABCC2 activity by vatalanib in stable transfected cells and ABCC2-overexpressing oxaliplatin-resistant colon cancer cells HCT116/Oxa. We also performed the transporter ABCC2 ATPase assay and showed an increase in ATP hydrolysis by ABCC2 in the presence of vatalanib. ATP7A mRNA expression was also shown to be upregulated in HCT116/Oxa cells. Vatalanib was shown to suppress this upregulated ATP7A expression. Data from the cellular Pt accumulation assay showed a lower Pt accumulation in HCT116/Oxa cells than the parental sensitive HCT116 cells. Vatalanib was shown to increase cellular Pt accumulation in a concentration-dependent manner. Combination of oxaliplatin and vatalanib was shown to restore the suppressed apoptosis in HCT116/Oxa cells.

  6. Data showing the circumvention of oxaliplatin resistance by vatalanib in colon cancer

    Directory of Open Access Journals (Sweden)

    Kenneth K.W. To

    2016-06-01

    Full Text Available We have recently reported that vatalanib, an orally active small molecule multi-tyrosine kinase inhibitor (Hess-Stumpp et al., 2005 [1], can sensitize multidrug resistant (MDR colon cancer cells to chemotherapy under hypoxia by inhibiting two MDR transporters ABCB1 and ABCG2 (To et al., 2015 [2]. This data article describes the possible circumvention of resistance to specifically platinum (Pt-based anticancer drugs by vatalanib via inhibition of two other efflux transporters ABCC2 and ATP7A. Data from the flow cytometric transporter efflux assay showed specific inhibition of ABCC2 activity by vatalanib in stable transfected cells and ABCC2-overexpressing oxaliplatin-resistant colon cancer cells HCT116/Oxa. We also performed the transporter ABCC2 ATPase assay and showed an increase in ATP hydrolysis by ABCC2 in the presence of vatalanib. ATP7A mRNA expression was also shown to be upregulated in HCT116/Oxa cells. Vatalanib was shown to suppress this upregulated ATP7A expression. Data from the cellular Pt accumulation assay showed a lower Pt accumulation in HCT116/Oxa cells than the parental sensitive HCT116 cells. Vatalanib was shown to increase cellular Pt accumulation in a concentration-dependent manner. Combination of oxaliplatin and vatalanib was shown to restore the suppressed apoptosis in HCT116/Oxa cells.

  7. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    Science.gov (United States)

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  8. Association between ABCG2 and SLCO1B1 polymorphisms and adverse drug reactions to regorafenib: a preliminary study
.

    Science.gov (United States)

    Maeda, Akimitsu; Ando, Hitoshi; Ura, Takashi; Komori, Azusa; Hasegawa, Ayako; Taniguchi, Hiroya; Kadowaki, Shigenori; Muro, Kei; Tajika, Masahiro; Kobara, Makiko; Matsuzaki, Masahide; Hashimoto, Naoya; Maeda, Mieko; Kojima, Yasushi; Aoki, Masahiro; Kondo, Eisaku; Mizutani, Akiyoshi; Fujimura, Akio

    2017-05-01

    Due to the occurrence of severe adverse drug reactions to regorafenib, a drug used in cancer therapy, the identification of a predictive marker(s) is needed to increase the therapeutic applicability of this compound. We therefore investigated whether polymorphisms in the ABCG2 and SLCO1B genes are associated with adverse drug reactions to regorafenib. For these analyses, 37 Japanese cancer patients were treated with regorafenib, genotyped for polymorphisms in ABCG2 and SLCO1B, and evaluated for drug-related adverse drug reactions. There was no association between the ABCG2 421C>A variant and adverse drug reactions to regorafenib. After treatment, the incidences of increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as increased total bilirubin (grade ≥ 2) were 8%, 4%, and 12%, and 42%, 25%, and 25% among SLCO1B1*1b carriers and non-carriers, respectively. There were no significant associations between elevated ALT and bilirubin and the SLCO1B1*1b allele. However, there were significantly lower incidences of increased AST (8% vs. 42%) and anemia (16% vs. 50%) in SLCO1B1*1b carriers than in non-carriers. The absence of SLCO1B1*1b allele appears to be associated with the development of adverse drug reactions to regorafenib; however, further studies involving larger test groups and other populations are needed to confirm these findings.
.

  9. Limited Sampling Strategies for Therapeutic Drug Monitoring of Linezolid in Patients With Multidrug-Resistant Tuberculosis

    NARCIS (Netherlands)

    Alffenaar, Jan-Willem C.; Kosterink, Jos G. W.; van Altena, Richard; van der Werf, Tjip S.; Uges, Donald R. A.; Proost, Johannes H.

    Introduction: Linezolid is a potential drug for the treatment of multidrug-resistant tuberculosis but its use is limited because of severe adverse effects such as anemia, thrombocytopenia, and peripheral neuropathy. This study aimed to develop a model for the prediction of linezolid area. under the

  10. Evaluation of antibacterial efficacy of anise wastes against some multidrug resistant bacterial isolates

    Directory of Open Access Journals (Sweden)

    Mohamed Khaled Ibrahim

    2017-01-01

    Full Text Available Antibiotic resistance in bacteria is becoming a serious problem, especially after the emergence of multidrug-resistant strains. To overcome this problem, new and effective antibacterials or resistance modulators are highly needed and plant kingdom represents a valuable source of these compounds. In this study we investigated the antibacterial and resistance modulatory activity of Aniseeds waste Residue Extract (ASWRE and Star Anise Waste Residue Extract (SAWRE (post-distillation against 100 isolates belonging to two Gram positive (Streptococcus pneumoniae and Staphylococcus aureus and four Gram negative bacteria (Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa. Phenolic compounds of anise wastes were determined by HPLC. The antibacterial activity of anise waste extracts assays were performed by using inhibition zone diameters, MIC and MBC. Evaluation of synergy interaction between anise waste extracts and certain known antibacterial drugs like Cephradine, Chloramphenicol, Tetracycline and Amoxicillin was carried out using disc diffusion method, MIC and the fractional inhibitory concentrations (FIC. The results showed that HPLC method has been developed for the determination of 25 phenolic compounds from waste extracts. Both ASWRE and SAWRE have significant antibacterial activity against all of the test bacteria. SAWRE was found to have higher amounts of phenolic compounds contents that might be responsible for their comparatively higher antibacteria activity than ASWRE. Irradiation at 10 and 30 kGy did not significantly affect the antibacterial activity of both ASWRE and SAWRE. The combination of anise waste extracts and the tested antibiotics mostly showed synergistic effect. Synergistic interaction was most expressed against Streptococcus pneumoniae (Sp1 and Staphylococcus aureus (Sa1 by Tetracycline and chloramphenicol; Pseudomonas aeruginosa (P2, Klebsiella pneumoniae (K3, Acinetobacter baumannii

  11. Influence of multidrug resistant organisms on the outcome of diabetic foot infection.

    Science.gov (United States)

    Saltoglu, Nese; Ergonul, Onder; Tulek, Necla; Yemisen, Mucahit; Kadanali, Ayten; Karagoz, Gul; Batirel, Ayse; Ak, Oznur; Sonmezer, Cagla; Eraksoy, Haluk; Cagatay, Atahan; Surme, Serkan; Nemli, Salih A; Demirdal, Tuna; Coskun, Omer; Ozturk, Derya; Ceran, Nurgul; Pehlivanoglu, Filiz; Sengoz, Gonul; Aslan, Turan; Akkoyunlu, Yasemin; Oncul, Oral; Ay, Hakan; Mulazımoglu, Lutfiye; Erturk, Buket; Yilmaz, Fatma; Yoruk, Gulsen; Uzun, Nuray; Simsek, Funda; Yildirmak, Taner; Yaşar, Kadriye Kart; Sonmezoglu, Meral; Küçükardali, Yasar; Tuna, Nazan; Karabay, Oguz; Ozgunes, Nail; Sargın, Fatma

    2018-05-01

    We described the clinical outcomes of the diabetic patients who had foot infections with multidrug resistant organisms. We included the patients with diabetic foot infections (DFI) from 19 centers, between May 2011 and December 2015. Infection was defined according to IDSA DFI guidelines. Patients with severe infection, complicated moderate infection were hospitalized. The patients were followed-up for 6 months after discharge. In total, 791 patients with DFI were included, 531(67%) were male, median age was 62 (19-90). Severe infection was diagnosed in 85 (11%) patients. Osteomyelitis was diagnosed in 291(36.8%) patients. 536 microorganisms were isolated, the most common microorganisms were S. aureus (20%), P. aeruginosa (19%) and E. coli (12%). Methicillin resistance (MR) rate among Staphylococcus aureus isolates was 31%. Multidrug resistant bacteria were detected in 21% of P. aeruginosa isolates. ESBL (+) Gram negative bacteria (GNB) was detected in 38% of E. coli and Klebsiella isolates. Sixty three patients (8%) were re-hospitalized. Of the 791 patiens, 127 (16%) had major amputation, and 24 (3%) patients died. In multivariate analysis, significant predictors for fatality were; dialysis (OR: 8.3, CI: 1.82-38.15, p=0.006), isolation of Klebsiella spp. (OR:7.7, CI: 1.24-47.96, p=0.028), and chronic heart failure (OR: 3, CI: 1.01-9.04, p=0.05). MR Staphylococcus was detected in 21% of the rehospitalized patients, as the most common microorganism (p<0.001). Among rehospitalized patients, methicillin resistant Staphylococcus infections was detected as the most common agent, and Klebsiella spp. infections were found to be significantly associated with fatality. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Features of Cytokine Regulation in Multidrug-Resistant Tuberculosis Depending on Severity of Endogenous Intoxication

    Directory of Open Access Journals (Sweden)

    L.D. Todoriko

    2016-02-01

    Conclusions. Comprehensive assessment of integral indices of endogenous intoxication and level of certain pro- and anti-inflammatory cytokines in the blood plasma of patients with MDR TB shows a moderate endogenous intoxication, break down of the cellular component of the immune reactivity due to the formation of conditions for the development of Mycobacterium tuberculosis resistance, with further growth of cytotoxic hypoxia and activation of systemic inflammatory response syndrome. Analysis of plasma concentration of IL-6, IL-10 and IL-18 in patients with multidrug-resistance proved, that their level depends on the nature of Mycobacterium tuberculosis resistance.

  13. Amurensin G, a potent natural SIRT1 inhibitor, rescues doxorubicin responsiveness via down-regulation of multidrug resistance 1

    DEFF Research Database (Denmark)

    Oh, Won Keun; Cho, Kyoung Bin; Hien, Tran Thi

    2010-01-01

    The transition from a chemotherapy-responsive cancer to a chemotherapy-resistant one is accompanied by increased expression of multidrug resistance 1 (MDR1, p-glycoprotein), which plays an important role in the efflux from the target cell of many anticancer agents. We recently showed that a Forkh...

  14. Prevalence and multidrug resistance pattern of Salmonella isolated from resident wild birds of Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdullah Al Faruq

    2016-10-01

    Full Text Available Aim: Salmonellosis is one of the most common zoonotic diseases, and the presence of antimicrobial resistant Salmonella in wild birds is global public health threat. Throughout the last decades, multidrug resistance of Salmonella spp. has increased, particularly in developing countries. Therefore, a cross-sectional study was conducted to investigate the prevalence of Salmonella spp. and antimicrobial resistance pattern against Salmonella spp. from two species of resident wild birds namely house crow (Corvus splendens and Asian pied starling (Gracupica contra. Materials and Methods: Samples were collected from cloacal swabs of house crows and Asian pied starling for isolating Salmonella spp. (bacteriological culture methods followed by antimicrobial susceptibility testing (disk diffusion method against Salmonella spp. isolates during March to December 2014. Results: The prevalence of Salmonella in Asian pied starling and house crows were 67% and 65%, respectively. Within the category of samples from different species, the variation in prevalence was not varied significantly (p>0.05. Isolated Salmonella spp. was tested for resistance to six different antimicrobial agents. Among six antimicrobial tested, 100% resistance were found to penicillin, oxacillin, and clindamycin followed by erythromycin (50-93%, kanamycin (7-20%, and cephalothin (30-67% from both species of birds. Kanamycin remained sensitive in (70-73%, cephalothin (26-70%, and erythromycin appeared to be (0-30% sensitive against Salmonella spp. isolates. Isolated Salmonella spp. was multidrug resistant up to three of the six antimicrobials tested. Conclusion: It can be said that the rational use of antimicrobials needs to be adopted in the treatment of disease for livestock, poultry, and human of Bangladesh to limit the emergence of drug resistance to Salmonella spp.

  15. Reversing multidrug resistance in Caco-2 by silencing MDR1, MRP1, MRP2, and BCL-2/BCL-xL using liposomal antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    Full Text Available Multidrug resistance (MDR is a major impediment to chemotherapy. In the present study, we designed antisense oligonucleotides (ASOs against MDR1, MDR-associated protein (MRP1, MRP2, and/or BCL-2/BCL-xL to reverse MDR transporters and induce apoptosis, respectively. The cationic liposomes (100 nm composed of N-[1-(2,3-dioleyloxypropyl]-n,n,n-trimethylammonium chloride and dioleoyl phosphotidylethanolamine core surrounded by a polyethylene glycol (PEG shell were prepared to carry ASOs and/or epirubicin, an antineoplastic agent. We aimed to simultaneously suppress efflux pumps, provoke apoptosis, and enhance the chemosensitivity of human colon adenocarcinoma Caco-2 cells to epirubicin. We evaluated encapsulation efficiency, particle size, cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of these formulations. We found that PEGylated liposomal ASOs significantly reduced Caco-2 cell viability and thus intensified epirubicin-mediated apoptosis. These formulations also decreased the MDR1 promoter activity levels and enhanced the intracellular retention of epirubicin in Caco-2 cells. Epirubicin and ASOs in PEGylated liposomes remarkably decreased mRNA expression levels of human MDR1, MRP1, MRP2, and BCL-2. The combined treatments all significantly increased the mRNA expressions of p53 and BAX, and activity levels of caspase-3, -8, and -9. The formulation of epirubicin and ASOs targeting both pump resistance of MDR1, MRP1, and MRP2 and nonpump resistance of BCL-2/BCL-xL demonstrated more superior effect to all the other formulations used in this study. Our results provide a novel insight into the mechanisms by which PEGylated liposomal ASOs against both resistance types act as activators to epirubicin-induced apoptosis through suppressing MDR1, MRP1, and MRP2, as well as triggering intrinsic mitochondrial and extrinsic death receptor pathways. The complicated regulation of MDR highlights the necessity

  16. Ugly bugs in healthy guts! Carriage of multidrug-resistant and ESBL-producing commensal Enterobacteriaceae in the intestine of healthy Nepalese adults.

    Science.gov (United States)

    Maharjan, Anjila; Bhetwal, Anjeela; Shakya, Shreena; Satyal, Deepa; Shah, Shashikala; Joshi, Govardhan; Khanal, Puspa Raj; Parajuli, Narayan Prasad

    2018-01-01

    Fecal carriage of multidrug-resistant and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of the important risk factors for infection with antibiotic-resistant bacteria. In this report, we examined the prevalence of multidrug-resistant and ESBL-producing common enterobacterial strains colonizing the intestinal tract of apparently healthy adults in Kathmandu, Nepal. During a 6-month period (February-July 2016), a total of 510 stool specimens were obtained from apparently healthy students of Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal. Stool specimens were cultured, and the most common enterobacterial isolates ( Escherichia coli and Klebsiella species) were subjected to antimicrobial susceptibility tests according to the standard microbiologic guidelines. Multidrug-resistant isolates were selected for ESBL confirmation by combined disk test and E-test methods. Molecular characterization of plasmid-borne ESBL genes was performed by using specific primers of cefotaximase Munich (CTX-M), sulfhydryl variant (SHV), and temoniera (TEM) by polymerase chain reaction. Among 510 bacterial strains, E. coli (432, 84.71%) was the predominant organism followed by Klebsiella oxytoca (48, 9.41%) and K. pneumoniae (30, 5.88%). ESBLs were isolated in 9.8% of the total isolates including K. oxytoca (29.17%), E. coli (7.87%), and K. pneumoniae (6.67%). Among ESBLs, bla -TEM was the predominant type (92%) followed by bla -CTX-M (60%) and bla -SHV (4%). Multidrug-resistant and ESBL-producing enterobacterial commensal strains among healthy individuals are of serious concern. Persistent carriage of ESBL organisms in healthy individuals suggests the possibility of sustained ESBL carriage among the diseased and hospitalized patients. We recommend similar types of epidemiologic surveys in larger communities and in hospital settings to ascertain the extent of ESBL resistance.

  17. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Directory of Open Access Journals (Sweden)

    Buddhasukh Duang

    2004-04-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170, thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn, were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.

  18. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    International Nuclear Information System (INIS)

    Limtrakul, Pornngarm; Anuchapreeda, Songyot; Buddhasukh, Duang

    2004-01-01

    Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

  19. Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland.

    Science.gov (United States)

    Moradigaravand, Danesh; Boinett, Christine J; Martin, Veronique; Peacock, Sharon J; Parkhill, Julian

    2016-08-01

    Serratia marcescens, a member of the Enterobacteriaceae family, is a Gram-negative bacterium responsible for a wide range of nosocomial infections. The emergence of multidrug-resistant strains is an increasing danger to public health. To design effective means to control the dissemination of S. marcescens, an in-depth analysis of the population structure and variation is required. Utilizing whole-genome sequencing, we characterized the population structure and variation, as well as the antimicrobial resistance determinants, of a systematic collection of antimicrobial-resistant S. marcescens associated with bloodstream infections in hospitals across the United Kingdom and Ireland between 2001 and 2011. Our results show that S. marcescens is a diverse species with a high level of genomic variation. However, the collection was largely composed of a limited number of clones that emerged from this diverse background within the past few decades. We identified potential recent transmissions of these clones, within and between hospitals, and showed that they have acquired antimicrobial resistance determinants for different beta-lactams, ciprofloxacin, and tetracyclines on multiple occasions. The expansion of these multidrug-resistant clones suggests that the treatment of S. marcescens infections will become increasingly difficult in the future. © 2016 Moradigaravand et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    OpenAIRE

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to an...

  1. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Ansari, Mohammad A; Khan, Haris M; Alzohairy, Mohammad A; Jalal, Mohammad; Ali, Syed G; Pal, Ruchita; Musarrat, Javed

    2015-01-01

    -β-lactamases strains of P. aeruginosa, regardless of their drug resistance patterns and mechanisms. The results elucidated the clinical significance of Al2O3-NPs in developing an effective antibacterial therapeutic regimen against the multi-drug resistant bacterial infections. The use of leaf extract of lemongrass for the synthesis of Al2O3-NPs appears to be cost effective, nontoxic, eco-friendly and its strong antibacterial activity against multi-drug resistant strains of P. aeruginosa offers compatibility for pharmaceutical and other biomedical applications.

  2. Vital and dispensable roles of Plasmodium multidrug resistance transporters during blood- and mosquito-stage development

    NARCIS (Netherlands)

    Rijpma, S.R.; Velden, M. van der; Annoura, T.; Matz, J.M.; Kenthirapalan, S.; Kooij, T.W.; Matuschewski, K.; Gemert, G.J.A. van; Vegte-Bolmer, M.G. van de; Siebelink-Stoter, R.; Graumans, W.; Ramesar, J.; Klop, O.; Russel, F.G.; Sauerwein, R.W.; Janse, C.J.; Franke-Fayard, B.M.; Koenderink, J.B.

    2016-01-01

    Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of

  3. Draft Genome Sequence of an Invasive Multidrug-Resistant Strain, Pseudomonas aeruginosa BK1, Isolated from a Keratitis Patient

    KAUST Repository

    Jeganathan, Lakshmi Priya

    2014-03-27

    Pseudomonas aeruginosa infections are difficult to treat due to the presence of a multitude of virulence factors and antibiotic resistance. Here, we report the draft genome sequence of P. aeruginosa BK1, an invasive and multidrug-resistant strain, isolated from a bacterial keratitis patient in southern India.

  4. Fighting infections due to multidrug-resistant Gram-positive pathogens.

    Science.gov (United States)

    Cornaglia, G

    2009-03-01

    Growing bacterial resistance in Gram-positive pathogens means that what were once effective and inexpensive treatments for infections caused by these bacteria are now being seriously questioned, including penicillin and macrolides for use against pneumococcal infections and-in hospitals-oxacillin for use against staphylococcal infections. As a whole, multidrug-resistant (MDR) Gram-positive pathogens are rapidly becoming an urgent and sometimes unmanageable clinical problem. Nevertheless, and despite decades of research into the effects of antibiotics, the actual risk posed to human health by antibiotic resistance has been poorly defined; the lack of reliable data concerning the outcomes resulting from antimicrobial resistance stems, in part, from problems with study designs and the methods used in resistence determination. Surprisingly little is known, too, about the actual effectiveness of the many types of intervention aimed at controlling antibiotic resistance. New antibiotics active against MDR Gram-positive pathogens have been recently introduced into clinical practice, and the antibiotic pipeline contains additional compounds at an advanced stage of development, including new glycopeptides, new anti-methicillin-resistant Staphylococcus aureus (MRSA) beta-lactams, and new diaminopyrimidines. Many novel antimicrobial agents are likely to be niche products, endowed with narrow antibacterial spectra and/or targeted at specific clinical problems. Therefore, an important educational goal will be to change the current, long-lasting attitudes of both physicians and customers towards broad-spectrum and multipurpose compounds. Scientific societies, such as the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), must play a leading role in this process.

  5. Prognostic significance of multidrug-resistance protein (MDR-1 in renal clear cell carcinomas: A five year follow-up analysis

    Directory of Open Access Journals (Sweden)

    Strazzullo Viviana

    2006-12-01

    Full Text Available Abstract Background A large number of renal cancer patients shows poor or partial response to chemotherapy and the mechanisms have not been still understood. Multi-drug resistance is the principal mechanism by which many cancers develop resistance to chemotherapic drugs. The role of the multi-drug resistant transporter (MDR-1/P-glycoprotein, the gene product of MDR-1, and that one of the so-called multi-drug resistance associated protein (MRP, two energy-dependent efflux pumps, are commonly known to confer drug resistance. We studied MDR-1 expression in selected cases of renal cell carcinoma (RCC, clear cell type, with long-term follow-up, in order to establish its prognostic role and its possible contribution in the choice of post-surgical therapy. Methods MDR-1 has been studied by standard LSAB-HRP immunohistochemical technique, in paraffin embedded RCC samples. Protein expression has been compared to clinical and histopathological data and to disease specific survival of RCC patients, by Kaplan-Meier curve and Cox multivariate regression analyses. Results Two groups of RCCs were obtained by esteeming MDR-1 expression and disease specific survival (obtained with Kaplan-Meier curve and Cox multivariate regression analyses: the first one presents low or absent MDR-1 expression and good survival; the second one is characterized by high MDR-1 expression and significant poor outcome (p p p p Conclusion In our opinion, the results of this study well prove the relationship between MDR-1 expression and worse clinical prognosis in RCC, because MDR-1 over-expressing RCCs can be considered a group of tumours with a more aggressive behavior. This finding outlines a possible role of MDR-1 as prognostic factor, dependent and independent of multidrug resistance. These results could be useful to predict cancer evolution and to choose the appropriate treatment: this is another step that can stimulate further promising and interesting investigations on broader

  6. Risk Factors for Multidrug-resistant Pseudomonas aeruginosa Among Hospitalized Patients at a Malaysian Hospital

    International Nuclear Information System (INIS)

    Mohd, N.M.D.; Nurnajwa, M.H.; Lay, J.; Teoh, J.C.; Syafinaz, A.N.; Niazlin, M.T.

    2015-01-01

    A case-control study was conducted based on medical cases of 100 hospitalized patients with Pseudomonas aeruginosa-isolation at a Malaysian hospital. Cases with 50 multidrug-resistant P. aeruginosa MDRPA and 50 non-multidrug-resistant P. aeruginosa (NMDRPA) were randomly included and compared with socio-demographic and clinical data of the patients, using Chi-square and Fisher's exact tests as the statistical tool. Analysis found no significant association between MDRPA with ages, gender and ethnicity of patients (p>0.050). Other risk factors being investigated were invasive procedure, immunosuppression, bedridden and clinical diagnosis such as central nervous- and respiratory-system disorder, as well as antibiotic exposure during hospitalization and duration of hospital stay with only the last two were found to have significant association (p=0.035 and 0.019, respectively). Some other studies also reported a similar association indicating that the two factors could serve as an important predictive tool for isolation of MDRPA. More studies involving a larger sampling size are warranted to establish the association. (author)

  7. Downregulation of hepatic and intestinal ATP-binding-cassette transporters abcg5 and abcg8 expression associated with altered sterol fluxes in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Bloks, VW; Bakker-van Waarde, WW; Verkade, HJ; Kema, IP; Havinga, R; Wolters, H; Schaap, FG; Sauer, PJJ; Vink, E; Groen, AK; Kuipers, F

    ABSTRACT: P234 Downregulation of Hepatic and Intestinal ATP-Binding-Cassette Transporters Abcg5 and Abcg8 Expression Associated with Altered Sterol Fluxes in Rats with Streptozotocin-Induced Diabetes Vincent W. Bloks, Willie W. Bakker-van Waarde, Henkjan J. Verkade, Ido P. Kema, Rick Havinga, Henk

  8. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Southern China.

    Science.gov (United States)

    Pang, Yu; Zhu, Damian; Zheng, Huiwen; Shen, Jing; Hu, Yan; Liu, Jie; Zhao, Yanlin

    2017-11-06

    Pyrazinamide (PZA) plays a unique role in the treatment for multidrug-resistant tuberculosis (MDR-TB) in both first- and second-line regimens. The aim of this study was to investigate the prevalence and molecular characterization of PZA resistance among MDR-TB isolates collected in Chongqing municipality. A total of 133 MDR-TB isolates were collected from the smear-positive tuberculosis patients who were registered at local TB dispensaries of Chongqing. PZA susceptibility testing was determined with a Bactec MGIT 960 system. In addition, the genes conferring for PZA resistance were screened by DNA sequencing. Of these 133 MDR-TB isolates, 83 (62.4%) were determined as PZA-resistant by MGIT 960. In addition, streptomycin- (83.1% vs. 56.0%, P < 0.01), ofloxacin- (51.8% vs. 18.0%, P < 0.01), kanamycin- (22.9% vs. 2.0%, P < 0.01), amikacin- (18.1% vs. 2.0%, P = 0.01), capromycin-resistance (12.0% vs. 2.0%, P = 0.05), were more frequently observed among PZA-resistant isolates compared with PZA-susceptible isolates. Sequence analysis revealed that 73 out of 83 (88.0%) MDR strains harbored a mutation located in the pncA gene, including 55 (75.3%, 55/73) of single nucleotide substitutions and 18 (24.7%, 18/73) of frameshift mutation, while no genetic mutation associated with PZA resistance was found in the rpsA gene. The pncA expression of strains harboring substitution from A to G at position -11 in the promoter region of pncA was significantly lower than that of H37Rv (P < 0.01). In conclusion, our data have demonstrated that the analysis of the pncA gene rather than rpsA gene provides rapid and accurate information regarding PZA susceptibility for MDR-TB isolates in Chongqing. In addition, loss of pncA expression caused by promoter mutation confers PZA resistance in MDR-TB isolates.

  9. Characterization and purification of a bacteriocin from Lactobacillus paracasei subsp. paracasei BMK2005, an intestinal isolate active against multidrug-resistant pathogens.

    Science.gov (United States)

    Bendjeddou, Kamel; Fons, Michel; Strocker, Pierre; Sadoun, Djamila

    2012-04-01

    A strain of Lactobacillus paracasei subsp. paracasei BMK2005 isolated from healthy infant faeces has shown a remarkable antibacterial activity against 32 bacterial pathogenic strains of human clinical isolates. Among them, 13 strains belonging to species of Escherichia coli, Citrobacter freundii, Citrobacter diversus, Klebsiella oxytoca, Enterobacter cloacae and Pseudomonas aeruginosa were resistant to Cefotaxime (CTX) and Ceftazidime (CAZ), and 4 strains of Staphylococcus aureus were resistant to Methicillin (MRSA). This antibacterial activity was attributed to a bacteriocin designated as Paracaseicin A. It was heat-stable up to 120°C for 5 min and active within the pH range of 2-5. Its activity was lost when treated with proteases, which reveals its proteinaceous nature. This bacteriocin was successfully purified only by two steps of reversed phase chromatography. Its molecular mass, determined by mass spectrometry analysis, was 2,462.5 Da. To our knowledge, the present study is the first report on characterization and purification of a bacteriocin, produced by a L. paracasei subsp. paracasei strain exhibiting an antibacterial activity against various multidrug-resistant species of Gram-positive and Gram-negative bacteria, which reveals its potential for use in prevention or treatment of infections caused by multidrug-resistant species especially in cases of antibiotics-associated diarrhea (AAD).

  10. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins

    Science.gov (United States)

    Zhang, Kewei; Novak, Ondrej; Wei, Zhaoyang; Gou, Mingyue; Zhang, Xuebin; Yu, Yong; Yang, Huijun; Cai, Yuanheng; Strnad, Miroslav; Liu, Chang-Jun

    2014-02-01

    Cytokinins are a major group of phytohormones regulating plant growth, development and stress responses. However, in contrast to the well-defined polar transport of auxins, the molecular basis of cytokinin transport is poorly understood. Here we show that an ATP-binding cassette transporter in Arabidopsis, AtABCG14, is essential for the acropetal (root to shoot) translocation of the root-synthesized cytokinins. AtABCG14 is expressed primarily in the pericycle and stelar cells of roots. Knocking out AtABCG14 strongly impairs the translocation of trans-zeatin (tZ)-type cytokinins from roots to shoots, thereby affecting the plant’s growth and development. AtABCG14 localizes to the plasma membrane of transformed cells. In planta feeding of C14 or C13-labelled tZ suggests that it acts as an efflux pump and its presence in the cells directly correlates with the transport of the fed cytokinin. Therefore, AtABCG14 is a transporter likely involved in the long-distance translocation of cytokinins in planta.

  11. Risk factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Geisa Fregona

    Full Text Available ABSTRACT OBJECTIVE To analyze the prevalence and factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil. METHODS This is a cross-sectional study of cases of tuberculosis tested for first-line drugs (isoniazid, rifampicin, pyrazinamide, ethambutol, and streptomycin in Espírito Santo between 2002 and 2012. We have used laboratory data and registration of cases of tuberculosis – from the Sistema Nacional de Agravos de Notificação and Sistema para Tratamentos Especiais de Tuberculose. Individuals have been classified as resistant and non-resistant and compared in relation to the sociodemographic, clinical, and epidemiological variables. Some variables have been included in a logistic regression model to establish the factors associated with resistance. RESULTS In the study period, 1,669 individuals underwent anti-tuberculosis drug susceptibility testing. Of these individuals, 10.6% showed resistance to any anti-tuberculosis drug. The rate of multidrug resistance observed, that is, to rifampicin and isoniazid, has been 5%. After multiple analysis, we have identified as independent factors associated with resistant tuberculosis: history of previous treatment of tuberculosis [recurrence (OR = 7.72; 95%CI 4.24–14.05 and re-entry after abandonment (OR = 3.91; 95%CI 1.81–8.43], smoking (OR = 3.93; 95%CI 1.98–7.79, and positive culture for Mycobacterium tuberculosis at the time of notification of the case (OR = 3.22; 95%CI 1.15–8.99. CONCLUSIONS The partnership between tuberculosis control programs and health teams working in the network of Primary Health Care needs to be strengthened. This would allow the identification and monitoring of individuals with a history of previous treatment of tuberculosis and smoking. Moreover, the expansion of the offer of the culture of tuberculosis and anti-tuberculosis drug susceptibility testing would provide greater diagnostic capacity for the resistant types in Espírito Santo.

  12. Dominant incidence of multidrug and extensively drug-resistant specific Mycobacterium tuberculosis clones in Osaka Prefecture, Japan.

    Directory of Open Access Journals (Sweden)

    Aki Tamaru

    Full Text Available Infection and transmission of multidrug-resistant Mycobacterium tuberculosis (MDR-Mtb and extensively drug-resistant M. tuberculosis (XDR-Mtb is a serious health problem. We analyzed a total of 1,110 Mtb isolates in Osaka Prefecture and neighboring areas from April 2000 to March 2009. A total of 89 MDR-Mtb were identified, 36 (48.5% of which were determined to be XDR-Mtb. Among the 89 MDR-Mtb isolates, 24 (27.0% phylogenetically distributed into six clusters based on mycobacterial interspersed repetitive units-various number of tandem repeats (MIRU-VNTR typing. Among these six clusters, the MIRU-VNTR patterns of four (OM-V02, OM-V03, OM-V04, and OM-V06 were only found for MDR-Mtb. Further analysis revealed that all isolates belonging to OM-V02 and OM-V03, and two isolates from OM-V04 were clonal. Importantly such genotypes were not observed for drug-sensitive isolates. These suggest that few but transmissible clones can transmit after acquiring multidrug resistance and colonize even in a country with a developed, well-organized healthcare system.

  13. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells

    International Nuclear Information System (INIS)

    Zhang, Hai-chang; Zhang, Fei; Wu, Bing; Han, Jing-hua; Ji, Wei; Zhou, Yan; Niu, Rui-fang

    2012-01-01

    To explore the interaction of Anxa2 with P-Glycoprotein (P-gp) in the migration and invasion of the multidrug-resistant (MDR) human breast cancer cell line MCF-7/ADR. A pair of short hairpin RNA (shRNA) targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05). There was a close interaction between Anxa2 and P-gp. MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells

  14. Strong In Vitro Activities of Two New Rifabutin Analogs against Multidrug-Resistant Mycobacterium tuberculosis ▿ †

    Science.gov (United States)

    García, Ana-Belén; Palacios, Juan J.; Ruiz, María-Jesús; Barluenga, José; Aznar, Fernando; Cabal, María-Paz; García, José María; Díaz, Natalia

    2010-01-01

    Two new rifabutin analogs, RFA-1 and RFA-2, show high in vitro antimycobacterial activities against Mycobacterium tuberculosis. MIC values of RFA-1 and RFA-2 were ≤0.02 μg/ml against rifamycin-susceptible strains and 0.5 μg/ml against a wide selection of multidrug-resistant strains, compared to ≥50 μg/ml for rifampin and 10 μg/ml for rifabutin. Molecular dynamic studies indicate that the compounds may exert tighter binding to mutants of RNA polymerase that have adapted to the rifamycins. PMID:20855731

  15. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  16. The socioeconomic impact of multidrug resistant tuberculosis on patients: results from Ethiopia, Indonesia and Kazakhstan

    NARCIS (Netherlands)

    van den Hof, Susan; Collins, David; Hafidz, Firdaus; Beyene, Demissew; Tursynbayeva, Aigul; Tiemersma, Edine

    2016-01-01

    One of the main goals of the post-2015 global tuberculosis (TB) strategy is that no families affected by TB face catastrophic costs. We revised an existing TB patient cost measurement tool to specifically also measure multi-drug resistant (MDR) TB patients' costs and applied it in Ethiopia,

  17. THE “CHALLENGING” MULTIDRUG-RESISTANT PATHOGENS OF NOSOCOMIAL INFECTIONS IN CRITICALLY ILL PATIENTS (A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    T. V. Chernenkaya

    2015-01-01

    Full Text Available ABSTRACT. Changes in the structure of the main causative agents of nosocomial infections and significant spread of multidrug­resistant strains of bacteria are a natural biological response for antibiotics that selectively inhibit pathogens and contribute to selection, survival and growth of drug resistant strains of bacteria. In this literature review we present the change of structure of the major causative microorganisms of nosocomial septic infections and theirs resistance to antibiotics for the last 70 years. 

  18. The Growing Threat of Multidrug-Resistant Gram-Negative Infections in Patients with Hematologic Malignancies

    Science.gov (United States)

    Baker, Thomas M.; Satlin, Michael J.

    2016-01-01

    Prolonged neutropenia and chemotherapy-induced mucositis render patients with hematologic malignancies highly vulnerable to Gram-negative bacteremia. Unfortunately, multidrug-resistant (MDR) Gram-negative bacteria are increasingly encountered globally, and current guidelines for empirical antibiotic coverage in these patients may not adequately treat these bacteria. This expansion of resistance, coupled with traditional culturing techniques requiring 2-4 days for bacterial identification and antimicrobial susceptibility results, have grave implications for these immunocompromised hosts. This review characterizes the epidemiology, risk factors, resistance mechanisms, recommended treatments, and outcomes of the MDR Gram-negative bacteria that commonly cause infections in patients with hematologic malignancies. We also examine infection prevention strategies in hematology patients, such as infection control practices, antimicrobial stewardship, and targeted decolonization. Finally, we assess strategies to improve outcomes of infected patients, including gastrointestinal screening to guide empirical antibiotic therapy, new rapid diagnostic tools for expeditious identification of MDR pathogens, and use of two new antimicrobial agents, ceftolozane/tazobactam and ceftazidime/avibactam. PMID:27339405

  19. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  20. Genome Sequence of a Multidrug-Resistant Strain of Stenotrophomonas maltophilia with Carbapenem Resistance, Isolated from King Abdullah Medical City, Makkah, Saudi Arabia

    KAUST Repository

    Abdel-Haleem, Alyaa M.; Rchiad, ‍ Zineb; Khan, Babar Khalid; Abdallah, Abdallah; Naeem, Raeece; Nikhat Sheerin, Shalam; Solovyev, Victor; Ahmed, Abdalla; Pain, Arnab

    2015-01-01

    The emergence and spread of multidrug-resistant (MDR) bacteria have been regarded as major challenges among health care-associated infections worldwide. Here, we report the draft genome sequence of an MDR Stenotrophomonas maltophilia strain isolated in 2014 from King Abdulla Medical City, Makkah, Saudi Arabia.