WorldWideScience

Sample records for multicrystalline silicon grown

  1. Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering

    Energy Technology Data Exchange (ETDEWEB)

    Al-Amin, M., E-mail: m.al-amin@warwick.ac.uk; Murphy, J. D., E-mail: john.d.murphy@warwick.ac.uk [School of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2016-06-21

    We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo in situ way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poor wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 μs to 38.7 μs. The lifetime of top wafers is improved from 12.1 μs to 23.8 μs under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.

  2. Properties of iron-doped multicrystalline silicon grown by the float-zone technique

    Energy Technology Data Exchange (ETDEWEB)

    Ciszek, T.F.; Wang, T.H.; Ahrenkiel, R.K.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Multicrystalline Fe-doped Si ingots were float-zoned from high-purity feed rods. Fe was introduced by pill-doping, which gives uniform impurity content for small segregation coefficients (k {approximately} 10{sup {minus}5} for Fe in Si). Fe concentrations were calculated from the initial weight of the Fe pill, the molten zone geomet and the growth parameters. Values in the range of 10{sup 12}-10{sup 16} atoms/cm{sup 3} were targeted. No additional electrically active dopants were introduced. Minority charge carrier lifetime (via YAG-laser-excited, 430-MHz ultra-high-frequency-coupled, photoconductive decay) was measured on the ingots, and wafers were cut to examine grain structure and electron-beam-induced current response of grain boundaries. Observed lifetimes decreased monotonically with increasing Fe content for similar grain sizes (from {approximately}10 {mu}s to 2 {mu}s for < 10{sup {minus}3} cm{sup 2} grains, from {approximately}30 {mu}s to 2 {mu}s for {approximately}5 x 10{sup {minus}3} cm{sup 2} grains, and from {approximately}300 {mu}s to 2 {mu}s for > 10{sup {minus}2} cm{sup 2} grains) as the Fe content increased to 1 {times} 10{sup 16} atoms/cm{sup 3}.

  3. Low-temperature grown indium oxide nanowire-based antireflection coatings for multi-crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Cian; Chen, Chih-Yao; Chen, I Chen [Institute of Materials Science and Engineering, National Central University, Taoyuan (China); Kuo, Cheng-Wen; Kuan, Ta-Ming; Yu, Cheng-Yeh [TSEC Corporation, Hsinchu (China)

    2016-08-15

    Light harvesting by indium oxide nanowires (InO NWs) as an antireflection layer on multi-crystalline silicon (mc-Si) solar cells has been investigated. The low-temperature growth of InO NWs was performed in electron cyclotron resonance (ECR) plasma with an O{sub 2}-Ar system using indium nanocrystals as seed particles via the self-catalyzed growth mechanism. The size-dependence of antireflection properties of InO NWs was studied. A considerable enhancement in short-circuit current (from 35.39 to 38.33 mA cm{sup -2}) without deterioration of other performance parameters is observed for mc-Si solar cells coated with InO NWs. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Interactions of structural defects with metallic impurities in multicrystalline silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; Thompson, A.C.; Hieslmair, H.

    1997-01-01

    Multicrystalline silicon is one of the most promising materials for terrestrial solar cells. It is critical to getter impurities from the material as well as inhibit contamination during growth and processing. Standard processing steps such as, phosphorus in-diffusion for p-n junction formation and aluminum sintering for backside ohmic contact fabrication, intrinsically possess gettering capabilities. These processes have been shown to improve L n values in regions of multicrystalline silicon with low structural defect densities but not in highly dislocated regions. Recent Deep Level Transient Spectroscopy (DLTS) results indirectly reveal higher concentrations of iron in highly dislocated regions while further work suggests that the release of impurities from structural defects, such as dislocations, is the rate limiting step for gettering in multicrystalline silicon. The work presented here directly demonstrates the relationship between metal impurities, structural defects and solar cell performance in multicrystalline silicon. Edge-defined Film-fed Growth (EFG) multicrystalline silicon in the as-grown state and after full solar cell processing was used in this study. Standard solar cell processing steps were carried out at ASE Americas Inc. Metal impurity concentrations and distributions were determined by use of the x-ray fluorescence microprobe (beamline 10.3.1) at the Advanced Light Source, Lawrence Berkeley National Laboratory. The sample was at atmosphere so only elements with Z greater than silicon could be detected, which includes all metal impurities of interest. Structural defect densities were determined by preferential etching and surface analysis using a Scanning Electron Microscope (SEM) in secondary electron mode. Mapped areas were exactly relocated between the XRF and SEM to allow for direct comparison of impurity and structural defect distributions

  5. Precipitated iron. A limit on gettering efficacy in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fenning, D.P.; Hofstetter, J.; Bertoni, M.I.; Buonassisi, T. [Massachusetts Institute of Technology MIT, Cambridge, Massachusetts 02139 (United States); Coletti, G. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Lai, B. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Del Canizo, C. [Instituto de Energia Solar, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2013-01-31

    A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

  6. Overview of phosphorus diffusion and gettering in multicrystalline silicon

    International Nuclear Information System (INIS)

    Bentzen, A.; Holt, A.

    2009-01-01

    This paper gives an overview of phosphorus emitter diffusion and gettering as experienced in multicrystalline silicon solar cell processing. The paper gives a brief summary of the diffusion properties of phosphorus in silicon, explaining the nature behind the characteristic kink-and-tail profiles often encountered in silicon solar cells. Then, phosphorus diffusion gettering is discussed with particular focus to the inhomogeneous nature of multicrystalline silicon, and it is discussed how the abundant presence of dislocations in the areas of the material having a low recombination lifetime can cause only minor lifetime enhancements in such areas upon phosphorus diffusion. Attributed to dissociation of precipitated impurities in combination with longer effective diffusion lengths of the impurities, it is then seen that even poor areas of multicrystalline can exhibit a noticeable improvement by phosphorus diffusion gettering when applying a lower diffusion temperature for a longer duration.

  7. A comparison of gettering in single- and multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L. [National Renewable Energy Lab., Golden, CO (United States); Jastrzebski, L.; Tan, T.

    1996-05-01

    The differences in the impurity gettering between single and multicrystalline silicon are discussed. These differences arise from impurity-defect interactions that occur during thermal processing of multicrystalline material. A gettering model is proposed to explain the observed behaviour of gettering in multicrystalline cells.

  8. Preventing light-induced degradation in multicrystalline silicon

    Science.gov (United States)

    Lindroos, J.; Boulfrad, Y.; Yli-Koski, M.; Savin, H.

    2014-04-01

    Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.

  9. Hydrogen passivation of multi-crystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    胡志华; 廖显伯; 刘祖明; 夏朝凤; 陈庭金

    2003-01-01

    The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper.Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.

  10. Reduction of absorption loss in multicrystalline silicon via combination of mechanical grooving and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, Mohamed; Mohamed, Seifeddine Belhadj; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-03-15

    Surface texturing of silicon wafer is a key step to enhance light absorption and to improve the solar cell performances. While alkaline-texturing of single crystalline silicon wafers was well established, no efficient chemical solution has been successfully developed for multicrystalline silicon wafers. Thus, the use of alternative new methods for effective texturization of multicrystalline silicon is worth to be investigated. One of the promising texturing techniques of multicrystalline silicon wafers is the use of mechanical grooves. However, most often, physical damages occur during mechanical grooves of the wafer surface, which in turn require an additional step of wet processing-removal damage. Electrochemical surface treatment seems to be an adequate solution for removing mechanical damage throughout porous silicon formation. The topography of untreated and porous silicon-treated mechanically textured surface was investigated using scanning electron microscopy (SEM). As a result of the electrochemical surface treatment, the total reflectivity drops to about 5% in the 400-1000 nm wavelength range and the effective minority carrier diffusion length enhances from 190 {mu}m to about 230 {mu}m (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The rate-limiting mechanism of transition metal gettering in multicrystalline silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; Thompson, A.C.; Imaizumi, M.

    1997-01-01

    Multicrystalline silicon is a very interesting material for terrestrial solar cells. Its low cost and respectable energy conversion efficiency (12-15%) makes it arguably the most cost competitive material for large-volume solar power generation. However, the solar cell efficiency of this material is severely degraded by regions of high minority carrier recombination which have been shown to possess both dislocations and microdefects. These structural defects are known to increase in recombination activity with transition metal decoration. Therefore, gettering of metal impurities from the material would be expected to greatly enhance solar cell performance. Contrary to this rationale, experiments using frontside phosphorus and/or backside aluminum treatments have been found to improve regions with low recombination activity while having little or no effect on the high recombination regions and in turn only slightly improving the overall cell performance. The goal of this research is to determine the mechanism by which gettering is ineffectual on these high recombination regions. The authors have performed studies on integrated circuit (IC) quality single crystal and multicrystalline solar cell silicon (mc-silicon) in the as-grown state and after a variety of processing/gettering steps. With Surface Photovoltage measurements of the minority carrier diffusion length which is inversely proportional to carrier recombination, they have seen that aluminum gettering is effective for improving IC quality material but ineffective for improving the regions of initially low diffusion lengths (high recombination rates) in mc-silicon. Of particular interest is the great increase in diffusion length for IC material as compared to the mc-silicon. Clearly the IC material has benefited to a greater extent from the gettering procedure than the mc-silicon

  12. Double side multicrystalline silicon passivation by one step stain etching-based porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Seifeddine Belhadj; Ben Rabha, Mohamed; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    In this paper, we investigate the effect of stain etching-based porous silicon on the double side multicrystalline silicon. Special attention is given to the use of the stain etched PS as an antireflection coating as well as for surface passivating capabilities. Stain etching of double side multicrystalline silicon leads to the formation of PS nanostructures, that dramatically decrease the surface reflectivity from 30% to about 7% and increase the effective lifetime from 1 {mu}s to 10 {mu}s at a minority carrier density ({Delta}n) of 10{sup 15} cm{sup -3}. These results let us correlate the rise of the lifetime values to the photoluminescence intensity to the hydrogen and oxide passivation as shown by FTIR analysis. This low-cost PS formation process can be applied in the photovoltaic cell technology as a standard procedure (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Gettering effect in grain boundaries of multi-crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, H.; Bouaicha, M.; Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we analyze the effect of three gettering procedures on the variation of the grain boundaries (GBs) defect density in multicrystalline silicon (mc-Si). The effective defect density (N{sup B}) was calculated using a theoretical model where we consider the potential barrier induced by the GB as being due to structural defects and impurities. Results are compared to those obtained from C-V measurements. The potential barrier was evaluated from the dark current-voltage (I-V) characteristic performed across the GB. In addition to the Rapid Thermal Annealing (RTA), we use aluminum (Al) in the first gettering procedure, in the second we use porous silicon (PS), whereas in the third one, we realize a chemical damage (grooving). Mc-Si wafers were annealed in an infrared furnace in the same conditions, at temperatures ranging from 600 C to 1000 C (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon

    International Nuclear Information System (INIS)

    Chen, J.; Sekiguchi, T.; Xie, R.; Ahmet, P.; Chikyo, T.; Yang, D.; Ito, S.; Yin, F.

    2005-01-01

    Recombination activity of small-angle grain boundaries (SA GBs) in multicrystalline silicon (mc-Si) was studied by means of electron-beam-induced current (EBIC) technique. In the as-grown mc-Si, the EBIC contrasts of special Σ and random GBs were weak at both 300 and 100 K, whereas those of SA GBs were weak (<3%) at 300 K and strong (30-40%) at 100 K. In the contaminated mc-Si, SA GBs showed stronger EBIC contrast than Σ and R GBs at 300 K. It is indicated that SA GBs possess high density of shallow levels and are easily contaminated with Fe compared to other GBs

  15. Grooving of grain boundaries in multicrystalline silicon: Effect on solar cell performance

    International Nuclear Information System (INIS)

    Dimassi, W.; Bouaicha, M.; Nouri, H.; Boujmil, M.F.; Ben Nasrallah, S.; Bessais, B.

    2006-01-01

    In this work, we investigate the effect of grooving of grain boundaries (GB) in multicrystalline silicon using chemical etching in HF/HNO 3 solutions. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GBs enable deep phosphorus diffusion and deep metallic contacts. As a result, the internal quantum efficiency (IQE), and the I-V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multicrystalline silicon enables passivation of GB-related defects. These results are discussed and compared to solar cells based on untreated multicrystalline silicon wafers

  16. Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, Mohamed Ben; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-06-15

    The effects of antireflection (ARC) and surface passivation films on optoelectronic features of multicrystalline silicon (mc-Si) were investigated in order to perform high efficiency solar cells. A double layer consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride (SiN{sub x}) on porous silicon (PS) was achieved on mc-Si surfaces. It was found that this treatment decreases the total surface reflectivity from about 25% to around 6% in the 450-1100 nm wavelength range. As a result, the effective minority carrier diffusion length, estimated from the Laser-beam-induced current (LBIC) method, was found to increase from 312 {mu}m for PS-treated cells to about 798 {mu}m for SiN{sub x}/PS-treated ones. The deposition of SiN{sub x} was found to impressively enhance the minority carrier diffusion length probably due to hydrogen passivation of surface, grain boundaries and bulk defects. Fourier Transform Infrared Spectroscopy (FTIR) shows that the vibration modes of the highly suitable passivating Si-H bonds exhibit frequency shifts toward higher wavenumber, depending on the x ratio of the introduced N atoms neighbors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Metal impurities profile in a 450kg multi-crystalline silicon ingot by Cold Neutron Prompt Gamma-ray Activation Analysis

    International Nuclear Information System (INIS)

    Baek, Hani; Sun, Gwang Min; Kim, Ji seok; Oh, Mok; Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeol; Tuan, Hoang Sy Minh

    2014-01-01

    Metal impurities are harmful to multi-crystalline silicon solar cells. They reduce solar cell conversion efficiencies through increased carrier recombination. They are present as isolated point-like impurities or precipitates. This work is to study the concentration profiles of some metal impurities of the directionally solidified 450kg multi-crystalline silicon ingot grown for solar cell production. The concentration of such impurities are generally below 10 15 cm -3 , and as such cannot be detected by physical techniques such as secondary-ion-mass spectroscopy(SIMS). So, we have tried to apply Cold Neutron - Prompt Gamma ray Activation Analysis(CN-PGAA) at the HANARO reactor research. The impurity concentrations of Au, Mn, Pt, Mo of a photovoltaic grade multi-crystalline silicon ingot appear by segregation from the liquid to the solid phase in the central region of the ingot during the crystallization. In the impurities concentration of the bottom region is higher than middle region due to the solid state diffusion. Towards the top region the segregation impurities diffused, during cooling process

  18. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    OpenAIRE

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Lee, William J.; Tsai, Song-Yeu; Lu, Yung-An; Liou, Jia-Jhe; Chang, Shun-Hsyung; Wang, Kang L.

    2010-01-01

    The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si) wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD). The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been d...

  19. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    OpenAIRE

    U. Gangopadhyay; K. Kim; S. K. Dhungel; H. Saha; J. Yi

    2007-01-01

    The low-cost chemical bath deposition (CBD) technique is used to prepare CBD-ZnS films as antireflective (AR) coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize...

  20. Influence of stain etching on low minority carrier lifetime areas of multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Montesdeoca-Santana, A. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Fraunhofer Institute for Solar Energy Systems, Laboratory and Servicecenter Gelsenkirchen, Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Departamento de Energia Fotovoltaica, Instituto Tecnologico y de Energias Renovables. Poligono Industrial de Granadilla s/n, 38600 San Isidro-Granadilla de Abona (Spain); Jimenez-Rodriguez, E. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Ziegler, J. [Fraunhofer Institute for Solar Energy Systems, Laboratory- and Servicecenter Gelsenkirchen. Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Velazquez, J.J. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna. Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain); Hohage, S.; Borchert, D. [Fraunhofer Institute for Solar Energy Systems, Laboratory and Servicecenter Gelsenkirchen. Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Guerrero-Lemus, R., E-mail: rglemus@ull.es [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38206 La Laguna (Spain)

    2011-11-15

    Highlights: > An enhanced minority carrier lifetime at extended defects in multicrystalline silicon is observed with the use of HF/HNO{sub 3} stain etching to texture the surface. > FTIR analysis shows no influence of oxide passivation in this effect. > SEM images show a preferential etching at extended defects suggesting smoothing at defects as one of the causes for the reduced recombination activity. > LBIC images show a reduction in IQE at extended defects in HF/HNO{sub 3} textured multicrystalline solar cells. - Abstract: In this work the use of HF/HNO{sub 3} solutions for texturing silicon-based solar cell substrates by stain etching and the influence of texturing on minority carrier lifetimes are studied. Stain etching is currently used to decrease the reflectance and, subsequently improve the photogenerated current of the cells, but also produces nanostructures on the silicon surface. In the textured samples it has been observed that an improvement on the minority carrier lifetime with respect to the samples treated with a conventional saw damage etching process is produced on grain boundaries and defects, and the origin of this effect has been discussed.

  1. Influence of stain etching on low minority carrier lifetime areas of multicrystalline silicon for solar cells

    International Nuclear Information System (INIS)

    Montesdeoca-Santana, A.; Gonzalez-Diaz, B.; Jimenez-Rodriguez, E.; Ziegler, J.; Velazquez, J.J.; Hohage, S.; Borchert, D.; Guerrero-Lemus, R.

    2011-01-01

    Highlights: → An enhanced minority carrier lifetime at extended defects in multicrystalline silicon is observed with the use of HF/HNO 3 stain etching to texture the surface. → FTIR analysis shows no influence of oxide passivation in this effect. → SEM images show a preferential etching at extended defects suggesting smoothing at defects as one of the causes for the reduced recombination activity. → LBIC images show a reduction in IQE at extended defects in HF/HNO 3 textured multicrystalline solar cells. - Abstract: In this work the use of HF/HNO 3 solutions for texturing silicon-based solar cell substrates by stain etching and the influence of texturing on minority carrier lifetimes are studied. Stain etching is currently used to decrease the reflectance and, subsequently improve the photogenerated current of the cells, but also produces nanostructures on the silicon surface. In the textured samples it has been observed that an improvement on the minority carrier lifetime with respect to the samples treated with a conventional saw damage etching process is produced on grain boundaries and defects, and the origin of this effect has been discussed.

  2. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    Shortage in high purity silicon feedstock, as a result of the formidable increased demand for solar cell devices during the last two decades, can be mitigated by the introduction of cheaper feedstock of solar grade (So-G) quality. Silicon produced through the metallurgical process route has shown...... the potential to be such a feedstock. However, this feedstock has only few years of active commercial history and the detailed understanding of the nature of structural defects in this material still has fundamental shortcomings. In this thesis the electrical activity of structural defects, commonly associated...

  3. Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Popovich, V.A.

    2013-01-01

    Due to pressure from the photovoltaic industry to decrease the cost of solar cell production, there is a tendency to reduce the thickness of silicon wafers. Unfortunately, wafers contain defects created by the various processing steps involved in solar cell production, which significantly reduce the

  4. Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2013-01-01

    In this paper, we will report the enhancement of the conversion efficiency of multicrystalline silicon solar cells after coating the front surface with a porous silicon layer treated with vanadium oxide. The incorporation of vanadium oxide into the porous silicon (PS) structure, followed by a thermal treatment under oxygen ambient, leads to an important decrease of the surface reflectivity, a significant enhancement of the effective minority carrier lifetime (τ eff ) and a significant enhancement of the photoluminescence (PL) of the PS structure. We Obtained a noticeable increase of (τ eff ) from 3.11 μs to 134.74 μs and the surface recombination velocity (S eff ) have decreased from 8441 cm s −1 to 195 cm s −1 . The reflectivity spectra of obtained films, performed in the 300–1200 nm wavelength range, show an important decrease of the average reflectivity from 40% to 5%. We notice a significant improvement of the internal quantum efficiency (IQE) in the used multicrystalline silicon substrates. Results are analyzed and compared to those carried out on a reference (untreated) sample. The electrical properties of the treated silicon solar cells were improved noticeably as regard to the reference (untreated) sample.

  5. Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization

    International Nuclear Information System (INIS)

    Neu, W.; Kress, A.; Jooss, W.; Fath, P.; Bucher, E.

    2002-01-01

    Adaptation to market requirements is a permanent challenge in industrial solar-cell production. Both increase of cell efficiency as well as lowering costs is demanded. Back-contacted solar cells offer multiple advantages in terms of reducing module assembling costs and enhanced cell efficiency. The investigated emitter-wrap-through (EWT) design [1] has a collecting emitter on front and rear side. These emitter areas are electrically connected by small holes. Due to the double-sided collecting junction, this cell design is favourable for materials with a low-minority charge carrier diffusion length leading to a higher short circuit current density. Until now most investigations on EWT solar cells were performed on Cz or even FZ silicon. This was justified as long as different processing techniques had to be developed and compared. But as an industrially applicable process sequence has recently been developed [2], the advantages of the EWT concept compared to conventionally processed cells have to be shown on multicrystalline material. In the following, a manufacturing process of EWT solar cells is presented which is especially adapted to the requirements of multicrystalline silicon. Effective surface texturization was reached by mechanical V-texturization and bulk passivation by a hydrogen plasma treatment. The efficiency of the best solar cells within this process reached 14.2% which is the highest efficiency reported so far for mc-Si 10x10 cm 2 EWT solar cells [3]. (author)

  6. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    U. Gangopadhyay

    2007-01-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  7. Passivation properties of alumina for multicrystalline silicon nanostructure prepared by spin-coating method

    Science.gov (United States)

    Jiang, Ye; Shen, Honglie; Yang, Wangyang; Zheng, Chaofan; Tang, Quntao; Yao, Hanyu; Raza, Adil; Li, Yufang; Huang, Chunlai

    2018-02-01

    In this paper, we report passivation properties of inverted pyramidal nanostructure based multi-crystalline silicon (mc-Si) by Al2O3 films with spin-coating method. Precursors AlCl3 and Al(acac)3 for Al2O3 films were chosen for comparison. Al2O3/SiO x stacks were found to be able to passivate the nanostructured surface well. With the number of spin-coating up to five, the Al2O3 films could conformally attach the nanostructure. The weighted average reflectance values (ranging from 400-900 nm) of the passivated silicon surface could be reduced to 10.74% (AlCl3) and 11.12% (Al(acac)3), and the effective carrier lifetime could reach 7.84 and 16.98 μs, respectively. This work presented a potential process to fabricate low cost high efficiency mc-Si solar cells.

  8. Combination of gettering and etching in multicrystalline silicon used in solar cells processing

    International Nuclear Information System (INIS)

    Dimassi, W.; Bouaicha, M.; Nouri, H.; Ben Nasrallah, S.; Bessais, B.

    2006-01-01

    Undesired impurities can be removed away from multicrystalline silicon (mc-Si) wafers by combining porous silicon (PS) formation and heat treatments. The gettering procedure used in this work is based on the formation of a PS film at both back and front sides of the mc-Si wafers, followed by a heat treatment. The latter was achieved in an infrared furnace at different temperatures and during various periods. We show that when the based material undergoes such a gettering, the electrical properties (short-circuit current, open-circuit voltage, serial and shunt resistances) and the electronic parameters (diffusion length and grain boundary recombination velocity) of the corresponding solar cells can be improved only if some regions of the wafers are etched. Compared to reference cells based on untreated wafers, the diffusion length and grain boundary recombination velocity of solar cells fabricated from gettered and etched samples was improved by about 30% and reduced by a factor of 10, respectively

  9. Investigation of Low-Cost Surface Processing Techniques for Large-Size Multicrystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuang-Tung Cheng

    2010-01-01

    Full Text Available The subject of the present work is to develop a simple and effective method of enhancing conversion efficiency in large-size solar cells using multicrystalline silicon (mc-Si wafer. In this work, industrial-type mc-Si solar cells with area of 125×125 mm2 were acid etched to produce simultaneously POCl3 emitters and silicon nitride deposition by plasma-enhanced chemical vapor deposited (PECVD. The study of surface morphology and reflectivity of different mc-Si etched surfaces has also been discussed in this research. Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4 coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. Open circuit (Voc is 616 mV, short circuit current (Jsc is 34.1 mA/cm2, and minority carrier diffusion length is 474.16 μm. The isotropic texturing and silicon nitride layers coating approach contribute to lowering cost and achieving high efficiency in mass production.

  10. Improving the Quality of the Deteriorated Regions of Multicrystalline Silicon Ingots during General Solar Cell Processes

    International Nuclear Information System (INIS)

    Wu Shan-Shan; Wang Lei; Yang De-Ren

    2011-01-01

    The behavior of wafers and solar cells from the border of a multicrystalline silicon (mc-Si) ingot, which contain deteriorated regions, is investigated. It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells (about 16%) is achieved. It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions. Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not. Therefore, it is suggested that the border of a mc-Si ingot could be used to fabricate high efficiency solar cells, which will increase mc-Si utilization effectively. (condensed matter: structure, mechanical and thermal properties)

  11. Technology for the large-scale production of multi-crystalline silicon solar cells and modules

    International Nuclear Information System (INIS)

    Weeber, A.W.; De Moor, H.H.C.

    1997-06-01

    In cooperation with Shell Solar Energy (formerly R and S Renewable Energy Systems) and the Research Institute for Materials of the Catholic University Nijmegen the Netherlands Energy Research Foundation (ECN) plans to develop a competitive technology for the large-scale manufacturing of solar cells and solar modules on the basis of multi-crystalline silicon. The project will be carried out within the framework of the Economy, Ecology and Technology (EET) program of the Dutch ministry of Economic Affairs and the Dutch ministry of Education, Culture and Sciences. The aim of the EET-project is to reduce the costs of a solar module by 50% by means of increasing the conversion efficiency as well as the development of cheap processes for large-scale production

  12. Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2010-03-15

    Photovoltaic properties of buried metallic contacts (BMCs) with and without application of a front porous silicon (PS) layer on multicrystalline silicon (mc-Si) solar cells were investigated. A Chemical Vapor Etching (CVE) method was used to perform front PS layer and BMCs of mc-Si solar cells. Good electrical performance for the mc-Si solar cells was observed after combination of BMCs and thin PS films. As a result the current-voltage (I-V) characteristics and the internal quantum efficiency (IQE) were improved, and the effective minority carrier diffusion length (Ln) increases from 75 to 110 {mu}m after BMCs achievement. The reflectivity was reduced to 8% in the 450-950 nm wavelength range. This simple and low cost technology induces a 12% conversion efficiency (surface area = 3.2 cm{sup 2}). The obtained results indicate that the BMCs improve charge carrier collection while the PS layer passivates the front surface. (author)

  13. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  14. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  15. Qualification of multi-crystalline silicon wafers by optical imaging for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, G.J.M.; Van der Borg, N.J.C.M.; Manshanden, P.; De Bruijne, M.; Bende, E.E. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    We have developed a method to qualify multi-crystalline silicon (mc-Si) wafers that are being used in a production process. An optical image of an etched wafer is made. This etching can be a standard industrial acid etching for mc-Si wafers as is commonly used for saw damage removal and simultaneous iso-texturing. Digital image processing is then applied to identify the number of dislocations and their distribution over the wafer. This information is used as input for a cell performance prediction model, where the performance is characterized by the open circuit voltage (Voc) or the efficiency. The model can include various levels of sophistication, i.e. from using an average density of dislocations to the full spatial resolution of the dislocations in a 2D simulation that includes also the metallization pattern on the cell. The predicted performance is then evaluated against pre-selected criteria. The possibility to apply this optical qualification method in an initial stage in the production enables early rejection of the wafers, further tailoring of the cell production process or identification of instabilities in the production process.

  16. Characterization of cell mismatch in a multi-crystalline silicon photovoltaic module

    International Nuclear Information System (INIS)

    Crozier, J.L.; Dyk, E.E. van; Vorster, F.J.

    2012-01-01

    In this study the causes and effects of cell mismatch were identified in a multi-crystalline silicon photovoltaic module. Different techniques were used to identify the causes of the mismatch, including Electroluminescence (EL) imaging, Infrared (IR) imaging, current–voltage (I–V) characteristics, worst-case cell determination and Large Area Laser Beam Induced Current (LA-LBIC) scans. In EL images the cracked cells, broken fingers and material defects are visible. The presence of poorly contacted cells results in the formation of hot-spots. LA-LBIC line scans give the relative photoresponse of the cells in the module. However, this technique is limited due to the penetration depth of the laser beam. The worst case cell determination compares the I–V curves of the whole module with the I–V curve of the module with one cell covered, allowing the evaluation of the performance of each cell in a series-connected string. These methods allowed detection of the poorly performing cells in the module. Using all these techniques an overall view of the photoresponse in the cells and their performance is obtained.

  17. Characterization of cell mismatch in a multi-crystalline silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, J.L., E-mail: s207094248@live.nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    In this study the causes and effects of cell mismatch were identified in a multi-crystalline silicon photovoltaic module. Different techniques were used to identify the causes of the mismatch, including Electroluminescence (EL) imaging, Infrared (IR) imaging, current-voltage (I-V) characteristics, worst-case cell determination and Large Area Laser Beam Induced Current (LA-LBIC) scans. In EL images the cracked cells, broken fingers and material defects are visible. The presence of poorly contacted cells results in the formation of hot-spots. LA-LBIC line scans give the relative photoresponse of the cells in the module. However, this technique is limited due to the penetration depth of the laser beam. The worst case cell determination compares the I-V curves of the whole module with the I-V curve of the module with one cell covered, allowing the evaluation of the performance of each cell in a series-connected string. These methods allowed detection of the poorly performing cells in the module. Using all these techniques an overall view of the photoresponse in the cells and their performance is obtained.

  18. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    Science.gov (United States)

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  19. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2015-10-01

    Full Text Available This work studies the use of gold (Au and silver (Ag nanoparticles in multicrystalline silicon (mc-Si and copper-indium-gallium-diselenide (CIGS solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  20. The characterization of high quality multicrystalline silicon by the electron beam induced current method

    International Nuclear Information System (INIS)

    Chen, J; Sekiguchi, T; Nara, S; Yang, D

    2004-01-01

    Multicrystalline silicon (mc-Si) manufactured by a multi-stage solidification control casting method has been characterized by the electron beam induced current (EBIC) method. The average diffusion length of the ingot was over 250 μm, which was much longer than that of conventional mc-Si. The EBIC study revealed that the electrical activities of grain boundaries (GBs) varied with the ingot position due to the impurity contamination level. The main impurity detected was iron. The concentration of iron in the central position was much lower than that at the bottom and top positions. GBs in the central position showed no significant EBIC contrast at 300 K, suggesting low contamination level. GBs in the top and bottom positions, however, showed strong EBIC contrast at 300 K, suggesting high contamination level. At 100 K, a denuded zone with bright contrast developed around GBs in the top and bottom positions. The existence of the denuded zone suggested that impurities were gettered at the GBs. It was considered that the variation of the diffusion length in the ingot was related to the variation of recombination activities of GBs in the different positions, which mainly depended on the impurity contamination

  1. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

    2010-05-05

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  2. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Kirchartz, Thomas, E-mail: t.kirchartz@fz-juelich.de [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Str. 199, Duisburg 47057 (Germany)

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. We explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.

  3. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  4. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst

    Science.gov (United States)

    Wang, Shing-Dar; Chen, Ting-Wei

    2018-06-01

    In this work, Cu, Ag, or Ag/Cu was used as a metal catalyst to study the surface texturization of diamond-wire-sawn (DWS) multi-crystalline silicon (mc-Si) wafer by a metal-assisted chemical etching (MACE) method. The DWS wafer was first etched by standard HF-HNO3 acidic etching, and it was labeled as AE-DWS wafer. The effects of ratios of Cu(NO3)2:HF, AgNO3:HF, and AgNO3:Cu(NO3)2 on the morphology of AE-DWS wafer were investigated. After the process of MACE, the wafer was treated with a NaF/H2O2 solution. In this process, H2O2 etched the nanostructure, and NaF removed the oxidation layer. The Si {1 1 1} plane was revealed by etching the wafer in a mixture of 0.03 M Cu(NO3)2 and 1 M HF at 55 °C for 2.5 min. These parallel Si {1 1 1} planes replaced some parallel saw marks on the surface of AE-DWS wafers without forming a positive pyramid or an inverted pyramid structure. The main topography of the wafer is comprised of silicon nanowires grown in direction when Ag or Ag/Cu was used as a metal catalyst. When silicon is etched in a mixed solution of Cu(NO3)2, AgNO3, HF and H2O2 at 55 °C with a concentration ratio of [Cu2+]/[Ag+] of 50 or at 65 °C with a concentration ratio of [Cu2+]/[Ag+] of 33, a quasi-inverted pyramid structure can be obtained. The reflectivity of the AE-DWS wafers treated with MACE is lower than that of the multiwire-slurry-sawn (MWSS) mc-Si wafers treated with traditional HF + HNO3 etching.

  5. Control of the Gas Flow in an Industrial Directional Solidification Furnace for Production of High Purity Multicrystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Lijun Liu

    2015-01-01

    Full Text Available A crucible cover was designed as gas guidance to control the gas flow in an industrial directional solidification furnace for producing high purity multicrystalline silicon. Three cover designs were compared to investigate their effect on impurity transport in the furnace and contamination of the silicon melt. Global simulations of coupled oxygen (O and carbon (C transport were carried out to predict the SiO and CO gases in the furnace as well as the O and C distributions in the silicon melt. Cases with and without chemical reaction on the cover surfaces were investigated. It was found that the cover design has little effect on the O concentration in the silicon melt; however, it significantly influences CO gas transport in the furnace chamber and C contamination in the melt. For covers made of metal or with a coating on their surfaces, an optimal cover design can produce a silicon melt free of C contamination. Even for a graphite cover without a coating, the carbon concentration in the silicon melt can be reduced by one order of magnitude. The simulation results demonstrate a method to control the contamination of C impurities in an industrial directional solidification furnace by crucible cover design.

  6. Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells

    Science.gov (United States)

    Ben Rabha, M.; Hajji, M.; Belhadj Mohamed, S.; Hajjaji, A.; Gaidi, M.; Ezzaouia, H.; Bessais, B.

    2012-02-01

    In this paper, we study the optical, optoelectronic and photoluminescence properties of stain-etched porous silicon nanostructures obtained with different etching times. Special attention is given to the use of the stain-etched PS as an antireflection coating as well as for surface passivating capabilities. The surface morphology has been analyzed by scanning electron microscopy. The evolution of the Si-O and Si-H absorption bands was analyzed by Fourier transform infrared spectrometry before and after PS treatment. Results show that stain etching of the silicon surface drops the total reflectivity to about 7% in the 400-1100 nm wavelength range and the minority carrier lifetime enhances to about 48 μs.

  7. Large area multicrystalline silicon solar cells with high efficiency. Final report; Grossflaechige multikristalline Silizium-Solarzellen mit hohen Wirkungsraden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ebest, G.; Erler, K.; Mrwa, A.; Ball, M.

    2001-09-01

    Solar cells were produced of wafers of die-cast and strip-drawn multicrystalline silicon and characterized. Production methods like SOD (spin-on doping), RTP (rapid thermal processing), PECVD (plasma enhanced chemical vapor deposition), RIE (reactive ion etching) and screen printing were investigated. The results are summarized as follows: 1. Layer resistance can be adjusted by variation of the RTP temperature cycle and by selecting appropriate doping materials (P507 by Filmtronics); 2. The low resistance required for screen printing metallization are obtained only with a different doping material (P8545SF-Filmtronics); 3. Metallized aluminium and copper require a 30 nm TiN layer as diffusion barrier; 4. Reflectivity will be reduced most effectively by RIE with chlorine gas on monocrystalline and multicrystalline silicon wafers. [German] Im Rahmen des Projektes wurden auf Wafern aus blockgegossenem und bandgezogenem multikristallinen Silizium Solarzellen hergestellt und charakterisiert. Fuer die Herstellung wurden Verfahren wie SOD (spin-on doping), RTP (rapid thermal processing), PECVD (plasma enhanced chemical vapor deposition), RIE (reactive ion etching) und Siebdruck untersucht. Die Ergebnisse lassen sich wie folgt zusammenfassen: 1. eine Einstellung des Schichtwiderstandes wird durch Variation des RTP-Temperaturzyklus sowie Auswahl verschiedener Dotierstoffe (P507 von Filmtronics) erreicht; 2. die fuer die Siebdruckmetallisierung erforderlichen geringen Schichtwiderstaende werden nur durch die Wahl eines anderen Dotierstoffes (P8545SF-Filmtronics) erreicht; 3. Aluminium- und Kupfermetallisierungen benoetigen eine 30 nm dicke TiN-Schicht als Diffusionsbarriere; und 4. die wirksamste Verminderung des Reflexionsgrades ist mittels RIE-Verfahren unter Verwendung von Chlorgas auf ein- und multikristalline Siliziumwafer erreichbar.

  8. Electron-beam-induced current study of hydrogen passivation on grain boundaries in multicrystalline silicon: Influence of GB character and impurity contamination

    International Nuclear Information System (INIS)

    Chen Jun; Yang Deren; Xi Zhenqiang; Sekiguchi, Takashi

    2005-01-01

    The impacts of grain boundary (GB) character and impurity contamination level on the hydrogen passivation of GBs in multicrystalline silicon (mc-Si) were studied by means of an electron-beam-induced current (EBIC) technique. In mc-Si with a low contamination of Fe, the 300K EBIC contrast of all kinds of GBs in the H-passivated state was weak and similar to that in the as-grown state. The 100K EBIC contrast of Σ (Σ=3, 9, and 27) GBs decreased about 75-80%, whereas that of random and small-angle GBs decreased about 35-40%. Due to the different impurity gettering ability of different GBs, the variation in 100K EBIC contrast has suggested that the effect of H-passivation depends on both the GB character and impurity contamination level. In the mc-Si with heavy contamination of Fe, at both 300 and 100K, the EBIC contrast of both Σ (Σ=3) and random GBs decreased but the ratio was <40%, suggesting that the H-passivation is mainly affected by the impurity contamination level. on

  9. Three dimensional modelling of grain boundary interaction and evolution during directional solidification of multi-crystalline silicon

    Science.gov (United States)

    Jain, T.; Lin, H. K.; Lan, C. W.

    2018-03-01

    The development of grain structures during directional solidification of multi-crystalline silicon (mc-Si) plays a crucial role in the materials quality for silicon solar cells. Three dimensional (3D) modelling of the grain boundary (GB) interaction and evolution based on phase fields by considering anisotropic GB energy and mobility for mc-Si is carried out for the first time to elucidate the process. The energy and mobility of GBs are allowed to depend on misorientation and the GB plane. To examine the correctness of our method, the known the coincident site lattice (CSL) combinations such as (∑ a + ∑ b → ∑ a × b) or (∑ a + ∑ b → ∑ a / b) are verified. We frther discuss how to use the GB normal to characterize a ∑ 3 twin GB into a tilt or a twist one, and show the interaction between tilt and twist ∑ 3 twin GBs. Two experimental scenarios are considered for comparison and the results are in good agreement with the experiments as well as the theoretical predictions.

  10. Effects of spectral variation on the device performance of copper indium diselenide and multi-crystalline silicon photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Okullo, W.; Munji, M.K.; Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth (South Africa)

    2011-02-15

    We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of copper indium diselenide and multi-crystalline silicon photovoltaic modules. Such investigations are of importance in characterization of photovoltaic devices. The investigation centres on the analysis of outdoor solar spectral measurements carried out at 10 min intervals on clear-sky days. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of both modules. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effects of the spectral variation on the performance of the two photovoltaic modules are reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the late afternoon spectra in each case account for the decreased current collection and hence power and efficiency of both modules. (author)

  11. High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method

    KAUST Repository

    Ying, Zhiqin

    2016-05-20

    A wet-chemical surface texturing technique, including a two-step metal-catalyzed chemical etching (MCCE) and an extra alkaline treatment, has been proven as an efficient way to fabricate high-efficiency black multicrystalline (mc) silicon solar cells, whereas it is limited by the production capacity and the cost cutting due to the complicated process. Here, we demonstrated that with careful control of the composition in etching solution, low-aspect-ratio bowl-like nanostructures with atomically smooth surfaces could be directly achieved by improved one-step MCCE and with no posttreatment, like alkali solution. The doublet surface texture of implementing this nanobowl structure upon the industrialized acidic-textured surface showed concurrent improvement in optical and electrical properties for realizing 18.23% efficiency mc-Si solar cells (156 mm × 156 mm), which is sufficiently higher than 17.7% of the solely acidic-textured cells in the same batch. The one-step MCCE method demonstrated in this study may provide a cost-effective way to manufacture high-performance mc-Si solar cells for the present photovoltaic industry. © 2016 IEEE.

  12. Realization of Colored Multicrystalline Silicon Solar Cells with SiO2/SiNx:H Double Layer Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Minghua Li

    2013-01-01

    Full Text Available We presented a method to use SiO2/SiNx:H double layer antireflection coatings (DARC on acid textures to fabricate colored multicrystalline silicon (mc-Si solar cells. Firstly, we modeled the perceived colors and short-circuit current density (Jsc as a function of SiNx:H thickness for single layer SiNx:H, and as a function of SiO2 thickness for the case of SiO2/SiNx:H (DARC with fixed SiNx:H (refractive index n=2.1 at 633 nm, and thickness = 80 nm. The simulation results show that it is possible to achieve various colors by adjusting the thickness of SiO2 to avoid significant optical losses. Therefore, we carried out the experiments by using electron beam (e-beam evaporation to deposit a layer of SiO2 over the standard SiNx:H for 156×156 mm2 mc-Si solar cells which were fabricated by a conventional process. Semisphere reflectivity over 300 nm to 1100 nm and I-V measurements were performed for grey yellow, purple, deep blue, and green cells. The efficiency of colored SiO2/SiNx:H DARC cells is comparable to that of standard SiNx:H light blue cells, which shows the potential of colored cells in industrial applications.

  13. Influence of additional heat exchanger block on directional solidification system for growing multi-crystalline silicon ingot - A simulation investigation

    Science.gov (United States)

    Nagarajan, S. G.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    Transient simulation has been carried out for analyzing the heat transfer properties of Directional Solidification (DS) furnace. The simulation results revealed that the additional heat exchanger block under the bottom insulation on the DS furnace has enhanced the control of solidification of the silicon melt. Controlled Heat extraction rate during the solidification of silicon melt is requisite for growing good quality ingots which has been achieved by the additional heat exchanger block. As an additional heat exchanger block, the water circulating plate has been placed under the bottom insulation. The heat flux analysis of DS system and the temperature distribution studies of grown ingot confirm that the established additional heat exchanger block on the DS system gives additional benefit to the mc-Si ingot.

  14. Multi-crystalline II-VI based multijunction solar cells and modules

    Science.gov (United States)

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  15. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  16. Silicon nanowire-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena (Germany)], E-mail: thomas.stelzner@ipht-jena.de

    2008-07-23

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm{sup 2} open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm{sup -2} were obtained.

  17. Silicon nanowire-based solar cells

    International Nuclear Information System (INIS)

    Stelzner, Th; Pietsch, M; Andrae, G; Falk, F; Ose, E; Christiansen, S

    2008-01-01

    The fabrication of silicon nanowire-based solar cells on silicon wafers and on multicrystalline silicon thin films on glass is described. The nanowires show a strong broadband optical absorption, which makes them an interesting candidate to serve as an absorber in solar cells. The operation of a solar cell is demonstrated with n-doped nanowires grown on a p-doped silicon wafer. From a partially illuminated area of 0.6 cm 2 open-circuit voltages in the range of 230-280 mV and a short-circuit current density of 2 mA cm -2 were obtained

  18. Effect of annealing temperature on the thermal stress and dislocation density of mc-Si ingot grown by DS process for solar cell application

    Science.gov (United States)

    Sanmugavel, S.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    90% of the solar industries are using crystalline silicon. Cost wise the multi-crystalline silicon solar cells are better compared to mono crystalline silicon. But because of the presence of grain boundaries, dislocations and impurities, the efficiency of the multi-crystalline silicon solar cells is lower than that of mono crystalline silicon solar cells. By reducing the defect and dislocation we can achieve high conversion efficiency. The velocity of dislocation motion increases with stress. By annealing the grown ingot at proper temperature we can decrease the stress and dislocation. Our simulation results show that the value of stress and dislocation density is decreased by annealing the grown ingot at 1400K and the input parameters can be implemented in real system to grow a better mc-Si ingot for energy harvesting applications.

  19. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    Science.gov (United States)

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  20. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-01-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400–900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells. PMID:27924911

  1. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  2. X-ray and scanning electron microscopic investigation of porous silicon and silicon epitaxial layers grown on porous silicon

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Pawlowska, M.; Nossarzewska-Orlowska, E.; Brzozowski, A.; Wieteska, K.; Graeff, W.

    1998-01-01

    The 1 to 5 μm thick layers of porous silicon and epitaxial layers grown on porous silicon were studied by means of X-ray diffraction methods, realised with a wide use of synchrotron source and scanning microscopy. The results of x-ray investigation pointed the difference of lateral periodicity between the porous layer and the substrate. It was also found that the deposition of epitaxial layer considerably reduced the coherence of porous fragments. A number of interface phenomena was also observed in section and plane wave topographs. The scanning electron microscopic investigation of cleavage faces enabled direct evaluation of porous layer thickness and revealed some details of their morphology. The scanning observation of etched surfaces of epitaxial layers deposited on porous silicon revealed dislocations and other defects not reasonable in the X-ray topographs. (author)

  3. Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

    KAUST Repository

    Ball, Jeremy

    2012-08-20

    The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ∼4 wires/μ m2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication. © 2012 Optical Society of America.

  4. Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

    KAUST Repository

    Ball, Jeremy; Centeno, Anthony; Mendis, Budhika G.; Reehal, H. S.; Alford, Neil

    2012-01-01

    The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ∼4 wires/μ m2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication. © 2012 Optical Society of America.

  5. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process

    Science.gov (United States)

    Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce

    2017-06-01

    In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.

  6. Effect of metal contamination on recombination properties of extended defects in multicrystalline Si

    Energy Technology Data Exchange (ETDEWEB)

    Feklisova, O.V.; Yakimov, E.B. [Institute of Microelectronics Technology, RAS, Chernogolovka 142432 (Russian Federation); Yu, X.; Yang, D. [State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2012-10-15

    The effect of iron and copper contamination on the recombination properties of extended defects in multicrystalline Si is investigated by the Electron Beam Induced Current (EBIC) method. Plastically deformed Si samples containing dislocations and dislocation trails are also studied for a comparison. It is shown that Fe contamination leads to an essential increase of the EBIC contrast of electrically active grain boundaries and dislocation trails. The EBIC contrast of deformation induced dislocations also increases after iron diffusion while the recombination activity of grown-in dislocations in multicrystalline Si does not practically change after such treatment. Cu contamination also leads to an essential increase of the EBIC contrast of electrically active grain boundaries and dislocation trails. But dislocation contrast in both plastically deformed Si and multicrystalline Si does not practically increase after Cu contamination. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Recombination via point defects and their complexes in solar silicon

    Energy Technology Data Exchange (ETDEWEB)

    Peaker, A.R.; Markevich, V.P.; Hamilton, B. [Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Parada, G.; Dudas, A.; Pap, A. [Semilab, 2 Prielle Kornelia Str, 1117 Budapest (Hungary); Don, E. [Semimetrics, PO Box 36, Kings Langley, Herts WD4 9WB (United Kingdom); Lim, B.; Schmidt, J. [Institute for Solar Energy Research (ISFH) Hamlen, 31860 Emmerthal (Germany); Yu, L.; Yoon, Y.; Rozgonyi, G. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States)

    2012-10-15

    Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically <10{sup 10} cm{sup -3}). Consequently, in integrated circuit technologies using such material, electrically active inadvertent impurities and structural defects are rarely detectable. The quest for cheap photovoltaic cells has led to the use of less pure silicon, multi-crystalline material, and low cost processing for solar applications. Cells made in this way have significant extrinsic recombination mechanisms. In this paper we review recombination involving defects and impurities in single crystal and in multi-crystalline solar silicon. Our main techniques for this work are recombination lifetime mapping measurements using microwave detected photoconductivity decay and variants of deep level transient spectroscopy (DLTS). In particular, we use Laplace DLTS to distinguish between isolated point defects, small precipitate complexes and decorated extended defects. We compare the behavior of some common metallic contaminants in solar silicon in relation to their effect on carrier lifetime and cell efficiency. Finally, we consider the role of hydrogen passivation in relation to transition metal contaminants, grain boundaries and dislocations. We conclude that recombination via point defects can be significant but in most multi-crystalline material the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Phosphorous gettering in acidic textured multicrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Montesdeoca-Santana, A. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez 2, 38206 La Laguna, S/C de Tenerife (Spain); Fraunhofer Institut fuer Solare Energiesysteme ISE, Laboratory and Servicecenter Gelsenkirchen, Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Jimenez-Rodriguez, E.; Diaz-Herrera, B.; Hernandez-Rodriguez, C. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez 2, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez 2, 38206 La Laguna, S/C de Tenerife (Spain); Departamento de Energia Fotovoltaica, Instituto Tecnologico y de Energias Renovables. Poligono Industrial de Granadilla s/n, 38600 San Isidro-Granadilla de Abona, S/C de Tenerife (Spain); Rinio, M.; Borchert, D. [Fraunhofer Institut fuer Solare Energiesysteme ISE, Laboratory and Servicecenter Gelsenkirchen, Auf der Reihe 2, 45884 Gelsenkirchen (Germany); Guerrero-Lemus, R. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez 2, 38206 La Laguna, S/C de Tenerife (Spain); Fundacion de Estudios de Economia Aplicada, Catedra Focus-Abengoa, Jorge Juan 46, 28001 Madrid (Spain)

    2011-03-15

    The influence of phosphorus gettering is studied in this work applied to an acidic textured multicrystalline silicon substrate. The texturization was achieved with an HF/HNO{sub 3} solution leading to nanostructures on the silicon surface. It has been demonstrated in previous works that this textured surface decreases the reflectance on the solar cell and increases the surface area improving the photon collection and enhancing the short circuit current. The present study investigates the effect on the minority carrier lifetime of the phosphorous diffusion when it is carried out on this textured surface. The lifetime is measured by means microwave photoconductance decay and quasi steady state phototoconductance devices. The diffused textured wafers are used to fabricate solar cells and their electrical parameters are analyzed. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Shekari, L., E-mail: lsg09_phy089@student.usm.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Ramizy, A.; Omar, K.; Hassan, H. Abu; Hassan, Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new kind of substrate (porous silicon) was used. Black-Right-Pointing-Pointer Also this research introduces an easy and safe method to grow high quality GaN NWs. Black-Right-Pointing-Pointer This is a new growth process to decrease the cost, complexity of growth of GaN NWs. Black-Right-Pointing-Pointer It is a controllable method to synthesize GaN NWs by thermal evaporation. - Abstract: Nanowires (NWs) of GaN thin films were prepared on as-grown Si (1 1 1) and porous silicon (PS) substrates using thermal evaporation method. The film growth produced high-quality wurtzite GaN NWs. The size, morphology, and nanostructures of the crystals were investigated through scanning electron microscopy, high-resolution X-ray diffraction and photoluminescence spectroscopy. The NWs grown on porous silicon were thinner, longer and denser compared with those on as-grown Si. The energy band gap of the NWs grown on PS was larger than that of NWs on as-grown Si. This is due to the greater quantum confinement effects of the crystalline structure of the NWs grown on PS.

  10. A DLTS study of hydrogen doped czochralski-grown silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, M. [Infineon Technologies Austria AG, 9500 Villach (Austria); Laven, J.G. [Infineon Technologies AG, 81726 Munich (Germany); Kirnstoetter, S. [Institute of Solid State Physics, Graz University of Technology, 8010 Graz (Austria); Schustereder, W. [Infineon Technologies Austria AG, 9500 Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, 81726 Munich (Germany); Rommel, M. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Frey, L. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Chair of Electron Devices, FAU Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2015-12-15

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10–15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  11. Silicon transport in sputter-deposited tantalum layers grown under ion bombardment

    International Nuclear Information System (INIS)

    Gallais, P.; Hantzpergue, J.J.; Remy, J.C.; Roptin, D.

    1988-01-01

    Tantalum was sputter deposited on (111) Si substrate under low-energy ion bombardment in order to study the effects of the ion energy on the silicon transport into the Ta layer. The Si substrate was heated up to 500 0 C during growth. For ion energies up to 180 eV silicon is not transported into tantalum and the growth temperature has no effect. An ion bombardment energy of 280 eV enhances the transport of silicon throughout the tantalum layer. Growth temperatures up to 300 0 C have no effect on the silicon transport which is mainly enhanced by the ion bombardment. For growth temperatures between 300 and 500 0 C, the silicon transport is also enhanced by the thermal diffusion. The experimental depth distribution of silicon is similar to the theoretical depth distribution calculated for the case of an interdiffusion. The ion-enhanced process of silicon transport is characterized by an activation energy of 0.4 eV. Silicon into the layers as-grown at 500 0 C is in both states, amorphous silicide and microcrystalline cubic silicon

  12. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics

    DEFF Research Database (Denmark)

    Rizwan, M.; Meunier, J. D.; Davidian, J. C.

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10...

  13. Silicon accumulation and distribution in petunia and sunflower grown in a rice hull-amended substrate

    Science.gov (United States)

    Silicon (Si) is a plant beneficial element associated with mitigation of abiotic and biotic stresses. Most greenhouse-grown ornamentals are considered low Si accumulators based on foliar Si concentration. However, Si accumulates in all tissues, and there is little published data on the distributio...

  14. Structural and optical properties of ZnO films grown on silicon and ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Photoluminescence (PL) properties of undoped ZnO thin films grown by rf magnetron sputtering on silicon .... voluted O1 s and (c) typical Zr 3d spectra of ZrO2/ZnO/Si film. .... strate doping concentration (NB) of ≈ 2⋅5 × 1015 cm–3 is.

  15. Crystalline silicon films grown by pulsed dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, Peter; Fenske, Frank; Fuhs, Walther; Selle, Burkhardt [Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekulestr. 5, D-12489 Berlin (Germany)

    2002-04-01

    Pulsed dc magnetron sputtering is used as a novel method for the deposition of crystalline silicon films on glass substrates. Hydrogen-free polycrystalline Si-films are deposited with high deposition rates at temperatures of 400-450 C and pulse frequencies f in the range 0-250 kHz. Strong preferential (100) orientation of the crystallites is observed with increasing f. High frequency and similarly high negative substrate bias cause an increase of the Ar content and an enhancement of structural disorder. Measurements of the transient floating potential suggest that the observed structural effects are related to bombardment of the growing film by Ar{sup +} ions of high energy.

  16. Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.

    Science.gov (United States)

    Li, Kun; Sun, Hao; Ren, Fan; Ng, Kar Wei; Tran, Thai-Truong D; Chen, Roger; Chang-Hasnain, Connie J

    2014-01-08

    Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 μm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.

  17. Investigation of the characteristics of multicrystalline silicon for solar cell production: Defects in crystalline silicon (DIXSI). Final report; Verbesserung des Materialverstaendnisses von multikristallinem Silicium fuer Solarzellen: Defekte in kristallinem Silicium (DIXSI). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, A. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Kittler, M. [Institut fuer Halbleiterphysik GmbH, Frankfurt an der Oder (Germany); Wolf, E. [Institut fuer Kristallzuechtung im Forschungsverbund Berlin e.V. (IKZ) (Germany); Breitenstein, O. [Max-Planck-Institut fuer Mikrostrukturphysik, Halle/Saale (Germany); Schulz, M.; Pensl, G.; Strunk, H.P. [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. fuer Werkstoffwissenschaften; Schroeter, W. [Goettingen Univ. (Germany). 4. Physikalisches Inst. - Halbleiterphysik; Gottschalk, H. [Koeln Univ. (Germany). 2. Physikalisches Inst.; Moeller, H.J. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    1997-02-01

    The report describes trends and advances in the fabrication of solar cells from silicon. The investigations were restricted to mc-Si and GZ-Si wafers from German producers and on solar cells made from these. (HW) [Deutsch] Der Bericht beschreibt die Entwicklung und die Fortschritte bei der Fabrikation von Siliziumsolarzellen. Die Untersuchungen wurden auf mc-Si und GZ-Si-Scheiben deutscher Hersteller und auf daraus von der deutschen Industrie gefertigte Solarzellen beschraenkt. (HW)

  18. Disorder in silicon films grown epitaxially at low temperature

    International Nuclear Information System (INIS)

    Schwarzkopf, J.; Selle, B.; Bohne, W.; Roehrich, J.; Sieber, I.; Fuhs, W.

    2003-01-01

    Homoepitaxial Si films were prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition on Si(100) substrates at temperatures of 325-500 deg. C using H 2 , Ar, and SiH 4 as process gases. The gas composition, substrate temperature, and substrate bias voltage were systematically varied to study the breakdown of epitaxial growth. Information from ion beam techniques, like Rutherford backscattering and heavy-ion elastic recoil detection analysis, was combined with transmission and scanning electron micrographs to examine the transition from ordered to amorphous growth. The results suggest that the breakdown proceeds in two stages: (i) highly defective but still ordered growth with a defect density increasing with increasing film thickness and (ii) formation of conically shaped amorphous precipitates. The hydrogen content is found to be directly related to the degree of disorder which acts as sink for excessive hydrogen. Only in almost perfect epitaxially grown films is the hydrogen level low, and an exponential tail of the H concentration into the crystalline substrate is observed as a result of the diffusive transport of hydrogen

  19. Conformity and structure of titanium oxide films grown by atomic layer deposition on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jogi, Indrek [University of Tartu, Institute of Experimental Physics and Technology, Taehe 4, 51010, Tartu (Estonia)], E-mail: indrek.jogi@ut.ee; Paers, Martti; Aarik, Jaan; Aidla, Aleks [University of Tartu, Institute of Physics, Riia 142, 51014, Tartu (Estonia); Laan, Matti [University of Tartu, Institute of Experimental Physics and Technology, Taehe 4, 51010, Tartu (Estonia); Sundqvist, Jonas; Oberbeck, Lars; Heitmann, Johannes [Qimonda Dresden GmbH and Co. OHG, Koenigsbruecker Strasse 180, 01099, Dresden (Germany); Kukli, Kaupo [University of Tartu, Institute of Experimental Physics and Technology, Taehe 4, 51010, Tartu (Estonia)

    2008-06-02

    Conformity and phase structure of atomic layer deposited TiO{sub 2} thin films grown on silicon substrates were studied. The films were grown using TiCl{sub 4} and Ti(OC{sub 2}H{sub 5}){sub 4} as titanium precursors in the temperature range from 125 to 500 {sup o}C. In all cases perfect conformal growth was achieved on patterned substrates with elliptical holes of 7.5 {mu}m depth and aspect ratio of about 1:40. Conformal growth was achieved with process parameters similar to those optimized for the growth on planar wafers. The dominant crystalline phase in the as-grown films was anatase, with some contribution from rutile at relatively higher temperatures. Annealing in the oxygen ambient resulted in (re)crystallization whereas the effect of annealing depended markedly on the precursors used in the deposition process. Compared to films grown from TiCl{sub 4}, the films grown from Ti(OC{sub 2}H{sub 5}){sub 4} were transformed into rutile in somewhat greater extent, whereas in terms of step coverage the films grown from Ti(OC{sub 2}H{sub 5}){sub 4} remained somewhat inferior compared to the films grown from TiCl{sub 4}.

  20. Polarization dependent femtosecond laser modification of MBE-grown III-V nanostructures on silicon

    OpenAIRE

    Zandbergen, Sander R.; Gibson, Ricky; Amirsolaimani, Babak; Mehravar, Soroush; Keiffer, Patrick; Azarm, Ali; Kieu, Khanh

    2017-01-01

    We report a novel, polarization dependent, femtosecond laser-induced modification of surface nanostructures of indium, gallium, and arsenic grown on silicon via molecular beam epitaxy, yielding shape control from linear and circular polarization of laser excitation. Linear polarization causes an elongation effect, beyond the dimensions of the unexposed nanostructures, ranging from 88 nm to over 1 um, and circular polarization causes the nanostructures to flatten out or form loops of material,...

  1. Effect of Processing Parameters on Thickness of Columnar Structured Silicon Wafers Directly Grown from Silicon Melts

    Directory of Open Access Journals (Sweden)

    Jin-Seok Lee

    2012-01-01

    Full Text Available In order to obtain optimum growth conditions for desired thickness and more effective silicon feedstock usage, effects of processing parameters such as preheated substrate temperatures, time intervals, moving velocity of substrates, and Ar gas blowing rates on silicon ribbon thickness were investigated in the horizontal growth process. Most of the parameters strongly affected in the control of ribbon thickness with columnar grain structure depended on the solidification rate. The thickness of the silicon ribbon decreased with an increasing substrate temperature, decreasing time interval, and increasing moving velocity of the substrate. However, the blowing of Ar gas onto a liquid layer existing on the surface of solidified ribbon contributed to achieving smooth surface roughness but did not closely affect the change of ribbon thickness in the case of a blowing rate of ≥0.65 Nm3/h because the thickness of the solidified layer was already determined by the exit height of the reservoir.

  2. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power

    Science.gov (United States)

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Cho, Churl-Hee

    2014-08-01

    Electron beam melting (EBM) systems have been used to improve the purity of metallurgical grade silicon feedstock for photovoltaic application. Our advanced EBM system is able to effectively remove volatile impurities using a heat source with high energy from an electron gun and to continuously allow impurities to segregate at the top of an ingot solidified in a directional solidification (DS) zone in a vacuum chamber. Heat in the silicon melt should move toward the ingot bottom for the desired DS. However, heat flux though the ingot is changed as the ingot becomes longer due to low thermal conductivity of silicon. This causes a non-uniform microstructure of the ingot, finally leading to impurity segregation at its middle. In this research, EB power irradiated on the silicon melt was controlled during the ingot growth in order to suppress the change of heat flux. EB power was reduced from 12 to 6.6 kW during the growth period of 45 min with a drop rate of 0.125 kW/min. Also, the silicon ingot was grown under a constant EB power of 12 kW to estimate the effect of the drop rate of EB power. When the EB power was reduced, the grains with columnar shape were much larger at the middle of the ingot compared to the case of constant EB power. Also, the present research reports a possible reason for the improvement of ingot purity by considering heat flux behaviors.

  3. Chemical and structural properties of polymorphous silicon thin films grown from dichlorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Macías, C.; Monroy, B.M.; Huerta, L.; Canseco-Martínez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico); Picquart, M. [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 09340 México, D.F. (Mexico); Santoyo-Salazar, J. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, C.P. 07000 México, D.F. (Mexico); Sánchez, M.F. García [Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. I.P.N. 2580, Gustavo A. Madero, 07340 México .D.F. (Mexico); Santana, G., E-mail: gsantana@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico)

    2013-11-15

    We have examined the effects of hydrogen dilution (R{sub H}) and deposition pressure on the morphological, structural and chemical properties of polymorphous silicon thin films (pm-Si:H), using dichlorosilane as silicon precursor in the plasma enhanced chemical vapor deposition (PECVD) process. The use of silicon chlorinated precursors enhances the crystallization process in as grown pm-Si:H samples, obtaining crystalline fractions from Raman spectra in the range of 65–95%. Atomic Force Microscopy results show the morphological differences obtained when the chlorine chemistry dominates the growth process and when the plasma–surface interactions become more prominent. Augmenting R{sub H} causes a considerable reduction in both roughness and topography, demonstrating an enhancement of ion bombardment and attack of the growing surface. X-ray Photoelectron Spectroscopy results show that, after ambient exposure, there is low concentration of oxygen inside the films grown at low R{sub H}, present in the form of Si-O, which can be considered as structural defects. Instead, oxidation increases with deposition pressure and dilution, along with film porosity, generating a secondary SiO{sub x} phase. For higher pressure and dilution, the amount of chlorine incorporated to the film decreases congruently with HCl chlorine extraction processes involving atomic hydrogen interactions with the surface. In all cases, weak silicon hydride (Si-H) bonds were not detected by infrared spectroscopy, while bonding configurations associated to the silicon nanocrystal surface were clearly observed. Since these films are generally used in photovoltaic devices, analyzing their chemical and structural properties such as oxygen incorporation to the films, along with chlorine and hydrogen, is fundamental in order to understand and optimize their electrical and optical properties.

  4. Aggregation performance of CdO grains grown on surface of N silicon crystal

    International Nuclear Information System (INIS)

    Zhang Jizhong; Zhao Huan

    2010-01-01

    Four kinds of aggregation patterns of CdO grains were formed on the surface of N silicon substrate heated at 580 deg. C for 1 h in an evaporation-deposition device. They were ellipse-shaped or quasi-circular-shaped aggregate, long ribbon-shaped aggregate, long chain-shaped or long double-chain-shaped aggregate, and long ellipse-chain-shaped aggregate. These aggregates consisted of numerous grains or tiny crystals, and deposited on top of the CdO bush-like long crystal clusters grown earlier. They exhibited clearly spontaneous self-organization aggregation performance. Surface defects of the virgin N silicon crystal were analyzed, and mechanism of the self-organization aggregation was discussed with a defect induced aggregation (DIA) model.

  5. Defects in Czochralski-grown silicon crystals investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Atsushi; Kawakami, Kazuto; Haga, Hiroyo [Nippon Steel Corp., Sagamihara, Kanagawa (Japan). Electronics Research Labs.; Uedono, Akira; Wei, Long; Kawano, Takao; Tanigawa, Shoichiro

    1994-10-01

    Positron lifetime and Doppler broadening experiments were performed on Czochralski-grown silicon crystals. A monoenergetic positron beam was also used to measure the diffusion length of positrons in the wafer. From the measurements, it was observed that the value of diffusion length of positrons decreased at the region where microdefects were formed during the crystal growth process. It was also found that the line shape parameter S decreased and the lifetime of positrons increased at the region. These results can be attributed to the annihilation of positrons trapped by vacancy oxygen complexes which are formed in association with the microdefects. (author).

  6. Covalent functionalization of carbon nanotube forests grown in situ on a metal-silicon chip

    KAUST Repository

    Johansson, Johan R.

    2012-03-12

    We report on the successful covalent functionalization of carbon nanotube (CNT) forests, in situ grown on a silicon chip with thin metal contact film as the buffer layer between the CNT forests and the substrate. The CNT forests were successfully functionalized with active amine and azide groups, which can be used for further chemical reactions. The morphology of the CNT forests was maintained after the functionalization. We thus provide a promising foundation for a miniaturized biosensor arrays system that can be easily integrated with Complementary Metal-Oxide Semiconductor (CMOS) technology.

  7. Covalent functionalization of carbon nanotube forests grown in situ on a metal-silicon chip

    KAUST Repository

    Johansson, Johan R.; Bosaeus, Niklas; Kann, Nina; Å kerman, Bjö rn; Nordé n, Bengt; Khalid, Waqas

    2012-01-01

    We report on the successful covalent functionalization of carbon nanotube (CNT) forests, in situ grown on a silicon chip with thin metal contact film as the buffer layer between the CNT forests and the substrate. The CNT forests were successfully functionalized with active amine and azide groups, which can be used for further chemical reactions. The morphology of the CNT forests was maintained after the functionalization. We thus provide a promising foundation for a miniaturized biosensor arrays system that can be easily integrated with Complementary Metal-Oxide Semiconductor (CMOS) technology.

  8. Electrical properties of MOS structures on nitrogen-doped Czochralski-grown silicon: A positron annihilation study

    International Nuclear Information System (INIS)

    Slugen, V.; Harmatha, L.; Tapajna, M.; Ballo, P.; Pisecny, P.; Sik, J.; Koegel, G.; Krsjak, V.

    2006-01-01

    Measurements of interface trap density, effective generation lifetime (GL) and effective surface generation velocity have been performed using different methods on selected MOS structures prepared on nitrogen-doped Czochralski-grown (NCz) silicon. The application of the positron annihilation technique using a pulsed low energy positron system (PLEPS) focused on the detection of nitrogen-related defects in NCz silicon in the near surface region. In the case of p-type Cz silicon, all the results could be used for the testing of homogeneity. In n-type Cz silicon, positron annihilation was found insensitive to nitrogen doping

  9. ZnO nanocoral reef grown on porous silicon substrates without catalyst

    International Nuclear Information System (INIS)

    Abdulgafour, H.I.; Yam, F.K.; Hassan, Z.; AL-Heuseen, K.; Jawad, M.J.

    2011-01-01

    Research highlights: → Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates. → Flower-like aligned ZnO nanorods are fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. → The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency. → This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices. - Abstract: Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates with rough morphology. Flower-like aligned ZnO nanorods are also fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. The characteristics of these nanostructures are investigated using field-emission scanning electron microscopy, grazing-angle X-ray diffraction (XRD), and photoluminescence (PL) measurements of structures grown on both Si and porous Si substrates. The texture coefficient obtained from the XRD spectra indicates that the coral reef-like nanostructures are highly oriented on the porous silicon substrate with decreasing nanorods length and diameter from 800-900 nm to 3.5-5.5 μm and from 217-229 nm to 0.6-0.7 μm, respectively. The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency and the intensity increase with the improvement of ZnO crystallization. This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices.

  10. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    Science.gov (United States)

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  11. ZnO nanocoral reef grown on porous silicon substrates without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Abdulgafour, H.I., E-mail: hind_alshaikh@yahoo.com [School of Physics, University Sains Malaysia 11800 Penang (Malaysia); Yam, F.K.; Hassan, Z.; AL-Heuseen, K.; Jawad, M.J. [School of Physics, University Sains Malaysia 11800 Penang (Malaysia)

    2011-05-05

    Research highlights: > Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates. > Flower-like aligned ZnO nanorods are fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. > The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency. > This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices. - Abstract: Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates with rough morphology. Flower-like aligned ZnO nanorods are also fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. The characteristics of these nanostructures are investigated using field-emission scanning electron microscopy, grazing-angle X-ray diffraction (XRD), and photoluminescence (PL) measurements of structures grown on both Si and porous Si substrates. The texture coefficient obtained from the XRD spectra indicates that the coral reef-like nanostructures are highly oriented on the porous silicon substrate with decreasing nanorods length and diameter from 800-900 nm to 3.5-5.5 {mu}m and from 217-229 nm to 0.6-0.7 {mu}m, respectively. The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency and the intensity increase with the improvement of ZnO crystallization. This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices.

  12. Light and current induced degradation in p-type multi-crystalline cells and development of an inspection method and a stabilization method

    Energy Technology Data Exchange (ETDEWEB)

    Broek, K.M.; Bennett, I.J.; Jansen, M.J.; Borg, Van der N.J.C.M.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    Stable solar cells are needed for durability testing of different combinations of module materials. In such a test, significant power losses in full-size modules with multi-crystalline cells after thermal cycling have been observed. This has been related to degradation of the solar cells used and it appeared that this was caused by current induced degradation. This phenomenon is not limited to boron doped Cz-Si, but can also occur in p-type multi-crystalline silicon. Work was done to develop an incoming inspection method for new batches of cells. Also, stabilisation procedures for modules containing cells that are sensitive to degradation have been determined.

  13. Study on defects and impurities in cast-grown polycrystalline silicon substrates for solar cells

    International Nuclear Information System (INIS)

    Arafune, K.; Sasaki, T.; Wakabayashi, F.; Terada, Y.; Ohshita, Y.; Yamaguchi, M.

    2006-01-01

    We focused on the defects and impurities in polycrystalline silicon substrates, which deteriorate solar cell efficiency. Comparison of the minority carrier lifetime with the grain size showed that the region with short minority carrier lifetimes did not correspond to the region with small grains. Conversely, the minority carrier lifetime decreased as the etch-pit density (EPD) increased, suggesting that the minority carrier lifetime is strongly affected by the EPD. Electron beam induced current measurements revealed that a combination of grain boundaries and point defects had high recombination activity. Regarding impurities, the interstitial oxygen concentration was relatively low compared with that in a Czochralski-grown silicon substrate, the total carbon concentration exceeded the solubility limit of silicon melt. X-ray microprobe fluorescence measurements revealed a large amount of iron in the regions where there were many etch-pits and grain boundaries with etch-pits. X-ray absorption near edge spectrum analysis revealed trapped iron in the form of oxidized iron

  14. Electrical properties of as-grown and proton-irradiated high purity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Jerzy, E-mail: krupka@imio.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Karcz, Waldemar [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Kamiński, Paweł [Institute of Electronic Materials Technology, Wólczyńska 13, 301-919 Warsaw (Poland); Jensen, Leif [Topsil Semiconductor Materials A/S, Siliciumvej 1, DK-3600 Frederikssund (Denmark)

    2016-08-01

    The complex permittivity of as-grown and proton-irradiated samples of high purity silicon obtained by the floating zone method was measured as a function of temperature at a few frequencies in microwave spectrum by employing the quasi TE{sub 011} and whispering gallery modes excited in the samples under test. The resistivity of the samples was determined from the measured imaginary part of the permittivity. The resistivity was additionally measured at RF frequencies employing capacitive spectroscopy as well as in a standard direct current experiment. The sample of as-grown material had the resistivity of ∼85 kΩ cm at room temperature. The sample irradiated with 23-MeV protons had the resistivity of ∼500 kΩ cm at 295 K and its behavior was typical of the intrinsic material at room and at elevated temperatures. For the irradiated sample, the extrinsic conductivity region is missing and at temperatures below 250 K hopping conductivity occurs. Thermal cycle hysteresis of the resistivity for the sample of as-grown material is observed. After heating and subsequent cooling of the sample, its resistivity decreases and then slowly (∼50 h) returns to the initial value.

  15. Diode behavior in ultra-thin low temperature ALD grown zinc-oxide on silicon

    Directory of Open Access Journals (Sweden)

    Nazek El-Atab

    2013-10-01

    Full Text Available A thin-film ZnO(n/Si(p+ heterojunction diode is demonstrated. The thin film ZnO layer is deposited by Atomic Layer Deposition (ALD at different temperatures on a p-type silicon substrate. Atomic force microscopy (AFM AC-in-Air method in addition to conductive AFM (CAFM were used for the characterization of ZnO layer and to measure the current-voltage characteristics. Forward and reverse bias n-p diode behavior with good rectification properties is achieved. The diode with ZnO grown at 80°C exhibited the highest on/off ratio with a turn-on voltage (VON ∼3.5 V. The measured breakdown voltage (VBR and electric field (EBR for this diode are 5.4 V and 3.86 MV/cm, respectively.

  16. Quantum efficiency of InAs/InP nanowire heterostructures grown on silicon substrates

    International Nuclear Information System (INIS)

    Anufriev, Roman; Chauvin, Nicolas; Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles

    2013-01-01

    Photoluminescence (PL) quantum efficiency (QE) is experimentally investigated, using an integrating sphere, as a function of excitation power on both InAs/InP quantum rod nanowires (QRod-NWs) and radial quantum well nanowires (QWell-NWs) grown on silicon substrates. The measured values of the QE are compared with those of the planar analogues such as quantum dash and quantum well samples, and found to be comparable for the quantum well structures at relatively low power density. Further studies reveal that the values of QE of the QRod-NWs and QWell-NWs are limited by the low quality of the InP NW structure and the quality of radial quantum well, respectively. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Defects in silicon carbide grown by fluorinated chemical vapor deposition chemistry

    Science.gov (United States)

    Stenberg, Pontus; Booker, Ian D.; Karhu, Robin; Pedersen, Henrik; Janzén, Erik; Ivanov, Ivan G.

    2018-04-01

    Point defects in n- and p-type 4H-SiC grown by fluorinated chemical vapor deposition (CVD) have been characterized optically by photoluminescence (PL) and electrically by deep-level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). The results are considered in comparison with defects observed in non-fluorinated CVD growth (e.g., using SiH4 instead of SiF4 as silicon precursor), in order to investigate whether specific fluorine-related defects form during the fluorinated CVD growth, which might prohibit the use of fluorinated chemistry for device-manufacturing purposes. Several new peaks identifying new defects appear in the PL of fluorinated-grown samples, which are not commonly observed neither in other halogenated chemistries, nor in the standard CVD chemistry using silane (SiH4). However, further investigation is needed in order to determine their origin and whether they are related to incorporation of F in the SiC lattice, or not. The electric characterization does not find any new electrically-active defects that can be related to F incorporation. Thus, we find no point defects prohibiting the use of fluorinated chemistry for device-making purposes.

  18. Twins and strain relaxation in zinc-blende GaAs nanowires grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Araújo, D.; Pastore, C.E.; Gutierrez, M. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Frigeri, C. [Istituto CNR-IMEM Parco Area delle Scienze 37/A, Fontanini, 43010, Parma (Italy); Benali, A.; Lelièvre, J.F.; Gendry, M. [INL-Institut des Nanotechnologies de Lyon, UMR 5270 Ecole Centrale de Lyon 36, Avenue Guy de Collongue, 69134, Ecully Cedex (France)

    2017-02-15

    Highlights: • A TEM-HREM study of GaAs nanowires, growth over Si, is presented. • Misfit dislocations are detected in the Si/GaAs magma interface. • The study demonstrates strain relaxation through twin formation in some nanowires. - Abstract: To integrate materials with large lattice mismatch as GaAs on silicon (Si) substrate, one possible approach, to improve the GaAs crystalline quality, is to use nanowires (NWs) technology. In the present contribution, NWs are grown on <111> oriented Si substrates by molecular beam epitaxy (MBE) using vapor-liquid-solid (VLS) method. Transmission electron microscopy (TEM) analyses show that NWs are mainly grown alternating wurtzite and zinc blend (ZB) phases, and only few are purely ZB. On the latter, High Resolution Electron Microscopy (HREM) evidences the presence of twins near the surface of the NW showing limited concordance with the calculations of Yuan (2013) [1], where {111} twin planes in a <111>-oriented GaAs NW attain attractive interactions mediated by surface strain. In addition, such twins allow slight strain relaxation and are probably induced by the local huge elastic strain observed by HREM in the lattice between the twin and the surface. The latter is attributed to some slight bending of the NW as shown by the inversion of the strain from one side to the other side of the NW.

  19. Electron-spin-resonance study of radiation-induced paramagnetic defects in oxides grown on (100) silicon substrates

    International Nuclear Information System (INIS)

    Kim, Y.Y.; Lenahan, P.M.

    1988-01-01

    We have used electron-spin resonance to investigate radiation-induced point defects in Si/SiO 2 structures with (100) silicon substrates. We find that the radiation-induced point defects are quite similar to defects generated in Si/SiO 2 structures grown on (111) silicon substrates. In both cases, an oxygen-deficient silicon center, the E' defect, appears to be responsible for trapped positive charge. In both cases trivalent silicon (P/sub b/ centers) defects are primarily responsible for radiation-induced interface states. In earlier electron-spin-resonance studies of unirradiated (100) substrate capacitors two types of P/sub b/ centers were observed; in oxides prepared in three different ways only one of these centers, the P/sub b/ 0 defect, is generated in large numbers by ionizing radiation

  20. Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells

    International Nuclear Information System (INIS)

    Fay, Sylvie; Steinhauser, Jerome; Nicolay, Sylvain; Ballif, Christophe

    2010-01-01

    Conductive zinc oxide (ZnO) grown by low pressure chemical vapor deposition (LPCVD) technique possesses a rough surface that induces an efficient light scattering in thin film silicon (TF Si) solar cells, which makes this TCO an ideal candidate for contacting such devices. IMT-EPFL has developed an in-house LPCVD process for the deposition of nanotextured boron doped ZnO films used as rough TCO for TF Si solar cells. This paper is a general review and synthesis of the study of the electrical, optical and structural properties of the ZnO:B that has been performed at IMT-EPFL. The influence of the free carrier absorption and the grain size on the electrical and optical properties of LPCVD ZnO:B is discussed. Transport mechanisms at grain boundaries are studied. It is seen that high doping of the ZnO grains facilitates the tunnelling of the electrons through potential barriers that are located at the grain boundaries. Therefore, even if these potential barriers increase after an exposition of the film to a humid atmosphere, the heavily doped LPCVD ZnO:B layers show a remarkable stable conductivity. However, the introduction of diborane in the CVD reaction induces also a degradation of the intra-grain mobility and increases over-proportionally the optical absorption of the ZnO:B films. Hence, the necessity to finely tune the doping level of LPCVD ZnO:B films is highlighted. Finally, the next challenges to push further the optimization of LPCVD ZnO:B films for thin film silicon solar cells are discussed, as well as some remarkable record cell results achieved with LPCVD ZnO:B as front electrode.

  1. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.

    Science.gov (United States)

    Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

  2. Investigation on nonlinear optical properties of MoS2 nanoflakes grown on silicon and quartz substrates

    Science.gov (United States)

    Bayesteh, Samaneh; Zahra Mortazavi, Seyedeh; Reyhani, Ali

    2018-05-01

    In this study, MoS2 nanoflakes were directly grown on different substrates—Si/SiO2 and quartz—by one-step thermal chemical vapor deposition using MoO3 and sulfide powders as precursors. Scanning electron microscopy and x-ray diffraction patterns demonstrated the formation of MoS2 structures on both substrates. Moreover, UV-visible and photoluminescence analysis confirmed the formation of MoS2 few-layer structures. According to Raman spectroscopy, by assessment of the line width and frequency shift differences between the and A 1g, it was inferred that the MoS2 grown on the silicon substrate was monolayer and that grown on the quartz substrate was multilayer. In addition, open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the grown MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as the light source. It is noticeable that both samples demonstrate obvious self-defocusing behavior. The monolayer MoS2 grown on the silicon substrate displayed considerable two-photon absorption while, the multilayer MoS2 synthesized on the quartz exhibited saturable absorption. In general, few-layered MoS2 would be useful for the development of nanophotonic devices like optical limiters, optical switchers, etc.

  3. Microdefects in an as-grown Czochralski silicon crystal studied by synchrotron radiation section topography with aid of computer simulation

    International Nuclear Information System (INIS)

    Iida, Satoshi; Aoki, Yoshirou; Okitsu, Kouhei; Sugita, Yoshimitsu; Kawata, Hiroshi; Abe, Takao

    1998-01-01

    Grown-in microdefects of a Czochralski (CZ) silicon crystal grown at a slow growth rate were studied by section topography using high energy synchrotron radiation. Images of the microdefects in the section topographs were analyzed quantitatively using computer simulation based on the Takagi-Taupin type dynamical diffraction theory of X-rays, and reproduced successfully by the simulation when the microdefects were assumed to be spherical strain centers. Sizes and positions of the microdefects were able to be determined by detailed comparison between the experiments and the computer simulations. The validity of the computer simulation in an analysis of the section topographs is discussed. (author)

  4. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Odoardi, Antonella; Santucci, Sandro; Passacantando, Maurizio

    2018-02-01

    Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.

  5. The analysis of low-energy ion from a gas-puff laser plasma. The observation of ablated particles from the silicon irradiated with a fs laser

    International Nuclear Information System (INIS)

    Azuma, Hirozumi; Kamiya, Nobuyuki; Takeuchi, Akihiro; Ito, Tadashi; Suzuki, Noritomo; Daido, Hiroyuki; Mori, Michiaki; Ogura, Kouichi; Sagisaka, Akito; Orimo, Satoshi; Hayashi, Yukio; Hazama, Hisanao

    2005-01-01

    The single-shot creation of tadpolelike silicon nanoparticles constructed with multi-crystalline heads and amorphous tails by a high brightness fs-pulse laser was demonstrated. This is also the first demonstration of the creation of a nanosized connection of multicrystalline silicon with amorphous silicon. This result should expand the creation of new materials by a laser ablation using a high-intensity fs laser, and the created silicon nanoparticles can be applied to scientific and industrial fields. (author)

  6. Controlling the optical properties of monocrystalline 3C-SiC heteroepitaxially grown on silicon at low temperatures

    Science.gov (United States)

    Colston, Gerard; Myronov, Maksym

    2017-11-01

    Cubic silicon carbide (3C-SiC) offers an alternative wide bandgap semiconductor to conventional materials such as hexagonal silicon carbide (4H-SiC) or gallium nitride (GaN) for the detection of UV light and can offer a closely lattice matched virtual substrate for subsequent GaN heteroepitaxy. As 3C-SiC can be heteroepitaxially grown on silicon (Si) substrates its optical properties can be manipulated by controlling the thickness and doping concentrations. The optical properties of 3C-SiC epilayers have been characterized by measuring the transmission of light through suspended membranes. Decreasing the thickness of the 3C-SiC epilayers is shown to shift the absorbance edge to lower wavelengths, a result of the indirect bandgap nature of silicon carbide. This property, among others, can be exploited to fabricate very low-cost, tuneable 3C-SiC based UV photodetectors. This study investigates the effect of thickness and doping concentration on the optical properties of 3C-SiC epilayers grown at low temperatures by a standard Si based growth process. The results demonstrate the potential photonic applications of 3C-SiC and its heterogeneous integration into the Si industry.

  7. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes

    KAUST Repository

    Chan, Candace K.; Patel, Reken N.; O’ Connell, Michael J.; Korgel, Brian A.; Cui, Yi

    2010-01-01

    Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires

  8. Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers

    International Nuclear Information System (INIS)

    Akbari-Sharbaf, Arash; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Fanchini, Giovanni

    2013-01-01

    We investigate the role of disorder, stress and crystallite size in determining the density of defects in disordered and partially ordered silicon thin films deposited at low or moderate temperatures by molecular beam epitaxy. We find that the paramagnetic defect density measured by electron spin resonance (ESR) is strongly dependent on the growth temperature of the films, decreasing from ∼ 2 · 10 19 cm −3 at 98 °C to ∼ 1 · 10 18 cm −3 at 572 °C. The physical nature of the defects is strongly dependent on the range of order in the films: ESR spectra consistent with dangling bonds in an amorphous phase are observed at the lowest temperatures, while the ESR signal gradually becomes more anisotropic as medium-range order improves and the stress level (measured both by X-ray diffraction and Raman spectroscopy) is released in more crystalline films. Anisotropic ESR spectra consistent with paramagnetic defects embedded in an epitaxial phase are observed at the highest growth temperature (572 °C). - Highlights: ► Disordered Si epilayers were grown by molecular beam epitaxy. ► Growth has been carried out at temperatures T = 98 °C–514 °C. ► A correlation between defect density and disorder in the films has been found. ► Lack of medium range order and stress cause the formation of defects at low T. ► At high T, defects are associated to grain boundaries and oriented stacking faults

  9. Infrared defect dynamics—Nitrogen-vacancy complexes in float zone grown silicon introduced by electron irradiation

    Science.gov (United States)

    Inoue, Naohisa; Kawamura, Yuichi

    2018-05-01

    The interaction of nitrogen and intrinsic point defects, vacancy (V) and self-interstitial (I), was examined by infrared absorption spectroscopy on the electron irradiated and post-annealed nitrogen doped float zone (FZ) silicon crystal. Various absorption lines were observed, at 551 cm-1 in as-grown samples, at 726 and 778 cm-1 in as-irradiated samples (Ir group), at 689 cm-1 after post-annealing at 400 °C and above (400 °C group), at 762 and 951 cm-1 after annealing at 600 °C (600 °C group), and at 714 cm-1 up to 800 °C (800 °C group). By irradiation, a part of N2 was changed into the Ir group. VN2 is the candidate for the origin of the Ir group. By the post annealing at 400 and 600 °C, a part of N2 and the Ir group were changed into the 400 °C group, to less extent at 600 °C. V2N2 is the candidate for the origin of the 400 °C group. By annealing at 600 °C, most of the Ir group turned into 400 °C and 600 °C groups. By annealing at 800 °C, N2 recovered almost completely, and most other complexes were not observed. Recently, lifetime degradation has been observed in the nitrogen doped FZ Si annealed at between 450 and 800 °C. The N-V interaction in the same temperature range revealed here will help to understand the lifetime degradation mechanism. The behavior of the 689 cm-1 line corresponded well to the lifetime degradation.

  10. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    OpenAIRE

    Kurdali, Fawaz; Al-Chammaa, Mohammad

    2013-01-01

    The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si) and/or potassium (K) applications on growth and nitrogen uptake in barley plants grown under water (FC1) and non water (FC2) stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si 50, Si 100 and Si 200) and one fertilizer rate of K were used. Dry matter (DM) and N yield (NY) in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the wa...

  11. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  12. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    KAUST Repository

    Heo, Junseok

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga 0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively. © 2013 AIP Publishing LLC.

  13. MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates

    International Nuclear Information System (INIS)

    Jamil, Muhammad; Arif, Ronald A.; Ee, Yik-Khoon; Tong, Hua; Tansu, Nelson; Higgins, John B.

    2008-01-01

    This paper reports the study of MOVPE of InN on GaN templates grown on sapphire and silicon(111) substrates. Thermodynamic analysis of MOVPE of InN performed using NH 3 as nitrogen source and the experimental findings support the droplet-free epitaxial growth of InN under high V/III ratios of input precursors. At a growth pressure of 500 Torr, the optimum growth temperature and V/III ratio of the InN film are 575-650 C and >3 x 10 5 , respectively. The surface RMS roughness of InN film grown GaN/sapphire template is ∝0.3 nm on 2 μm x 2 μm area, while the RMS roughness of the InN film grown on GaN/Si(111) templates is found as ∝0.7 nm. The X-ray diffraction (XRD) measurement reveals the (0002) texture of the InN film on GaN/sapphire template with a FWHM of 281 arcsec of the InN(0002) ω rocking curve. For the film grown on GaN/Si template under identical growth conditions, the XRD measurements show the presence of metallic In, in addition to the (0002) orientation of InN layer. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Improvement of multicrystalline silicon wafer solar cells by post ...

    Indian Academy of Sciences (India)

    Administrator

    post-fabrication wet-chemical etching in phosphoric acid. A MEFOUED1,2,*, M FATHI1, ... and RCA decontamination stages by putting them in a bath made of ... found to be decreasing after chemical attack as shown in figure 2. In order to ...

  15. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  16. Simultaneous electron-proton irradiation of crucible grown and float-zone silicon solar cells

    International Nuclear Information System (INIS)

    Bernard, J.

    1974-01-01

    The realisation of an irradiation chamber which permits simultaneous irradiations by electrons, protons, photons and in-situ measurements of solar cells main parameters (diffusion length, I.V. characteristics) is described. Results obtained on 20 solar cells n/p 10Ωcm made in silicon pulled crystals and 20 solar cells n/p 10Ωcm made in silicon float-zone simultaneously irradiated with electrons and photons are given [fr

  17. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes

    KAUST Repository

    Chan, Candace K.

    2010-03-23

    Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles. © 2010 American Chemical Society.

  18. Solution-grown silicon nanowires for lithium-ion battery anodes.

    Science.gov (United States)

    Chan, Candace K; Patel, Reken N; O'Connell, Michael J; Korgel, Brian A; Cui, Yi

    2010-03-23

    Composite electrodes composed of silicon nanowires synthesized using the supercritical fluid-liquid-solid (SFLS) method mixed with amorphous carbon or carbon nanotubes were evaluated as Li-ion battery anodes. Carbon coating of the silicon nanowires using the pyrolysis of sugar was found to be crucial for making good electronic contact to the material. Using multiwalled carbon nanotubes as the conducting additive was found to be more effective for obtaining good cycling behavior than using amorphous carbon. Reversible capacities of 1500 mAh/g were observed for 30 cycles.

  19. Carrier transport in polycrystalline silicon thin films solar cells grown on a highly textured structure

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Takakura, H.; Hamakawa, Y.; Muhida, R.; Kawamura, T.; Harano, T.; Toyama, T.; Okamoto, H.

    2004-01-01

    Roč. 43, 9A (2004), s. 5955-5959 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon thin film * solar cells * substrate texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2004

  20. Ultrahigh capacitance density for multiple ALD-grown MIM capacitor stacks in 3-D silicon

    NARCIS (Netherlands)

    Klootwijk, J.H.; Jinesh, K.B.; Dekkers, W.; Verhoeven, J.F.C.; Heuvel, van den F.C.; Kim, H.-D.; Blin, D.; Verheijen, M.A.; Weemaes, R.G.R.; Kaiser, M.; Ruigrok, J.J.M.; Roozeboom, F.

    2008-01-01

    "Trench" capacitors containing multiple metal-insulator-metal (MIM) layer stacks are realized by atomic-layer deposition (ALD), yielding an ultrahigh capacitance density of 440 nF/mm2 at a breakdown voltage VBD > 6 V. This capacitance density on silicon is at least 10 times higher than the values

  1. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    International Nuclear Information System (INIS)

    Poudel, P.R.; Poudel, P.P.; Paramo, J.A.; Strzhemechny, Y.M.; Rout, B.; McDaniel, F.D.

    2015-01-01

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C - ) at a fluence of 3 x 10 17 atoms/cm 2 was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H 2 + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main contributors to the observed

  2. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, P.R. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); Intel Corporation, Rio Rancho, NM (United States); Poudel, P.P. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); Paramo, J.A.; Strzhemechny, Y.M. [Texas Christian University, Department of Physics and Astronomy, Fort Worth, TX (United States); Rout, B. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); University of North Texas, Center for Advanced Research and Technology, Denton, TX (United States); McDaniel, F.D. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States)

    2014-09-18

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C{sup -}) at a fluence of 3 x 10{sup 17} atoms/cm{sup 2} was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H{sub 2} + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main

  3. Analysis of Side-Wall Structure of Grown-in Twin-Type Octahedral Defects in Czochralski Silicon

    Science.gov (United States)

    Ueki, Takemi; Itsumi, Manabu; Takeda, Tadao

    1998-04-01

    We analyzed the side-wall structure of grown-in octahedral defects in Czochralski silicon standard wafers for large-scale integrated circuits. There are two types of twin octahedral defects: an overlapping type and an adjacent type. In the twin octahedral defects of the overlapping type, a hole is formed in the connection part. The side-wall layer in the hole part is formed continually and is the same thickness as the side-wall layers of both octahedrons. In the twin octahedral defects of the adjacent type, a partition layer is formed in the connection part. Our electron energy-loss spectroscopy analyses identified that the side-wall layer includes SiO2.

  4. High resolution x-ray scattering studies of strain in epitaxial thin films of yttrium silicide grown on silicon (111)

    International Nuclear Information System (INIS)

    Marthinez-Miranda, L.J.; Santiago-Aviles, J.J.; Siegal, M.P.; Graham, W.R.; Heiney, P.A.

    1990-01-01

    The authors have used high resolution grazing incidence x-ray scattering (GIXS) to study the in- plane and out-of-plane structure of epitaxial YSi 2-x films grown on Si(111), with thicknesses ranging from 85 Angstrom to 510 Angstrom. Their results indicate that the films are strained, and that film strain increases as a function of thickness, with lattice parameters varying from a = 3.846 Angstrom/c = 4.142 Angstrom for the 85 Angstrom film to a = 3.877 Angstrom/c = 4.121 Angstrom for the 510 Angstrom film. The authors correlate these results with an increase in pinhole areal coverage as a function of thickness. In addition, the authors' measurements show no evidence for the existence of ordered silicon vacancies in the films

  5. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Maheshwar Shrestha

    2018-03-01

    Full Text Available Low-temperature growth of microcrystalline silicon (mc-Si is attractive for many optoelectronic device applications. This paper reports a detailed comparison of optical properties, microstructure, and morphology of amorphous silicon (a-Si thin films crystallized by furnace annealing and flash lamp annealing (FLA at temperatures below the softening point of glass substrate. The initial a-Si films were grown by plasma enhanced chemical vapor deposition (PECVD. Reflectance measurement indicated characteristic peak in the UV region ~280 nm for the furnace annealed (>550 °C and flash lamp annealed films, which provided evidence of crystallization. The film surface roughness increased with increasing the annealing temperature as well as after the flash lamp annealing. X-ray diffraction (XRD measurement indicated that the as-deposited samples were purely amorphous and after furnace crystallization, the crystallites tended to align in one single direction (202 with uniform size that increased with the annealing temperature. On the other hand, the flash lamp crystalized films had randomly oriented crystallites with different sizes. Raman spectroscopy showed the crystalline volume fraction of 23.5%, 47.3%, and 61.3% for the samples annealed at 550 °C, 650 °C, and with flash lamp, respectively. The flash lamp annealed film was better crystallized with rougher surface compared to furnace annealed ones.

  6. High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV.

    Science.gov (United States)

    Tran, Thai-Truong D; Sun, Hao; Ng, Kar Wei; Ren, Fan; Li, Kun; Lu, Fanglu; Yablonovitch, Eli; Chang-Hasnain, Constance J

    2014-06-11

    The growth of III-V nanowires on silicon is a promising approach for low-cost, large-scale III-V photovoltaics. However, performances of III-V nanowire solar cells have not yet been as good as their bulk counterparts, as nanostructured light absorbers are fundamentally challenged by enhanced minority carriers surface recombination rates. The resulting nonradiative losses lead to significant reductions in the external spontaneous emission quantum yield, which, in turn, manifest as penalties in the open-circuit voltage. In this work, calibrated photoluminescence measurements are utilized to construct equivalent voltage-current characteristics relating illumination intensities to Fermi level splitting ΔF inside InP microillars. Under 1 sun, we show that splitting can exceed ΔF ∼ 0.90 eV in undoped pillars. This value can be increased to values of ΔF ∼ 0.95 eV by cleaning pillar surfaces in acidic etchants. Pillars with nanotextured surfaces can yield splitting of ΔF ∼ 0.90 eV, even though they exhibit high densities of stacking faults. Finally, by introducing n-dopants, ΔF of 1.07 eV can be achieved due to a wider bandgap energy in n-doped wurzite InP, the higher brightness of doped materials, and the extraordinarily low surface recombination velocity of InP. This is the highest reported value for InP materials grown on a silicon substrate. These results provide further evidence that InP micropillars on silicon could be a promising material for low-cost, large-scale solar cells with high efficiency.

  7. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon

    Science.gov (United States)

    Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang

    2015-09-01

    We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch ( 3.2%) and thermal expansion coefficient difference ( 7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.

  8. Growth, Carbon Isotope Discrimination and Nitrogen Uptake in Silicon and/or Potassium Fed barley Grown under Two Watering Regimes

    Directory of Open Access Journals (Sweden)

    Kurdali, Fawaz

    2013-02-01

    Full Text Available The present pot experiment was an attempt to monitor the beneficial effects of silicon (Si and/or potassium (K applications on growth and nitrogen uptake in barley plants grown under water (FC1 and non water (FC2 stress conditions using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. Dry matter (DM and N yield (NY in different plant parts of barley plants was affected by Si and/ or K fertilization as well as by the watering regime level under which the plants have been grown. Solely added K or in combination with adequate rate of Si (Si 100 were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing higher spike's N yield. Solely added Si or in combination with K significantly reduced leaves ∆13 C reflecting their bifacial effects on water use efficiency (WUE, particularly in plants grown under well watering regime. This result indicated that Si might be involved in saving water loss through reducing transpiration rate and facilitating water uptake; consequently, increasing WUE. Although the rising of soil humidity generally increased fertilizer nitrogen uptake (Ndff and its use efficiency (%NUE in barley plants, applications of K or Si fertilizers to water stressed plants resulted in significant increments of these parameters as compared with the control. Our results highlight that Si or K is not only involved in amelioration of growth of barley plants, but can also improve nitrogen uptake and fertilizer nitrogen use efficiency particularly under water deficit conditions.

  9. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    2014-01-01

    Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding...... short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account...

  10. Structural investigations of silicon nanostructures grown by self-organized island formation for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Roczen, Maurizio; Malguth, Enno; Barthel, Thomas; Gref, Orman; Toefflinger, Jan A.; Schoepke, Andreas; Schmidt, Manfred; Ruske, Florian; Korte, Lars; Rech, Bernd [Institute for Silicon Photovoltaics, Helmholtz-Zentrum Berlin, Berlin (Germany); Schade, Martin; Leipner, Hartmut S. [Martin-Luther-Universitaet Halle-Wittenberg, Interdisziplinaeres Zentrum fuer Materialwissenschaften, Halle (Germany); Callsen, Gordon; Hoffmann, Axel [Technische Universitaet Berlin, Institut fuer Festkoerperphysik, Berlin (Germany); Phillips, Matthew R. [University of Technology Sydney, Department of Physics and Advanced Materials, NSW (Australia)

    2012-09-15

    The self-organized growth of crystalline silicon nanodots and their structural characteristics are investigated. For the nanodot synthesis, thin amorphous silicon (a-Si) layers with different thicknesses have been deposited onto the ultrathin (2 nm) oxidized (111) surface of Si wafers by electron beam evaporation under ultrahigh vacuum conditions. The solid phase crystallization of the initial layer is induced by a subsequent in situ annealing step at 700 C, which leads to the dewetting of the initial a-Si layer. This process results in the self-organized formation of highly crystalline Si nanodot islands. Scanning electron microscopy confirms that size, shape, and planar distribution of the nanodots depend on the thickness of the initial a-Si layer. Cross-sectional investigations reveal a single-crystalline structure of the nanodots. This characteristic is observed as long as the thickness of the initial a-Si layer remains under a certain threshold triggering coalescence. The underlying ultra-thin oxide is not structurally affected by the dewetting process. Furthermore, a method for the fabrication of close-packed stacks of nanodots is presented, in which each nanodot is covered by a 2 nm thick SiO{sub 2} shell. The chemical composition of these ensembles exhibits an abrupt Si/SiO{sub 2} interface with a low amount of suboxides. A minority charge carrier lifetime of 18 {mu}s inside of the nanodots is determined. (orig.)

  11. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Shih, Huan-Yu; Chen, Miin-Jang; Lin, Ming-Chih; Chen, Liang-Yih

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH 3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH 3 . The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate. (paper)

  12. Nanocrystalline Sr2CeO4 thin films grown on silicon by laser ablation

    International Nuclear Information System (INIS)

    Perea, Nestor; Hirata, G.A.

    2006-01-01

    Blue-white luminescent Sr 2 CeO 4 thin films were deposited by using pulsed laser ablation (λ = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr 2 CeO 4 grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr 2 CeO 4 however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems

  13. Poly-benzyl domains grown on porous silicon and their I-V rectification

    International Nuclear Information System (INIS)

    Chao Jie; Han Huanmei; Xia Bing; Ba Long; Liu Hongbo; Xiao Shoujun

    2007-01-01

    Microwave-irradiated polymerization of benzyl chloride and triphenyl chloromethane on hydride-terminated porous silicon (PS) was achieved through the use of Zn powder as a catalyst. Transmission infrared Fourier-transform spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the poly-benzyl membranes grafted on PS. Topographical images by AFM revealed crystal-like domains rather than homogenous monolayers on the surface. The current-voltage measurements in nano-scale by current sensing atomic force microscopy (CS-AFM) showed the rectification behavior of this polymer membrane. Finally, mechanism of a radical initiation on the surface and a following Friedel-Crafts alkylation was proposed for the covalent assembly of poly-benzyl domains

  14. Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films

    Directory of Open Access Journals (Sweden)

    Lioutas Ch

    2007-01-01

    Full Text Available AbstractWe have studied ultrafast carrier dynamics in nanocrystalline silicon films with thickness of a few nanometers where boundary-related states and quantum confinement play an important role. Transient non-degenerated photoinduced absorption measurements have been employed to investigate the effects of grain boundaries and quantum confinement on the relaxation dynamics of photogenerated carriers. An observed long initial rise of the photoinduced absorption for the thicker films agrees well with the existence of boundary-related states acting as fast traps. With decreasing the thickness of material, the relaxation dynamics become faster since the density of boundary-related states increases. Furthermore, probing with longer wavelengths we are able to time-resolve optical paths with faster relaxations. This fact is strongly correlated with probing in different points of the first Brillouin zone of the band structure of these materials.

  15. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative...... lifetimes, high nonradiative lifetimes are crucial for efficient light conversion. Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature...... photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy. Defect formation seems to be related...

  16. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    International Nuclear Information System (INIS)

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-01-01

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process

  17. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua; Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), UMR 7647, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Pareige, Philippe; Castro, Celia [Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR 6634, CNRS, Av. de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Xu, Tao; Grandidier, Bruno; Stiévenard, Didier [Institut d' Electronique et de Microélectronique et de Nanotechnologies (IEMN), UMR 8520, CNRS, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France)

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  18. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  19. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    Science.gov (United States)

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  20. Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition

    Science.gov (United States)

    Reidy, Christopher; Tate, Janet

    2011-10-01

    Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.

  1. GaN and LED structures grown on pre-patterned silicon pillar arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Soekmen, Uensal; Merzsch, Stephan; Neumann, Richard; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvoigteiplatz 5-7, 10117 Berlin (Germany)

    2010-01-15

    GaN nanorods (or nanowires) have attracted great interest in a variety of applications, e.g. high-efficiency light emitting diodes, monolithic white light emission and optical interconnection due to their superior properties. In contrast to the mostly investigated self-assembled growth of GaN nanorods, we performed GaN nanorod growth by pre-patterning of the Si substrates. The pattern was transferred to Si substrates by photolithography and cryo-temperature inductively-coupled plasma etching. These Si templates then were used for further GaN nanorod growth by metal-organic vapour phase epitaxy (MOVPE). The low temperature AlN nucleation layer had to be optimized since it differs from its 2D layer counterpart on the surface area and orientations. We found a strong influence of diffusion processes, i.e. the GaN grown on top of the Si nanopillars can deplete the GaN around the Si pillars. Transmission electron microscopy measurements demonstrated clearly that the threading dislocations bend to the side facets of the pyramidal GaN nanostructures and terminate. Cathodoluminescence measurements reveal a difference of In composition and/or thickness of InGaN quantum wells on the different facets of the pyramidal GaN nanostructures. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates.

    Science.gov (United States)

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-08-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

  3. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Science.gov (United States)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  4. Performance Improvements of Selective Emitters by Laser Openings on Large-Area Multicrystalline Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Sheng-Shih Wang

    2014-01-01

    Full Text Available This study focuses on the laser opening technique used to form a selective emitter (SE structure on multicrystalline silicon (mc-Si. This technique can be used in the large-area (156 × 156 mm2 solar cells. SE process of this investigation was performed using 3 samples SE1–SE3. Laser fluences can vary in range of 2–5 J/cm2. The optimal conversion efficiency of 15.95% is obtained with the SE3 (2 J/cm2 fluence after laser opening with optimization of heavy and light dopant, which yields a gain of 0.48%abs compared with that of a reference cell (without fluence. In addition, this optimal SE3 cell displays improved characteristics compared with other cells with a higher average value of external quantum efficiency (EQEavg = 68.6% and a lower average value of power loss (Ploss = 2.33 mW/cm2. For the fabrication of solar cells, the laser opening process comprises fewer steps than traditional photolithography does. Furthermore, the laser opening process decreases consumption of chemical materials; therefore, the laser opening process decreases both time and cost. Therefore, SE process is simple, cheap, and suitable for commercialization. Moreover, the prominent features of the process render it effective means to promote overall performance in the photovoltaic industry.

  5. Radiation-induced defects in Czochralski-grown silicon containing carbon and germanium

    International Nuclear Information System (INIS)

    Londos, C A; Andrianakis, A; Emtsev, V V; Ohyama, H

    2009-01-01

    Formation processes of vacancy-oxygen (VO) and carbon interstitial-oxygen interstitial (C i O i ) complexes in electron-irradiated Czochralski-grown Si crystals (Cz–Si), also doped with Ge, are investigated. IR spectroscopy measurements are employed to monitor the production of these defects. In Cz–Si with carbon concentrations [C s ] up to 1 × 10 17 cm −3 and Ge concentrations [Ge] up to 1 × 10 20 cm −3 the production rate of VO defects as well as the rate of oxygen loss show a slight growth of about 10% with the increasing Ge concentration. At high concentrations of carbon [C s ] around 2 × 10 17 cm −3 the production rate of VO defects is getting larger by ∼40% in Cz–Si:Ge at Ge concentrations around 1 × 10 19 cm −3 and then at [Ge] ≈ 2 × 10 20 cm −3 this enlargement drops to ∼13%, thus approaching the values characteristic of lesser concentrations of carbon. A similar behavior against Ge concentration displays the production rate of C i O i complexes. The same trend is also observed for the rate of carbon loss, whereas the trend for the rate of oxygen loss is opposite. The behavior of Ge atoms is different at low and high concentrations of this isoelectronic impurity in Cz–Si. At low concentrations most isolated Ge atoms serve as temporary traps for vacancies preventing them from indirect annihilation with self-interstitials. At high concentrations Ge atoms are prone to form clusters. The latter ones are traps for vacancies and self-interstitials due to the strain fields, increasing the importance of indirect annihilation of intrinsic point defects. Such a model allows one to give a plausible explanation for the obtained results. A new band at 994 cm −1 seen only in irradiated Ge-doped Cz–Si is also studied. Interestingly, its annealing behavior was found to be very similar to that of VO complexes

  6. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm

    International Nuclear Information System (INIS)

    Allam, Dalia; Yousri, D.A.; Eteiba, M.B.

    2016-01-01

    Highlights: • More detailed models are proposed to emulate the multi-crystalline solar cell/module. • Moth-Flame Optimizer (MFO) is proposed for the parameter extraction process. • The performance of MFO technique is compared with the recent optimization algorithms. • MFO algorithm converges to the optimal solution more rapidly and more accurately. • MFO algorithm accomplished with three diode model achieves the most accurate model. - Abstract: As a result of the wide prevalence of using the multi-crystalline silicon solar cells, an accurate mathematical model for these cells has become an important issue. Therefore, a three diode model is proposed as a more precise model to meet the relatively complicated physical behavior of the multi-crystalline silicon solar cells. The performance of this model is compared to the performance of both the double diode and the modified double diode models of the same cell/module. Therefore, there is a persistent need to keep searching for a more accurate optimization algorithm to estimate the more complicated models’ parameters. Hence, a proper optimization algorithm which is called Moth-Flame Optimizer (MFO), is proposed as a new optimization algorithm for the parameter extraction process of the three tested models based on data measured at laboratory and other data reported at previous literature. To verify the performance of the suggested technique, its results are compared with the results of the most recent and powerful techniques in the literature such as Hybrid Evolutionary (DEIM) and Flower Pollination (FPA) algorithms. Furthermore, evaluation analysis is performed for the three algorithms of the selected models at different environmental conditions. The results show that, MFO algorithm achieves the least Root Mean Square Error (RMSE), Mean Bias Error (MBE), Absolute Error at the Maximum Power Point (AEMPP) and best Coefficient of Determination. In addition, MFO is reaching to the optimal solution with the

  7. Crystal structure of (110) oriented La0.7Sr0.3MnO3 grown on (001) silicon

    International Nuclear Information System (INIS)

    Sinha, Umesh Kumar; Sahoo, Antarjami; Padhan, Prahallad

    2016-01-01

    The mixed valance perovskite manganites have attracted a considerable attention due to their colossal magnetoresistance behavior. In particular, La 0.7 Sr 0.3 MnO 3 (LSMO) show half metallicity and possess Curie temperature (T C ) above room temperature, which makes this material an attractive candidate for spintronic device application. Thin films of LSMO were grown on (001) oriented Silicon (Si) using sputtering technique

  8. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer.

    Science.gov (United States)

    Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju

    2016-03-07

    We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

  9. Use of B{sub 2}O{sub 3} films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kalkofen, Bodo, E-mail: bodo.kalkofen@ovgu.de; Amusan, Akinwumi A.; Bukhari, Muhammad S. K.; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Garke, Bernd [Institute for Experimental Physics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-05-15

    Plasma-assisted atomic layer deposition (PALD) was carried for growing thin boron oxide films onto silicon aiming at the formation of dopant sources for shallow boron doping of silicon by rapid thermal annealing (RTA). A remote capacitively coupled plasma source powered by GaN microwave oscillators was used for generating oxygen plasma in the PALD process with tris(dimethylamido)borane as boron containing precursor. ALD type growth was obtained; growth per cycle was highest with 0.13 nm at room temperature and decreased with higher temperature. The as-deposited films were highly unstable in ambient air and could be protected by capping with in-situ PALD grown antimony oxide films. After 16 weeks of storage in air, degradation of the film stack was observed in an electron microscope. The instability of the boron oxide, caused by moisture uptake, suggests the application of this film for testing moisture barrier properties of capping materials particularly for those grown by ALD. Boron doping of silicon was demonstrated using the uncapped PALD B{sub 2}O{sub 3} films for RTA processes without exposing them to air. The boron concentration in the silicon could be varied depending on the source layer thickness for very thin films, which favors the application of ALD for semiconductor doping processes.

  10. Comparison of cross-sectional transmission electron microscope studies of thin germanium epilayers grown on differently oriented silicon wafers.

    Science.gov (United States)

    Norris, D J; Myronov, M; Leadley, D R; Walther, T

    2017-12-01

    We compare transmission electron microscopical analyses of the onset of islanding in the germanium-on-silicon (Ge/Si) system for three different Si substrate orientations: (001), (11¯0) and (11¯1)Si. The Ge was deposited by reduced pressure chemical vapour deposition and forms islands on the surface of all Si wafers; however, the morphology (aspect ratio) of the deposited islands is different for each type of wafer. Moreover, the mechanism for strain relaxation is different for each type of wafer owing to the different orientation of the (111) slip planes with the growth surface. Ge grown on (001)Si is initially pseudomorphically strained, yielding small, almost symmetrical islands of high aspect ratio (clusters or domes) on top interdiffused SiGe pedestals, without any evidence of plastic relaxation by dislocations, which would nucleate later-on when the islands might have coalesced and then the Matthews-Blakeslee limit is reached. For (11¯0)Si, islands are flatter and more asymmetric, and this is correlated with plastic relaxation of some islands by dislocations. In the case of growth on (11¯1)Si wafers, there is evidence of immediate strain relaxation taking place by numerous dislocations and also twinning. In the case of untwined film/substrate interfaces, Burgers circuits drawn around certain (amorphous-like) regions show a nonclosure with an edge-type a/4[1¯12] Burgers vector component visible in projection along [110]. Microtwins of multiples of half unit cells in thickness have been observed which occur at the growth interface between the Si(11¯1) buffer layer and the overlying Ge material. Models of the growth mechanisms to explain the interfacial configurations of each type of wafer are suggested. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    Science.gov (United States)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  12. Photoluminescence studies of cubic phase GaN grown by molecular beam epitaxy on (001) silicon covered with SiC layer

    International Nuclear Information System (INIS)

    Godlewski, M.; Ivanov, V.Yu.; Bergman, J.P.; Monemar, B.; Barski, A.; Langer, R.

    1997-01-01

    In this work we evaluate optical properties of cubic phase GaN epilayers grown on top of (001) silicon substrate prepared by new process. Prior to the growth Si substrate was annealed at 1300-1400 o C in propane. The so-prepared substrate is covered within a thin (∼ 4 nm) SiC wafer, which allowed a successful growth of good morphological quality cubic phase GaN epilayers. The present results confirm recent suggestion on smaller ionization energies of acceptors in cubic phase GaN epilayers. (author)

  13. Impact of deposition temperature on the properties of SnS thin films grown over silicon substrate—comparative study of structural and optical properties with films grown on glass substrates

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-11-01

    Tin sulfide (SnS) thin films were chemically deposited over silicon substrate in a temperature range of 250 °C-400 °C. The effects of deposition temperature on the structural, morphological and optical properties of the films were evaluated. All films present an orthorhombic SnS structure with a preferred orientation along (040). High absorption coefficients (in the range of 105 cm-1) were found for all obtained films with an increase in α value when deposition temperature decreases. Furthermore, the effects of substrate type were investigated based on comparison between the present results and those obtained for SnS films grown under the same deposition conditions but over glass substrate. The results suggest that the formation of SnS films onto glass substrate is faster than onto silicon substrate. It is found that the substrate nature affects the orientation growth of the films and that SnS films deposited onto Si present more defects than those deposited onto glass substrate. The optical transmittance is also restricted by the substrate type, mostly below 1000 nm. The obtained results for SnS films onto silicon suggest their promising integration within optoelectronic devices.

  14. Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3

    International Nuclear Information System (INIS)

    Benami, A; Santana, G; Ortiz, A; Ponce, A; Romeu, D; Aguilar-Hernandez, J; Contreras-Puente, G; Alonso, J C

    2007-01-01

    Strong white and blue photoluminescence (PL) from as-grown silicon nanocrystals (nc-Si) in SiN x films prepared by remote plasma enhanced chemical vapour deposition using SiCl 4 /NH 3 mixtures is reported. The colour and intensity of the PL could be controlled by adjusting the NH 3 flow rate. Samples with white emission were annealed at 1000 deg. C, obtaining a strong improvement of the PL intensity with a blue colour. The PL can be attributed to quantum confinement effect in nc-Si embedded in SiN x matrix, which is improved when a better passivation of nc-Si surface with chlorine and nitrogen atoms is obtained. The size, density and structure of the nc-Si in the as-grown and annealed films were confirmed and measured by high-resolution transmission electron microscopy

  15. Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction

    International Nuclear Information System (INIS)

    Anguita, J V; Sharma, P; Henley, S J; Silva, S R P

    2009-01-01

    The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.

  16. Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction

    Science.gov (United States)

    Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.

    2009-11-01

    The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.

  17. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  18. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  19. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  20. Salt stress and exogenous silicon influence physiological and anatomical features of in vitro-grown cape gooseberry

    Directory of Open Access Journals (Sweden)

    Renata Alves Lara Silva Rezende

    2017-04-01

    Full Text Available ABSTRACT: Salt stress is one of several major abiotic stresses that affect plant growth and development, and there are many evidences that silicon can ameliorate the injuries caused by high salinity. This study presents the results of an assay concerning: (1 the effect of in vitro NaCl-induced salt stress in cape gooseberry plants and (2 the possible mitigating effect of silicon in saline conditions. For that, nodal segments were inoculated in Murashige and Skoog (MS medium under salinity (0.5 and 1.0% NaCl with different silicic acid concentrations (0, 0.5 and 1.0g L-1. Phytotechnical characteristics, photosynthetic pigments content, and leaf anatomy were evaluated after 30 days. Shoot length, root length, number of leaves and buds, fresh and dry weight, pigment content, stomatal density and leaf blade thickness were drastically reduced by increased salt level. The supply of silicon (1.0g L-1 has successfully mitigated the effect of salinity at 0.5% NaCl for chlorophyll, carotenoids, stomatal density and leaf blade thickness. When salt stress was about 1.0%, Si was not effective anymore. In conclusion, we affirmed that, in in vitro conditions, salt stress is harmful for cape gooseberry plants and the addition of silicon showed effective in mitigating the saline effects of some features.

  1. On red-shift of UV photoluminescence with decreasing size of silicon nanoparticles embedded in SiO2 matrix grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Chaturvedi, Amita; Joshi, M.P.; Rani, Ekta; Ingale, Alka; Srivastava, A.K.; Kukreja, L.M.

    2014-01-01

    Ensembles of silicon nanoparticles (Si-nps) embedded in SiO 2 matrix were grown by alternate ablation of Si and SiO 2 targets using KrF excimer laser based pulsed laser deposition (PLD). The sizes of Si-nps (mean size ranging from 1–5 nm) were controlled by varying the ablation time of silicon target. Transmission electron microscopy (TEM) along with selected area electron diffraction (SAED) and Raman spectroscopy were used to confirm the growth of silicon nanoparticles, its size variation with growth time and the crystalline quality of the grown nanoparticles. TEM analysis showed that mean size and size distribution of Si-nps increased with increase in the ablation time of Si target. Intense peaks ∼521 cm −1 in Raman analysis showed reasonably good crystalline quality of grown Si-nps. We observed asymmetric broadening of phonon line shapes which also redshift with decreasing size of Si-nps. Photoluminescence (PL) from these samples, obtained at room temperature, was broad band and consisted of three bands in UV and visible range. The intensity of PL band in UV spectral range (peak ∼3.2 eV) was strong compared to visible range bands (peaks ∼2.95 eV and ∼2.55 eV). We observed a small red-shift (∼0.07 eV) of peak position of UV range PL with the decrease in the mean sizes of Si-nps, while there was no appreciable size dependent shift of PL peak positions for other bands in the visible range. The width of UV PL band was also found to increase with decrease of Si-nps mean sizes. Based on the above observations of size dependent redshift of UV range PL band together with the PL lifetimes and PL excitation spectroscopy, the origin of UV PL band is attributed to the direct band transition at the Γ point of Si band structure. Visible range bands were ascribed as defect related transitions. The weak intensities of PL bands ∼2.95 eV and ∼2.55 eV suggested that Si nanoparticles grown by PLD were efficiently capped or passivated by SiO 2 with low density of

  2. Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD

    NARCIS (Netherlands)

    Vink, A.T.; Roksnoer, P.J.; Maes, J.W.F.M.; Vriezema, C.J.; IJzendoorn, van L.J.; Zalm, P.C.

    1990-01-01

    Boron doping spikes in Si were grown by fast-gas-switching CVD at 800 and 850°C using Si2H6 and B2H6 in 0.03, 0.1 and 1 atm H2 as the carrier gas. The B2H6 doping gas was added for 2 s by two methods, namely during growth or as a flush while the Si2H6 flow was interrupted. High-resolution SIMS

  3. Investigation on nonlinear optical properties of MoS2 nanoflake, grown on silicon and quartz substrates

    Science.gov (United States)

    Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A.

    2018-03-01

    In this study, MoS2 was directly synthesized by one-step thermal chemical vapour deposition (TCVD), on different substrates including Si/SiO2 and quartz, using MoO3 and sulfide powders as precursor. The XRD patterns demonstrate the high crystallinity of MoS2 on Si/SiO2 and quartz substrates. SEM confirmed the formation of MoS2 grown on both substrates. According to line width and frequency difference between the E1 2g and A1g in Raman spectroscopy, it is inferred that the MoS2 grown on Si/SiO2 substrate is monolayer and the MoS2 grown on quartz substrate is multilayer. Moreover, by assessment of MoS2 nanoflake band gap via UV-visible analysis, it verified the formation of few layer structures. In addition, the open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the synthesized MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as light source. The monolayer MoS2 synthesized on Si/SiO2, display considerable two-photon absorption. However, the multilayer MoS2 synthesized on quartz displayed saturable absorption (SA). It is noticeable that both samples demonstrate obvious self-defocusing behaviour.

  4. The effects of surface modification on the electrical properties of p–n+ junction silicon nanowires grown by an aqueous electroless etching method

    International Nuclear Information System (INIS)

    Lee, Seulah; Koo, Ja Hoon; Seo, Jungmok; Kim, Sung-Dae; Lee, Kwang Hyun; Im, Seongil; Kim, Young-Woon; Lee, Taeyoon

    2012-01-01

    Although the aqueous electroless etching (AEE) method has received significant attention for the fabrication of silicon nanowires (SiNWs) due to its simplicity and effectiveness, SiNWs grown via the AEE method have a drawback in that their surface roughness is considerably high. Thus, we fabricated surface-modified p–n + junction SiNWs grown by AEE, wherein the surface roughness was reduced by a sequential processes of oxide growth using the rapid thermal oxidation (RTO) cycling process and oxide removal with a hydrofluoric acid solution. High-resolution transmission electron microscopy analysis confirmed that the surface roughness of the modified SiNWs was significantly decreased compared with that of the as-fabricated SiNWs. After RTO treatment, the wettability of the SiNWs had dramatically changed from superhydrophilic to superhydrophobic, which can be attributed to the formation of siloxane groups on the native oxide/SiNW surfaces and the effect of the nanoscale structure. Due to the enhancement in surface carrier mobility, the current density of the surface-modified p–n + junction SiNWs was approximately 6.3-fold greater than that of the as-fabricated sample at a forward bias of 4 V. Meanwhile, the photocurrent density of the surface-modified p–n + junction SiNWs was considerably decreased as a result of the decreases in the light absorption area, light absorption volume, and light scattering.

  5. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  6. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  7. Limiting Size of Monolayer Graphene Flakes Grown on Silicon Carbide or via Chemical Vapor Deposition on Different Substrates

    Science.gov (United States)

    Alekseev, N. I.

    2018-05-01

    The maximum size of homogeneous monolayer graphene flakes that form during the high-temperature evaporation of silicon from a surface of SiC or during graphene synthesis via chemical vapor deposition is estimated, based on the theoretical calculations developed in this work. Conditions conducive to the fragmentation of a monolayer graphene sheet to form discrete fragments or terrace-type structures in which excess energy due to dangling bonds at the edges is compensated for by the lack of internal stress are indentified and described. The results from calculations for the sizes of graphene structures are compared with experimental findings for the most successful graphene syntheses reported in the literature.

  8. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    Science.gov (United States)

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.

  9. Structural properties of layers of HgCdTe, grown by the laser epitaxy method on silicon substrates

    International Nuclear Information System (INIS)

    Plyatsko, S.V.; Vergush, M.M.; Litvin, P.M.; Kozirjev, Yu.M.; Shevlyakov, S.A.

    2001-01-01

    Thin films (0.1-1.5 μm) of HgCdTe on substrates Si (100) and Si (111) from monocrystal and pressed sources Hg 1-x Cd x Te (x=0.22) sprayed by laser IR radiation were grown and are investigated. The concentration of macro defects (drops) on the surface of films is determined by the relation of the diameter of a laser beam and depth of the crater, formed by laser irradiation. The size of crystal grains almost does not depend on the temperature of a substrate and power densities of a laser radiation and increases with the thickness of a layer

  10. Alloyed Aluminum Contacts for Silicon Solar Cells

    International Nuclear Information System (INIS)

    Tin Tin Aye

    2010-12-01

    Aluminium is usually deposited and alloyed at the back of p-p silicon solar cell for making a good ohmic contact and establishing a back electric field which avoids carrier recombination of the back surface. It was the deposition of aluminum on multicrystalline silicon (mc-Si) substrate at various annealing temperature. Physical and elemental analysis was carried out by using scanning electron microscopy (SEM) and X-rays diffraction (XRD). The electrical (I-V) characteristic of the photovoltaic cell was also measured.

  11. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Doucet, Mathieu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Data Analysis and Visualization Division; Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Vacaliuc, Bogdan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Research Accelerator Division; Baldwin, J. Kevin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Browning, James F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division

    2017-07-24

    In this work we explore how an electrolyte additive (fluorinated ethylene carbonate – FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li+). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent with the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.

  12. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...

  13. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110)

    International Nuclear Information System (INIS)

    Dávila, M E; Montero, I; Marele, A; Gómez-Rodríguez, J M; De Padova, P; Hennies, F; Pietzsch, A; Shariati, M N; Le Lay, G

    2012-01-01

    We have investigated the geometry and electronic structure of two different types of self-aligned silicon nanoribbons (SiNRs), forming either isolated SiNRs or a self-assembled 5 × 2/5 × 4 grating on an Ag(110) substrate, by scanning tunnelling microscopy and high resolution x-ray photoelectron spectroscopy. At room temperature we further adsorb on these SiNRs either atomic or molecular hydrogen. The hydrogen absorption process and hydrogenation mechanism are similar for isolated or 5 × 2/5 × 4 ordered SiNRs and are not site selective; the main difference arises from the fact that the isolated SiNRs are more easily attacked and destroyed faster. In fact, atomic hydrogen strongly interacts with any Si atoms, modifying their structural and electronic properties, while molecular hydrogen has first to dissociate. Hydrogen finally etches the Si nanoribbons and their complete removal from the Ag(110) surface could eventually be expected. (paper)

  14. Nanocrystalline Sr{sub 2}CeO{sub 4} thin films grown on silicon by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Perea, Nestor [Posgrado en Fisica de Materiales, CICESE-UNAM, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B.C., 22860 (Mexico); Hirata, G.A. [Centro de Ciencias de la Materia Condensada-UNAM, Km. 107 Carretera Tijuana Ensenada, Ensenada, B.C. 22860 (Mexico)]. E-mail: hirata@ccmc.unam.mx

    2006-02-21

    Blue-white luminescent Sr{sub 2}CeO{sub 4} thin films were deposited by using pulsed laser ablation ({lambda} = 248 nm wavelength) on 500 deg. C silicon (111) substrates under an oxygen pressure of 55 mTorr. High-resolution electron transmission microscopy, electron diffraction and X-ray diffraction analysis revealed that the films were composed of nanocrystalline Sr{sub 2}CeO{sub 4} grains of the order of 20-30 nm with a preferential orientation in the (130) crystallographic direction. The excitation and photoluminescence spectra measured on the films maintained the characteristic emission of bulk Sr{sub 2}CeO{sub 4} however, the emission peak appeared narrower and blue-shifted as compared to the luminescence spectrum of the target. The blue-shift and a preferential crystallographic orientation during the growth formation of the film is related to the nanocrystalline nature of the grains due to the quantum confinement behavior and surface energy minimization in nanostructured systems.

  15. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.

    Science.gov (United States)

    Keller, C; Rizwan, M; Davidian, J-C; Pokrovsky, O S; Bovet, N; Chaurand, P; Meunier, J-D

    2015-04-01

    Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

  16. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hui-Jun Guo

    2014-09-01

    Full Text Available Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

  17. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  18. Characterization of Urea Versus hmta in the Preparation of Zinc Oxide NANOSTRUCTURES by Catalytic Immersion Method Grown on Gold-seeded Silicon Substrate

    International Nuclear Information System (INIS)

    Azlinda Abdul Aziz; Khusaimi, Z.; Rusop, M.

    2011-01-01

    Zinc oxide (ZnO) nano structured prepared by immersed method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn(NO 3 ) 2 .6H 2 O) as a precursor was stabilized by a non-toxic urea (CH 4 N 2 O) in a ratio of 1:2 and 1:1 ratio of hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterizing using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows the clusters of ZnO nano flower with serrated broad petals and sharp tips of approximately 25 nm were interestingly formed. ZnO in HMTA showed growth of nano rods. The structures has high surface area, is a potential metal oxide nano structures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nano structures is found to be significantly affected by the stabilizer. (author)

  19. Surface segregation as a means of gettering Cu in liquid-phase-epitaxy silicon thin layers grown from Al-Cu-Si solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.H.; Ciszek, T.F.; Reedy, R.; Asher, S.; King, D. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors demonstrate that, by using the natural surface segregation phenomenon, Cu can be gettered to the surface from the bulk of silicon layers so that its concentrations in the liquid-phase-epitaxy (LPE) layers are much lower than its solubility at the layer growth temperature and the reported 10{sup 17} cm{sup {minus}3} degradation threshold for solar-cell performance. Secondary-ion mass spectroscopy (SIMS) analysis indicates that, within a micron-deep sub-surface region, Cu accumulates even in as-grown LPE samples. Slower cooling after growth to room temperature enhances this Cu enrichment. X-ray photoelectron spectroscopy (XPS) measurement shows as much as 3.2% Cu in a surface region of about 50 {Angstrom}. More surface-sensitive, ion-scattering spectroscopy (ISS) analysis further reveals about 7% of Cu at the top surface. These results translate to an areal gettering capacity of about 1.0 x 10{sup 16} cm{sup {minus}2}, which is higher than the available total-area density of Cu in the layer and substrate (3.6 x 10{sup 15} cm{sup {minus}2} for a uniform 1.2 x 10{sup 17}cm{sup {minus}3} Cu throughout the layer and substrate with a total thickness of 300 {mu}m).

  20. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  1. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    Science.gov (United States)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  2. Production of Solar Grade (SoG) Silicon by Refining Liquid Metallurgical Grade (MG) Silicon: Final Report, 19 April 2001; FINAL

    International Nuclear Information System (INIS)

    Khattack, C. P.; Joyce, D. B.; Schmid, F.

    2001-01-01

    This report summarizes the results of the developed technology for producing SoG silicon by upgrading MG silicon with a cost goal of$20/kg in large-scale production. A Heat Exchanger Method (HEM) furnace originally designed to produce multicrystalline ingots was modified to refine molten MG silicon feedstock prior to directional solidification. Based on theoretical calculations, simple processing techniques, such as gas blowing through the melt, reaction with moisture, and slagging have been used to remove B from molten MG silicon. The charge size was scaled up from 1 kg to 300 kg in incremental steps and effective refining was achieved. After the refining parameters were established, improvements to increase the impurity reduction rates were emphasized. With this approach, 50 kg of commercially available as-received MG silicon was processed for a refining time of about 13 hours. A half life of and lt;2 hours was achieved, and the B concentration was reduced to 0.3 ppma and P concentration to 10 ppma from the original values of 20 to 60 ppma, and all other impurities to and lt;0.1 ppma. Achieving and lt;1 ppma B by this simple refining technique is a breakthrough towards the goal of achieving low-cost SoG silicon for PV applications. While the P reduction process was being optimized, the successful B reduction process was applied to a category of electronics industry silicon scrap previously unacceptable for PV feedstock use because of its high B content (50-400 ppma). This material after refining showed that its B content was reduced by several orders of magnitude, to(approx)1 ppma (0.4 ohm-cm, or about 5x1016 cm-3). NREL's Silicon Materials Research team grew and wafered small and lt;100 and gt; dislocation-free Czochralski (Cz) crystals from the new feedstock material for diagnostic tests of electrical properties, C and O impurity levels, and PV performance relative to similar crystals grown from EG feedstock and commercial Cz wafers. The PV conversion

  3. Dry matter yield, carbon isotope discrimination and nitrogen uptake in silicon and/ or potassium fed chickpea and barley plants grown under water and non-water stress conditions

    International Nuclear Information System (INIS)

    Kurd Ali, F.; Al-Chammaa, M.; Mouasess, A.

    2012-09-01

    A pot experiment was conducted to study the effects of silicon (Si) and/or potassium (K) on dry matter yield, nitrogen uptake and carbon isotope discrimination Δ 13 C in water stressed (FC1) and well watered (FC2) chickpea plants using 15 N and 13 C isotopes. Three fertilizer rates of Si (Si 5 0, Si 1 00 and Si 2 00) and one fertilizer rate of K were used. The results showed that: In chickpeas, it was found, for most of the growth parameters, that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of most studied parameters. The Si 1 00K + (FC1) and Si 5 0K + (FC2) treatments gave high enough amounts of N 2 -fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N 2 -fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leaves dry matter in response to the solely added Si (Si 5 0K - and Si 1 00K - ) is associated with lower Δ 13 C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE). Hence, Δ 13 C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be considered as an important element for the symbiotic performance of chickpea plants. It can be concluded that synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.In barley plants, solely added K or in combination with adequate rate of Si (Si 1 00) were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing

  4. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    Science.gov (United States)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  5. Solar cells based upon multicrystalline Si with DLC antireflection and passivating coatings

    International Nuclear Information System (INIS)

    Klyui, N.; Litovchenko, V.; Neselevska, L.; Kostylyov, V.; Sarikov, A.; Taraschenko, N.; Kittler, M.; Seifert, W.

    2006-01-01

    The characteristics of multicrystalline Si solar cells covered by diamond-like carbon (DLC) antireflection coatings been experimentally studied. It has been shown that this kind of coating provides a significant increase of the efficiency of solar cells mainly due to the increase of the short-circuit current density. The effects of antireflection and of the surface and bulk passivation on the SC current-voltage characteristics due to the DLC deposition have been investigated theoretically. Physical mechanisms underlying the observed effects have been proposed

  6. Photoconductance-calibrated photoluminescence lifetime imaging of crystalline silicon

    International Nuclear Information System (INIS)

    Herlufsen, Sandra; Schmidt, Jan; Hinken, David; Bothe, Karsten; Brendel, Rolf

    2008-01-01

    We use photoluminescence (PL) measurements by a silicon charge-coupled device camera to generate high-resolution lifetime images of multicrystalline silicon wafers. Absolute values of the excess carrier density are determined by calibrating the PL image by means of contactless photoconductance measurements. The photoconductance setup is integrated in the camera-based PL setup and therefore identical measurement conditions are realised. We demonstrate the validity of this method by comparison with microwave-detected photoconductance decay measurements. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  7. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Static Magnetic Fields

    Science.gov (United States)

    Jauss, T.; SorgenFrei, T.; Croell, A.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    In the photovoltaics industry, the largest market share is represented by solar cells made from multicrystalline silicon, which is grown by directional solidification. During the growth process, the silicon melt is in contact with the silicon nitride coated crucible walls and the furnace atmosphere which contains carbon monoxide. The dissolution of the crucible coating, the carbon bearing gas, and the carbon already present in the feedstock, lead to the precipitation of silicon carbide, and silicon nitride, at later stages of the growth process. The precipitation of Si3N4 and SiC particles of up to several hundred micrometers in diameter leads to severe problems during the wire sawing process for wafering the ingots. Furthermore the growth of the silicon grains can be negatively influenced by the presence of particles, which act as nucleation sources and lead to a grit structure of small grains and are sources for dislocations. If doped with Nitrogen from the dissolved crucible coating, SiC is a semi conductive material, and can act as a shunt, short circuiting parts of the solar cell. For these reasons, the incorporation of such particles needs to be avoided. In this contribution we performed model experiments in which the transport of intentionally added SiC particles and their interaction with the solid-liquid interface during float zone growth of silicon in strong steady magnetic fields was investigated. SiC particles of 7µm and 60µm size are placed in single crystal silicon [100] and [111] rods of 8mm diameter. This is achieved by drilling a hole of 2mm diameter, filling in the particles and closing the hole by melting the surface of the rod until a film of silicon covers the hole. The samples are processed under a vacuum of 1x10(exp -5) mbar or better, to prevent gas inclusions. An oxide layer to suppress Marangoni convection is applied by wet oxidation. Experiments without and with static magnetic field are carried out to investigate the influence of melt

  8. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  9. Water Splitting over Epitaxially Grown InGaN Nanowires on-Metallic Titanium/Silicon Template: Reduced Interfacial Transfer Resistance and Improved Stability

    KAUST Repository

    Ebaid, Mohamed; Min, Jungwook; Zhao, Chao; Ng, Tien Khee; Idriss, Hicham; Ooi, Boon S.

    2018-01-01

    grown on Si substrate. The interfacial transfer resistance was also reduced significantly after introducing the metallic Ti interlayer. An applied-bias-photon-to-current conversion efficiency of 2.2% and almost unity Faradic efficiency for hydrogen

  10. Towards solar grade silicon: Challenges and benefits for low cost photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Pizzini, Sergio [Ned Silicon Spa, Via Th. Edison 6, 60027 Osimo (Ancona) (Italy)

    2010-09-15

    It is well known that silicon in its various structural configurations (single crystal, multicrystalline, amorphous, micro-nanocrystalline) supplies almost 90% of the substrates used in the photovoltaic industry. It is also known, since years, that the photovoltaic (PV) industry shows a marked growth trend, which demanded and demands a continuous, huge increase of the bulk silicon supply in the order of 30%/yr. In order to fulfill their today- and future needs, many companies worldwide took the decision to start the installation of many thousand tons/year plants, most of them using the Siemens process, some of them using the MG route, to produce the so called solar grade (SG) silicon. The advantages of the Siemens process are well known, as it provides ultrapure silicon, directly usable for growing either single crystalline Czochralski ingots or multicrystalline ingots using the directional solidification (DS) technique. The disadvantages are its high energetic cost (a minimum of 120 kWH/kg) and the possible losses of chlorinated gases in the atmosphere, with possible severe environmental problems. The advantages of the MG route are still potential, as there is no commercially available production of solar silicon as yet, and rely on its reduced energetic costs (a maximum of 25-30 kWh/kg) for a feedstock directly usable for growing multicrystalline ingots using the DS technique. The drawbacks of silicon of MG origin are its larger concentration of metallic impurities, as compared with the Siemens one, the higher B and P content, and the potentially high carbon content. The aim of this paper is to deal with some of the problems encountered so far with the silicon of MG origin with respect to the metallic and non-metallic impurities content, as well as to propose technologically feasible solar grade feedstock specifications. (author)

  11. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Cirlin, G E; Reznik, R R; Shtrom, I V

    2017-01-01

    The data on growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on different (1 1 1) substrates by Au-assisted molecular beam epitaxy are presented. The influence of nanowires growth conditions on structural and optical properties is studied in detail...

  12. Water Splitting over Epitaxially Grown InGaN Nanowires on-Metallic Titanium/Silicon Template: Reduced Interfacial Transfer Resistance and Improved Stability

    KAUST Repository

    Ebaid, Mohamed

    2018-03-09

    Water splitting using InGaN-based photocatalysts may have a great contribution in future renewable energy production systems. Among the most important parameters to solve are those related to substrate lattice-matching compatibility. Here, we directly grow InGaN nanowires (NWs) on a metallic Ti/Si template, for improving water splitting performance compared to a bare Si substrate. The open circuit potential of the epitaxially grown InGaN NWs on metallic Ti was almost two times that of those grown on Si substrate. The interfacial transfer resistance was also reduced significantly after introducing the metallic Ti interlayer. An applied-bias-photon-to-current conversion efficiency of 2.2% and almost unity Faradic efficiency for hydrogen generation were achieved using this approach. The InGaN NWs grown on Ti showed improved stability of hydrogen generation under continuous operation conditions, when compared to those grown on Si, emphasizing the role of the semiconductor-on-metal approach in enhancing the overall efficiency of water splitting catalysts.

  13. Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization

    International Nuclear Information System (INIS)

    Thantsha, N.M.; Macabebe, E.Q.B.; Vorster, F.J.; Dyk, E.E. van

    2009-01-01

    A different laser beam induced current (LBIC) mapping technique has been used for the measurements of spatial variation of light generated current of a solar cell. These variations are caused by parasitic resistances and defects at grain boundaries (GBs) in multicrystalline silicon solar cells (mc-Si). This study investigates and identifies the regions within mc-Si solar cells where dominating recombination and lifetime limiting processes occur. A description of the LBIC technique is presented and the results show how multicrystalline GBs and other defects affect the light generated current of a spot illuminated mc-Si solar cell. The results of the internal quantum efficiency (IQE) at wavelength of 660 nm revealed that some regions in mc-Si solar cell give rise to paths that lead current away from the intended load.

  14. Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thantsha, N.M.; Macabebe, E.Q.B.; Vorster, F.J. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    A different laser beam induced current (LBIC) mapping technique has been used for the measurements of spatial variation of light generated current of a solar cell. These variations are caused by parasitic resistances and defects at grain boundaries (GBs) in multicrystalline silicon solar cells (mc-Si). This study investigates and identifies the regions within mc-Si solar cells where dominating recombination and lifetime limiting processes occur. A description of the LBIC technique is presented and the results show how multicrystalline GBs and other defects affect the light generated current of a spot illuminated mc-Si solar cell. The results of the internal quantum efficiency (IQE) at wavelength of 660 nm revealed that some regions in mc-Si solar cell give rise to paths that lead current away from the intended load.

  15. Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly doped silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J.F. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Figueiredo, L.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Mendes, J.B.S. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Morais, P.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Huazhong University of Science and Technology, School of Automation, 430074 Wuhan (China); Araujo, C.I.L. de., E-mail: dearaujo@ufv.br [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil)

    2015-12-01

    In this study we investigate magnetic properties, surface morphology and crystal structure in iron nanoclusters electrodeposited on lightly doped (100) n-type silicon substrates. Our goal is to investigate the spin injection and detection in the Fe/Si lateral structures. The samples obtained under electric percolation were characterized by magnetoresistive and magnetic resonance measurements with cycling the sweeping applied field in order to understand the spin dynamics in the as-produced samples. The observed hysteresis in the magnetic resonance spectra, plus the presence of a broad peak in the non-saturated regime confirming the low field microwave absorption (LFMA), were correlated to the peaks and slopes found in the magnetoresistance curves. The results suggest long range spin injection and detection in low resistive silicon and the magnetic resonance technique is herein introduced as a promising tool for analysis of electric contactless magnetoresistive samples. - Highlights: • Electrodeposition of Fe nanostructures on high resistive silicon substrates. • Spin polarized current among clusters through Si suggested by isotropic magnetoresistance. • Low field microwave absorption arising from the sample shape anisotropy. • Contactless magnetoresistive device characterization by resonance measurements.

  16. Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates

    Czech Academy of Sciences Publication Activity Database

    Procházka, Jan; Kavan, Ladislav; Zukalová, Markéta; Janda, Pavel; Jirkovský, Jaromír; Vlčková Živcová, Zuzana; Poruba, A.; Bedu, M.; Döbbelin, M.; Tena-Zaera, R.

    2013-01-01

    Roč. 28, č. 3 (2013), s. 385-393 ISSN 0884-2914 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR(CZ) GAP108/12/0814 Grant - others:OpenAIRE(XE) EC 7th FP project SANS, NMP-246124; Open AIRE(XE) EC 7th FP projekt ORION, NMP-229036 Institutional support: RVO:61388955 Keywords : titanium dioxide * thin films * silicon Subject RIV: CG - Electrochemistry Impact factor: 1.815, year: 2013

  17. Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Drahokoupil, Jan; Fekete, Ladislav; Klimša, Ladislav; Kopeček, Jaromír; Purkrt, Adam; Remeš, Zdeněk; Čtvrtlík, Radim; Tomáštík, Jan; Frank, Otakar; Janíček, P.; Mistrík, J.; Mortet, Vincent

    2016-01-01

    Roč. 69, Oct (2016), s. 13-18 ISSN 0925-9635 R&D Projects: GA MŠk LO1409; GA TA ČR TA03010743; GA ČR GA13-31783S; GA MŠk(CZ) LD14011; GA MŠk LM2015088 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * silicon carbide * adherence * mechanical properties * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) Impact factor: 2.561, year: 2016

  18. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Arata, E-mail: a.watanabe.106@nitech.jp; Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Egawa, Takashi, E-mail: egawa.takashi@nitech.ac.jp [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan)

    2015-12-21

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (I{sub DS,max}) and transconductance (g{sub m,max}) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower I{sub DS,max} and g{sub m,max} values of 1 A/mm and 210 mS/mm, respectively.

  19. Pyroelectricity of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown by sol–gel process on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Moalla, R. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France); Le Rhun, G. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Defay, E. [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054 Grenoble (France); Luxembourg Institute of Science and Technology (LIST), Materials Research & Technology Department (MRT), 41 Rue du Brill, L-4422 Belvaux (Luxembourg); Baboux, N. [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, INSA de Lyon, Bâtiment Blaise Pascal, 7 avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sebald, G. [Laboratoire de Génie Electrique et Ferroélectricité, LGEF EA 682, INSA de Lyon, Bâtiment Gustave Ferrié, 8 rue de la Physique, 69621 Villeurbanne Cedex (France); Bachelet, R., E-mail: romain.bachelet@ec-lyon.fr [Institut des Nanotechnologies de Lyon, INL-CNRS UMR 5270, Ecole Centrale de Lyon, Bâtiment F7, 36 av. Guy de Collongue, 69134 Ecully Cedex (France)

    2016-02-29

    Pyroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films have been grown by sol–gel process on Si(001). Intrinsic pyroelectric coefficient has been measured through ferroelectric loops recorded at different temperatures and is about − 300 μC/m{sup 2}K. Corresponding converted pyroelectric power density is estimated to be ~ 1 mW/cm{sup 3} for a temperature variation of 10 °C every 6 s. Pyroelectric response of these films has been confirmed by direct measurements of the pyroelectric current with temperature variations at zero electric field. These results are of high interest for integrated thermally-sensitive devices. - Highlights: • Functional oxide films are grown by low-cost sol–gel process and spin-coating. • Pyroelectric Pb(Zr,Ti)O{sub 3} films are integrated in planar capacitor structure on Si. • Bulk intrinsic pyroelectric coefficient is measured: ‐ 300 μC/m{sup 2}K. • Converted pyroelectric energy is estimated: 6 mJ/cm{sup 3} per 10 °C thermal cycle. • Direct measurements of pyroelectricity are done on integrated oxide thin films.

  20. The Study of Al0.29Ga0.71N-BASED Schottky Photodiodes Grown on Silicon by Plasma-Assisted Molecular Beam Epitaxy

    Science.gov (United States)

    Mohd Yusoff, M. Z.; Hassan, Z.; Chin, C. W.; Hassan, H. Abu; Abdullah, M. J.; Mohammad, N. N.; Ahmad, M. A.; Yusof, Y.

    2013-05-01

    In this paper, the growth and characterization of epitaxial Al0.29Ga0.71N grown on Si(111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. PL spectrum of sample has shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing that it is comparable in crystal quality of the sample when compared with previous reports. From the Raman measurement of as-grown Al0.29Ga0.71N layer on GaN/AlN/Si sample. We found that the dominant E2 (high) phonon mode of GaN appears at 572.7 cm-1. The E2 (high) mode of AlN appears at 656.7 cm-1 and deviates from the standard value of 655 cm-1 for unstrained AlN. Finally, AlGaN Schottky photodiode have been fabricated and analyzed by mean of electrical characterization, using current-voltage (I-V) measurement to evaluate the performance of this device.

  1. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    International Nuclear Information System (INIS)

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-01-01

    Dielectric properties of Ba 0.7 Sr 0.3 TiO 3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  2. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    Science.gov (United States)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-07-01

    Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  3. 3D periodic structures grown on silicon by radiation of a pulsed Nd:YAG laser and their field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Karabutov, A.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru; Badi, N. [Physics Department, The University of Houston, Houston, TX 77204-5005 (United States); Nair, A.M. [TcSAM, The University of Houston, Houston, TX 77204-5004 (United States); Bensaoula, A. [Physics Department, The University of Houston, Houston, TX 77204-5005 (United States)

    2006-04-30

    Periodic three-dimensional structures were successfully grown on single crystal Si wafers either bare or Au-covered under their exposure to a pulsed radiation of a Nd:YAG laser in vacuum. The structures protrude above the initial wafer surface for 10 {mu}m while their spatial period is about 70 {mu}m. The coupling of the laser radiation to Si surface is related to the thermal non-linear absorption of the near band gap radiation. The structures exhibit an efficient field emission with an average emission current of 5 mA/cm{sup 2} and is sensitive to the post-treatment of samples. The drawbacks of the emission current densities are discussed.

  4. Optical, Electrical, and Crystal Properties of TiO2 Thin Films Grown by Atomic Layer Deposition on Silicon and Glass Substrates

    Science.gov (United States)

    Kupa, I.; Unal, Y.; Cetin, S. S.; Durna, L.; Topalli, K.; Okyay, A. K.; Ates, H.

    2018-05-01

    TiO2 thin films have been deposited on glass and Si(100) by atomic layer deposition (ALD) technique using tetrakis(diethylamido)titanium(IV) and water vapor as reactants. Thorough investigation of the properties of the TiO2/glass and TiO2/Si thin films was carried out, varying the deposition temperature in the range from 100°C to 250°C while keeping the number of reaction cycles fixed at 1000. Physical and material property analyses were performed to investigate optical and electrical properties, composition, structure, and morphology. TiO2 films grown by ALD may represent promising materials for future applications in optoelectronic devices.

  5. Breakdown voltage mapping through voltage dependent ReBEL intensity imaging of multi-crystalline Si solar cells

    Science.gov (United States)

    Dix-Peek, RM.; van Dyk, EE.; Vorster, FJ.; Pretorius, CJ.

    2018-04-01

    Device material quality affects both the efficiency and the longevity of photovoltaic (PV) cells. Therefore, identifying these defects can be beneficial in the development of more efficient and longer lasting PV cells. In this study, a combination of spatially-resolved, electroluminescence (EL), and light beam induced current (LBIC) measurements, were used to identify specific defects and features of a multi-crystalline Si PV cells. In this study, a novel approach is used to map the breakdown voltage of a PV cell through voltage dependent Reverse Bias EL (ReBEL) intensity imaging.

  6. Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage

    Science.gov (United States)

    Kulshreshtha, Prashant Kumar

    This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer. This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 microm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs). To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent

  7. Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Minhyeong; Kim, Sungtae; Ko, Dae-Hong

    2018-06-01

    In this work, we investigated the chemical bonding states in highly P-doped Si thin films epitaxially grown on Si (0 0 1) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS). HR-XPS P 2p core-level spectra clearly show spin-orbital splitting between P 2p1/2 and P 2p3/2 peaks in Si films doped with a high concentration of P. Moreover, the intensities of P 2p1/2 and P 2p3/2 peaks for P-doped Si films increase with P concentrations, while their binding energies remained almost identical. These results indicate that more P atoms are incorporated into the substitutional sites of the Si lattice with the increase of P concentrations. In order to identify the chemical states of P-doped Si films shown in XPS Si 2p spectra, the spectra of bulk Si were subtracted from those of Si:P samples, which enables us to clearly identify the new chemical state related to Sisbnd P bonds. We observed that the presence of the two well-resolved new peaks only for the Si:P samples at the binding energy higher than those of a Sisbnd Si bond, which is due to the strong electronegativity of P than that of Si. Experimental findings in this study using XPS open up new doors for evaluating the chemical states of P-doped Si materials in fundamental researches as well as in industrial applications.

  8. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  9. High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method

    KAUST Repository

    Ying, Zhiqin; Liao, Mingdun; Yang, Xi; Han, Can; Li, Jingqi; Li, Junshuai; Li, Yali; Gao, Pingqi; Ye, Jichun

    2016-01-01

    cells, whereas it is limited by the production capacity and the cost cutting due to the complicated process. Here, we demonstrated that with careful control of the composition in etching solution, low-aspect-ratio bowl-like nanostructures with atomically

  10. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  11. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads

    2008-01-01

    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  12. Aperture-time of oxygen-precursor for minimum silicon incorporation into the interface-layer in atomic layer deposition-grown HfO{sub 2}/Si nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Mani-Gonzalez, Pierre Giovanni [CINVESTAV-Unidad Querétaro, Querétaro 76230, Querétaro, Mexico and Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); Vazquez-Lepe, Milton Oswaldo [CINVESTAV-Unidad Querétaro, Querétaro 76230, Querétaro, Mexico and Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Guadalajara 45100, Jalisco (Mexico); Herrera-Gomez, Alberto, E-mail: aherrera@qro.cinvestav.mx [CINVESTAV-Unidad Querétaro, Querétaro 76230, Querétaro (Mexico)

    2015-01-15

    Hafnium oxide nanofilms were grown with atomic layer deposition on H-terminated Si (001) wafers employing tetrakis dimethyl amino hafnium (TDMA-Hf) and water as precursors. While the number of cycles (30) and the aperture-time for TDMA-Hf (0.08 s) were kept constant, the aperture-time (τ{sub H{sub 2O}}) for the oxidant-agent (H{sub 2}O) was varied from 0 to 0.10 s. The structure of the films was characterized with robust analysis employing angle-resolved x-ray photoelectron spectroscopy. In addition to a ∼1 nm hafnium oxide layer, a hafnium silicate interface layer, also ∼1 nm thick, is formed for τ{sub H{sub 2O}} > 0. The incorporation degree of silicon into the interface layer (i.e., the value of 1 − x in Hf{sub x}Si{sub 1−x}O{sub y}) shows a minimum of 0.32 for τ{sub H{sub 2O}} = 0.04 s. By employing the simultaneous method during peak-fitting analysis, it was possible to clearly resolve the contribution from the silicate and from oxide to the O 1s spectra, allowing for the assessment of the oxygen composition of each layer as a function of oxidant aperture time. The uncertainties of the peak areas and on the thickness and composition of the layers were calculated employing a rigorous approach.

  13. Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, H.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Bouaicha, M. [Laboratoire de Photovoltaique, des Semi-conducteurs et des Nanostructures, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2009-10-15

    In this work we analyse the effect of porous silicon on the performances of multicrystalline silicon (mc-Si) solar cells during the porous silicon-based gettering procedure. This procedure consists of forming PS layers on both front and back sides of the mc-Si wafers followed by an annealing in an infrared furnace under a controlled atmosphere at different temperatures. Three sets of samples (A, B and C) have been prepared; for samples A and B, the PS films were removed before and after annealing, respectively. In order to optimize the annealing temperature, we measure the defect density at a selected grain boundary (GB) using the dark current-voltage (I-V) characteristics across the GB itself. The annealing temperature was optimized to 1000 C. The effect of these treatments on the performances of mc-Si solar cells was studied by means of the current-voltage characteristic (at AM 1.5) and the internal quantum efficiency (IQE). The results obtained for cell A and cell B were compared to those obtained on a reference cell (C). (author)

  14. Simulation of atomistic processes during silicon oxidation

    OpenAIRE

    Bongiorno, Angelo

    2003-01-01

    Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 interface is of significant importance in state-of-the-art silicon microelectronics manufacturing. These two topics are intimately coupled and are both addressed in this theoretical investigation mainly through first-principles calculations....

  15. Photoluminescence at room temperature of liquid-phase crystallized silicon on glass

    Directory of Open Access Journals (Sweden)

    Michael Vetter

    2016-12-01

    Full Text Available The room temperature photoluminescence (PL spectrum due band-to-band recombination in an only 8 μm thick liquid-phase crystallized silicon on glass solar cell absorber is measured over 3 orders of magnitude with a thin 400 μm thick optical fiber directly coupled to the spectrometer. High PL signal is achieved by the possibility to capture the PL spectrum very near to the silicon surface. The spectra measured within microcrystals of the absorber present the same features as spectra of crystalline silicon wafers without showing defect luminescence indicating the high electronic material quality of the liquid-phase multi-crystalline layer after hydrogen plasma treatment.

  16. Influence of the impurity-defect and impurity-impurity interactions on the crystalline silicon solar cells conversion efficiency; Influence des interactions impurete-defaut et impurete-impurete sur le rendement de conversion des cellules photovoltaiques au silicium cristallin

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, S

    2007-05-15

    This study aims at understanding the influence of the impurity - defect interaction on the silicon solar cell performances. We studied first the case of single-crystalline silicon. We combined numerical simulations and experimental data providing new knowledge concerning metal impurities in silicon, to quantify the evolution of the conversion efficiency with the impurity concentration. Mainly due to the gettering effects, iron appears to be quite well tolerated. It is not the case for gold, diffusing too slowly. Hydrogenation effects were limited. We transposed then this study toward multi-crystalline silicon. Iron seems rather well tolerated, due to the gettering effects but also due to the efficiency of the hydrogenation. When slow diffusers are present, multi crystalline silicon is sensitive to thermal degradation. n-type silicon could solve this problem, this material being less sensitive to metal impurities. (author)

  17. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  18. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  19. Crystalline silicon cell performance at low light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Utrecht University, Faculty of Science, Copernicus Institute for Sustainable Development and Innovation, Department of Science, Techonology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Lof, R.W.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Device, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht (Netherlands); Sinke, W.C. [Energy research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)

    2009-09-15

    Measured and modelled JV characteristics of crystalline silicon cells below one sun intensity have been investigated. First, the JV characteristics were measured between 3 and 1000 W/m{sup 2} at 6 light levels for 41 industrially produced mono- and multi-crystalline cells from 8 manufacturers, and at 29 intensity levels for a single multi-crystalline silicon between 0.01 and 1000 W/m{sup 2}. Based on this experimental data, the accuracy of the following four modelling approaches was evaluated: (1) empirical fill factor expressions, (2) a purely empirical function, (3) the one-diode model and (4) the two-diode model. Results show that the fill factor expressions and the empirical function fail at low light intensities, but a new empirical equation that gives accurate fits could be derived. The accuracy of both diode models are very high. However, the accuracy depends considerably on the used diode model parameter sets. While comparing different methods to determine diode model parameter sets, the two-diode model is found to be preferred in principle: particularly its capability in accurately modelling V{sub OC} and efficiency with one and the same parameter set makes the two-diode model superior. The simulated energy yields of the 41 commercial cells as a function of irradiance intensity suggest unbiased shunt resistances larger than about 10 k{omega} cm{sup 2} may help to avoid low energy yields of cells used under predominantly low light intensities. Such cells with diode currents not larger than about 10{sup -9} A/cm{sup 2} are excellent candidates for Product Integrated PV (PIPV) appliances. (author)

  20. Photoluminescence due to early stage of oxygen precipitation in multicrystalline Si for solar cells

    Science.gov (United States)

    Higuchi, Fumito; Tajima, Michio; Ogura, Atsushi

    2017-07-01

    To analyze the early stage of oxygen precipitation in n-type multicrytalline Si, the spectral change of photoluminescence (PL) induced by thermal treatment at 450-650 °C was investigated in relation to the changes in excess donor and interstitial oxygen concentrations. We observed the characteristic PL bands in the near-band-edge region and sharp lines in the deep-level region in correspondence with the generation of thermal donors and new donors. The observed PL spectral variation is essentially the same as that in Czochralski-grown Si annealed at 450-650 °C.

  1. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuto, E-mail: tkojima@toyota-ti.ac.jp; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511 (Japan)

    2015-09-15

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi{sub 2}.

  2. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    International Nuclear Information System (INIS)

    Kojima, Takuto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi 2

  3. Silicon crystal growth using a liquid-feeding Czochralski method

    Science.gov (United States)

    Shiraishi, Yutaka; Kurosaka, Shoei; Imai, Masato

    1996-09-01

    Silicon single crystals with uniformity along the growth direction were grown using a new continuous Czochralski (CCZ) method. Polycrystalline silicon rods used as charge materials are melted by carbon heaters over a crucible without contact between the raw material and other substances. Using this method, silicon crystals with diameters as large as 6 or 8 inch and good uniformity along the growth direction were grown.

  4. Rice grown in nutrient solution with doses of manganese and silicon Arroz cultivado em solução nutritiva com doses de manganês e silício

    Directory of Open Access Journals (Sweden)

    Luiz Antônio Zanão Júnior

    2010-10-01

    Full Text Available Although silicon is not recognized as a nutrient, it may benefit rice plants and may alleviate the Mn toxicity in some plant species. The dry matter yield (root, leaf, sheaths and leaf blade and plant architecture (angle of leaf insertion and leaf arc were evaluated in rice plants grown in nutrient solutions with three Mn doses, with and without Si addition. The treatments were arranged in a 2 x 3 factorial [with and without (2 mmol L-1 Si; three Mn doses (0.5; 2.5 and 10 µmol L-1], in a randomized block design with 4 replications. The experimental unit was a 4 L plastic vase with 4 rice (Metica-1 cultivar plants. Thirty nine days after keeping the seedlings in the nutrient solution the plant dry matter yield was determined; the angle of leaf insertion in the sheath and the leaf arc were measured; and the Si and Mn concentrations in roots, sheaths and leaves were determined. The analysis of variance (F test at 5 and 1 % levels and the regression analysis (for testing plant response to Mn with the Si treatments were performed. The Si added to the nutrient solution increased the dry matter yield of roots, sheaths and leaf blades and also decreased the angle of leaf blade insertion into the sheath and the foliar arc in the rice plant. Additionally, it ameliorated the rice plant architecture which allowed an increase in the dry matter yield. Similarly, the addition of Mn to the solution improved the architecture of the rice plants with gain in dry matter yield. As Si was added to the nutrient solution, the concentration of Mn in leaves decreased and in roots increased thus alleviating the toxic effects of Mn on the plants.O silício destaca-se por exercer vários benefícios para a cultura do arroz, apesar de não ser considerado um nutriente. Um desses benefícios é que ele pode amenizar a toxidez causada por Mn em algumas espécies de plantas. Objetivou-se com este trabalho avaliar a produção de matéria seca (raízes, bainhas e limbo foliar e

  5. Micro-spectroscopy on silicon wafers and solar cells

    Directory of Open Access Journals (Sweden)

    Gundel Paul

    2011-01-01

    Full Text Available Abstract Micro-Raman (μRS and micro-photoluminescence spectroscopy (μPLS are demonstrated as valuable characterization techniques for fundamental research on silicon as well as for technological issues in the photovoltaic production. We measure the quantitative carrier recombination lifetime and the doping density with submicron resolution by μPLS and μRS. μPLS utilizes the carrier diffusion from a point excitation source and μRS the hole density-dependent Fano resonances of the first order Raman peak. This is demonstrated on micro defects in multicrystalline silicon. In comparison with the stress measurement by μRS, these measurements reveal the influence of stress on the recombination activity of metal precipitates. This can be attributed to the strong stress dependence of the carrier mobility (piezoresistance of silicon. With the aim of evaluating technological process steps, Fano resonances in μRS measurements are analyzed for the determination of the doping density and the carrier lifetime in selective emitters, laser fired doping structures, and back surface fields, while μPLS can show the micron-sized damage induced by the respective processes.

  6. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  7. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  8. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  9. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  10. Bulk solar grade silicon: how chemistry and physics play to get a benevolent microstructured material

    Energy Technology Data Exchange (ETDEWEB)

    Pizzini, S. [University of Milano-Bicocca, Department of Materials Science, Milan (Italy); Nedsilicon SpA, Osimo, Ancona (Italy)

    2009-07-15

    The availability of low-cost alternatives to electronic grade silicon has been and still is the condition for the extensive use of photovoltaics as an efficient sun harvesting system. The first step towards this objective was positively carried out in the 1980s and resulted in the reduction in cost and energy of the growth process using as feedstock electronic grade scraps and a variety of solidification procedures, all of which deliver a multi-crystalline material of high photovoltaic quality. The second step was an intense R and D activity aiming at defining and developing at lab scale a new variety of silicon, called ''solar grade'' silicon, which should fulfil the requirement of both cost effectiveness and high conversion efficiency. The third step involved and still involves the development of cost-effective technologies for the manufacture of solar grade silicon, in alternative to the classical Siemens route, which relays, as is well-known, to the pyrolitic decomposition of high-purity trichlorosilane and which is, also in its more advanced versions, extremely energy intensive. Aim of this paper is to give the author's viewpoint about some open questions concerning bulk solar silicon for PV applications and about challenges and chances of novel feedstocks of direct metallurgical origin. (orig.)

  11. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.

    2015-01-01

    © 2015 The Royal Society of Chemistry. A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  12. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  13. Oxygen measurements in thin ribbon silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, S L; Ast, D G; Baghdadi, A

    1987-03-01

    The oxygen content of thin silicon ribbons grown by the dendritic web technique was measured using a modification of the ASTM method based on Fourier transform infrared spectroscopy. Web silicon was found to have a high oxygen content, ranging from 13 to 19 ppma, calculated from the absorption peak associated with interstitial oxygen and using the new ASTM conversion coefficient. The oxygen concentration changed by about 10% along the growth direction of the ribbon. In some samples, a shoulder was detected on the absorption peak. A similar shoulder in Czochralski grown material has been variously interpreted in the literature as due to a complex of silicon, oxygen, and vacancies, or to a phase of SiO/sub 2/ developed along dislocations in the material. In the case of web silicon, it is not clear which is the correct interpretation.

  14. Dislocation dynamics of web type silicon ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Jr, O W; Tsai, C T; DeAngelis, R J

    1987-03-01

    Silicon ribbon grown by the dendritic web process passes through a rapidly changing thermal profile in the growth direction. This rapidly changing profile induces stresses which produce changes in the dislocation density in the ribbon. A viscoplastic material response function (Haasen-Sumino model) is used herein to calculate the stresses and the dislocation density at each point in the silicon ribbon. The residual stresses are also calculated.

  15. Advances in Contactless Silicon Defect and Impurity Diagnostics Based on Lifetime Spectroscopy and Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Jan Schmidt

    2007-01-01

    Full Text Available This paper gives a review of some recent developments in the field of contactless silicon wafer characterization techniques based on lifetime spectroscopy and infrared imaging. In the first part of the contribution, we outline the status of different lifetime spectroscopy approaches suitable for the identification of impurities in silicon and discuss—in more detail—the technique of temperature- and injection-dependent lifetime spectroscopy. The second part of the paper focuses on the application of infrared cameras to analyze spatial inhomogeneities in silicon wafers. By measuring the infrared signal absorbed or emitted from light-generated free excess carriers, high-resolution recombination lifetime mappings can be generated within seconds to minutes. In addition, mappings of non-recombination-active trapping centers can be deduced from injection-dependent infrared lifetime images. The trap density has been demonstrated to be an important additional parameter in the characterization and assessment of solar-grade multicrystalline silicon wafers, as areas of increased trap density tend to deteriorate during solar cell processing.

  16. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  17. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  18. Characterisation of multicrystalline silicon solar cells. Development of characterisation method for the combined effect of dislocations and grain boundaries on the minority carrier lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Stokkan, Gaute

    2004-07-01

    The thesis has sections on theoretical background, mathematical models, experimental work such as lifetime measurements, dislocation density and grain boundary mapping, simulation of electrical activity mapping and conclusions and future work. Various mathematical models and nafion surface passivation are studied as well.

  19. Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produced with solar electricity

    NARCIS (Netherlands)

    Mohr, N.; Meijer, A.; Huijbregts, M.A.J.; Reijnders, L.

    2009-01-01

    Background, aim, and scope: The environmental burden of photovoltaic (PV) solar modules is currently largely determined by the cumulative input of fossil energy used for module production. However, with an increased focus on limiting the emission of CO2 coming from fossil fuels, it is expected that

  20. Gravure-Offset Printed Metallization of Multi-Crystalline Silicon Solar Cells with Low Metal-Line Width for Mass Production.

    Science.gov (United States)

    Lee, Jonghwan; Jeong, Chaehwan

    2016-05-01

    The gravure offset method has been developed toward an industrially viable printing technique for electronic circuitry. In this paper, a roller type gravure offset manufacturing process was developed to fabricate fine line for using front electrode for solar cells. In order to obtain the optimum metallization printing lines, thickness of 20 μm which is narrow line is required. The main targets are the reduction of metallized area to reduce the shading loss, and a high conductivity to transport the current as loss free as possible out of the cell. However, it is well known that there is a poor contact resistance between the front Ag electrode and the n(+) emitter. Nickel plating was conducted to prevent the increase of contact resistance and the increase of fill factor (FF). The performance of n-Si/Ag (seed layer)/Ni solar cells were observed in 609 mV of open circuit voltage, 35.54 mA/cm2 of short circuit current density, 75.75% of fill factor, and 16.04% of conversion efficiency.

  1. Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors

    Institute of Scientific and Technical Information of China (English)

    Yen-Chi Chen; Teng-Ming Chen

    2011-01-01

    The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle,which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response.In this study,the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the ncar-infiared spectral range.The short circuit current (Isc),open circuit voltage (Voc),and conversion efficiency (η) of spectral conversion cells were measured.Preliminary experimental results revealed that the light conversion efficiency of a 1.5%-2.7% increase in Si-based cell was achieved.

  2. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  3. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  4. Counting molecular-beam grown graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Plaut, Annette S. [School of Physics, University of Exeter, Exeter EX4 4QL (United Kingdom); Wurstbauer, Ulrich [Department of Physics, Columbia University, New York, New York 10027 (United States); Pinczuk, Aron [Department of Physics, Columbia University, New York, New York 10027 (United States); Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Garcia, Jorge M. [MBE Lab, IMM-Instituto de Microelectronica de Madrid (CNM-CSIC), Madrid, E-28760 (Spain); Pfeiffer, Loren N. [Electrical Engineering Department, Princeton University, New Jersey 08544 (United States)

    2013-06-17

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  5. Position-controlled epitaxial III-V nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2006-06-14

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires.

  6. Position-controlled epitaxial III-V nanowires on silicon

    International Nuclear Information System (INIS)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires

  7. Multimodal Electrothermal Silicon Microgrippers for Nanotube Manipulation

    DEFF Research Database (Denmark)

    Nordström Andersen, Karin; Petersen, Dirch Hjorth; Carlson, Kenneth

    2009-01-01

    Microgrippers that are able to manipulate nanoobjects reproducibly are key components in 3-D nanomanipulation systems. We present here a monolithic electrothermal microgripper prepared by silicon microfabrication, and demonstrate pick-and-place of an as-grown carbon nanotube from a 2-D array onto...

  8. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Jens, E-mail: J.Hirsch@emw.hs-anhalt.de [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany); Gaudig, Maria; Bernhard, Norbert [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Lausch, Dominik [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany)

    2016-06-30

    Highlights: • Fabrication of black silicon through inductively coupled plasma (ICP) processing. • Suppressed formation a self-bias and therefore a reduced ion bombardment of the silicon sample. • Reduction of the average hemispherical reflection between 300 and 1120 nm up to 8% within 5 min ICP process time. • Reflection is almost independent of the angle of incidence up to 60°. • 2.5 ms effective lifetime at 10{sup 15} cm{sup −3} MCD after ALD Al{sub 2}O{sub 3} surface passivation. - Abstract: The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF{sub 6} and O{sub 2} are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 10{sup 15} cm{sup −3} minority carrier density (MCD) after an atomic layer deposition (ALD) with Al{sub 2}O{sub 3}. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique

  9. Electrical activation of phosphorus in silicon

    International Nuclear Information System (INIS)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y.; Clark, R.G.

    2003-01-01

    Full text: We present studies of phosphorus δ-doping in silicon with a view to determining the degree of electrical activation of the dopants. These results have a direct consequence for the use of phosphorus as a qubit in a silicon-based quantum computer such as that proposed by Kane. Room temperature and 4 K Hall effect measurements are presented for phosphorus δ-doped layers grown in n-type silicon using two different methods. In the first method, the δ-layer was deposited by a phosphorus effusion cell in an MBE chamber. In the second method, the Si surface was dosed with phosphine gas and then annealed to 550 deg C to incorporate P into the substrate. In both methods, the P δ-doped layer was subsequently encapsulated by ∼25 nm of Si grown epitaxially. We discuss the implications of our results on the fabrication of the Kane quantum computer

  10. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  11. Zirconates heteroepitaxy on silicon

    Science.gov (United States)

    Fompeyrine, Jean; Seo, Jin Won; Seigwart, Heinz; Rossel, Christophe; Locquet, Jean-Pierre

    2002-03-01

    In the coming years, agressive scaling in CMOS technology will probably trigger the transition to more advanced materials, for example alternate gate dielectrics. Epitaxial thin films are attractive candidates, as long as the difficult chemical and structural issues can be solved, and superior properties can be obtained. Since very few binary oxides can match the electrical, physical and structural requirements which are needed, a combination of those binaries are used here to investigate other lattice matched oxides. We will report on the growth of crystalline zirconium oxide thin films stabilized with different cationic substitutions. All films have been grown in an oxide-MBE system by direct evaporation of the elements on silicon substrates and exposure to molecular or atomic oxygen. The conditions required to obtain epitaxial thin films will be discussed, and successful examples will be presented.

  12. Silicon Web Process Development. [for solar cell fabrication

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  13. Efficiency Gain For Bi-Facial Multi-Crystalline Solar Cell With Uncapped Al2O3 And Local Firing-Through Al-BSF

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, I.; Manshanden, P.; Janssen, G.; Weeber, A.W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Granneman, E.; Siarheyeva, O. [Levitech BV, Versterkerstraat 10, 1322 AP Almere (Netherlands)

    2013-06-15

    The p-type bi-facial cell concept, p-PASHA (Passivated on all sides H- pattern), is developed at ECN and employs an uncapped AlOx passivation layer on the rear through which a screen printed H-pattern of aluminium contacts is fired. Here we report a net gain in cell efficiency of 0.2% absolute for the p-PASHA cell vs. industrial reference with the addition of a clean and an ALD step. Even higher gains up to 0.5% abs. are expected after optimization of the cell design and process. Apart from the efficiency gain, the bi-facial cell concept allows for 50-80% reduction in Al paste consumption, the use of thinner wafers, and consists of less processing steps compared to prevalent PERC concepts. The Al2O3 dielectric layer is deposited in the Levitrack, an industrial-type system for high-throughput Atomic Layer Deposition (ALD) developed by Levitech. The efficiency gain is obtained on multi-crystalline wafers, at a rear metal fraction of 40%. Localized IQE mapping, cross-sectional SEM investigation, resistance measurements and 2D simulation relate the efficiency improvement compared to our conventional process to better eutectic and BSF formation at the Al contact edges.

  14. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  15. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  16. Heteroepitaxially grown InP solar cells

    International Nuclear Information System (INIS)

    Weinberg, I.; Swartz, C.K.; Brinker, D.J.; Wilt, D.M.

    1990-01-01

    Although they are significantly more radiation resistant than either Si or GaAs solar cells, their high wafer cost presents a barrier to the widespread use of InP solar cells in space. For this reason, the authors have initiated a program aimed at producing high efficiency, radiation resistant solar cells processed from InP heteroepitaxially grown on cheaper substrates. The authors' objective is to present the most recent results emanating from this program together with the results of their initial proton irradiations on these cells. This paper reports that InP cells were processed from a 4 micron layer of InP, grown by OMCVD on a silicon substrate, with a 0.5 micron buffer layer between the InP directly grown on a GaAs substrate. Initial feasibility studies, in a Lewis sponsored program at the Spire corporation, resulted in air mass zero efficiencies of 7.1% for the former cells and 9.1% for the latter. These initial low efficiencies are attributed to the high dislocation densities caused by lattice mismatch. The authors' preirradiation analysis indicates extremely low minority carrier diffusion lengths, in both cell base and emitter, and high values of both the diffusion and recombination components of the diode reverse saturation currents. Irradiation by 10 MeV protons, to a fluence of 10 13 cm -2 , resulted in relatively low degradation in cell efficiency, short circuit current and open circuit voltage

  17. X-ray diffraction study of directionally grown perylene crystallites

    DEFF Research Database (Denmark)

    Breiby, Dag W.; Lemke, H. T.; Hammershøj, P.

    2008-01-01

    Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel to the subst......Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel...... to the substrate. The scattering data is interpreted as a trimodal texture of oriented perylene crystallites, induced by interactions between the perylene molecules and the oriented PTFE substrate. Three families of biaxial orientations are seen, with the axes (h = 1, 2, or 3) parallel to the PTFE alignment......, all having the ab-plane parallel to the substrate. About 92% of the scattered intensity corresponds to a population with highly parallel to (PTFE)....

  18. Graphic Grown Up

    Science.gov (United States)

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  19. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    Science.gov (United States)

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  20. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  1. Geochemistry of silicon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Tiping; Li, Yanhe; Gao, Jianfei; Hu, Bin [Chinese Academy of Geological Science, Beijing (China). Inst. of Mineral Resources; Jiang, Shaoyong [China Univ. of Geosciences, Wuhan (China).

    2018-04-01

    Silicon is one of the most abundant elements in the Earth and silicon isotope geochemistry is important in identifying the silicon source for various geological bodies and in studying the behavior of silicon in different geological processes. This book starts with an introduction on the development of silicon isotope geochemistry. Various analytical methods are described and compared with each other in detail. The mechanisms of silicon isotope fractionation are discussed, and silicon isotope distributions in various extraterrestrial and terrestrial reservoirs are updated. Besides, the applications of silicon isotopes in several important fields are presented.

  2. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    Science.gov (United States)

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  3. Growth of YBCO superconducting thin films on CaF sub 2 buffered silicon

    CERN Document Server

    Bhagwat, S S; Patil, J M; Shirodkar, V S

    2000-01-01

    CaF sub 2 films were grown on silicon using the neutral cluster beam deposition technique. These films were highly crystalline and c-axis oriented. Superconducting YBCO thin films were grown on the Ca F sub 2 buffered silicon using the laser ablation technique. These films showed T sub c (onset) at 90 K and Tc(zero) at 86 K. X-ray diffraction analysis showed that the YBCO films were also oriented along the c-axis.

  4. Dry technologies for the production of crystalline silicon solar cells; Trockentechnologien zur Herstellung von kristallinen Siliziumsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Rentsch, J.

    2005-04-15

    Within this work, dynamic plasma etching technologies for the industrial production of crystalline silicon solar cells has been investigated. The research activity can be separated into three major steps: the characterisation of the etching behaviour of a newly developed dynamic plasma etching system, the development and analysis of dry etching processes for solar cell production and the determination of the ecological and economical impacts of such a new technology compared to standard up to date technologies. The characterisation of the etching behaviour has been carried out for two different etching sources, a low frequency (110 kHz) and a microwave (2.45 GHz) plasma source. The parameter of interest was the delivered ion energy of each source mainly determining the reachable etch rate. The etch rate turned out to be the main most critical parameter concerning the reachable wafer throughput per hour. Other points of interest in characterisation of the etching system were the material of the transport carriers, the silicon load as well as the process temperatures. The development of different dry etching processes targets the design of a complete dry production process for crystalline silicon solar cells. Therefore etching processes for saw damage removal, texturing, edge isolation as well as etching of dielectric layers have been developed and optimised. The major benefits of a complete dry production process would be the reduction of handling steps in between process steps and therefore offers a large cost reduction potential. For multicrystalline silicon solar cells a cost reduction potential of 5 % compared to a standard wet chemical based reference process could be realized only including the dry etching of a phosphorus silicate glass layer after diffusion. Further reduction potential offers the implementation of a dry texturing process due to a significant efficiency increase. (orig.)

  5. Introduction of high oxygen concentrations into silicon wafers by high-temperature diffusion

    International Nuclear Information System (INIS)

    Casse, G.; Glaser, M.; Lemeilleur, F.; Ruzin, A.; Wegrzecki, M.

    1999-01-01

    The tolerance of silicon detectors to hadron irradiation can be improved by the introduction of a high concentration of oxygen into the starting material. High-resistivity Floating-Zone (FZ) silicon is required for detectors used in particle physics applications. A significantly high oxygen concentration (>10 17 atoms cm -3 ) cannot readily be achieved during the FZ silicon refinement. The diffusion of oxygen at elevated temperatures from a SiO 2 layer grown on both sides of a silicon wafer is a simple and effective technique to achieve high and uniform concentrations of oxygen throughout the bulk of a 300 μm thick silicon wafer

  6. Baffles Promote Wider, Thinner Silicon Ribbons

    Science.gov (United States)

    Seidensticker, Raymond G.; Mchugh, James P.; Hundal, Rolv; Sprecace, Richard P.

    1989-01-01

    Set of baffles just below exit duct of silicon-ribbon-growing furnace reduces thermal stresses in ribbons so wider ribbons grown. Productivity of furnace increased. Diverts plume of hot gas from ribbon and allows cooler gas from top of furnace to flow around. Also shields ribbon from thermal radiation from hot growth assembly. Ribbon cooled to lower temperature before reaching cooler exit duct, avoiding abrupt drop in temperature as entering duct.

  7. VLS-grown diffusion doped ZnO nanowires and their luminescence properties

    International Nuclear Information System (INIS)

    Roy, Pushan Guha; Dutta, Amartya; Das, Arpita; Bhattacharyya, Anirban; Sen, Sayantani; Pramanik, Pallabi

    2015-01-01

    Zinc Oxide (ZnO) nanowires were deposited by vapor–liquid–solid (VLS) method on to aluminum doped ZnO (AZO) thin films grown by sol-gel technique. For various device applications, current injection into such nanowires is critical. This is expected to be more efficient for ZnO nanowires deposited on to AZO compared to those deposited on to a foreign substrate such as silicon. In this work we compare the morphological and optical properties of nanowires grown on AZO with those grown under similar conditions on silicon (Si) wafers. For nanowires grown on silicon, diameters around 44 nm with heights around 2.2 μm were obtained. For the growth on to AZO, the diameters were around 90 nm while the heights were around 520 nm. Room temperature photoluminescence (RT-PL) measurements show improved near band-edge emission for nanowires grown on to AZO, indicating higher material quality. This is further established by low temperature photoluminescence (LT-PL) measurements where excitonic transitions with width as small as 14 meV have been obtained at 4 K for such structures. Electron energy loss spectroscopy (EELS) studies indicate the presence of Al in the nanowires, indicating a new technique for introduction of dopants into these structures. These results indicate that ZnO nanowires on sol-gel grown AZO thin films show promise in the development of various optoelectronic devices. (paper)

  8. Key Success Factors and Future Perspective of Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    S. Binetti

    2013-01-01

    Full Text Available Today, after more than 70 years of continued progress on silicon technology, about 85% of cumulative installed photovolatic (PV modules are based on crystalline silicon (c-Si. PV devices based on silicon are the most common solar cells currently being produced, and it is mainly due to silicon technology that the PV has grown by 40% per year over the last decade. An additional step in the silicon solar cell development is ongoing, and it is related to a further efficiency improvement through defect control, device optimization, surface modification, and nanotechnology approaches. This paper attempts to briefly review the most important advances and current technologies used to produce crystalline silicon solar devices and in the meantime the most challenging and promising strategies acting to increase the efficiency to cost/ratio of silicon solar cells. Eventually, the impact and the potentiality of using a nanotechnology approach in a silicon-based solar cell are also described.

  9. Engineered Emitters for Improved Silicon Photovoltaics

    Science.gov (United States)

    Kamat, Ronak A.

    In 2014, installation of 5.3GW of new Photovoltaic (PV) systems occurred in the United States, raising the total installed capacity to 16.36GW. Strong growth is predicted for the domestic PV market with analysts reporting goals of 696GW by 2020. Conventional single crystalline silicon cells are the technology of choice, accounting for 90% of the installations in the global commercial market. Cells made of GaAs offer higher efficiencies, but at a substantially higher cost. Thin film technologies such as CIGS and CdTe compete favorably with multi-crystalline Si (u-Si), but at 20% efficiency, still lag the c-Si cell in performance. The c-Si cell can be fabricated to operate at approximately 25% efficiency, but commercially the efficiencies are in the 18-21% range, which is a direct result of cost trade-offs between process complexity and rapid throughput. With the current cost of c-Si cell modules at nearly 0.60/W. The technology is well below the historic metric of 1/W for economic viability. The result is that more complex processes, once cost-prohibitive, may now be viable. An example is Panasonic's HIT cell which operates in the 22-24% efficiency range. To facilitate research and development of novel PV materials and techniques, RIT has developed a basic solar cell fabrication process. Student projects prior to this work had produced cells with 12.8% efficiency using p type substrates. This thesis reports on recent work to improve cell efficiencies while simultaneously expanding the capability of the rapid prototyping process. In addition to the p-Si substrates, cells have been produced using n-Si substrates. The cell emitter, which is often done with a single diffusion or implant has been re-engineered using a dual implant of the same dose. This dual-implanted emitter has been shown to lower contact resistance, increase Voc, and increase the efficiency. A p-Si substrate cell has been fabricated with an efficiency of 14.6% and n-Si substrate cell with a 13

  10. Creating New VLS Silicon Nanowire Contact Geometries by Controlling Catalyst Migration

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal; Panciera, Federico; Hansen, Ole

    2015-01-01

    The formation of self-assembled contacts between vapor-liquid-solid grown silicon nanowires and flat silicon surfaces was imaged in situ using electron microscopy. By measuring the structural evolution of the contact formation process, we demonstrate how different contact geometries are created b...

  11. Microspheres for the Growth of Silicon Nanowires via Vapor-Liquid-Solid Mechanism

    Directory of Open Access Journals (Sweden)

    Arancha Gómez-Martínez

    2014-01-01

    Full Text Available Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. The resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  12. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  13. Study on grown-in defects in CZ-Si by positron annihilation

    International Nuclear Information System (INIS)

    Nakagawa, S.; Hori, F.; Oshima, R.

    2004-01-01

    In order to study the nature of grown-in microdefects of a silicon wafer taken from a czochralski-grown single crystal (CZ-Si) in which ring oxidation-induced stacking faults (ring-OSF) are formed after oxidation heat treatment, positron annihilation coincidence Doppler broadening experiments (CDB) have been performed. Vacancy-type defects were detected in the central region of a wafer of an as-grown crystal, and they were changed with annealing. It was confirmed that different types of defects were formed in the regions of outside and inside of the ring-OSF. (orig.)

  14. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  15. Hydrothermally grown zeolite crystals

    International Nuclear Information System (INIS)

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  16. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  17. Suppressing segregation in highly phosphorus doped silicon monolayers

    NARCIS (Netherlands)

    Keizer, Joris; Kölling, Sebastian; Koenraad, Paul; Simmons, Michelle Y.

    2015-01-01

    Sharply defined dopant profiles and low resistivity are highly desired qualities in the microelectronic industry, and more recently, in the development of an all epitaxial Si:P based quantum computer. In this work, we use thin (monolayers thick) room temperature grown silicon layers, so-called

  18. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  19. Grown on Novel Microcarriers

    Directory of Open Access Journals (Sweden)

    Torsten Falk

    2012-01-01

    Full Text Available Human retinal pigment epithelial (hRPE cells have been tested as a cell-based therapy for Parkinson’s disease but will require additional study before further clinical trials can be planned. We now show that the long-term survival and neurotrophic potential of hRPE cells can be enhanced by the use of FDA-approved plastic-based microcarriers compared to a gelatin-based microcarrier as used in failed clinical trials. The hRPE cells grown on these plastic-based microcarriers display several important characteristics of hRPE found in vivo: (1 characteristic morphological features, (2 accumulation of melanin pigment, and (3 high levels of production of the neurotrophic factors pigment epithelium-derived factor (PEDF and vascular endothelial growth factor-A (VEGF-A. Growth of hRPE cells on plastic-based microcarriers led to sustained levels (>1 ng/ml of PEDF and VEGF-A in conditioned media for two months. We also show that the expression of VEGF-A and PEDF is reciprocally regulated by activation of the GPR143 pathway. GPR143 is activated by L-DOPA (1 μM which decreased VEGF-A secretion as opposed to the previously reported increase in PEDF secretion. The hRPE microcarriers are therefore novel candidate delivery systems for achieving long-term delivery of the neuroprotective factors PEDF and VEGF-A, which could have a value in neurodegenerative conditions such as Parkinson’s disease.

  20. Quality evaluation of resistivity-controlled silicon crystals

    Science.gov (United States)

    Wang, Jong Hoe

    2006-01-01

    The segregation phenomenon of dopants causes a low production yield of silicon crystal that meets the resistivity tolerance required by device manufacturers. In order to control the macroscopic axial resistivity distribution in bulk crystal growth, numerous studies including continuous Czochralski method and double crucible technique have been studied. The simple B-P codoping method for improving the productivity of p-type silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. In this work, the quality of Czochralski-grown silicon single crystals with a diameter 200 mm using B-P codoping method was studied from the chemical and structural points of view. It was found that the characteristics of B-P codoped wafers including the oxygen precipitation behavior and the grown-in defects are same as that of conventional B-doped Czochralski crystals.

  1. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  2. Insitu CCVD grown bilayer graphene transistors for applications in nanoelectronics

    International Nuclear Information System (INIS)

    Wessely, Pia Juliane; Schwalke, Udo

    2014-01-01

    We invented a method to fabricate graphene field effect transistors (GFETs) on oxidized silicon wafers in a Silicon CMOS compatible process. The graphene layers needed are grown in situ by means of a transfer-free catalytic chemical vapor deposition (CCVD) process directly on silicon dioxide. Depending on the process parameters the fabrication of single, double or multi-layer graphene FETs (GFETs) is possible. The produced graphene layers have been characterized by SEM, TEM, TEM-lattice analysis as well as Raman-Spectroscopy. Directly after growth, the fabricated GFETs are electrically functional and can be electrically characterized via the catalyst metals which are used as contact electrodes. In contrast to monolayer graphene FETs, the fabricated bilayer graphene FETs (BiLGFETs) exhibit unipolar p-type MOSFET behavior. Furthermore, the on/off current-ratio of 10 4 up to several 10 7 at room temperature of the fabricated BiLGFETs allows their use in digital logic applications [1]. In addition, a stable hysteresis of the GFETs enables their use as memory devices without the need of storage capacitors and therefore very high memory device-densities are possible. The whole fabrication process is fully Si-CMOS compatible, enabling the use of hybrid silicon/graphene electronics.

  3. New, mechanically textured high-efficiency solar cells of low-cost silicon foil material. Final report; Neuartige, mechanisch texturierte Hochleistungssolarzellen aus kostenguenstigem Siliziumfolienmaterial. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, E.; Fath, P.; Boueke, A.; Gerhards, C.; Huster, F.; Kuehn, R.; Hahn, G.; Terheiden, B.

    2001-07-01

    The project investigated the efficiency increase of solar cells made of multicrystalline silicon. Since 1992, Constance University has been working on a texturing process based on fast rotating profile tools. The technology is a low-cost grinding technology and will enhance the efficiency of multicrystalline Si solar cell processes in industrial applications. Combined with innovative cell concepts (semi-transparent POWER solar cells, rolling pressure metallization, innovative cell connection), the process has considerable technology transfer and marketing potential. The project intended a systematic improvement of the results achieved so far on the basis of new ideas and full exploitation of the available technological potential in the field of wafer, foil and thin film processes. [German] Zu Beginn des Vorhabens zeichnete sich weltweit der Trend ab, zunehmend multikristallines Silizium, blockgegossenes sowie foliengezogenes, in der Photovoltaik einzusetzen. Daraus ergab sich die Fragestellung der Steigerung des Solarzellenwirkungswirkungsgrades insbesondere auf diesen Materialien. Zwei wesentliche Aspekte sind dabei zu beruecksichtigen: eine effiziente Oberflaechentextur und eine angepasste Prozessoptimierung inklusive Volumenpasssivierung. Bei dem an der Universitaet Konstanz seit 1992 in der Laborentwicklung befindlichen Texturierungsverfahren auf Basis schnellrotierenden Profilwerkzeuge handelte es sich um eine vielseitig verwendbare Technologie, die zum einen als reines mechanisches Schleifverfahren kostenguenstig erscheint und zum anderen zu Wirkungsgradsteigerungen bei industrienahen multikristallinen Silizium-Solarzellenprozessen fuehrt. In Verbindung mit innovativen Zellkonzepten (semitransparente POWER-Solarzellen, Rolldruckmetallisierung, innovative Zellverschaltung) verfuegt dieses Verfahren ueber ein erhebliches Technologietransfer- und Marktpotential. Das vorliegende Vorhaben verfolgte eine systematische Verbesserung der bereits erzielten Ergebnisse

  4. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B

    2003-04-15

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T{sub S}=450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal {beta}-MoSi{sub 2} could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet.

  5. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    International Nuclear Information System (INIS)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B.

    2003-01-01

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T S =450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal β-MoSi 2 could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet

  6. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  7. Optimization of heat transfer during the directional solidification process of 1600 kg silicon feedstock

    Science.gov (United States)

    Hu, Chieh; Chen, Jyh Chen; Nguyen, Thi Hoai Thu; Hou, Zhi Zhong; Chen, Chun Hung; Huang, Yen Hao; Yang, Michael

    2018-02-01

    In this study, the power ratio between the top and side heaters and the moving velocity of the side insulation are designed to control the shape of the crystal-melt interface during the growth process of a 1600 kg multi-crystalline silicon ingot. The power ratio and insulation gap are adjusted to ensure solidification of the melt. To ensure that the crystal-melt interface is slightly convex in relation to the melt during the entire solidification process, the power ratio should be augmented gradually in the initial stages while being held to a constant value in the middle stages. Initially the gap between the side and the bottom insulation is kept small to reduce thermal stress inside the seed crystals. However, the growth rate will be slow in the early stages of the solidification process. Therefore, the movement of the side insulation is fast in the initial stages but slower in the middle stages. In the later stages, the side insulation gap is fixed. With these modifications, the convexity of the crystal-melt interface in relation to the melt can be maintained during the growth process with an approximately 41% reduction in the thermal stress inside the growing ingot and an 80% reduction in dislocation density along the center line of the ingot compared with the original case.

  8. Magnetic flow control in growth and casting of photovoltaic silicon: Numerical and experimental results

    Science.gov (United States)

    Poklad, A.; Pal, J.; Galindo, V.; Grants, I.; Heinze, V.; Meier, D.; Pätzold, O.; Stelter, M.; Gerbeth, G.

    2017-07-01

    A novel, vertical Bridgman-type technique for growing multi-crystalline silicon ingots in an induction furnace is described. In contrast to conventional growth, a modified setup with a cone-shaped crucible and susceptor is used. A detailed numerical simulation of the setup is presented. It includes a global thermal simulation of the furnace and a local simulation of the melt, which aims at the influence of the melt flow on the temperature and concentration fields. Furthermore, seeded growth of cone-shaped Si ingots using either a monocrystalline seed or a seed layer formed by pieces of poly-Si is demonstrated and compared to growth without seeds. The influences of the seed material on the grain structure and the dislocation density of the ingots are discussed. The second part addresses model experiments for the Czochralski technique using the room temperature liquid metal GaInSn. The studies were focused on the influence of a rotating and a horizontally static magnetic field on the melt flow and the related heat transport in crucibles being heated from bottom and/or side, and cooled by a crystal model covering about 1/3 of the upper melt surface.

  9. Treatment of transparent conductive oxides by laser processes for the development of Silicon photovoltaic cells

    International Nuclear Information System (INIS)

    Canteli Perez-Caballero, D.

    2015-01-01

    Transparent conductive oxides (TCOs) are heavily doped oxides with high transparency in the visible range of the spectrum and a very low sheet resistance, making them very attractive for applications in optoelectronic devices. TCOs are widely found in many different areas such as low emissivity windows, electric contacts in computers, televisions or portable devices, and, specially, in the photovoltaic (PV) industry. PV industry is mainly based on mono- and multicrystalline silicon, where TCOs are used as anti-reflective coatings, but the search for cheaper, alternative technologies has led to the development of thin film PV technologies, where TCOs are used as transparent contacts. With the maturation of the thin film PV industry, laser sources have become an essential tool, allowing the improvement of some industrial processes and the development of new ones. Because of the interest on a deeper understanding of the interaction processes between laser light and TCOs, the laser ablation of three of the most important TCOs has been studied in depth in the present work. (Author)

  10. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  11. Laser process for extended silicon thin film solar cells

    International Nuclear Information System (INIS)

    Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.

    2011-01-01

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  12. GREENHOUSE-GROWN CAPE GOOSEBERRY

    African Journals Online (AJOL)

    /2006 S 4,00. Printed in Uganda. All rights reserved O2006, African Crop Science Society. SHORT COMMINICATION. EFFECT OF GIBBERRELLIC ACID ON GROWTH AND FRUIT YIELD OF. GREENHOUSE-GROWN CAPE GOOSEBERRY.

  13. Electrical characterization of high-pressure reactive sputtered ScOx films on silicon

    International Nuclear Information System (INIS)

    Castan, H.; Duenas, S.; Gomez, A.; Garcia, H.; Bailon, L.; Feijoo, P.C.; Toledano-Luque, M.; Prado, A. del; San Andres, E.; Lucia, M.L.

    2011-01-01

    Al/ScO x /SiN x /n-Si and Al/ScO x /SiO x /n-Si metal-insulator-semiconductor capacitors have been electrically characterized. Scandium oxide was grown by high-pressure sputtering on different substrates to study the dielectric/insulator interface quality. The substrates were silicon nitride and native silicon oxide. The use of a silicon nitride interfacial layer between the silicon substrate and the scandium oxide layer improves interface quality, as interfacial state density and defect density inside the insulator are decreased.

  14. Characterization of multicrystalline solar cells

    International Nuclear Information System (INIS)

    Malik, A.Q.; Chong Chew Hah; Chan Siang Khwang; Tan Kha Sheng; Lim Chee Ming

    2006-01-01

    The evaluation and assessment of the performance of photovoltaic (PV) cells in terms of measurable parameters requires the measurement of the current as a function of voltage, temperature, intensity, wind speed and spectrum. Most noticeable of all these parameters in the PV conversion efficiency η, defined as the maximum electrical power P max produced by the PV cell divided by the incident photon power P in which is measured with respect to standard test conditions (Sc). These conditions refer to the spectrum (AM 1.5), solar radiation intensity (1000 Wm -2 ), cell temperature (25 ± 2 degree C) and wind speed (2 mph). Tests under STC are carried out in the laboratory at a controlled environment. There have been several studies that analyze uncertainties in the laboratory measurement of solar cell efficiencies using different solar simulators and their transference to operational situations. Our preliminary results demonstrate that the short circuit current (I SC ) of the solar cell decreases when irradiance is less than 1000 Wm -2 irrespective of the working temperature of the cell

  15. Characterisation of multicrystalline solar cells

    Directory of Open Access Journals (Sweden)

    A.Q. Malik

    2017-10-01

    Full Text Available The evaluation and assessment of the performance of photovoltaic (PV cells in terms of measurable parameters requires the measurement of the current as a function of voltage, temperature, intensity, wind speed and spectrum. Mo st noticeable of all these parameters is the PV conversion efficiency η, defined as the maximum electrical power Pmax produced by the PV cell divided by the incident photon power P in which is measured with respect to standard test conditions (STC. These conditions refer to the spectrum (AM 1.5, solar radiation intensity (1000 Wm-2, cell temperature (25 ±2oC and wind speed (2 mph. Tests under STC are carried out in the laboratory at a controlled environment. There have been several studies that analyze uncertainties in the laboratory measurement of solar cell efficiencies using different solar simulators and their transference to operational situations. Our preliminary results demonstratethat the short circuit current (ISC of the solar cell decreases when irradiance is less than 1000 Wm-2 irrespective of the working temperature of the cell.

  16. Characterisation of multicrystalline solar cells

    OpenAIRE

    A.Q. Malik; Chong Chew Hah; Chan Siang Khwang; Lim Chee Ming; Tan Kha Sheng

    2017-01-01

    The evaluation and assessment of the performance of photovoltaic (PV) cells in terms of measurable parameters requires the measurement of the current as a function of voltage, temperature, intensity, wind speed and spectrum. Mo st noticeable of all these parameters is the PV conversion efficiency η, defined as the maximum electrical power Pmax produced by the PV cell divided by the incident photon power P in which is measured with respect to standard test conditions (STC). These conditions re...

  17. Silicon heterojunction transistor

    International Nuclear Information System (INIS)

    Matsushita, T.; Oh-uchi, N.; Hayashi, H.; Yamoto, H.

    1979-01-01

    SIPOS (Semi-insulating polycrystalline silicon) which is used as a surface passivation layer for highly reliable silicon devices constitutes a good heterojunction for silicon. P- or B-doped SIPOS has been used as the emitter material of a heterojunction transistor with the base and collector of silicon. An npn SIPOS-Si heterojunction transistor showing 50 times the current gain of an npn silicon homojunction transistor has been realized by high-temperature treatments in nitrogen and low-temperature annealing in hydrogen or forming gas

  18. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  19. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  20. Depth distribution of carrier lifetime in 65 MeV oxygen ion irradiated silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kanjilal, D. [Nuclear Science Centre, New Delhi (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in

    2006-03-15

    CZ-grown, n-doped crystalline Si(1 1 1) of resistivity 60 {omega} cm and 140 {omega} cm were irradiated with 65 MeV energy oxygen ions, in the fluence range of 2 x 10{sup 1}-10{sup 14} ions/cm{sup 2}. The depth and spatial profile of excess minority carrier recombination time {tau} (lifetime) was measured using photoconductive decay (PCD) method. Lifetime measurements were carried out before the stopping range of impinging ions. Results show a monotonous decrease in lifetime with fluence, which is attributed to defect creation mechanism by electronic energy loss based on the thermal spike model. Also, surface modification is expected with a small loss in crystalline quality. This surface is considered to be a multi-crystalline surface with large grain boundaries that act as trapping sites for excess holes in n-Si(1 1 1). Annealing of the irradiated samples showed a near complete recovery at 750 deg. C for a period of 1 h.

  1. Resistivity distribution of silicon single crystals using codoping

    Science.gov (United States)

    Wang, Jong Hoe

    2005-07-01

    Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B-P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.

  2. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    Science.gov (United States)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  3. Incorporation, diffusion and segregation of impurities in polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Deville, J.P.; Soltani, M.L. (Universite Louis Pasteur, 67 - Strasbourg (France)); Quesada, J. (Laboratoire de Metallurgie-Chimie des Materiaux, E.N.S.A.I.S., 67 - Strasbourg (France))

    1982-01-01

    We studied by means of X-Ray photoelectron Spectroscopy the nature, distribution and, when possible, the chemical bond of impurities at the surface of polycrystalline silicon samples grown on a carbon ribbon. Besides main impurities (carbon and oxygen), always present at concentrations around their limit of solubility in silicon, metal impurities have been found: their nature varies from one sample to another. Their spatial distribution is not random: some are strictly confined at the surface (sodium), whereas others are in the superficial oxidized layer (calcium, magnesium) or localized at the oxide-bulk silicon interface (iron). Metal impurities are coming from the carbon ribbon and are incorporated to silicon during the growth process. It is not yet possible to give a model of diffusion processes of impurities since they are too numerous and interact one with the other. However oxygen seems to play a leading role in the spatial distribution of metal impurities.

  4. Effects of ion implantation on charges in the silicon--silicon dioxide system

    International Nuclear Information System (INIS)

    Learn, A.J.; Hess, D.W.

    1977-01-01

    Structures consisting of thermally grown oxide on silicon were implanted with boron, arsenic, or argon ions. For argon implantation through oxides, an increased fixed oxide charge (Q/sub ss/) was observed with the increase being greater for than for silicon. This effect is attributed to oxygen recoil which produces additional excess ionized silicon in the oxide of a type similar to that arising in thermal oxidation. Fast surface state (N/sub st/) generation was also noted which in most cases obscured the Q/sub ss/ increase. Of various heat treatments tested, only a 900 degreeC anneal in hydrogen annihilated N/sub st/ and allowed Q/sub ss/ measurement. Such N/sub st/ apparently arises as a consequence of implantation damage at the silicon--silicon dioxide interface. With the exception of boron implantations into thick oxides or through aluminum electrodes, reduction of the mobile ionic charge (Q/sub o/) was achieved by implantation. The reduction again is presumably damage related and is not negated by high-temperature annealing but may be counterbalanced by aluminum incorporation in the oxide

  5. Investigating PID Shunting in Polycrystalline Silicon Modules via Multiscale, Multitechnique Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moseley, John [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Norman, Andrew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnston, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Al-Jassim, Mowafak M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stokes, Adam [Colorado School of Mines; Gorman, Brian [Colorado School of Mines

    2018-02-27

    We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis. By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.

  6. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  7. Reduction of Defects in Germanium-Silicon

    Science.gov (United States)

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  8. Chiral silicon nanostructures

    International Nuclear Information System (INIS)

    Schubert, E.; Fahlteich, J.; Hoeche, Th.; Wagner, G.; Rauschenbach, B.

    2006-01-01

    Glancing angle ion beam assisted deposition is used for the growth of amorphous silicon nanospirals onto [0 0 1] silicon substrates in a temperature range from room temperature to 475 deg. C. The nanostructures are post-growth annealed in an argon atmosphere at various temperatures ranging from 400 deg. C to 800 deg. C. Recrystallization of silicon within the persisting nanospiral configuration is demonstrated for annealing temperatures above 800 deg. C. Transmission electron microscopy and Raman spectroscopy are used to characterize the silicon samples prior and after temperature treatment

  9. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  10. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  11. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species

    Science.gov (United States)

    Garbuzov, Mihail; Reidinger, Stefan; Hartley, Susan E.

    2011-01-01

    Background and Aims The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator. Methods Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria). Key Results In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon. Conclusions It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure. PMID:21868406

  12. Orientation and Morphology Effects in Rapid Silicon Sheet Solidification

    Science.gov (United States)

    Ciszek, T. F.

    1984-01-01

    Radial growth anisotropies and equilibrium forms of point nucleated, dislocation free silicon sheets spreading horizontally on the free surface of a silicon melt were measured for (100), (110), (111), and (112) sheet planes. The growth process was recorded. Qualitative Wulff surface free energy polar plots were deduced from the equilibrium shapes for each sheet plane. Predicted geometries for the tip shape of unidirectional, dislocation free, horizontally grown sheets growing in various directions within the planes were analyzed. Polycrystalline sheets and dendrite propagation were analyzed. For dendrites, growth rates on the order of 2.5 m/min and growth rate anisotropies of 25 are measured.

  13. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    International Nuclear Information System (INIS)

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.

    1997-12-01

    Epitaxial grown thick layers (≥ 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 x 10 12 cm -3 ) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E p = 24 GeV) with a fluence of 1.5 x 10 11 cm -2 , no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ''sinking'' process, however, becomes non-effective at high radiation fluences (10 14 cm -2 ) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 x 10 14 cm -2 the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 x 10 12 cm -3 after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon

  14. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  15. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  16. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  17. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...... this template with nanopores ending on a conducting underlayer, a high-density nanowire array can be simply grown by direct DCelectrodeposition on the top of the silicone rubber....

  18. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  19. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  20. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  1. Development of an In-Line Minority-Carrier Lifetime Monitoring Tool for Process Control during Fabrication of Crystalline Silicon Solar Cells: Annual Subcontract Report, June 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R. A.

    2004-04-01

    Under the PV Manufacturing R&D subcontract''Development of an In-Line, Minority-Carrier Lifetime Monitoring Tool for Process Control during Fabrication of Crystalline Silicon Solar Cells'', Sinton Consulting developed prototypes for several new instruments for use in the manufacture of silicon solar cells. These instruments are based on two families of R&D instruments that were previously available, an illumination vs. open-circuit-voltage technique and the quasi-steady state RF photoconductance technique for measuring minority-carrier lifetime. Compared to the previous instruments, the new prototypes are about 20 times faster per measurement, and have automated data analysis that does not require user intervention even when confronted by challenging cases. For example, un-passivated multi-crystalline wafers with large variations in lifetime and trapping behavior can be measured sequentially without error. Five instruments have been prototyped in this project to date, including a block tester for evaluating cast or HEM silicon blocks, a CZ ingot tester, an FZ boule tester for use with long-lifetime silicon, and an in-line sample head for measuring wafers. The CZ ingot tester and the FZ boule tester are already being used within industry and there is interest in the other prototypes. For each instrument, substantial R&D work was required in developing the device physics and analysis as well as for the hardware. This work has been documented in a series of application notes and conference publications, and will result in significant improvements for both the R&D and the industrial types of instruments.

  2. Overcoming doping limits in MOVPE grown n-doped InP for plasmonic applications

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Xiao, Sanshui; Lavrinenko, Andrei

    2015-01-01

    Effect of the growth parameters on carrier concentration in MOVPE grown silicon-doped InP is studied. The dopant flow, V/III ratio and substrate temperature are optimized by considering the origin of the doping limits. In addition, two different group V precursors, namely PH3 and TBP, are compare......×1019cm-3 is achieved. Optical properties of the samples are investigated by Fourier transform infrared reflection (FTIR) spectroscopy and are fitted by a Drude-Lorentz function....

  3. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  4. Self-diffusion in single crystalline silicon nanowires

    Science.gov (United States)

    Südkamp, T.; Hamdana, G.; Descoins, M.; Mangelinck, D.; Wasisto, H. S.; Peiner, E.; Bracht, H.

    2018-04-01

    Self-diffusion experiments in single crystalline isotopically controlled silicon nanowires with diameters of 70 and 400 nm at 850 and 1000 °C are reported. The isotope structures were first epitaxially grown on top of silicon substrate wafers. Nanowires were subsequently fabricated using a nanosphere lithography process in combination with inductively coupled plasma dry reactive ion etching. Three-dimensional profiling of the nanosized structure before and after diffusion annealing was performed by means of atom probe tomography (APT). Self-diffusion profiles obtained from APT analyses are accurately described by Fick's law for self-diffusion. Data obtained for silicon self-diffusion in nanowires are equal to the results reported for bulk silicon crystals, i.e., finite size effects and high surface-to-volume ratios do not significantly affect silicon self-diffusion. This shows that the properties of native point defects determined from self-diffusion in bulk crystals also hold for nanosized silicon structures with diameters down to 70 nm.

  5. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  6. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  7. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  8. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  9. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  10. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  11. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  12. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  13. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  14. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  15. LSSA large area silicon sheet task continuous Czochralski process development

    Science.gov (United States)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  16. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Effect of power on the growth of nanocrystalline silicon films

    International Nuclear Information System (INIS)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma

    2008-01-01

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm -1 and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity

  18. Effect of power on the growth of nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma [Plasma Processed Materials Group, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: skumar@mail.nplindia.ernet.in

    2008-08-20

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm{sup -1} and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity.

  19. Using silicone technology to maintain healthy skin in stoma care.

    Science.gov (United States)

    White, Maddie

    The use of silicone in stoma care has grown in recent years and may be considered the next step in the revolutionary development of stoma-care products. Clinical nurse specialists aim to provide evidence-based care at all times, and the same is true for stoma-care nurses. Preventing harm by choosing products that have a sound research base provides the patients with up-to-date, quality care, which enables them to adapt to life with a stoma and return to 'normal' functioning. This article explores the issue of peristomal skin problems and the development of silicone products, and highlights scenarios where it could be an advantage to choose a silicone product.

  20. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    Science.gov (United States)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  1. Catalytic oxidation of silicon by cesium ion bombardment

    International Nuclear Information System (INIS)

    Souzis, A.E.; Huang, H.; Carr, W.E.; Seidl, M.

    1991-01-01

    Results for room-temperature oxidation of silicon using cesium ion bombardment and low oxygen exposure are presented. Bombardment with cesium ions is shown to allow oxidation at O 2 pressures orders of magnitude smaller than with noble gas ion bombardment. Oxide layers of up to 30 A in thickness are grown with beam energies ranging from 20--2000 eV, O 2 pressures from 10 -9 to 10 -6 Torr, and total O 2 exposures of 10 0 to 10 4 L. Results are shown to be consistent with models indicating that initial oxidation of silicon is via dissociative chemisorption of O 2 , and that the low work function of the cesium- and oxygen-coated silicon plays the primary role in promoting the oxidation process

  2. High-Tc superconducting antenna-coupled microbolometer on silicon

    Science.gov (United States)

    Rice, Joseph P.; Grossman, Erich N.; Borcherdt, L. J.; Rudman, D. A.

    1994-05-01

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-Tc superconductor YBa2Cu3O7 (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 X 10-6 W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 microsecond(s) , a responsivity of the 1000 V/W range, and a noise-equivalent power in the 10-12 W/Hz1/2 range at 1000 Hz.

  3. High-{Tc} superconducting antenna-coupled microbolometer on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.P.; Grossman, E.N.; Borcherdt, L.J.; Rudman, D.A. [National Inst. of Standards and Technology, Boulder, CO (United States). Cryoelectronic Metrology Group

    1994-12-31

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 {times} 10{sup {minus}6} W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 {micro}s, a responsivity in the 1,000 V/W range, and a noise-equivalent power (NEP) in the 10{sup {minus}12} W/Hz{sup 1/2} range at 1,000 Hz.

  4. Skin cancer full-grown from scar

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors investigate the peculiarities of skin cancer full-grown from scar, the theory of it's descent, quote some statistical data on skin cancer full-grown from scar and variety clinical forms of skin cancer full-grown from scar was shown, quote some methods of treatment

  5. Large-Signal Injection-Level Spectroscopy of Impurities in Silicon

    International Nuclear Information System (INIS)

    Ahrenkiel, R.K.; Johnston, S.W.

    1998-01-01

    Deep level defects in silicon are identified by measuring the recombination lifetime as a function of the injection level. The basic models for recombination at deep and shallow centers is developed. The defect used for the theoretical model is the well-known interstitial Fe ion in silicon. Data are presented on silicon samples ranging in defect content from intentionally Fe-doped samples to an ultra-pure float-zone grown sample. These data are analyzed in terms of the injection-level spectroscopy model

  6. Degradation of the photoluminescence of porous silicon caused by 60Co γ radiation

    International Nuclear Information System (INIS)

    Astrova, E.V.; Emtsev, V.V.; Lebedev, A.A.

    1995-01-01

    Two series of experiments were carried out. In the first, as-grown porous silicon was bombarded with 60 Co γ radiation to a dose ∼ 10 20 cm -2 . The photoluminescence intensity fell off by a factor ∼ 50 as a result, although the peak of the band underwent essentially no shift. In the second series, single-crystal silicon was bombarded to the same dose, and then porous silicon was fabricated on it. The intensity and spectra of these samples were the same as usual. Possible degradation mechanisms are discussed. 12 refs., 2 figs

  7. Silicon Crystal Growth by the Electromagnetic Czochralski (EMCZ) Method

    Science.gov (United States)

    Watanabe, Masahito; Eguchi, Minoru; Hibiya, Taketoshi

    1999-01-01

    A new method for growing silicon crystals by using electromagnetic force to rotate the melt without crucible rotation has been developed. We call it electromagnetic Czochralski (EMCZ) growth. An electromagnetic force in the azimuthal direction is generated in the melt by the interaction between an electric current (I) through the melt in the radial direction and a vertical magnetic field (B). The rotation rate (ωm) of the silicon melt is continuously changed from 0 to over 105 rpm under I = 0 to 8 A and B = 0 to 0.1 T. Thirty-mm-diameter silicon single crystals free of dislocations could be grown under two conditions: I = 2.0 A and B = 0.05 T (ωm = 105 rpm); and I =0.2 A and B = 0.1 T (ωm = 15 rpm). The oxygen concentration in the crystals was 8 ×1017 atoms/cm3 for the high rotation rate and 1×1017 atoms/cm3 for the low rotation rate. The oxygen-concentration distributions in the radial direction in both crystals were more homogeneous than those in the crystals grown by conventional CZ and/or MCZ growth. This new crystal-growth method can be easily adopted for growing large-diameter silicon crystals.

  8. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  9. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Science.gov (United States)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  10. Characterization of nanostructured CuO-porous silicon matrixformed on copper coated silicon substrate via electrochemical etching

    International Nuclear Information System (INIS)

    Naddaf, M.; Mrad, O.; Al-Zier, A.

    2015-01-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak (blue) PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.(author)

  11. Characterization of nanostructured CuO-porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

    Science.gov (United States)

    Naddaf, M.; Mrad, O.; Al-zier, A.

    2014-06-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.

  12. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  13. Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K C [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Liao, E [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Ong, W L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Wong, J D S [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Agarwal, A [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Nagarajan, R [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Yobas, L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

    2006-04-01

    Oxygen plasma treatment has been used extensively to bond polydimethyl siloxane to polydimethyl siloxane or glass in the rapid prototyping of microfluidic devices. This study aimed to improve the bonding quality of polydimethyl siloxane to passivated silicon using oxygen plasma treatment, and also to evaluate the bonding quality. Four types of passivated silicon were used: phosphosilicate glass, undoped silicate glass, silicon nitride and thermally grown silicon dioxide. Bonding strength was evaluated qualitatively and quantitatively using manual peel and mechanical shear tests respectively. Through peel tests we found that the lowering of plasma pressure from 500 to 30 mTorr and using a plasma power between 20 to 60 W helped to improve the bond quality for the first three types of passivation. Detailed analysis and discussion were conducted to explain the discrepancy between the bonding strength results and peeling results. Our results suggested that polydimethyl siloxane can be effectively bonded to passivated silicon, just as to polydimethyl siloxane or glass.

  14. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some...... recent advances in this direction. The efficient coupling of light between optical fibers and the planar silicon devices and circuits is of crucial importance. Both end-coupling (Fig. 1) and grating-coupling solutions will be discussed along with polarization issues. A new scheme for a hybrid III...

  15. Integrated silicon optoelectronics

    CERN Document Server

    Zimmermann, Horst

    2000-01-01

    'Integrated Silicon Optoelectronics'assembles optoelectronics and microelectronics The book concentrates on silicon as the major basis of modern semiconductor devices and circuits Starting from the basics of optical emission and absorption and from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included The book, furthermore, contains a review of the state of research on eagerly expected silicon light emitters In order to cover the topic of the book comprehensively, integrated waveguides, gratings, and optoelectronic power devices are included in addition Numerous elaborate illustrations promote an easy comprehension 'Integrated Silicon Optoelectronics'will be of value to engineers, physicists, and scientists in industry and at universities The book is also recommendable for graduate students speciali...

  16. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  17. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  18. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  19. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  20. Nanostructured silicon for thermoelectric

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2011-06-01

    Thermoelectric modules convert thermal energy into electrical energy and vice versa. At present bismuth telluride is the most widely commercial used material for thermoelectric energy conversion. There are many applications where bismuth telluride modules are installed, mainly for refrigeration. However, bismuth telluride as material for energy generation in large scale has some disadvantages. Its availability is limited, it is hot stable at higher temperatures (>250°C) and manufacturing cost is relatively high. An alternative material for energy conversion in the future could be silicon. The technological processing of silicon is well advanced due to the rapid development of microelectronics in recent years. Silicon is largely available and environmentally friendly. The operating temperature of silicon thermoelectric generators can be much higher than of bismuth telluride. Today silicon is rarely used as a thermoelectric material because of its high thermal conductivity. In order to use silicon as an efficient thermoelectric material, it is necessary to reduce its thermal conductivity, while maintaining high electrical conductivity and high Seebeck coefficient. This can be done by nanostructuring into arrays of pillars. Fabrication of silicon pillars using ICP-cryogenic dry etching (Inductive Coupled Plasma) will be described. Their uniform height of the pillars allows simultaneous connecting of all pillars of an array. The pillars have diameters down to 180 nm and their height was selected between 1 micron and 10 microns. Measurement of electrical resistance of single silicon pillars will be presented which is done in a scanning electron microscope (SEM) equipped with nanomanipulators. Furthermore, measurement of thermal conductivity of single pillars with different diameters using the 3ω method will be shown.

  1. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  2. Subwavelength silicon photonics

    International Nuclear Information System (INIS)

    Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.-X.; Densmore, A.; Delage, A.; Lamontagne, B.; Florjanczyk, M.; Ma, R.

    2011-01-01

    With the goal of developing photonic components that are compatible with silicon microelectronic integrated circuits, silicon photonics has been the subject of intense research activity. Silicon is an excellent material for confining and manipulating light at the submicrometer scale. Silicon optoelectronic integrated devices have the potential to be miniaturized and mass-produced at affordable cost for many applications, including telecommunications, optical interconnects, medical screening, and biological and chemical sensing. We review recent advances in silicon photonics research at the National Research Council Canada. A new type of optical waveguide is presented, exploiting subwavelength grating (SWG) effect. We demonstrate subwavelength grating waveguides made of silicon, including practical components operating at telecom wavelengths: input couplers, waveguide crossings and spectrometer chips. SWG technique avoids loss and wavelength resonances due to diffraction effects and allows for single-mode operation with direct control of the mode confinement by changing the refractive index of a waveguide core over a range as broad as 1.6 - 3.5 simply by lithographic patterning. The light can be launched to these waveguides with a coupling loss as small as 0.5 dB and with minimal wavelength dependence, using coupling structures similar to that shown in Fig. 1. The subwavelength grating waveguides can cross each other with minimal loss and negligible crosstalk which allows massive photonic circuit connectivity to overcome the limits of electrical interconnects. These results suggest that the SWG waveguides could become key elements for future integrated photonic circuits. (authors)

  3. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  4. Nanomechanical properties of SiC films grown from C{sub 60} precursors using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morse, K. [Colorado School of Mines, Golden, CO (United States); Balooch, M.; Hamza, A.V.; Belak, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    The mechanical properties of SiC films grown via C{sub 60} precursors were determined using atomic force microscopy (AFM). Conventional silicon nitride and modified diamond cantilever AFM tips were employed to determine the film hardness, friction coefficient, and elastic modulus. The hardness is found to be between 26 and 40 GPa by nanoindentation of the film with the diamond tip. The friction coefficient for the silicon nitride tip on the SiC film is about one third that for silicon nitride sliding on a silicon substrate. By combining nanoindentation and AFM measurements an elastic modulus of {approximately}300 GPa is estimated for these SiC films. In order to better understand the atomic scale mechanisms that determine the hardness and friction of SiC, we simulated the molecular dynamics of a diamond indenting a crystalline SiC substrate.

  5. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: Chbil.widad@live.fr [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse (Tunisia); Fargi, A. [Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia); Azeza, B.; Zaaboub, Z. [Laboratoire Micro-Optoélectroniques et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  6. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  7. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    In this work, the electrical and luminescence properties of a series of silicon based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) methods. Photovoltaic materials produced by block casting have been investigated by EBIC on wafers sliced from different parts of the ingot. Various solar cell processings have been compared in parallel wafers by means of EBIC collection efficiency measurements and contrast-temperature C(T) behaviors of the extended defects, i. e. dislocations and grain boundaries (GBs). It was found that the solar cell processing with phosphorus diffusion gettering (PDG) followed with a SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. A remaining activity of the dislocations indicates the limitation of the PDG at extended defects. Abnormal behavior of the dislocation activity after certain solar cell processes was also observed in the region with high dislocation density, the dislocations are activated after certain solar cell processings. In order to evaluate the properties of a thin polycrystalline silicon layer prepared by Al-induced layer exchange (Alile) technique, epitaxially layer grown on silicon substrate with different orientations was used as a model system to investigate the impact by the process temperature and the substrates. EBIC energy dependent collection efficiency measurements reveal an improvement of the epilayer quality with increasing substrate temperature during the growth from 450 C to 650 C, and a decrease of epilayer quality at 700 C. PL measurements on the epitaxially grown Si layer on silicon substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while in the samples prepared by Alile process, intense

  8. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  9. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  10. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  11. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    Science.gov (United States)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  12. VV and VO2 defects in silicon studied with hybrid density functional theory

    KAUST Repository

    Christopoulos, Stavros Richard G; Wang, Hao; Chroneos, Alexander I.; Londos, Charalampos A.; Sgourou, Efstratia N.; Schwingenschlö gl, Udo

    2014-01-01

    The formation of VO (A-center), VV and VO2 defects in irradiated Czochralski-grown silicon (Si) is of technological importance. Recent theoretical studies have examined the formation and charge states of the A-center in detail. Here we use density

  13. Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide

    DEFF Research Database (Denmark)

    Sun, Jie; Lindvall, Niclas; Cole, Matthew T.

    2012-01-01

    Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes...

  14. Effects of Cl+ and F+ implantation of oxidation-induced stacking faults in silicon

    NARCIS (Netherlands)

    Xu, J.Y.; Bronsveld, P.M.; Boom, G.; Hosson, J.Th.M. De

    1984-01-01

    Three implantation effects were investigated in floating-zone-grown silicon: (a) the effect of Cl+ implantation resulting in the shrinkage of oxidation-induced stacking faults; (b) the effect of F+ implantation giving rise to defaulting of the 1/3 [111] Frank dislocations into 1/2[110] perfect

  15. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Driessen, A.; Lambeck, Paul; Hilderink, L.T.H.; Linders, Petrus W.C.; Popma, T.J.A.

    1999-01-01

    Silicon Oxynitride layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition. The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness, high homogeneity of the refractive index and good reproducibility of the layer

  16. Silicon doped InP as an alternative plasmonic material for mid-infrared

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Han, Li; Christensen, Dennis Valbjørn

    2016-01-01

    Silicon-doped InP is grown on top of semiinsulating iron-doped and sulfur-doped InP substrates by metalorganic vapor phase epitaxy (MOVPE), and the growth parameters are adjusted to obtain various free carrier concentrations from 1.05×1019 cm-3 up to 3.28×1019 cm-3. Midinfrared (IR) reflection...

  17. X-ray and synchrotron studies of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sivkov, V. N., E-mail: svn@dm.komisc.ru [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation); Lomov, A. A. [Russian Academy of Sciences, Physical-Technological Institute (Russian Federation); Vasil' ev, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Nekipelov, S. V. [Komi State Pedagogical Institute (Russian Federation); Petrova, O. V. [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation)

    2013-08-15

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  18. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  19. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  20. Migration of CrSi2 nanocrystals through nanopipes in the silicon cap

    International Nuclear Information System (INIS)

    Galkin, N.G.; Dozsa, L.; Chusovitin, E.A.; Pecz, B.; Dobos, L.

    2010-01-01

    CrSi 2 nanocrystals (NC) were grown by reactive deposition epitaxy of Cr at 550 deg. C. After deposition the Cr is localized in about 20-30 nm dots on the Si surface. The NCs were covered by silicon cap grown by molecular beam epitaxy at 700 deg. C. The redistribution of NCs in the silicon cap was investigated by transmission electron microscopy and atomic force microscopy. The NCs are partly localized at the deposition depth, and partly migrate near the surface. A new migration mechanism of the CrSi 2 NCs is observed, they are transferred from the bulk toward the surface through nanopipes formed in the silicon cap. The redistribution of CrSi 2 NCs strongly depends on Cr deposition rate and on the cap growth temperature.

  1. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  2. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  3. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  4. Floating Silicon Method

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  5. The LHCb Silicon Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Mark, E-mail: Mark.Tobin@epfl.ch

    2016-09-21

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  6. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  7. Composite silicon nanostructure arrays fabricated on optical fibre by chemical etching of multicrystal silicon film

    International Nuclear Information System (INIS)

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Huang, Wanxia; Shi, Yi; Liu, Hong

    2015-01-01

    Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices’ applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H 2 O 2 /HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing. (paper)

  8. Composite silicon nanostructure arrays fabricated on optical fibre by chemical etching of multicrystal silicon film.

    Science.gov (United States)

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Huang, Wanxia; Shi, Yi; Liu, Hong

    2015-04-17

    Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices' applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H2O2/HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing.

  9. Removal of inclusions from silicon

    Science.gov (United States)

    Ciftja, Arjan; Engh, Thorvald Abel; Tangstad, Merete; Kvithyld, Anne; Øvrelid, Eivind Johannes

    2009-11-01

    The removal of inclusions from molten silicon is necessary to satisfy the purity requirements for solar grade silicon. This paper summarizes two methods that are investigated: (i) settling of the inclusions followed by subsequent directional solidification and (infiltration by ceramic foam filters. Settling of inclusions followed by directional solidification is of industrial importance for production of low-cost solar grade silicon. Filtration is reported as the most efficient method for removal of inclusions from the top-cut silicon scrap.

  10. Silicon photonic integration in telecommunications

    Directory of Open Access Journals (Sweden)

    Christopher Richard Doerr

    2015-08-01

    Full Text Available Silicon photonics is the guiding of light in a planar arrangement of silicon-based materials to perform various functions. We focus here on the use of silicon photonics to create transmitters and receivers for fiber-optic telecommunications. As the need to squeeze more transmission into a given bandwidth, a given footprint, and a given cost increases, silicon photonics makes more and more economic sense.

  11. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking

  12. Silicon microphones - a Danish perspective

    DEFF Research Database (Denmark)

    Bouwstra, Siebe; Storgaard-Larsen, Torben; Scheeper, Patrick

    1998-01-01

    Two application areas of microphones are discussed, those for precision measurement and those for hearing instruments. Silicon microphones are under investigation for both areas, and Danish industry plays a key role in both. The opportunities of silicon, as well as the challenges and expectations......, are discussed. For precision measurement the challenge for silicon is large, while for hearing instruments silicon seems to be very promising....

  13. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Binetti, Simona [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Le Donne, Alessia, E-mail: alessia.ledonne@mater.unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Rolfi, Andrea [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Jäggi, Beat; Neuenschwander, Beat [Bern University of Applied Sciences, Engineering and Information Technology, Institute for Applied Laser, Photonics and Surface Technologies ALPS, Pestalozzistrasse 20, CH-3400 Burgdorf (Switzerland); Busto, Chiara [ENI Spa, Via Giacomo Fauser, 4, 28100 Novara (Italy); Frigeri, Cesare [CNR-IMEM Institute, Parco Area Delle Scienze 37/A, Fontanini, 43010 Parma (Italy); Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio [Laserpoint Srl, Via Della Burrona 51, 20090 Vimodrone, Milano (Italy)

    2016-05-15

    Highlights: • Self-organized surface structures were produced by picosecond laser pulses on mc-Si. • Three laser wavelengths were used which effectively reduce Si reflectivity up to 8%. • The subsurface damage induced by the three lasers was studied in detail. • μ-Raman, PL and TEM proved that UV laser provides the lowest subsurface damage. • UV laser induced damage is located above the depletion region of the p–n junction. - Abstract: Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p–n junction.

  14. CMS silicon tracker developments

    International Nuclear Information System (INIS)

    Civinini, C.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2002-01-01

    The CMS Silicon tracker consists of 70 m 2 of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors

  15. Silicon hybrid integration

    International Nuclear Information System (INIS)

    Li Xianyao; Yuan Taonu; Shao Shiqian; Shi Zujun; Wang Yi; Yu Yude; Yu Jinzhong

    2011-01-01

    Recently,much attention has concentrated on silicon based photonic integrated circuits (PICs), which provide a cost-effective solution for high speed, wide bandwidth optical interconnection and optical communication.To integrate III-V compounds and germanium semiconductors on silicon substrates,at present there are two kinds of manufacturing methods, i.e., heteroepitaxy and bonding. Low-temperature wafer bonding which can overcome the high growth temperature, lattice mismatch,and incompatibility of thermal expansion coefficients during heteroepitaxy, has offered the possibility for large-scale heterogeneous integration. In this paper, several commonly used bonding methods are reviewed, and the future trends of low temperature wafer bonding envisaged. (authors)

  16. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  17. Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Akarapu Ashok

    2014-01-01

    Full Text Available Silicon dioxide (SiO2 thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs and microelectromechanical systems (MEMS. Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics.

  18. A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO{sub 2} nanorods growth

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N. [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of); Dariani, R.S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of); Rajabi, M. [Deparment of Advanced Materials and Renewable Energies, Iranian Research Organization for Science and Technology (IROST), Tehran 3353136846 (Iran, Islamic Republic of)

    2016-03-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanorods (NRs) are synthesized on silicon and porous silicon (PS) substrates by hydrothermal method. • TiO{sub 2} NRs grown on PS substrates have a better growth compared to those grown on silicon. • Also increasing substrate porosity leads to an increase in density of the NRs. • We proposed a growth mechanism to explain how can control the local surface chemical potential. - Abstract: In this study, we have synthesized TiO{sub 2} nanorods (NRs) on silicon and porous silicon (PS) substrates by hydrothermal method. The PS substrates with different porosities were fabricated by electrochemical anodization on silicon. According to the field emission electron microscopy images, TiO{sub 2} NRs grown on PS substrates have a better growth compared to those grown on silicon. Also increasing substrate porosity leads to an increase in density of the NRs. Atomic force microscopy observation demonstrates that porous layer formation due to etching of silicon surface leads to an increase of its roughness. Results indicate surface roughness evolution with porosity increasing enhances TiO{sub 2} nucleation on substrate and thus increases TiO{sub 2} NRs density. We propose a growth mechanism to explain how we can control the local surface chemical potential and thus the nucleation and alignment of TiO{sub 2} NRs by surface roughness variation. Also, photoluminescence studies show a red-shift in band gap energy of NRs compared to that of common bulk TiO{sub 2}.

  19. Room-temperature operation of a 2.25 μm electrically pumped laser fabricated on a silicon substrate

    International Nuclear Information System (INIS)

    Rodriguez, J. B.; Cerutti, L.; Grech, P.; Tournie, E.

    2009-01-01

    We report on a GaSb-based type-I laser structure grown by molecular beam epitaxy on a (001) silicon substrate. A thin AlSb nucleation layer followed by a 1 μm thick GaSb buffer layer was used to accommodate the very large lattice mismatch existing with the silicon substrate. Processed devices with mesa geometry exhibited laser operation in pulsed mode with a duty cycle up to 10% at room temperature

  20. Elite silicon and solar power

    International Nuclear Information System (INIS)

    Yasamanov, N.A.

    2000-01-01

    The article is of popular character, the following issues being considered: conversion of solar energy into electric one, solar batteries in space and on the Earth, growing of silicon large-size crystals, source material problems relating to silicon monocrystals production, outlooks of solar silicon batteries production [ru

  1. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  2. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber

    Directory of Open Access Journals (Sweden)

    Shiwen eWang

    2015-09-01

    Full Text Available Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for two weeks were exposed to 65 mM NaCl solution for another one week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp, but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na+ concentration in the leaves while increasing K+ concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na+ content by increasing polyamine accumulation.

  3. Novel four-point-probe design and nanorobotic dual endeffector strategy for electrical characterization of as-grown SWCNT bundles

    DEFF Research Database (Denmark)

    Eichhorn, V; Fatikow, S; Sardan Sukas, Özlem

    2010-01-01

    In this paper, a novel nanorobotic strategy for non-destructive and direct electrical characterization of as-grown bundles of single-walled carbon nanotubes (SWCNTs) is presented. For this purpose, test patterns of SWCNT bundles having different diameters are grown on a silicon substrate...... by chemical vapor deposition. A new design of microstructured four-point-probes is proposed and fabricated allowing for direct contacting of vertically aligned bundles of SWCNTs. A nanorobotic setup is upgraded into a dual endeffector system to achieve good electrical contact between four...

  4. Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface

    International Nuclear Information System (INIS)

    Park, Young-Bae; Rhee, Shi-Woo

    2001-01-01

    Microstructure and initial growth characteristics of the hydrogenated microcrystalline Si (μc-Si:H) films grown on hydrogenated amorphous silicon nitride (a-SiN x :H) surface at low temperature were investigated using high resolution transmission electron microscope and micro-Raman spectroscopy. With increasing the Si and Si - H contents in the SiN x :H surfaces, μc-Si crystallites, a few nanometers in size, were directly grown on amorphous nitride surfaces. It is believed that the crystallites were grown through the nucleation and phase transition from amorphous to crystal in a hydrogen-rich ambient of gas phase and growing surface. The crystallite growth characteristics on the dielectric surface were dependent on the stoichiometric (x=N/Si) ratio corresponding hydrogen bond configuration of the SiN x :H surface. Surface facetting and anisotropic growth of the Si crystallites resulted from the different growth rate on the different lattice planes of Si. No twins and stacking faults were observed in the (111) lattice planes of the Si crystallites surrounding the a-Si matrix. This atomic-scale structure was considered to be the characteristic of the low temperature crystallization of the μc-Si:H by the strain relaxation of crystallites in the a-Si:H matrix. [copyright] 2001 American Institute of Physics

  5. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  6. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Ghoneim, Mohamed T.; Inayat, Salman Bin; Ahmed, Sally; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2014-01-01

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100

  7. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  8. OPAL Silicon Tungsten Luminometer

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The Silicon Tungsten Luminometer was part of OPAL's calorimeter which was used to measure the energy of particles. Most particles end their journey in calorimeters. These detectors measure the energy deposited when particles are slowed down and stopped.

  9. Silicon graphene Bragg gratings.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  10. On nanostructured silicon success

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard; Frandsen, Lars Hagedorn

    2016-01-01

    Recent Letters by Piggott et al. 1 and Shen et al. 2 claim the smallest ever dielectric wave length and polarization splitters. The associated News & Views article by Aydin3 states that these works “are the first experimental demonstration of on-chip, silicon photonic components based on complex...

  11. Silicon oxynitride based photonics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Klein, E.J.; Hussein, M.G.; Driessen, A.; Marciniak, M.; Jaworski, M.; Zdanowicz, M.

    2008-01-01

    Silicon oxynitride is a very attractive material for integrated optics. Besides possessing excellent optical properties it can be deposited with refractive indices varying over a wide range by tuning the material composition. In this contribution we will summarize the key properties of this material

  12. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  13. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  14. DELPHI Silicon Tracker

    CERN Multimedia

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The silicon tracking detector was nearest to the collision point in the centre of the detector. It was used to pinpoint the collision and catch short-lived particles.

  15. Competitiveness of organically grown cereals

    Directory of Open Access Journals (Sweden)

    Jaroslav Jánský

    2007-01-01

    Full Text Available The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale. Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.

  16. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  17. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  18. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  19. Effects of silicon deficiency on lipid and carbohydrate metabolism in the diatom Cyclotella cryptica

    International Nuclear Information System (INIS)

    Roessler, P.G.

    1987-01-01

    Previous studies have shown that silicon deficiency induces lipid accumulation in certain diatom species. The nature of the lipids produced under these conditions was not investigated, however, and the biochemical mechanisms which underlie this phenomenon were not determined. Research was carried out in order to increase our knowledge concerning the aspects of lipid accumulation in diatoms. The first phase of this project indicated that the diatoms C. cryptica, Cylindrotheca fusiformis, and Thalassiosira pseudonana accumulated storage lipids when grown under silicon-limiting conditions. The ratio of saturated and monounsaturated fatty acids to polyunsaturated fatty acids in C. cryptica cells increased markedly after 24 hours of silicon deficiency. Tracer experiments with [ 14 C]bicarbonate suggested that lipid accumulation in silicon-limited C. cryptica cells was due to two distinct processes: (1) an increase in the amount of newly photoassimilated carbon partitioned into lipids, and (2) a slow conversion of non-lipid compounds (carbohydrates and presumably proteins) into lipids

  20. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Development of processes for the production of low cost silicon dendritic web for solar cells

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  2. Eliminating Light-Induced Degradation in Commercial p-Type Czochralski Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Brett Hallam

    2017-12-01

    Full Text Available This paper discusses developments in the mitigation of light-induced degradation caused by boron-oxygen defects in boron-doped Czochralski grown silicon. Particular attention is paid to the fabrication of industrial silicon solar cells with treatments for sensitive materials using illuminated annealing. It highlights the importance and desirability of using hydrogen-containing dielectric layers and a subsequent firing process to inject hydrogen throughout the bulk of the silicon solar cell and subsequent illuminated annealing processes for the formation of the boron-oxygen defects and simultaneously manipulate the charge states of hydrogen to enable defect passivation. For the photovoltaic industry with a current capacity of approximately 100 GW peak, the mitigation of boron-oxygen related light-induced degradation is a necessity to use cost-effective B-doped silicon while benefitting from the high-efficiency potential of new solar cell concepts.

  3. A CMOS-compatible silicon substrate optimization technique and its application in radio frequency crosstalk isolation

    International Nuclear Information System (INIS)

    Li Chen; Liao Huailin; Huang Ru; Wang Yangyuan

    2008-01-01

    In this paper, a complementary metal-oxide semiconductor (CMOS)-compatible silicon substrate optimization technique is proposed to achieve effective isolation. The selective growth of porous silicon is used to effectively suppress the substrate crosstalk. The isolation structures are fabricated in standard CMOS process and then this post-CMOS substrate optimization technique is carried out to greatly improve the performances of crosstalk isolation. Three-dimensional electro-magnetic simulation is implemented to verify the obvious effect of our substrate optimization technique. The morphologies and growth condition of porous silicon fabricated have been investigated in detail. Furthermore, a thick selectively grown porous silicon (SGPS) trench for crosstalk isolation has been formed and about 20dB improvement in substrate isolation is achieved. These results demonstrate that our post-CMOS SGPS technique is very promising for RF IC applications. (cross-disciplinary physics and related areas of science and technology)

  4. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  5. Modeling of Particle Engulfment during the Growth of Crystalline Silicon for Solar Cells

    Science.gov (United States)

    Tao, Yutao

    A major challenge for the growth of multi-crystalline silicon is the formation of carbide and nitride precipitates in the melt that are engulfed by the solidification front to form inclusions. These lower cell efficiency and can lead to wafer breakage and sawing defects. Minimizing the number of these engulfed particles will promote lower cost and higher quality silicon and will advance progress in commercial solar cell production. To better understand the physical mechanisms responsible for such inclusions during crystal growth, we have developed finite-element, moving-boundary analyses to assess particle dynamics during engulfment via solidification fronts. Two-dimensional, steady-state and dynamic models are developed using the Galerkin finite element method and elliptic mesh generation techniques in an arbitrary Eulerian-Lagrangian (ALE) implementation. This numerical approach allows for an accurate representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We reinterpret the significance of premelting via the definition of an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. Parametric studies are then performed to uncover the dependence of critical growth velocity upon some important physical properties. We also explore the complicated transient behaviors due to oscillating crystal growth conditions as well as the nonlinear nature related with temperature gradients and solute effects in the system. When compared with results for the SiC-Si system measured during ParSiWal experiments conducted by our collaborators, our model predicts a more realistic scaling of critical velocity with particle size than that predicted by prior theories. However, the engulfment growth velocity observed in the subsequent experiment onboard the TEXUS sounding rocket mission turned out to be unexpectedly higher. To explain this model discrepancy, a macroscopic model is developed in order

  6. Synthesis and properties of silicon nanowire devices

    Science.gov (United States)

    Byon, Kumhyo

    Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed

  7. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  8. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    Science.gov (United States)

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  9. Electrocatalytic activity of Pt grown by ALD on carbon nanotubes for Si-based DMFC applications

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Dalslet, Bjarke Thomas; Yang, R.B.

    2012-01-01

    in a top-flow ALD reactor at 250°C, using MeCpPtMe3 and O2 as precursors. The anode was tested for the methanol oxidation reaction (MOR) in a three-electrode electrochemical set-up and it showed improved catalytic activity compared to a reference sample of Pt deposited on flat Si. It is demonstrated......We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out...... that ALD could be a MEMS compatible deposition technique for Si-based fuel cell applications. © The Electrochemical Society....

  10. High efficiency thin film solar cells grown by molecular beam epitaxy (HEFTY)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Barnham, K.W.J.; Ballard, I.M.; Zhang, J. [Imperial College, London (United Kingdom)

    2006-05-04

    The project sought to show the UK as a world leader in the field of thin film crystalline solar cells. A premise was that the cell design be suitable for large-scale manufacturing and provide a basis for industrial exploitation. The study demonstrated (1) that silicon films grown at temperatures suitable for deposition on glass by Gas Phase Molecular Beam Epitaxy gives better PV cells than does Ultra Low Pressure Chemical Vapor Deposition; (2) a conversion energy of 15 per cent was achieved - the project target was 18 per cent and (3) one of the highest reported conversion efficiencies for a 15 micrometre silicon film was achieved. The study was carried out by BP Solar Limited under contract to the DTI.

  11. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates

    Directory of Open Access Journals (Sweden)

    Flavia B. Agostinho

    2017-08-01

    Full Text Available A series of pot experiments were conducted to: (1 evaluate the effects of different Si sources (soil- and foliar-applied on grain yield and Si accumulation of rice supplied with varying P rates, and (2 evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha−1 combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha−1 and one foliar Si solution applied at 20, 40 and 80 mg Si L−1 and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01, but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001. While there was an improvement in biomass (42% and tiller production (25% for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  12. Effect of Different Silicon Sources on Yield and Silicon Uptake of Rice Grown under Varying Phosphorus Rates.

    Science.gov (United States)

    Agostinho, Flavia B; Tubana, Brenda S; Martins, Murilo S; Datnoff, Lawrence E

    2017-08-29

    A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha -1 ) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha -1 and one foliar Si solution applied at 20, 40 and 80 mg Si L -1 ) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As ( P rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si ( P production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

  13. Fluorescence and thermoluminescence in silicon oxide films rich in silicon

    International Nuclear Information System (INIS)

    Berman M, D.; Piters, T. M.; Aceves M, M.; Berriel V, L. R.; Luna L, J. A.

    2009-10-01

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 Ω-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N 2 at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  14. Effects of impurities on silicon solar-cell performance

    Science.gov (United States)

    Hopkins, R. H.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs (back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings) can produce devices with conversion efficiencies above 20%. To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentraion at which cell performance degrades is more than an order of magnitude lower for an 18% cell than for a 16% cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as grown material can lead to the production of devices with efficiencies above 18%, as verified experimentally.

  15. Linear electro-optic effect in cubic silicon carbide

    Science.gov (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  16. Impurity effects in silicon for high efficiency solar cells

    Science.gov (United States)

    Hopkins, R. H.; Rohatgi, A.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs including, e.g., back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings can produce devices with conversion efficiencies above 20 percent (AM1). To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentration at which cell performance degrades is more than an order of magnitude lower for an 18-percent cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as-grown material can lead to the production of devices with efficiencies aboved 18 percent, as has been verified experimentally.

  17. Integration of functional complex oxide nanomaterials on silicon

    Directory of Open Access Journals (Sweden)

    Jose Manuel eVila-Fungueiriño

    2015-06-01

    Full Text Available The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications that can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE. Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be exposed, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devices.

  18. Assessment on thermoelectric power factor in silicon nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [Baskin School of Engineering, University of California Santa Cruz, CA (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz, NASA Ames Research Center, Moffett Field, CA (United States); Coleman, Elane; Tompa, Gary S. [Structured Materials Industries, Inc., Piscataway, NJ (United States)

    2012-01-15

    Thermoelectric devices based on three-dimensional networks of highly interconnected silicon nanowires were fabricated and the parameters that contribute to the power factor, namely the Seebeck coefficient and electrical conductivity were assessed. The large area (2 cm x 2 cm) devices were fabricated at low cost utilizing a highly scalable process involving silicon nanowires grown on steel substrates. Temperature dependence of the Seebeck coefficient was found to be weak over the range of 20-80 C at approximately -400 {mu}V/K for unintentionally doped devices and {+-}50 {mu}V/K for p-type and n-type devices, respectively. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Future application of Czochralski crystal pulling for silicon

    Science.gov (United States)

    Matlcok, J. H.

    1985-08-01

    Czochralski (Cz) crystal pulling has been the predominant method used for preparing silicon single crystal for the past twenty years. The fundamental technology used has changed little. However, great strides have been made in learning how to make the crystals bigger and of better quality at ever increasing productivity rates. Currently charge sizes of 50 kg of polycrystal silicon are being used for production and crystals up to ten inches in diameter have been grown without major difficulty. The largest material actually being processed in silicon wafer form is 150 mm (6 inches) in diameter. Growing of crystals in a magnetic field has proved to be particularly useful for microscopic impurity control. Major developments in past years on equipment for Cz crystal pulling have included the automatic growth control of the diameter as well as the starting core of the crystal, the use of magnetic fields and around the crystal puller to supress convection, various recharging schemes for dopant control and the use of continuous liquid feed in the crystal puller. The latter, while far from being a reliable production process, is ideal in concept for major improvement in Cz crystal pulling. The Czochralski process will maintain its dominance of silicon crystal production for many years.

  20. Ion-implantation and analysis for doped silicon slot waveguides

    Directory of Open Access Journals (Sweden)

    McCallum J. C.

    2012-10-01

    Full Text Available We have utilised ion implantation to fabricate silicon nanocrystal sensitised erbium-doped slot waveguide structures in a Si/SiO2/Si layered configuration and photoluminescence (PL and Rutherford backscattering spectrometry (RBS to analyse these structures. Slot waveguide structures in which light is confined to a nanometre-scale low-index region between two high-index regions potentially offer significant advantages for realisation of electrically-pumped Si devices with optical gain and possibly quantum optical devices. We are currently investigating an alternative pathway in which high quality thermal oxides are grown on silicon and ion implantation is used to introduce the Er and Si-ncs into the SiO2 layer. This approach provides considerable control over the Er and Si-nc concentrations and depth profiles which is important for exploring the available parameter space and developing optimised structures. RBS is well-suited to compositional analysis of these layered structures. To improve the depth sensitivity we have used a 1 MeV α beam and results indicate that a layered silicon-Er:SiO2/silicon structure has been fabricated as desired. In this paper structural results will be compared to Er photoluminescence profiles for samples processed under a range of conditions.

  1. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  2. The CMS silicon tracker

    International Nuclear Information System (INIS)

    Focardi, E.; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D'Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell'Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B.

    2000-01-01

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction

  3. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  4. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  5. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  6. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Optical characterization of a-Si:H thin films grown by Hg-Photo-CVD

    International Nuclear Information System (INIS)

    Barhdadi, A.; Karbal, S.; M'Gafad, N.; Benmakhlouf, A.; Chafik El Idrissi, M.; Aka, B.M.

    2006-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides some experimental data resulting from the optical characterization of hydrogenated amorphous silicon thin films grown by this deposition technique. Experiments have been performed on both as-deposited layers and thermal annealed ones. (author) [fr

  8. Electrometallurgy of Silicon

    Science.gov (United States)

    1988-01-01

    wind, plants, and water impounded in elevated reservoirs. Photovoltaic or solar cells, which convert sunlight directly to electricity, belongs tc, the...on record is that of St. Claire DeVille, who claimed that silicon was produced by electrolysing an impure melt of NaAlC14, but his material did not...this composition and purified melts were electrolysed at about 14500C in graphite crucible and using graphite electrodes. Applied potentials were

  9. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    Number 15/696,426 Filing Date 6 September 2017 Inventor Charles J. Patrissi et al Address any questions concerning this matter to the...silicon-based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...design shown. [0032] It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been

  10. The CMS silicon tracker

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Biggeri, U.; Bruzzi, M.; Catacchini, E.; Civinini, C.; Focardi, E.; Lenzi, M.; Loreti, M.; Meschini, M.; Parrini, G.; Pieri, M.; Albergo, S.; Boemi, D.; Potenza, R.; Tricomi, A.; Angarano, M.; Creanza, D.; Palma, M. de; Fiore, L.; Maggi, G.; My, S.; Raso, G.; Selvaggi, G.; Tempesta, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Candelori, A.; Castro, A.; Da Rold, M.; Giraldo, A.; Martignon, G.; Paccagnella, A.; Stavitsky, I.; Babucci, E.; Bartalini, P.; Bilei, G.M.; Checcucci, B.; Ciampolini, P.; Lariccia, P.; Mantovani, G.; Passeri, D.; Santocchia, A.; Servoli, L.; Wang, Y.; Bagliesi, G.; Basti, A.; Bosi, F.; Borello, L.; Bozzi, C.; Castaldi, R.; Dell'Orso, R.; Giassi, A.; Messineo, A.; Palla, F.; Raffaelli, F.; Sguazzoni, G.; Starodumov, A.; Tonelli, G.; Vannini, C.; Verdini, P.G.; Xie, Z.; Breuker, H.; Caner, A.; Elliott-Peisert, A.; Feld, L.; Glessing, B.; Hammerstrom, R.; Huhtinen, M.; Mannelli, M.; Marchioro, A.; Schmitt, B.; Stefanini, G.; Connotte, J.; Gu, W.H.; Luebelsmeyer, K.; Pandoulas, D.; Siedling, R.; Wittmer, B.; Della Marina, R.; Freudenreich, K.; Lustermann, W.; Viertel, G.; Eklund, C.; Karimaeki, V.; Skog, K.; French, M.; Hall, G.; Mc Evoy, B.; Raymond, M.; Hrubec, J.; Krammer, M.; Piperov, S.; Tuuva, T.; Watts, S.; Silvestris, L.

    1998-01-01

    The new silicon tracker layout (V4) is presented. The system aspects of the construction are discussed together with the expected tracking performance. Because of the high radiation environment in which the detectors will operate, particular care has been devoted to the study of the characteristics of heavily irradiated detectors. This includes studies on performance (charge collection, cluster size, resolution, efficiency) as a function of the bias voltage, integrated fluence, incidence angle and temperature. (author)

  11. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  12. Silicon and Civilization,

    Science.gov (United States)

    1980-11-04

    of a diamond. 7. The particular physical and chemical properties of silicon resulted in the fact that in the periodic system it was found in the III...small quantities. Silica is found in blades of grass and grain, in reed and bamboo shoots, where it serves to stiffen the stalk. 2. Diatomite ... properties desired in technology. Quartz glass is very resistant to temperature change since it has a very small coefficient of thermal expansion, is

  13. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-11-01

    Full Text Available Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L. were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis revealed a high sensitivity of multiprotein complex proteins (MCPs such as photosystems I (PSI and II (PSII to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome

  14. Porous silicon: silicon quantum dots for photonic applications

    International Nuclear Information System (INIS)

    Pavesi, L.; Guardini, R.

    1996-01-01

    Porous silicon formation and structure characterization are briefly illustrated. Its luminescence properties rae presented and interpreted on the basis of exciton recombination in quantum dot structures: the trap-controlled hopping mechanism is used to describe the recombination dynamics. Porous silicon application to photonic devices is considered: porous silicon multilayer in general, and micro cavities in particular are described. The present situation in the realization of porous silicon LEDs is considered, and future developments in this field of research are suggested. (author). 30 refs., 30 figs., 13 tabs

  15. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  16. Assessment of the effect of silicon on antioxidant enzymes in cotton plants by multivariate analysis.

    Science.gov (United States)

    Alberto Moldes, Carlos; Fontão de Lima Filho, Oscar; Manuel Camiña, José; Gabriela Kiriachek, Soraya; Lia Molas, María; Mui Tsai, Siu

    2013-11-27

    Silicon has been extensively researched in relation to the response of plants to biotic and abiotic stress, as an element triggering defense mechanisms which activate the antioxidant system. Furthermore, in some species, adding silicon to unstressed plants modifies the activity of certain antioxidant enzymes participating in detoxifying processes. Thus, in this study, we analyzed the activity of antioxidant enzymes in leaves and roots of unstressed cotton plants fertilized with silicon (Si). Cotton plants were grown in hydroponic culture and added with increasing doses of potassium silicate; then, the enzymatic activity of catalase (CAT), guaiacol peroxidase (GPOX), ascorbate peroxidase (APX), and lipid peroxidation were determined. Using multivariate analysis, we found that silicon altered the activity of GPOX, APX, and CAT in roots and leaves of unstressed cotton plants, whereas lipid peroxidation was not affected. The analysis of these four variables in concert showed a clear differentiation among Si treatments. We observed that enzymatic activities in leaves and roots changed as silicon concentration increased, to stabilize at 100 and 200 mg Si L(-1) treatments in leaves and roots, respectively. Those alterations would allow a new biochemical status that could be partially responsible for the beneficial effects of silicon. This study might contribute to adjust the silicon application doses for optimal fertilization, preventing potential toxic effects and unnecessary cost.

  17. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    International Nuclear Information System (INIS)

    Díaz-Becerril, T.; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A.; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-01-01

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta 2 O 5 and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta 2 O 5- SiO 2 -Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si + and Ta + states respectively. Ta 2 O 5 and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta 2 O 5 /Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  18. Light-induced enhancement of the minority carrier lifetime in boron-doped Czochralski silicon passivated by doped silicon nitride

    International Nuclear Information System (INIS)

    Wang, Hongzhe; Chen, Chao; Pan, Miao; Sun, Yiling; Yang, Xi

    2015-01-01

    Graphical abstract: - Highlights: • The phosphorus-doped SiN x with negative fixed charge was deposited by PECVD. • The increase of lifetime was observed on P-doped SiN x passivated Si under illumination. • The enhancement of lifetime was caused by the increase of negative fixed charges. - Abstract: This study reports a doubling of the effective minority carrier lifetime under light soaking conditions, observed in a boron-doped p-type Czochralski grown silicon wafer passivated by a phosphorus-doped silicon nitride thin film. The analysis of capacitance–voltage curves revealed that the fixed charge in this phosphorus-doped silicon nitride film was negative, which was unlike the well-known positive fixed charges observed in traditional undoped silicon nitride. The analysis results revealed that the enhancement phenomenon of minority carrier lifetime was caused by the abrupt increase in the density of negative fixed charge (from 7.2 × 10 11 to 1.2 × 10 12 cm −2 ) after light soaking.

  19. Gettering improvements of minority-carrier lifetimesin solar grade silicon

    DEFF Research Database (Denmark)

    Osinniy, Viktor; Nylandsted Larsen, Arne; Dahl, Espen

    2012-01-01

    The minority-carrier lifetime in p-type solar-grade silicon (SoG-Si) produced by Elkem Solar was investigated after different types of heat treatment. Two groups of samples differing by the as-grown lifetimes were exposed to internal and phosphorus gettering using constant and variable temperature...... processes. Optimal heat-treatment parameters for each group of samples were then identified which improved the minority-carrier lifetimes to values higher than the minimum value needed for solar cells. Phosphorus gettering using a variable temperature process enhanced in particular the lifetime within each...

  20. Precision interplanar spacings measurements of boron doped silicon

    International Nuclear Information System (INIS)

    Soares, D.A.W.; Pimentel, C.A.F.

    1982-05-01

    A study of lattice parameters of boron doped silicon (10 14 -10 19 atom/cc) grown in and directions by Czochralski technique has been undertaken. Interplanar spacings (d) were measured by pseudo-Kossel technique to a precision up to 0,001%; different procedures to obtain d and the errors are discussed. It is concluded that the crystallographic planes contract preferentially and the usual study of parameter variation must be made as a function of d. The diffused B particularly contracts the [333] plane and in a more pronunciate way in high concentrations. An orientation dependence of the diffusion during growth was observed. (Author) [pt

  1. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  2. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  3. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid, E-mail: mush_reslab@rediffmail.com

    2017-04-30

    Highlights: • Graphene was synthesized by PECVD system at a low temperature of 600 °C. • From different characterization techniques, the presence of single and few layered graphene was confirmed. • X-ray diffraction pattern of the graphene showed single crystalline nature of the film. • The as-grown graphene films were observed extremely good field emitters with long term emission current stability. - Abstract: In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  4. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  5. Characterization of Czochralski Silicon Detectors

    OpenAIRE

    Luukka, Panja-Riina; Haerkoenen, Jaakko

    2012-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmenteddetectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It isshown that the radiation hardness (RH) of the protons of these detectors is higher thanthat of devices made of traditional materials such as Float Zone (FZ) silicon or DiffusionOxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 x1017 cm-3). The MCZ devices therefore present an interesting alter...

  6. The role of extra-atomic relaxation in determining Si2p binding energy shifts at silicon/silicon oxide interfaces

    International Nuclear Information System (INIS)

    Zhang, K.Z.; Greeley, J.N.; Banaszak Holl, M.M.; McFeely, F.R.

    1997-01-01

    The observed binding energy shift for silicon oxide films grown on crystalline silicon varies as a function of film thickness. The physical basis of this shift has previously been ascribed to a variety of initial state effects (Si endash O ring size, strain, stoichiometry, and crystallinity), final state effects (a variety of screening mechanisms), and extrinsic effects (charging). By constructing a structurally homogeneous silicon oxide film on silicon, initial state effects have been minimized and the magnitude of final state stabilization as a function of film thickness has been directly measured. In addition, questions regarding the charging of thin silicon oxide films on silicon have been addressed. From these studies, it is concluded that initial state effects play a negligible role in the thickness-dependent binding energy shift. For the first ∼30 Angstrom of oxide film, the thickness-dependent binding energy shift can be attributed to final state effects in the form of image charge induced stabilization. Beyond about 30 Angstrom, charging of the film occurs. copyright 1997 American Institute of Physics

  7. Comparative TEM study of bonded silicon/silicon interfaces fabricated by hydrophilic, hydrophobic and UHV wafer bonding

    International Nuclear Information System (INIS)

    Reznicek, A.; Scholz, R.; Senz, S.; Goesele, U.

    2003-01-01

    Wafers of Czochralski-grown silicon were bonded hydrophilically, hydrophobically and in ultrahigh vacuum (UHV) at room temperature. Wafers bonded hydrophilically adhere together by hydrogen bonds, those bonded hydrophobically by van der Waals forces and UHV-bonded ones by covalent bonds. Annealing the pre-bonded hydrophilic and hydrophobic wafer pairs in argon for 2 h at different temperatures increases the initially low bonding energy. UHV-bonded wafer pairs were also annealed to compare the results. Transmission electron microscopy (TEM) investigations show nano-voids at the interface. The void density depends on the initial bonding strength. During annealing the shape, coverage and density of the voids change significantly

  8. Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator

    International Nuclear Information System (INIS)

    Zhang, P P; Yang, B; Rugheimer, P P; Roberts, M M; Savage, D E; Lagally, M G; Liu Feng

    2009-01-01

    We investigate the influence of heteroepitaxially grown Ge on the thermal dewetting and agglomeration of the Si(0 0 1) template layer in ultrathin silicon-on-insulator (SOI). We show that increasing Ge coverage gradually destroys the long-range ordering of 3D nanocrystals along the (1 3 0) directions and the 3D nanocrystal shape anisotropy that are observed in the dewetting and agglomeration of pure SOI(0 0 1). The results are qualitatively explained by Ge-induced bond weakening and decreased surface energy anisotropy. Ge lowers the dewetting and agglomeration temperature to as low as 700 0 C.

  9. Low-temperature epitaxy of silicon by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, B. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany); Dogan, P. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)], E-mail: pinar.dogan@hmi.de; Sieber, I.; Fenske, F.; Gall, S. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)

    2007-07-16

    In this paper we report on homoepitaxial growth of thin Si films at substrate temperatures T{sub s} = 500-650 deg. C under non-ultra-high vacuum conditions by using electron beam evaporation. Si films were grown at high deposition rates on monocrystalline Si wafers with (100), (110) and (111) orientations. The ultra-violet visible reflectance spectra of the films show a dependence on T{sub s} and on the substrate orientation. To determine the structural quality of the films in more detail Secco etch experiments were carried out. No etch pits were found on the films grown on (100) oriented wafers. However, on films grown on (110) and (111) oriented wafers different types of etch pits could be detected. Films were also grown on polycrystalline silicon (poly-Si) seed layers prepared by an Aluminum-Induced Crystallisation (AIC) process on glass substrates. Electron Backscattering Diffraction (EBSD) shows that the film growth proceeds epitaxially on the grains of the seed layer. But a considerably higher density of extended defects is revealed by Secco etch experiments.

  10. Laboratory course on silicon sensors

    CERN Document Server

    Crescio, E; Roe, S; Rudge, A

    2003-01-01

    The laboratory course consisted of four different mini sessions, in order to give the student some hands-on experience on various aspects of silicon sensors and related integrated electronics. The four experiments were. 1. Characterisation of silicon diodes for particle detection 2. Study of noise performance of the Viking readout circuit 3. Study of the position resolution of a silicon microstrip sensor 4. Study of charge transport in silicon with a fast amplifier The data in the following were obtained during the ICFA school by the students.

  11. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  12. DETERMINATION OF VICKERS MICROHARDNESS IN β-Ga2O3 SINGLE CRYSTALS GROWN FROM THEIR OWN MELT

    Directory of Open Access Journals (Sweden)

    L. I. Guzilova

    2015-05-01

    Full Text Available The results of microhardness measurements of β-Ga2O3 single crystals for (001 crystallographic face are reported. The crystals were grown by the free crystallization with the "Garnet-2M" equipment. Microhardness values ​​ were determined by the Vickers method at varying loads. A four-sided diamond pyramid was used as an indenter. The average value of gallium oxide microhardness was equal to 8.91 GPa. We have carried out comparison of the values ​​obtained with the microhardness for the other wide bandgap semiconductors - epitaxial GaN layers grown on 6H-SiC and GaP layers grown on GaP:S. The findings are usable for machining process development of β-Ga2O3 single crystal substrates. In particular, silicon carbide and electrocorundum may be recommended for β-Ga2O3 machine processing.

  13. On the growth of native oxides on hydrogen-terminated silicon surfaces in dark and under illumination with light

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Zinine, A.; Bankras, R.G.; Wormeester, Herbert; Poelsema, Bene; Schmitz, Jurriaan

    2006-01-01

    After a cleaning procedure, a silicon surface can be terminated by Si-OH groups which results in a high chemical activity. As it is accepted, after removing the wet-chemically grown oxide layer using an HF solution, the surface becomes terminated with Si-H groups. This results in a chemically stable

  14. Silicon nanowires nanogenerator based on the piezoelectricity of alpha-quartz.

    Science.gov (United States)

    Yin, Kui; Lin, Haiyang; Cai, Qian; Zhao, Yi; Lee, Shuit-Tong; Hu, Fei; Shao, Mingwang

    2013-12-21

    Silicon nanowires are important semiconductor with core/shell structure. In this work, the piezoelectric material alpha-quartz was grown in the interface of silicon nanowires by thermal treatment at 600 °C for 0.5 h. These nanowires were employed as starting materials to fabricate piezoelectric nanogenerators, which could convert kinetic energy into electrical one, exhibiting an output voltage of 36.5 V and a response current of 1.4 μA under a free-falling object of 300 g at a height of 30 cm.

  15. Effect of impurities on the growth of {113} interstitial clusters in silicon under electron irradiation

    OpenAIRE

    Nakai, K.; Hamada, K.; Satoh, Y.; Yoshiie, T.

    2011-01-01

    The growth and shrinkage of interstitial clusters on {113} planes were investigated in electron irradiated Czochralski grown silicon (Cz-Si), floating-zone silicon (Fz-Si), and impurity-doped Fz-Si (HT-Fz-Si) using a high voltage electron microscope. In Fz-Si, {113} interstitial clusters were formed only near the beam incident surface after a long incubation period, and shrank on subsequent irradiation from the backside of the specimen. In Cz-Si and HT-Fz-Si, {113} interstitial clusters nucle...

  16. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  17. Radiation hardness of silicon detectors manufactured on wafers from various sources

    International Nuclear Information System (INIS)

    Dezillie, B.; Bates, S.; Glaser, M.; Lemeilleur, F.; Leroy, C.

    1997-01-01

    Impurity concentrations in the initial silicon material are expected to play an important role for the radiation hardness of silicon detectors, during their irradiation and for their evolution with time after irradiation. This work reports on the experimental results obtained with detectors manufactured using various float-zone (FZ) and epitaxial-grown material. Preliminary results comparing the changes in leakage current and full depletion voltage of FZ and epitaxial detectors as a function of fluence and of time after 10 14 cm -2 proton irradiation are given. The measurement of charge collection efficiency for epitaxial detectors is also presented. (orig.)

  18. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  19. Electron spin resonance signal from a tetra-interstitial defect in silicon

    CERN Document Server

    Mchedlidze, T

    2003-01-01

    The Si-B3 electron spin resonance (ESR) signal from agglomerates of self-interstitials was detected for the first time in hydrogen-doped float-zone-grown silicon samples subjected to annealing after electron irradiation. Previously this signal had been detected only in neutron- or proton-irradiated silicon samples. The absence of obscuring ESR peaks for the investigated samples at applied measurement conditions allowed an investigation of the hyperfine structure of the Si-B3 spectra. The analysis supports assignment of a tetra-interstitial defect as the origin of the signal.

  20. Effects of deep impurities and structural defects in polycrystalline silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Galluzzi, F.; Scafe, E.; Beghi, M.; Fossati, S.; Tincani, M.; Pizzini, S.

    1985-01-01

    An extensive experimental study of minority carrier recombination in CZ grown polycrystalline silicon intentionally doped with metallic impurities (Ti, V, Fe, Cr, Zr) is reported. Experimental values of average diffusion lengths have been compared with values calculated by a simple model of carrier recombination, taking into account the effects of impurities, grain boundaries and intragrain crystal defects. The results are fairly consistent and allow the determination of threshold densities for structural defects and deep impurities. The author's analysis gives a simple quantitative description of recombination processes in solar-grade silicon, as far as the average behaviour is concerned

  1. Light emitting structures porous silicon-silicon substrate

    International Nuclear Information System (INIS)

    Monastyrskii, L.S.; Olenych, I.B.; Panasjuk, M.R.; Savchyn, V.P.

    1999-01-01

    The research of spectroscopic properties of porous silicon has been done. Complex of photoluminescence, electroluminescence, cathodoluminescence, thermostimulated depolarisation current analyte methods have been applied to study of geterostructures and free layers of porous silicon. Light emitting processes had tendency to decrease. The character of decay for all kinds of luminescence were different

  2. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  3. Suppression of Mg propagation into subsequent layers grown by MOCVD

    Science.gov (United States)

    Agarwal, Anchal; Tahhan, Maher; Mates, Tom; Keller, Stacia; Mishra, Umesh

    2017-01-01

    Low temperature (LT) flow modulation epitaxy (FME) or "pulsed" growth was successfully used to prevent magnesium from Metalorganic Chemical Vapor Deposition (MOCVD) grown p-GaN:Mg layers riding into subsequently deposited n-type layers. Mg concentration in the subsequent layers was lowered from ˜1 × 1018 cm-3 for a medium temperature growth at 950 °C to ˜1 × 1016 cm-3 for a low temperature growth at 700 °C via FME. The slope of the Mg concentration drop in the 700 °C FME sample was 20 nm/dec—the lowest ever demonstrated by MOCVD. For growth on Mg implanted GaN layers, the drop for a medium temperature regrowth at 950 °C was ˜10 nm/dec compared to >120 nm/dec for a high temperature regrowth at 1150 °C. This drop-rate obtained at 950 °C or lower was maintained even when the growth temperature in the following layers was raised to 1150 °C. A controlled silicon doping series using LT FME was also demonstrated with the lowest and highest achieved doping levels being 5 × 1016 cm-3 and 6 × 1019 cm-3, respectively.

  4. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  5. The LHCb Silicon Tracker

    CERN Document Server

    Elsasser, Ch; Gallas Torreira, A; Pérez Trigo, A; Rodríguez Pérez, P; Bay, A; Blanc, F; Dupertuis, F; Haefeli, G; Komarov, I; Märki, R; Muster, B; Nakada, T; Schneider, O; Tobin, M; Tran, M T; Anderson, J; Bursche, A; Chiapolini, N; Saornil, S; Steiner, S; Steinkamp, O; Straumann, U; Vollhardt, A; Britsch, M; Schmelling, M; Voss, H; Okhrimenko, O; Pugatch, V

    2013-01-01

    The aim of the LHCb experiment is to study rare heavy quark decays and CP vio- lation with the high rate of beauty and charmed hadrons produced in $pp$ collisions at the LHC. The detector is designed as a single-arm forward spectrometer with excellent tracking and particle identification performance. The Silicon Tracker is a key part of the tracking system to measure the particle trajectories to high precision. This paper reports the performance as well as the results of the radiation damage monitoring based on leakage currents and on charge collection efficiency scans during the data taking in the LHC Run I.

  6. Photovoltaics: sunshine and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Stirzaker, Mike

    2006-05-15

    Spain's photovoltaic sector grew rapidly in 2004 only to slow down in 2005. While a State-guaranteed feed-in tariff is in place to drive a take-off, some of the smaller administrative cogs are buckling under the pressure. Projects are being further slowed by soaring world silicon prices and module shortages. Nevertheless, market volume is higher than ever before, and bio capital from both home and abroad is betting that the Spanish take-off is around the corner. (Author)

  7. Magnetically retained silicone facial prosthesis

    African Journals Online (AJOL)

    2013-06-09

    Jun 9, 2013 ... Prosthetic camouflaging of facial defects and use of silicone maxillofacial material are the alternatives to the surgical retreatment. Silicone elastomers provide more options to clinician for customization of the facial prosthesis which is simple, esthetically good when coupled with bio magnets for retention.

  8. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  9. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  10. Recent developments in silicon calorimetry

    International Nuclear Information System (INIS)

    Brau, J.E.

    1990-11-01

    We present a survey of some of the recent calorimeter applications of silicon detectors. The numerous attractive features of silicon detectors are summarized, with an emphasis on those aspects important to calorimetry. Several of the uses of this technology are summarized and referenced. We consider applications for electromagnetic calorimetry, hadronic calorimetry, and proposals for the SSC

  11. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  12. Flowmeter with silicon flow tube

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Marcel; Haneveld, J.; Lötters, Joost Conrad

    2009-01-01

    A flowmeter comprising a system chip with a silicon substrate provided on a carrier, in an opening whereof at least one silicon flow tube is provided for transporting a medium whose flow rate is to be measured, said tube having two ends that issue via a wall of the opening into channels coated with

  13. Luneburg lens in silicon photonics.

    Science.gov (United States)

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  14. X- and gamma-ray N+PP+ silicon detectors with high radiation resistance

    International Nuclear Information System (INIS)

    Petris, M.; Ruscu, R.; Moraru, R.; Cimpoca, V.

    1998-01-01

    We have investigated the use of p-type silicon detectors as starting material for X-and gamma-ray detectors because of several potential benefits it would bring: 1. high purity p-type silicon grown by the float-zone process exhibits better radial dopant uniformity than n-type float-zone silicon; 2. it is free of radiation damage due to the neutron transmutation doping process and behaves better in a radiation field because mainly acceptor like centers are created through the exposure and the bulk material type inversion does not occur as in the n-type silicon. But the p-type silicon, in combination with a passivating layer of silicon dioxide, leads to a more complex detector layout since the positive charge in the oxide causes an inversion in the surface layer under the silicon dioxide. Consequently, it would be expected that N + P diodes have a higher leakage current than P + N ones. All these facts have been demonstrated experimentally. These features set stringent requirements for the technology of p-type silicon detectors. Our work presents two new geometries and an improved technology for p-type high resistivity material to obtain low noise radiation detectors. Test structures were characterized before and after the gamma exposure with a cumulative dose in the range 10 4 - 5 x 10 6 rad ( 60 Co). Results indicate that proposed structures and their technology enable the development of reliable N + PP + silicon detectors. For some samples (0.8 - 12 mm 2 ), extremely low reverse currents were obtained and, in combination with a low noise charge preamplifier, the splitting of 241 Am X-ray lines was possible and also the Mn Kα line (5.9 keV) was extracted from the noise with a 1.9 keV FWHM at the room temperature. An experimental model of a nuclear probe based on these diodes was designed for X-ray detection applications. (authors)

  15. Treatment of transparent conductive oxides by laser processes for the development of Silicon photovoltaic cells; Tratamiento de oxidos conductores transparentes por procesos laser para el desarrollo de celulas fotovoltaicas de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Canteli Perez-Caballero, D.

    2015-07-01

    Transparent conductive oxides (TCOs) are heavily doped oxides with high transparency in the visible range of the spectrum and a very low sheet resistance, making them very attractive for applications in optoelectronic devices. TCOs are widely found in many different areas such as low emissivity windows, electric contacts in computers, televisions or portable devices, and, specially, in the photovoltaic (PV) industry. PV industry is mainly based on mono- and multicrystalline silicon, where TCOs are used as anti-reflective coatings, but the search for cheaper, alternative technologies has led to the development of thin film PV technologies, where TCOs are used as transparent contacts. With the maturation of the thin film PV industry, laser sources have become an essential tool, allowing the improvement of some industrial processes and the development of new ones. Because of the interest on a deeper understanding of the interaction processes between laser light and TCOs, the laser ablation of three of the most important TCOs has been studied in depth in the present work. (Author)

  16. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  17. The Crystal structure of InAs nanorods grown onto Si[111] substrate

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, Anton; Biermanns, Andreas; Pietsch, Ullrich [Festkoerperphysik, Universitaet Siegen, Walter-Flex-Str. 3,57072, Siegen (Germany); Breuer, Steffen; Dimakis, Manos; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2011-07-01

    Nanowires are of particular interest due to the ability to synthesize heterostructures in the nanometer range. It was found that nearly any AIIIBV semiconductor material can be grown as NWs onto another AIIIBV or group IV [111] substrate independent from lattice mismatch. We presented an X-ray characterization of InAs NRs on Si [111] grown by assist free MBE method. Lattice mismatch of this materials is 11%. For study of strain realizing we concentrated our research on initial stages of growth process investigating samples set with different growth time. Using synchrotron radiation we have performed experiments in symmetrical and asymmetrical out-of plane scattering geometry and grazing-incidence diffraction. Combining the results we were able to characterize the transition between silicon silicon substrate and InAs NWs. We find in-plane lattice mismatch of -0.18% close to the interface compared to InAs bulk material. With help of micro-focus setup we are able measure structural parameters of single NWs to determine the strain accomodation as function of NW size. In particular using asymmetric wurzite-sensitive reflections under coherent beam illumination we could quantify the number of stacking faults. In the talk we present details of the analysis and first simulation results.

  18. Ellipsometric study of GaN/AIN/Si(111) heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Nabi, M. A. U.; Ashfaq, A.; Arshad, M. I.; Ali, A.; Mahmood, K.; Hasan, M. A.; Asghar, M.

    2013-01-01

    GaN and related structures attracted a great interest in the recent years for electronic and optoelectronic applications due to their promising properties. GaN is grown popularly on foreign substrates like sapphire and SiC. However, silicon due to its favourable properties attended the great attention of material scientists and researchers to utilize as substrate for heteroepitaxy of GaN based structures and devices. Silicon substrates are low cost, available in large diameters and have well characterized thermal and electrical properties. In this study, GaN/AlN/Si(111) heterostructures were grown by molecular beam epitaxy. We performed x-ray diffraction spectroscopy and spectroscopic ellipsometry on these samples to study their structural and optical properties. XRD measurements performed on these samples revealed the presence of high quality GaN films as well as the presence of AlN buffer layer with the following miller indices: GaN (002), GaN (004), GaN (006) and GaN (110) along with Si peak of phase (111). The ellipsometric data obtained were used to characterize the GaN/Si samples as a function of film thickness. Refractive index, extinction coefficient and dielectric constant were calculated by the measured data. (author)

  19. Chalcogen donnors in silicon

    International Nuclear Information System (INIS)

    Scolfaro, L.M.R.

    1985-01-01

    The electronic stucture of chalcogen impurities in silicon which give rise to deep levels in the forbidden band gap of that semiconductor is studied. The molecular cluster model within the formalism of the multiple scattering method in the Xα local density approximation was used . The surface orbitals were treated by using the Watson sphere model. Studies were carried out for the isolated substitutional sulfur and selenium impurities (Si:S and Si:Se). A pioneer investigation was performed for the nearest-neighbor impurity pairs of sulfur and selenium (Si:S 2 and Si:Se 2 ). All the systems were also analysed in the positive charge states (Si:S + , Si:Se + and Si:Se 2 + ) and for the isolated impurities the calculations were carried out to the spin polarized limit. The obtained results were used to interpret recent photoconductivity, photocapitance, EPR and DLTS data on these centers. It was observed that the adopted model is able to provide a satisfactory description of the electronic structure of the chalcogen impurity centers in silicon. (autor) [pt

  20. Flexible silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Blakers, A.W.; Armour, T. [Centre for Sustainable Energy Systems, The Australian National University, Canberra ACT 0200 (Australia)

    2009-08-15

    In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing. (author)