WorldWideScience

Sample records for multicomponent nonuniform plasmas

  1. Quasiparticles in non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1994-01-01

    A quasiparticle concept is generalized for the case of non-uniformly magnetized plasma. Exact and reduced continuity equations for the microscopic density in the quasiparticle phase space are derived, and the nature of quasiparticles is analyzed. The theory is developed for the general case of relativistic particles in electromagnetic fields, besides non-uniform but stationary magnetic fields. Effects of non-stationary magnetic fields are briefly investigated also. 26 refs

  2. Transport processes in multicomponent plasma

    International Nuclear Information System (INIS)

    Zissis, G.

    2002-01-01

    Full text: This book treats in detail, as indicated in the title, the transport phenomena in multicomponent plasmas. Here, the term 'transport' applies to the study of mass and energy transfer in plasmas due to the interactions between pairs of particles only. Radiation is legitimately omitted; anyway, radiative transfer is another field of study. As the author himself mentions in the introduction, 'the term multicomponent plasma implies a partially or fully ionized mixture of arbitrary number of species of neutral and charged particles satisfying the condition of quasi-neutrality'. In fact, this book treats a large variety of plasmas applying to different systems ranging from low-pressure systems which may be far from local thermodynamic equilibrium (LTE) conditions, to thermal plasmas in LTE or near-LTE states with special attention to two-temperature systems; partially ionized plasmas with low ionization degree for which electron-neutral interactions are predominant, to systems with higher ionization degrees in which charged particle interactions are no more negligible. In addition, for all the above stated situations, the author treats both plasmas which are subjected to an external electromagnetic field and those which are not (homogeneous and inhomogeneous cases). Furthermore, in the last chapters a special discussion concerning molecular plasmas is presented. Taking into account the evolution of plasma modelling in the last few years, the subject is of current interest and the reader will find in the book a large amount of information necessary for a good understanding of transport phenomena in plasmas: for a plasma simulation specialist, this book may be regarded as reference text, which includes all necessary mathematical relations for his work. However, it should not be considered a simple formulary; the reader will also find here an excellent description of the theoretical basis necessary for the derivation of all given expressions. To this point of view

  3. Nonquasineutral electron vortices in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  4. Charged particle acceleration in nonuniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Naumova, N.M.; Pegoraro, F.

    1996-11-01

    The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a much-gt 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order λ p . The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations

  5. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    Science.gov (United States)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  6. Absolute parametric instability in a nonuniform plane plasma ...

    Indian Academy of Sciences (India)

    Abstract. The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is ...

  7. Absolute parametric instability in a nonuniform plane plasma

    Indian Academy of Sciences (India)

    The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.

  8. Propagation of waves in a multicomponent plasma having charged ...

    Indian Academy of Sciences (India)

    Propagation of waves in a multicomponent plasma having charged dust particles has been investigated by various authors in recent times as the presence of charged dust grains give rise to a new kind of modes called dust modes and it has wide applications in magneto- sphere and space plasma [1–3]. In fact, Rao et al [4] ...

  9. Raman sidescatter instability in a nonuniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mostrom, M.A.

    1977-07-15

    In the various laser-fusion concepts, an intense electromagnetic wave (the laser) must propagate through an underdense plasma region where it could decay, via the stimulated Raman instability, into a Langmuir plasma wave and a scattered electromagnetic wave. Results are obtained by evaluating the ''Green's function'' response in time and space for the scattered electromagnetic waves assuming they are initiated by a ''delta-function'' source. We consider the case where the temporal growth dominates the plasma wave convection. Then the scattered electromagnetic waves are governed by a single second-order Helmholtz differential equation, in the position variable along the density gradient, with a complex potential having two simple zeros (turning points) and one simple pole.

  10. Raman sidescatter instability in a nonuniform plasma

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1977-01-01

    In the various laser-fusion concepts, an intense electromagnetic wave (the laser) must propagate through an underdense plasma region where it could decay, via the stimulated Raman instability, into a Langmuir plasma wave and a scattered electromagnetic wave. Results are obtained by evaluating the ''Green's function'' response in time and space for the scattered electromagnetic waves assuming they are initiated by a ''delta-function'' source. We consider the case where the temporal growth dominates the plasma wave convection. Then the scattered electromagnetic waves are governed by a single second-order Helmholtz differential equation, in the position variable along the density gradient, with a complex potential having two simple zeros (turning points) and one simple pole

  11. Raman sidescatter instability in a nonuniform plasma

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1977-01-01

    In the various laser-fusion concepts, an intense electromagnetic wave (the laser) must propagate through an under-dense plasma region where it could decay, via the stimulated Raman instability, into a Langmuir plasma wave and a scattered electromagnetic wave. This process could, therefore, scatter a significant fraction of the laser energy before it could be deposited in the plasma. A density gradient, in the direction of laser incidence, localizes the instability to a narrow resonance zone where the local plasma wave frequency approximately equals the difference-frequency between the incident and scattered electromagnetic waves. The narrowness of this zone can strongly inhibit the growth of back- or oblique-scattered electromagnetic waves since they quickly propagate out of their resonance region; however, the density gradient has a much weaker effect on side-scattered waves (which propagate perpendicular to the density gradient) since they remain in their resonance zone until refraction bends them out or they exit through the side of the finite diameter laser beam. Thus, we place particular emphasis on evaluating, in a manner valid for the side scattered electromagnetic waves (which are at their turning point), the level of exponentiation at which the growth is linearly saturated due to convection of the waves out of their resonance zone. We also determine the general nature and propagation of the scattered electromagnetic waves and obtain approximate values for the resonance zone size and the time required for the above saturation

  12. Linear kinetic enlightenment of a slab of nonuniform plasma

    International Nuclear Information System (INIS)

    Revenchuk, S.M.

    1996-01-01

    A phenomenon of linear kinetic regeneration of a harmonic electric-field perturbation beyond the nonuniform opacity barrier due to electrons trapped by a potential well is investigated. Such electrons are reflected by the well walls without loss of phase memory about the external perturbation, which is rehabilitated on the other side of the barrier. The incidence of the electromagnetic wave polarized in the plane of incidence on a plasma slab. Analytic expressions for the regenerated electric field and regeneration coefficient are obtained in the ballistic approximation. The dependence of the regeneration coefficient on shape of the electrostatic potential confining the wave barrier is discussed

  13. WHAMP - waves in homogeneous, anisotropic, multicomponent plasmas

    International Nuclear Information System (INIS)

    Roennmark, K.

    1982-06-01

    In this report, a computer program which solves the dispersion relation of waves in a magnetized plasma is described. The dielectric tensor is derived using the kinetic theory of homogeneous plasmas with Maxwellian velocity distribution. Up to six different plasma components can be included in this version of the program, and each component is specified by its density, temperature, particle mass, anisotropy and drift velocity along the magnetic field. The program is thus applicable to a very wide class of plasmas, and the method should in general be useful whenever a homogeneous magnetized plasma can be approximated by a linear combination of Maxwellian components. The general theory underlying the program is outlined. It is shown that by introducing a Pade approximant for the plasma dispersion function Z, the infinite sums of modified Bessel functions which appear in the dielectric tensor may be reduced to a summable form. The Pade approximant is derived and the accuracy of the approximation is also discussed. The subroutines making up the program are described. (Author)

  14. Mechanism and scaling for convection of isolated structures in nonuniformly magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Naulin, V.

    2005-01-01

    Large-scale radial advection of isolated structures in nonuniformly magnetized plasmas is investigated. The underlying mechanism considered is due to the nonlinear evolution of interchange motions, without any presumption of plasma sheaths. Theoretical arguments supported by numerical simulations...

  15. Fluid description of multi-component solar partially ionized plasma

    International Nuclear Information System (INIS)

    Khomenko, E.; Collados, M.; Vitas, N.; Díaz, A.

    2014-01-01

    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed, we particularize to some frequently considered cases as for the interaction of matter and radiation

  16. Ion Bernstein wave heating in a multi-component plasma

    International Nuclear Information System (INIS)

    Puri, S.

    1980-10-01

    Conditions for the coupling and absorption of Gross-Bernstein ion-cyclotron waves in a multi-component plasma are examined. Two cases are distinguished depending upon whether, the antenna initially launches, (i) the quasi-torsional slow electromagnetic wave with azimuthal magnetic field (TM) polarization, or (ii) the quasi-compressional fast wave with the electric field oriented azimuthally (TE). Analytic expressions for the plasma surface impedance are derived taking into account the pertinent warm plasma modifications near the vacuum-plasma interface. Antenna configurations capable of efficient coupling of the radio frequency energy to these modes are studied. A method for simulating waveguide like launching using transmission lines is pointed out. It is found that impurity concentrations exceeding a few parts in a thousand are capable of competing with the bulk ions in the energy absorption processes; this could lead to energy deposition near the plasma edge. Measures for avoiding edge heating problems by a careful choice of parameters e.g. restricting the heating frequency to the fundamental ion gyrofrequency are outlined. Equal care is to be exercised in limiting the nsub(z) spectrum to low discrete values in order to avoid the potentially dangerous problem of runaway electron heating. (orig.)

  17. Variational theory of cyclotron emission from nonuniformly magnetized plasmas

    International Nuclear Information System (INIS)

    Shvets, V.F.; Swanson, D.G.

    1992-01-01

    Whereas direct calculations of emission from a source model in both homogeneous and weakly inhomogeneous media have been previously executed, there are no previous theories of the source distribution function from nonuniformly magnetized plasmas where mode conversion phenomena must be taken into account. Whenever the emitting layer is localized due to gradients of the external magnetic field, mode conversion leads to the Generalized Kirchhoff's Law (GKL) E 1 /A 1 = E 2 /A 2 = E 3 /A 3 , where A j represents the absorbed fraction on the j-th wave branch and E j is the corresponding emitted energy along j-th branch. Recently integral expressions for A j and E j in terms of arbitrary localized sink and source distributions have been obtained. The GKL relating absorption to emission along each branch of coexisting in the inhomogeneous mode conversion layer affects the shape of source distribution through a functional of the emissivity. Moreover, E j /A j ≡ I bb , where I bb is a black body radiated power. Accordingly, the distributed emission source function should be an extremal of the emissivity functional. The authors have developed the corresponding variational analysis with nontrivial GKL constraints. As a result they have discovered the correct representation of the ratio of source and sink distributions in the form of an expansion in linearly independent adjoint wave solutions of the absorption problem. Finally, unknown coefficients have been found numerically by further maximization taking account of both source boundedness and the GKL constraints. Calculations performed for a broad variety of plasma parameters will be presented

  18. Charged particle and photon acceleration by wakefield plasma waves in non-uniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Kirsanov, V.I.; Sakharov, A.S.; Pegoraro, F.

    1993-01-01

    We discuss the acceleration of charged particles and the upshift of the frequency of short wave packets of laser radiation. The acceleration and the upshift are caused by wake plasma waves excited by a strong laser pulse in a non-uniform plasma. We show that unlimited acceleration of charged particles is possible for specific spatial dependencies of the plasma density. In this unlimited acceleration regime, particles have a fixed phase relationship with respect to the plasma wave, while their energy increases with time. When the wave breaking limit is approached and surpassed, the efficiency of the acceleration of the charged particles and of the frequency upshift of the photons can be increased significantly. (author) 3 refs

  19. Effects of non-uniformities on electrical conduction in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Numano, M.; Murakami, Y.; Nitta, T.

    1989-01-01

    The effect of non-uniformities on the flow of electric current in weakly ionized plasmas is investigated by taking into account the ion slip as well as the Hall current. An Ohm's law for a non-uniform plasma is derived, from which the formula previously obtained by Numano, i.e. an extension of Rosa's equation, is obtainable as a special case. Making use of this new Ohm's law, the effective electrical conductivity and the effective Hall parameter are determined for isotropically turbulent plasmas. It is found that when the ion-slip effect is absent they are in good agreement with the results obtained previously. (author)

  20. Magneto-acoustic resonance in a non-uniform current carrying plasma column

    OpenAIRE

    Vaclavik, J.

    2017-01-01

    The forced radial magneto-acoustic oscillations in a plasma column with nonuniform mass density and temperature are investigated. It turns out that the oscillations have a resonant character similar to that of the magneto-acoustic oscillations in a uniform plasma column. The properties of the axial and azimuthal components of the oscillating magnetic field are discussed in detail

  1. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A A; Platonov, K Yu [Inst. for Laser Physics, SC ` Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K A

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  2. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    International Nuclear Information System (INIS)

    Ahn, S. K.; Chang, H. Y.

    2008-01-01

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with the theories of electromagnetic effects in large area and/or high frequency capacitive discharges

  3. Effects of Warmness and Spatial Nonuniformity of the Plasma Waveguide on Periodic Absolute Parametric Instability

    International Nuclear Information System (INIS)

    Zaki, N.G.; Bekheit, A.H.

    2011-01-01

    The periodic absolute parametric instability (API) of the low-frequency oscillations excited by a monochromatic pumping field of arbitrary amplitude in a warm I-D nonuniform magneto active plasma is investigated. One can use the separation method to solve the two-fluid plasma equations which describe the system. The method used enables us to determine the frequencies and growth rates of unstable modes and the self-consistent electric field. Plasma electrons are considered to have a thermal velocity. One can examine different solutions for the spatial equation in the following cases: A) API in uniform Plasma B) API in nonuniform plasma, we study this case for two variants: B.1) Exact harmonic oscillator and B.2) Bounded harmonic oscillator (bounded plasma). Increment is found in the buildup of the oscillations, and it is shown that the spatial nonuniformity of the plasma exerts a stabilizing effect on the parametric instability. It is shown that the growth rate of API in warm plasma is reduced compared to cold plasma. It is found also that the warmness of the plasma has no effect on the solution of the space part of the problem ( only through the separation constant )

  4. Effects of warmness and spatial nonuniformity of plasma waveguide on periodic absolute parametric instability

    International Nuclear Information System (INIS)

    Zaki, N.G.; Bekheit, A.H.

    2011-01-01

    The periodic absolute parametric instability (API) of the low-frequency oscillations excited by a monochromatic pumping field of an arbitrary amplitude in a warm 1-D (one-dimensional) nonuniform magnetoactive plasma is investigated. The separation method can be used for solving the two-fluid plasma equations describing the system. By applying this method we were able to determine the frequencies and growth rates of unstable modes and the self-consistent electric field. Plasma electrons are considered to have a thermal velocity. Different solutions for the spatial equation can be obtained the following cases: A) API in a uniform plasma, B) API in a nonuniform plasma. The latter has been studied here for two cases: B.1) the exact harmonic oscillator and B.2) the bounded harmonic oscillator (a bounded plasma). An increment has been found in the build-up of the oscillations, and it has been shown that the spatial nonuniformity of the plasma exerts the stabilizing effect on the parametric instability. A reduced growth rate of API in the warm plasma, in comparison to the cold plasma, is reported. It has also been found that the warmness of the plasma has no effect on the solution of the space part of the problem (only through the separation constant). (authors)

  5. Effects of a nonuniform open magnetic field on the plasma presheath

    International Nuclear Information System (INIS)

    Sato, Kunihiro; Miyawaki, Fujio

    1991-01-01

    Effects of a nonuniform magnetic field on the plasma presheath is numerically investigated using the plasma equation for a collisionless plasma with a finite-temperature particle source. The present calculation confirms that analytical solutions previously published by the authors are available over a wide range of mirror ratio. Potential drop in the presheath, which considerably depends on both the magnetic strength profile and the spatial distribution of the particle source, is remarkably increased by applying an expanding magnetic field when plasma particles are generated in the inner part of the plasma. An effect of a nonuniform magnetic field on sheath formation is also discussed by using the calculated ion distribution function. If the plasma equation has no singularity at the sheath edge, its solution satisfies the generalized Bohm criterion with the inequality sign in the expanding magnetic field. (author)

  6. Absolute parametric instability of low frequency waves in a 2-D nonuniform anisotropic warm plasma

    International Nuclear Information System (INIS)

    Zaki, N.G.

    2004-01-01

    Using the separation method, the problem of absolute parametric instability (API) of electrostatic waves in magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in 2-D nonuniform plane plasma. The equations which describe the spatial part of the electric potential are obtained. Also the growth rates and conditions of the parametric instability for periodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are reduced in comparison with a cold plasma case

  7. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    International Nuclear Information System (INIS)

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-01-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length

  8. Electrical field excitation in non-uniform plasma by a modulated electron beam

    International Nuclear Information System (INIS)

    Anisimov, I.O.; Borisov, O.A.

    2000-01-01

    Excitation of electric fields due to a modulated electron beam in a warm non-uniform plasma is treated for weak beams in warm plasma. It is shown that the maximum electric field magnitude that is reached near the local plasma resonance point depends significantly on the direction of the electron stream motion. In collisional plasma the magnitude of the Langmuir wave that propagates to the subcritical plasma also depends on the direction of the electron stream motion. The motion of the modulated electron stream front results in beatings between oscillations on the modulation frequency and on the local electron plasma frequencies at the initial moment. Later these beatings damp in the supercritical plasma, whereas in the subcritical plasma they are transformed into spatial beatings between the field of the modulated electron stream and the excited Langmuir wave. (orig.)

  9. A poloidal non-uniformity of the collisionless parallel current in a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Romannikov, A.; Fenzi-Bonizec, C

    2005-07-01

    The collisionless distortion of the ion (electron) distribution function at certain points on a magnetic surface is studied in the framework of a simple model of a large aspect ratio tokamak plasma. The flow velocity driven by this distortion is calculated. The possibility of an additional non-uniform collisionless parallel current density on a magnetic surface, other than the known neo-classical non-uniformity is shown. The difference between the parallel current density on the low and high field side of a magnetic surface is close to the neoclassical bootstrap current density. The first Tore-Supra experimental test indicates the possibility of the poloidal non-uniformity of the parallel current density. (authors)

  10. Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    creased sufficiently with respect to the beam edge to balance the effect of ... discharge to control the plasma profile [23], and (iii) using the ponderomotive ... intensity radial profile, the density profile that evolves is peaked on the axis and falls ...

  11. Investigation of the Periodic Absolute Parametric Instability in a Nonuniform Cylindrical Warm Plasma Waveguide

    International Nuclear Information System (INIS)

    Zaki, N.G.

    2009-01-01

    In this paper, the effect of spatial plasma nonuniformity on periodic Absolute Parametric Instability (API) of electrostatic waves in a magnetized pump warm plasma is investigated in a cylindrical geometry. An API plays a crucial role in the processes of the energy transfer from the electromagnetic radiation to the plasma and may have an important consequences for experiments on RF plasma heating in a magnetic traps and for a laser-fusion system. In conclusion; it is found that: A) allowance for the spatial nonuniformity of the plasma density leads to A.I) localization of an unstable wave in a finite region of a plasma volume, A.2) increasing the threshold value of the pump wave amplitude above which parametric amplification occurs and A.3) decreasing the value of the growth rate of unstable waves, B) more growth rate of periodic API is decreased due to electrons warmness in comparison with the case of cold plasma, and C) Independent of the geometry of the problem ( plane or cylinder), the results of the API in a warm plasma waveguide are still valid

  12. A new purely growing instability in a strongly magnetized nonuniform pair plasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2007-01-01

    It is shown that a strongly magnetized nonuniform electron-positron (hereafter referred to as e-p or pair) plasma is unstable against low-frequency (in comparison with the electron gyrofrequency) electrostatic oscillations. For this purpose, a dispersion relation is derived by using the Poisson equation as well as the electron and positron continuity equations with the guiding center drifts for the electron and positron fluids. The dispersion relation admits a purely growing instability in the presence of the equilibrium density and magnetic field inhomogeneities. Physically, instability arises because of the inhomogeneous magnetic field induced differential electron and positron density fluctuations, which do not keep in phase with the electrostatic potential arising from the charge separation in our nonuniform pair plasmas

  13. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  14. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-01-01

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r c , has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0 c and the rarefactive solitons in the range r>r c have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r c . A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results

  15. Observation of non-uniform erosion and deposition phenomena on graphite after plasma exposure

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Grote, H.; Schneider, W.; Wienhold, P.; Seggern, J. von

    1999-01-01

    The modifications of fine grain isotropic graphite surfaces after plasma exposure have been investigated using surface analysis techniques with high spatial resolution in area and depth. The samples are graphite target tiles of ASDEX-upgrade and coated graphite collector samples exposed for special erosion/deposition experiments in the divertor plasma of ASDEX-upgrade or in the scrape-off plasma of TEXTOR-94. In addition, a graphite sample was exposed to a low temperature, clean deuterium plasma to study the modifications of the surface morphology during plasma exposure. The results give clear indications of non-uniform erosion and deposition processes. The change of the surface morphology during these processes is discussed. (orig.)

  16. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  17. Integrated transport code system for a multicomponent plasma in a gas dynamic trap

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Karpushov, A.N.; Noak, K.; Strogalova, S.L.

    2000-01-01

    This report is focused on the development of the theoretical and numerical models of multicomponent high-β plasma confinement and transport in the gas-dynamic trap (GDT). In order to simulate the plasma behavior in the GDT as well as that in the GDT-based neutron source the Integrated Transport Code System is developed from existing stand-alone codes calculating the target plasma, the fast ions and the neutral gas in the GDT. The code system considers the full dependence of the transport phenomena on space, time, energy and angle variables as well as the interactions between the particle fields [ru

  18. Linear and nonlinear electrostatic modes in a nonuniform magnetized electron plasma

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, P.K.; Kono, M.; Poedts, S.

    2001-01-01

    Linear and nonlinear low-frequency modes in a magnetized electron plasma are studied, taking into account a proper description of the equilibrium plasma state that is inhomogeneous. Assuming a homogeneous magnetic field and sheared plasma flows, flute-like perturbations are studied in the presence of density and potential gradients. Linear analysis reveals the presence of a streaming instability and depicts conditions for global linear spiral mode. In the nonlinear domain, a tripolar vortex, which is driven and carried by the flow, is found. Also investigated are the consequences of a magnetic shear as well as nonuniformities along the magnetic field lines, which are shown to be responsible for the possible annulment of the magnetic shear effects. Streaming along the lines of the sheared magnetic field is also studied. A variety of nonlinear structures (viz. global multipolar vortices, local vortex chains, and tripolar vortices) is shown to be the consequence of the simultaneous action of the parallel and perpendicular flows

  19. Initial particle loadings for a nonuniform simulation plasma in a magnetic field

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Kamimura, Tetsuo; Tokuda, Sinji.

    1978-09-01

    Improved methods for initially loading particles in a magnetized simulation plasma with nonuniform density and temperature distributions are proposed. In the usual guiding center loading (GCL), a charge separation coming from finite Larmor radius effects remains due to the difference between the guiding center density and the actual density. The modified guiding center loading (MGCL) presented here eliminates the electric field so generated and can be used for arbitrary density and temperature profiles. Some applications of these methods to actual simulations are given for comparison. The significance of these methods of initial particle loadings is also discussed. (author)

  20. Synthesis of multicomponent metallic layers during impulse plasma deposition

    Directory of Open Access Journals (Sweden)

    Nowakowska-Langier Katarzyna

    2015-12-01

    Full Text Available Pulsed plasma in the impulse plasma deposition (IPD synthesis is generated in a coaxial accelerator by strong periodic electrical pulses, and it is distributed in a form of energetic plasma packets. A nearly complete ionization of gas, in these conditions of plasma generation, favors the nucleation of new phase of ions and synthesis of metastable materials in a form of coatings which are characterized by amorphous and/or nanocrystalline structure. In this work, the Fe–Cu alloy, which is immiscible in the state of equilibrium, was selected as a model system to study the possibility of formation of a non-equilibrium phase during the IPD synthesis. Structural characterization of the layers was done by means of X-ray diffraction and conversion-electron Mössbauer spectroscopy. It was found that supersaturated solid solutions were created as a result of mixing and/or alloying effects between the layer components delivered to the substrate independently and separately in time. Therefore, the solubility in the Fe–Cu system was largely extended in relation to the equilibrium conditions, as described by the equilibrium phase diagram in the solid state.

  1. Statics and thermodynamics of strongly coupled multicomponent plasmas

    International Nuclear Information System (INIS)

    Rosenfeld, Y.

    1980-01-01

    A description of strongly coupled plasmas, in which the direct correlation functions, c/sub i/j(r), are obtained by simple scaling from a universal function, is derived and found to be in full agreement with available computer simulation data, which it thus extends for arbitrary mixtures. It is thermodynamically consistent with the ''ion-sphere'' charge-averaging prediction for the enhancement factors for nuclear reaction rates, the results for which confirm the universality of the bridge functions for mixtures

  2. Induced charge of spherical dust particle on plasma-facing wall in non-uniform electric field

    International Nuclear Information System (INIS)

    Tomita, Y.; Smirnov, R.; Zhu, S.

    2005-01-01

    Induced charge of a spherical dust particle on a plasma-facing wall is investigated analytically, where non-uniform electric field is applied externally. The one-dimensional non-uniform electrostatic potential is approximated by the polynomial of the normal coordinate toward the wall. The bipolar coordinate is introduced to solve the Laplace equation of the induced electrostatic potential. The boundary condition at the dust surface determines the unknown coefficients of the general solution of the Laplace equation for the induced potential. From the obtained potential the surface induced charge can be calculated. This result allows estimating the effect of the surrounding plasma, which shields the induced charge. (author)

  3. A variable-coefficient unstable nonlinear Schroedinger model for the electron beam plasmas and Rayleigh-Taylor instability in nonuniform plasmas: Solutions and observable effects

    International Nuclear Information System (INIS)

    Gao Yitian; Tian Bo

    2003-01-01

    A variable-coefficient unstable nonlinear Schroedinger model is hereby investigated, which arises in such applications as the electron-beam plasma waves and Rayleigh-Taylor instability in nonuniform plasmas. With computerized symbolic computation, families of exact analytic dark- and bright-soliton-like solutions are found, of which some previously published solutions turn out to be the special cases. Similarity solutions also come out, which are expressible in terms of the elliptic functions and the second Painleve transcendent. Some observable effects caused by the variable coefficient are predicted, which may be detected in the future with the relevant space or laboratory plasma experiments with nonuniform background existing

  4. The segmented non-uniform dielectric module design for uniformity control of plasma profile in a capacitively coupled plasma chamber

    International Nuclear Information System (INIS)

    Xia, Huanxiong; Xiang, Dong; Yang, Wang; Mou, Peng

    2014-01-01

    Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance

  5. Collective acceleration of laser plasma in a nonstationary and nonuniform magnetic field

    Science.gov (United States)

    Isaev, A.; Kozlovskiy, K.; Shikanov, A.; Vovchenko, E.

    2017-12-01

    This paper presents the new experimental results concerning acceleration of deuterium ions extracted from laser plasma in the rapid-growing nonuniform magnetic field in order to initiate the nuclear reactions D(d, n)3He and T(d, n)4He. For obtaining of laser plasma a Nd: YAG laser (λ = 1,06 μm) that generates in Q-switched mode the radiation pulses with the energy W ≤ 0,85 J and duration of τ ≈ 10 ns was used. Rapid-growing magnetic field was created with the discharge of Arkadyev-Marx pulsed-voltage generator to conical coil with the inductance of 0,65 μΗ. At characteristic discharge time of 30 ns, the rate of magnetic field growth achieved 2·107 T/s. Ion velocity was determined with the time-of-flight technique. During the experiment on deuterium plasma an ion flux velocity of ∼3 · 108 cm/s was obtained, which corresponds to the deuteron energy of ∼100 keV. Herewith, for target power density of ∼5·1011 W/cm2 obtaining of up to 1015 of accelerated deuterons and up to 108 of neutrons per a pulse is expected.

  6. Expansion of a multicomponent current-carrying plasma jet into vacuum

    International Nuclear Information System (INIS)

    Krasov, V. I.; Paperny, V. L.

    2017-01-01

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z 1 = +1 and Z 2 = +2 and (ii) plasma with ions in equal charge states but with the mass ratio m 1 /m 2 = 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.

  7. Expansion of a multicomponent current-carrying plasma jet into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Krasov, V. I.; Paperny, V. L., E-mail: paperny@math.isu.runnet.ru [Irkutsk State University (Russian Federation)

    2017-03-15

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z{sub 1}= +1 and Z{sub 2}= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m{sub 1}/m{sub 2} = 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.

  8. Local full-wave energy and quasilinear analysis in nonuniform plasmas

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1989-01-01

    The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetic analysis. An extension is presented to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character, it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern over the question of local energy for r.f.-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the r.f.-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities. (author)

  9. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  10. The effects of relativistic and non-local non-linearities on modulational instabilities in non-uniform plasma

    International Nuclear Information System (INIS)

    Mohamed, B.F.; El-Shorbagy, Kh.H.

    2000-01-01

    A general detailed analysis for the nonlinear generation of localized fields due to the existence of a strong pump field inside the non-uniform plasma has been considered. We have taken into account the effects of relativistic and non-local nonlinearities on the structure of plasma resonance region. The nonlinear Schrodinger equation described the localized fields are investigated. Besides, the generalized dispersion relation is obtained to study the modulational instabilities in different cases. Keywords: Wave-plasma interaction, Nonlinear effects, Modulation instabilities

  11. Gyrokinetic approach to the propagation of electromagnetic waves in nonuniform bounded plasma slabs

    International Nuclear Information System (INIS)

    Sauter, O.; Vaclavik, J.

    1994-05-01

    A new code, SEMAL, has been developed which solves the linearized Vlasov-Maxwell wave equations to all orders in Larmor radii. Arbitrary density and temperature profiles as well as nonuniform magnetic fields are considered in slab geometry. The vacuum regions adjacent to the plasma slab are limited by perfect conducting walls and contain an antenna as an excitation source. The linear response is obtained by solving the system of one first-order and two second-order integro-differential equations using a non-polluting finite element discretization. The general equations in the Fourier space, derived in a new comprehensive way, and their inverse transform, using k y =0, are described as well as the convergence and non-polluting properties of the method. We present the results concerning the influence of alpha particles on ICRF heating schemes for ITER, where we show that small alphas concentration can alter the steady-state operation envisaged with ICRF fast wave current-drive. (author) 7 figs., 3 tabs., 28 refs

  12. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    Science.gov (United States)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  13. Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons

    International Nuclear Information System (INIS)

    Sabry, R.

    2009-01-01

    A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.

  14. Semiclassical multicomponent wave function

    NARCIS (Netherlands)

    Mostovoy, M.V.

    A consistent method for obtaining the semiclassical multicomponent wave function for any value of adiabatic parameter is discussed and illustrated by examining the motion of a neutral particle in a nonuniform magnetic field. The method generalizes the Bohr-Sommerfeld quantization rule to

  15. Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-05-01

    Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ωch or Ω0<ω< ωcp, where ωch and ωcp are heavy and light ions gyrofrequencies, and Ω0 is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.

  16. Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-05-01

    Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ωch or Ω0<ω< ωcp, where ωch and ωcp are heavy and light ions gyrofrequencies, and Ω0 is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.

  17. Experimental observation of nonlinear behaviour in a helium plasma discharge in the presence of a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Toma, M.; Sanduloviciu, M.

    1994-01-01

    The nonlinear behaviour in an electrical discharge plasma due to the action of an external nonuniform magnetic field is presented. The discharge geometry and the magnetic field configuration ('inverse' cylindrical magnetron discharge) were so chosen that there is a possibility to control the net electron flux in a certain region of a positive electrode. The plasma discharge nonlinearity manifested in the profile of the current-voltage, current-magnetic field and current-gas pressure characteristics by the appearance of the anomalous negative resistance, in the bistability and hysteresis and also in the periodical and chaotic variation of the discharge current. The profile of the current variation vs control discharge parameters was related to the appearance of a space charge structure in the shape of nearly spherical bulges, delimited from the surrounding plasma by a double layer. (Author)

  18. Experimental investigation of the current plasma liens in the non-uniform magnetic field

    International Nuclear Information System (INIS)

    Belan, V.; Butenko, V.; Ivanov, B.; Kiselev, V.A.; Onishchenko, I.; Linnik, I.N.; Yegorov, A.

    1999-01-01

    The experiments on focusing were carried out by measuring of the diameter of the 5 MeV proton beam passing through the plasma at various time moments respectively to the start of the discharge in the plasma gun

  19. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    Science.gov (United States)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  20. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  1. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  2. Magnetic reconnection through the current sheets as the universal process for plasma dynamics in nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.

    1997-01-01

    Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)

  3. Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma

    International Nuclear Information System (INIS)

    Leleko, Ya.F.; Stepanov, K.N.

    2010-01-01

    A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.

  4. Propagation and reflection of chirped pulses in the nonuniform ionospheric plasma

    International Nuclear Information System (INIS)

    Levitsky, S.M.

    2009-01-01

    By passing of a chirped pulse in a inhomogeneous ionospheric plasma this pulses due to the dispersion futures of the plasma becomes deformed and can be strongly compressed. The chirped pulse can be compressed also being reflected by the ionosphere. This can give some advantage using such pulses in the experiments of ionospheric zoning.

  5. Non-Uniformity of Ion Implantation in Direct-Current Plasma Immersion Ion Implantation

    International Nuclear Information System (INIS)

    Cheng-Sen, Liu; Yu-Jia, Fan; Nan, Zhang; Li, Guan; Yuan, Yao; De-Zhen, Wang

    2010-01-01

    A particle-in-cell simulation is developed to study dc plasma immersion ion implantation. Particular attention is paid to the influence of the voltage applied to the target on the ion path, and the ion flux distribution on the target surface. It is found that the potential near the aperture within the plasma region is not the plasma potential, and is impacted by the voltage applied to the implanted target. A curved equipotential contour expands into the plasma region through the aperture and the extent of the expansion depends on the voltage. Ions accelerated by the electric field in the sheath form a beam shape and a flux distribution on the target surface, which are strongly dependent on the applied voltage. The results of the simulations demonstrate the formation mechanism of the grid-shadow effect, which is in agreement with the result observed experimentally. (physics of gases, plasmas, and electric discharges)

  6. Generalized Case-van Kampen models in a multidimensional to non-uniform plasma with application to gyroresonance heating

    International Nuclear Information System (INIS)

    Tracy, E.R.

    1996-01-01

    The generalization of the Case-van Kampen analysis to a multidimensional non-uniform plasma is presented. Application of this analysis is made to minority-ion gyroresonant heating in an axisymmetric tokamak. In previous work the Case-van Kampen analysis, in conjunction with the Bateman-Kruskal algorithm, was used in a one-dimensional slab model to compute the collective wave spin-off (to the minority-ion Bernstein wave) and the gyroballistic continuum for minority gyroresonant absorption. The generalization to many dimensions and non-trivial geometries requires several important new developments: In tokamak geometry particles can be trapped, an effect that is absent in the slab model. Also, the ray propagation dynamics for both the free gyroballistic waves and the collective minority-ion Bernstein wave is far more complicated than in the slab model. In particular, a resonance zone is identified wherein the gyroballistic waves interact strongly and cannot be treated as free. We use the Weyl calculus to construct a local form of the self-consistent gyroballistic equation within the resonance zone. This reduced equation is simplified via a metaplectic transformation (a generalization of the Fourier transformation). After this simplification, the equation is shown to be of Case-van Kampen type with weak non-uniformities; hence there are no true Case-van Kampen eigenfunctions. Using the Bateman-Kruskal approach, a local Case-van Kampen basis can be constructed and the initial-value problem solved. The self-consistent interactions of the gyroballistic continuum lead to a collective wave, the minority-ion Bernstein wave. The Bernstein wave is extracted by the spectral deformation approach of Crawford and Hislop. The relevance of this work to the theory of collective phenomena in nonlinear oscillator ensembles is briefly discussed. (author)

  7. Particle simulation on the propagation and plasma heating of the lower hybrid wave in the nonuniform system

    International Nuclear Information System (INIS)

    Abe, Hirotada; Kajitani, Hiroyuki; Itatani, Ryohei.

    1977-07-01

    A particle simulation model which treats the wave excitation and propagation in the nonuniform density by the external source is developed and applied for study of the lower hybrid heating in a fusion device. As the linear theory predicts, the cold lower hybrid wave is observed to increase its perpendicular wave number as it propagates to the higher density region and to damp away near the turning point. When the wave amplitude is large or the wave energy is about a half of the initial kinetic energy at a surface of plasma, the following features are observed for the increase of the ion and electron kinetic energies. Ion perpendicular energy distributions are observed to be approximated by the two Maxwell distributions or to have the components of the high energy tail, whose parallel velocities satisfy the resonance condition: νparallel = (ω-IOTAΩ sub(iota))/kappa parallel, where ω and kappa parallel the frequency and the parallel wave number of the external source, IOTA is an integer, and Ω sub(iota) is the ion cyclotron frequency. An strong increase of the parallel kinetic energy of the electron is observed near the plasma surface. These are mainly due to the trapped electrons and the collisional heating. (auth.)

  8. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  9. Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma

    Institute of Scientific and Technical Information of China (English)

    Q. Haque; H. Saleem

    2004-01-01

    @@ It is shown that the large amplitude low-frequency electromagnetic drift waves in electron-positron-ion plasmas might give rise to dipolar vortices. A linear dispersion relation of several coupled electrostatic and electromagnetic low-frequency modes is obtained. The relevance of this work to both laboratory and astrophysical situations is pointed out.

  10. Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion

    Science.gov (United States)

    Matthes, Christopher Stanley Rutter

    A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also

  11. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    Science.gov (United States)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  12. Disintegration of fast magnetoacoustic oscillation spectra in non-uniform current-loaded plasma cylinder

    International Nuclear Information System (INIS)

    Girka, I.A.; Stepanov, K.N.

    1990-01-01

    Dispersion equation for fast plasma cylinder with longitudinal current including a weak azimuthal magnetic field β 0v is obtained and analyzed on the basis of perturbation theory. Simple asymptotic expressions for S w , S n and σ k are derived under different limiting cases (propagation of small-scale waves with high values of radial wave number, wave in the uniform cylinder, surface mode etc.). 10 refs.; 1 fig

  13. Gyrokinetic theory of perpendicular cyclotron resonance in a nonuniformly magnetized plasma

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Dendy, R.O.

    1989-01-01

    The extension of gyrokinetic theory to arbitrary frequencies by Chen and Tsai [Phys. Fluids 26, 141 (1983); Plasma Phys. 25, 349 (1983)] is used to study cyclotron absorption in a straight magnetic field with a perpendicular, linear gradient in strength. The analysis includes the effects of magnetic field variation across the Larmor orbit and is restricted to propagation perpendicular to the field. It yields the following results for propagation into the field gradient. The standard optical depths for the fundamental O-mode and second harmonic X-mode resonances are obtained from the absorption profiles given in this paper, without invoking relativistic mass variation [see also Antonsen and Manheimer, Phys. Fluids 21, 2295 (1978)]. The compressional Alfven wave is shown to undergo perpendicular cyclotron damping at the fundamental minority resonance in a two-ion species plasma and at second harmonic resonance in a single-ion species plasma. Ion Bernstein waves propagating into the second harmonic resonance are no longer unattenuated, but are increasingly damped as they approach the resonance. It is shown how the kinetic power flow affects absorption profiles, yielding information previously obtainable only from full-wave theory. In all cases, the perpendicular cyclotron damping arises from the inclusion of magnetic field variation across the Larmor orbit

  14. Steady-state dynamo and current drive in a nonuniform bounded plasma

    International Nuclear Information System (INIS)

    Mett, R.R.; Taylor, J.B.

    1991-03-01

    Current drive due to helicity injection and dynamo effect are examined in an inhomogeneous bounded plasma. Averaged over a magnetic surface, there is in general no dynamo effect independent of resistivity -- contrary to the results found previously for an unbounded plasma. The dynamo field is calculated explicitly for an incompressible visco-resistive fluid in the plane-slab model. In accord with our general conclusion, outside the Alfven resonant layer it is proportional to the resistivity. Within the resonant layer there is a contribution which is enhanced, relative to its value outside the layer, by a factor (ωa 2 /(η + ν)), where ω is the wave frequency, a the plasma radius, η the magnetic diffusivity, and ν the kinematic viscosity. However, this contribution vanishes when integrated across the layer. The average field in the layer is enhanced by factor (ωa 2 /(η + ν)) 2/3 and is proportional to the shear in the magnetic field and the cube root of the gradient of the Alfven speed. These results are interpreted in terms of helicity balance, and reconciled with the infinite medium calculations. 15 refs

  15. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma

    DEFF Research Database (Denmark)

    Xu, G.S.; Naulin, Volker; Fundamenski, W.

    2010-01-01

    Drift-Alfvén vortex filaments associated with electromagnetic turbulence were recently identified in reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth magnetosheath, magnetospheric cusp and Saturn’s magnetosheath by spacecrafts. The characteristics...... energy, magnetic momentum, and angular momentum. The perpendicular vortex motions and the kinetic shear Alfvén waves are coupled through the parallel current and Ampere’s law, leading to field line bending. On the timescale of interchange motion τ⊥, a thermal expansion force in the direction of curvature......, heat, and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary electromagnetic filamentary structures....

  16. Nonlocal analyses of electrostatic and electromagnetic waves in hot, magnetized, nonuniform, bounded plasmas

    International Nuclear Information System (INIS)

    Sauter, O.

    1992-05-01

    Heating of tokamak plasmas up to temperatures of the order of 10 keV (∼10 8 o K) is one of the main subjects in plasma physics research. Much experimental and theoretical effort has been devoted to the improvement of the heating efficiency and to the understanding of the beam-particle or wave-particle interactions. We have studied the latter subject. In present day experiments, the temperature of the particles is very high. Increasing numbers of experiments use heating scenarii at high harmonic frequencies. Because these cases can no longer be studied using a local model, we have developed a 'nonlocal' model which is not limited by the size of the Larmor radii nor by the harmonic considered. This model is based on the global wave approach and therefore can treat a variety of problems. Nevertheless, we have limited our work to uni-dimensional geometry, Maxwellian equilibrium distribution functions and slowly-varying equilibrium magnetic field. We have also neglected k y in the conductivity tensor, where y is the direction normal to the direction of the inhomogeneity and to the magnetostatic field. Starting from the linearized Vlasov-Maxwell equations, we have derived the equations in the Fourier and the configuration spaces. We have also derived a formulation of the local power absorption allowing us to determine the profile of absorption of the wave by the particles. The equations are solved numerically using the finite element method. We have developed two codes, SEAL and SEMAL, which calculate the wave field in the electrostatic and electromagnetic cases, respectively. These codes have been tested. We have shown that the local model was inadequate and have studied in more detail the effect of temperature and the strong influence of the alpha particle concentration. (author) figs., tabs., 91 refs

  17. Scattering of electromagnetic waves by an non-uniform cylindrical plasma; Diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P E [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Groupe de recherches sur la fusion controlee

    1967-07-01

    The problem of the scattering of plane electromagnetic waves from a non-uniform, cylindrically symmetrical plasma is solved analytically, by a self-consistent field method, for a wave with the electric field parallel to the cylinder axis. Numerical results for the diffracted field are plotted for interesting ranges of the parameters involved: diameter, density on the axis, radial profile of the density, and collision frequencies. The case where the incident field is cylindric (waves surfaces parallel to the cylinder axis) is examined - this permits to connect theoretical calculations and experimental diffraction patterns, and also to explain the diffraction effects observed in a classical microwave interferometry experiment. These results, and the possibility of measuring exactly the diffracted field (showed by experiments with dielectric and metallic rods) lead to a new plasma diagnostic method, based on the diffraction, which has no theoretical limitations and it usable when the classical free-space wave methods are not (plasma diameter lower than 10 wave lengths). The feasibility of this method is tested with a plasma at atmospheric pressure and a 2 mm incident wavelength. The plasma is obtained by the laminar flow of a plasma torch, with a working gas (He or Ar) seeded by potassium (density continuously variable between 10{sup 11} and 10{sup 15} e/cm{sup 3}. Some diffraction patterns by this plasma and for various incident waves, are also given and explained with theoretical calculations. (author) [French] On etudie la diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene par une methode de champ self-consistant, et pour une onde de vecteur electrique parallele a l'axe du cylindre. On a calcule le champ diffracte en faisant varier le diametre du cylindre, la densite sur l'axe, le profil de densite et les frequences de collisions, et on donne ici les principaux resultats. On examine ensuite le cas d'une onde incidente cylindrique

  18. Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Ferreira, J.L.; Nakamura, Y.

    1984-01-01

    The propagation of ion-acoustic solitons in a plasma with negative ions has been observed. For sufficiently large concentration of negative ions, applied rarefactive (negative) voltage pulses break up into solitons, whereas compressive pulses evolve into wave trains, with exactly the opposite behavior as that for a plasma composed only of positive ions. There is a critical value of the negative-ion concentration for which a finite-amplitude pulse propagates without steepening

  19. Low-frequency electrostatic shock excitations in a multi-component dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A., E-mail: mariyaferdousi@gmail.com [Department of Physics, Jahangirnagar University, Savar (Bangladesh)

    2015-10-01

    Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)

  20. Low-frequency electrostatic shock excitations in a multi-component dusty plasma

    International Nuclear Information System (INIS)

    Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A.

    2015-01-01

    Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)

  1. Bayesian model comparison using Gauss approximation on multicomponent mass spectra from CH4 plasma

    International Nuclear Information System (INIS)

    Kang, H.D.; Dose, V.

    2004-01-01

    We performed Bayesian model comparison on mass spectra from CH4 rf process plasmas to detect radicals produced in the plasma. The key ingredient for its implementation is the high-dimensional evidence integral. We apply Gauss approximation to evaluate the evidence. The results were compared with those calculated by the thermodynamic integration method using Markov Chain Monte Carlo technique. In spite of very large difference in the computation time between two methods a very good agreement was obtained. Alternatively, a Monte Carlo integration method based on the approximated Gaussian posterior density is presented. Its applicability to the problem of mass spectrometry is discussed

  2. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  3. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    International Nuclear Information System (INIS)

    Ema, S. A.; Ferdousi, M.; Mamun, A. A.

    2015-01-01

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas

  4. Modulational instability of ion-acoustic soliton in a multicomponent plasma

    International Nuclear Information System (INIS)

    Tsukabayashi, I.; Yagishita, T.; Nakamura, Y.

    1986-01-01

    An experiment has been performed in a multi-dipole double plasma device. The inner diameter is 80 cm and its total length is 150 cm. The chamber is evacuated down to 8x10/sup -7/ Torr. Argon and sulfur hexafluoride are introduced independently into the chamber under continuous pumping. The pressure of Ar is 2 x 10/sup -4/ Torr and the partial pressure of SF/sub 6/ is changed 0 to 3 x 10/sup -8/ Torr. The plasma includes several species of positive and negative ions, SF/sub 6//sup -/. However, since ions of lighter mass dominate the ion-acoustic wave, the plasma is considered to be effectively composed of AR/sup +/, F/sup -/ and electrons. Initial modulated sinusoidal signals, the absolute amplitude 1.5 to 0.1 V, the percentage modulation 0 to 100%, the duration of the train 200μsec, the carrier frequency f/sub o/ = w/2π = 200 to 300 kHz and the modulation frequency Ω/2π=15 to 20 kHz, are applied to the driver plasma. The detected signals increase the percentage modulation with the distance from the separation grid, and the growth rate is proportional to the amplitude of applied signal. The measurement of the power spectra show that the frequency of the carrier wave shifts to the lower side-bands (f/sub o/ -Ω/2π and f/sub o/ -2Ω/2π) as development of the amplitude modulation instability. These results can be explained by the analysis of the N-S equation

  5. A conservative multicomponent diffusion algorithm for ambipolar plasma flows in local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Peerenboom, Kim; Van Boxtel, Jochem; Janssen, Jesper; Van Dijk, Jan

    2014-01-01

    The usage of the local thermodynamic equilibrium (LTE) approximation can be a very powerful assumption for simulations of plasmas in or close to equilibrium. In general, the elemental composition in LTE is not constant in space and effects of mixing and demixing have to be taken into account using the Stefan–Maxwell diffusion description. In this paper, we will introduce a method to discretize the resulting coupled set of elemental continuity equations. The coupling between the equations is taken into account by the introduction of the concept of a Péclet matrix. It will be shown analytically and numerically that the mass and charge conservation constraints can be fulfilled exactly. Furthermore, a case study is presented to demonstrate the applicability of the method to a simulation of a mercury-free metal-halide lamp. The source code for the simulations presented in this paper is provided as supplementary material (stacks.iop.org/JPhysD/47/425202/mmedia). (paper)

  6. Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ferreira, J.L.; Ludwig, G.O.

    1987-09-01

    Ion-acoustic solitons in a three-component plasma which consists of electrons, positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg- de Vries equation which takes the negative ions and the ion temperature into consideration. Head-ion and over-taking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions. (author) [pt

  7. Effect of liner non-uniformity on plasma instabilities in an inverse Z-pinch magnetized target fusion system: liner-on-plasma simulations and comparison with linear stability analysis

    International Nuclear Information System (INIS)

    Subhash, P V; Madhavan, S; Chaturvedi, S

    2008-01-01

    Two-dimensional (2D) magneto-hydrodynamic (MHD) liner-on-plasma computations have been performed to study the growth of instabilities in a magnetized target fusion system involving the cylindrical compression of an inverse Z-pinch target plasma by a metallic liner. The growth of modes in the plasma can be divided into two phases. During the first phase, the plasma continues to be Kadomtsev stable. The dominant mode in the liner instability is imposed upon the plasma in the form of a growing perturbation. This mode further transfers part of its energy to its harmonics. During the second phase, however, non-uniform implosion of the liner leads to axial variations in plasma quantities near the liner-plasma interface, such that certain regions of the plasma locally violate the Kadomtsev criteria. Further growth ofthe plasma modes is then due to plasma instability. The above numerical study has been complemented with a linear stability analysis for the plasma, the boundary conditions for this analysis being obtained from the liner-on-plasma simulation. The stability of axisymmetric modes in the first phase is found to satisfy the Kadomtsev condition Q 0 1 modes, using equilibrium profiles from the 2D MHD study, shows that their growth rates can exceed those for m=0 by as much as an order of magnitude

  8. Electrostatic instabilities and nonlinear structures of low-frequency waves in nonuniform electron-positron-ion plasmas with shear flow

    International Nuclear Information System (INIS)

    Mirza, Arshad M.; Hasan, Asma; Azeem, M.; Saleem, H.

    2003-01-01

    It is found that the low-frequency ion acoustic and electrostatic drift waves can become unstable in uniform electron-ion and electron-positron-ion plasmas due to the ion shear flow. In a collisional plasma a drift-dissipative instability can also take place. In the presence of collisions the temporal behavior of nonlinear drift-dissipative mode can be represented in the form of well-known Lorenz and Stenflo type equations that admit chaotic trajectories. On the other hand, a quasi-stationary solution of the mode coupling equations can be represented in the form of monopolar vortex. The results of the present investigation can be helpful in understanding electrostatic turbulence and wave phenomena in laboratory and astrophysical plasmas

  9. Effect of the ponderomotive force in interaction of an amplitude modulated rf-field with a nonuniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hoegger, B A; Schneider, H; Vaucher, B G [Fribourg Univ. (Switzerland). Inst. de Physique

    1982-06-30

    Magnetoacoustic oscillations are excited in an inhomogeneous magnetized plasma cylinder by amplitude modulation of a high frequency field (2.45 GHz, 3 kW PEP). The antenna is a long helical slow-wave structure. The axial field-oscillating with the modulation frequency (2/15 MHz) is monitored by means of electrostatically shielded magnetic probes. Resonance behaviour is observed around the eigenfrequency of the plasma cylinder. Power absorption is measured with diamagnetic loop technique. The plasma parameters are: mean electron density 3x10/sup 12/ cm/sup -3/, electron temperature 3.5 eV, magnetic field 1.6 kG, filling gas 7x10/sup -4/ Torr argon.

  10. 2D collisional-radiative model for non-uniform argon plasmas: with or without ‘escape factor’

    International Nuclear Information System (INIS)

    Zhu, Xi-Ming; Tsankov, Tsanko Vaskov; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2015-01-01

    Collisional-radiative models for excited rare-gas atoms in low-temperature plasmas are a widely investigated topic. When these plasmas are optically thick, an ‘escape factor’ is introduced into the models to account for the reabsorption of photons (so-called radiation trapping process). This factor is usually obtained assuming a uniform density profile of the excited species; however, such an assumption is often not satisfied in a bounded plasma. This article reports for the first time a self-consistent collisional-radiative model without using an ad hoc ‘escape factor’ for excited Ar atoms in the 2p states (in Paschen’s notation). Rather, the rate balance equations—i.e. the radiation transfer equations—of the 2p states are numerically solved to yield the actual density profiles. The predictions of this self-consistent model and a model based on the escape factor concept are compared with spatially-resolved emission measurements in a low-pressure inductive Ar plasma. The self-consistent model agrees well with the experiment but the ‘escape factor’ model shows considerable deviations. By the comparative analysis the limitations and shortcomings of the escape factor concept as adopted in a significant number of works are revealed. (paper)

  11. Gyrokinetic theory of fast-wave transmission with arbitrary parallel wave number in a non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Dendy, R.O.

    1990-01-01

    The gyrokinetic theory of ion cyclotron resonance is extended to include propagation at arbitrary angles to a straight equilibrium magnetic field with a linear perpendicular gradient in strength. The case of the compressional Alfven wave propagating in a D( 3 He) plasma is analyzed in detail, for arbitrary concentrations of the two species. A self-consistent local dispersion relation is obtained using a single mode description; this approach enables three-dimensional effects to be included and permits efficient calculation of the transmission coefficient. The dependence of this quantity on the species density ratio, minority temperature, plasma density, magnetic field and equilibrium scale length is obtained. A self-consistent treatment of the variation of the field polarization across the resonant region is included. Families of transmission curves are given as a function of the normalized parallel wave number for parameters relevant to Joint European Torus. Perpendicular absorption by the minority ions is also discussed, and shown to depend on a single parameter, the ratio of the ion thermal velocity to the Alfven speed. (author)

  12. Solitons, Lie Group Analysis and Conservation Laws of a (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation in a Multicomponent Magnetised Plasma

    Science.gov (United States)

    Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang

    2017-11-01

    In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.

  13. Dust grain dynamics due to nonuniform and nonstationary high-frequency radiations in cold magnetoplasmas

    Directory of Open Access Journals (Sweden)

    A. K. Nekrasov

    2006-03-01

    Full Text Available A general nonlinear theory for low-frequency electromagnetic field generation due to high-frequency nonuniform and nonstationary electromagnetic radiations in cold, uniform, multicomponent, dusty magnetoplasmas is developed. This theory permits us to consider the nonlinear action of all waves that can exist in such plasmas. The equations are derived for the dust grain velocities in the low-frequency nonlinear electric fields arising due to the presence of electromagnetic cyclotron waves travelling along the background magnetic field. The dust grains are considered to be magnetized as well as unmagnetized. Different regimes for the dust particle dynamics, depending on the spatio-temporal change of the wave amplitudes and plasma parameters, are discussed. It is shown that induced nonlinear electric fields can have both an electrostatic and electromagnetic nature. Conditions for maximum dust acceleration are found. The results obtained may be useful for understanding the possible mechanisms of dust grain dynamics in astrophysical, cosmic and laboratory plasmas under the action of nonuniform and nonstationary electromagnetic waves.

  14. Effect of dust size distribution on ion-acoustic solitons in dusty plasmas with different dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dong-Ning; Yang, Yang; Yan, Qiang [Northwest Normal University, College of Physics and Electronic Engineering (China); Wang, Xiao-Yun [Lanzhou Jiao Tong University, Department of Mathematics and Physics (China); Duan, Wen-Shan, E-mail: duanws@126.com [Northwest Normal University, College of Physics and Electronic Engineering (China)

    2017-02-15

    Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.

  15. Multicomponent kinetic spectrophotometric determination of pefloxacin and norfloxacin in pharmaceutical preparations and human plasma samples with the aid of chemometrics

    Science.gov (United States)

    Ni, Yongnian; Wang, Yong; Kokot, Serge

    2008-10-01

    A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.

  16. Multicomponent Syntheses of Macrocycles

    Science.gov (United States)

    Masson, Géraldine; Neuville, Luc; Bughin, Carine; Fayol, Aude; Zhu, Jieping

    How to access efficiently the macrocyclic structure remained to be a challenging synthetic topic. Although many elegant approaches/reactions have been developed, construction of diverse collection of macrocycles is still elusive. This chapter summarized the recently emerged research area dealing with multicomponent synthesis of macrocycles, with particular emphasis on the approach named "multiple multicomponent reaction using two bifunctional building blocks".

  17. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    Science.gov (United States)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected

  18. Multicomponent diffusion in two-temperature magnetohydrodynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1996-01-01

    A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society

  19. Linear q-nonuniform difference equations

    International Nuclear Information System (INIS)

    Bangerezako, Gaspard

    2010-01-01

    We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)

  20. Nonuniform sampling by quantiles

    Science.gov (United States)

    Craft, D. Levi; Sonstrom, Reilly E.; Rovnyak, Virginia G.; Rovnyak, David

    2018-03-01

    A flexible strategy for choosing samples nonuniformly from a Nyquist grid using the concept of statistical quantiles is presented for broad classes of NMR experimentation. Quantile-directed scheduling is intuitive and flexible for any weighting function, promotes reproducibility and seed independence, and is generalizable to multiple dimensions. In brief, weighting functions are divided into regions of equal probability, which define the samples to be acquired. Quantile scheduling therefore achieves close adherence to a probability distribution function, thereby minimizing gaps for any given degree of subsampling of the Nyquist grid. A characteristic of quantile scheduling is that one-dimensional, weighted NUS schedules are deterministic, however higher dimensional schedules are similar within a user-specified jittering parameter. To develop unweighted sampling, we investigated the minimum jitter needed to disrupt subharmonic tracts, and show that this criterion can be met in many cases by jittering within 25-50% of the subharmonic gap. For nD-NUS, three supplemental components to choosing samples by quantiles are proposed in this work: (i) forcing the corner samples to ensure sampling to specified maximum values in indirect evolution times, (ii) providing an option to triangular backfill sampling schedules to promote dense/uniform tracts at the beginning of signal evolution periods, and (iii) providing an option to force the edges of nD-NUS schedules to be identical to the 1D quantiles. Quantile-directed scheduling meets the diverse needs of current NUS experimentation, but can also be used for future NUS implementations such as off-grid NUS and more. A computer program implementing these principles (a.k.a. QSched) in 1D- and 2D-NUS is available under the general public license.

  1. Producing of multicomponent and composite surface layers

    International Nuclear Information System (INIS)

    Wierzchon, T.; Bielinski, P.; Michalski, A.

    1995-01-01

    The paper presents a new method of producing multicomponent and composite layers on steel substrate. The combination of nickel plating with glow-discharge bordering or impulse-plasma deposition method gives an opportunity to obtain good properties of surface layers. The results of examinations of carbon 45 (0.45%C) steel, nickel plated and then borided under glow discharge conditions or covered with TiN layers are presented. The corrosion and friction wear resistance of such layers are markedly higher than for layer produced on non nickel plated substrates. (author). 19 refs, 5 figs

  2. Simultaneous determination of multicomponent of acetylkitasamycin and kitasamycin by LC-MS/MS in swine plasma and its application in a pharmacokinetic study.

    Science.gov (United States)

    Pan, Yuanhu; Zhang, Heying; Xi, Chenglong; Huang, Lingli; Xie, Shuyu; Chen, Dongmei; Tao, Yanfei; Liu, Zhenli; Yuan, Zonghui

    2018-05-02

    A simple and reliable LC-MS/MS method was established for simultaneous determination of twelve components from acetylkitasamycin and kitasamycin in swine plasma. The analytes were separated by a Shim-pack VP-ODS column with a 25 min gradient elution using 5 mmol/L ammonium acetate and acetonitrile as the mobile phase at a flow rate of 0.2 mL/min. Identification and quantification were accomplished by electrospray ionization (ESI) in positive mode using multiple reaction monitoring (MRM). The LOQ S of acetylkitasamycin A 1 A 3 , A 13 and kitasamycin A 3 , A 13 were 3 μg/L, and that of the other 8 components were 5 μg/L. The mean recoveries of kitasamycin and acetylkitasamycin ranged from 85.3 to 103.5 %. The developed method was successfully applied to a pharmacokinetic study in swine after intravenous (IV) and oral (PO) administration of acetylkitasamycin. The result showed that the plasma concentrations of acetylkitsamycin components were much higher than that of kitasamycin in swine after IV and PO, in which acetylkitsamycin A 4 A 5 was the highest component at each time point. This article is protected by copyright. All rights reserved.

  3. Comparative microstructural and corrosion development of VCrNiCoFeCu equiatomic multicomponent alloy produced by induction melting and spark plasma sintering

    Science.gov (United States)

    Fazakas, É.; Heczel, A.; Molnár, D.; Varga, B.; Zadorozhnyy, V.; Vida, Á.

    2018-03-01

    The present study focuses on the corrosion behavior of a single-phase FCC high entropy alloy (VCrNiCoFeCu) casted by two different methods: induction melting and spark plasma sintering. The corrosion resistance has been evaluated using immersion tests in 3.5% NaCl solution, the potentiodynamic polarization measurements and the results are compared how is dependent the corrosion rate as a function of the production methods. Our results show that induction melted sample is stable in salty environment. On the other hand, based on the changes of polarization curves, there must be an evolution of oxide films on the SPSed sample until reaching the stable oxide layer.

  4. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  5. Application of approximations for joint cumulative k-distributions for mixtures to FSK radiation heat transfer in multi-component high temperature non-LTE plasmas

    International Nuclear Information System (INIS)

    Maurente, André; França, Francis H.R.; Miki, Kenji; Howell, John R.

    2012-01-01

    Approximations for joint cumulative k-distribution for mixtures are efficient for full spectrum k-distribution (FSK) computations. These approximations provide reduction of the database that is necessary to perform FSK computation when compared to the direct approach, which uses cumulative k-distributions computed from the spectrum of the mixture, and also less computational expensive when compared to techniques in which RTE's are required to be solved for each component of the mixture. The aim of the present paper is to extend the approximations for joint cumulative k-distributions for non-LTE media. For doing that, a FSK to non-LTE media formulation well-suited to be applied along with approximations for joint cumulative k-distributions is presented. The application of the proposed methodology is demonstrated by solving the radiation heat transfer in non-LTE high temperature plasmas composed of N, O, N 2 , NO, N 2 + and mixtures of these species. The two more efficient approximations, that is, the superposition and multiplication are employed and analyzed.

  6. Potential coherent structures in nonuniform streaming dusty magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, Jovo [Inst. of Physics, Belgrade (Yugoslavia); Shukla, Padma Kant [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik IV, Bochum (Germany)

    2001-07-01

    In this paper we study linear and nonlinear behaviour of modified convective cells and vortices in nonuniform dusty magnetoplasmas with perpendicular and parallel to the magnetic field plasma flows, and in basically two different physical systems, with stationary (corresponding to the case of ShuklaVarma mode) and nonstationary (i.e. taking part in perturbations) dust particles. For the case of stationary dust, by choosing some specific profiles for the sheared plasma flow and the dust density, we analyze the eigenvalue equation in order to deduce the growth rate. A threshold is also obtained for the wavenumber separating spatially damped and convective modes (growing in space) due to its interaction with the sheared plasma flow. In the nonlinear regime, for both stationary and nonstationary dust particles, and in the presence of various plasma flows perpendicular and parallel to the magnetic field lines, a variety of possible nonlinear solutions, driven by the nonuniform shear flow and dust density is presented, i.e., single and double vortex chains accompanied with zonal flows, and tripolar and global vortices. (author)

  7. Experimental and theoretical studies of the effects of nonuniformities in equilibrium MHD generators

    International Nuclear Information System (INIS)

    Rosenbaum, M.; Shamma, S.E.; Louis, J.F.

    1980-01-01

    An experimental study of the effects of thermal and velocity nonuniformities is performed in an equilibrium plasma for a range of Hall parameters. An electrodeless MHD disk generator with radial flow is chosen as the ideal geometry for these experiments. By introducing equally spaced cold blades in the flow, it is possible to create well defined two-dimensional wake nonuniformities with strong variations of the plasma properties in the direction normal to the magnetic field and the flow. This type of nonuniformity is predicted to provide the strongest reduction of Hall coefficient and effective conductivity for high values of Hall parameter. This degradation is controlled by both the level of nonuniformities and the value of the ideal Hall parameter. The former is dependent upon the number of blades (root mean square deviation of the conductivity), and the latter is dependent upon the values of the magnetic field intensities. The results provide basic quantitative information about the effects of conductivity and velocity nonuniformities on the performance of equilibrium MHD generators over a wide range of Hall coefficients, between 2 and 7. Reduction formulae are established between the effective and ideal Hall parameters for different levels of nonuniformities intensities. Theoretical predictions are derived from a detailed two-dimensional electrodynamic analysis and a simplified engineering model based on a generalization of Rosa's layer model. These experiments validate the analytical studies and support the use of the theoretical layer models in describing the effect of boundary layers on the performance of linear generators

  8. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... parameters, is used for the segregated and for the bulk phases. With this approach, few parameters are needed to correlate pure component adsorption isotherms. These parameters may be used to predict adsorption equilibria of multicomponent mixtures without additional adjustment. A connection between...... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  9. Electron plasma waves and plasma resonances

    International Nuclear Information System (INIS)

    Franklin, R N; Braithwaite, N St J

    2009-01-01

    In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.

  10. Nonuniform quantum turbulence in superfluids

    Science.gov (United States)

    Nemirovskii, Sergey K.

    2018-04-01

    The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.

  11. Haldane model under nonuniform strain

    Science.gov (United States)

    Ho, Yen-Hung; Castro, Eduardo V.; Cazalilla, Miguel A.

    2017-10-01

    We study the Haldane model under strain using a tight-binding approach, and compare the obtained results with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in quantum anomalous Hall systems.

  12. Low-frequency electrostatic dust-modes in a non-uniform

    Indian Academy of Sciences (India)

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift ...

  13. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... and high degree of predictability of the theory developed....... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  14. Electrostatic ion-cyclotron waves in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Cartier, S.L.; D'Angelo, N.; Merlino, R.L.

    1985-01-01

    The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f> or approx. =f/sub c/i, where f/sub c/i is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism

  15. Multicomponent diffusivities from the free volume theory

    NARCIS (Netherlands)

    Wesselingh, J.A; Bollen, A.M

    In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure

  16. Microwave-Assisted Multicomponent Synthesis of Heterocycles

    NARCIS (Netherlands)

    Kruithof, A.; Ruijter, E.; Orru, R.V.A.

    2011-01-01

    Multicomponent reactions are valuable tools for the generation of diverse heterocycles. As in many fields or organic chemistry, microwave irradiation is rapidly replacing conventional heating methods in multicomponent chemistry. In this review, we present an overview of recent applications of the

  17. BUFFER CAPACITY IN HETEROGENEOUS MULTICOMPONENT SYSTEMS. REVIEW

    Directory of Open Access Journals (Sweden)

    Oxana Spinu

    2015-12-01

    Full Text Available The quantitative basis of the theory of buffer properties for two-phase acid-base buffer systems and for multicomponent heterogeneous systems has been derived. The analytical equations with respect to all components for diverse multicomponent systems were deduced. It has been established, that the buffer capacities of components are mutually proportional.

  18. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  19. Generation of zonal magnetic fields by drift waves in a current carrying nonuniform magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    It is shown that zonal magnetic fields (ZMFs) can be nonlinearly excited by incoherent drift waves (DWs) in a current carrying nonuniform magnetoplasma. The dynamics of incoherent DWs in the presence of ZMFs is governed by a wave-kinetic equation. The governing equation for ZMFs in the presence of nonlinear advection force of the DWs is obtained from the parallel component of the electron momentum equation and the Faraday law. Standard techniques are used to derive a nonlinear dispersion relation, which depicts instability via which ZMFs are excited in plasmas. ZMFs may inhibit the turbulent cross-field particle and energy transport in a nonuniform magnetoplasma.

  20. Properties of multilayer nonuniform holographic structures

    International Nuclear Information System (INIS)

    Pen, E F; Rodionov, Mikhail Yu

    2010-01-01

    Experimental results and analysis of properties of multilayer nonuniform holographic structures formed in photopolymer materials are presented. The theoretical hypotheses is proved that the characteristics of angular selectivity for the considered structures have a set of local maxima, whose number and width are determined by the thicknesses of intermediate layers and deep holograms and that the envelope of the maxima coincides with the selectivity contour of a single holographic array. It is also experimentally shown that hologram nonuniformities substantially distort shapes of selectivity characteristics: they become asymmetric, the local maxima differ in size and the depths of local minima reduce. The modelling results are made similar to experimental data by appropriately choosing the nonuniformity parameters. (imaging and image processing. holography)

  1. Growth kinetics in multicomponent fluids

    International Nuclear Information System (INIS)

    Chen, S.; Lookman, T.

    1995-01-01

    The hydrodynamic effects on the late-stage kinetics in spinodal decomposition of multicomponent fluids are examined using a lattice Boltzmann scheme with stochastic fluctuations in the fluid and at the interface. In two dimensions, the three- and four-component immiscible fluid mixture (with a 1024 2 lattice) behaves like an off-critical binary fluid with an estimated domain growth of t 0.4 +/= 0.03 rather than t 1/3 as previously estimated, showing the significant influence of hydrodynamics. In three dimensions (with a 256 3 lattice), we estimate the growth as t 0.96 +/= 0.05 for both critical and off-critical quenches, in agreement with phenomenological theory

  2. Nonuniformities in organic liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Wenzel, W.A.

    1989-06-01

    Hermeticity and uniformity in SSC calorimeter designs are compromised by structure and modularity. Some of the consequences of the cryogenic needs of liquid argon calorimetry are relatively well known. If the active medium is an organic liquid (TMP, TMS, etc.), a large number of independent liquid volumes is needed for safety and for rapid liquid exchange to eliminate local contamination. Modular construction ordinarily simplifies fabrication, assembly, handling and preliminary testing at the price of additional walls, other dead regions and many nonuniformities. Here we examine ways of minimizing the impact of some generic nonuniformities on the quality of calorimeter performance. 6 refs., 7 figs

  3. Turbulence of high-beta plasma

    International Nuclear Information System (INIS)

    Khvesyuk, V.I.; Chirkov, A.Y.

    1999-01-01

    Principals of numerical modelling of turbulence in high-beta plasma (β > 0.1) are discussed. Creation of transport model for axial symmetric nonuniform confining magnetic field is considered. Numerical model of plasma turbulence in FRC is presented. The physical and mathematical models are formulated from nonuniform axial symmetric high-beta plasma. It is shown that influence of waves arise under this plasma conditions lead to chaotic motion of charged particles across magnetic field. (author)

  4. Non-Uniform Cathode Emission Studies of a MIG Gun

    Science.gov (United States)

    Marchewka, C. D.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.

    2004-11-01

    We present the initial results of the modeling of the effect of emission non-uniformity in 96 kV, 40 A Magnetron Injection Gun (MIG) of a 1.5 MW 110 GHz gyrotron using a 3D gun simulation code. The azimuthal emission nonuniformity can lead to increased mode competition and an overall decreased efficiency of the device [1]. The electron beam is modeled from the cathode to a downstream position where the velocity spread saturates using the AMAZE 3D suite of codes. After bench marking the results of the 3D code with 2D codes such as TRAK2D and EGUN, the emitter was modified to simulate asymmetric emission from the cathode to gain an understanding into the effects of inhomogeneous beam current density on the velocity spread and pitch factor of the electron beam. [1] G. S. Nusinovich, A.N. Vlasov, M. Botton, T. M. Antonsen, Jr., S. Cauffman, K. Felch, ``Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation,'' Phys. Plasmas, vol. 8, no. 7, pp. 3473-3479, 2001

  5. The multi-component WKI hierarchy

    International Nuclear Information System (INIS)

    Yao Yuqin; Zhang Yufeng

    2005-01-01

    Firstly a new loop algebra G∼ M with 3M dimensions is constructed, which is devoted to establishing a new isospectral problem. Then the multi-component WKI hierarchy of soliton equations is obtained

  6. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics.

  7. Capacitated Vehicle Routing with Nonuniform Speeds

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath

    2016-01-01

    is the distance traveled divided by its speed.Our algorithm relies on a new approximate minimum spanning tree construction called Level-Prim, which is related to but different from Light Approximate Shortest-path Trees. We also extend the widely used tour-splitting technique to nonuniform speeds, using ideas from...

  8. Casimir energy of a nonuniform string

    Science.gov (United States)

    Hadasz, L.; Lambiase, G.; Nesterenko, V. V.

    2000-07-01

    The Casimir energy of a nonuniform string built up from two pieces with different speeds of sound is calculated. A standard procedure of subtracting the energy of an infinite uniform string is applied, the subtraction being interpreted as the renormalization of the string tension. It is shown that in the case of a homogeneous string this method is completely equivalent to zeta renormalization.

  9. Stone Stability in Non-uniform Flow

    NARCIS (Netherlands)

    Hoan, N.T.; Stive, M.J.F.; Booij, R.; Hofland, B.; Verhagen, H.J.

    2011-01-01

    This paper presents the results of an experimental study on stone stability under nonuniform turbulent flow, in particular expanding flow. Detailed measurements of both flow and turbulence and the bed stability are described. Than various manners of quantifying the hydraulic loads exerted on the

  10. Stone Stability under Stationary Nonuniform Flows

    NARCIS (Netherlands)

    Steenstra, Remco; Hofland, B.; Paarlberg, Andries; Smale, Alfons; Huthoff, Fredrik; Uijttewaal, W.S.J.

    2016-01-01

    A stability parameter for rock in bed protections under nonuniform stationary flow is derived. The influence of the mean flow velocity, turbulence, and mean acceleration of the flow are included explicitly in the parameter. The relatively new notion of explicitly incorporating the mean acceleration

  11. Radar Doppler Processing with Nonuniform Sampling.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.

  12. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  13. A multi-component matrix loop algebra and a unified expression of the multi-component AKNS hierarchy and the multi-component BPT hierarchy

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2005-01-01

    A set of multi-component matrix Lie algebra is constructed, which is devote to obtaining a new loop algebra A-bar M-1 . It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville integrable multi-component hierarchy of soliton equations is generated, which possesses the bi-Hamiltonian structures. As its reduction cases, the multi-component AKNS hierarchy and the formalism of the multi-component BPT hierarchy are given, respectively

  14. Instruction sequence based non-uniform complexity classes

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2013-01-01

    We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform

  15. Diclofenac Sodium Loaded Multicomponent Implant

    Science.gov (United States)

    Nikkola, Lila; Viitanen, Petrus; Ashammakhi, Nureddin

    2008-02-01

    Earlier we have reported on developing DS releasing bioabsorbable rods for inhibition of osteolysis [l]. Due to their unsatisfactory drug release profiles we assessed the use of sintering technique of enhancement of drug release in the current study. Melt extruded PLGA 80/20 rods were compounded 8 wt-% DS. Some rods were self reinforced (SR) and some of them were sterilized to get three different components with different drug release profiles. Different rods were sintered together with heat and pressure. Three different specimen groups with different construction were studied. Thermal properties were analyzed using differential scanning calorimetry (DSC). Changes of IV were performed with capillary analysis and drug release measurements with UV-Vis spectrophotometer. Mechanical strength were measured two weeks, when disintegration occurred. Release rate consisted of 1) sharp jump start peak, 2) second smoother peak, and 3) third smooth peak. Released DS concentrations reached local therapeutic levels and maintained at that stage for 24-36 days. All DS was released during 50-70 days. The drug release from multicomponent implant was more stable and commenced earlier than from initial rods. Such properties were favored ones. Initial shear strength was 82 MPa and it decreased to 15 MPa. The mechanical bonding was sufficient although the components disintegrated relatively fast. By sintering different PLGA/DS components with different release rates it is possible to construct a truly controlled release implant for bone fixation with anti-inflammatory properties.

  16. Inverse design of multicomponent assemblies

    Science.gov (United States)

    Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-03-01

    Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology—relative entropy optimization—to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.

  17. Theory of multicomponent disordered magnets

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.; Margolych, I.F.

    1988-01-01

    The method of functional integration is used to investigate a topologically disordered multicomponent system of magnetic atoms with Heisenberg exchange interaction. The partition function for a fixed random configuration of the atoms is represented as a functional integral over fluctuations of the magnetization. The first few coefficient functions are calculated in the functional series that represents the free energy functional. The magnetic part of the free energy for the liquid and amorphous states is obtained in the random phase approximation. The structure factor of the liquid magnet is calculated. For a two-component system, the nature of its variation is investigated, and so too is the shift of the point of thermodynamic instability of the liquid under the influence of a magnetic field. The Curie temperature of an amorphous two-species ferromagnet is found with allowance for the magnetic fluctuations and the topological disorder. For a model system with disorder of liquid type modeled by the structure factor of hard spheres an explicit analytic expression is calculated for the concentration dependence of the temperature of ferromagnetic ordering

  18. Vortices in nonuniform upper-hybrid field

    International Nuclear Information System (INIS)

    Davydova, T.A.; Vranjes, J.

    1992-01-01

    The equations describing the interaction of an upper-hybrid pump wave with small low-frequency density perturbations are discussed under assumption that the pump is spatially nonuniform. The conditions for the modulational instability are investigated. Instead of a dispersion relation, describing the growth of perturbations in the case of an uniform pump, in our case of nonuniform pump a differential equation is obtained and from its eigenvalues are found the instability criteria. Taking into account the slow-frequency self-interaction terms some localized solutions similar to dipole vortices are found, but described by analytic functions in all space. It is shown that their characteristic size and speed are determined by the pump intensity and its spatial structure. (au)

  19. Non-uniform tube representation of proteins

    DEFF Research Database (Denmark)

    Hansen, Mikael Sonne

    Treating the full protein structure is often neither computationally nor physically possible. Instead one is forced to consider various reduced models capturing the properties of interest. Previous work have used tubular neighborhoods of the C-alpha backbone. However, assigning a unique radius...... might not correctly capture volume exclusion - of crucial importance when trying to understand a proteins $3$d-structure. We propose a new reduced model treating the protein as a non-uniform tube with a radius reflecting the positions of atoms. The tube representation is well suited considering X......-ray crystallographic resolution ~ 3Å while a varying radius accounts for the different sizes of side chains. Such a non-uniform tube better capture the protein geometry and has numerous applications in structural/computational biology from the classification of protein structures to sequence-structure prediction....

  20. Allowance for influence of gravity field nonuniformity

    Science.gov (United States)

    Tsysar, A. P.

    1987-03-01

    The constants of a quartz-metal pendulum used in higher-order gravimetric networks have been determined and a formula has been derived for the total correction for gravity field nonuniformity measurements made with the pendulum. Nomograms were constructed on the basis of these formulas and are used in introducing corrections into pendulum measurements. A table was prepared giving the components of the correction for some values of the derivatives of gravity potential from surrounding masses. Errors can be caused by building walls, the pedestal on which the instrument sits and other factors, and these must be taken into account since they increase the normal gravity gradient. After introducing these correction components for the nonuniform gravity field, the gravity field at the measurement point is related to the instrument point coinciding with the middle of the pendulum knife blade.

  1. Surface magnetic canting in a nonuniform film

    International Nuclear Information System (INIS)

    Pini, M.G.; Rettori, A.; Pappas, D.P.; Anisimov, A.V.; Popov, A.P.

    2004-01-01

    The zero temperature equilibrium configuration of a nonuniform system made of a ferromagnetic (FM) monolayer on top of a semi-infinite FM film is calculated using a nonlinear mapping formulation of mean-field theory, where the surface is taken into account via an appropriate boundary condition. The analytical criterion for the existence of surface magnetic canting, previously obtained by Popov and Pappas, is also recovered

  2. Statistical evaluation of unobserved nonuniform corrosion in A216 steel

    International Nuclear Information System (INIS)

    Pulsipher, B.A.

    1988-07-01

    Tests designed to promote nonuniform corrosion have been conducted at PNL on A216 steel. In all of the tests performed to date, there have been no manifestations of significant nonuniform corrosion. Although this may suggest that nonuniform corrosion in A216 steel may not be a significant problem in the nuclear waste repository, a question arises as to whether enough tests have been conducted for a sufficient length of time to rule out nonuniform corrosion of A216 steel. In this report, a method for determining the required number of tests is examined for two of the mechanisms of nonuniform corrosion: pitting and crevice corrosion

  3. Subrandom methods for multidimensional nonuniform sampling.

    Science.gov (United States)

    Worley, Bradley

    2016-08-01

    Methods of nonuniform sampling that utilize pseudorandom number sequences to select points from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the beneficial incoherence introduced by pseudorandom sampling. However, these methods require the specification of a non-arbitrary seed number in order to initialize a pseudorandom number generator. Because the performance of pseudorandom sampling schedules can substantially vary based on seed number, this can complicate the task of routine data collection. Approaches such as jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of nonuniform sampling schedules, but still require the specification of a seed number. This work formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-independent sampling, and compares the performance of three subrandom methods to their pseudorandom counterparts using commonly applied schedule performance metrics. Reconstruction results using experimental datasets are also provided to validate claims made using these performance metrics. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Multicomponent liquid ion exchange with chabazite zeolites

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent

  5. Drift waves in a nonuniform plasma. Research report

    International Nuclear Information System (INIS)

    Sanuki, H.; Schmidt, G.

    1975-02-01

    An eigenvalue equation describing the propagation of collisionless electrostatic drift waves in a magnetoplasma, with an arbitrary one dimensional density profile is derived. It is shown that in general several different waveforms exist each with its respective dispersion relation. A special density profile was analyzed in detail. (U.S.)

  6. Numerical modeling of a vaporizing multicomponent droplet

    Science.gov (United States)

    Megaridis, C. M.; Sirignano, W. A.

    The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.

  7. Benchmarks for multicomponent diffusion and electrochemical migration

    DEFF Research Database (Denmark)

    Rasouli, Pejman; Steefel, Carl I.; Mayer, K. Ulrich

    2015-01-01

    In multicomponent electrolyte solutions, the tendency of ions to diffuse at different rates results in a charge imbalance that is counteracted by the electrostatic coupling between charged species leading to a process called “electrochemical migration” or “electromigration.” Although not commonly...... not been published to date. This contribution provides a set of three benchmark problems that demonstrate the effect of electric coupling during multicomponent diffusion and electrochemical migration and at the same time facilitate the intercomparison of solutions from existing reactive transport codes...

  8. Multiphase, multicomponent phase behavior prediction

    Science.gov (United States)

    Dadmohammadi, Younas

    Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using

  9. Rogue waves in the multicomponent Mel'nikov system and ...

    Indian Academy of Sciences (India)

    By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger–Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the ...

  10. Strategies for Innovation in Multicomponent Reaction Design

    OpenAIRE

    Ganem, Bruce

    2009-01-01

    By generating structural complexity in a single step from three or more reactants, multicomponent reactions (MCRs) make it possible to synthesize target compounds with greater efficiency and atom economy. The history of such reactions can be traced to the mid-nineteenth century when Strecker first produced α-aminonitriles from the condensation of aldehydes with ammonia and hydrogen cyanide.

  11. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    optical communication and in artificial metamaterials. ... multicomponent generalization of Manakov system have been obtained by Kanna et al .... The main objective of the present paper is to give a clear picture of various energy ... occur as a consequence of energy exchange between the two colliding solitons as well as.

  12. High-order nonuniformly correlated beams

    Science.gov (United States)

    Wu, Dan; Wang, Fei; Cai, Yangjian

    2018-02-01

    We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.

  13. Downsampling Non-Uniformly Sampled Data

    Directory of Open Access Journals (Sweden)

    Fredrik Gustafsson

    2007-10-01

    Full Text Available Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate non-uniformly sampled signals, which are all based on interpolation. The interpolation is done in different domains, and the inter-sample behavior does not need to be known. The first one interpolates the signal to a uniformly sampling, after which standard decimation can be applied. The second one interpolates a continuous-time convolution integral, that implements the antialias filter, after which every Dth sample can be picked out. The third frequency domain approach computes an approximate Fourier transform, after which truncation and IFFT give the desired result. Simulations indicate that the second approach is particularly useful. A thorough analysis is therefore performed for this case, using the assumption that the non-uniformly distributed sampling instants are generated by a stochastic process.

  14. Multicomponent density functional theory embedding formulation

    Energy Technology Data Exchange (ETDEWEB)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, Illinois 61801 (United States)

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  15. A stability criterion for HNFDE with non-uniform delays

    International Nuclear Information System (INIS)

    Liu Xingwen; Zhong Shouming; Zhang Fengli

    2005-01-01

    Stability of functional differential equations (FDE) is an increasingly important problem in both science and engineering. Delays, whether uniform or non-uniform, play an important role in the dynamics of a system. Since non-uniform delay is more general and less focused than uniform delay, this paper concentrates on the stability of high-order neutral functional differential equations (HNFDE) with non-uniform delay, and proposes a sufficient condition for it. This result may be widely helpful, thanks to the frequent emergence of a HNFDE with non-uniform delay in various fields. Its effectiveness is illustrated by some examples

  16. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    Science.gov (United States)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

  17. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  18. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  19. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  20. Flexible RF filter using a nonuniform SCISSOR.

    Science.gov (United States)

    Zhuang, Leimeng

    2016-03-15

    This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40  dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated.

  1. Nonuniformity mitigation of beam illumination in heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Kawata, S; Noguchi, K; Suzuki, T; Kurosaki, T; Barada, D; Ogoyski, A I; Zhang, W; Xie, J; Zhang, H; Dai, D

    2014-01-01

    In inertial fusion, a target DT fuel should be compressed to typically 1000 times the solid density. The target implosion nonuniformity is introduced by a driver beam’s illumination nonuniformity, for example. The target implosion should be robust against the implosion nonuniformities. In this paper, the requirement for implosion uniformity is first discussed. The implosion non-uniformity should be less than a few percent. The implosion dynamics is also briefly reviewed in heavy ion inertial fusion (HIF). Heavy ions deposit their energy inside the target energy absorber, and the energy deposition layer is rather thick, depending on the ion particle energy. Then nonuniformity mitigation mechanisms of the heavy ion beam (HIB) illumination in HIF are discussed. A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF, wobbling heavy ion beam illumination was also introduced to realize a uniform implosion. The wobbling HIB axis oscillation is precisely controlled. In the wobbling HIBs’ illumination, the illumination nonuniformity oscillates in time and space on an HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs’ illumination nonuniformity by its smoothing effect on the HIB illumination nonuniformity and also by a growth mitigation effect on the Rayleigh–Taylor instability. (invited comment)

  2. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  3. Multicomponent isotopic separation and recirculation analysis

    International Nuclear Information System (INIS)

    Misra, B.; Maroni, V.A.

    1976-01-01

    A digital computer program for design of multicomponent distillation columns has been developed based on an exact method of solution of the governing equations. Although this computer program was developed for enrichment of the spent fuels from presently conceived tokamak-type fusion power reactors by cryogenic distillation, the program can be used for the design of any multicomponent distillation column, provided, of course, the necessary thermodynamic and phase equilibrium data are available. To prove the versatility of the computer program, parametric investigations to study the effect of design and operating variables on the composition of the product streams was carried out for the case of separating hydrogen isotopes. The computer program is very efficient; hence, a number of parametric investigations can be carried out with limited resources. The program does, however, require a fairly large computer storage space

  4. Novel Reagents for Multi-Component Reactions

    Science.gov (United States)

    Wang, Yanguang; Basso, Andrea; Nenajdenko, Valentine G.; Gulevich, Anton V.; Krasavin, Mikhail; Bushkova, Ekaterina; Parchinsky, Vladislav; Banfi, Luca; Basso, Andrea; Cerulli, Valentina; Guanti, Giuseppe; Riva, Renata; Rozentsveig, Igor B.; Rozentsveig, Gulnur N.; Popov, Aleksandr V.; Serykh, Valeriy J.; Levkovskaya, Galina G.; Cao, Song; Shen, Li; Liu, Nianjin; Wu, Jingjing; Li, Lina; Qian, Xuhong; Chen, Xiaopeng; Wang, Hongbo; Feng, Jinwu; Wang, Yanguang; Lu, Ping; Heravi, Majid M.; Sadjadi, Samaheh; Kazemizadeh, Ali Reza; Ramazani, Ali; Kudyakova, Yulia S.; Goryaeva, Marina V.; Burgart, Yanina V.; Saloutin, Victor I.; Mossetti, Riccardo; Pirali, Tracey; Tron, Gian Cesare; Rozhkova, Yulia S.; Mayorova, Olga A.; Shklyaev, Yuriy V.; Zhdanko, Alexander G.; Nenajdenko, Valentine G.; Stryapunina, Olga G.; Plekhanova, Irina V.; Glushkov, Vladimir A.; Shklyaev, Yurii V.

    Ketenimines are a class of versatile and highly reactive intermediates that can participate in a variety of organic reactions, such as nucleophilic additions, radical additions, [2 + 2] and [2 + 4] cycloadditions, and sigmatropic rearrangements. In this presentation, we report on a series of multi-component reactions that involve a ketenimine intermediate. These reactions could furnish diverse heterocyclic compounds, including functionalized iminocoumarin, iminodihydroqunolines, iminothiochromens, pyrrolines, isoquinolines, pyridines, β-lactams, imino-1,2-dihydrocoumarins, and benzimidazoles.

  5. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  6. Multi-component optical solitary waves

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We discuss several novel types of multi-component (temporal and spatial) envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for highperformance computer networks......, multi-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons due to quasi-phase-matching in Fibonacci optical superlattices. (C) 2000 Elsevier Science B.V. All rights reserved....

  7. Thermodiffusion in multicomponent n-alkane mixtures.

    Science.gov (United States)

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  8. Microstructural development in equiatomic multicomponent alloys

    International Nuclear Information System (INIS)

    Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B.

    2004-01-01

    Multicomponent alloys containing several components in equal atomic proportions have been manufactured by casting and melt spinning, and their microstructures and properties have been investigated by a combination of optical microscopy, scanning electron microscopy, electron probe microanalysis, X-ray diffractrometry and microhardness measurements. Alloys containing 16 and 20 components in equal proportions are multiphase, crystalline and brittle both as-cast and after melt spinning. A five component Fe 20 Cr 20 Mn 20 Ni 20 Co 20 alloy forms a single fcc solid solution which solidifies dendritically. A wide range of other six to nine component late transition metal rich multicomponent alloys exhibit the same majority fcc primary dendritic phase, which can dissolve substantial amounts of other transition metals such as Nb, Ti and V. More electronegative elements such as Cu and Ge are less stable in the fcc dendrites and are rejected into the interdendritic regions. The total number of phases is always well below the maximum equilibrium number allowed by the Gibbs phase rule, and even further below the maximum number allowed under non-equilibrium solidification conditions. Glassy structures are not formed by casting or melt spinning of late transition metal rich multicomponent alloys, indicating that the confusion principle does not apply, and other factors are more important in promoting glass formation

  9. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  10. Magnetoacoustic waves in current-carrying plasmas

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1980-04-01

    The results of theoretical and experimental investigations of the characteristics of magnetoacoustic waves in non-uniform, current-carrying plasmas are reviewed. Dissipative MHD and collisionless theories are considered. Also discussed is the use of magnetoacoustic waves in plasma diagnostics and plasma heating

  11. Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    International Nuclear Information System (INIS)

    Wilson, F.; Neukirch, T.; Harrison, M. G.; Hesse, M.; Stark, C. R.

    2016-01-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  12. Ion flux nonuniformities in large-area high-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Perret, A.; Chabert, P.; Booth, J.-P.; Jolly, J.; Guillon, J.; Auvray, Ph.

    2003-01-01

    Strong nonuniformities of plasma production are expected in capacitive discharges if the excitation wavelength becomes comparable to the reactor size (standing-wave effect) and/or if the plasma skin depth becomes comparable to the plate separation (skin effect) [M. A. Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)]. Ion flux uniformity measurements were carried out in a large-area square (40 cmx40 cm) capacitive discharge driven at frequencies between 13.56 MHz and 81.36 MHz in argon gas at 150 mTorr. At 13.56 MHz, the ion flux was uniform to ±5%. At 60 MHz (and above) and at low rf power, the standing-wave effect was seen (maximum of the ion flux at the center), in good quantitative agreement with theory. At higher rf power, maxima of the ion flux were observed at the edges, due either to the skin effect or to other edge effects

  13. Turbulence effect on Ohm's law in partially ionized plasmas

    International Nuclear Information System (INIS)

    Numano, M.

    1977-01-01

    An investigation of the effect of nonuniformity on electric current flow in partially ionized plasmas is made. An Ohm's law for a nonuniform plasma was derived, from which Rosa's equation is obtained as a special case. Making use of this new Ohm's law, the effective electrical conductivity and Hall coefficient are determined for isotropically turbulent plasmas. They are found to be in good agreement with the results obtained previously. (author)

  14. Hydrodynamic Models for Multicomponent Plasmas with Collisional-Radiative Kinetics

    Science.gov (United States)

    2014-12-01

    Boltzmann groups. The first excited state - H(2) - is the top curve , followed by the next higher level, etc. . . . . . . . . . . . . . . . . 141 5.3...solution with 3 levels and 1 Boltzmann group. H(3) - is the bottom curve , followed by the next higher level, etc.; the non-conforming red curve is H...problem of a diffraction of a shock wave (M = 2.4) down a step [73]. The strong rarefaction at the corner of the step can cause a problem of negative

  15. Zonal flow excitation by Shukla-Varma modes in a nonuniform dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.; Stenflo, L.

    2002-01-01

    The nonlinear coupling between the Shukla-Varma (SV) modes and the zonal flows in a nonuniform dusty magnetoplasma is considered. By using a two-fluid model and the guiding center particle drifts, a pair of coupled mode equations is obtained. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the SV modes. The increment of the parametrically excited zonal flows is presented. The relevance of our investigation to laboratory and space plasmas is discussed

  16. Reduced energy conservation law for magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Decyk, V.K.

    1994-01-01

    A global energy conservation law for a magnetized plasma is studied within the context of a quasiparticle description. A reduced energy conservation law is derived for low-frequency, as compared to the gyromagnetic frequency, plasma motions with regard to both non-uniform mean flows and fluctuations in the plasma. The mean value of plasma energy is calculated and sufficient stability conditions for non-equilibrium plasmas are derived. (orig.)

  17. Long GRBs sources population non-uniformity

    Science.gov (United States)

    Arkhangelskaja, Irene

    Long GRBs observed in the very wide energy band. It is possible to separate two subsets of GRBs with high energy component (E > 500 MeV) presence. First type events energy spectra in low and high energy intervals are similar (as for GRB 021008) and described by Band, power law or broken power law models look like to usual bursts without emission in tens MeV region. For example, Band spectrum of GRB080916C covering 6 orders of magnitude. Second ones contain new additional high energy spectral component (for example, GRB 050525B and GRB 090902B). Both types of GRBs observed since CGRO mission beginning. The low energy precursors existence are typical for all types bursts. Both types of bursts temporal profiles can be similar in the various energy regions during some events or different in other cases. The absence of hard to soft evolution in low energy band and (or) presence of high energy precursors for some events are the special features of second class of GRBs by the results of preliminary data analysis and this facts gives opportunities to suppose differences between these two GRBs subsets sources. Also the results of long GRB redshifts distribution analysis have shown its shape contradiction to uniform population objects one for our Metagalaxy to both total and various redshifts definition methods GRBs sources samples. These evidences allow making preliminary conclusion about non-uniformity of long GRBs sources population.

  18. Flexural Free Vibrations of Multistep Nonuniform Beams

    Directory of Open Access Journals (Sweden)

    Guojin Tan

    2016-01-01

    Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.

  19. Minimum nonuniform graph partitioning with unrelated weights

    Science.gov (United States)

    Makarychev, K. S.; Makarychev, Yu S.

    2017-12-01

    We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.

  20. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  1. Non-uniformity Correction of Infrared Images by Midway Equalization

    Directory of Open Access Journals (Sweden)

    Yohann Tendero

    2012-07-01

    Full Text Available The non-uniformity is a time-dependent noise caused by the lack of sensor equalization. We present here the detailed algorithm and on line demo of the non-uniformity correction method by midway infrared equalization. This method was designed to suit infrared images. Nevertheless, it can be applied to images produced for example by scanners, or by push-broom satellites. The obtained single image method works on static images, is fully automatic, having no user parameter, and requires no registration. It needs no camera motion compensation, no closed aperture sensor equalization and is able to correct for a fully non-linear non-uniformity.

  2. Multicomponent Reactions in Ligation and Bioconjugation Chemistry.

    Science.gov (United States)

    Reguera, Leslie; Méndez, Yanira; Humpierre, Ana R; Valdés, Oscar; Rivera, Daniel G

    2018-05-25

    Multicomponent reactions (MCRs) encompass an exciting class of chemical transformations that have proven success in almost all fields of synthetic organic chemistry. These convergent procedures incorporate three or more reactants into a final product in one pot, thus combining high levels of complexity and diversity generation with low synthetic cost. Striking applications of these processes are found in heterocycle, peptidomimetic, and natural product syntheses. However, their potential in the preparation of large macro- and biomolecular constructs has been realized just recently. This Account describes the most relevant results of our group in the utilization of MCRs for ligation/conjugation of biomolecules along with significant contributions from other laboratories that validate the utility of this special class of bioconjugation process. Thus, MCRs have proven to be efficient in the ligation of lipids to peptides and oligosaccharides as well as the ligation of steroids, carbohydrates, and fluorescent and affinity tags to peptides and proteins. In the field of glycolipids, we highlight the power of isocyanide-based MCRs with the one-pot double lipidation of glycan fragments functionalized as either the carboxylic acid or amine. In peptide chemistry, the versatility of the multicomponent ligation strategy is demonstrated in both solution-phase lipidation protocols and solid-phase procedures enabling the simultaneous lipidation and biotinylation of peptides. In addition, we show that MCRs are powerful methods for synchronized lipidation/labeling and macrocyclization of peptides, thus accomplishing in one step what usually requires long sequences. In the realm of protein bioconjugation, MCRs have also proven to be effective in labeling, site-selective modification, immobilization, and glycoconjugation processes. For example, we illustrate a successful application of multicomponent polysaccharide-protein conjugation with the preparation of multivalent

  3. Two New Multi-component BKP Hierarchies

    International Nuclear Information System (INIS)

    Wu Hongxia; Liu Xiaojun; Zeng Yunbo

    2009-01-01

    We firstly propose two kinds of new multi-component BKP (mcBKP) hierarchy based on the eigenfunction symmetry reduction and nonstandard reduction, respectively. The first one contains two types of BKP equation with self-consistent sources whose Lax representations are presented. The two mcBKP hierarchies both admit reductions to the k-constrained BKP hierarchy and to integrable (1+1)-dimensional hierarchy with self-consistent sources, which include two types of SK equation with self-consistent sources and of bi-directional SK equations with self-consistent sources.

  4. Phonon excitations in multicomponent amorphous solids

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.; Migal', V.M.; Tkachuk, V.M.

    1988-01-01

    The method of two-time temperature-dependent Green's functions is used to investigate phonon excitations in multicomponent amorphous solids. The equation obtained for the energy spectrum of the phonon excitations takes into account the damping associated with scattering of phonons by structure fluctuations. The quasicrystal approximation is considered, and as an example explicit expressions are obtained for the case of a two-component amorphous solid for the frequencies of the acoustical and optical modes and for the longitudinal and transverse velocities of sound. The damping is investigated

  5. Thermochemical modelling of multi-component systems

    International Nuclear Information System (INIS)

    Sundman, B.; Gueneau, C.

    2015-01-01

    Computational thermodynamic, also known as the Calphad method, is a standard tool in industry for the development of materials and improving processes and there is an intense scientific development of new models and databases. The calculations are based on thermodynamic models of the Gibbs energy for each phase as a function of temperature, pressure and constitution. Model parameters are stored in databases that are developed in an international scientific collaboration. In this way, consistent and reliable data for many properties like heat capacity, chemical potentials, solubilities etc. can be obtained for multi-component systems. A brief introduction to this technique is given here and references to more extensive documentation are provided. (authors)

  6. Cold plasmas

    International Nuclear Information System (INIS)

    Franz, G.

    1990-01-01

    This textbook discusses the following topics: Phenomenological description of a direct current glow discharge; the plasma (temperature distribution and measurement, potential variation, electron energy distribution function, charge neutralization, wall potentials, plasma oscillations); Production of charge carriers (ions, electrons, ionization in the cathode zone, negative glowing zone, Faraday dark space, positive column, anode zone, hollow cathode discharges); RF-discharges (charge carrier production, RF-Shields, scattering mechanisms); Sputtering (ion-surface interaction, kinetics, sputtering yield and energy distribution, systems and conditions, film formation and stresses, contamination, bias techniques, multicomponent film deposition, cohesion, magnetrons, triode systems, plasma enhanced chemical vapor deposition); Dry etching (sputter etching, reactive etching, topography, process control, quantitative investigations); Etching mechanisms (etching of Si and SiO 2 with CF 4 , of III/V-compound-semiconductors, combination of isotrope and anisotrope etching methods, surface cleaning); ion beam systems (applications, etching); Dyclotron-resonance-systems (electron cyclotron resonance systems, whistler-sources and 'resonant inductive plasma etching'); Appendix (electron energy distribution functions, Bohm's transition zone, plasma oscillations, scattering cross sections and mean free path, metastable states, Child-Langmuir-Schottky equation, loss mechanisms, charge carrier distribution in the positive column, breakdown at high frequencies, motion in a magnetic field, skin depth of an electric field for a HF-discharge, whistler waves, dispersion relations for plane wave propagation). (orig.) With 138 figs

  7. Design of Nonuniform Filter Bank Transceivers for Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Yuan-Pei Lin

    2007-01-01

    Full Text Available In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior frequency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming data rates and different quality-of-service requirements. To meet these requirements, we can either do resource allocation or design transceivers with a nonuniform bandwidth partition. In this paper, we propose a method for the design of nonuniform filter bank transceivers for frequency selective channels. Both frequency response and signal-to-interference ratio (SIR can be incorporated in the transceiver design. Moreover, the technique can be extended to the case of nonuniform filter bank transceivers with rational sampling factors. Simulation results show that nonuniform filter bank transceivers with good filter responses as well as high SIR can be obtained by the proposed design method.

  8. Pattern of diffusion-limited aggregation on nonuniform substrate

    CERN Document Server

    Ouyang Wen Ze; Zou Xian Wu; Jin Zhun Zhi

    2003-01-01

    Pattern of diffusion-limited aggregation (DLA) on nonuniform substrate was investigated by computer simulations. The nonuniform substrates are represented by Leath percolations with the probability p. p stands for the degree of nonuniformity and takes values in the range p sub c<=p<=1, where p sub c is the threshold of percolation. The DLA cluster grows up on the Leath percolation substrate. The patterns of the DLA clusters appear asymmetrical and nonuniform, and the branches are relative few for the case p is close to p sub c. In addition, the pattern depends on the shape of substrate. As p increases from p sub c to 1, cluster changes to pure DLA gradually. Correspondingly, the fractal dimension increases from 1.46 to 1.68. Also, the random walks on Leath percolations through the range p sub c<=p<=1 were examined. Our simulations show the Honda-Toyoki-Matsushita relation is still reasonable for fractional dimensional systems.

  9. Non-uniform sampling of NMR relaxation data

    DEFF Research Database (Denmark)

    Schwarz-Linnet, Troels; Teilum, Kaare

    2016-01-01

    The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors...... in the extracted dynamic parameters. By systematic reducing the coverage of the Nyquist grid of (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion datasets for four different proteins and performing a full data analysis of the resulting non-uniform sampled datasets, we have compared the performance...... of the multi-dimensional decomposition and iterative re-weighted least-squares algorithms in reconstructing spectra with accurate peak intensities. As long as a single fully sampled spectrum is included in a series of otherwise non-uniform sampled two-dimensional spectra, multi-dimensional decomposition...

  10. Contact angle determination in multicomponent lattice Boltzmann simultations

    NARCIS (Netherlands)

    Schmieschek, S.M.P.; Harting, J.D.R.

    2011-01-01

    Droplets on hydrophobic surfaces are ubiquitous in microfluidic applications and there exists a number of commonly used multicomponent and multiphase lattice Boltzmann schemes to study such systems. In this paper we focus on a popular implementation of a multicomponent model as introduced by Shan

  11. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  12. Capabilities and limitations of predictive engineering theories for multicomponent adsorption

    DEFF Research Database (Denmark)

    Bartholdy, Sofie; Bjørner, Martin Gamel; Solbraa, Even

    2013-01-01

    for the prediction of multicomponent adsorption with parameters obtained solely from correlating single gas/solid data. We have tested them over an extensive database with emphasis on polar systems (both gases and solids). The three theories are the multicomponent Langmuir, the ideal adsorbed solution theory (IAST...

  13. Compensation for nonuniform attenuation in SPECT brain imaging

    International Nuclear Information System (INIS)

    Glick, S.J.; King, M.A.; Pan, T.S.; Soares, E.J.

    1996-01-01

    Accurate compensation for photon attenuation is needed to perform quantitative brain single-photon-emission computed tomographic (SPECT) imaging. Bellini's attenuation-compensation method has been used with a nonuniform attenuation map to account for the nonuniform attenuation properties of the head. Simulation studies using a three-dimensional (3-D) digitized anthropomorphic brain phantom were conducted to compare quantitative accuracy of reconstructions obtained with the nonuniform Bellini method to that obtained with the Chang method and to iterative reconstruction using maximum-likelihood expectation maximization (ML-EM). Using the Chang method and assuming the head to be a uniform attenuator gave reconstructions with an average bias of approximately 6-8%, whereas using the Bellini or the iterative ML-EM method with a nonuniform attenuation map gave an average bias of approximately 1%. The computation time required to implement nonuniform attenuation compensation with the Bellini algorithm is approximately equivalent to the time required to perform one iteration of ML-EM. Thus, using the Bellini method with a nonuniform attenuation map provides accurate compensation for photon attenuation within the head, and the method can be implemented in computation times suitable for routine clinical use

  14. Potential distribution of a nonuniformly charged ellipsoid

    International Nuclear Information System (INIS)

    Kiwamoto, Y.; Aoki, J.; Soga, Y.

    2004-01-01

    A convenient formula is obtained for fast calculation of the three-dimensional potential distribution associated with a spatially varying charge-density distribution by reconstructing it as a superposed set of nested spheroidal shells. It is useful for experimental analyses of near-equilibrium states of non-neutral plasmas and for quick evaluation of the gravity field associated with stellar mass distributions

  15. Theory and Simulation of Multicomponent Osmotic Systems.

    Science.gov (United States)

    Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E

    2012-05-28

    Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly(2) and Gly(3) in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems.

  16. Phase formation in multicomponent monotectic aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim; Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology (Germany)

    2008-07-01

    Alloys with a miscibility gap in the liquid state are potential materials for advanced bearings in automotive and other applications. While binary alloys, such as Al-Pb or Al-Bi, are well known, the information available for ternary monotectic Al-alloys is scarce. However, the phase formation in multicomponent alloys is not only more challenging from a scientific aspect, it is also a prerequisite for a focused development of advanced alloys. This motivated our detailed study of monotectic Al-Bi-Cu-Sn alloys including both experimental and computational thermodynamic methods. Based on the initially established systematic classification of monotectic ternary Al-alloys, the first promising monotectic reaction was observed in the ternary Al-Bi-Zn system. Further ternary systems Al-Cu-Sn, Al-Bi-Sn, Al-Bi-Cu and Bi-Cu-Sn were investigated as basis for quaternary Al-Bi-Cu-Sn alloys. Experimental investigations of phase equilibria, enthalpies and solidification microstructures were combined with thermodynamic modeling. The results demonstrate that the developed precise thermodynamic description is vital to reveal the distinct multicomponent monotectic features of pertinent phase diagrams. The solidification paths of ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, were also studied using thermodynamic calculations, revealing specific details of phase formation during solidification of selected alloys.

  17. Reaction path simulations in multicomponent materials

    International Nuclear Information System (INIS)

    Seifert, H.J.

    1999-01-01

    The CALPHAD (calculation of phase diagrams) method is used in combination with selected experimental investigations to derive reaction paths in multicomponent systems. The method is illustrated by applying computerized thermodynamic databases and suitable software to explain quantitatively the thermal degradation of precursor-derived Si-C-N ceramics and the nitridation of titanium carbide. Reaction sequences in the Si 3 N 4 -SiC-TiC x N l-x -C-N system are illustrated by graphical representation of compatibility regions and indicated reaction paths. From these results the experimentally known microstructure development of TiC reinforced Si 3 N 4 ceramics is explained and quantitative information is provided to optimize the microstructure of such materials. The concept of reaction paths for the understanding of rapid solidification processes is shown by the example of AZ type Mg casting alloys. (orig.)

  18. Solidification in Multicomponent Multiphase Systems (SIMMS)

    Science.gov (United States)

    Rex, S.; Hecht, U.

    2005-06-01

    The multiphase microstructures that evolve during the solidification of multicomponent alloys are attracting widespread interest for industrial applications and fundamental research.Thermodynamic databases are now well-established for many alloy systems. Thermodynamic calculations provide all the required information about phase equilibria, forming an integral part of both dedicated and comprehensive microstructure models. Among the latter, phase-field modelling has emerged as the method of choice. Solidification experiments are intended to trigger model development or to serve as benchmarks for model validation. For benchmarking, microgravity conditions offer a unique opportunity for avoiding buoyancy-induced convection and buoyancy forces in bulk samples. However, diffusion and the free-energy of interfaces and its anisotropy need to be determined.The measurement of chemical diffusivities in the liquid state can equally benefit from microgravity experiments.

  19. Thermal Conductivity of the Multicomponent Neutral Atmosphere

    Science.gov (United States)

    Pavlov, A. V.

    2017-12-01

    Approximate expressions for the thermal conductivity coefficient of the multicomponent neutral atmosphere consisting of N2, O2, O, He, and H are analyzed and evaluated for the atmospheric conditions by comparing them with that given by the rigorous hydrodynamic theory. The new approximations of the thermal conductivity coefficients of simple gases N2, O2, O, He, and H are derived and used. It is proved that the modified Mason and Saxena approximation of the atmospheric thermal conductivity coefficient is more accurate in reproducing the atmospheric values of the rigorous hydrodynamic thermal conductivity coefficient in comparison with those that are generally accepted in atmospheric studies. This approximation of the thermal conductivity coefficient is recommended to use in calculations of the neutral temperature of the atmosphere.

  20. Interatomic spacing distribution in multicomponent alloys

    International Nuclear Information System (INIS)

    Toda-Caraballo, I.; Wróbel, J.S.; Dudarev, S.L.; Nguyen-Manh, D.; Rivera-Díaz-del-Castillo, P.E.J.

    2015-01-01

    A methodology to compute the distribution of interatomic distances in highly concentrated multicomponent alloys is proposed. By using the unit cell parameter and bulk modulus of the elements involved, the method accurately describes the distortion in the lattice produced by the interaction of the different atomic species. To prove this, density functional theory calculations have been used to provide the description of the lattice in a monophasic BCC MoNbTaVW high entropy alloy and its five sub-quaternary systems at different temperatures. Short-range order is also well described by the new methodology, where the mean error in the predicted atomic coordinates in comparison with the atomistic simulations is in the order of 1–2 pm over all the compositions and temperatures considered. The new method can be applied to tailor solid solution hardening, highly dependent on the distribution of interatomic distances, and guide the design of new high entropy alloys with enhanced properties

  1. Solidification paths of multicomponent monotectic aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de

    2008-10-15

    Solidification paths of three ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, are studied using thermodynamic calculations, both for the pertinent phase diagrams and also for specific details concerning the solidification of selected alloy compositions. The coupled composition variation in two different liquids is quantitatively given. Various ternary monotectic four-phase reactions are encountered during solidification, as opposed to the simple binary monotectic, L' {yields} L'' + solid. These intricacies are reflected in the solidification microstructures, as demonstrated for these three aluminum alloy systems, selected in view of their distinctive features. This examination of solidification paths and microstructure formation may be relevant for advanced solidification processing of multicomponent monotectic alloys.

  2. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  3. Dynamic Multi-Component Hemiaminal Assembly

    Science.gov (United States)

    You, Lei; Long, S. Reid; Lynch, Vincent M.

    2012-01-01

    A simple approach to generating in situ metal templated tris-(2-picolyl)amine-like multi-component assemblies with potential applications in molecular recognition and sensing is reported. The assembly is based on the reversible covalent association between di-(2-picolyl)amine and aldehydes. Zinc ion is the best for inducing assembly among the metal salts investigated, while 2-picolinaldehyde is the best among the heterocyclic aldehydes studied. Although an equilibrium constant of 6.6 * 103 M-1 was measured for the assembly formed by 2-picolinaldehdye, di-(2-picolyl)amine, and zinc triflate, the equilibrium constants for other systems are in the 102 M-1 range. X-ray structural analysis revealed that zinc adopts a trigonal bipyramidal geometry within the assembled ligand. The diversity and equilibrium of the assemblies are readily altered by simply changing concentrations, varying components, or adding counter anions. PMID:21919095

  4. Polychromatic holographic plasma diagnostics

    International Nuclear Information System (INIS)

    Zhiglinskij, A.G.; Morozov, A.O.

    1992-01-01

    Review of holographic interferometry properties is performed and advantages of this method by plasma diagnostics are indicated. Main results obtained by the method of holographic interferometry in studies of various-type plasmas are considered. Special attention is paid to multiwave plasma diagnostics, the necessity of which is related as a rule to multicomponent composition of plasma. The eight laser and gas-discharge sources and holographic schemes, which make it possible to realize plasma polychromatic and holographic interferometry, are considered. The advantages of the method are demonstrated by examples of polychromatic holographic diagnostics of arc discharge and discharge in a hollow cathode. Review of theoretical works determining the applicability area of resonance polychromatic interferometry is carried out

  5. Vortex dynamics in inhomogeneous plasmas

    DEFF Research Database (Denmark)

    Naulin, V.; Juul Rasmussen, J.

    1999-01-01

    The dynamics of vortical structures in magnetized plasmas with nonuniform density is investigated numerically. In particular the dynamics of monopolar vortices is considered and the results are discussed in terms of the conservation of potential vorticity. It is found that individual vortex...

  6. LDPC Code Design for Nonuniform Power-Line Channels

    Directory of Open Access Journals (Sweden)

    Sanaei Ali

    2007-01-01

    Full Text Available We investigate low-density parity-check code design for discrete multitone channels over power lines. Discrete multitone channels are well modeled as nonuniform channels, that is, different bits experience various channel parameters. We propose a coding system for discrete multitone channels that allows for using a single code over a nonuniform channel. The number of code parameters for the proposed system is much greater than the number of code parameters in conventional channel. Therefore, search-based optimization methods are impractical. We first formulate the problem of optimizing the rate of an irregular low-density parity-check code, with guaranteed convergence over a general nonuniform channel, as an iterative linear programming which is significantly more efficient than search-based methods. Then we use this technique for a typical power-line channel. The methodology of this paper is directly applicable to all decoding algorithms for which a density evolution analysis is possible.

  7. Skin carcinogenesis following uniform and non-uniform β irradiation

    International Nuclear Information System (INIS)

    Charles, M.W.; Williams, J.P.; Coggle, J.E.

    1989-01-01

    Where workers or the general public may be exposed to ionising radiation, the irradiation is rarely uniform. The risk figures and dose limits recommended by the International Commission on Radiological Protection (ICRP) are based largely on clinical and epidemiological studies of reasonably uniform irradiated organs. The paucity of clinical or experimental data for highly non-uniform exposures has prevented the ICRP from providing adequate recommendations. This weakness has led on a number of occasions to the postulate that highly non-uniform exposures of organs could be 100,000 times more carcinogenic than ICRP risk figures would predict. This so-called ''hot-particle hypothesis'' found little support among reputable radiobiologists, but could not be clearly and definitively refuted on the basis of experiment. An experiment, based on skin tumour induction in mouse skin, is described which was developed to test the hypothesis. The skin of 1200 SAS/4 male mice has been exposed to a range of uniform and non-uniform sources of the β emitter 170 Tm (E max ∼ 1 MeV). Non-uniform exposures were produced using arrays of 32 or 8 2-mm diameter sources distributed over the same 8-cm 2 area as a uniform control source. Average skin doses varied from 2-100 Gy. The results for the non-uniform sources show a 30% reduction in tumour incidence by the 32-point array at the lower mean doses compared with the response from uniform sources. The eight-point array showed an order-of-magnitude reduction in tumour incidence compared to uniform irradiation at low doses. These results, in direct contradiction to the ''hot particle hypothesis'', indicate that non-uniform exposures produce significantly fewer tumours than uniform exposures. (author)

  8. Microwave interaction with nonuniform hydrogen gas in carbon nanotubes

    International Nuclear Information System (INIS)

    Babaei, S.; Babaei, Sh.

    2009-01-01

    In this paper we study the reflection, absorption, and transmission of microwave from nonuniform hydrogen gas in carbon nanotubes, grown by iron-catalyzed high-pressure carbon monoxide disproportionate (HiPco) process. A discussion on the effect of various hydrogen gas parameters on the reflected power, absorbed power, and transmitted power is presented. The nonuniform hydrogen gas slab is modeled by a series of subslabs. The overall number density profile across the whole slab follows a parabolic function. The total reflected, absorbed, and transmitted powers are then deduced and their functional dependence on the number density, collision frequency, and angle of propagation is studied

  9. Assessment indices for uniform and non-uniform thermal environments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Different assessment indices for thermal environments were compared and selected for proper assessment of indoor thermal environments.30 subjects reported their overall thermal sensation,thermal comfort,and thermal acceptability in uniform and non-uniform conditions.The results show that these three assessment indices provide equivalent evaluations in uniform environments.However,overall thermal sensation differs from the other two indices and cannot be used as a proper index for the evaluation of non-uniform environments.The relationship between the percentage and the mean vote for each index is established.

  10. Modeling of nonuniform corrosion in salt brines: Salt Repository Project

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1988-03-01

    A mechanistic approach to modeling nonuniform corrosion in brines is presented in this report. Equations are derived for completely describing the electrochemical environment within a localized corrosion cavity, and appropriate initial and boundary conditions are invoked to obtain a solvable system of equations. The initial and boundary conditions can be adjusted to simulate pitting, crevice corrosion, or stress corrosion cracking. Although no numerical results are presented, a numerical strategy for solving the equations is presented. The report focuses on the nonuniform corrosion behavior of mild steel; however, the modeling approach presented is expected to apply to a broad range of metallic materials. 34 refs., 5 figs., 2 tabs

  11. Modelling of micro- and macrosegregation for industrial multicomponent aluminium alloys

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Mortensen, D

    2015-01-01

    Realistic predictions of macrosegregation formation during casting of aluminium alloys requires an accurate modeling of solute microsegregation accounting for multicomponent phase diagrams and secondary phase formation. In the present work, the stand alone Alstruc model, a microsegregation model for industrial multicomponent aluminium alloys, is coupled with the continuum model ALSIM which calculates the macroscopic transport of mass, enthalpy, momentum, and solutes as well as stresses and deformation during solidification of aluminium. Alstruc deals with multicomponent alloys accounting for temperature dependent partition coefficients, liquidus slopes and the precipitation of secondary phases. The challenge associated with computation of microsegregation for multicomponent alloys is solved in Alstruc by approximating the phase diagram data by simple, analytical expressions which allows for a CPU-time efficient coupling with the macroscopic transport model. In the present work, the coupled model has been applied in a study of macrosegregation including thermal and solutal convection, solidification shrinkage and surface exudation on an industrial DC-cast billet. (paper)

  12. Synthesis of conformationally constrained peptidomimetics using multicomponent reactions

    NARCIS (Netherlands)

    Scheffelaar, R.; Klein Nijenhuis, R.A.; Paravidino, M.; Lutz, M.; Spek, A.L.; Ehlers, A.W.; de Kanter, F.J.J.; Groen, M.B.; Orru, R.V.A.; Ruijter, E.

    2009-01-01

    A novel modular synthetic approach toward constrained peptidomimetics is reported. The approach involves a highly efficient three-step sequence including two multicomponent reactions, thus allowing unprecedented diversification of both the peptide moieties and the turn-inducing scaffold. The

  13. Seismic reservoir characterization: how can multicomponent data help?

    International Nuclear Information System (INIS)

    Li, Xiang-Yang; Zhang, Yong-Gang

    2011-01-01

    This paper discusses the concepts of multicomponent seismology and how it can be applied to characterize hydrocarbon reservoirs, illustrated using a 3D three-component real-data example from southwest China. Hydrocarbon reservoirs formed from subtle lithological changes, such as stratigraphic traps, may be delineated from changes in P- and S-wave velocities and impedances, whilst hydrocarbon reservoirs containing aligned fractures are anisotropic. Examination of the resultant split shear waves can give us a better definition of their internal structures. Furthermore, frequency-dependent variations in seismic attributes derived from multicomponent data can provide us with vital information about fluid type and distribution. Current practice and various examples have demonstrated the undoubted potential of multicomponent seismic in reservoir characterization. Despite all this, there are still substantial challenges ahead. In particular, the improvement and interpretation of converted-wave imaging are major hurdles that need to be overcome before multicomponent seismic becomes a mainstream technology

  14. Seismic reservoir characterization: how can multicomponent data help?

    Science.gov (United States)

    Li, Xiang-Yang; Zhang, Yong-Gang

    2011-06-01

    This paper discusses the concepts of multicomponent seismology and how it can be applied to characterize hydrocarbon reservoirs, illustrated using a 3D three-component real-data example from southwest China. Hydrocarbon reservoirs formed from subtle lithological changes, such as stratigraphic traps, may be delineated from changes in P- and S-wave velocities and impedances, whilst hydrocarbon reservoirs containing aligned fractures are anisotropic. Examination of the resultant split shear waves can give us a better definition of their internal structures. Furthermore, frequency-dependent variations in seismic attributes derived from multicomponent data can provide us with vital information about fluid type and distribution. Current practice and various examples have demonstrated the undoubted potential of multicomponent seismic in reservoir characterization. Despite all this, there are still substantial challenges ahead. In particular, the improvement and interpretation of converted-wave imaging are major hurdles that need to be overcome before multicomponent seismic becomes a mainstream technology.

  15. Analysis of Multicomponent Adsorption Close to a Dew Point

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We develop the potential theory of multicomponent adsorption close to a dew point. The approach is based on an asymptotic adsorption equation (AAE) which is valid in a vicinity of the dew point. By this equation the thickness of the liquid film is expressed through thermodynamic characteristics...... and the direct calculations, even if the mixture is not close to a dew point.Key Words: adsorption; potential theory; multicomponent; dew point....

  16. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates

    Science.gov (United States)

    2016-01-01

    Summary Multicomponent reactions (MCRs) are one of the most important processes for the preparation of highly functionalized organic compounds in modern synthetic chemistry. As shown in this review, they play an important role in organophosphorus chemistry where phosphorus reagents are used as substrates for the synthesis of a wide range of phosphorylated heterocycles. In this article, an overview about multicomponent reactions used for the synthesis of heterocyclic compounds bearing a phosphonate group on the ring is given. PMID:27559377

  17. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    Science.gov (United States)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  18. Shape Preserving Interpolatory Subdivision Schemes for Nonuniform Data

    NARCIS (Netherlands)

    Kuijt, F.; van Damme, Rudolf M.J.

    2002-01-01

    This article is concerned with a class of shape preserving four-point subdivision schemes which are stationary and which interpolate nonuniform univariate data {(xi, fi)}. These data are functional data, i.e., xi≠xj if i≠j. Subdivision for the strictly monotone x-values is performed by a subdivision

  19. Field nonuniformity correction for quantitative analysis of digitized mammograms

    International Nuclear Information System (INIS)

    Pawluczyk, Olga; Yaffe, Martin J.

    2001-01-01

    Several factors, including the heel effect, variation in distance from the x-ray source to points in the image and path obliquity contribute to the signal nonuniformity of mammograms. To best use digitized mammograms for quantitative image analysis, these field non-uniformities must be corrected. An empirically based correction method, which uses a bowl-shaped calibration phantom, has been developed. Due to the annular spherical shape of the phantom, its attenuation is constant over the entire image. Remaining nonuniformities are due only to the heel and inverse square effects as well as the variable path through the beam filter, compression plate and image receptor. In logarithmic space, a normalized image of the phantom can be added to mammograms to correct for these effects. Then, an analytical correction for path obliquity in the breast can be applied to the images. It was found that the correction causes the errors associated with field nonuniformity to be reduced from 14% to 2% for a 4 cm block of material corresponding to a combination of 50% fibroglandular and 50% fatty breast tissue. A repeatability study has been conducted to show that in regions as far as 20 cm away from the chest wall, variations due to imaging conditions and phantom alignment contribute to <2% of overall corrected signal

  20. Josephson flux-flow oscillators in nonuniform microwave fields

    DEFF Research Database (Denmark)

    Salerno, Mario; Samuelsen, Mogens Rugholm

    2000-01-01

    We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...

  1. Instruction sequences and non-uniform complexity theory

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We develop theory concerning non-uniform complexity in a setting in which the notion of single-pass instruction sequence considered in program algebra is the central notion. We define counterparts of the complexity classes P/poly and NP/poly and formulate a counterpart of the complexity theoretic

  2. Complex precipitation pathways in multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Clouet, Emmanuel; Nastar, Maylise [Service de Recherches de Metallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette (France); Lae, Ludovic; Deschamps, Alexis [LTPCM/ENSEEG, UMR CNRS 5614, Domaine Universitaire, BP 75, 38402 St Martin d' Heres (France); Epicier, Thierry [Groupe d' Etudes de Metallurgie Physique et de Physique des Materiaux, UMR CNRS 5510, INSA, 69621 Villeurbanne (France); Lefebvre, Williams [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France)

    2006-07-01

    One usual way to strengthen a metal is to add alloying elements and to control the size and the density of the precipitates obtained. However, precipitation in multicomponent alloys can take complex pathways depending on the relative diffusivity of solute atoms and on the relative driving forces involved. In Al - Zr - Sc alloys, atomic simulations based on first-principle calculations combined with various complementary experimental approaches working at different scales reveal a strongly inhomogeneous structure of the precipitates: owing to the much faster diffusivity of Sc compared with Zr in the solid solution, and to the absence of Zr and Sc diffusion inside the precipitates, the precipitate core is mostly Sc-rich, whereas the external shell is Zr-rich. This explains previous observations of an enhanced nucleation rate in Al - Zr - Sc alloys compared with binary Al - Sc alloys, along with much higher resistance to Ostwald ripening, two features of the utmost importance in the field of light high-strength materials. (authors)

  3. Quantum turbulence in cold multicomponent matter

    Science.gov (United States)

    Pshenichnyuk, Ivan A.

    2018-02-01

    Quantum vortices are pivotal for understanding of phenomena in quantum hydrodynamics. Vortices were observed in different physical systems like trapped dilute Bose-Einstein condensates, liquid helium, exciton-polariton condensates and other types of systems. Foreign particles attached to the vortices often serve for a visualization of the vortex shape and kinematics in superfluid experiments. Fascinating discoveries were made in the field of cold quantum mixtures, where vortices created in one component may interact with the other component. This works raise the fundamental question of the interaction between quantum vortices and matter. The generalized nonlinear Schrodinger equation based formalism is applied here to model three different processes involving the interaction of quantum vortices with foreign particles: propagation of a fast classical particle in a superfluid under the influence of sound waves, scattering of a single fermion by a quantized vortex line and dynamics of vortex pairs doped with heavy bosonic matter. The obtained results allow to to clarify the details of recent experiments and acquire a better understanding of the multicomponent quantum turbulence.

  4. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced

  5. Collision integral and equilibrium distributions for a bounded plasma

    International Nuclear Information System (INIS)

    Zagorodnij, A.G.; Usenko, A.S.; Yakimenko, I.P.

    1985-01-01

    A kinetic equation of Balesku-Lennard type for multicomponent system of charged particle limited by two flat-parallel surfaces is derived on the basis of the general theory of electromagnetic fluctuations in plasma. Equilibrium values of collision integral for a plasma with arbitrary configuration boundaries are calculated and general ratios describing charged particles density profiles in such systems are obtained

  6. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  7. Multicomponent Protein Cage Architectures for Photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Arunava [Univ. of Alabama, Tuscaloosa, AL (United States); Prevelige, Peter E [Univ. of Alabama, Birmingham, AL (United States)

    2016-01-04

    The primary goal of the project was to develop protein-templated approaches for the synthesis and directed assembly of semiconductor nanomaterials that are efficient for visible light absorption and hydrogen production. In general, visible-light-driven photocatalysis reactions exhibit low quantum efficiency for solar energy conversion primarily because of materials-related issues and limitations, such as the control of the band gap, band structure, photochemical stability, and available reactive surface area of the photocatalyst. Synthesis of multicomponent hierarchical nano-architectures, consisting of semiconductor nanoparticles (NPs) with desired optical properties fabricated to maximize spatial proximity for optimum electron and energy transfer represents an attractive route for addressing the problem. Virus capsids are highly symmetrical, self-assembling protein cage nanoparticles that exist in a range of sizes and symmetries. Selective deposition of inorganic, by design, at specific locations on virus capsids affords precise control over the size, spacing, and assembly of nanomaterials, resulting in uniform and reproducible nano-architectures. We utilized the self-assembling capabilities of the 420 subunit, 60 nm icosahedral, P22 virus capsid to direct the nucleation, growth, and proximity of a range of component materials. Controlled fabrication on the exterior of the temperature stable shell was achieved by genetically encoding specific binding peptides into an externally exposed loop which is displayed on each of the 420 coat protein subunits. Localization of complimentary materials to the interior of the particle was achieved through the use “scaffolding-fusion proteins. The scaffolding domain drives coat protein polymerization resulting in a coat protein shell surrounding a core of approximately 300 scaffolding/fusion molecules. The fusion domain comprises a peptide which specifically binds the semiconductor material of interest.

  8. Exergy Rate Profile of Multicomponent Distillation System

    Directory of Open Access Journals (Sweden)

    Kehinde Adewale Adesina

    2016-07-01

    Full Text Available Exergy rate profiles, exergetic efficiency and irreversibility were used to examine the driving forces in multicomponent distillation system with the view to identifying feasible and efficient operating parameters. The mixture used comprised of 5% propane, 15% iso-butane, 25% nbutane, 20% iso-pentane and 35% n-pentane. Operating variables were feed temperature (-30 oC and -80 oC, pressure (800 kPa and 1200 kPa, and reflux-ratio (2 and 6. Stage-by-stage system exergy analysis was estimated. Column profiles of base case -30 oC, -80 oC, -30 oC-reflus ratio 6, -80 oC reflux ratio 6 and base case reflux ratio 6 did not crossed thus are thermodynamically feasible. Base case -30 oC-reflux ratio 2, -80 oC-reflux ratio 2, and base case-reflux ratio 2 were crossed and constricted and are infeasible. Base case results gave efficiency of 81.7% at depropanizer and 65.2% at debutanizer. Base cases sensitivity results with -30 oC, -80 oC and reflux ratio 6, efficiency range 57.40 – 70% and 65.20% - 54.90% for depropanizer and debutanizer respectively. Spitted cases gave 81.7% and 62.20% with more scatter profiles. Splitted feed base case -30 oC design gave the lowest overall system exergy loss rate of 1.12E+6 and efficiency of 95.70%. Design feasible parameters, system efficiency and irreversibility which form basis

  9. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence Of Nonuniformity On Infrared Focal Plane Array Performance

    Science.gov (United States)

    Milton, A. F.; Barone, F. R.; Kruer, M. R.

    1985-08-01

    It is well known that detector response nonuniformity results in pattern noise with staring sensors that is a severe problem in the infrared due to the low intrinsic contrast of IR imagery. The pattern noise can be corrected by electronic processing; however, the ability to correct for pattern noise is limited by the interaction of interscene and intrascene variability with the dynamic range of the processor (number of bits) and, depending upon the algorithm used, by nonlinearities in the detector response. This paper quantifies these limitations and describes the interaction of detector gain nonuniformity and detector nonlinearities. Probabilistic models are developed to determine the maximum sensitivity that can be obtained using a two-point algorithm to correct a nonlinear response curve over a wide temperature range. Curves that permit a prediction of the noise equivalent differential temperature (NEAT) under varying circumstances are presented. A piecewise linear approach to dealing with severe detector response nonlinearities is presented and analyzed for its effectiveness.

  11. Measurement of reactivity effect caused by nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Nishina, Kojiro; Shiroya, Seiji

    1991-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem in a reprocessing plant. To estimate this reactivity effect theoretically, the ''Goertzel's necessary condition, and th Fuel Importance'' theory have been proposed. In order to verify these theories, we have performed systematic measurements of reactivity effect due to the nonuniformity in the fuel distribution within the Kyoto University Critical Assembly. Neutron flux distribution and Fuel Importance distribution were also determined. A nonuniform assembly whose fuel concentration in the center region was 40% higher than the uniform one was found to have an excess reactivity of 0.3%Δk/k, with the same total uranium mass for which the uniform assembly was just critical. Moreover, its spatial distribution of thermal neutron flux and of Fuel Importance were more flat than those of the uniform assembly, as expected by the Goertzel's condition and the Fuel Importance theory. (Author)

  12. POSSOL, 2-D Poisson Equation Solver for Nonuniform Grid

    International Nuclear Information System (INIS)

    Orvis, W.J.

    1988-01-01

    1 - Description of program or function: POSSOL is a two-dimensional Poisson equation solver for problems with arbitrary non-uniform gridding in Cartesian coordinates. It is an adaptation of the uniform grid PWSCRT routine developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR). 2 - Method of solution: POSSOL will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain allowing only one type of boundary condition on any one side. It can also be used to handle more than one type of boundary condition on a side by means of a capacitance matrix technique. There are three types of boundary conditions that can be applied: fixed, derivative, or periodic

  13. Numerical simulation of effect of laser nonuniformity in interior interface

    International Nuclear Information System (INIS)

    Yu Xiaojin; Wu Junfeng; Ye Wenhua

    2007-01-01

    Using the LARED-S code and referring to the NIF direct-drive DT ignition target, the effect of laser nonuniformity on the interior interface in direct-drive spherical implosion with high convergence ratio was numerically studied. The two-dimensional results show that the implosion with high convergence ratio is sensitive to the nonuniformity of driving laser, and the growth of hydrodynamic instability on interior interface destroys the symmetric-drive and reduces the volume of central hot spot observably. Taking the limit that perturbation amplitude is equal to 1/3 radius of central hot spot, the simulation also gives that the requirements for the laser uniformity for different mode number(less than 12) on simple physical model are between 2.5% -0.25%, and the modes between 8-10 have the most rigorous requirement which is about 0.25%. (authors)

  14. Protostellar formation in rotating interstellar clouds. VI. Nonuniform initial conditions

    International Nuclear Information System (INIS)

    Boss, A.P.

    1987-01-01

    The collapse and fragmentation of rotating protostellar clouds is explored, starting from nonuniform density and nonuniform rotation initial conditions. Whether binary fragmentation occurs during the first dynamic collapse phase depends strongly on the initial density profile. Exponential clouds are only somewhat more resistant to fragmentation than uniform-density clouds, but power-law clouds do not undergo fragmentation for likely values of a relevant parameter. Because binary fragments start from profiles intermediate between uniform density and exponential clouds, minimum protostellar mass for population I stars should be increased to approximately 0.02 solar mass. The axisymmetric Terey et al. (1984) model should be stable with respect to nonaxisymmetric perturbations. Considering the observed binary frequency, collapse from power-law initial conditions appears to be less common than collapse from more uniform initial conditions. 34 references

  15. Computation of nonuniform transmission lines using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, G.C.; Paulino, J.O.S. [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). School of Engineering

    1997-12-31

    Calculation of lightning overvoltages on transmission lines has been described. Lightning induced overvoltages are of great significance under certain conditions because of the main characteristics of the phenomena. The lightning channel model is one of the most important parameters essential to obtaining the generated electromagnetic fields. In this study, nonuniform transmission line equations were solved using the finite difference method and the leap-frog scheme, the Finite Difference Time Domain (FDTD) method. The subroutine was interfaced with the Electromagnetic Transients Program (EMTP). Two models were used to represent the characteristic impedance of the nonuniform lines used to model the transmission line towers and the lightning main channel. The advantages of the FDTD method was the much smaller code and faster processing time. 35 refs., 5 figs.

  16. Non-uniformity measurements of PbWO4 crystals

    International Nuclear Information System (INIS)

    Depasse, P.; Ernenwein, J.P.; Ille, B.; Martin, F.; Rosset, C.; Zach, F.

    1998-11-01

    Two independent methods have been used to measure the longitudinal non-uniformity scintillation response of 3 different (23-cm long) PbWO 4 crystals. The first one is the classical 60 Co source method. The source is collimated along the crystal, each 1,5-cm, and the scintillation signal is measured with a photomultiplier (a hybrid photomultiplier in our case). The second one is the use of cosmic particles (Minimum Ionizing Particles). A cosmic bench allows reconstructing the track of the MIP's and thus the energy deposit with the help of a full GEANT simulation of the setup. Variations of E along the crystal artificially cut in 1,5-cm divisions, leads to determine the non-uniformity. The conclusion is that both methods agree quite well. Furthermore, a good estimation of crystal light yield can be obtained. (author)

  17. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  18. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids

    NARCIS (Netherlands)

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-01-01

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  19. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system

    Science.gov (United States)

    Sun, Baonan; Lian, Zhan

    2018-02-01

    By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.

  20. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-01-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the U.S. Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the immiscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the open-quotes alkaliclose quotes corner of the NBS submixture

  1. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    International Nuclear Information System (INIS)

    Peeler, D.K.; Hrma, P.R.

    1994-04-01

    Taylor's model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the US Department of Energy's Hanford site. Taylor's model is primarily based on additions of modifying cations to a Na 2 O-B 2 O 3 -SiO 2 (NBS) submixture of the multicomponent glass. The position of the submixture relative to the miscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor's, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li 2 O to the ''alkali'' corner of the NBS submixture

  2. Non-uniformity of phase structure in immiscible polymer blends

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Lapčíková, Monika; Lednický, František; Starý, Zdeněk; Kruliš, Zdeněk

    2008-01-01

    Roč. 48, č. 3 (2008), s. 564-571 ISSN 0032-3888 R&D Projects: GA ČR GA106/06/0729; GA ČR GA106/06/0761 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * melt mixing * non-uniform morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.245, year: 2008

  3. Using Nonuniform Fiber to Generate Slow Light via SBS

    Directory of Open Access Journals (Sweden)

    Wenhai Li

    2008-01-01

    Full Text Available The data pulse delay based on slow light induced by stimulated Brillouin scattering (SBS in a nonuniform dispersion decreasing fiber (DDF is demonstrated experimentally, and the distortions of data pulses at different beat frequencies are studied. We found that a delay exceeding a pulse width can be achieved at particular beat frequency, and the DDF has larger delay versus gain slope coefficient with much better output pulse quality than single-mode fiber.

  4. Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy

    Directory of Open Access Journals (Sweden)

    Yongfei Gao

    2014-01-01

    Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.

  5. GEPOIS: a two dimensional nonuniform mesh Poisson solver

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Freeman, J.R.

    1979-06-01

    A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces

  6. Super rogue wave in plasma

    International Nuclear Information System (INIS)

    Pathak, Pallabi; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    The evolution of super rogue wave having amplitude ∼5 times the background wave has been observed in multicomponent plasma with critical concentration of negative ions in a double plasma device. In normal electron-ion plasma the ion acoustic solitons are described by the Korteweg-de Vries (KdV) equation. At a critical concentration of negative ions, the ion acoustic modified KdV solitons are found to propagate. Multicomponent plasma also supports the propagation of a special kind of soliton namely 'Peregrine soliton' at critical concentration of negative ions. Peregrine soliton is a doubly localized solution of the nonlinear Schrodinger equation (NLSE) having amplitude 3 times the background carrier wave. In a double plasma device, ion-acoustic Peregrine soliton is excited by applying slowly varying amplitude modulated continuous sinusoidal signal to the source anode and described by the rational solution of NLSE. The ion acoustic wave is modulationally unstable in multicomponent plasma with critical concentration of negative ions and an initial modulated wave perturbation is found to undergo self-modulation to form localized structures by balancing the nonlinearity with the dispersion. In presence of higher order nonlinearity, propagation of a high amplitude (∼5 times of background carrier wave) ion acoustic Peregrine soliton has been observed experimentally. The existence of such types of higher order wave has been reported in other dispersive media. These are considered to be the prototype of super rogue wave in deep water. In this work, experimental results on the evolution of super rogue wave in a double plasma device are presented and compared with the numerical solution of NLSE. (author)

  7. Calculation and experimental investigation of multi-component ceramic systems

    International Nuclear Information System (INIS)

    Rother, M.

    1994-12-01

    This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si 3 N 4 , SiB 6 , BN, Al 4 C 3 , Be 2 C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al 2 O 3 , TiO 2 , BeO, SiO 2 , ZrO 2 ). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM) [de

  8. Modelling of HVDC wall bushing flashover in nonuniform rain

    International Nuclear Information System (INIS)

    Rizk, F.A.M.; Kamel, S.I.

    1991-01-01

    This paper presents the first mathematical model to provide necessary and sufficient conditions for flashover of an HVDC wall bushing under nonuniform rain. The suggested mechanism is initiated by streamer bridging of the dry zone enhanced by nonuniform voltage distribution along the bushing and within the dry zone. Fast voltage collapse across the dry zone die to energy stored in the bushing stray capacitance to ground leads to impulsive stressing of the wet part of the bushing. The nonuniform distribution of the impulse stress and the process of streamer bridging, fast voltage collapse as well as subsequent recharging of the bushing capacitances can lead to continued discharge propagation and flashover of the complete bushing. The findings of the model have been satisfactorily compared with previous experiments and field observations and can, for the first time, account for the following aspects of the flashover mechanism: critical dry zone length, polarity effect, specific leakage path, wet layer conductance per unit leakage length as well as the DC system voltage

  9. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  10. Simplified simulation of multicomponent isotope separation by gas centrifuge

    International Nuclear Information System (INIS)

    Guo Zhixiong; Ying Chuntong

    1995-01-01

    The expressions of diffusion equation for multicomponent isotope separation by gas centrifuge are derived by utilizing the simplified diffusion transport vector. A method of radial averaging which was restricted to a binary mixture is extended to multicomponent isotope mixtures by using an iterative scheme. A numerical analysis of tetradic UF 6 or SF 6 gas isotope separation by centrifuge is discussed when a special model of velocity distribution is given. The dependence of mutual separation factor for the components on their molecular weights' difference is obtained. Some aspects of the given model of gas fluid are also discussed

  11. A Multi-component Matrix Loop Algebra and Its Application

    International Nuclear Information System (INIS)

    Dong Huanhe; Zhang Ning

    2005-01-01

    A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra A M-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.

  12. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  13. Calculation of thermodynamic properties of multicomponent ionic reciprocal systems

    International Nuclear Information System (INIS)

    Saboungi, M.

    1980-01-01

    Thermodynamic properties of multicomponent ionic reciprocal systems are derived using the conformal ionic solution theory. The equations obtained are more general than previous equations and depend solely on the properties of the components and on those of the binary subsystems. The behavior of dilute solutions is carefully studied leading to a priori predictions of solubility products in multicomponent systems. The solubility products and the specific bond free energy for making an ion pair, e.g., the pair (A--X) in the binary solvent BY--CY, are shown to depend upon specific ionic interactions in the binary subsystems. The equations presented are compared with equations derived from prior theories

  14. Strategies for innovation in multicomponent reaction design.

    Science.gov (United States)

    Ganem, Bruce

    2009-03-17

    By generating structural complexity in a single step from three or more reactants, multicomponent reactions (MCRs) make it possible to synthesize target compounds with greater efficiency and atom economy. The history of such reactions can be traced to the mid-19th century when Strecker first produced alpha-aminonitriles from the condensation of aldehydes with ammonia and hydrogen cyanide. Recently, academic chemists have renewed their interest in MCRs. In part, the pharmaceutical industry has fueled this resurgence because of the growing need to assemble libraries of structurally complex substances for evaluation as lead compounds in drug discovery and development programs. The application of MCRs to that increasingly important objective remains limited by the relatively small number of such reactions that can be broadly applied to prepare biologically relevant or natural-product-like molecular frameworks. We were interested in applying logic-based approaches, such as our single reactant replacement (SRR) approach, as a way both to improve known MCRs and to design new multiple-component routes to bioactive structures. This Account provides several examples that illustrate the use of SRR with known MCRs as starting points for synthetic innovation in this area. As part of our working hypothesis, we initially explored strategies for engineering improvements into known MCRs, either by increasing the dimensionality--that is, changing an n-component to an (n + 1)-component reaction--or broadening the scope of useful input structures, or both. By exhaustively applying retrosynthetic analysis to the cognate MCR to identify and exploit alternative entry points into the overall reaction manifold, we have devised several such re-engineered MCRs. Serendipitous findings have also augmented the yield of useful developments from our logic-inspired approach. In some cases, we have identified surprising links between different compound families that provide useful new entry points

  15. Nonlinear magnetic electron tripolar vortices in streaming plasmas.

    Science.gov (United States)

    Vranjes, J; Marić, G; Shukla, P K

    2000-06-01

    Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

  16. Plasmas: from space to laboratory. 'Introduction to plasma physics' course

    International Nuclear Information System (INIS)

    Savoini, Philippe

    2011-01-01

    This course addresses the different basic concepts of plasma physics. After an introduction which addresses the plasma state, basic equations, the different theoretical approaches (orbitals, kinetic, multi-fluid, magnetohydrodynamics), and the different characteristic scales, waves are addressed and presented as a disordered electromagnetism: existence of plasma waves, generalities on waves, relationship of formal dispersion of plasmas, plasma without magnetic field (longitudinal, transverse, or low frequency wave), plasma with magnetic field (parallel, perpendicular, or arbitrary propagation). The next parts present various approaches: the particle-based approach (case of constant and uniform magnetic fields, case of non-uniform magnetic fields), the statistical approach (elements of kinetic theory, the collision phenomenon, the equilibrium state), and the fluid approach (fluid equations according to the multi-fluid theory, comparison with the particle-based approach, presentation of magnetohydrodynamics as the single-fluid model, validity of MHD)

  17. Optimal maintenance of multi-component systems: a review

    NARCIS (Netherlands)

    R.P. Nicolai (Robin); R. Dekker (Rommert)

    2006-01-01

    textabstractIn this article we give an overview of the literature on multi-component maintenance optimization. We focus on work appearing since the 1991 survey "A survey of maintenance models for multi-unit systems" by Cho and Parlar. This paper builds forth on the review article by Dekker et al.

  18. Isocyanide-mediated multicomponent synthesis of C-oximinoamidines.

    Science.gov (United States)

    Mercalli, Valentina; Meneghetti, Fiorella; Tron, Gian Cesare

    2013-11-15

    By capitalizing on the different reactivity of nitrile N-oxides with isocyanides and amine, α-oximinoamidines, a so far elusive class of compounds, have been synthesized in a straightforward way by reacting isocyanides, syn-chlorooximes, and amines in a multicomponent fashion.

  19. The Landau-Placzek ratio for multicomponent fluids

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Laidlaw, W.G.

    1972-01-01

    Under the assumption that the coupling between the sound modes and modes associated with heat and mass diffusion can be neglected, an expression for the Landau-Placzek ratio for multicomponent fluids is derived using thermodynamic fluctuation theory. Applications of the general formula to ternary

  20. Multi-component bi-Hamiltonian Dirac integrable equations

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu

    2009-01-15

    A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.

  1. Diffusion of elements and vacancies in multi-component systems

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří

    2014-01-01

    Roč. 60, MAR (2014), s. 338-367 ISSN 0079-6425 Institutional support: RVO:68081723 Keywords : multi-component diffusion * vacancy activity * manning theory * stress-driven diffusion Subject RIV: BJ - Thermodynamics Impact factor: 27.417, year: 2014

  2. Spinodal decomposition in multicomponent fluid mixtures: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren

    1996-01-01

    parameter, leading to large growth-exponent values, the dynamics in multicomponent fluids (p = 3, 4) is found to follow a t(1/3) growth law, where t is time, which we relate to a long-wavelength evaporation-condensation process. These findings, which are proposed to be consequences of the compact domain...

  3. Zener solutions for particle growth in multi-component alloys

    NARCIS (Netherlands)

    Vermolen, F.J.

    2006-01-01

    In this paper the Zener theory on precipitate growth in supersaturated alloys for planar, cylindrical and spherical geometries is extended to multi-component alloys. The obtained solutions can be used to check the results from numerical simulations under simplified conditions. Further, the

  4. Diastereoselective multicomponent synthesis of dihydropyridones with an isocyanide functionality

    NARCIS (Netherlands)

    Paravidino, M.; Bon, R.S.; Scheffelaar, R.; Vugts, D.J.; Znabet, A.; Schmitz, R.F.; de Kanter, F.J.J.; Lutz, M.; Spek, A.L; Groen, M.B.; Orru, R.V.A.

    2006-01-01

    In a search for new multicomponent strategies leading to valuable small heterocycles, a new highly diastereoselective four-component reaction (4CR) was found in which a phosphonate, nitriles, aldehydes, and isocyanoacetates combine to afford functionalized 3-isocyano-3,4-dihydro-2-pyridones. In this

  5. Drying of liquid food droplets : enzyme inactivation and multicomponent diffusion

    NARCIS (Netherlands)

    Meerdink, G.

    1993-01-01

    In this thesis the drying of liquid food droplets is studied from three different points of view: drying kinetics, enzyme inactivation and multicomponent diffusion. Mathematical models are developed and validated experimentally.

    Drying experiments are performed with suspended

  6. Early reading intervention by means of a multicomponent reading game

    NARCIS (Netherlands)

    Ven, M.A.M. van de; Leeuw, L.C. de; Weerdenburg, M.W.C. van; Steenbeek-Planting, E.G.

    2017-01-01

    This study examined the effects of an intervention with a multicomponent reading game on the development of reading skills in 60 Dutch primary school children with special educational needs. The game contains evidence-based reading exercises and is based on principles of applied gaming. Using a

  7. Kelvin Equation for a Non-Ideal Multicomponent Mixture

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1997-01-01

    The Kelvin equation is generalized by application to a case of a multicomponent non-ideal mixture. Such a generalization is necessary in order to describe the two-phase equilibrium in a capillary medium with respect to both normal and retrograde condensation. The equation obtained is applied...... to the equilibrium state of a hydrocarbon mixture ina gas-condensate reservoir....

  8. On new electromagnetic waves in a multicomponent insulator

    NARCIS (Netherlands)

    Dubovik, V. M.

    The dispersion equation for additional transverse electromagnetic waves in a multicomponent amorphous insulator is analyzed in the vicinity of a narrow absorption line. Such waves can be excited due to spatial dispersion associated with fluctuation of the polarizability of insulator molecules. The

  9. A characterization of Markovian homogeneous multicomponent Gaussian fields

    International Nuclear Information System (INIS)

    Ekhaguere, G.O.S.

    1980-01-01

    Necessary and sufficient conditions are given for a certain class of homogeneous multicomponent Gaussian generalized stochastic fields to possess a Markov property equivalent to Nelson's. The class of Markov fields so characterized has a as a cubclass the class of Markov fields which lead by Nelson's Reconstruction Theorem to some covariant (free) quantum fields. (orig.)

  10. Early Reading Intervention by Means of a Multicomponent Reading Game

    Science.gov (United States)

    van de Ven, M.; de Leeuw, L.; van Weerdenburg, M.; Steenbeek-Planting, E. G.

    2017-01-01

    This study examined the effects of an intervention with a multicomponent reading game on the development of reading skills in 60 Dutch primary school children with special educational needs. The game contains evidence-based reading exercises and is based on principles of applied gaming. Using a multiple baseline approach, we tested children's…

  11. Multicomponent activation detector measurements of reactor neutron spectra

    International Nuclear Information System (INIS)

    Sandberg, J.; Aarnio, P. A.; Routti, J. T.

    1984-01-01

    Information on the neutron flux is required in many applications of research reactors, such as activation analysis or radiation damage measurements. Flux spectrum measurements are commonly carried out with activation foils. The reaction types used are threshold reactions in the fast energy region, resonance reactions in the intermediate region and neutron capture reactions with l/v-cross section in the thermal region. It has been shown that it is possible to combine several detector elements into homogeneous multicomponent detectors. The activities of all detector reaction products can be determined with a single gamma spectrum measurement. The multicomponent principle sets some restrictions on the choice of detector reactions, for example, each product nuclide may be produced in one reaction only. Separate multicomponent threshold and resonance detectors were designed for the fast and intermediate regions, respectively. The detectors were fabricated in polyethylene irradiation capsules or quartz glass ampoules, and they were irradiated in a cadmium cover. The detectors were succesfully used in the irradiation ring and in the core of a Triga reactor. The intermediate and fast neutron spectrum was unfolded with the least-squares unfolding program LOUHI. According to the preliminary results multicomponent activation detectors might constitute a convenient means for carrying out routine neutron spectrum measurements in research reactors. (orig.)

  12. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  13. Self-focusing of laser beam crossing a laser plasma

    International Nuclear Information System (INIS)

    Bakos, J.S.; Foeldes, I.B.; Ignacz, P.N.; Soerlei, Zs.

    1983-03-01

    A crossed-beam experiment was performed to clarify the mechanism of self-focusing in a laser produced spark. The plasma was created by one beam and self-focusing was observed in the weak probe beam which crossed the plasma. Experimental results show that the cause of self-focusing is the nonuniform heating mechanism. (author)

  14. Timing of pathogen adaptation to a multicomponent treatment.

    Directory of Open Access Journals (Sweden)

    Romain Bourget

    Full Text Available The sustainable use of multicomponent treatments such as combination therapies, combination vaccines/chemicals, and plants carrying multigenic resistance requires an understanding of how their population-wide deployment affects the speed of the pathogen adaptation. Here, we develop a stochastic model describing the emergence of a mutant pathogen and its dynamics in a heterogeneous host population split into various types by the management strategy. Based on a multi-type Markov birth and death process, the model can be used to provide a basic understanding of how the life-cycle parameters of the pathogen population, and the controllable parameters of a management strategy affect the speed at which a pathogen adapts to a multicomponent treatment. Our results reveal the importance of coupling stochastic mutation and migration processes, and illustrate how their stochasticity can alter our view of the principles of managing pathogen adaptive dynamics at the population level. In particular, we identify the growth and migration rates that allow pathogens to adapt to a multicomponent treatment even if it is deployed on only small proportions of the host. In contrast to the accepted view, our model suggests that treatment durability should not systematically be identified with mutation cost. We show also that associating a multicomponent treatment with defeated monocomponent treatments can be more durable than associating it with intermediate treatments including only some of the components. We conclude that the explicit modelling of stochastic processes underlying evolutionary dynamics could help to elucidate the principles of the sustainable use of multicomponent treatments in population-wide management strategies intended to impede the evolution of harmful populations.

  15. Vortex dynamics in plasmas and fluids

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Lynov, Jens-Peter; Hesthaven, J.S.

    1994-01-01

    The existence and dynamics of vortical structures in both homogeneous and inhomogeneous systems will be discussed. In particular the dynamics of monopolar and dipolar vortices in a plasma with nonuniform density and in a rotating fluid with varying Coriolis force is described. The role of vortica...

  16. The demagnetizing field of a non-uniform rectangular prism

    DEFF Research Database (Denmark)

    Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis

    2010-01-01

    The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...

  17. Nonuniform nuclear structures and QPOs in giant flares

    International Nuclear Information System (INIS)

    Sotani, Hajime

    2012-01-01

    We show that the shear modes in the neutron star crust are quite sensitive to the existence of nonuniform nuclear structures, the so-called “pasta”. Due to the existence of pasta phase, the frequencies of shear modes are reduced. Since the torsional shear frequencies depend strongly on the structure of pasta phase, through the observations of stellar oscillations, one can probe the pasta structure in the crust. Additionally, considering the effect of pasta phase, we show the possibility to explain all the observed frequencies in the SGR 1806-20 with using only crust torsional oscillations.

  18. Nonuniform nuclear structures and QPOs in giant flares

    Energy Technology Data Exchange (ETDEWEB)

    Sotani, Hajime [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-11-12

    We show that the shear modes in the neutron star crust are quite sensitive to the existence of nonuniform nuclear structures, the so-called 'pasta'. Due to the existence of pasta phase, the frequencies of shear modes are reduced. Since the torsional shear frequencies depend strongly on the structure of pasta phase, through the observations of stellar oscillations, one can probe the pasta structure in the crust. Additionally, considering the effect of pasta phase, we show the possibility to explain all the observed frequencies in the SGR 1806-20 with using only crust torsional oscillations.

  19. Integer channels in nonuniform non-equilibrium 2D systems

    Science.gov (United States)

    Shikin, V.

    2018-01-01

    We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.

  20. A non-uniform expansion mechanical safety model of the stent.

    Science.gov (United States)

    Yang, J; Huang, N; Du, Q

    2009-01-01

    Stents have a serial unstable structure that readily leads to non-uniform expansion. Non-uniform expansion in turn creates a stent safety problem. We explain how a stent may be simplified to a serial unstable structure, and present a method to calculate the non-uniform expansion of the stent on the basis of the serial unstable structure. We propose a safety criterion based on the expansion displacement instead of the strain, and explain that the parameter Rd, the ratio of the maximum displacement of the elements to normal displacement, is meaningful to assess the safety level of the stent. We also examine how laser cutting influences non-uniform expansion. The examples illustrate how to calculate the parameter Rd to assess non-uniform expansion of the stent, and demonstrate how the laser cutting offset and strengthening coefficient of the material influence the stent expansion behaviour. The methods are valuable for assessing stent safety due to non-uniform expansion.

  1. Interaction of modulated REB with plasma, formed at its transit through high-density neutral gases

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Sotnikov, G.V.; Uskov, V.V.

    2003-01-01

    The theoretical and experimental results of investigations of the relativistic electron beam interactions with plasma, created during its penetration into neutral gas of large pressure, are presented. It is shown that by using of deeply modulated beam it is possible to avoid the depressive influence of dissipation and longitudinal nonuniform plasma density on the beam-plasma interaction efficiency

  2. Illumination non-uniformity of spirally wobbling beam in heavy ion fusion

    International Nuclear Information System (INIS)

    Suzuki, T.; Noguchi, K.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A.I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. The illumination non-uniformity allowed is less than a few percent in inertial fusion target implosion. Heavy ion beam (HIB) accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. In this paper the HIBs wobbling illumination scheme was optimized. (paper)

  3. Physical Limitations To Nonuniformity Correction In IR Focal Plane Arrays

    Science.gov (United States)

    Scribner, D. A.; Kruer, M. R.; Gridley, J. C.; Sarkady, K.

    1988-05-01

    Simple nonuniformity correction algorithms currently in use can be severely limited by nonlinear response characteristics of the individual pixels in an IR focal plane array. Although more complicated multi-point algorithms improve the correction process they too can be limited by nonlinearities. Furthermore, analysis of single pixel noise power spectrums usually show some level of 1 /f noise. This in turn causes pixel outputs to drift independent of each other thus causing the spatial noise (often called fixed pattern noise) of the array to increase as a function of time since the last calibration. Measurements are presented for two arrays (a HgCdTe hybrid and a Pt:Si CCD) describing pixel nonlinearities, 1/f noise, and residual spatial noise (after nonuniforming correction). Of particular emphasis is spatial noise as a function of the lapsed time since the last calibration and the calibration process selected. The resulting spatial noise is examined in terms of its effect on the NEAT performance of each array tested and comparisons are made. Finally, a discussion of implications for array developers is given.

  4. Going from microscopic to macroscopic on nonuniform growing domains.

    Science.gov (United States)

    Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K

    2012-08-01

    Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.

  5. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  6. Laterally excited flexible tanks with nonuniform density liquid

    International Nuclear Information System (INIS)

    Tang, Yu

    1996-01-01

    A study of the dynamic responses of flexible tanks containing nonuniform liquid under horizontal base excitations is presented. The system considered is an upright, circular cylindrical tank filled with an incompressible and inviscid liquid in which the density increases with the liquid depth. Only the impulsive components of response are considered in this study since the convective components can be computed by considering the tank to be rigid. It is shown in this study that for tanks with height-to-radius ratios between 0.3 and 1.2, the response quantities may be estimated utilizing the rigid tank solutions. Also, it is found that the pressure distribution along the tank wall is not sensitive to the detailed distribution function of the liquid density, and that the base shear and moments for the tank with nonuniform liquid can be estimated conservatively by assuming that the tank is filled with an equivalent uniform liquid density that preserves the total liquid weight. Finally, a simple equation for evaluating the fundamental natural frequency of the system is proposed

  7. Identification of the material properties in nonuniform nanostructures

    International Nuclear Information System (INIS)

    Bao, Gang; Xu, Xiang

    2015-01-01

    This paper is concerned with addressing two significant challenges arising from quantifying mechanical properties of nanomaterials, namely nonuniformity of the nanomaterial and the high noise level of measurements. For nonuniformity, an explicit solution is derived for the general Euler–Bernoulli equation in terms of the Green function for the Poisson equation. Then, by examining a stochastic source, the systematic error may be removed from measurements, which leads to more accurate estimation of mechanical properties. Based on Itô integral properties, three deterministic Fredholm integral equations can be deduced to extract the stiffness and the structure of the random source from measured data. To overcome ill-posedness and high nonlinearity in solving the Fredholm equations, a Tikhonov regularization method is developed with an a priori strategy of choosing the regularization parameter. Moreover, under a regularity assumption for the stiffness coefficient and structures of the random source, the convergence rate can be obtained in the sense of probability. Numerical examples are presented to illustrate the validity and effectiveness of the novel model and regularization method. (paper)

  8. Nonuniform code concatenation for universal fault-tolerant quantum computing

    Science.gov (United States)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  9. Fluxon dynamics in long Josephson junctions in the presence of a temperature gradient or spatial nonuniformity

    DEFF Research Database (Denmark)

    Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig

    1997-01-01

    Fluxon dynamics in nonuniform Josephson junctions was studied both experimentally and theoretically. Two types of nonuniform junctions were considered: the first type had a nonuniform spatial distribution of critical and bias currents and the second had a temperature gradient applied along...... the junction. An analytical expression for the I-V curve in the presence of a temperature gradient or spatial nonuniformity was derived. It was shown that there is no static thermomagnetic Nernst effect due to Josephson fluxon motion despite the existence of a force pushing fluxons in the direction of smaller...

  10. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  11. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    Science.gov (United States)

    Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi

    2018-05-01

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

  12. Precipitation behavior of uranium in multicomponent solution by oxalic acid

    International Nuclear Information System (INIS)

    Shin, Y.J.; Kim, I.S.; Lee, W.K.; Shin, H.S.; Ro, S.G.

    1996-01-01

    A study on the precipitation of uranium by oxalic acid was carried out in a multicomponent solution. The precipitation method is usually applied to the treatment of radioactive waste and the recovery of uranium from a uranium-scrap contaminated with impurities. In these cases, the problem is how to increase the precipitation yield of target element and to prevent impurities from coprecipitation. The multicomponent solution in the present experiment was prepared by dissolving U, Nd, Cs and Sr in nitric acid. The effects of concentrations of oxalic acid and ascorbic acid on the precipitation yield and purity of uranium were observed. As results of the study, the maximum precipitation yield of uranium is revealed to be about 96.5% and the relative precipitation ratio of Nd, Cs and Sr versus uranium are discussed at the condition of the maximum precipitation yield of uranium, respectively. (author). 11 refs., 5 figs., 1 tab

  13. Temporal high-pass non-uniformity correction algorithm based on grayscale mapping and hardware implementation

    Science.gov (United States)

    Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo

    2015-08-01

    In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.

  14. Interaction of the electromagnetic waves and non-magnetized plasmas

    International Nuclear Information System (INIS)

    Sun Aiping; Qiu Xiaoming; Dong Yuying; Li Liqiong

    2002-01-01

    The propagation of electromagnetic waves with 0.5 - 10 GHz in a non-magnetized collisional plasma slab is studied numerically. The change in the absorbed power, reflected power and transmitted power of the electromagnetic wave with collisional frequency of electrons and neutral atoms in plasma from 0.1 - 10 GHz, is calculated, in the condition of the uniform plasma with density of 10 10 or 10 11 cm -3 and depth of 10 cm, and the non-uniform plasma with density distribution of n = n 0 exp[2(z/d-1)] and depth of 10 cm, respectively. The results show that the absorbed power in either uniform or non-uniform plasma is large when the plasma density is large and collision frequency is high, and the peak value is 90%

  15. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  16. Effective electrodiffusion equation for non-uniform nanochannels.

    Science.gov (United States)

    Marini Bettolo Marconi, Umberto; Melchionna, Simone; Pagonabarraga, Ignacio

    2013-06-28

    We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of a symmetric binary electrolyte in channels whose section is nanometric and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one- and three-dimensional solutions of the electrokinetic equations.

  17. Vacuum polarisation in some static nonuniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Calucci, G. [Trieste Univ. (Italy). Dip. di Fisica Teorica]|[INFN, Trieste (Italy)

    1995-11-01

    Vacuum polarisation in QED in presence of some configurations of external magnetic fields is investigated. The configuration considered correspond to fields is investigated. The configuration considered correspond to fields lying in a plane and without sources. The motion of a Dirac electron in this field configuration is studied and arguments are found to conclude that the lowest level gives the most important contribution. The result is that the main effect is not very different from the uniform case, the possibilities of calculating the corrections due to the uniformity is explicitly shown. A typical effect of nonuniformity of the field shows out in the refractivity of the field shows out in the refractivity of the vacuum.

  18. Decomposed Photo Response Non-Uniformity for Digital Forensic Analysis

    Science.gov (United States)

    Li, Yue; Li, Chang-Tsun

    The last few years have seen the applications of Photo Response Non-Uniformity noise (PRNU) - a unique stochastic fingerprint of image sensors, to various types of digital forensic investigations such as source device identification and integrity verification. In this work we proposed a new way of extracting PRNU noise pattern, called Decomposed PRNU (DPRNU), by exploiting the difference between the physical andartificial color components of the photos taken by digital cameras that use a Color Filter Array for interpolating artificial components from physical ones. Experimental results presented in this work have shown the superiority of the proposed DPRNU to the commonly used version. We also proposed a new performance metrics, Corrected Positive Rate (CPR) to evaluate the performance of the common PRNU and the proposed DPRNU.

  19. Gamma camera system with improved means for correcting nonuniformity

    International Nuclear Information System (INIS)

    Lange, K.; Jeppesen, J.

    1979-01-01

    In a gamma camera system, means are provided for correcting nonuniformity or lack of correspondence between the positions of scintillations and their calculated and displayed by x-y coordinates. In an accumulation mode, pulse counts corresponding with scintillations in various areas of the radiation field are stored in memory locations corresponding with their locations in the radiation field. A uniform radiation source is presented to the detectors during the accumulation is interrupted at which time other locations have fewer counts in them. In the run mode, counts are stored in corresponding locations of a memory and these counts are compared continuously with those stored in the accumulation mode. Means are provided for injecting a number of counts during the run mode proportional to the difference between the counts accumulated during the accumulation mode in a given area increment and the counts that should have been obtained from a uniform source

  20. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  1. Non-Uniform Heat Transfer in Thermal Regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch

    , a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled....... Additionally, the experiments gave real comparative results, whereas the model to a certain degree more served to provide insight to the heat transfer processes taking place inside the regenera- tors, something that would be - if not impossible - then highly impractical to do experimentally. It has been found......This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...

  2. A tuning method for nonuniform traveling-wave accelerating structures

    International Nuclear Information System (INIS)

    Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi

    2013-01-01

    The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)

  3. Vacuum polarisation in some static nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Calucci, G.

    1995-11-01

    Vacuum polarisation in QED in presence of some configurations of external magnetic fields is investigated. The configuration considered correspond to fields is investigated. The configuration considered correspond to fields lying in a plane and without sources. The motion of a Dirac electron in this field configuration is studied and arguments are found to conclude that the lowest level gives the most important contribution. The result is that the main effect is not very different from the uniform case, the possibilities of calculating the corrections due to the uniformity is explicitly shown. A typical effect of nonuniformity of the field shows out in the refractivity of the field shows out in the refractivity of the vacuum

  4. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    International Nuclear Information System (INIS)

    Vasina, P; Hytkova, T; Elias, M

    2009-01-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  5. Analyte preconcentration in nanofluidic channels with nonuniform zeta potential

    Science.gov (United States)

    Eden, A.; McCallum, C.; Storey, B. D.; Pennathur, S.; Meinhart, C. D.

    2017-12-01

    It is well known that charged analytes in the presence of nonuniform electric fields concentrate at locations where the relevant driving forces balance, and a wide range of ionic stacking and focusing methods are commonly employed to leverage these physical mechanisms in order to improve signal levels in biosensing applications. In particular, nanofluidic channels with spatially varying conductivity distributions have been shown to provide increased preconcentration of charged analytes due to the existence of a finite electric double layer (EDL), in which electrostatic attraction and repulsion from charged surfaces produce nonuniform transverse ion distributions. In this work, we use numerical simulations to show that one can achieve greater levels of sample accumulation by using field-effect control via wall-embedded electrodes to tailor the surface potential heterogeneity in a nanochannel with overlapped EDLs. In addition to previously demonstrated stacking and focusing mechanisms, we find that the coupling between two-dimensional ion distributions and the axial electric field under overlapped EDL conditions can generate an ion concentration polarization interface in the middle of the channel. Under an applied electric field, this interface can be used to concentrate sample ions between two stationary regions of different surface potential and charge density. Our numerical model uses the Poisson-Nernst-Planck system of equations coupled with the Stokes equation to demonstrate the phenomenon, and we discuss in detail the driving forces behind the predicted sample enhancement. The numerical velocity and salt concentration profiles exhibit good agreement with analytical results from a simplified one-dimensional area-averaged model for several limiting cases, and we show predicted amplification ratios of up to 105.

  6. Restoration of non-uniform exposure motion blurred image

    Science.gov (United States)

    Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng

    2014-11-01

    Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.

  7. THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R. [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Parmentier, Vivien, E-mail: mrline@ucsc.edu [Department of Astronomy and Astrophysics, University of California–Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-03-20

    We model the impact of nonuniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1–1.7 μm). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the “patchy cloud-high mean molecular weight” degeneracy exists. We also explore the degeneracy of nonuniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud-free high mean molecular weight warm Neptune that both cloud-free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key finding is that the HST WFC3 transit transmission spectra of two well-observed objects, the hot Jupiter HD 189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼100 ppm residual in the ingress and egress of the transit light curves, provided that the transit timing is known to seconds.

  8. Radio-frequency properties of stacked long Josephson junctions with nonuniform bias current distribution

    DEFF Research Database (Denmark)

    Filatrella, G; Pedersen, Niels Falsig

    1999-01-01

    We have numerically investigated the behavior of stacks of long Josephson junctions considering a nonuniform bias profile. In the presence of a microwave field the nonuniform bias, which favors the formation of fluxons, can give rise to a change of the sequence of radio-frequency induced steps...

  9. To the problem of spatial focusing of ultracold neutrons by nonuniform magnetic field. Eikonal approximation

    CERN Document Server

    Chen, T

    2002-01-01

    Motion of the ultracold neutrons in the nonuniform magnetic field with a square nonuniformity by two coordinates is considered. The Schroedinger equation is solved with application of the quasi-classical (eikonal) approach. The theoretical possibility of the neutrons spatial focusing with formation of the point focus and also the neutrons bunches is shown

  10. Testing for Nonuniform Differential Item Functioning with Multiple Indicator Multiple Cause Models

    Science.gov (United States)

    Woods, Carol M.; Grimm, Kevin J.

    2011-01-01

    In extant literature, multiple indicator multiple cause (MIMIC) models have been presented for identifying items that display uniform differential item functioning (DIF) only, not nonuniform DIF. This article addresses, for apparently the first time, the use of MIMIC models for testing both uniform and nonuniform DIF with categorical indicators. A…

  11. Parallel processing and non-uniform grids in global air quality modeling

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, Mikhail A.

    2002-01-01

    A large-scale global air quality model, running efficiently on a single vector processor, is enhanced to make more realistic and more long-term simulations feasible. Two strategies are combined: non-uniform grids and parallel processing. The communication through the hierarchy of non-uniform grids

  12. Aerolization During Boron Nanoparticle Multi-Component Fuel Group Burning Studies

    Science.gov (United States)

    2014-02-03

    overall energy density of the multi-component fuel mixture. Boron nanoparticle- doped multi-component hydrocarbon fuels represent a potential high...addressed, Boron nanoparticle- doped multi-component hydrocarbon fuels represent a potential high-efficiency, tactical fuel that could increase thrust...and micron-sized aluminum particles. Combustion and Flame 158(2): 354-368. Gan, Y., Y. S. Lim, and L. Qiao. 2012. Combustion of nanofluid fuels

  13. Toward a comprehensive UV laser ablation modeling of multicomponent materials—A non-equilibrium investigation on titanium carbide

    Science.gov (United States)

    Ait Oumeziane, Amina; Parisse, Jean-Denis

    2018-05-01

    Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.

  14. Non-uniformity calibration for MWIR polarization imagery obtained with integrated microgrid polarimeters

    Science.gov (United States)

    Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong

    2016-03-01

    Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.

  15. Wastewater diffusive dilution and sedimentation of the fine contaminated particles for nonuniform flow in open channels

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2018-01-01

    Full Text Available The influence of non-uniformity on mass transfer processes in open channels have been investigated under the action of urbanization factors. The study is related to the urgent problem of environmental degradation of water objects in urbanized areas. It is known that the water quality in the water objects depends on the manner in which the contaminants spread how they mix with the river water and diluted by it. The main results of the study consist of recommendations to incorporate non-uniformity factor to the calculation of diffusion dilution of wastewater and prediction of river processes. So the effect of the flow non-uniformity on the diffusion model of pollutants dilution and diffusion coefficient have been investigated. Formulas for the concentration profiles calculating and the average concentration of fine particulate matter in nonuniform gradually varied flow were presented. The deposition length of suspended contaminants were received, based on the hydraulic resistance laws of nonuniform gradually varied flow.

  16. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  17. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  18. Properties of the tokamak edge plasma

    International Nuclear Information System (INIS)

    Wolff, H.

    1988-01-01

    A short review of some features of the edge plasma in limiter tokamaks is given. The limits of the simple one-dimensional scrape-off layer (SOL) model and the relation between the core plasma are discussed. Multifaceted asymmetric radiation from the edge (MARFE) phenomena and detached plasma are closely connected with the particle and energy balance of the SOL. Their occurrence is based on the relation of plasma parameters of the edge plasma to those of the core. Important problems of plasma wall interactions are the detection of the impurity sources and sinks and the study of the impurity transport and shielding. The non-uniform character of plasma wall interactions and their dependence on the discharge performance still renders difficult any theoretical forecast of impurity distribution and transport and calls for better diagnostics. (author)

  19. SAUSAGE WAVES IN TRANSVERSELY NONUNIFORM MONOLITHIC CORONAL TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk astrophysical observatory, Russion Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2015-09-10

    We investigate fast sausage waves in a monolithic coronal magnetic tube, modeled as a local density inhomogeneity with a continuous radial profile. This work is a natural extension of our previous results, obtained for a slab loop model for the case of cylindrical geometry. Using Kneser’s oscillating theorem, we provided the criteria for the existence of trapped and leaky wave regimes as a function of the profile features. For a number of density profiles there are only trapped modes for the entire range of longitudinal wave numbers. The phase speed of these modes tends toward the external Alfvén speed in the long wavelength limit. The generalized results were supported by the analytic solution of the wave equation for the specific density profiles. The approximate Wentzel–Kramers–Brillouin solutions allowed us to obtain the desired dispersion relations and to study their properties as a function of the profile parameters. The multicomponent quasi-periodic pulsations in flaring loops, observed on 2001 May 2 and 2002 July 3, are interpreted in terms of the transversely fundamental trapped fast sausage mode with several longitudinal harmonics in a smooth coronal waveguide.

  20. Pumping tests in nonuniform aquifers - The radially symmetric case

    Science.gov (United States)

    Butler, J.J.

    1988-01-01

    tests in nonuniform aquifers. The relative diffusivity of material on either side of a discontinuity is shown to be the major factor in controlling flow behavior during the period in which the front of the cone of depression is moving across the discontinuity. Though resulting from an analysis of flow in an idealized configuration, the insights of this work into flow behavior during a pumping test are applicable to a wide class of nonuniform units. ?? 1988.

  1. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    Science.gov (United States)

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  2. Viscosity and diffusivity in melts: from unary to multicomponent systems

    Science.gov (United States)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  3. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.

  4. Laboratory experiments on plasma jets in a magnetic field using high-power lasers

    Directory of Open Access Journals (Sweden)

    Nishio K.

    2013-11-01

    Full Text Available The experiments to simulate astrophysical jet generation are performed using Gekko XII (GXII HIPER laser system at the Institute of Laser Engineering. In the experiments a fast plasma flow generated by shooting a CH plane (10 μm thickness is observed at the rear side of the plane. By separating the focal spot of the main beams, a non-uniform plasma is generated. The non-uniform plasma flow in an external magnetic field (0.2∼0.3 T perpendicular to the plasma is more collimated than that without the external magnetic field. The plasma β, the ratio between the plasma and magnetic pressure, is ≫ 1, and the magnetic Reynolds number is ∼150 in the collimated plasma. It is considered that the magnetic field is distorted by the plasma flow and enhances the jet collimation.

  5. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    Science.gov (United States)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  6. Experimental study of multi-component separation by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou, M.S.; Liang, X.W.; Chen, W.N.; Yin, Y.T.

    2006-01-01

    Stable isotopes are applied in many areas and most stable isotopes are multi-component, This paper presents experimental results of several stable isotopes separation conducted in Tsinghua University by using ultra-speed gas centrifuges. Xe, WF 6 , TeF 6 , SiHCl 3 , SiF 4 were chosen as the process gases. By adjusting some of the centrifuge's parameters, the suitable centrifuge parameters for different process gas separations were found and the overall unit separation factors γ 0 were obtained by means of single gas centrifuge separation. The experimental results show that with appropriate process gases, stable isotope separation by gas centrifuge was effective. (authors)

  7. Biosorption of Metals from Multi-Component Bacterial Solutions

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-01-01

    The method of extraction of metals from industrial solutions by means of economical and easy to apply biosorbents in subtropics such as products of tea manufacturing, moss, microorganisms is described. The multi-component solutions obtained in the process of leaching of ores, rocks and industrial wastes by peat suspension were used in the experiments. The element composition of sorbent biomass and solutions was investigated by epithermal neutron activation analysis and by atomic absorption spectrometry. The results obtained evidence that the used biosorbents are applicable for extraction of the whole set of heavy metals and actinides (U, Th, Cu, Mn, Fe, Pb, Li, Rb, Sr, Cd, As, Co and others) from industrial solutions.

  8. The multicomponent 2D Toda hierarchy: dispersionless limit

    International Nuclear Information System (INIS)

    Mañas, Manuel; Alonso, Luis Martínez

    2009-01-01

    The factorization problem of the multi-component 2D Toda hierarchy is used to analyze the dispersionless limit of this hierarchy. A dispersive version of the Whitham hierarchy defined in terms of scalar Lax and Orlov–Schulman operators is introduced and the corresponding additional symmetries and string equations are discussed. Then, it is shown how KP and Toda pictures of the dispersionless Whitham hierarchy emerge in the dispersionless limit. Moreover, the additional symmetries and string equations for the dispersive Whitham hierarchy are studied in this limit

  9. Non-uniform sampling and wide range angular spectrum method

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Byun, Chun-Won; Oh, Himchan; Lee, JaeWon; Pi, Jae-Eun; Heon Kim, Gi; Lee, Myung-Lae; Ryu, Hojun; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-01-01

    A novel method is proposed for simulating free space field propagation from a source plane to a destination plane that is applicable for both small and large propagation distances. The angular spectrum method (ASM) was widely used for simulating near field propagation, but it caused a numerical error when the propagation distance was large because of aliasing due to under sampling. Band limited ASM satisfied the Nyquist condition on sampling by limiting a bandwidth of a propagation field to avoid an aliasing error so that it could extend the applicable propagation distance of the ASM. However, the band limited ASM also made an error due to the decrease of an effective sampling number in a Fourier space when the propagation distance was large. In the proposed wide range ASM, we use a non-uniform sampling in a Fourier space to keep a constant effective sampling number even though the propagation distance is large. As a result, the wide range ASM can produce simulation results with high accuracy for both far and near field propagation. For non-paraxial wave propagation, we applied the wide range ASM to a shifted destination plane as well. (paper)

  10. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  11. Coronal heating by Alfven waves dissipation in compressible nonuniform media

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The possibility to produce small scales and then to efficiently dissipate energy has been studied by Malara et al. [1992b] in the case of MHD disturbances propagating in an weakly dissipative incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend this work to include both compressibility and the third component for vector quantities. Numerical simulations show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. These effects give rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. Rough estimates of the typical times the various dynamical processes take to produce small scales show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin

  12. Evaluation of nonuniform field exposures with coupling factors

    International Nuclear Information System (INIS)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo

    2015-01-01

    In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S 11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance. (paper)

  13. Divergent and nonuniform gene expression patterns in mouse brain

    Science.gov (United States)

    Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.

    2010-01-01

    Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311

  14. Resource reflecting functor and its application to non-uniformity

    Science.gov (United States)

    Srinivasan, Priyaa Varshinee; Sanders, Barry C.; Cockett, Robin

    In this work, we formulate an abstract approach to translate one resource theory to another. We adopt the notion of resource theories as partitioned symmetric monoidal categories and extend this notion by considering resource-reflecting functors between resource theories. A functor F is a structure preserving map and F is said to be resource-reflecting if F (g) being a free transformation implies that the transformation g is also free. Thus, a resource-reflecting functor demonstrates that the existence of a free transformation between two resources in the domain resource theory can be inferred from the existence of a free transformation in the codomain theory. As an example, we construct one such functor from the resource theory of non-uniformity to a resource theory of majorization. Thus, our work lays a foundation for expressing similarities between resource theories and for applying results achieved in one resource theory to another. An abstract approach to the translation between theories enables common patterns to be identified between resource theories thereby reducing the effort of solving the same problem for different theories. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the IQIM, which is an NSF Physics Frontiers Centre (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-2644).

  15. The Influence of nonuniform activity distribution on cellular dosimetry

    International Nuclear Information System (INIS)

    Naling, Song; Yuan, Tian; Liangan, Zhang; Guangfu, Dai

    2008-01-01

    S value is an important parameter in determination of absorbed dose in nuclear medicine and radiobiology. The distribution of radioactivity shows significant influence on the S value especially in microdosimetry. In present work, a semi Monte Carlo Model is developed to calculate the microdosimetric cellular S value for different micro-distributions of radioactivity, i.e. uniform, linear increase, linear decrease, exponential increase, exponential decrease and centroid distribution. Emission of alpha particles is simulated by Monte Carlo model and the energy imparted to the target volume is calculated by the analytical Continuous Slowing Down Approximation (CSDA) model and the spline interpolation of range-energy relationship. We calculate tables of S values for 213 Po and 210 Po with various dimensions and most important with various possible micro-distributions of radioactivity, such as linear increase, linear decrease, exponential increase and exponential decrease. Then we compare the S values from cell to cell of uniform distribution with the Hamacher's results to test the feasibility of our model. S values of some nonuniform micro-distributions are compared to the corresponding data of the uniform distribution. The possible sources of these differences are theoretical analyzed. (author)

  16. Micromagnetics of thermally activated switching in nonuniformly magnetized nanodots

    International Nuclear Information System (INIS)

    Torres, L.; Lopez-Diaz, L.; Moro, E.; Francisco, C. de; Alejos, O.

    2001-01-01

    Patterned magnetic elements are being proposed as media for the future ultrahigh density storage systems. The equilibrium states of different patterned magnetic dots at zero temperature have been studied in numerous micromagnetic works while in the last year some studies have begun to include the effect of temperature in the computations. In this research a stochastic dynamic micromagnetic study is carried out for rectangular magnetic dots with size 10 by 3.1 times the exchange length, patterned in a film with a thickness of 5 times the exchange length. Two kinds of nonuniform magnetized nanodots are studied in detail: those in which the state prior to the switching follows the shape of a 'C' and those following an 'S'. In both cases a field near to the zero-temperature switching field is applied and then the thermally activated switching is observed. The dependence of the switching time on temperature is analyzed. It is observed how for the 'C' configuration an Arrhenius-like behavior is obtained in a large temperature window while this is not the case for the 'S' configuration. The micromagnetic structure of the switching thermally activated modes leading to these behaviors is also studied

  17. Evaluation of nonuniform field exposures with coupling factors.

    Science.gov (United States)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo

    2015-10-21

    In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance.

  18. Alternative methods for evaluation of non-uniformity in nuclear medicine images

    International Nuclear Information System (INIS)

    Rasaneh, S.; Rajabi, H.; Hajizadeh, E.

    2005-01-01

    Non-uniformity test is the most essential in daily quality control procedures of nuclear medicine equipment's. However, the calculation of non-uniformity is hindered due to high level of noise in nuclear medicine data. Non-uniformity may be considered as a type of systematic error while noise is certainly a random error. The present methods of uniformity evaluation are not able to distinguish between systematic and random error and therefore produce incorrect results when noise is significant. In the present study, two hypothetical methods have been tested for evaluation of non-uniformity in nuclear medicine images. Materials and Methods: Using the Monte Carlo method, uniform and non-uniform flood images of different matrix sizes and different counts were generated. The uniformity of the images was calculated using the conventional method and proposed methods. The results were compared with the known non-uniformity data of simulated images. Results: It was observed that the value of integral uniformity never went below the recommended values except in small matrix size of high counts (more than 80 millions counts). The differential uniformity was quite insensitive to the degree of non-uniformity in large matrix size. Matrix size of 64*64 was only found to be suitable for the calculation of differential uniformity. It was observed that in uniform images, a small amount of non-uniformity changes the p-value of Kolmogorov-Smirnov test and noise amplitude of fast fourier transformation test significantly while the conventional methods failed to detect the nonuniformity. Conclusion: The conventional methods do not distinguish noise, which is always present in the data and occasional non-uniformity at low count density. In a uniform intact flood image, the difference between maximum and minimum pixel count (the value of integral uniformity) is much more than the recommended values for non-uniformity. After filtration of image, this difference decreases, but remains high

  19. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.C.

    1979-08-15

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.

  20. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    International Nuclear Information System (INIS)

    Chang, S.C.

    1979-01-01

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane

  1. The multicomponent (2+1)-dimensional Glachette–Johnson (GJ) equation hierarchy and its super-integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2008-01-01

    This paper presents a set of multicomponent matrix Lie algebra, which is used to construct a new loop algebra à M . By using the Tu scheme, a Liouville integrable multicomponent equation hierarchy is generated, which possesses the Hamiltonian structure. As its reduction cases, the multicomponent (2+1)-dimensional Glachette–Johnson (GJ) hierarchy is given. Finally, the super-integrable coupling system of multicomponent (2+1)-dimensional GJ hierarchy is established through enlarging the spectral problem

  2. Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas

    Science.gov (United States)

    Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG

    2018-01-01

    Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.

  3. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    International Nuclear Information System (INIS)

    Finn, John M.

    2015-01-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  4. Gas dynamic improvement of the axial compressor design for reduction of the flow non-uniformity level

    Science.gov (United States)

    Matveev, V. N.; Baturin, O. V.; Kolmakova, D. A.; Popov, G. M.

    2017-01-01

    Circumferential nonuniformity of gas flow is one of the main problems in the gas turbine engine. Usually, the flow circumferential nonuniformity appears near the annular frame located in the flow passage of the engine. The presence of circumferential nonuniformity leads to the increased dynamic stresses in the blade rows and the blade damage. The goal of this research was to find the ways of the flow non-uniformity reduction, which would not require a fundamental changing of the engine design. A new method for reducing the circumferential nonuniformity of the gas flow was proposed that allows the prediction of the pressure peak values of the rotor blades without computationally expensive CFD calculations.

  5. Communication: A new paradigm for structure prediction in multicomponent systems

    International Nuclear Information System (INIS)

    Schebarchov, D.; Wales, D. J.

    2013-01-01

    We analyse the combinatorial aspect of global optimisation for multicomponent systems, which involves searching for the optimal chemical ordering by permuting particles corresponding to different species. The overall composition is presumed fixed, and the geometry is relaxed after each permutation in order to relieve local strain. From ideas used to solve graph partitioning problems we devise a deterministic search scheme that outperforms (by orders of magnitude) conventional and self-guided basin-hopping global optimisation. The search is guided by the energy gain from either swapping particles i and j (ΔE ij ) or changing the identity of particles i (ΔE i ). These quantities are derived from the underlying (arbitrary) energy function, hence not constituting external bias, and for site-separable force fields each ΔE i can be approximated simply and efficiently. In our self-guided variant of basin-hopping, particles are weighted by an approximate ΔE i when randomly selected for an exchange, yielding a significant improvement for segregated multicomponent systems with modest particle size mismatch

  6. A multiple multicomponent approach to chimeric peptide-peptoid podands.

    Science.gov (United States)

    Rivera, Daniel G; León, Fredy; Concepción, Odette; Morales, Fidel E; Wessjohann, Ludger A

    2013-05-10

    The success of multi-armed, peptide-based receptors in supramolecular chemistry traditionally is not only based on the sequence but equally on an appropriate positioning of various peptidic chains to create a multivalent array of binding elements. As a faster, more versatile and alternative access toward (pseudo)peptidic receptors, a new approach based on multiple Ugi four-component reactions (Ugi-4CR) is proposed as a means of simultaneously incorporating several binding and catalytic elements into organizing scaffolds. By employing α-amino acids either as the amino or acid components of the Ugi-4CRs, this multiple multicomponent process allows for the one-pot assembly of podands bearing chimeric peptide-peptoid chains as appended arms. Tripodal, bowl-shaped, and concave polyfunctional skeletons are employed as topologically varied platforms for positioning the multiple peptidic chains formed by Ugi-4CRs. In a similar approach, steroidal building blocks with several axially-oriented isocyano groups are synthesized and utilized to align the chimeric chains with conformational constrains, thus providing an alternative to the classical peptido-steroidal receptors. The branched and hybrid peptide-peptoid appendages allow new possibilities for both rational design and combinatorial production of synthetic receptors. The concept is also expandable to other multicomponent reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  8. A multicomponent exercise program for institutionalized older adults.

    Science.gov (United States)

    Justine, Maria; Hamid, Tengku Aizan

    2010-10-01

    This study examined the effects of a multicomponent exercise program on depression and quality of life in institutionalized older adults. A quasi-experimental pretest-posttest design was used. Participants were recruited from a publicly funded shelter home in Seremban, Negeri Sembilan Malaysia. The experimental group consisted of 23 volunteers 60 or older who performed 60 minutes of supervised exercise three times per week for 12 weeks. The control group consisted of 20 volunteers who continued with a sedentary lifestyle. At 12 weeks, the exercise group demonstrated an improvement in quality of life by 10.74% (p > 0.05) but not depression (-1.6%, p > 0.05). The control group demonstrated a decrease in both quality of life by 11.26% (p > 0.05) and level of depression by 17.7% (p > 0.05). This study suggests a multicomponent exercise program is a feasible intervention to improve quality of life in institutionalized older adults. Copyright 2010, SLACK Incorporated.

  9. Performance of an organic Rankine cycle with multicomponent mixtures

    International Nuclear Information System (INIS)

    Chaitanya Prasad, G.S.; Suresh Kumar, C.; Srinivasa Murthy, S.; Venkatarathnam, G.

    2015-01-01

    There is a renewed interest in ORC (organic Rankine cycle) systems for power generation using solar thermal energy. Many authors have studied the performance of ORC with different pure fluids as well as binary zeotropic mixtures in order to improve the thermal efficiency. It has not been well appreciated that zeotropic mixtures can also be used to reduce the size and cost of an ORC system. The main objective of this paper is to present mixtures that help reduce the cost while maintaining high thermal efficiency. The proposed method also allows us to design an optimum mixture for a given expander. This new approach is particularly beneficial for designing mixtures for small ORC systems operating with solar thermal energy. A number of examples are presented to demonstrate this concept. - Highlights: • The performance of an ORC operating with different zeotropic multicomponent mixtures is presented. • A thermodynamic method is proposed for the design of multicomponent mixtures for ORC power plants. • High exergy efficiency as well as high volumetric expander work can be achieved with appropriate mixtures. • The method allows design of mixtures that can be used with off-the-shelf positive displacement expanders

  10. Field experiment on multicomponent ion exchange in a sandy aquifer

    International Nuclear Information System (INIS)

    Bjerg, P.L.; Christensen, T.H.

    1990-01-01

    A field experiment is performed in a sandy aquifer in order to study ion exchange processes and multicomponent solute transport modeling. An injection of groundwater spiked with sodium and potassium chloride was performed over a continuous period of 37 days. The plume is monitored by sampling 350 filters in a spatial grid. The sampling aims at establishing compound (calcium, magnesium, potassium, sodium, chloride) breakthrough curves at various filters 15 to 100 m from the point of injection and areal distribution maps at various cross sections from 0 to 200 m from the point of injection. A three-dimensional multicomponent solute transport model will be used to model the field experiments. The chemical model includes cation exchange, precipitation, dissolution, complexation, ionic strength and the carbonate system. Preliminary results from plume monitoring show that the plume migration is relatively well controlled considering the scale and conditions of the experiment. The transverse dispersion is small causing less dilution than expected. The ion exchange processes have an important influence on the plume composition. Retardation of the injected ions is substantial, especially for potassium. Calcium exhibits a substantial peak following chloride due to release from the ion exchange sites on the sediment. (Author) (8 refs., 5 figs., tab.)

  11. NGC 3393: multi-component AGN feedback as seen by CHEERS

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Raymond, John C.; Storchi-Bergmann, Thaisa; Paggi, Alessandro; Wang, Junfeng; Risaliti, Guido

    2017-01-01

    Due to its low density, moderate ionization, and weak kinematics, the narrow line region (NLR) of active galactic nuclei (AGN) provides poweful diagnostics for investigating AGN feedback. The CHandra Extended Emission line Region Survey (CHEERS) is the ultimate investigation into resolved feedback in the NLR. We present results from our CHEERS investigations of NGC 3393. By imaging extended X-ray line emission of NGC 3393 with Chandra and optical line emission with Hubble's narrow-band filters, we are able to map out the simultaneous impact of photoionization, jets and an AGN disk-wind. When resolved on scales of ~10s of parsecs, the NLR of NGC 3393 shows a complex multi-component medium. Diagnostic line mapping indicates a Low-ionization Emmision Line Region (LINER) cocoon surrounding the outflow-evacuated cavities (in optical) and surrounding the supports the presence of collisional plasma (in X-rays). These physically distinct constituent regions can only be resolved by the high-resolution imaging that Chandra and HST enable.

  12. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  13. geometric optics and WKB method for electromagnetic wave propagation in an inhomogeneous plasma near cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Light, Max Eugene [Los Alamos National Laboratory

    2017-04-13

    This report outlines the theory underlying electromagnetic (EM) wave propagation in an unmagnetized, inhomogeneous plasma. The inhomogeneity is given by a spatially nonuniform plasma electron density ne(r), which will modify the wave propagation in the direction of the gradient rne(r).

  14. Nonlinear relativistic plasma resonance: Renormalization group approach

    Energy Technology Data Exchange (ETDEWEB)

    Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  15. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    Science.gov (United States)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  16. Analysis of Quantum Effects in Non-Uniformly Doped MOS Structures

    National Research Council Canada - National Science Library

    Fiegna, Claudio

    1997-01-01

    This paper presents results from the self-consistent solution of Schrodinger and Poisson equations obtained in one-dimensional non-uniformly doped MOS structures suitable for the fabrication of very short transistors...

  17. The magnetostriction in a superconductor-magnet system under non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xueyi; Jiang, Lang; Wu, Hao [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn [Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-15

    Highlights: • We studied firstly magnetostriction in HTS under non-uniform magnetic field. • The superconductors may be homogeneous and nonhomogeneous. • The magnetostrictions response of the HTS is sensitive to the critical current density and amplitude of the applied magnetic field. • The magnetostriction of nonhomogeneous HTS is larger than that of homogeneous HTS. - Abstract: This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.

  18. Factorization method for difference equations of hypergeometric type on nonuniform lattices

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Nodarse, R. [Departamento de Analisis Matematico, Universidad de Sevilla, Sevilla (Spain); Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain); Costas-Santos, R.S. [Departamento de Analisis Matematico, Universidad de Sevilla, Sevilla (Spain)

    2001-07-13

    We study the factorization of the hypergeometric-type difference equation of Nikiforov and Uvarov on nonuniform lattices. An explicit form of the raising and lowering operators is derived and some relevant examples are given. (author)

  19. Weighted backprojection implemented with a non-uniform attenuation map for improved SPECT quantitation

    International Nuclear Information System (INIS)

    Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.

    1988-01-01

    A method is developed to improve quantitation in SPECT imaging by using an attenuation compensation method which includes the correct non-uniform attenuation spatial distribution (''map''). The method is based on the technique of weighted back projection, previously developed for uniform attenuation. The method is tested by imaging a non-uniform phantom, reconstructing with the known attenuation map, and quantitatively comparing the resultant image with the known activity distribution. Reconstructed image profiles are dramatically improved in comparison to reconstructions without compensation or with an assumed uniform attenuation map. Contrast measurements further quantify the improvement. Line spread function distortions seen previously in non-uniform geometries are essentially eliminated by the method. Therefore, the method appears to be appropriate for these geometries, if the non-uniform map can be determined. Some additional image distortions introduced by the compensation method are noted and will require further study

  20. Liquid jets injected into non-uniform crossflow

    Science.gov (United States)

    Tambe, Samir

    An experimental study has been conducted with liquid jets injected transversely into a crossflow to study the effect of non-uniformities in the crossflow velocity distribution to the jet behavior. Two different non-uniform crossflows were created during this work, a shear-laden crossflow and a swirling crossflow. The shear-laden crossflow was generated by merging two independent, co-directional, parallel airstreams creating a shear mixing layer at the interface between them. The crossflow exhibited a quasi-linear velocity gradient across the height of the test chamber. By varying the velocities of the two airstreams, the sense and the slope of the crossflow velocity gradient could be changed. Particle Image Velocimetry (PIV) studies were conducted to characterize the crossflow. The parameter, UR, is defined as the ratio of the velocities of the two streams and governs the velocity gradient. A positive velocity gradient was observed for UR > 1 and a negative velocity gradient for UR Phase Doppler Particle Anemometry (PDPA) studies were conducted to study the penetration and atomization of 0.5 mm diameter water jets injected into this crossflow. The crossflow velocity gradient was observed to have a significant effect on jet penetration as well as the post breakup spray. For high UR (> 1), jet penetration increased and the Sauter Mean Diameter (SMD) distribution became more uniform. For low UR (Doppler Velocimetry (LDV) was used to study the crossflow velocities. The axial (Ux) and the tangential (Utheta) components of the crossflow velocity were observed to decrease with increasing radial distance away from the centerbody. The flow angle of the crossflow was smaller than the vane exit angle, with the difference increasing with the vane exit angle. Water jets were injected from a 0.5 mm diameter orifice located on a cylindrical centerbody. Multi-plane PIV measurements were conducted to study the penetration and droplet velocity distribution of the jets. The jets were

  1. Clinical implications of alternative TCP models for nonuniform dose distributions

    International Nuclear Information System (INIS)

    Deasy, J. O.

    1995-01-01

    Several tumor control probability (TCP) models for nonuniform dose distributions were compared, including: (a) a logistic/inter-patient-heterogeneity model, (b) a probit/inter-patient-heterogeneity model, (c) a Poisson/radioresistant-strain/identical-patients model, (d) a Poisson/inter-patient-heterogeneity model and (e) a Poisson/intra-tumor- and inter-patient-heterogeneity model. The models were analyzed in terms of the probability of controlling a single tumor voxel (the voxel control probability, or VCP), as a function of voxel volume and dose. Alternatively, the VCP surface can be thought of as the effect of a small cold spot. The models based on the Poisson equation which include inter-patient heterogeneity ((d) and (e)) have VCP surfaces (VCP as a function of dose and volume) which have a threshold 'waterfall' shape: below the waterfall (in dose), VCP is nearly zero. The threshold dose decreases with decreasing voxel volume. However, models (a), (b), and (c) all show a high probability of controlling a voxel (VCP>50%) with very low dose (e.g., 1 Gy) if the voxel is small (smaller than about 10 -3 of the tumor volume). Model (c) does not have the waterfall shape at low volumes due to the assumption of patient uniformity and a neglect of the effect of the clonogens which are more radiosensitive (and more numerous). Models (a) and (b) deviate from the waterfall shape at low volumes due to numerical differences between the functions used and the Poisson function. Hence, the Possion models which include inter-patient heterogeneities ((d) and (e)) are more sensitive to the effects of small cold spots than the other models considered

  2. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  3. Emittance growth caused by nonuniform charge distribution of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao; Zhang Zhenhai

    1993-09-01

    The nonlinear space charge effect of bunched beam in linac is one of the important reasons that induces the emittance growth because of the conversion of the field energy to kinetic energy. The authors have worked out the internal field energies associated with some nonuniform space change distributions of a bunched beam, such as Gaussian distribution, waterbag distribution and parabolic distribution. And the emittance growths caused by these nonuniformities are obtained

  4. Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian

    2007-01-01

    By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.

  5. Direct Determination of Wavenumbers of ULF Waves Using the Cluster Multipoint and Multicomponent Measurements

    Science.gov (United States)

    Grison, B.; Escoubet, C.; Santolik, O.; Cornilleau-Wehrlin, N.

    2013-12-01

    The wavenumber is a key parameter to understand the physics of the interactions between the electromagnetic waves and the ionized particles in space plasmas. Search-coil magnetometers and electric antennas measure time series of both magnetic and electric field fluctuations, respectively. The fleet of four Cluster spacecraft made possible to determine the full wave vector and even to differentiate the waves present at the same frequency in the spacecraft frame through various techniques: k-filtering analysis, wave telescope, phase differentiating method. However the fleet configuration (inter-spacecraft separation, tetrahedron elongation and planarity) limit the possibilities to use these techniques. From single spacecraft measurements, assumptions concerning the wave mode -and thus, concerning the physical processes- are usually required to derive the corresponding wavenumber. Using three orthogonal magnetic components and two electric antennas, it is possible to estimate n/Z where n is the refractive index and Z the transfer function of the interface between the plasma and the electric antennas. For ULF waves we assume Z=1 and we thus obtain the wavenumber. We test this hypothesis on a case where the spacecraft are in a close configuration in the distant cusp region and where we are able to apply the k-filtering analysis, too. The results obtained by multispacecraft and multicomponents analysis are close to each other and permit us to precise the value of Z. We test this procedure on several events (in various regions of the magnetosphere) in order to get more precise wave number measurements from the single spacecraft analysis. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1) under grant agreement n. 284520 (MAARBLE).

  6. The Effects of Nonuniform Illumination on the Electrical Performance of a Single Conventional Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Damasen Ikwaba Paul

    2015-01-01

    Full Text Available Photovoltaic (PV concentrators are a promising approach for lowering PV electricity costs in the near future. However, most of the concentrators that are currently used for PV applications yield nonuniform flux profiles on the surface of a PV module which in turn reduces its electrical performance if the cells are serially connected. One way of overcoming this effect is the use of PV modules with isolated cells so that each cell generates current that is proportional to the energy flux absorbed. However, there are some cases where nonuniform illumination also exists in a single cell in an isolated cells PV module. This paper systematically studied the effect of nonuniform illumination on various cell performance parameters of a single monocrystalline standard PV cell at low and medium energy concentration ratios. Furthermore, the effect of orientation, size, and geometrical shapes of nonuniform illumination was also investigated. It was found that the effect of nonuniform illumination on various PV cell performance parameters of a single standard PV cell becomes noticeable at medium energy flux concentration whilst the location, size, and geometrical shape of nonuniform illumination have no effect on the performance parameters of the cell.

  7. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  8. A method to measure the mean thickness and non-uniformity of non-uniform thin film by alpha-ray thickness gauge

    International Nuclear Information System (INIS)

    Miyahara, Hiroshi; Yoshida, Makoto; Watanabe, Tamaki

    1977-01-01

    The α-ray thickness gauge is used to measure non-destructively the thicknesses of thin films, and up to the present day, a thin film with uniform thickness is only taken up as the object of α-ray thickness gauge. When the thickness is determined from the displacement between the absorption curves in the presence and absence of thin film, the absorption curve must be displaced in parallel. When many uniform particles were dispersed as sample, the shape of the absorption curve was calculated as the sum of many absorption curves corresponding to the thin films with different thicknesses. By the comparison of the calculated and measured absorption curves, the number of particles, or the mean superficial density can be determined. This means the extension of thickness measurement from uniform to non-uniform films. Furthermore, these particle models being applied to non-uniform thin film, the possibility of measuring the mean thickness and non-uniformity was discussed. As the result, if the maximum difference of the thickness was more than 0.2 mg/cm 2 , the nonuniformity was considered to distinguish by the usual equipment. In this paper, an α-ray thickness gauge using the absorption curve method was treated, but one can apply this easily to an α-ray thickness gauge using α-ray energy spectra before and after the penetration of thin film. (auth.)

  9. Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas

    OpenAIRE

    Akbari-Moghanjoughi, M.

    2012-01-01

    In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...

  10. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  11. Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration

    Science.gov (United States)

    Lovejoy, McKenna Roberts

    Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order

  12. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  13. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  14. Phase behavior of multicomponent membranes: Experimental and computational techniques

    DEFF Research Database (Denmark)

    Bagatolli, Luis; Kumar, P.B. Sunil

    2009-01-01

    Recent developments in biology seems to indicate that the Fluid Mosaic model of membrane proposed by Singer and Nicolson, with lipid bilayer functioning only as medium to support protein machinery, may be too simple to be realistic. Many protein functions are now known to depend on the compositio....... This review includes basic foundations on membrane model systems and experimental approaches applied in the membrane research area, stressing on recent advances in the experimental and computational techniques....... membranes. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating liquid ordered-liquid disordered coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior...

  15. Multicomponent patterned ultrathin carbon nanomembranes by laser ablation

    Science.gov (United States)

    Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel

    2018-01-01

    Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.

  16. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    Science.gov (United States)

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  17. Water activity changes of multicomponent food mixture during processing

    Directory of Open Access Journals (Sweden)

    Jiří Štencl

    2004-01-01

    Full Text Available Water activity of multicomponent food mixture was analysed and measured. Samples of dry fermented sausages with two different starter cultures (Pediococcus pentosaceus + Staphylococcus carnosus and Staphylococcus carnosus + Staphylococcus xylosus + Lactobacillus farciminis were tested during ripening (21 days and storing (91 days. The basic raw materials were the same for all samples: lean beef meat, lean pork and pork fat in equal parts, nitrite salt mixture (2.5 %, and sugars (1.0 %. The method used for water activity tests was indirect manometric in a static environment. Moisture content of samples was measured using halogen dryer. The course of water activity and moisture content of sausages was variable during ripening and steady during storage. Diagrams showed gradual decrease of both parameters. Mathematical models of water activity and moisture content for storage of dry fermented sausages were developed and statistically verified. The influence of starter cultures was not significant.

  18. Multicomponent reactions provide key molecules for secret communication.

    Science.gov (United States)

    Boukis, Andreas C; Reiter, Kevin; Frölich, Maximiliane; Hofheinz, Dennis; Meier, Michael A R

    2018-04-12

    A convenient and inherently more secure communication channel for encoding messages via specifically designed molecular keys is introduced by combining advanced encryption standard cryptography with molecular steganography. The necessary molecular keys require large structural diversity, thus suggesting the application of multicomponent reactions. Herein, the Ugi four-component reaction of perfluorinated acids is utilized to establish an exemplary database consisting of 130 commercially available components. Considering all permutations, this combinatorial approach can unambiguously provide 500,000 molecular keys in only one synthetic procedure per key. The molecular keys are transferred nondigitally and concealed by either adsorption onto paper, coffee, tea or sugar as well as by dissolution in a perfume or in blood. Re-isolation and purification from these disguises is simplified by the perfluorinated sidechains of the molecular keys. High resolution tandem mass spectrometry can unequivocally determine the molecular structure and thus the identity of the key for a subsequent decryption of an encoded message.

  19. Absorption from multicomponent gas mixtures comparing with Elemir gasoline plant

    Energy Technology Data Exchange (ETDEWEB)

    Miscevic, D

    1970-10-01

    A short description and explanation are outlined of all factors which have influence on hydrocarbon absorption from multicomponent gas mixtures. A short review of these different methods for absorption efficiency calculation is given. On the basis of the explained methods, the absorption from one natural gas at the Elemir plant is calculated and the results are given in tabular data. The number of the theoretical plate and L/V ratio for a given recovery of the key component is fixed by the calculation and by a graphical solution. Special attention is given for absorption oil depending on gas flow, pressure, and temperature. A series of diagrams is presented showing required absorption oil at the Elemir plant for given propane recovery, depending on the variables which are mentioned.

  20. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  1. Irradiation-induced segregation in multi-component alloys

    International Nuclear Information System (INIS)

    Chen, I.W.

    1983-01-01

    A unified analysis of irradiation-induced segregation in multi-component alloys is developed using the formulation of irreversible thermodynamics. Three distinct mechanisms for segregation, namely the inverse Kirkendall effect, the vacancy-wind effect, and the solute drag of interstitials, are identified. In particular, the inverse Kirkendall effect due to interstitials arises only if a solute-interstitial interaction or a mutual conversion among interstitials via lattice atom intermediaries operates simultaneously. In the limit of fast conversion a para-equilibrium state may be reached between interstitials and lattice atoms, and the interstitial mechanism becomes formally analogous to the vacancy mechanism. Although the past treatment of rate phenomena in this field was apparently limited to the latter case, the importance of the consideration of separate chemical potentials for interstitials of different species, in segregation and other irradiation effects, is emphasized. (orig.)

  2. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  3. Energetic Variational Approach to Multi-Component Fluid Flows

    Science.gov (United States)

    Kirshtein, Arkadz; Liu, Chun; Brannick, James

    2017-11-01

    In this talk I will introduce the systematic energetic variational approach for dissipative systems applied to multi-component fluid flows. These variational approaches are motivated by the seminal works of Rayleigh and Onsager. The advantage of this approach is that we have to postulate only energy law and some kinematic relations based on fundamental physical principles. The method gives a clear, quick and consistent way to derive the PDE system. I will compare different approaches to three-component flows using diffusive interface method and discuss their advantages and disadvantages. The diffusive interface method is an approach for modeling interactions among complex substances. The main idea behind this method is to introduce phase field labeling functions in order to model the contact line by smooth change from one type of material to another. The work of Arkadz Kirshtein and Chun Liu is partially supported by NSF Grants DMS-141200 and DMS-1216938.

  4. A green multicomponent synthesis of tocopherol analogues with antiproliferative activities.

    Science.gov (United States)

    Ingold, Mariana; Dapueto, Rosina; Victoria, Sabina; Galliusi, Germán; Batthyàny, Carlos; Bollati-Fogolín, Mariela; Tejedor, David; García-Tellado, Fernando; Padrón, José M; Porcal, Williams; López, Gloria V

    2018-01-01

    A one-pot efficient, practical and eco-friendly synthesis of tocopherol analogues has been developed using water or solvent free conditions via Passerini and Ugi multicomponent reactions. These reactions can be optimized using microwave irradiation or ultrasound as the energy source. Accordingly, a small library of 30 compounds was prepared for biological tests. The evaluation of the antiproliferative activity in the human solid tumor cell lines A549 (lung), HBL-100 (breast), HeLa (cervix), SW1573 (lung), T-47D (breast), and WiDr (colon) provided lead compounds with GI 50 values between 1 and 5 μM. A structure-activity relationship is also discussed. One of the studied compounds comes up as a future candidate for the development of potent tocopherol-mimetic therapeutic agents for cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    Science.gov (United States)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  6. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Energy Technology Data Exchange (ETDEWEB)

    Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Levo, E.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland)

    2017-02-15

    Highlights: • We studied the damage buildup in equiatomic multicomponent alloys by MD simulations. • Edge dislocation mobility was lower in the studied alloys compared to elemental Ni. • Damage buildup in alloys saturated at lower levels than in elemental Ni. • Initial damage buildup is faster in alloys compared to elemental Ni. - Abstract: A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  7. On fault propagation in deterioration of multi-component systems

    International Nuclear Information System (INIS)

    Liang, Zhenglin; Parlikad, Ajith Kumar; Srinivasan, Rengarajan; Rasmekomen, Nipat

    2017-01-01

    In extant literature, deterioration dependence among components can be modelled as inherent dependence and induced dependence. We find that the two types of dependence may co-exist and interact with each other in one multi-component system. We refer to this phenomenon as fault propagation. In practice, a fault induced by the malfunction of a non-critical component may further propagate through the dependence amongst critical components. Such fault propagation scenario happens in industrial assets or systems (bridge deck, and heat exchanging system). In this paper, a multi-layered vector-valued continuous-time Markov chain is developed to capture the characteristics of fault propagation. To obtain the mathematical tractability, we derive a partitioning rule to aggregate states with the same characteristics while keeping the overall aging behaviour of the multi-component system. Although the detailed information of components is masked by aggregated states, lumpability is attainable with the partitioning rule. It means that the aggregated process is stochastically equivalent to the original one and retains the Markov property. We apply this model on a heat exchanging system in oil refinery company. The results show that fault propagation has a more significant impact on the system's lifetime comparing with inherent dependence and induced dependence. - Highlights: • We develop a vector value continuous-time Markov chain to model the meta-dependent characteristic of fault propagation. • A partitioning rule is derived to reduce the state space and attain lumpability. • The model is applied on analysing the impact of fault propagation in a heat exchanging system.

  8. Lower hybrid parametric instabilities nonuniform pump waves and tokamak applications

    International Nuclear Information System (INIS)

    Berger, R.L.; Chen, L.; Kaw, P.K.; Perkins, F.W.

    1976-11-01

    Electrostatic lower hybrid ''pump'' waves often launched into tokamak plasmas by structures (e.g., waveguides) whose dimensions are considerably smaller than characteristic plasma sizes. Such waves propagate in well-defined resonance cones and give rise to parametric instabilities driven by electron E x B velocities. The finite size of the resonance cone region determines the threshold for both convective quasimode decay instabilities and absolute instabilities. The excitation of absolute instabilities depends on whether a travelling or standing wave pump model is used; travelling wave pumps require the daughter waves to have a definite frequency shift. Altogether, parametric instabilities driven by E x B velocities occur for threshold fields significantly below the threshold for filamentation instabilities driven by pondermotive forces. Applications to tokamak heating show that nonlinear effects set in when a certain power-per-wave-launching port is exceeded

  9. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    Science.gov (United States)

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  10. LONGITUDINAL AND TRANSVERSAL PLASMA WAVE INSTABILITIES IN TWO COUNTERSTREAMING PLASMAS WITHOUT EXTERNAL FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D

    1963-03-15

    Some aspects of the theory of longitudinal and transversal waves in a collisionless nonrelativistic plasma are treated. A dispersion relation for multicomponent plasmas is derived from the linearized Boltzmann-Vlasov equation using the full set of Maxwell's equations without an external field. The velocity distributions of the plasma streams are assumed to be Maxwellian. For the particular case of two counterstreaming plasmas it is shown that there exists transversal instabilities for all counterstreaming velocities whereas the well known two stream instabilities only exist for velocities greater than a critical velocity. Exact solutions for the onset of the instabilities can be given. This kind of instability may occur for any nonisotropic velocity distribution in a collisionless plasma. (auth)

  11. Resonant absorption of radar waves by a magnetized collisional plasma

    International Nuclear Information System (INIS)

    Sun Aiping; Tong Honghui; Shen Liru; Tang Deli; Qiu Xiaoming

    2001-01-01

    The propagation of radar waves in a magnetized collisional plasma slab is studied numerically. It is found for uniform plasma that: first, the wave attenuation and absorbed power show a peak value, i.e., resonant absorption when the collision frequency f en = 0.1, 0.5, 1 GHz and the wave frequency nears upper hybrid frequency. Secondly, the attenuation, absorbed, and transmitted power curves become flat at f en = 5, 10 Ghz. thirdly, the attenuation and absorbed power increase with plasma density, and the attenuation and the proportion of absorbed power can reach 100 dB and 80%, respectively, at the plasma density n = 10 11 cm -3 . For nonuniform plasma, the peak value of reflected power is larger than that in uniform plasma. So, uniform magnetized plasma is of more benefit to plasma cloaking

  12. Propagation of microwave radiation through an inhomogeneous plasma layer in a magnetic field

    Science.gov (United States)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Mashek, I. Ch; Pashchina, A. S.; Pervov, A. Yu; Petrovskiy, V. P.; Ryazanskiy, N. M.; Shkatov, O. Yu

    2018-01-01

    The problem of reliable microwave communication through a plasma sheath has its origin from the beginning of space flights. During reentry of spacecraft, the plasma layer can interrupt the communication. At sufficiently high plasma density, the plasma layer either reflects or attenuates radio wave communications to and from the vehicle. In this work, we present a simple analytical one-dimensional algorithm to study the propagation of electromagnetic (EM) waves through a nonuniform plasma layer in a static nonuniform magnetic field. The experimental study of the EM wave transmission and reflection through plasma layer was carried out on the (i) microwave set and (ii) on the unit using a high-voltage pulsed discharge.

  13. Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems

    Science.gov (United States)

    Shizgal, B.; Karplus, M.

    1970-10-01

    The nonequilibrium contribution to the reaction rate of an isothermal multicomponent system is obtained by solution of the appropriate Chapman-Enskog equation; the system is composed of reactive species in contact with a heat bath of inert atoms M.

  14. Simultaneous multi-component seismic denoising and reconstruction via K-SVD

    Science.gov (United States)

    Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang

    2018-06-01

    Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.

  15. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua

    2017-01-01

    involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass

  16. Time-dependent density functional theory for multi-component systems

    International Nuclear Information System (INIS)

    Tiecheng Li; Peiqing Tong

    1985-10-01

    The Runge-Gross version of Hohenberg-Kohn-Sham's density functional theory is generalized to multi-component systems, both for arbitrary time-dependent pure states and for arbitrary time-dependent ensembles. (author)

  17. Integrable couplings of the multi-component Dirac hierarchy and its Hamiltonian structure

    International Nuclear Information System (INIS)

    Li Zhu; Dong Huanhe

    2008-01-01

    Integrable couplings of the multi-component Dirac hierarchy is obtained by use of the vector loop algebra G ∼ M , then the Hamiltonian structure of the above system is given by the quadratic-form identity

  18. Mixed-mode chromatography with zwitterionic phosphopeptidomimetic selectors from Ugi multicomponent reaction

    NARCIS (Netherlands)

    Gargano, Andrea F G; Leek, Tomas; Lindner, Wolfgang; Lämmerhofer, Michael

    2013-01-01

    In the present contribution a novel Ugi multicomponent reaction (MCR) was used to generate zwitterionic chromatographic selectors with capability for application in mixed-mode chromatography featuring complementary selectivities in reversed-phase (RP) and hydrophilic interaction liquid

  19. High Performance Multi-GPU SpMV for Multi-component PDE-Based Applications

    KAUST Repository

    Abdelfattah, Ahmad; Ltaief, Hatem; Keyes, David E.

    2015-01-01

    -block structure. While these optimizations are important for high performance dense kernel executions, they are even more critical when dealing with sparse linear algebra operations. The most time-consuming phase of many multicomponent applications, such as models

  20. Effects of Nonuniform Incident Illumination on the Thermal Performance of a Concentrating Triple Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Fahad Al-Amri

    2014-01-01

    Full Text Available A numerical heat transfer model was developed to investigate the temperature of a triple junction solar cell and the thermal characteristics of the airflow in a channel behind the solar cell assembly using nonuniform incident illumination. The effects of nonuniformity parameters, emissivity of the two channel walls, and Reynolds number were studied. The maximum solar cell temperature sharply increased in the presence of nonuniform light profiles, causing a drastic reduction in overall efficiency. This resulted in two possible solutions for solar cells to operate in optimum efficiency level: (i adding new receiver plate with higher surface area or (ii using forced cooling techniques to reduce the solar cell temperature. Thus, surface radiation exchanges inside the duct and Re significantly reduced the maximum solar cell temperature, but a conventional plain channel cooling system was inefficient for cooling the solar cell at medium concentrations when the system was subjected to a nonuniform light distribution. Nonuniformity of the incident light and surface radiation in the duct had negligible effects on the collected thermal energy.

  1. On natural frequencies of non-uniform beams modulated by finite periodic cells

    International Nuclear Information System (INIS)

    Xu, Yanlong; Zhou, Xiaoling; Wang, Wei; Wang, Longqi; Peng, Fujun; Li, Bin

    2016-01-01

    It is well known that an infinite periodic beam can support flexural wave band gaps. However, in real applications, the number of the periodic cells is always limited. If a uniform beam is replaced by a non-uniform beam with finite periodicity, the vibration changes are vital by mysterious. This paper employs the transfer matrix method (TMM) to study the natural frequencies of the non-uniform beams with modulation by finite periodic cells. The effects of the amounts, cross section ratios, and arrangement forms of the periodic cells on the natural frequencies are explored. The relationship between the natural frequencies of the non-uniform beams with finite periodicity and the band gap boundaries of the corresponding infinite periodic beam is also investigated. Numerical results and conclusions obtained here are favorable for designing beams with good vibration control ability. - Highlights: • The transfer matrix method to study the natural frequencies of the finite periodic non-uniform beams is derived. • The transfer matrix method to study the band gaps of the infinite periodic non-uniform beams is derived. • The effects of the periodic cells on the natural frequencies are explored. • The relationships of the natural frequencies and band gap boundaries are investigated.

  2. Space cutter compensation method for five-axis nonuniform rational basis spline machining

    Directory of Open Access Journals (Sweden)

    Yanyu Ding

    2015-07-01

    Full Text Available In view of the good machining performance of traditional three-axis nonuniform rational basis spline interpolation and the space cutter compensation issue in multi-axis machining, this article presents a triple nonuniform rational basis spline five-axis interpolation method, which uses three nonuniform rational basis spline curves to describe cutter center location, cutter axis vector, and cutter contact point trajectory, respectively. The relative position of the cutter and workpiece is calculated under the workpiece coordinate system, and the cutter machining trajectory can be described precisely and smoothly using this method. The three nonuniform rational basis spline curves are transformed into a 12-dimentional Bézier curve to carry out discretization during the discrete process. With the cutter contact point trajectory as the precision control condition, the discretization is fast. As for different cutters and corners, the complete description method of space cutter compensation vector is presented in this article. Finally, the five-axis nonuniform rational basis spline machining method is further verified in a two-turntable five-axis machine.

  3. On natural frequencies of non-uniform beams modulated by finite periodic cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanlong, E-mail: xuyanlong@nwpu.edu.cn [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Zhou, Xiaoling [Shanghai Institute of Aerospace System Engineering, Shanghai 201109 (China); Wang, Wei [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Wang, Longqi [School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Peng, Fujun [Shanghai Institute of Aerospace System Engineering, Shanghai 201109 (China); Li, Bin [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China)

    2016-09-23

    It is well known that an infinite periodic beam can support flexural wave band gaps. However, in real applications, the number of the periodic cells is always limited. If a uniform beam is replaced by a non-uniform beam with finite periodicity, the vibration changes are vital by mysterious. This paper employs the transfer matrix method (TMM) to study the natural frequencies of the non-uniform beams with modulation by finite periodic cells. The effects of the amounts, cross section ratios, and arrangement forms of the periodic cells on the natural frequencies are explored. The relationship between the natural frequencies of the non-uniform beams with finite periodicity and the band gap boundaries of the corresponding infinite periodic beam is also investigated. Numerical results and conclusions obtained here are favorable for designing beams with good vibration control ability. - Highlights: • The transfer matrix method to study the natural frequencies of the finite periodic non-uniform beams is derived. • The transfer matrix method to study the band gaps of the infinite periodic non-uniform beams is derived. • The effects of the periodic cells on the natural frequencies are explored. • The relationships of the natural frequencies and band gap boundaries are investigated.

  4. An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry

    Science.gov (United States)

    2015-12-01

    ARL-SR-0347 ● DEC 2015 US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary...US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to...from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  5. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  6. A new multi-component hierarchy and its integrable expanding model

    International Nuclear Information System (INIS)

    Dong Huanhe; Liang Xiangqian

    2008-01-01

    A set of multi-component matrix Lie algebra is constructed, it follows that a type of new loop algebra is presented and multi-component integrable hierarchy is obtained. Furthermore, the loop algebra is expanded into a larger one and a type of integrable coupling system is worked out. As reduction of the hierarchy, some well-known hierarchy such as DNLS, KN, CLL hierarchy are established

  7. Hierarchies of multi-component mKP equations and theirs integrable couplings

    International Nuclear Information System (INIS)

    Ji Jie; Yao Yuqin; Zhu Fubo; Chen Dengyuan

    2008-01-01

    First, a new multi-component modified Kadomtsev-Petviashvill (mKP) spectral problem is constructed by k-constraint imposed on a general pseudo-differential operator. Then, two hierarchies of multi-component mKP equations are derived, including positive non-isospectral mKP hierarchy and negative non-isospectral mKP hierarchy. Moreover, new integrable couplings of the resulting mKP soliton hierarchies are constructed by enlarging the associated matrix spectral problem

  8. The elimination of singularities in pair correlation functions of a multicomponent liquid system

    International Nuclear Information System (INIS)

    Vasil'jev, O.M.; Chalij, O.V.

    2004-01-01

    In this paper we propose a method that allows to find nonsingular expressions for pair correlation functions of a multicomponent liquid system. The nature of the method deals with using integral and differential Ornstein-Zernike equations for finding asymptotic expressions for pair correlation functions and their subsequent precision. The obtained results are analyzed taking into account their possible applicability for studying the correlative behaviour of multicomponent liquid systems

  9. Joint de-blurring and nonuniformity correction method for infrared microscopy imaging

    Science.gov (United States)

    Jara, Anselmo; Torres, Sergio; Machuca, Guillermo; Ramírez, Wagner; Gutiérrez, Pablo A.; Viafora, Laura A.; Godoy, Sebastián E.; Vera, Esteban

    2018-05-01

    In this work, we present a new technique to simultaneously reduce two major degradation artifacts found in mid-wavelength infrared microscopy imagery, namely the inherent focal-plane array nonuniformity noise and the scene defocus presented due to the point spread function of the infrared microscope. We correct both nuisances using a novel, recursive method that combines the constant range nonuniformity correction algorithm with a frame-by-frame deconvolution approach. The ability of the method to jointly compensate for both nonuniformity noise and blur is demonstrated using two different real mid-wavelength infrared microscopic video sequences, which were captured from two microscopic living organisms using a Janos-Sofradir mid-wavelength infrared microscopy setup. The performance of the proposed method is assessed on real and simulated infrared data by computing the root mean-square error and the roughness-laplacian pattern index, which was specifically developed for the present work.

  10. An efficient shutter-less non-uniformity correction method for infrared focal plane arrays

    Science.gov (United States)

    Huang, Xiyan; Sui, Xiubao; Zhao, Yao

    2017-02-01

    The non-uniformity response in infrared focal plane array (IRFPA) detectors has a bad effect on images with fixed pattern noise. At present, it is common to use shutter to prevent from radiation of target and to update the parameters of non-uniformity correction in the infrared imaging system. The use of shutter causes "freezing" image. And inevitably, there exists the problems of the instability and reliability of system, power consumption, and concealment of infrared detection. In this paper, we present an efficient shutter-less non-uniformity correction (NUC) method for infrared focal plane arrays. The infrared imaging system can use the data gaining in thermostat to calculate the incident infrared radiation by shell real-timely. And the primary output of detector except the shell radiation can be corrected by the gain coefficient. This method has been tested in real infrared imaging system, reaching high correction level, reducing fixed pattern noise, adapting wide temperature range.

  11. Vibration of nonuniform carbon nanotube with attached mass via nonlocal Timoshenko beam theory

    International Nuclear Information System (INIS)

    Tang, Hai Li; Shen, Zhi Bin; Li, Dao Kui

    2014-01-01

    This paper studies the vibrational behavior of nonuniform single-walled carbon nanotube (SWCNT) carrying a nanoparticle. A nonuniform cantilever beam with a concentrated mass at the free end is analyzed according to the nonlocal Timoshenko beam theory. A governing equation of a nonuniform SWCNT with attached mass is established. The transfer function method incorporating with the perturbation method is utilized to obtain the resonant frequencies of a vibrating nonlocal cantilever-mass system. The effects of the nonlocal parameter, taper ratio and attached mass on the natural frequencies and frequency shifts are discussed. Obtained results indicate that the sensitivity of the frequency shifts on the attached mass increases when the length-to-diameter ratio decreases. Tapered SWCNT possesses higher fundamental frequencies if the taper ratio becomes larger.

  12. Computer Simulation of Nonuniform MTLs via Implicit Wendroff and State-Variable Methods

    Directory of Open Access Journals (Sweden)

    L. Brancik

    2011-04-01

    Full Text Available The paper deals with techniques for a computer simulation of nonuniform multiconductor transmission lines (MTLs based on the implicit Wendroff and the statevariable methods. The techniques fall into a class of finitedifference time-domain (FDTD methods useful to solve various electromagnetic systems. Their basic variants are extended and modified to enable solving both voltage and current distributions along nonuniform MTL’s wires and their sensitivities with respect to lumped and distributed parameters. An experimental error analysis is performed based on the Thomson cable whose analytical solutions are known, and some examples of simulation of both uniform and nonuniform MTLs are presented. Based on the Matlab language programme, CPU times are analyzed to compare efficiency of the methods. Some results for nonlinear MTLs simulation are presented as well.

  13. Research on Creep Relaxation Non-uniformity and Effect on Performance of Combined Rotor

    Science.gov (United States)

    Liu, Qingya; He, Jingfei; Zhao, Lijia

    2017-11-01

    The combined rotor of gas turbine is connected by a certain number of rod bolts. It works in the high temperature environment for a long time, and the rod bolts will creep and relax. Under the influence of elastic interaction, the loss of pretightening force of rod bolts at different positions is non-uniform, which will cause the connection of the combined rotor to be out of tune. In this paper, the creep relaxation non-uniformity model for a class F heavy duty gas turbine is established. On the basis of this, the performance degradation and structural strength change of combined rotor resulting from creep relaxation non-uniformity of rod bolts are studied. The results show that the ratio of preload mistuning increases with time and then converges, and there is a threshold inflection point in about seven thousand hours.

  14. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    Science.gov (United States)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  15. Nonuniform transformation field analysis of multiphase elasto viscoplastic materials: application to MOX fuels

    International Nuclear Information System (INIS)

    Roussette, S.

    2005-05-01

    The description of the overall behavior of nonlinear materials with nonlinear dissipative phases requires an infinity of internal variables. An approximate model involving only a finite number of internal variables, Nonuniform Transformation Field Analysis, is obtained by considering a decomposition of these variables on a finite set of nonuniform transformation fields, called plastic modes. The method is initially developed for incompressible elasto viscoplastic materials. Karhunen-Loeve expansion is proposed to optimize the plastic modes. Then the method is extended to porous elasto viscoplastic materials. Finally the transformation field analysis, developed by Dvorak, is applied to nuclear fuels MOX. This method enables to make sensitivity studies to determine the role of some microstructural parameters on the fuel behaviour. Moreover the adequacy of the nonuniform method for fuels MOX is shown, the final objective being to be able to apply the model to the MOX in 3D. (author)

  16. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  17. Multicomponent diffusion in basaltic melts at 1350 °C

    Science.gov (United States)

    Guo, Chenghuan; Zhang, Youxue

    2018-05-01

    Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during

  18. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  19. Improved planar radio frequency inductively coupled plasma configuration in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, D.L.; Fu, R.K.Y.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasmas with higher density and better uniformity are produced using an improved planar radio frequency (rf) inductively coupled plasma configuration in plasma immersion ion implantation (PIII). An axial magnetic field is produced by external electromagnetic coils outside the discharge chamber. The rf power can be effectively absorbed by the plasma in the vicinity of the electron gyrofrequency due to the enhanced resonant absorption of electromagnetic waves in the whistler wave range, which can propagate nearly along the magnetic field lines thus greatly increases the plasma density. The plasma is confined by a longitudinal multipolar cusp magnetic field made of permanent magnets outside the process chamber. It can improve the plasma uniformity without significantly affecting the ion density. The plasma density can be increased from 3x10 9 to 1x10 10 cm -3 employing an axial magnetic field of several Gauss at 1000 W rf power and 5x10 -4 Torr gas pressure. The nonuniformity of the plasma density is less than 10% and can be achieved in a process chamber with a diameter of 600 mm. Since the plasma generation and process chambers are separate, plasma extinction due to the plasma sheath touching the chamber wall in high-energy PIII can be avoided. Hence, low-pressure, high-energy, and high-uniformity ion implantation can be accomplished using this setup

  20. Large amplitude solitary waves in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Tsukabayashi, I.; Ludwig, G.O.; Ferreira, J.L.

    1987-09-01

    When the concentration of negative ions is larger than a critical value, a small compressive pulse evolves into a subsonic wave train and a large pulse develops into a solitary wave. The threshold amplitude and velocity of the solitary waves are measured and compared with predictions using the pseudopotential method. (author) [pt

  1. Photocathode non-uniformity contribution to the energy resolution of scintillators

    International Nuclear Information System (INIS)

    Mottaghian, M.; Koohi-Fayegh, R.; Ghal-Eh, N.; Etaati, G. R.

    2010-01-01

    This paper introduces the basics of the light transport simulation in scintillators and the wavelength-dependencies in the process. The non-uniformity measurement of the photocathode surface is undertaken, showing that for the photocathode used in this study the quantum efficiency falls to about 4% of its maximum value, especially in areas far from the centre. The wavelength-and position-dependent quantum efficiency is implemented in the Monte Carlo light transport code, showing that, the contribution of the photocathode non-uniformity to the energy resolution is estimated to be around 18%, when all position-and wavelength-dependencies are included. (authors)

  2. The Pierce diode with an external circuit: II, Non-uniform equilibria

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1987-01-01

    The non-uniform (non-linear) equilibria of the classical (short circuit) Pierce diode and the extended (series RLC external circuit) Pierce diode are described theoretically, and explored via computer simulation. It is found that most equilibria are correctly predicted by theory, but that the continuous set of equilibria of the classical Pierce diode at α = 2π are not observed. The stability characteristics of the non-uniform equilibria are also worked out, and are consistent with the simulations. 8 refs., 22 figs., 3 tabs

  3. Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge

    International Nuclear Information System (INIS)

    Ma, Y C; Liu, H Y; Yan, S B; Li, J M; Tang, J; Yang, Y H; Yang, M W

    2013-01-01

    This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency. (paper)

  4. Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge

    Science.gov (United States)

    Ma, Y. C.; Liu, H. Y.; Yan, S. B.; Yang, Y. H.; Yang, M. W.; Li, J. M.; Tang, J.

    2013-05-01

    This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency.

  5. A dynamic model of gas flow in a non-uniform pipe

    International Nuclear Information System (INIS)

    Mensah, S.; Lepp, R.M.

    1979-08-01

    A gas-line model, based on the analysis of compressible flow with friction, has been developed to describe the dynamics of gas flow in a non-uniform line, i.e. one comprising segments of different lengths and diameters. Acoustic wave analysis was used in a novel way, by considering the line as a cascaded connection of uniform pipes separated by discontinuities. The transmission matrix representing this non-uniform line is the product of the matrices for each element in the system. To facilitate implementation of the theoretical model on a hybrid computer, modal approximatons to its transfer functions were derived. Both models were validated against experimental data. (author)

  6. Wastewater diffusive dilution and sedimentation of the fine contaminated particles for nonuniform flow in open channels

    OpenAIRE

    Lyapin Anton; Lyapin Valery

    2018-01-01

    The influence of non-uniformity on mass transfer processes in open channels have been investigated under the action of urbanization factors. The study is related to the urgent problem of environmental degradation of water objects in urbanized areas. It is known that the water quality in the water objects depends on the manner in which the contaminants spread how they mix with the river water and diluted by it. The main results of the study consist of recommendations to incorporate non-uniform...

  7. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  8. Multi-component controllers in reactor physics optimality analysis

    International Nuclear Information System (INIS)

    Aldemir, T.

    1978-01-01

    An algorithm is developed for the optimality analysis of thermal reactor assemblies with multi-component control vectors. The neutronics of the system under consideration is assumed to be described by the two-group diffusion equations and constraints are imposed upon the state and control variables. It is shown that if the problem is such that the differential and algebraic equations describing the system can be cast into a linear form via a change of variables, the optimal control components are piecewise constant functions and the global optimal controller can be determined by investigating the properties of the influence functions. Two specific problems are solved utilizing this approach. A thermal reactor consisting of fuel, burnable poison and moderator is found to yield maximal power when the assembly consists of two poison zones and the power density is constant throughout the assembly. It is shown that certain variational relations have to be considered to maintain the activeness of the system equations as differential constraints. The problem of determining the maximum initial breeding ratio for a thermal reactor is solved by treating the fertile and fissile material absorption densities as controllers. The optimal core configurations are found to consist of three fuel zones for a bare assembly and two fuel zones for a reflected assembly. The optimum fissile material density is determined to be inversely proportional to the thermal flux

  9. Multi-component solid solution alloys having high mixing entropy

    Science.gov (United States)

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  10. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  11. Efficient transfer of sensitivity information in multi-component models

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Rabiti, Cristian

    2011-01-01

    In support of adjoint-based sensitivity analysis, this manuscript presents a new method to efficiently transfer adjoint information between components in a multi-component model, whereas the output of one component is passed as input to the next component. Often, one is interested in evaluating the sensitivities of the responses calculated by the last component to the inputs of the first component in the overall model. The presented method has two advantages over existing methods which may be classified into two broad categories: brute force-type methods and amalgamated-type methods. First, the presented method determines the minimum number of adjoint evaluations for each component as opposed to the brute force-type methods which require full evaluation of all sensitivities for all responses calculated by each component in the overall model, which proves computationally prohibitive for realistic problems. Second, the new method treats each component as a black-box as opposed to amalgamated-type methods which requires explicit knowledge of the system of equations associated with each component in order to reach the minimum number of adjoint evaluations. (author)

  12. Multicomponent T2 relaxation studies of the avian egg.

    Science.gov (United States)

    Mitsouras, Dimitris; Mulkern, Robert V; Maier, Stephan E

    2016-05-01

    To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a three-dimensional Carr-Purcell-Meiboom-Gill imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multicomponent signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. © 2015 Wiley Periodicals, Inc.

  13. Predictors of retention in a multicomponent treatment for smokers

    Directory of Open Access Journals (Sweden)

    Ana Moreno-Coutiño

    Full Text Available Abstract Background: There is a lack of knowledge about factors that promote or hinder retention of smokers in treatment. Objective: The aim of this study was the identification of variables that predict retention of smokers who received a multicomponent treatment against smoking. Method: Participants (n = 79 simultaneously received pharmacological and psychological treatment, including an intervention phase prior to the date of smoking cessation. They were evaluated periodically in their abstinence, depressive and anxious symptoms, and were randomly assigned to three treatment conditions (nicotine patch, bupropion or nicotine patch + bupropion. Eighteen variables were grouped into four categories (demographic, consumption pattern, mood and treatment. Data were analyzed using student's t test and X2, for inclusion into a multivariate logistic regression model. Results: Results indicate that age of onset of regular tobacco consumption, secondary education and bupropion pharmacological treatment are significant in relation to the retention of smokers to smoking treatment. Discussion: The reported “age of onset” correlates with treatment retention (OR = 1.545, 95 % CI = 1.175-2.032. This variable has not previously been reported in the literature, and taking it into account in the design of prevention and treatment for smoking could increase their success.

  14. Ion channeling study of defects in multicomponent semiconductor compounds

    International Nuclear Information System (INIS)

    Turos, A.; Nowicki, L.; Stonert, A.

    2002-01-01

    Compound semiconductor crystals are of great technological importance as basic materials for production of modern opto- and microelectronic devices. Ion implantation is one of the principal techniques for heterostructures processing. This paper reports the results of the study of defect formation and transformation in binary and ternary semiconductor compounds subjected to ion implantation with ions of different mass and energy. The principal analytical technique was He-ion channeling. The following materials were studied: GaN and InGaN epitaxial layers. First the semi empirical method of channeling spectra analysis for ion implanted multicomponent single crystal was developed. This method was later complemented by the more sophisticated method based on the Monte Carlo simulation of channeling spectra. Next, the damage buildup in different crystals and epitaxial layers as a function of the implantation dose was studied for N, Mg, Te, and Kr ions. The influence of the substrate temperature on the defect transformations was studied for GaN epitaxial layers implanted with Mg ions. Special attention was devoted to the study of growth conditions of InGaN/GaN/sapphire heterostructures, which are important component of the future blue laser diodes. In-atom segregation and tetragonal distortion of the epitaxial layer were observed and characterized. Next problem studied was the incorporation of hydrogen atoms in GaAs and GaN. Elastic recoil detection (ERDA) and nuclear reaction analysis (NRA) were applied for the purpose. (author)

  15. Multi-component separation and analysis of bat echolocation calls.

    Science.gov (United States)

    DiCecco, John; Gaudette, Jason E; Simmons, James A

    2013-01-01

    The vast majority of animal vocalizations contain multiple frequency modulated (FM) components with varying amounts of non-linear modulation and harmonic instability. This is especially true of biosonar sounds where precise time-frequency templates are essential for neural information processing of echoes. Understanding the dynamic waveform design by bats and other echolocating animals may help to improve the efficacy of man-made sonar through biomimetic design. Bats are known to adapt their call structure based on the echolocation task, proximity to nearby objects, and density of acoustic clutter. To interpret the significance of these changes, a method was developed for component separation and analysis of biosonar waveforms. Techniques for imaging in the time-frequency plane are typically limited due to the uncertainty principle and interference cross terms. This problem is addressed by extending the use of the fractional Fourier transform to isolate each non-linear component for separate analysis. Once separated, empirical mode decomposition can be used to further examine each component. The Hilbert transform may then successfully extract detailed time-frequency information from each isolated component. This multi-component analysis method is applied to the sonar signals of four species of bats recorded in-flight by radiotelemetry along with a comparison of other common time-frequency representations.

  16. Local stress calculation in simulations of multicomponent systems

    International Nuclear Information System (INIS)

    Branicio, Paulo S.; Srolovitz, David J.

    2009-01-01

    The virial and Hardy methods provide accurate local stresses for single component materials such as monatomic metals. In contrast to the elemental material case, both methods provide poor estimates of the local stress for multicomponent materials. Using binary materials such as CaO, SiC and AlN and homogeneous strain, we demonstrate that there are several sources for the slow convergence of the virial and Hardy local stresses to the bulk values. Different approaches such as enforced stoichiometry, atomic localization functions and the atomic voronoi volume are used to improve the convergence and increase the spatial resolution of the local stress. The virial method with enforced stoichiometry and atomic voronoi volumes is the most accurate, giving exact stress values by the first atomic shell. In the general case, not assuming stoichiometry, the virial method with localization functions converge to 93% of the bulk value by the third atomic shell. This work may be particularly useful for the real-time description of stresses in simulations of shock waves and deformation dynamics.

  17. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab

    2013-02-01

    This paper analysed the performance of a membrane system over key design/operation parameters. A computation methodology is developed to solve the model of hollow fibre membrane systems for multicomponent gas feeds. The model represented by a nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality, pressure, area, selectivity and permeance, resulted in better understanding of operating and design optima. Particularly, high selectivities and/or permeabilities are shown not to be necessary targets for optimal operation. Rather, a medium selectivity (<60 in the given example) combined with medium permeance (∼300-500×10-10mol/sm2Pa in the given case study) is more advantageous. This model-based membrane systems engineering approach is proposed for the synthesis of efficient and cost-effective multi-stage membrane networks. © 2012 The Institution of Chemical Engineers.

  18. Parametric dependence of two-plasmon decay in homogeneous plasma

    International Nuclear Information System (INIS)

    Dimitrijevic, Dejan R

    2010-01-01

    A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to improve our understanding of the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The scaling of the amplitudes of the participating waves with laser and plasma parameters is investigated. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development of two-plasmon decay is researched and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.

  19. Lower-hybrid turbulence in a nonuniform magnetoplasma

    International Nuclear Information System (INIS)

    Stenzel, R.L.

    1991-01-01

    An experimental study of a pressure-gradient-driven instability in a large discharge plasma (1 m diam, 2.5 m length, n e congruent 10 12 cm 3 , B congruent 14 G) is presented. When the electron diamagnetic drift v d =∇(nkT e )xB/neB 2 exceeds the sound speed c s congruent(kT e /m i ) 1/2 ion-acoustic-like waves (T e much-gt T i ) are driven unstable. The growth rate maximizes near the lower-hybrid frequency ω lh congruent(ω ce ω ci ) 1/2 and the waves propagate essentially across B (k parallel much-lt k perpendicular congruent ω lh /c s ). The sound waves grow to large amplitudes (δn/n approx-gt 50%) and saturate by wave steepening (λ D perpendicular ce ) and refraction (∇T e ≠0) away from the destabilizing drift v d . Magnetic fluctuations result from electron diamagnetic currents and opposing Hall currents associated with the wave density fluctuations. Ions are essentially unmagnetized (ν in /ω ci >1) and slow compared to the magnetized electrons, v i /v d congruent(m e /m i ) 1/2 much-lt 1. In spite of the large amplitude waves little acceleration of electrons or ions is observed. The experiment employs a new technique of conditional averaging with digital oscilloscopes

  20. Acoustic holography for piston sound radiation with non-uniform velocity profiles

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2010-01-01

    The theory of orthogonal (Zernike) expansions of functions on a disk, as used in the diffraction theory of optical aberrations, is applied to obtain (semi-) analytical results for the radiation of sound due to a non-uniformly moving, baffled, circular piston. For this particular case, a scheme for

  1. CHF multiplier of subcooled flow boiling for non-uniform heating conditions in swirl tube

    International Nuclear Information System (INIS)

    Inasaka, F.; Nariai, H.

    1994-01-01

    The high heat flux components of fusion reactors, such as divertor plates and beam dumps of neutral beam injectors, are estimated to be subjected to very high heat loads more than 10 MW/m 2 . Critical heat flux (CHF), which determines the upper limit of heat removal, is one of the most important problems in designing cooling systems. For practical applications in cooling systems, subcooled flow boiling in water combined with swirl-flow in tubes with internal twisted tape is thought to be the most superior for CHF characteristics in fusion reactor components, heat by irradiation comes in from one side of the wall, and cooling channel is then under circumferentially non-uniform heating condition. Authors have conducted the experiments on the CHF with internal twisted tapes under circumferentially non-uniform heating conditions and showed that when the intensity of non-uniformity increased, q cH (peak heat flux at burnout under nonuniform heating condition) in tube with internal twisted tape increased above the q c,unif (CHF under uniform heating condition), though the average qualities were the same for both cases. They also showed that this CHF enhancement was not seen in smooth tubes without tape under the same average qualities

  2. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei; Zhan, Mei, E-mail: zhanmei@nwpu.edu.cn; Fan, Xiaoguang; Lei, Zhenni; Cai, Yang

    2017-03-24

    The flow behavior and microstructure evolution of a near α titanium alloy with nonuniform microstructure during hot deformation were studied by isothermal compression test and electron backscatter diffraction technique. It is found that the nonuniform microstructure prior to deformation consists of equiaxed α, lamellar α in the colony form and β phase, and the α colony keeps the Burgers orientation relationship with β phase. The flow stress of nonuniform microstructure exhibits significant flow softening after reaching the peak stress at a low strain, which is similar to the lamellar microstructure. Nevertheless, the existence of equiaxed α in nonuniform microstructure makes its flow stress and softening rate be lower than the lamellar microstructure. During deformation, the lamellar α undertakes most of the deformation and turns to be rotated, bended and globularized. Moreover, these phenomena exhibit significant heterogeneity due to the orientation dependence of the deformation of lamellar α. The continuous dynamic recrystallization and bending of lamellar α lead to the “fragmentation” during globularization of lamellar α. The bending of lamellar α is speculated as a form of plastic buckling, because the bending of lamellar α almost proceed in the manner of “rigid rotation” and presents opposite bending directions for the adjacent colonies.

  3. Deep convolutional neural networks for dense non-uniform motion deblurring

    CSIR Research Space (South Africa)

    Cronje, J

    2015-11-01

    Full Text Available to form a dense non-uniform motion estimation map. Furthermore, a second CNN is trained to perform deblurring given a blurry image patch and the estimated motion vector. Combining the two trained networks result in a deep learning approach that can enhance...

  4. Maximum Likelihood DOA Estimation of Multiple Wideband Sources in the Presence of Nonuniform Sensor Noise

    Directory of Open Access Journals (Sweden)

    K. Yao

    2007-12-01

    Full Text Available We investigate the maximum likelihood (ML direction-of-arrival (DOA estimation of multiple wideband sources in the presence of unknown nonuniform sensor noise. New closed-form expression for the direction estimation Cramér-Rao-Bound (CRB has been derived. The performance of the conventional wideband uniform ML estimator under nonuniform noise has been studied. In order to mitigate the performance degradation caused by the nonuniformity of the noise, a new deterministic wideband nonuniform ML DOA estimator is derived and two associated processing algorithms are proposed. The first algorithm is based on an iterative procedure which stepwise concentrates the log-likelihood function with respect to the DOAs and the noise nuisance parameters, while the second is a noniterative algorithm that maximizes the derived approximately concentrated log-likelihood function. The performance of the proposed algorithms is tested through extensive computer simulations. Simulation results show the stepwise-concentrated ML algorithm (SC-ML requires only a few iterations to converge and both the SC-ML and the approximately-concentrated ML algorithm (AC-ML attain a solution close to the derived CRB at high signal-to-noise ratio.

  5. Dynamic behaviour of non-uniform Bernoulli-Euler beams subjected ...

    African Journals Online (AJOL)

    This paper investigates the dynamics behaviour of non-uniform Bernoulli-Euler beams subjected to concentrated loads ravelling at variable velocities. The solution technique is based on the Generalized Galerkin Method and the use of the generating function of the Bessel function type. The results show that, for all the ...

  6. On The Dynamic Analysis of Non-Uniform Beams Under Uniformly ...

    African Journals Online (AJOL)

    ... the non-uniform continuous beam was replaced by a non-continuous (discrete) system made up of beam elements. The modified elemental and overall stiffness, and mass matrices, the elemental and overall centripetal acceleration matrices as well as the load vector were derived. Next, the Newmark's direct integration ...

  7. Analysis of single blow effectiveness in non-uniform parallel plate regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch; Bahl, Christian Robert Haffenden; Engelbrecht, Kurt

    2011-01-01

    Non-uniform distributions of plate spacings in parallel plate regenerators have been found to induce loss of performance. In this paper, it has been investigated how variations of three geometric parameters (the aspect ratio, the porosity, and the standard deviation of the plate spacing) affects...

  8. A DSP-based neural network non-uniformity correction algorithm for IRFPA

    Science.gov (United States)

    Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu

    2009-07-01

    An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.

  9. Sharp lower bounds on the extractable randomness from non-uniform sources

    NARCIS (Netherlands)

    Skoric, B.; Obi, C.; Verbitskiy, E.A.; Schoenmakers, B.

    2011-01-01

    Extraction of uniform randomness from (noisy) non-uniform sources is an important primitive in many security applications, e.g. (pseudo-)random number generators, privacy-preserving biometrics, and key storage based on Physical Unclonable Functions. Generic extraction methods exist, using universal

  10. Physical correction model for automatic correction of intensity non-uniformity in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Stefan Leger

    2017-10-01

    Conclusion: The proposed PCM algorithm led to a significantly improved image quality compared to the originally acquired images, suggesting that it is applicable to the correction of MRI data. Thus it may help to reduce intensity non-uniformity which is an important step for advanced image analysis.

  11. Nonuniform Illumination Correction Algorithm for Underwater Images Using Maximum Likelihood Estimation Method

    Directory of Open Access Journals (Sweden)

    Sonali Sachin Sankpal

    2016-01-01

    Full Text Available Scattering and absorption of light is main reason for limited visibility in water. The suspended particles and dissolved chemical compounds in water are also responsible for scattering and absorption of light in water. The limited visibility in water results in degradation of underwater images. The visibility can be increased by using artificial light source in underwater imaging system. But the artificial light illuminates the scene in a nonuniform fashion. It produces bright spot at the center with the dark region at surroundings. In some cases imaging system itself creates dark region in the image by producing shadow on the objects. The problem of nonuniform illumination is neglected by the researchers in most of the image enhancement techniques of underwater images. Also very few methods are discussed showing the results on color images. This paper suggests a method for nonuniform illumination correction for underwater images. The method assumes that natural underwater images are Rayleigh distributed. This paper used maximum likelihood estimation of scale parameter to map distribution of image to Rayleigh distribution. The method is compared with traditional methods for nonuniform illumination correction using no-reference image quality metrics like average luminance, average information entropy, normalized neighborhood function, average contrast, and comprehensive assessment function.

  12. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  13. Effects of transverse temperature field nonuniformity on stress in silicon sheet growth

    Science.gov (United States)

    Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.

    1987-01-01

    Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.

  14. An improved non-uniformity correction algorithm and its GPU parallel implementation

    Science.gov (United States)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui

    2018-05-01

    The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.

  15. Stress state of thin – walled member of the structure with operation damages under nonuniform loading

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-01-01

    Full Text Available  The publication is dedicated to determining of stress state in particular the stress concentration factors for thin – walled members of the structures subject to nonuniform tension. A structure member has obtained the operation damage generation by corrosion and other causes.

  16. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    NARCIS (Netherlands)

    Kenjeres, S.

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations

  17. Effect of disjoining pressure in a thin film equation with non-uniform forcing

    KAUST Repository

    MOULTON, D. E.; LEGA, J.

    2013-01-01

    We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations

  18. Non-uniform approximations for sums of discrete m-dependent random variables

    OpenAIRE

    Vellaisamy, P.; Cekanavicius, V.

    2013-01-01

    Non-uniform estimates are obtained for Poisson, compound Poisson, translated Poisson, negative binomial and binomial approximations to sums of of m-dependent integer-valued random variables. Estimates for Wasserstein metric also follow easily from our results. The results are then exemplified by the approximation of Poisson binomial distribution, 2-runs and $m$-dependent $(k_1,k_2)$-events.

  19. Effect of non-uniform mean flow field on acoustic propagation problems in computational aeroacoustics

    DEFF Research Database (Denmark)

    Si, Haiqing; Shen, Wen Zhong; Zhu, Wei Jun

    2013-01-01

    Acoustic propagation in the presence of a non-uniform mean flow is studied numerically by using two different acoustic propagating models, which solve linearized Euler equations (LEE) and acoustic perturbation equations (APE). As noise induced by turbulent flows often propagates from near field t...

  20. Detection of Uniform and Nonuniform Differential Item Functioning by Item-Focused Trees

    Science.gov (United States)

    Berger, Moritz; Tutz, Gerhard

    2016-01-01

    Detection of differential item functioning (DIF) by use of the logistic modeling approach has a long tradition. One big advantage of the approach is that it can be used to investigate nonuniform (NUDIF) as well as uniform DIF (UDIF). The classical approach allows one to detect DIF by distinguishing between multiple groups. We propose an…

  1. Modelling non-uniform strain distributions in aerospace composites using fibre Bragg gratings

    NARCIS (Netherlands)

    Rajabzadehdizaji, Aydin; Groves, R.M.; Hendriks, R.C.; Heusdens, R.; Chung, Y.; Jin, W.; Lee, B.; Canning, J.; Nakamura, K.; Yuan, L.

    2017-01-01

    In this paper the behaviour of fibre Bragg grating (FBG) sensors under non-uniform strain distributions was analysed. Using the fundamental matrix approach, the length of the FBG sensor was discretised, with each segment undergoing different strain values. FBG sensors that are embedded inside

  2. Critical opalescence of neutrons in nonuniform liquid in the gravitational field

    International Nuclear Information System (INIS)

    Sugakov, V.I.; Chalyj, A.V.; Chernenko, L.M.

    1990-01-01

    The altitude dependence of the refractive index and refractive angle of the neutron beam in a nonuniform liquid near the critical point is investigated. The neutron wave function in a passing beam as well as monochromatic transmission and reflection coefficients of neutrons are found

  3. Modeling of parallel-plate regenerators with non-uniform plate distributions

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2010-01-01

    plate spacing distributions are presented in order to understand the impact of spacing non-uniformity. Simulations of more realistic distributions where the plate spacings follow normal distributions are then discussed in order to describe the deviation of the performance of a regenerator relative...

  4. A Single Image Deblurring Algorithm for Nonuniform Motion Blur Using Uniform Defocus Map Estimation

    Directory of Open Access Journals (Sweden)

    Chia-Feng Chang

    2017-01-01

    Full Text Available One of the most common artifacts in digital photography is motion blur. When capturing an image under dim light by using a handheld camera, the tendency of the photographer’s hand to shake causes the image to blur. In response to this problem, image deblurring has become an active topic in computational photography and image processing in recent years. From the view of signal processing, image deblurring can be reduced to a deconvolution problem if the kernel function of the motion blur is assumed to be shift invariant. However, the kernel function is not always shift invariant in real cases; for example, in-plane rotation of a camera or a moving object can blur different parts of an image according to different kernel functions. An image that is degraded by multiple blur kernels is called a nonuniform blur image. In this paper, we propose a novel single image deblurring algorithm for nonuniform motion blur images that is blurred by moving object. First, a proposed uniform defocus map method is presented for measurement of the amounts and directions of motion blur. These blurred regions are then used to estimate point spread functions simultaneously. Finally, a fast deconvolution algorithm is used to restore the nonuniform blur image. We expect that the proposed method can achieve satisfactory deblurring of a single nonuniform blur image.

  5. Below-threshold harmonic generation from strong non-uniform fields

    Science.gov (United States)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  6. New fundamental insights into capacitance modeling of laterally nonuniform MOS devices

    NARCIS (Netherlands)

    Aarts, A.C.T.; Hout, van der R.; Paasschens, J.C.J.; Scholten, A.J.; Willemsen, M.B.; Klaassen, D.B.M.

    2006-01-01

    In compact transistor modeling for circuit simulation, the capacitances of conventional MOS devices are commonly determined as the derivatives of terminal charges, which in their turn are obtained from the so-called Ward-Dutton charge partitioning scheme. For devices with a laterally nonuniform

  7. A Method of Sky Ripple Residual Nonuniformity Reduction for a Cooled Infrared Imager and Hardware Implementation.

    Science.gov (United States)

    Li, Yiyang; Jin, Weiqi; Li, Shuo; Zhang, Xu; Zhu, Jin

    2017-05-08

    Cooled infrared detector arrays always suffer from undesired ripple residual nonuniformity (RNU) in sky scene observations. The ripple residual nonuniformity seriously affects the imaging quality, especially for small target detection. It is difficult to eliminate it using the calibration-based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified temporal high-pass nonuniformity correction algorithm using fuzzy scene classification. The fuzzy scene classification is designed to control the correction threshold so that the algorithm can remove ripple RNU without degrading the scene details. We test the algorithm on a real infrared sequence by comparing it to several well-established methods. The result shows that the algorithm has obvious advantages compared with the tested methods in terms of detail conservation and convergence speed for ripple RNU correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA), which has two advantages: (1) low resources consumption; and (2) small hardware delay (less than 10 image rows). It has been successfully applied in an actual system.

  8. Internal structure of multicomponent static spherical gravitating fluids

    International Nuclear Information System (INIS)

    Olson, E.; Bailyn, M.

    1975-01-01

    The Maxwell--Einstein equations for a fluid comprised of more than one type of particle are not a determinate system even if an equation of state is added. The problem of what the charge distribution is in such fluids is therefore also not determinate. To complete the definition of the problem, more equations are needed. We obtain these for the simple case of a static spherically symmetric multicomponent system (imbedded in a Minkowskian background) by minimizing the energy of the fluid with respect to variations in the number densities of the constituents, with the side conditions that the total number of each constituent is constant during the variations. This procedure results in a determinate set of hydrostatic equilibrium equations, the sum of which is the familiar Tolman--Oppenheimer--Volkoff equation. Some general conclusions can be drawn. For example, the necessary and sufficient condition for charge neutrality is that the mass-energy density be some (arbitrary) function of some (arbitrary) linear combination of the number densities. Thus, since it is well known that the electrons in a white dwarf star at absolute zero form a degenerate gas, there must be a charge imbalance throughout such a star. This imbalance can then be computed self-consistently. An over-all physical interpretation of the new equations is that in equilibrium at any point in the fluid the sum of the non-gravitational forces per unit energy is the same for constituent 1 as for constituent 2 and so on. This is the analog of the corresponding (Galilean) statement for gravitational forces that is valid even without equilibrium

  9. Optical spectroscopy of the Ce-doped multicomponent garnets

    International Nuclear Information System (INIS)

    Canimoglu, A.; Karabulut, Y.; Ayvacikli, M.; Muresan, L.E.; Perhaita, I.; Barbu-Tudoran, L.; Garcia Guinea, J.; Karali, T.; Can, N.

    2016-01-01

    Here, we report our results referring to the preparation of Ce doped Y 2.22 MgGa 2 Al 2 SiO 12 , Y 1.93 MgAl 4 SiO 12 and Y 2.22 Gd 0.75 Ga 2 Al 3 O 12 using solid state reaction at high temperature. Several complementary methods (i.e. powder x-ray diffraction (XRPD), energy dispersive analysis of X-rays (EDX), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR)) were studied to examine the effects of the synthesis procedure on the morphology and structure. XRD analyses revealed that all compounds include yttrium aluminate phase with garnet structure. Cathodoluminescence (CL), radioluminescence (RL) and photoluminescence (PL) measurements were carried out for clarification of relationship between host lattice defects and the spectral luminescence emissions. Luminescence emission of phosphors is peaked at 530 nm assigned to 5d-4f transitions of the dopant Ce 3+ ions with a broad emission band in 400–700 nm range. Under electron irradiation, the emission spectrum of Ce doped (YGd) 3 Ga 2 Al 3 O 12 is well defined and has a characteristic fairly narrow and sharp emission band peaking at 312 nm and 624 nm corresponding to transition of 6 P 7/2 → 8 S 7/2 and 6 G J → 6 P J (Gd 3+ ), respectively. We suggest some of phosphors might be excellent phototherapy phosphor materials under electron excitation. - Highlights: • Ce-doped Multicomponent Garnets were prepared solid state reaction method. • The shape and size of phosphor particles were examined. • The narrow band UV B emission due to Gd 3+ ions were observed.

  10. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    Science.gov (United States)

    Granberg, F.; Djurabekova, F.; Levo, E.; Nordlund, K.

    2017-02-01

    A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  11. DSMC multicomponent aerosol dynamics: Sampling algorithms and aerosol processes

    Science.gov (United States)

    Palaniswaamy, Geethpriya

    The post-accident nuclear reactor primary and containment environments can be characterized by high temperatures and pressures, and fission products and nuclear aerosols. These aerosols evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement and distribution involve the study of various processes such as coagulation, deposition, condensation, etc., and are influenced by factors such as particle shape, charge, radioactivity and spatial inhomogeneity. These many factors make the numerical study of nuclear aerosol evolution computationally very complicated. The focus of this research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to elucidate the role of various phenomena that influence the nuclear aerosol evolution. In this research, several aerosol processes such as coagulation, deposition, condensation, and source reinforcement are explored for a multi-component, aerosol dynamics problem in a spatially homogeneous medium. Among the various sampling algorithms explored the Metropolis sampling algorithm was found to be effective and fast. Several test problems and test cases are simulated using the DSMC technique. The DSMC results obtained are verified against the analytical and sectional results for appropriate test problems. Results show that the assumption of a single mean density is not appropriate due to the complicated effect of component densities on the aerosol processes. The methods developed and the insights gained will also be helpful in future research on the challenges associated with the description of fission product and aerosol releases.

  12. Nonideal mixing in multicomponent lipid/detergent systems

    International Nuclear Information System (INIS)

    Tsamaloukas, Alekos; Szadkowska, Halina; Heerklotz, Heiko

    2006-01-01

    A detailed understanding of the mixing properties of membranes to which detergents are added is mandatory for improving the application and interpretation of detergent based protein or lipid extraction assays. For Triton X-100 (TX-100), a nonionic detergent frequently used in the process of solubilizing and purifying membrane proteins and lipids, we present here a detailed study of the mixing properties of binary and ternary lipid mixtures by means of high-sensitivity isothermal titration calorimetry (ITC). To this end the partitioning thermodynamics of TX-100 molecules from the aqueous phase to lipid bilayers composed of various mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), egg-sphingomyelin (SM), and cholesterol (cho) are characterized. Composition-dependent partition coefficients K are analysed within the frame of a thermodynamic model developed to describe nonideal mixing in multicomponent lipid/detergent systems. The results imply that POPC, fluid SM, and TX-100 mix almost ideally (nonideality parameters ρ α/β SM/cho ≤-6RT) and unfavourable PC/cho interactions (ρ PC/cho = 2RT) may under certain conditions cause POPC/TX-100-enriched domains to segregate from SM/cho-enriched ones. TX-100/cho contacts are unfavourable (ρ cho/TX = 4RT), so the system tends to avoid them. That means, addition of TX-100 promotes the separation of SM/cho-rich from PC/TX-100-rich domains. It appears that cho/detergent interactions are crucial governing the abundance and composition of detergent-resistant membrane patches

  13. Polymer Percolation Threshold in Multi-Component HPMC Matrices Tablets

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi

    2011-06-01

    Full Text Available Introduction: The percolation theory studies the critical points or percolation thresholds of the system, where onecomponent of the system undergoes a geometrical phase transition, starting to connect the whole system. The application of this theory to study the release rate of hydrophilic matrices allows toexplain the changes in release kinetics of swellable matrix type system and results in a clear improvement of the design of controlled release dosage forms. Methods: In this study, the percolation theory has been applied to multi-component hydroxypropylmethylcellulose (HPMC hydrophilic matrices. Matrix tablets have been prepared using phenobarbital as drug,magnesium stearate as a lubricant employing different amount of lactose and HPMC K4M as a fillerandmatrix forming material, respectively. Ethylcelullose (EC as a polymeric excipient was also examined. Dissolution studies were carried out using the paddle method. In order to estimate the percolation threshold, the behaviour of the kinetic parameters with respect to the volumetric fraction of HPMC at time zero, was studied. Results: In both HPMC/lactose and HPMC/EC/lactose matrices, from the point of view of the percolation theory, the optimum concentration for HPMC, to obtain a hydrophilic matrix system for the controlled release of phenobarbital is higher than 18.1% (v/v HPMC. Above 18.1% (v/v HPMC, an infinite cluster of HPMC would be formed maintaining integrity of the system and controlling the drug release from the matrices. According to results, EC had no significant influence on the HPMC percolation threshold. Conclusion: This may be related to broad functionality of the swelling hydrophilic matrices.

  14. Pair correlations in an expanding universe for a multicomponent system

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1983-01-01

    Fall and Saslaw have derived an equation for the growth of pair correlations in an expanding universe of identical self-gravitating point masses which is correlation-free at some initial time. Their equation is rigorously true for the earliest stages of growth, assuming only that the system is spatially homogeneous and isotropic, and that it is characterized in the ''comoving frame'' by a Maxwellian distribution of velocities. This paper generalizes their analysis to the case of a multicomponent system of particles with different masses, each species of which is characterized by a Maxwellian distribution at the same temperature. Here there are two types of pair correlations to consider, namely among members of the same species and among members of different species. The general behavior may be understood most readily by considering the covariance functions, which assume very simple forms. Thus one finds that the ''strength'' of the covariance scales, for sufficiently small radial separations, as the product of the masses, whereas the ''range'' of the covariance varies inversely as the square root of the reduced mass of the two constituents. This implies that, for two very different masses, the ''range'' will be set by the lighter constituent. Knowledge of the covariances also permits the calculation of such objects as the correlational energy densities of the various interactions. Consider, for example, a two-component system. Here one finds that even a very small contamination of heavy masses, which would have a negligible effect upon the total mass or kinetic energy densities, can increase the total correlational energy density, and hence decrease the time scale for the evolution of interesting structure, by orders of magnitude

  15. Multi-level predictive maintenance for multi-component systems

    International Nuclear Information System (INIS)

    Nguyen, Kim-Anh; Do, Phuc; Grall, Antoine

    2015-01-01

    In this paper, a novel predictive maintenance policy with multi-level decision-making is proposed for multi-component system with complex structure. The main idea is to propose a decision-making process considered on two levels: system level and component one. The goal of the decision rules at the system level is to address if preventive maintenance actions are needed regarding the predictive reliability of the system. At component level the decision rules aim at identifying optimally a group of several components to be preventively maintained when preventive maintenance is trigged due to the system level decision. Selecting optimal components is based on a cost-based group improvement factor taking into account the predictive reliability of the components, the economic dependencies as well as the location of the components in the system. Moreover, a cost model is developed to find the optimal maintenance decision variables. A 14-component system is finally introduced to illustrate the use and the performance of the proposed predictive maintenance policy. Different sensitivity analysis are also investigated and discussed. Indeed, the proposed policy provides more flexibility in maintenance decision-making for complex structure systems, hence leading to significant profits in terms of maintenance cost when compared with existing policies. - Highlights: • A predictive maintenance policy for complex structure systems is proposed. • Multi-level decision process based on prognostic results is proposed. • A cost-based group importance measure is introduced for decision-making. • Both positive and negative dependencies between components are investigated. • A cost model and Monte Carlo simulation are developed for optimization process.

  16. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    International Nuclear Information System (INIS)

    Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.

    2012-01-01

    A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.

  17. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  18. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  19. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim; Amad, Maan H.; Al-Talla, Zeyad

    2012-01-01

    with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs

  20. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  1. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  2. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  3. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  4. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NARCIS (Netherlands)

    Rafiee Fanood, M.M.; Ram, N.B.; Lehmann, C.S.; Powis, I.; Janssen, M.H.M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how

  5. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false How do I demonstrate compliance if I manufacture multi-component kits? 59.506 Section 59.506 Protection of Environment ENVIRONMENTAL PROTECTION... § 59.506 How do I demonstrate compliance if I manufacture multi-component kits? (a) If you manufacture...

  6. Investigation of Non-Uniform Rust Distribution and Its Effects on Corrosion Induced Cracking in Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Sutrisno Wahyuniarsih

    2017-01-01

    Full Text Available Uniform corrosion still widely used by a lot of researchers and engineers to analyze the corrosion induced cracking. However, in practice, corrosion process occurred non-uniformly. The part nearest to the exposed surface is more likely to have faster corrosion initiation compared with other regions. This research is mainly focused on investigating the effect of non-uniform rust distribution to cover cracking in reinforced concrete. An experimental test performed using accelerated corrosion test by using 5% NaCl solution and applied a constant electric current to the concrete samples. The rust distribution and measurement were observed by using a digital microscope. Based on the experimental result, it was found that the rust was distributed in a non-uniform pattern. As a result, the cracks also formed non-uniformly along the perimeter of steel bar. At the last part of this paper, a simulation result of concrete cracking induced by non-uniform corrosion is presented. The result compared with a simulation using uniform corrosion assumption to investigate the damage pattern of each model. The simulation result reveals stress evolution due to rust expansion which leads to concrete cracking. Furthermore, a comparison of stresses induced by non-uniform corrosion and uniform corrosion indicates that non-uniform corrosion could lead to earlier damage to the structure which is specified by the formation and propagation of the crack.

  7. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.; Michelsen, Poul

    2005-01-01

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel "nonmodal" calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth...

  8. Alfven instability and micromagnetic islands in a plasma with sheared magnetic fields

    International Nuclear Information System (INIS)

    Hsu, J.; Kaw, P.; Chen, L.

    1977-07-01

    The normal mode equation for coupled drift and Alfven waves in a finite-β nonuniform plasma with a sheared magnetic field is solved, in the slab geometry, to investigate the instability of slow Alfven waves. It is shown, that, besides having an appreciable growth rate, the instability also produces microscopic ''tearing'' of the rational surfaces which has important implications for anomalous transport

  9. Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazocarbonyl compounds

    International Nuclear Information System (INIS)

    Medvedev, J J; Nikolaev, V A

    2015-01-01

    Multicomponent reactions of diazo compounds catalyzed by Rh II complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O–ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references

  10. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  11. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...

  12. Numerical simulations of multicomponent evaporation and gas-phase transport using M{sup 2}NOTS

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K. [Sandia National Laboratories, Albuquerque, NM (United States)

    1995-03-01

    The multiphase, multicomponent, non-isothermal simulator M{sup 2}NOTS was tested against several one-dimensional experiments. The experiments represented a through-flow limiting condition of soil venting in which air flows through the contaminated region. Predictions using M{sup 2}NOTS of changing in situ compositions and effluent concentrations for toluene and o-xylene mixtures were compared to the observed results. Results showed that M{sup 2}NOTS was able to capture the salient trends and features of multicomponent through-flow venting processes.

  13. Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models

    CERN Document Server

    Srinivasan, Seshasai

    2013-01-01

    Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.

  14. A self-consistent model for thermodynamics of multicomponent solid solutions

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2016-01-01

    The self-consistent concept recently published in this journal (108, 27–30, 2015) is extended from a binary to a multicomponent system. This is possible by exploiting the trapping concept as basis for including the interaction of atoms in terms of pairs (e.g. A–A, B–B, C–C…) and couples (e.g. A–B, B–C, …) in a multicomponent system with A as solvent and B, C, … as dilute solutes. The model results in a formulation of Gibbs-energy, which can be minimized. Examples show that the couple and pair formation may influence the equilibrium Gibbs energy markedly.

  15. Multicomponent transport in membranes for redox flow batteries

    Science.gov (United States)

    Monroe, Charles

    2015-03-01

    Redox flow batteries (RFBs) incorporate separator membranes, which ideally prevent mixing of electrochemically active species while permitting crossover of inactive supporting ions. Understanding crossover and membrane selectivity may require multicomponent transport models that account for solute/solute interactions within the membrane, as well as solute/membrane interactions. Application of the Onsager-Stefan-Maxwell formalism allows one to account for all the dissipative phenomena that may accompany component fluxes through RFB membranes. The magnitudes of dissipative interactions (diffusional drag forces) are quantified by matching experimentally established concentration transients with theory. Such transients can be measured non-invasively using DC conductometry, but the accuracy of this method requires precise characterization of the bulk RFB electrolytes. Aqueous solutions containing both vanadyl sulfate (VOSO4) and sulfuric acid (H2SO4) are relevant to RFB technology. One of the first precise characterizations of aqueous vanadyl sulfate has been implemented and will be reported. To assess the viability of a separator for vanadium RFB applications with cell-level simulations, it is critical to understand the tendencies of various classes of membranes to absorb (uptake) active species, and to know the relative rates of active-species and supporting-electrolyte diffusion. It is also of practical interest to investigate the simultaneous diffusion of active species and supports, because interactions between solutes may ultimately affect the charge efficiency and power efficiency of the RFB system as a whole. A novel implementation of Barnes's classical model of dialysis-cell diffusion [Physics 5:1 (1934) 4-8] is developed to measure the binary diffusion coefficients and sorption equilibria for single solutes (VOSO4 or H2SO4) in porous membranes and cation-exchange membranes. With the binary diffusion and uptake measurement in hand, a computer simulation that

  16. EFFICACY OF MODIFIED MULTICOMPONENT SYSTEM “1C: ENTERPRISE” IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    A. A. Modestov

    2016-01-01

    Full Text Available Background: Automated accounting and controlling system “1C: Enterprise” is widely used in Russia for optimizing the system of controlling materials and technical resources. Medical organizations modify them in line with their primary activity objectives. For many years, the Scientific Center of Children’s Health has been successfully using a 1C-based medical information system including electronic patient records. An innovative product — an additional block for accounting equipment and supplies (E&S — was developed in 2014.Objective: Our aim was to conduct a sociological analysis of results of the first stage of modified multicomponent system “1C: Enterprise” implementation.Methods: The cross-sectional full-design study was conducted from October 2014 to June 2015. We used the analytical method, the opinion poll method and the expert method. We developed a special questionnaire for the purposes of the poll. We assessed opinions of clinic employees, departments and services indirectly or directly working with the system.Results: The study results demonstrate that multifunctional and adapted towards peculiarities of activities of the Scientific Center of Children’s Health system “1C: Enterprise” provides more efficient control over the use of drugs, expendables and other E&S in patient terms. It also allows simplifying and automatizing operation of the E&S accounting system by the employees and generating financial statements for a given period in terms of patient/department/clinic. At the same time, the poll revealed problematic technical, informational and motivational aspects. This is confirmed by the degree of involvement/personal interest of employees in the end result, as well as by the priorities of motivation for quality work.Conclusion: Analysis of attitude of accountable persons to the modification of accounting policy of the Scientific Center of Children’s Health served as the basis for developing measures of

  17. Crystallisation mechanism of a multicomponent lithium alumino-silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2012-06-15

    A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.

  18. Improving the quality factor of an RF spiral inductor with non-uniform metal width and non-uniform coil spacing

    International Nuclear Information System (INIS)

    Shen Pei; Zhang Wanrong; Huang Lu; Jin Dongyue; Xie Hongyun

    2011-01-01

    An improved inductor layout with non-uniform metal width and non-uniform spacing is proposed to increase the quality factor (Q factor). For this inductor layout, from outer coil to inner coil, the metal width is reduced by an arithmetic-progression step, while the metal spacing is increased by a geometric-progression step. An improved layout with variable width and changed spacing is of benefit to the Q factor of RF spiral inductor improvement (approximately 42.86%), mainly due to the suppression of eddy-current loss by weakening the current crowding effect in the center of the spiral inductor. In order to increase the Q factor further, for the novel inductor, a patterned ground shield is used with optimized layout together. The results indicate that, in the range of 0.5 to 16 GHz, the Q factor of the novel inductor is at an optimum, which improves by 67% more than conventional inductors with uniform geometry dimensions (equal width and equal spacing), is enhanced by nearly 23% more than a PGS inductor with uniform geometry dimensions, and improves by almost 20% more than an inductor with an improved layout. (semiconductor devices)

  19. Smoothing and instability with magnetic field in a non-uniformly laser-irradiated planar target

    International Nuclear Information System (INIS)

    Bell, A.R.; Epperlein, E.M.

    1986-01-01

    Calculations are presented of the magneto-hydrodynamic response of a planar target to non-uniformities in energy deposition by a laser. The amplitude of the non-uniformities are assumed small and the equations are linearised in small perturbations about the solution for steady planar ablation driven by uniform laser energy deposition. The grad(n)xgrad(T) magnetic field source is included, along with Nernst convection and the Righi-Leduc heat flow. The magnetic field is shown to give a small increase in smoothing. A source term for magnetic field is included to simulate the effects of the Weibel instability. The instability is not strong enough to overcome the smoothing processes under the present assumptions. (author)

  20. Conductance dips and spin precession in a nonuniform waveguide with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, A. I., E-mail: malyshev@phys.unn.ru; Kozulin, A. S. [Lobachevsky Nizhny Novgorod State University (Russian Federation)

    2015-07-15

    An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effective magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.