WorldWideScience

Sample records for multicolor nanoparticle probes

  1. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels.

    Science.gov (United States)

    Wang, Xiaole; Huang, Yukun; Wu, Shijia; Duan, Nuo; Xu, Baocai; Wang, Zhouping

    2016-11-21

    Foodborne illnesses caused by Staphylococcus aureus and Salmonella typhimurium are common public health issues worldwide, affecting both developing and developed countries. In this study, aptamers labeled with multicolor lanthanide-doped time-resolved fluorescence (TRFL) nanoparticles were used as signal probes, and immobilized by Fe 3 O 4 magnetic nanoparticles were used as the capture probes. The signal probes were bonded onto the captured bacteria by the recognition of aptamer to form the sandwich-type complex. Under the optimal conditions, TRFL intensity at 544nm was used to quantify S. typhimurium (y=10,213×-12,208.92, R 2 =0.9922) and TRFL intensity at 615nm for S. aureus (y=4803.20×-1933.87, R 2 =0.9982) in the range of 10 2 -10 5 CFU/ml. Due to the magnetic separation and concentration of Fe 3 O 4 nanoparticles, detection limits of the developed method were found to be 15, 20CFU/ml for S. typhimurium and S. aureus, respectively. The application of this bioassay in milk was also investigated, and results were consistent with those of plate-counting method. Therefore, this simple and rapid method owns a great potential in the application for the multiplex analysis in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging

    Directory of Open Access Journals (Sweden)

    Da Hye Shin

    2015-03-01

    Full Text Available In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid(γ-PGA formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine(PLL and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N and double bonds (C=C were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells. These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells.

  3. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles

    NARCIS (Netherlands)

    Cormode, David P.; Roessl, Ewald; Thran, Axel; Skajaa, Torjus; Gordon, Ronald E.; Schlomka, Jens-Peter; Fuster, Valentin; Fisher, Edward A.; Mulder, Willem J. M.; Proksa, Roland; Fayad, Zahi A.

    2010-01-01

    To investigate the potential of spectral computed tomography (CT) (popularly referred to as multicolor CT), used in combination with a gold high-density lipoprotein nanoparticle contrast agent (Au-HDL), for characterization of macrophage burden, calcification, and stenosis of atherosclerotic

  4. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  5. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  6. Multicolor-FICTION

    Science.gov (United States)

    Martín-Subero, José Ignacio; Chudoba, Ilse; Harder, Lana; Gesk, Stefan; Grote, Werner; Novo, Francisco Javier; Calasanz, María José; Siebert, Reiner

    2002-01-01

    Phenotypic and genotypic analyses of cells are increasingly essential for understanding pathogenetic mechanisms as well as for diagnosing and classifying malignancies and other diseases. We report a novel multicolor approach based on the FICTION (fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms) technique, which enables the simultaneous detection of morphological, immunophenotypic, and genetic characteristics of single cells. As prerequisite, multicolor interphase fluorescence in situ hybridization assays for B-cell non-Hodgkin’s lymphoma and anaplastic large-cell lymphoma have been developed. These assays allow the simultaneous detection of the most frequent primary chromosomal aberrations in these neoplasms, such as t(8;14), t(11;14), t(14;18), and t(3;14), and the various rearrangements of the ALK gene, respectively. To establish the multicolor FICTION technique, these assays were combined with the immunophenotypic detection of lineage- or tumor-specific antigens, namely CD20 and ALK, respectively. For evaluation of multicolor FICTION experiments, image acquisition was performed by automatic sequential capturing of multiple focal planes. Thus, three-dimensional information was obtained. The multicolor FICTION assays were applied to well-characterized lymphoma samples, proving the performance, validity, and diagnostic power of the technique. Future multicolor FICTION applications include the detection of preneoplastic lesions, early stage and minimal residual diseases, or micrometastases. PMID:12163366

  7. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce"3"+ doping

    International Nuclear Information System (INIS)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Lu, Wei; Hao, Jianhua

    2015-01-01

    A simple strategy of Ce"3"+ doping is proposed to realize multicolor tuning and predominant red emission in BaLnF_5:Yb"3"+/Ho"3"+ (Ln"3"+ = Gd"3"+, Y"3"+, Yb"3"+) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb"3"+/Ho"3"+ composition by doping Ce"3"+, providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce"3"+-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce"3"+, arising from the two largely promoted cross-relaxation (CR) processes between Ce"3"+ and Ho"3"+. UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba"2"+, Gd"3"+, and Ce"3"+ in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce"3"+-doped UCNPs very useful for widespread applications in optical components and bioimaging. (paper)

  8. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce(3+) doping.

    Science.gov (United States)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Lu, Wei; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Hao, Jianhua

    2015-09-25

    A simple strategy of Ce(3+) doping is proposed to realize multicolor tuning and predominant red emission in BaLnF5:Yb(3+)/Ho(3+) (Ln(3+) = Gd(3+), Y(3+), Yb(3+)) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb(3+)/Ho(3+) composition by doping Ce(3+), providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce(3+)-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce(3+), arising from the two largely promoted cross-relaxation (CR) processes between Ce(3+) and Ho(3+). UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba(2+), Gd(3+), and Ce(3+) in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce(3+)-doped UCNPs very useful for widespread applications in optical components and bioimaging.

  9. Detecting and Tracking Nonfluorescent Nanoparticles Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Fang, Ning

    2012-01-17

    Precisely imaging and tracking dynamic biological processes in live cells are crucial for both fundamental research in life sciences and biomedical applications. Nonfluorescent nanoparticles are emerging as important optical probes in live-cell imaging because of their excellent photostability, large optical cross sections, and low cytotoxicity. Here, we provide a review of recent development in optical imaging of nonfluorescent nanoparticle probes and their applications in dynamic tracking and biosensing in live cells. A brief discussion on cytotoxicity of nanoparticle probes is also provided.

  10. Multicolor fluorescent intravital live microscopy (FILM) for surgical tumor resection in a mouse xenograft model.

    Science.gov (United States)

    Thurber, Greg M; Figueiredo, Jose L; Weissleder, Ralph

    2009-11-30

    Complete surgical resection of neoplasia remains one of the most efficient tumor therapies. However, malignant cell clusters are often left behind during surgery due to the inability to visualize and differentiate them against host tissue. Here we establish the feasibility of multicolor fluorescent intravital live microscopy (FILM) where multiple cellular and/or unique tissue compartments are stained simultaneously and imaged in real time. Theoretical simulations of imaging probe localization were carried out for three agents with specificity for cancer cells, stromal host response, or vascular perfusion. This transport analysis gave insight into the probe pharmacokinetics and tissue distribution, facilitating the experimental design and allowing predictions to be made about the localization of the probes in other animal models and in the clinic. The imaging probes were administered systemically at optimal time points based on the simulations, and the multicolor FILM images obtained in vivo were then compared to conventional pathological sections. Our data show the feasibility of real time in vivo pathology at cellular resolution and molecular specificity with excellent agreement between intravital and traditional in vitro immunohistochemistry. Multicolor FILM is an accurate method for identifying malignant tissue and cells in vivo. The imaging probes distributed in a manner similar to predictions based on transport principles, and these models can be used to design future probes and experiments. FILM can provide critical real time feedback and should be a useful tool for more effective and complete cancer resection.

  11. Multicolor fluorescent intravital live microscopy (FILM for surgical tumor resection in a mouse xenograft model.

    Directory of Open Access Journals (Sweden)

    Greg M Thurber

    2009-11-01

    Full Text Available Complete surgical resection of neoplasia remains one of the most efficient tumor therapies. However, malignant cell clusters are often left behind during surgery due to the inability to visualize and differentiate them against host tissue. Here we establish the feasibility of multicolor fluorescent intravital live microscopy (FILM where multiple cellular and/or unique tissue compartments are stained simultaneously and imaged in real time.Theoretical simulations of imaging probe localization were carried out for three agents with specificity for cancer cells, stromal host response, or vascular perfusion. This transport analysis gave insight into the probe pharmacokinetics and tissue distribution, facilitating the experimental design and allowing predictions to be made about the localization of the probes in other animal models and in the clinic. The imaging probes were administered systemically at optimal time points based on the simulations, and the multicolor FILM images obtained in vivo were then compared to conventional pathological sections. Our data show the feasibility of real time in vivo pathology at cellular resolution and molecular specificity with excellent agreement between intravital and traditional in vitro immunohistochemistry.Multicolor FILM is an accurate method for identifying malignant tissue and cells in vivo. The imaging probes distributed in a manner similar to predictions based on transport principles, and these models can be used to design future probes and experiments. FILM can provide critical real time feedback and should be a useful tool for more effective and complete cancer resection.

  12. Multi-color and artistic dithering

    OpenAIRE

    Ostromoukhov, Victor; Hersch, Roger D.

    1999-01-01

    A multi-color dithering algorithm is proposed, which converts a barycentric combination of color intensities into a multi-color non-overlapping surface coverage. Multi-color dithering is a generalization of standard bi-level dithering. Combined with tetrahedral color separation, multi-color dithering makes it possible to print images made of a set of non-standard inks. In contrast to most previous color halftoning methods, multi-color dithering ensures by construction that the different selec...

  13. Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes.

    Science.gov (United States)

    Wang, Haitao; Tian, Tian; Zhang, Yong; Pan, Zhiqiang; Wang, Yong; Xiao, Zhongdang

    2008-08-19

    In this work, we reported an approach for the site-selective growth of nanoparticle onto the tip apex of an atomic force microscopy (AFM) probe. The silicon AFM probe was first coated with a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) through a chemical vapor deposition (CVD) method. Subsequently, COOH groups were selectively generated at the tip apex of silicon AFM probes by applying an appropriate bias voltage between the tip and a flat gold electrode. The transformation of methyl to carboxylic groups at the tip apex of the AFM probe was investigated through measuring the capillary force before and after electrochemical oxidation. To prepare the nanoparticle terminated AFM probe, the oxidized AFM probe was then immersed in an aqueous solution containing positive metal ions, for example, Ag+, to bind positive metal ions to the oxidized area (COOH terminated area), followed by chemical reduction with aqueous NaBH 4 and further development (if desired) to give a metal nanoparticle-modified AFM probe. The formation of a metal nanoparticle at the tip apex of the AFM probe was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA).

  14. Optical imaging of non-fluorescent nanoparticle probes in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Stender, Anthony S.; Sun, Wei; and Fang, Ning

    2009-12-17

    Precise imaging of cellular and subcellular structures and dynamic processes in live cells is crucial for fundamental research in life sciences and in medical applications. Non-fluorescent nanoparticles are an important type of optical probe used in live-cell imaging due to their photostability, large optical cross-sections, and low toxicity. Here, we provide an overview of recent developments in the optical imaging of non-fluorescent nanoparticle probes in live cells.

  15. Unclonable Security Codes Designed from Multicolor Luminescent Lanthanide-Doped Y2O3 Nanorods for Anticounterfeiting.

    Science.gov (United States)

    Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar

    2017-04-26

    The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.

  16. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  17. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  18. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe.

    Science.gov (United States)

    Jiang, Jia; Tian, Sizhu; Wang, Kun; Wang, Yang; Zang, Shuang; Yu, Aimin; Zhang, Ziwei

    2018-02-01

    With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe 3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe 3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL -1 , and the analytical sensitivity was 1.81 μg mL -1 . When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL -1 , and the sensitivity was 0.014 and 0.13 μg mL -1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.

  19. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    Science.gov (United States)

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  20. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    Science.gov (United States)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  1. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  2. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  3. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  4. New approaches to nanoparticle sample fabrication for atom probe tomography

    International Nuclear Information System (INIS)

    Felfer, P.; Li, T.; Eder, K.; Galinski, H.; Magyar, A.P.; Bell, D.C.; Smith, G.D.W.; Kruse, N.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  5. New approaches to nanoparticle sample fabrication for atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Felfer, P., E-mail: peter.felfer@sydney.edu.au [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Li, T. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Materials Department, The University of Oxford, Oxford (United Kingdom); Eder, K. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Galinski, H. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Magyar, A.P.; Bell, D.C. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138 (United States); Smith, G.D.W. [Materials Department, The University of Oxford, Oxford (United Kingdom); Kruse, N. [Chemical Physics of Materials (Catalysis-Tribology), Université Libre de Bruxelles, Campus Plaine, CP 243, 1050 Brussels (Belgium); Ringer, S.P.; Cairney, J.M. [School for Aerospace, Mechanical and Mechatronic Engineering/Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia)

    2015-12-15

    Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10–20 nm core–shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ±1 nm. - Highlights: • Samples for APT of nanoparticles were fabricated from particle powders and dispersions. • Electrophoresis was suitable for producing samples from dispersions. • Powder lift-out was successfully producing samples from particle agglomerates. • Dispersion application/coating delivered the highest quality results.

  6. An On-Site Simultaneous Semi-Quantification of Aflatoxin B1, Zearalenone, and T-2 Toxin in Maize- and Cereal-Based Feed via Multicolor Immunochromatographic Assay

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2018-02-01

    Full Text Available Multiple-mycotoxin contamination has been frequently found in the agro-food monitoring due to the coexistence of fungi. However, many determination methods focused on a single mycotoxin, highlighting the demand for on-site determination of multiple mycotoxins in a single run. We develop a multicolor-based immunochromatographic strip (ICS for simultaneous determination of aflatoxin B1 (AFB1, zearalenone (ZEN and T-2 toxin in maize- and cereal-based animal feeds. The nanoparticles with different colors are conjugated with three monoclonal antibodies, which serve as the immunoassay probes. The decrease in color intensity is observed by the naked eyes, providing simultaneous quantification of three mycotoxins. The visible limits of detection for AFB1, ZEN and T-2 are estimated to be 0.5, 2, and 30 ng/mL, respectively. The cut-off values are 1, 10, and 50 ng/mL, respectively. Considerable specificity and stability are found using real samples. The results are in excellent agreement with those from high-performance liquid chromatography/tandem mass spectrometry. The multi-color ICS boasts sensitive and rapid visual differentiation and simultaneous semi-quantification of aflatoxin B1, zearalenone and T-2 toxin in maize- and cereal-based feed samples within 20 min.

  7. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    Science.gov (United States)

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  8. A new method for mapping the three-dimensional atomic distribution within nanoparticles by atom probe tomography (APT).

    Science.gov (United States)

    Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa

    2018-07-01

    We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Encapsulation method for atom probe tomography analysis of nanoparticles

    International Nuclear Information System (INIS)

    Larson, D.J.; Giddings, A.D.; Wu, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction. - Highlights: • Pt nanoparticles were analyzed using atom probe tomography and TEM. • The particles were prepared by encapsulation using atomic layer deposition. • Simulation of field evaporation near a void results in aberrations in ion trajectories. • Apparent differences between TEM and APT analyses are reconciled through simulation of field evaporation from a low-field matrix containing high-field NPs; ion trajectory aberrations are shown to lead to an apparent mixing of the matrix into the NPs.

  10. Genotyping of single nucleotide polymorphism by probe-gated silica nanoparticles.

    Science.gov (United States)

    Ercan, Meltem; Ozalp, Veli C; Tuna, Bilge G

    2017-11-15

    The development of simple, reliable, and rapid approaches for molecular detection of common mutations is important for prevention and early diagnosis of genetic diseases, including Thalessemia. Oligonucleotide-gated mesoporous nanoparticles-based analysis is a new platform for mutation detection that has the advantages of sensitivity, rapidity, accuracy, and convenience. A specific mutation in β-thalassemia, one of the most prevalent inherited diseases in several countries, was used as model disease in this study. An assay for detection of IVS110 point mutation (A > G reversion) was developed by designing probe-gated mesoporous silica nanoparticles (MCM-41) loaded with reporter fluorescein molecules. The silica nanoparticles were characterized by AFM, TEM and BET analysis for having 180 nm diameter and 2.83 nm pore size regular hexagonal shape. Amine group functionalized nanoparticles were analysed with FTIR technique. Mutated and normal sequence probe oligonucleotides)about 12.7 nmol per mg nanoparticles) were used to entrap reporter fluorescein molecules inside the pores and hybridization with single stranded DNA targets amplified by PCR gave different fluorescent signals for mutated targets. Samples from IVS110 mutated and normal patients resulted in statistically significant differences when the assay procedure were applied. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    Energy Technology Data Exchange (ETDEWEB)

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  12. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  13. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    Science.gov (United States)

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linlin; Wang, Xinyan; Ma, Qiang; Lin, Zihan; Chen, Shufan; Li, Yang [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Lu, Lehui [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); Qu, Hongping [Department of Biotechnology, College of Life Science, Jilin Normal University, Siping, 136000 (China); Su, Xingguang, E-mail: suxg@jlu.edu.cn [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2016-04-15

    In this work, a novel multiplex electrochemiluminescence (ECL) DNA sensor has been developed for determination of hepatitis B virus (HBV) and hepatitis C virus (HCV) based on multicolor CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs). The electrochemically synthesized graphene nanosheets (GNs) were selected as conducting bridge to anchor CdTe QDs{sub 551}-capture DNA{sub HBV} and CdTe QDs{sub 607}-capture DNA{sub HCV} on the glassy carbon electrode (GCE). Then, different concentrations of target DNA{sub HBV} and target DNA{sub HCV} were introduced to hybrid with complementary CdTe QDs-capture DNA. Au NPs-probe DNA{sub HBV} and Au NPs-probe DNA{sub HCV} were modified to the above composite film via hybrid with the unreacted complementary CdTe QDs-capture DNA. Au NPs could quench the electrochemiluminescence (ECL) intensity of CdTe QDs due to the inner filter effect. Therefore, the determination of target DNA{sub HBV} and target DNA{sub HCV} could be achieved by monitoring the ECL DNA sensor based on Au NPs-probe DNA/target DNA/CdTe QDs-capture DNA/GNs/GCE composite film. Under the optimum conditions, the ECL intensity of CdTe QDs{sub 551} and CdTe QDs{sub 607} and the concentration of target DNA{sub HBV} and target DNA{sub HCV} have good linear relationship in the range of 0.0005–0.5 nmol L{sup −1} and 0.001–1.0 nmol L{sup −1} respectively, and the limit of detection were 0.082 pmol L{sup −1} and 0.34 pmol L{sup −1} respectively (S/N = 3). The DNA sensor showed good sensitivity, selectivity, reproducibility and acceptable stability. The proposed DNA sensor has been employed for the determination of target DNA{sub HBV} and target DNA{sub HCV} in human serum samples with satisfactory results. - Highlights: • A novel electrochemiluminescence DNA sensor has been developed for the determination of target DNA{sub HBV} and target DNA{sub HCV}. • The DNA sensor shows good sensitivity, reproducibility and stability. • The ECL provided a

  15. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  16. Pd nanoparticles encapsulated in magnetic carbon nanocages: an efficient nanoenzyme for the selective detection and multicolor imaging of cancer cells

    Science.gov (United States)

    Chen, Gaosong; Song, Jingjing; Zhang, Haoli; Jiang, Yuntian; Liu, Weisheng; Zhang, Wei; Wang, Baodui

    2015-08-01

    Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH as a fluorescent and color change reporter molecule for the multicolor imaging and colorimetric detection of cancer cells was developed. We envision that this nanomaterial can be used as a power tool for a wide range of potential applications in biotechnology and medicine.Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH

  17. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  18. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    International Nuclear Information System (INIS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-01-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 − 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail. (topical review)

  19. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles

    International Nuclear Information System (INIS)

    Liu, Linlin; Wang, Xinyan; Ma, Qiang; Lin, Zihan; Chen, Shufan; Li, Yang; Lu, Lehui; Qu, Hongping; Su, Xingguang

    2016-01-01

    In this work, a novel multiplex electrochemiluminescence (ECL) DNA sensor has been developed for determination of hepatitis B virus (HBV) and hepatitis C virus (HCV) based on multicolor CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs). The electrochemically synthesized graphene nanosheets (GNs) were selected as conducting bridge to anchor CdTe QDs_5_5_1-capture DNA_H_B_V and CdTe QDs_6_0_7-capture DNA_H_C_V on the glassy carbon electrode (GCE). Then, different concentrations of target DNA_H_B_V and target DNA_H_C_V were introduced to hybrid with complementary CdTe QDs-capture DNA. Au NPs-probe DNA_H_B_V and Au NPs-probe DNA_H_C_V were modified to the above composite film via hybrid with the unreacted complementary CdTe QDs-capture DNA. Au NPs could quench the electrochemiluminescence (ECL) intensity of CdTe QDs due to the inner filter effect. Therefore, the determination of target DNA_H_B_V and target DNA_H_C_V could be achieved by monitoring the ECL DNA sensor based on Au NPs-probe DNA/target DNA/CdTe QDs-capture DNA/GNs/GCE composite film. Under the optimum conditions, the ECL intensity of CdTe QDs_5_5_1 and CdTe QDs_6_0_7 and the concentration of target DNA_H_B_V and target DNA_H_C_V have good linear relationship in the range of 0.0005–0.5 nmol L"−"1 and 0.001–1.0 nmol L"−"1 respectively, and the limit of detection were 0.082 pmol L"−"1 and 0.34 pmol L"−"1 respectively (S/N = 3). The DNA sensor showed good sensitivity, selectivity, reproducibility and acceptable stability. The proposed DNA sensor has been employed for the determination of target DNA_H_B_V and target DNA_H_C_V in human serum samples with satisfactory results. - Highlights: • A novel electrochemiluminescence DNA sensor has been developed for the determination of target DNA_H_B_V and target DNA_H_C_V. • The DNA sensor shows good sensitivity, reproducibility and stability. • The ECL provided a convenient, low-cost, sensitive, and specific method for target DNA

  20. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    OpenAIRE

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-01-01

    Photoswitchable fluorescent proteins with controllable light?dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive ...

  1. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    Science.gov (United States)

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  2. Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase.

    Science.gov (United States)

    Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei; Chiang, Chia-Chin

    2018-04-16

    In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future.

  3. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  4. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong [Department of Chemistry Education, Seoul (Korea, Republic of); Kang, Homan; Lee, Yoonsik [Interdisciplinary Program in Nano-Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature.

  5. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.

    Science.gov (United States)

    Degliangeli, Federica; Kshirsagar, Prakash; Brunetti, Virgilio; Pompa, Pier Paolo; Fiammengo, Roberto

    2014-02-12

    DNA-gold nanoparticle probes are implemented in a simple strategy for direct microRNA (miRNA) quantification. Fluorescently labeled DNA-probe strands are immobilized on PEGylated gold nanoparticles (AuNPs). In the presence of target miRNA, DNA-RNA heteroduplexes are formed and become substrate for the endonuclease DSN (duplex-specific nuclease). Enzymatic hydrolysis of the DNA strands yields a fluorescence signal due to diffusion of the fluorophores away from the gold surface. We show that the molecular design of our DNA-AuNP probes, with the DNA strands immobilized on top of the PEG-based passivation layer, results in nearly unaltered enzymatic activity toward immobilized heteroduplexes compared to substrates free in solution. The assay, developed in a real-time format, allows absolute quantification of as little as 0.2 fmol of miR-203. We also show the application of the assay for direct quantification of cancer-related miR-203 and miR-21 in samples of extracted total RNA from cell cultures. The possibility of direct and absolute quantification may significantly advance the use of microRNAs as biomarkers in the clinical praxis.

  6. Multicolor microRNA FISH effectively differentiates tumor types

    Science.gov (United States)

    Renwick, Neil; Cekan, Pavol; Masry, Paul A.; McGeary, Sean E.; Miller, Jason B.; Hafner, Markus; Li, Zhen; Mihailovic, Aleksandra; Morozov, Pavel; Brown, Miguel; Gogakos, Tasos; Mobin, Mehrpouya B.; Snorrason, Einar L.; Feilotter, Harriet E.; Zhang, Xiao; Perlis, Clifford S.; Wu, Hong; Suárez-Fariñas, Mayte; Feng, Huichen; Shuda, Masahiro; Moore, Patrick S.; Tron, Victor A.; Chang, Yuan; Tuschl, Thomas

    2013-01-01

    MicroRNAs (miRNAs) are excellent tumor biomarkers because of their cell-type specificity and abundance. However, many miRNA detection methods, such as real-time PCR, obliterate valuable visuospatial information in tissue samples. To enable miRNA visualization in formalin-fixed paraffin-embedded (FFPE) tissues, we developed multicolor miRNA FISH. As a proof of concept, we used this method to differentiate two skin tumors, basal cell carcinoma (BCC) and Merkel cell carcinoma (MCC), with overlapping histologic features but distinct cellular origins. Using sequencing-based miRNA profiling and discriminant analysis, we identified the tumor-specific miRNAs miR-205 and miR-375 in BCC and MCC, respectively. We addressed three major shortcomings in miRNA FISH, identifying optimal conditions for miRNA fixation and ribosomal RNA (rRNA) retention using model compounds and high-pressure liquid chromatography (HPLC) analyses, enhancing signal amplification and detection by increasing probe-hapten linker lengths, and improving probe specificity using shortened probes with minimal rRNA sequence complementarity. We validated our method on 4 BCC and 12 MCC tumors. Amplified miR-205 and miR-375 signals were normalized against directly detectable reference rRNA signals. Tumors were classified using predefined cutoff values, and all were correctly identified in blinded analysis. Our study establishes a reliable miRNA FISH technique for parallel visualization of differentially expressed miRNAs in FFPE tumor tissues. PMID:23728175

  7. Multicolored spanning subgraphs in G-colorings of complete graphs

    International Nuclear Information System (INIS)

    Akbari, S.; Zare, S.

    2007-08-01

    Let G = {g 1 , ..., g n } be a finite abelian group. Consider the complete graph with the vertex set {g 1 , ..., g n }}. The G-coloring of K n is a proper edge coloring in which the color of edge {g i , g j } is g i + g j , l ≤ i ≤ j ≤ n. We prove that in the G-coloring of the complete graph K n , there exists a multicolored Hamilton path if G is not an elementary abelian 2-group. Furthermore, we show that if n is odd, then the G-coloring of K n can be decomposed into multicolored 2-factors and if l r is the number of elements of order r in G, 3 ≤ r ≤ n. then there are exactly (l r )/2 multicolored r-uniform 2-factors in this decomposition. This provides a generalization of a recent result due to Constantine which states: For any prime number p > 2, there exists a proper edge coloring of K p which is decomposable into multicolored Hamilton cycles. (author)

  8. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    Science.gov (United States)

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  9. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  10. New compositions of cadmium selenium nanoparticles and dye molecules with cyclodextrin inclusion complexes

    International Nuclear Information System (INIS)

    Asimov, M.M.; Anufrik, S.S.; Tarkovsky, V.V.; Sazonko, H.H.

    2013-01-01

    Spectroscopic properties of new heterogeneous multicolor compositions based on cadmium selenium (CdSe/ZnS) nano crystal and inclusion complexes of dye molecule with cyclodextrin are presented. Spectral fluorescence of proposed compositions investigated in thin films. Signals from multicolor fluorescence of proposing compositions may be combined to definite spectral codes that could be used for tracking or verification of different objects. Calibration bar of signal within spectral codes guarantee high reliability in practical application of proposed multicolor compositions. Express analysis the size of nanoparticles during their synthesis and purification by spectroscopic methods is suggested. Application of Cyclodextrin molecules as target delivery systems is considered. (authors)

  11. Multicolor probe-based confocal laser endomicroscopy: a new world for in vivo and real-time cellular imaging

    Science.gov (United States)

    Vercauteren, Tom; Doussoux, François; Cazaux, Matthieu; Schmid, Guillaume; Linard, Nicolas; Durin, Marie-Amélie; Gharbi, Hédi; Lacombe, François

    2013-03-01

    Since its inception in the field of in vivo imaging, endomicroscopy through optical fiber bundles, or probe-based Confocal Laser Endomicroscopy (pCLE), has extensively proven the benefit of in situ and real-time examination of living tissues at the microscopic scale. By continuously increasing image quality, reducing invasiveness and improving system ergonomics, Mauna Kea Technologies has turned pCLE not only into an irreplaceable research instrument for small animal imaging, but also into an accurate clinical decision making tool with applications as diverse as gastrointestinal endoscopy, pulmonology and urology. The current implementation of pCLE relies on a single fluorescence spectral band making different sources of in vivo information challenging to distinguish. Extending the pCLE approach to multi-color endomicroscopy therefore appears as a natural plan. Coupling simultaneous multi-laser excitation with minimally invasive, microscopic resolution, thin and flexible optics, allows the fusion of complementary and valuable biological information, thus paving the way to a combination of morphological and functional imaging. This paper will detail the architecture of a new system, Cellvizio Dual Band, capable of video rate in vivo and in situ multi-spectral fluorescence imaging with a microscopic resolution. In its standard configuration, the system simultaneously operates at 488 and 660 nm, where it automatically performs the necessary spectral, photometric and geometric calibrations to provide unambiguously co-registered images in real-time. The main hardware and software features, including calibration procedures and sub-micron registration algorithms, will be presented as well as a panorama of its current applications, illustrated with recent results in the field of pre-clinical imaging.

  12. Noniterative algorithm for improving the accuracy of a multicolor-light-emitting-diode-based colorimeter

    Science.gov (United States)

    Yang, Pao-Keng

    2012-05-01

    We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.

  13. Electrical sintering of silver nanoparticle ink studied by in-situ TEM probing.

    Directory of Open Access Journals (Sweden)

    Magnus Hummelgård

    Full Text Available Metallic nanoparticle inks are used for printed electronics, but to reach acceptable conductivity the structures need to be sintered, usually using a furnace. Recently, sintering by direct resistive heating has been demonstrated. For a microscopic understanding of this Joule heating sintering method, we studied the entire process in real time inside a transmission electron microscope equipped with a movable electrical probe. We found an onset of Joule heating induced sintering and coalescence of nanoparticles at power levels of 0.1-10 mW/μm³. In addition, a carbonization of the organic shells that stabilize the nanoparticles were found, with a conductivity of 4 10⁵ Sm⁻¹.

  14. Dual-cycle dielectrophoretic collection rates for probing the dielectric properties of nanoparticles.

    Science.gov (United States)

    Bakewell, David J; Holmes, David

    2013-04-01

    A new DEP spectroscopy method and supporting theoretical model is developed to systematically quantify the dielectric properties of nanoparticles using continuously pulsed DEP collection rates. Initial DEP collection rates, that are dependent on the nanoparticle dielectric properties, are an attractive alternative to the crossover frequency method for determining dielectric properties. The new method introduces dual-cycle amplitude modulated and frequency-switched DEP (dual-cycle DEP) where the first collection rate with a fixed frequency acts as a control, and the second collection rate frequency is switched to a chosen value, such that, it can effectively probe the dielectric properties of the nanoparticles. The application of the control means that measurement variation between DEP collection experiments is reduced so that the frequency-switched probe collection is more effective. A mathematical model of the dual-cycle method is developed that simulates the temporal dynamics of the dual-cycle DEP nanoparticle collection system. A new statistical method is also developed that enables systematic bivariate fitting of the multifrequency DEP collection rates to the Clausius-Mossotti function, and is instrumental for determining dielectric properties. A Monte-Carlo simulation validates that collection rates improve estimation of the dielectric properties, compared with the crossover method, by exploiting a larger number of independent samples. Experiments using 200 nm diameter latex nanospheres suspended in 0.2 mS/m KCl buffer yield a nanoparticle conductivity of 26 mS/m that lies within 8% of the expected value. The results show that the dual-frequency method has considerable promise particularly for automated DEP investigations and associated technologies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes

    Science.gov (United States)

    Zhou, Yunyou; Bian, Guirong; Wang, Leyu; Dong, Ling; Wang, Lun; Kan, Jian

    2005-06-01

    This paper describes the preparation of organic nanoparticles by reprecipitation method under sonication and vigorous stirring. Transmission electron microscopy (TEM) was used to characterize the size and size distribution of the luminescent nanoparticles. Their average diameter was about 25 nm with a size variation of ±18%. The fluorescence decay lifetime of the nanoparticles also was determined on a self-equipped fluorospectrometer with laser light source. The lifetime (˜0.09 μs) of nanoparticles is about three times long as that of the monomer. The nanoparticles were in abundant of hydrophilic groups, which increased their miscibility in aqueous solution. These organic nanoparticles have high photochemical stability, excellent resistance to chemical degradation and photodegradation, and a good fluorescence quantum yield (25%). The fluorescence can be efficiently quenched by nucleic acids. Based on the fluorescence quenching of nanoparticles, a fluorescence quenching method was developed for determination of microamounts of nucleic acids by using the nanoparticles as a new fluorescent probe. Under optimal conditions, maximum fluorescence quenching is produced, with maximum excitation and emission wavelengths of 345 and 402 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.4-19.0 μg ml -1 for calf thymus DNA (ct-DNA) and 0.3-19.0 μg ml -1 for fish sperm DNA (fs-DNA). The corresponding detection limits are 0.25 μg ml -1 for ct-DNA and 0.17 μg ml -1 for fs-DNA. The relative standard deviation of six replicate measurements is 1.3-2.1%. The method is simple, rapid and sensitive with wide linear range. The recovery and relative standard deviation are very satisfactory.

  16. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  17. Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles

    Directory of Open Access Journals (Sweden)

    Xianlong Wei, Ming-Sheng Wang, Yoshio Bando and Dmitri Golberg

    2011-01-01

    Full Text Available The thermal stability of multiwalled carbon nanotubes (CNTs was studied in high vacuum using tungsten nanoparticles as miniaturized thermal probes. The particles were placed on CNTs inside a high-resolution transmission electron microscope equipped with a scanning tunneling microscope unit. The setup allowed manipulating individual nanoparticles and heating individual CNTs by applying current to them. CNTs were found to withstand high temperatures, up to the melting point of 60-nm-diameter W particles (~3400 K. The dynamics of W particles on a hot CNT, including particle crystallization, quasimelting, melting, sublimation and intradiffusion, were observed in real time and recorded as a video. Graphite layers reel off CNTs when melted or premelted W particles revolve along the tube axis.

  18. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Patete, J.m.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-05-17

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  19. Quantitatively Probing the Means of Controlling Nanoparticle Assembly on Surfaces

    International Nuclear Information System (INIS)

    Patete, J.M.; Wong, S.; Peng, X.; Serafin, J.M.

    2011-01-01

    As a means of developing a simple, cost-effective, and reliable method for probing nanoparticle behavior, we have used atomic force microscopy to gain a quantitative 3D visual representation of the deposition patterns of citrate-capped Au nanoparticles on a substrate as a function of (a) sample preparation, (b) the choice of substrate, (c) the dispersion solvent, and (d) the number of loading steps. Specifically, we have found that all four parameters can be independently controlled and manipulated in order to alter the resulting pattern and quantity of as-deposited nanoparticles. From these data, the sample preparation technique appears to influence deposition patterns most broadly, and the dispersion solvent is the most convenient parameter to use in tuning the quantity of nanoparticles deposited onto the surface under spin-coating conditions. Indeed, we have quantitatively measured the effect of surface coverage for both mica and silicon substrates under preparation techniques associated with (i) evaporation under ambient air, (ii) heat treatment, and (iii) spin-coating preparation conditions. In addition, we have observed a decrease in nanoparticle adhesion to a substrate when the ethylene glycol content of the colloidal dispersion solvent is increased, which had the effect of decreasing interparticle-substrate interactions. Finally, we have shown that substrates prepared by these diverse techniques have potential applicability in surface-enhanced Raman spectroscopy.

  20. Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells

    Directory of Open Access Journals (Sweden)

    Dusica eMaysinger

    2015-12-01

    Full Text Available Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs, carbon-based structures (C-dots, graphene and nanodiamonds and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases, ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim Measure what is measurable, and make measurable what is not so (Galileo Galilei.

  1. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Frequency division multiplexed multi-color fluorescence microscope system

    Science.gov (United States)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame

  3. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA.

    Science.gov (United States)

    Ganareal, Thenor Aristotile Charles S; Balbin, Michelle M; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2018-02-12

    Gold nanoparticle (AuNP) is considered to be the most stable metal nanoparticle having the ability to be functionalized with biomolecules. Recently, AuNP-based DNA detection methods captured the interest of researchers worldwide. Paratuberculosis or Johne's disease, a chronic gastroenteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), was found to have negative effect in the livestock industry. In this study, AuNP-based probes were evaluated for the specific and sensitive detection of MAP DNA. AuNP-based probe was produced by functionalization of AuNPs with thiol-modified oligonucleotide and was confirmed by Fourier-Transform Infrared (FTIR) spectroscopy. UV-Vis spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize AuNPs. DNA detection was done by hybridization of 10 μL of DNA with 5 μL of probe at 63 °C for 10 min and addition of 3 μL salt solution. The method was specific to MAP with detection limit of 103 ng. UV-Vis and SEM showed dispersion and aggregation of the AuNPs for the positive and negative results, respectively, with no observed particle growth. This study therefore reports an AuNP-based probes which can be used for the specific and sensitive detection of MAP DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.

    Science.gov (United States)

    Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B

    2011-07-26

    A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.

  5. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Quansheng, E-mail: q.s.chen@hotmail.com; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin

    2016-09-28

    Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF{sub 4}:Yb/Ho/Gd and NaYF{sub 4}:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF{sub 4} nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001–0.1 ng ml{sup −1} with the limit of detection (LOD) of 0.001 ng ml{sup −1}. Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. - Highlights: • Improved rare earth-doped upconversion nanoparticles were prepared with detailed optimizations. • Setup of an upconversion fluorescence spectrometer. • An advanced UCNPs-based immunosensor for dual-sensing mycotoxins was developed with a LOD of 0.001 ng ml{sup −1}. • Application of this biosensor to detect targets in real samples were confirmed with satisfied results.

  6. Multi-color pyrometry imaging system and method of operating the same

    Science.gov (United States)

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  7. Plasmonic nanoparticle scattering for color holograms.

    Science.gov (United States)

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-09-02

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.

  8. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs.

    Science.gov (United States)

    Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K

    2009-03-25

    Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.

  9. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  10. Rapid colorimetric sensing of gadolinium by EGCG-derived AgNPs: the development of a nanohybrid bioimaging probe.

    Science.gov (United States)

    Singh, Rohit Kumar; Mishra, Sourav; Jena, Satyapriya; Panigrahi, Bijayananda; Das, Bhaskar; Jayabalan, Rasu; Parhi, Pankaj Kumar; Mandal, Dindyal

    2018-04-17

    Polyphenol functionalized silver nanoparticles (AgNPs) have been developed and demonstrated as colorimetric sensors for the selective detection of gadolinium. The newly obtained AgNP-Gd3+ conjugates exhibit high aqueous dispersibility and excitation dependent fluorescence emission. The conjugates offer multicolor bioimaging potential owing to their excellent luminescence properties.

  11. Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior.

    Science.gov (United States)

    Shrivastava, Navadeep; Khan, L U; Vargas, J M; Ospina, Carlos; Coaquira, J A Q; Zoppellaro, Giorgio; Brito, H F; Javed, Yasir; Shukla, D K; Felinto, M C F C; Sharma, Surender K

    2017-07-19

    Luminescence-tunable multicolored LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce 3+ , Gd 3+ , and Eu 3+ dopants in the LaF 3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu 2+ , corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f( 2 F 5/2 ) → 5d state (Ce 3+ ) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f 6 5d 1 (Eu 2+ ) and 5 D 0 (Eu 3+ ) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd 3+ ion sub-lattice as the bridge and finally trapping by Eu 2+/3+ , upon excitation of the Ce 3+ ion. The calculation of experimental intensity parameters (Ω 2,4 ) has been discussed and the highest emission quantum efficiency (η = 85%) of the Eu 3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu 2+ /Eu 3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.

  12. Digital multicolor printing: state of the art and future challenges

    Science.gov (United States)

    Kipphan, Helmut

    1995-04-01

    During the last 5 years, digital techniques have become extremely important in the graphic arts industry. All sections in the production flow for producing multicolor printed products - prepress, printing and postpress - are influenced by digitalization, in an evolutionary and revolutionary way. New equipment and network techniques bring all the sections closer together. The focus is put on high-quality multicolor printing, together with high productivity. Conventional offset printing technology is compared with the leading nonimpact printing technologies. Computer to press is contrasted with computer to print techniques. The newest available digital multicolor presses are described - the direct imaging offset printing press from HEIDELBERG with new laser imaging technique as well as the INDIGO and XEIKON presses based on electrophotography. Regarding technical specifications, economic calculations and print quality, it is worked out that each technique has its own market segments. An outlook is given for future computer to press techniques and the potential of nonimpact printing technologies for advanced high-speed multicolor computer to print equipment. Synergy effects from the NIP-technologies to the conventional printing technologies and vice versa are possible for building up innovative new products, for example hybrid printing systems. It is also shown that there is potential for improving the print quality, based on special screening algorithms, and a higher number of grey levels per pixel by using NIP-technologies. As an intermediate step in digitalization of the production flow, but also as an economical solution computer to plate equipment is described. By producing printed products totally in a digital way, digital color proofing as well as color management systems are needed. The newest high-tech equipment using NIP-technologies for producing proofs is explained. All in all it is shown that the state of the art in digital multicolor printing has reached

  13. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    Science.gov (United States)

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  14. Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging

    Directory of Open Access Journals (Sweden)

    Mou Chung-Yuan

    2009-09-01

    Full Text Available Abstract Background Application of superparamagnetic iron oxide nanoparticles (SPIOs as the contrast agent has improved the quality of magnetic resonance (MR imaging. Low efficiency of loading the commercially available iron oxide nanoparticles into cells and the cytotoxicity of previously formulated complexes limit their usage as the image probe. Here, we formulated new cationic lipid nanoparticles containing SPIOs feasible for in vivo imaging. Methods Hydrophobic SPIOs were incorporated into cationic lipid 1,2-dioleoyl-3-(trimethylammonium propane (DOTAP and polyethylene-glycol-2000-1,2-distearyl-3-sn-phosphatidylethanolamine (PEG-DSPE based micelles by self-assembly procedure to form lipid-coated SPIOs (L-SPIOs. Trace amount of Rhodamine-dioleoyl-phosphatidylethanolamine (Rhodamine-DOPE was added as a fluorescent indicator. Particle size and zeta potential of L-SPIOs were determined by Dynamic Light Scattering (DLS and Laser Doppler Velocimetry (LDV, respectively. HeLa, PC-3 and Neuro-2a cells were tested for loading efficiency and cytotoxicity of L-SPIOs using fluorescent microscopy, Prussian blue staining and flow cytometry. L-SPIO-loaded CT-26 cells were tested for in vivo MR imaging. Results The novel formulation generates L-SPIOs particle with the average size of 46 nm. We showed efficient cellular uptake of these L-SPIOs with cationic surface charge into HeLa, PC-3 and Neuro-2a cells. The L-SPIO-loaded cells exhibited similar growth potential as compared to unloaded cells, and could be sorted by a magnet stand over ten-day duration. Furthermore, when SPIO-loaded CT-26 tumor cells were injected into Balb/c mice, the growth status of these tumor cells could be monitored using optical and MR images. Conclusion We have developed a novel cationic lipid-based nanoparticle of SPIOs with high loading efficiency, low cytotoxicity and long-term imaging signals. The results suggested these newly formulated non-toxic lipid-coated magnetic

  15. Capillary Interactions between a Probe Tip and a Nanoparticle

    International Nuclear Information System (INIS)

    Li-Ning, Sun; Le-Feng, Wang; Wei-Bin, Rong

    2008-01-01

    To understand capillary interactions between probe tips and nanoparticles under ambient conditions, a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases. It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force. The capillary force decreases with the increasing separation distances, and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances. The applicability of the symmetric meniscus approximation is discussed. (condensed matter: structure, mechanical and thermal properties)

  16. Silver-gold core-shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells

    International Nuclear Information System (INIS)

    Guo, X.; Guo, Z.; Jin, Y.; Liu, Z.; Zhang, W.; Huang, D.

    2012-01-01

    We report on silver-gold core-shell nanostructures that contain Methylene Blue (MB) at the gold/x96silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells. (author)

  17. Encapsulation-Stabilized, Europium Containing Nanoparticle as a Probe for Time-Resolved luminescence Detection of Cardiac Troponin I

    Directory of Open Access Journals (Sweden)

    Ka Ram Kim

    2017-10-01

    Full Text Available The use of a robust optical signaling probe with a high signal-to-noise ratio is important in the development of immunoassays. Lanthanide chelates are a promising material for this purpose, which provide time-resolved luminescence (TRL due to their large Stokes shift and long luminescence lifetime. From this, they have attracted considerable interest in the in vitro diagnostics field. However, the direct use of lanthanide chelates is limited because their luminescent signal can be easily affected by various quenchers. To overcome this drawback, strategies that rely on the entrapment of lanthanide chelates inside nanoparticles, thereby enabling the protection of the lanthanide chelate from water, have been reported. However, the poor stability of the lanthanide-entrapped nanoparticles results in a significant fluctuation in TRL signal intensity, and this still remains a challenging issue. To address this, we have developed a Lanthanide chelate-Encapsulated Silica Nano Particle (LESNP as a new immunosensing probe. In this approach, the lanthanide chelate is covalently crosslinked within the silane monomer during the silica nanoparticle formation. The resulting LESNP is physically stable and retains TRL properties of the parent lanthanide chelate. Using the probe, a highly sensitive, sandwich-based TRL immunoassay for the cardiac troponin I was conducted, exhibiting a limit of detection of 48 pg/mL. On the basis of the features of the LESNP such as TRL signaling capability, stability, and the ease of biofunctionalization, we expect that the LESNP can be widely applied in the development of TRL-based immunosensing.

  18. Multicolor Tunable Luminescence Based on Tb3+/Eu3+ Doping through a Facile Hydrothermal Route.

    Science.gov (United States)

    Wang, Chao; Zhou, Ting; Jiang, Jing; Geng, Huiyuan; Ning, Zhanglei; Lai, Xin; Bi, Jian; Gao, Daojiang

    2017-08-09

    Ln 3+ -doped fluoride is a far efficient material for realizing multicolor emission, which plays an important part in full-color displays, biolabeling, and MRI. However, studies on the multicolor tuning properties of Ln 3+ -doped fluoride are mainly concentrated on a complicated process using three or more dopants, and the principle of energy transfer mechanism is still unclear. Herein, multicolor tunable emission is successfully obtained only by codoping with Tb 3+ and Eu 3+ ions in β-NaGdF 4 submicrocrystals via a facile hydrothermal route. Our work reveals that various emission colors can be obtained and tuned from red, orange-red, pink, and blue-green to green under single excitation energy via codoping Tb 3+ and Eu 3+ with rationally changed Eu 3+ /Tb 3+ molar ratio due to the energy transfer between Tb 3+ and Eu 3+ ions in the β-NaGdF 4 host matrix. Meanwhile, the energy transfer mechanism in β-NaGdF 4 : x Eu 3+ /y Tb 3+ (x + y = 5 mol %) submicrocrystals is investigated. Our results evidence the potential of the dopants' distribution density as an effective way for analyzing energy transfer and multicolor-controlled mechanism in other rare earth fluoride luminescence materials. Discussions on the multicolor luminescence under a certain dopant concentration based on single host and wavelength excitation are essential toward the goal of the practical applications in the field of light display systems and optoelectronic devices.

  19. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.

    Science.gov (United States)

    Kosionis, Spyridon G; Terzis, Andreas F; Sadeghi, Seyed M; Paspalakis, Emmanuel

    2013-01-30

    We study optical effects in a hybrid system composed of a semiconductor quantum dot and a spherical metal nanoparticle that interacts with a weak probe electromagnetic field. We use modified nonlinear density matrix equations for the description of the optical properties of the system and obtain a closed-form expression for the linear susceptibilities of the quantum dot, the metal nanoparticle, and the total system. We then investigate the dependence of the susceptibility on the interparticle distance as well as on the material parameters of the hybrid system. We find that the susceptibility of the quantum dot exhibits optical transparency for specific frequencies. In addition, we show that there is a range of frequencies of the applied field for which the susceptibility of the semiconductor quantum dot leads to gain. This suggests that in such a hybrid system quantum coherence can reverse the course of energy transfer, allowing flow of energy from the metallic nanoparticle to the quantum dot. We also explore the susceptibility of the metal nanoparticle and show that it is strongly influenced by the presence of the quantum dot.

  20. Andromede project: Surface analysis and modification with probes from hydrogen to nano-particles in the MeV energy range

    International Nuclear Information System (INIS)

    Eller, Michael J.; Cottereau, Evelyne; Rasser, Bernard; Verzeroli, Elodie; Agnus, Benoit; Gaubert, Gabriel; Donzel, Xavier; Delobbe, Anne; Della-Negra, Serge

    2015-01-01

    The Andromede project is the center of a multi-disciplinary team which will build a new instrument for surface modification and analysis using the impact of probes from hydrogen to nano-particles (Au 400 +4 ) in the MeV range. For this new instrument a series of atomic, polyatomic, molecular and nano-particle ion beams will be delivered using two ion sources in tandem, a liquid metal ion source and an electron cyclotron resonance source. The delivered ion beams will be accelerated to high energy with a 4 MeV van de Graaff type accelerator. By using a suite of probes in the MeV energy range, ion beam analysis techniques, MeV atomic and cluster secondary ion mass spectrometry can all be performed in one location. A key feature of the instrument is its ability to produce an intense beam for injection into the accelerator. The commissioning of the two sources shows that intense beams from atomic ions to nano-particles can be delivered for subsequent acceleration. The calculations and measurements for the two sources are presented.

  1. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kačenka, M.; Kaman, Ondřej; Kotek, J.; Falteisek, L.; Černý, J.; Jirák, D.; Herynek, V.; Zacharovová, K.; Berková, A.; Jendelová, Pavla; Kupčík, Jaroslav; Pollert, Emil; Veverka, Pavel; Lukeš, I.

    2011-01-01

    Roč. 21, č. 1 (2011), s. 157-164 ISSN 0959-9428 R&D Projects: GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z50390703; CEZ:AV0Z40720504 Keywords : cellular labelling * dual probe * magnetic nanoparticles * MRI * silica coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011

  2. Mapping nonrecombining regions in barley using multicolor FISH

    Czech Academy of Sciences Publication Activity Database

    Karafiátová, Miroslava; Bartoš, Jan; Kopecký, David; Ma, L.; Sato, K.; Houben, A.; Stein, N.; Doležel, Jaroslav

    2013-01-01

    Roč. 21, č. 8 (2013), s. 739-751 ISSN 0967-3849 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : cDNA * multicolor FISH * low-copy FISH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.688, year: 2013

  3. A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs)

    OpenAIRE

    Shachaf, Catherine M.; Elchuri, Sailaja V.; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N.; Mitchell, Dennis J.; Zhang, Jingwu; Swartz, Kenneth B.; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P.

    2009-01-01

    Background Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. Methodology/Principal Findings To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using ?Composite Organic-Inorganic Nanoparticles? (COINs) Raman nanoparticles. COINs are Surface-Enhan...

  4. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  5. Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine

    International Nuclear Information System (INIS)

    Negi, Devendra P S; Chanu, T Inakhunbi

    2008-01-01

    We present a novel method for the selective detection of cysteine, a sulfur-containing amino acid, which plays a crucial role in many important biological functions such as protein folding. Surface-modified colloidal CdS nanoparticles have been used as a fluorescent probe to selectively detect cysteine in the presence of other amino acids in the micromolar concentration range. Cysteine quenches the emission of CdS in the 0.5-10 μM concentration range, whereas the other amino acids do not affect its emission. Among the other amino acids, histidine is most efficient in quenching the emission of the CdS nanoparticles. The sulfur atom of cysteine plays a crucial role in the quenching process in the 0.5-10 μM concentration range. Cysteine is believed to quench the emission of the CdS nanoparticles by binding to their surface via its negatively charged sulfur atom. This method can potentially be applied for its detection in biological samples.

  6. Probing surface plasmons in individual Ag nanoparticles in the ultra-violet spectral regime.

    Science.gov (United States)

    Chu, Ming-Wen; Sharma, Pradeep; Chang, Ching-Pin; Liou, Sz Chian; Tsai, Kun-Tong; Wang, Juen-Kai; Wang, Yuh-Lin; Chen, Cheng Hsuan

    2009-06-10

    Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (approximately 30 nm), grown on Si, in the ultra-violet spectral regime. The nanomaterials show respective sharp and broad surface-plasmon resonances at approximately 3.5 eV (approximately 355 nm) and approximately 7.0 eV (approximately 177 nm), and the correlated spectral calculations established their multipolar characteristics. The near-field distributions of the surface plasmons on the nanoparticles were also mapped out, revealing the predominant dipolar nature of the 3.5 eV excitation with obvious near-field enhancements at one end of the nano-object. The unveiled near-field enhancements have potential applications in plasmonics and molecular sensing.

  7. Probing surface plasmons in individual Ag nanoparticles in the ultra-violet spectral regime

    International Nuclear Information System (INIS)

    Chu, M-W; Chang, C-P; Liou, S C; Wang, J-K; Chen, C H; Sharma, Pradeep; Tsai, K-T; Wang, Y-L

    2009-01-01

    Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (∼30 nm), grown on Si, in the ultra-violet spectral regime. The nanomaterials show respective sharp and broad surface-plasmon resonances at ∼3.5 eV (∼355 nm) and ∼7.0 eV (∼177 nm), and the correlated spectral calculations established their multipolar characteristics. The near-field distributions of the surface plasmons on the nanoparticles were also mapped out, revealing the predominant dipolar nature of the 3.5 eV excitation with obvious near-field enhancements at one end of the nano-object. The unveiled near-field enhancements have potential applications in plasmonics and molecular sensing.

  8. Multicolor pattern scan laser for diabetic retinopathy with cataract

    Institute of Scientific and Technical Information of China (English)

    Takao; Hirano; Yasuhiro; Iesato; Toshinori; Murata

    2014-01-01

    · AIM: To evaluate the ability of various laser wavelengths in delivering sufficient burns to the retina in eyes with cataract using a new multicolor pattern scan laser with green(532 nm), yellow(577 nm), and red(647 nm)lasers.·METHODS: The relationship between the Emery-Little(EL) degree of cataract severity and the laser wavelength required to deliver adequate burns was investigated in102 diabetic eyes. Treatment time, total number of laser shots, and intra-operative pain were assessed as well.·RESULTS: All EL-1 grade eyes and 50% of EL-2 eyes were successfully treated with the green laser, while 50%of EL-2 eyes, 96% of EL-3 eyes, and 50% of EL-4 eyes required the yellow laser. The red laser was effective in the remaining 4% of EL-3 and 50% of EL-4 eyes.·CONCLUSION: Longer wavelength lasers are more effective in delivering laser burns through cataract when we use a multicolor pattern scan laser system.

  9. A multicolor imaging pyrometer

    Science.gov (United States)

    Frish, Michael B.; Frank, Jonathan H.

    1989-06-01

    A multicolor imaging pyrometer was designed for accurately and precisely measuring the temperature distribution histories of small moving samples. The device projects six different color images of the sample onto a single charge coupled device array that provides an RS-170 video signal to a computerized frame grabber. The computer automatically selects which one of the six images provides useful data, and converts that information to a temperature map. By measuring the temperature of molten aluminum heated in a kiln, a breadboard version of the device was shown to provide high accuracy in difficult measurement situations. It is expected that this pyrometer will ultimately find application in measuring the temperature of materials undergoing radiant heating in a microgravity acoustic levitation furnace.

  10. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    Science.gov (United States)

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  11. Visualization of Protease Activity In Vivo Using an Activatable Photo-Acoustic Imaging Probe Based on CuS Nanoparticles

    Science.gov (United States)

    Yang, Kai; Zhu, Lei; Nie, Liming; Sun, Xiaolian; Cheng, Liang; Wu, Chenxi; Niu, Gang; Chen, Xiaoyuan; Liu, Zhuang

    2014-01-01

    Herein, we for the first time report a novel activatable photoacoustic (PA) imaging nano-probe for in vivo detection of cancer-related matrix metalloproteinases (MMPs). A black hole quencher 3 (BHQ3) which absorbs red light is conjugated to near-infrared (NIR)-absorbing copper sulfide (CuS) nanoparticles via a MMP-cleavable peptide linker. The obtained CuS-peptide-BHQ3 (CPQ) nano-probe exhibits two distinctive absorption peaks at 630 nm and 930 nm. Inside the tumor microenviorment where MMPs present, the MMP-sensitive peptide would be cleaved, releasing BHQ3 from the CuS nanoparticles, the former of which as a small molecule is then rapidly cleared out from the tumor, whereas the latter of which as large nanoparticles would retain inside the tumor for a much longer period of time. As the result, the PA signal at 680 nm which is contributed by BHQ3 would be quickly diminished while that at 930 nm would be largely retained. The PA signal ratio of 680 nm / 930 nm could thus serve as an in vivo indicator of MMPs activity inside the tumor. Our work presents a novel strategy of in vivo sensing of MMPs based on PA imaging, which should offer remarkably improved detection depth compared with traditional optical imaging techniques. PMID:24465271

  12. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    Science.gov (United States)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  13. Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haruka Yamaguchi

    2016-07-01

    Full Text Available We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs for multimodal imaging were synthesized with near-infrared (NIR fluorescence (indocyanine green (ICG and technetium-99m (99mTc radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.

  14. In vivo Raman measurement of levofloxacin lactate in blood using a nanoparticle-coated optical fiber probe

    Science.gov (United States)

    Liu, Shupeng; Rong, Ming; Zhang, Heng; Chen, Na; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun; Yan, Jianshe

    2016-01-01

    Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge “on-line” drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe). The results show that we were able to measure real-time changes in the blood concentration of levofloxacin lactate, suggesting that this technique could be helpful for performing drug analyses and drug monitoring in a clinical setting without repeatedly withdrawing blood from patients. PMID:27231590

  15. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    DEFF Research Database (Denmark)

    Hyllested, Jes Ærøe; Espina Palanco, Marta; Hagen, Nicolai

    2015-01-01

    Cl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV-visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag42+. The increase of the plasmon...... absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multi-color luminesce signal...

  16. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe

    International Nuclear Information System (INIS)

    Doat, A.; Pelle, F.; Gardant, N.; Lebugle, A.

    2004-01-01

    A europium-doped apatitic calcium phosphate was synthesized at low temperature (37 degree sign C) in water-ethanol medium. This apatite was calcium-deficient, rich in hydrogen phosphate ions, and poorly crystallized with nanometric sized crystallites. It is similar to the mineral part of calcified tissues of living beings and is thus a biomimetic material. The substitution limit of Eu 3+ for Ca 2+ ions in this type of bioapatite ranged about 2-3%. The substitution at this temperature was facilitated by vacancies in the calcium-deficient apatite structure. As the luminescence of europium is photostable, the doped apatite could be employed as a biological probe. Internalization of these nanoparticles by human pancreatic cells in culture was observed by luminescence confocal microscopy

  18. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  19. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  20. A high brightness probe of polymer nanoparticles for biological imaging

    Science.gov (United States)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  1. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    Science.gov (United States)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; hide

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  2. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munne' , Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

  3. Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging.

    Science.gov (United States)

    Xiao, J; Tian, X M; Yang, C; Liu, P; Luo, N Q; Liang, Y; Li, H B; Chen, D H; Wang, C X; Li, L; Yang, G W

    2013-12-05

    Mn-based nanoparticles (NPs) have emerged as new class of probes for magnetic resonance imaging due to the impressive contrast ability. However, the reported Mn-based NPs possess low relaxivity and there are no immunotoxicity data regarding Mn-based NPs as contrast agents. Here, we demonstrate the ultrahigh relaxivity of water protons of 8.26 mM(-1) s(-1) from the Mn3O4 NPs synthesized by a simple and green technique, which is twice higher than that of commercial gadolinium (Gd)-based contrast agents (4.11 mM(-1) s(-1)) and the highest value reported to date for Mn-based NPs. We for the first time demonstrate these Mn3O4 NPs biocompatibilities both in vitro and in vivo are satisfactory based on systematical studies of the intrinsic toxicity including cell viability of human nasopharyngeal carcinoma cells, normal nasopharyngeal epithelium, apoptosis in cells and in vivo immunotoxicity. These findings pave the way for the practical clinical diagnosis of Mn based NPs as safe probes for in vivo imaging.

  4. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  5. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  6. Mathematical conversations multicolor problems, problems in the theory of numbers, and random walks

    CERN Document Server

    Dynkin, E B

    2006-01-01

    Comprises Multicolor Problems, dealing with map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; Random Walks, addressing basic problems in probability theory. 1963 edition.

  7. Mitigation Technique for Receiver Performance Variation of Multi-Color Channels in Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Yeong Min Jang

    2011-06-01

    Full Text Available “Green” and energy-efficient wireless communication schemes have recently experienced rapid development and garnered much interest. One such scheme is visible light communication (VLC which is being touted as one of the next generation wireless communication systems. VLC allows communication using multi-color channels that provide high data rates and illumination simultaneously. Even though VLC has many advantageous features compared with RF technologies, including visibility, ubiquitousness, high speed, high security, harmlessness for the human body and freedom of RF interference, it suffers from some problems on the receiver side, one of them being photo sensitivity dissimilarity of the receiver. The photo sensitivity characteristics of a VLC receiver such as Si photo-detector depend on the wavelength variation. The performance of the VLC receiver is not uniform towards all channel colors, but it is desirable for receivers to have the same performance on each color channel. In this paper, we propose a mitigation technique for reducing the performance variation of the receiver on multi-color channels. We show received power, SNR, BER, output current, and outage probability in our simulation for different color channels. Simulation results show that, the proposed scheme can reduce the performance variation of the VLC receiver on multi-color channels.

  8. Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy

    Science.gov (United States)

    Schermelleh, Lothar; Carlton, Peter M.; Haase, Sebastian; Shao, Lin; Winoto, Lukman; Kner, Peter; Burke, Brian; Cardoso, M. Cristina; Agard, David A.; Gustafsson, Mats G. L.; Leonhardt, Heinrich; Sedat, John W.

    2010-01-01

    Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light. PMID:18535242

  9. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  10. A multicolor panel of TALE-KRAB based transcriptional repressor vectors enabling knockdown of multiple gene targets.

    Science.gov (United States)

    Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu

    2014-12-05

    Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways.

  11. Total internal reflection sum-frequency generation spectroscopy and dense gold nanoparticles monolayer: a route for probing adsorbed molecules

    International Nuclear Information System (INIS)

    Tourillon, Gerard; Dreesen, Laurent; Volcke, Cedric; Sartenaer, Yannick; Thiry, Paul A; Peremans, Andre

    2007-01-01

    We show that sum-frequency generation spectroscopy performed in the total internal reflection configuration (TIR-SFG) combined with a dense gold nanoparticles monolayer allows us to study, with an excellent signal to noise ratio and high signal to background ratio, the conformation of adsorbed molecules. Dodecanethiol (DDT) was used as probe molecules in order to assess the potentialities of the approach. An enhancement of more than one order of magnitude of the SFG signals arising from the adsorbed species is observed with the TIR geometry compared to the external reflection one while the SFG non-resonant contribution remains the same for both configurations. Although further work is required to fully understand the origin of the SFG process on nanoparticles, our work opens new possibilities for studying nanostructures

  12. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    Science.gov (United States)

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  14. Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis

    Science.gov (United States)

    Poole, E. L.

    1986-01-01

    In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.

  15. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    Science.gov (United States)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  16. Experimental determination of conduction and valence bands of semiconductor nanoparticles using Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Zhang Wen; Chen Yongsheng

    2013-01-01

    The ability to determine a semiconductor’s band edge positions is important for the design of new photocatalyst materials. In this paper, we introduced an experimental method based on Kelvin probe force microscopy to determine the conduction and valence band edge energies of semiconductor nanomaterials, which has rarely been demonstrated. We tested the method on six semiconductor nanoparticles (α-Fe 2 O 3 , CeO 2 , Al 2 O 3 , CuO, TiO 2 , and ZnO) with known electronic structures. The experimentally determined band edge positions for α-Fe 2 O 3 , Al 2 O 3 , and CuO well matched the literature values with no statistical difference. Except CeO 2 , all other metal oxides had a consistent upward bias in the experimental measurements of band edge positions because of the shielding effect of the adsorbed surface water layer. This experimental approach may outstand as a unique alternative way of probing the band edge energy positions of semiconductor materials to complement the current computational methods, which often find limitations in new synthetic or complex materials. Ultimately, this work provides scientific foundation for developing experimental tools to probe nanoscale electronic properties of photocatalytic materials, which will drive breakthroughs in the design of novel photocatalytic systems and advance the fundamental understanding of material properties.

  17. Central limit theorems for a class of irreducible multicolor urn models

    Indian Academy of Sciences (India)

    Central limit theorem; Markov chains; martingale; urn models. 1. Introduction. In this article we are going to ... multicolor urn model is vastly different from the Markov chain evolving according to the transition matrix equal to the ...... /2 contribute a random variable less in absolute value than const. { sup n0≤n<∞. ∥. ∥. ∥. ∥.

  18. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  19. FREQUENCY OF ANEUPLOID SPERMATOZOA STUDIED BY MULTICOLOR FISH IN SERIAL SEMEN SAMPLES

    Science.gov (United States)

    Frequency of aneuploid spermatozoa studied by multicolor FISH in serial semen samplesM. Vozdova1, S. D. Perreault2, O. Rezacova1, D. Zudova1 , Z. Zudova3, S. G. Selevan4, J. Rubes1,51Veterinary Research Institute, Brno, Czech Republic; 2U.S. Environmental Protection A...

  20. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, Masateru; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-01-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation

  1. Transport in nanoparticle chains influenced by reordering

    International Nuclear Information System (INIS)

    Luedtke, T.; Mirovsky, P.; Huether, R.; Govor, L.; Bauer, G.H.; Parisi, J.; Haug, R.J.

    2011-01-01

    Nanoparticles are deposited onto a mica substrate in a dewetting process of hexane solution containing the nanoparticles. The array of nanoparticles was measured inside an electron beam microscope containing a self-developed probing-tip setup. Transport measurements performed under vacuum conditions at room temperature show a power law behavior as expected for low-dimensional cluster systems. During the measurement a variation of the threshold voltage in the nonlinear current-voltage (I-V) characteristic was observed which we attribute to a reordering of the system by an applied electric field. - Highlights: → Fabrication of chains of ordered Au-nanoparticles. → Contact these nanoparticles without further chemical treatment with probing tips inside an electron microscope. → Observation of low-dimensional transport and Coulomb blockade. → Reordering of nanoparticles due to the applied electric field between the tips.

  2. Multicolor surface photometry of 17 ellipticals

    International Nuclear Information System (INIS)

    Franx, M.; Illingworth, G.; Heckman, T.

    1989-01-01

    Multicolor two-dimensional surface photometry was used to obtain radial profiles for surface brightness, color, ellipticity, position angle, and the residuals from the fitted ellipses described by the cos(n phi) and sin(n phi) terms (where n = 3 and 4) for 17 elliptical galaxies. It is found that at radii as large as five times the seeing FWHM, seeing can affect the ellipticity at the 10 percent level and introduce uncertainty in the position angles of several degrees, particularly for very round ellipticals. The present profiles are found to agree well with previous data, with rms differences of 0.02 in ellipticity and 2 deg in position angle. The observed color gradients are consistent with a decrease in the metallicity by a factor of about 2 per decade in radius. 61 refs

  3. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  4. A photostable near-infrared fluorescent tracker with pH-independent specificity to lysosomes for long time and multicolor imaging.

    Science.gov (United States)

    Zhang, Xinfu; Wang, Chao; Han, Zhuo; Xiao, Yi

    2014-12-10

    A new boron-dipyrromethene-based lysosome tracker, Lyso-NIR, is facilely synthesized. Besides the intensive near-infrared (NIR) fluorescence and high photostability, Lyso-NIR shows the capability to stably localize in lysosomes, which is independent of the local pH. Lyso-NIR does not have the problematic alkalization effect suffered by the commonly used lysotrackers; thus, it shows ignorable cytotoxicity and slightly affects normal physiological functions of lysosomes. The above advantages of Lyso-NIR make it feasible to track lysosomes' dynamic changes in a relatively long time during the full cellular processes such as apoptosis, heavy metal stimulation, and endocytosis, as is demonstrated in this work. Moreover, Lyso-NIR's narrow NIR emission at 740 nm with a full width at half-maximum smaller than 50 nm makes it easy to avoid the crosstalk with the emissions from other common fluorescent probes, which strengthens Lyso-NIR's competitiveness as a standard lysosome tracker for multicolor bioimaging.

  5. Gold Nanoparticles as Probes for Nano-Raman Spectroscopy: Preliminary Experimental Results and Modeling

    Directory of Open Access Journals (Sweden)

    V. Le Nader

    2012-01-01

    Full Text Available This paper presents an effective Tip-Enhanced Raman Spectrometer (TERS in backscattering reflection configuration. It combines a tip-probe nanopositioning system with Raman spectroscope. Specific tips were processed by anchoring gold nanoparticles on the apex of tapered optical fibers, prepared by an improved chemical etching method. Hence, it is possible to expose a very small area of the sample (~20 nm2 to the very strong local electromagnetic field generated by the lightning rod effect. This experimental configuration was modelled and optimised using the finite element method, which takes into account electromagnetic effects as well as the plasmon resonance. Finally, TERS measurements on single-wall carbon nanotubes were successfully performed. These results confirm the high Raman scattering enhancement predicted by the modelling, induced by our new nano-Raman device.

  6. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm

    2011-01-01

    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  7. Biosynthesis of Fluorescent Bi2S3 Nanoparticles and their Application as Dual-Function SPECT-CT Probe for Animal Imaging.

    Science.gov (United States)

    Uddin, Imran; Ahmad, Absar; Siddiqui, Ejaz Ahmad; Rahaman, Sk Hasanur; Gambhir, Sanjay

    2016-01-01

    Bismuth sulphide (Bi2S3) is an excellent semiconductor and its nanoparticles have numerous significant applications including photovoltaic materials, photodiode arrays, bio-imaging, etc. Nevertheless, these nanoparticles when fabricated by chemical and physical routes tend to easily aggregate in colloidal solutions, are eco-unfriendly, cumbrous and very broad in size distribution. The aim of the present manuscript was to ecologically fabricate water dispersible, safe and stable Bi2S3 nanoparticles such that these may find use in animal imaging, diagnostics, cell labeling and other biomedical applications. Herein, we for the first time have biosynthesized highly fluorescent, natural protein capped Bi2S3 nanoparticles by subjecting the fungus Fusarium oxysporum to bismuth nitrate pentahydrate [Bi(NO3)3.5H2O] alongwith sodium sulphite (Na2SO3) as precursor salts under ambient conditions of temperature, pressure and pH. The nanoparticles were completely characterized using recognized standard techniques. These natural protein capped Bi2S3 nanoparticles are quasi-spherical in shape with an average particle size of 15 nm, maintain long term stability and show semiconductor behavior having blue shift with a band gap of 3.04 eV. Semiconductor nanocrystals are fundamentally much more fluorescent than the toxic fluorescent chemical compounds (fluorophores) which are presently largely employed in imaging, immunohistochemistry, biochemistry, etc. Biologically fabricated fluorescent nanoparticles may replace organic fluorophores and aid in rapid development of biomedical nanotechnology. Thus, biodistribution study of the so-formed Bi2S3 nanoparticles in male Sprague Dawley rats was done by radiolabelling with Technitium-99m (Tc-99m) and clearance time from blood was calculated. The nanoparticles were then employed in SPECT-CT probe for animal imaging where these imparted iodine equivalent contrast.

  8. A Real-Time Apple Grading System Using Multicolor Space

    OpenAIRE

    Toylan, Hayrettin; Kuscu, Hilmi

    2014-01-01

    This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identific...

  9. Nanomaterials and MRI molecular probe

    International Nuclear Information System (INIS)

    Inubushi, Toshiro

    2008-01-01

    This paper presents the current state and future prospect of enhancing probes in MRI which enable to image specific cells and molecules mainly from the aspect of cell trafficking. Although MRI requires such probes for specific imaging, it has an advantage that anatomical images are simultaneously available even during surgical operation without radiation exposure, differing from X-CT, -transillumination and positron emission tomography (PET). In the development of novel MRI molecular probes, the recent topic concerns the cell trafficking biology where cells related with transplantation and immunological therapy can be traced. Although superparamagnetic iron oxide (SPIO) has been used as a commercially available enhancer, this nanoparticle has problems like a difficulty to penetrate cell, cytotoxicity and others. For these, authors have developed the nanoparticle SPIO covered with silica shell, which can be chemically modified, e.g., by binding fluorescent pigments to possibly allow MR bimodal molecular imaging. For penetration of particles in cells, envelop of Sendai virus is used. PET-CT has been more popular these days; however, MRI is superior to CT for imaging soft tissues, and development of PET-MRI is actively under progress aiming the multi-modal imaging. At present, molecular probes for MRI are certainly not so many as those for PET and cooperative efforts to develop the probes are required in medical, technological and pharmaceutical fields. (R.T.)

  10. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Wang, Lin; Liu, Zhanmin; Xia, Xueying; Yang, Cuiyun; Huang, Junyi; Wan, Sibao

    2017-05-01

    Cucumber green mottle mosaic virus (CGMMV)causes a severe mosaic symptom of watermelon and cucumber, and can be transmitted via infected cucumber seeds, leaves and soil. It remains a challenge to detect this virus to prevent its introduction and infection and spread in fields. For this purpose, a simple and sensitive label-free colorimetric detection method for CGMMV has been developed with unmodified gold nanoparticles (AuNPs) as colorimetric probes. The method is based on the finding that the presence of RT-PCR target products of CGMMV and species-specific probes results in color change of AuNPs from red to blue after NaCl induction. Normally, species-specific probes attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. The concentration of sodium, probes in the reaction system and evaluation of specificity and sensitivity of a novel assay, visual detection of Cucumber green mottle mosaic virus using unmodified AuNPs has been carried out with simple preparation of samples in our study. Through this assay, as low as 30pg/μL of CGMMV RNA was thus detected visually, by the naked eye, without the need for any sophisticated, expensive instrumentation and biochemical reagents. The specificity was 100% and exhibited good reproducibility in our assays. The results note that this assay is highly species-specific, simple, low-cost, and visual for easy detection of CGMMV in plant tissues. Therefore, visual assay is a potentially useful tool for middle or small-scales corporations and entry-exit inspection and quarantine bureau to detect CGMMV in cucumber seeds or plant tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    For optoelectronic applications, organic semiconductors have several advantages over their inorganic counterparts such as facile synthesis, tunability via synthetic chemistry, and low temperature processing. Self-assembled, molecular crystalline nanofibers are of particular interest as they could...... form ultra-small light-emitters in future nanophotonic applications. Such organic nanofibers exhibit many interesting optical properties including polarized photo- and electroluminescence, waveguiding, and emission color tunability. We here present a first step towards a multicolored, electrically...... driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  12. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-02-01

    Full Text Available The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm upconversion nanocrystals (UCNCs based on the newly established host lattice of sodium lutetium fluoride (NaLuF4. We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2 shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm. We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  13. FY 2000 Project of developing international standards for supporting new industries. 'Standardization of multicolor measurement'; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Multicolor no sokushoku no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the study on and research and development of the testing methods for tones of anisotropic color materials (multi-colors) for proposing the international standard. USA has proposed the triangle colorimetry, based on the results of the visual tests with metallic paints, which is being incorporated in the ASTM standards. Germany seems to adopt the multi-angle colorimetery in the DIN standards. The FY 2000 efforts are directed to measurement of the reflection characteristics of the metallic and pearl-mica samples by a variable-angle spectrophotometer. The solid color and metallic color are being evaluated by a weather resistance tester QUV and outdoor tests, because of the anticipated different mechanisms by which they are aged. The functional test and analysis are also required to correlate the multi-color measurement results with visual evaluation results, and the preliminary tests are conducted to improve skill of the panelists. (NEDO)

  14. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin; Wang, Mei; Rhein, Andreas; Weier, Jingly; Weier, Heinz-Ulli

    2008-12-16

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-?B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  15. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin M.; Wang, Mei; Rhein, Andreas P.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-12-04

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-{kappa}B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  16. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  17. Phenotyping of Arabidopsis Drought Stress Response Using Kinetic Chlorophyll Fluorescence and Multicolor Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jieni Yao

    2018-05-01

    Full Text Available Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising

  18. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    Science.gov (United States)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  19. M-GCF: Multicolor-Green Conflict Free Scheduling Algorithm for WSN

    DEFF Research Database (Denmark)

    Pawar, Pranav M.; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    division multiple access (TDMA) scheduling algorithm, Multicolor-Green Conflict Free (M-GCF), for WSNs. The proposed algorithm finds multiple conflict free slots across a three-hop neighbor view. The algorithm shows better slot sharing with fewer conflicts along with good energy efficiency, throughput...... and delay as compared with state-of-the-art solutions. The results also include the performance of M-GCF with varying traffic rates, which also shows good energy efficiency, throughput and delay. The contribution of this paper and the main reason for the improved performance with varying number of nodes...

  20. Preclinical detection of porcine circovirus type 2 infection using an ultrasensitive nanoparticle DNA probe-based PCR assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Porcine circovirus type 2 (PCV2 has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.

  1. Optimization of multi-color laser waveform for high-order harmonic generation

    Science.gov (United States)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  2. MiCPhot: A prime-focus multicolor CCD photometer on the 85-cm Telescope

    International Nuclear Information System (INIS)

    Zhou Aiying; Jiang Xiaojun; Wei Jianyan; Zhang Yanping

    2009-01-01

    We describe a new BV RI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration dependence of the system are investigated. Additional attention was paid to giving observers guidance in estimating throughput, detection limit, signal-to-noise ratio and exposure time. (invited reviews)

  3. Heated probe diagnostic inside of the gas aggregation nanocluster source

    Science.gov (United States)

    Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team

    2016-09-01

    Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.

  4. Probing safety of nanoparticles by outlining sea urchin sensing and signaling cascades.

    Science.gov (United States)

    Alijagic, Andi; Pinsino, Annalisa

    2017-10-01

    Among currently identified issues presenting risks and benefits to human and ocean health, engineered nanoparticles (ENP) represent a priority. Predictions of their economic and social impact appear extraordinary, but their release in the environment at an uncontrollable rate is in striking contrast with the extremely limited number of studies on environmental impact, especially on the marine environment. The sea urchin has a remarkable sensing environmental system whose function and diversity came into focus during the recent years, after sea urchin genome sequencing. The complex immune system may be the basis wherefore sea urchins can adapt to a dynamic environment and survive even in hazardous conditions both in the adult and in the embryonic life. This review is aimed at discussing the literature in nanotoxicological/ecotoxicological studies with a focus on stress and innate immune signaling in sea urchins. In addition, here we introduce our current development of in vitro-driven probes that could be used to dissect ENP aftermaths, suggesting their future use in immune-nanotoxicology. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Development Of A Multicolor Sub/millimeter Camera Using Microwave Kinetic Inductance Detectors

    Science.gov (United States)

    Schlaerth, James A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Noroozian, O.; Sayers, J.; Siegel, S.; Vayonakis, A.; Zmuidzinas, J.

    2011-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting resonators useful for detecting light from the millimeter-wave to the X-ray. These detectors are easily multiplexed, as the resonances can be tuned to slightly different frequencies, allowing hundreds of detectors to be read out simultaneously using a single feedline. The Multicolor Submillimeter Inductance Camera, MUSIC, will use 2304 antenna-coupled MKIDs in multicolor operation, with bands centered at wavelengths of 0.85, 1.1, 1.3 and 2.0 mm, beginning in 2011. Here we present the results of our demonstration instrument, DemoCam, containing a single 3-color array with 72 detectors and optics similar to MUSIC. We present sensitivities achieved at the telescope, and compare to those expected based upon laboratory tests. We explore the factors that limit the sensitivity, in particular electronics noise, antenna efficiency, and excess loading. We discuss mitigation of these factors, and how we plan to improve sensitivity to the level of background-limited performance for the scientific operation of MUSIC. Finally, we note the expected mapping speed and contributions of MUSIC to astrophysics, and in particular to the study of submillimeter galaxies. This research has been funded by grants from the National Science Foundation, the Gordon and Betty Moore Foundation, and the NASA Graduate Student Researchers Program.

  6. Ultrasensitive, Ultradense Nanoelectronic Biosensing with Nanoparticle Probes

    National Research Council Canada - National Science Library

    Mirkin, Chad A; Ratner, Mark

    2006-01-01

    A robust and effective model for determining the presence or absence of an analyte in a DPN-assembled gold nanoparticle/DNA conjugate structure in the limit of single molecule binding was developed...

  7. Mismatch discrimination of lipidated DNA and LNA-probes (LiNAs) in hybridization-controlled liposome assembly

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Vogel, Stefan

    2016-01-01

    Assays for mismatch discrimination and detection of single nucleotide variations by hybridization-controlled assembly of liposomes, which do not require tedious surface chemistry, are versatile for both DNA and RNA targets. We report herein a comprehensive study on different DNA and LNA (locked...... assay in the context of mismatch discrimination and SNP detection are presented. The advantages of membrane-anchored LiNA-probes compared to chemically attached probes on solid nanoparticles (e.g. gold nanoparticles) are described. Key functionalities such as non-covalent attachment of LiNA probes...... without the need for long spacers and the inherent mobility of membrane-anchored probes in lipid-bilayer membranes will be described for several different probe designs....

  8. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry.Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  9. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    Science.gov (United States)

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  10. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    Science.gov (United States)

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications.

    Science.gov (United States)

    Wagner, Darcy E; Eisenmann, Kathryn M; Nestor-Kalinoski, Andrea L; Bhaduri, Sarit B

    2013-09-01

    Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Multi-Color Single Particle Tracking with Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.

    2012-01-01

    . multiplex single molecule sensitivity applications such as single particle tracking (SPT). In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations......Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...... further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC)-SPT with QDs is possible at an image...

  13. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples.

    Science.gov (United States)

    Li, Y S; Meng, X Y; Zhou, Y; Zhang, Y Y; Meng, X M; Yang, L; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Wang, X R

    2015-04-15

    In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples. Copyright © 2014. Published by Elsevier B.V.

  14. Characterization of Angle Dependent Color Travel of Printed Multi-Color Effect Pigment on Different Color Substrates

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2015-03-01

    Full Text Available Color-travel pigments, which exhibit much more extensive color change as well provide angle-dependent optical effect can be used in many industrial products. In present paper the multi-color effect pigment printed on three different foils with different background color (black, silver and transparent was investigated. The pigment was based on synthetically produced transparent silicon dioxide platelets coated with titanium dioxide. CIEL*a*b* values and reflection of prints were measured by multi-angle spectrophotometer at constant illumination at an angle of 45º and different viewing angles (-15º, 15°, 25º, 45º, 75º and 110º were used. The measurements of printed multi-color pigment showed that CIEL*a*b* color coordinates varied to great extents, depending on detection angles as well on color of the printing substrate. The study revealed that pigmnet printed on black background obtained significant change in color. The study has also shown that when viewing angle increases, the reflection curves decreases.

  15. Probing nanoparticle-macromolecule interaction and resultant structure by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aswal, V.K.

    2013-01-01

    Nanoparticles display unique and distinct characteristics from those of their constituent atoms and bulk materials which are being employed in numerous applications in the fields of medicine, electronics, optics, communications, energy, environment etc. Many of these applications require adjoining of nanoparticles with macromolecules such as proteins, polymers and surfactants to obtain functional objects. For example, nanoparticle-protein complexes are of great importance in controlling enzymatic behavior, targeted drug delivery and developing biocompatible materials. The nanoparticles interfaced with polymers are shown to be useful in developing protein sensor arrays. Interaction of surfactants with nanoparticles is utilized extensively for technical and industrial applications associated with colloidal stability, detergency and design of nanostructured functional interfaces. The interaction of two components, nanoparticles and macromolecule, strongly depends on the characteristics of both the nanoparticles (size, shape, surface roughness, charge density etc.) and macromolecules (type, charge, shape and solution conditions etc.) used. The interaction of macromolecule on nanoparticle surface is a cumulative effect of a number of forces such as electrostatic force, covalent bonding, hydrogen bonding, non-polar interaction, hydrophobic interactions etc. These interactions depending on the system conditions can lead to various structures. Small-angle neutron scattering (SANS) with the possibility to vary contrast is an ideal technique to study such multi-component systems. In this talk, some of our results of SANS from the complexes of nanoparticle-protein and nanoparticle surfactant systems will be discussed. (author)

  16. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  17. Extraction of Dysprosium Ions with DTPA Functionalized Superparamagnetic Nanoparticles Probed by Energy Dispersive X-ray Fluorescence and TEM/High-Angle Annular Dark Field Imaging.

    Science.gov (United States)

    Melo, Fernando Menegatti de; Almeida, Sabrina da Nobrega; Uezu, Noemi Saori; Ramirez, Carlos Alberto Ospina; Santos, Antonio Domingues Dos; Toma, Henrique Eisi

    2018-06-01

    The extraction of dysprosium (Dy3+) ions from aqueous solution was carried out successfully, using magnetite (Fe3O4) nanoparticles functionalized with diethylenetriaminepentaacetic acid (MagNP@DTPA). The process was monitored by energy dispersive X-ray fluorescence spectroscopy, as a function of concentration, proceeding according to a Langmuir isotherm with an equilibrium constant of 2.57 × 10-3 g(MagNP) L-1 and a saturation limit of 63.2 mgDy/gMagNP. The presence of paramagnetic Dy3+ ions attached to the superparamagnetic nanoparticles led to an overall decrease of magnetization. By imaging the nanoparticles surface using scanning transmission electron microscopy equipped with high resolution elemental analysis, it was possible to probe the binding of the Dy3+ ions to DTPA, and to show their distribution in a region of negative magnetic field gradients. This finding is coherent with the observed decrease of magnetization, associated with the antiferromagnetic coupling between the lanthanide ions and the Fe3O4 core.

  18. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics

    Science.gov (United States)

    Jiang, Shan; Win, Khin Yin; Liu, Shuhua; Teng, Choon Peng; Zheng, Yuangang; Han, Ming-Yong

    2013-03-01

    In this article, the very recent progress of various functional inorganic nanomaterials is reviewed including their unique properties, surface functionalization strategies, and applications in biosensing and imaging-guided therapeutics. The proper surface functionalization renders them with stability, biocompatibility and functionality in physiological environments, and further enables their targeted use in bioapplications after bioconjugation via selective and specific recognition. The surface-functionalized nanoprobes using the most actively studied nanoparticles (i.e., gold nanoparticles, quantum dots, upconversion nanoparticles, and magnetic nanoparticles) make them an excellent platform for a wide range of bioapplications. With more efforts in recent years, they have been widely developed as labeling probes to detect various biological species such as proteins, nucleic acids and ions, and extensively employed as imaging probes to guide therapeutics such as drug/gene delivery and photothermal/photodynamic therapy.

  19. Phase transition and multicolor luminescence of Eu2+/Mn2+-activated Ca3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Li, Kai; Chen, Daqin; Xu, Ju; Zhang, Rui; Yu, Yunlong; Wang, Yuansheng

    2014-01-01

    Graphical abstract: We have synthesized Eu 2+ doped and Eu 2+ /Mn 2+ co-doped Ca 3 (PO 4 ) 2 phosphors. The emitting color varies from blue to green with increasing of Eu 2+ content for the Eu 2+ -doped phosphor, and the quantum yield of the 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 sample reaches 56.7%. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer. - Highlights: • A series of novel Eu 2+ : Ca 3 (PO 4 ) 2 phosphors were successfully synthesized. • Phase transition of Ca 3 (PO 4 ) 2 from orthorhombic to rhombohedral occurred when Mn 2+ ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu 2+ : Ca 3 (PO 4 ) 2 and tunable multicolor-emitting Eu 2+ /Mn 2+ : Ca 3 (PO 4 ) 2 phosphors are prepared via a solid-state reaction route. Eu 2+ -doped orthorhombic Ca 3 (PO 4 ) 2 phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu 2+ doping content. Broad excitation spectrum (250–420 nm) of Eu 2+ : Ca 3 (PO 4 ) 2 matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer, under 365 nm UV lamp excitation

  20. Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit

    Science.gov (United States)

    Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg

    2015-08-01

    To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

  1. A fluorescent probe for ecstasy.

    Science.gov (United States)

    Masseroni, D; Biavardi, E; Genovese, D; Rampazzo, E; Prodi, L; Dalcanale, E

    2015-08-18

    A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug.

  2. Design of a dual-function peptide probe as a binder of angiotensin II and an inducer of silver nanoparticle aggregation for use in label-free colorimetric assays.

    Science.gov (United States)

    Okochi, Mina; Kuboyama, Masashi; Tanaka, Masayoshi; Honda, Hiroyuki

    2015-09-01

    Label-free colorimetric assays using metallic nanoparticles have received much recent attention, for their application in simple and sensitive methods for detection of biomolecules. Short peptide probes that can bind to analyte biomolecules are attractive ligands in molecular nanotechnology; however, identification of biological recognition motifs is usually based on trial-and-error experiments. Herein, a peptide probe was screened for colorimetric detection of angiotensin II (Ang II) using a mechanism for non-crosslinking aggregation of silver nanoparticles (AgNPs). The dual-function peptides, which bind to the analyte and induce AgNP aggregation, were identified using a two-step strategy: (1) screening of an Ang II-binding peptide from an Ang II receptor sequence library, using SPOT technology, which enable peptides synthesis on cellulose membranes via an Fmoc method and (2) selection of peptide probes that effectively induce aggregation of AgNPs using a photolinker modified peptide array. Using the identified peptide probe, KGKNKRRR, aggregation of AgNPs was detected by observation of a pink color in the absence of Ang II, whereas AgNPs remained dispersed in the presence of Ang II (yellow). The color changes were not observed in the presence of other hormone molecules. Ang II could be detected within 15 min, with a detection limit of 10 µM, by measuring the ratio of absorbance at 400 nm and 568 nm; the signal could also be observed with the naked eye. These data suggest that the peptide identified here could be used as a probe for simple and rapid colorimetric detection of Ang II. This strategy for the identification of functional peptides shows promise for the development of colorimetric detection of various diagnostically important biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Refining the statistical model for quantitative immunostaining of surface-functionalized nanoparticles by AFM.

    Science.gov (United States)

    MacCuspie, Robert I; Gorka, Danielle E

    2013-10-01

    Recently, an atomic force microscopy (AFM)-based approach for quantifying the number of biological molecules conjugated to a nanoparticle surface at low number densities was reported. The number of target molecules conjugated to the analyte nanoparticle can be determined with single nanoparticle fidelity using antibody-mediated self-assembly to decorate the analyte nanoparticles with probe nanoparticles (i.e., quantitative immunostaining). This work refines the statistical models used to quantitatively interpret the observations when AFM is used to image the resulting structures. The refinements add terms to the previous statistical models to account for the physical sizes of the analyte nanoparticles, conjugated molecules, antibodies, and probe nanoparticles. Thus, a more physically realistic statistical computation can be implemented for a given sample of known qualitative composition, using the software scripts provided. Example AFM data sets, using horseradish peroxidase conjugated to gold nanoparticles, are presented to illustrate how to implement this method successfully.

  4. Poly(amino acid) functionalized maghemite and gold nanoparticles

    International Nuclear Information System (INIS)

    Perego, Davide; Manuel Domínguez-Vera, José; Gálvez, Natividad; Masciocchi, Norberto; Guagliardi, Antonietta

    2013-01-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging. (paper)

  5. Development of DNA biosensor based on TiO2 nanoparticles

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  6. Multicolor tunable emission induced by Cu ion doping of perovskite zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.J. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Lee, Y.S., E-mail: ylee@ssu.ac.kr [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Noh, H.-J. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2016-01-15

    We report on a multicolor tunable emission induced by Cu ion doping of perovskite zirconate SrZrO{sub 3} with a fairly large bandgap (5.6 eV). X-ray photoelectron spectroscopy of our samples revealed the existence of two mixed valence states of the doped Cu ions, +1 and +2, with a ratio of 3:1. In photoluminescence excitation spectroscopy the absorption structures of the 3d states in monovalent Cu{sup +} and divalent Cu{sup 2+} were identified near 5 eV and 3.5 eV, respectively. Interestingly, in relation to the valence states of the Cu ions, the emission spectra depended strongly on the photo-excitation energy (E{sub ex}). For E{sub ex}<3.8 eV (UVA) two orange and green emissions were observed with the involvement of the Cu{sup 2+} state. For E{sub ex}>3.8 eV (UVB/UVC), however, the Cu{sup +} state, instead of the Cu{sup 2+} state, was dominant in the emission process, causing the visible emission to be turned into violet. Our results were indicative of the complementary role of the different Cu-ion valence states in a wide range of visible emission with respect to E{sub ex}. - Highlights: • Visible emission induced by the Cu doping of SrZrO3. • Tunable colors from orange to violet with respect to the photo-excitation energy. • Multicolor emission should be related to the mixed valence states of the doped Cu ions.

  7. Computer generated multi-color graphics in whole body gamma spectral analysis

    International Nuclear Information System (INIS)

    Phillips, W.G.; Curtis, S.P.; Environmental Protection Agency, Las Vegas, NV)

    1984-01-01

    A medium resolution color graphics terminal (512 x 512 pixels) was appended to a computerized gamma spectrometer for the display of whole body counting data. The color display enhances the ability of a spectroscopist to identify at a glance multicolored spectral regions of interest immediate qualitative interpretation. Spectral data from subjects containing low concentrations of gamma emitters obtained by both NaI(T1) and phoswich detectors are viewed by the method. In addition, software generates a multispectral display by which the gross, background, and net spectra are displayed in color simultaneously on a single screen

  8. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod.

    Science.gov (United States)

    Yu, Xinhui; Lin, Yaohui; Wang, Xusheng; Xu, Liangjun; Wang, Zongwen; Fu, FengFu

    2018-04-21

    An exonuclease-assisted multicolor aptasensor was developed for the visual detection of ochratoxin A (OTA). It is based on the etching of gold nanorods (AuNRs) mediated by a G-quadruplex-hemin DNAzyme. A DNA sequence (AG4-OTA) was designed that comprises a hemin aptamer and an OTA aptamer. OTA binds to AG4-OTA to form an antiparallel G-quadruplex, which halts its digestion by exonuclease I (Exo I) from the 3'-end of AG4-OTA. Thus, the retained hemin aptamer can bind to hemin to form a G-quadruplex-hemin DNAzyme. This DNAzyme has peroxidase-like activity that catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H 2 O 2 to produce its diimine derivative (TMB 2+ ) in acidic solution. TMB 2+ can etch the AuNRs by oxidizing Au(0) into Au(I). This results in the generation of rainbow-like colors and provides a multicolor platform for the visual detection of OTA. The assay is based on the use of a single isolated aptamer and possesses obvious advantages such as multi-color visual inspection, relatively high sensitivity and accuracy. It can be used to detect as little as 30 nM concentrations of OTA by visual observation and even 10 nM concentrations by spectrophotometry. The method was successfully applied to the determination of OTA in spiked beer where it gave recoveries of 101-108%, with a relative standard deviation (RSD, n = 5) of <5%. Graphical abstract Schematic of an exonuclease-assisted multicolor bioassay based on the G-quadruplex-hemin DNAzyme-mediated etching of gold nanorods (AuNRs). It enables visual detection of ochratoxin A (OTA) with a detection limit of 30 nM.

  9. Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities.

    Science.gov (United States)

    Wu, Tingzhu; Lin, Yue; Zheng, Lili; Guo, Ziquan; Xu, Jianxing; Liang, Shijie; Liu, Zhuguagn; Lu, Yijun; Shih, Tien-Mo; Chen, Zhong

    2018-02-19

    An optimal design of light-emitting diode (LED) lighting that benefits both the photosynthesis performance for plants and the visional health for human eyes has drawn considerable attention. In the present study, we have developed a multi-color driving algorithm that serves as a liaison between desired spectral power distributions and pulse-width-modulation duty cycles. With the aid of this algorithm, our multi-color plant-growth light sources can optimize correlated-color temperature (CCT) and color rendering index (CRI) such that photosynthetic luminous efficacy of radiation (PLER) is maximized regardless of the number of LEDs and the type of photosynthetic action spectrum (PAS). In order to illustrate the accuracies of the proposed algorithm and the practicalities of our plant-growth light sources, we choose six color LEDs and German PAS for experiments. Finally, our study can help provide a useful guide to improve light qualities in plant factories, in which long-term co-inhabitance of plants and human beings is required.

  10. Multi-color lightcurve observation of the asteroid (163249) 2002 GT

    Science.gov (United States)

    Oshima, M.; Abe, S.

    2014-07-01

    NASA's Deep Impact/EPOXI spacecraft plans to encounter the asteroid (163249) 2002 GT, classified as a PHA (Potentially Hazardous Asteroid), on January 4, 2020. However, the taxonomic type and spin state of 2002 GT remain to be determined. We have carried out ground-based multi-color (B-V-R-I) lightcurve observations taking advantage of the 2002 GT Characterization Campaign by NASA. Multi-color lightcurve measurements allow us to estimate the rotation period and obtain strong constraints on the shape and pole orientation. Here we found that the rotation period of 2002 GT is estimated to be 3.7248 ± 0.1664 h. In mid-2013, 2002 GT passed at 0.015 au from the Earth, resulting an exceptional opportunity for ground-based characterization. Using the 0.81-m telescope of the Tenagra Observatory (110°52'44.8''W, +31°27'44.4''N, 1312 m) in Arizona, USA, and the Johnson-Cousins BVRI filters, we have found lightcurves of 2002 GT (Figure). The Tenagra II 0.81-m telescope is used for research of the Hayabusa2 target Asteroid (162173) 1999 JU_3. The lightcurves (relative magnitude) show that the rotation period of 2002 GT, the target of NASA's Deep Impact/EPOXI spacecraft, is estimated to be 3.7248 ± 0.1664 hr. On June 9, 2013, we had 7 hours of ground-based observations on 2002 GT from 4:00 to 11:00 UTC. The number of comparison stars for differential photometry was 34. Because of tracking the fast-moving asteroid, it was necessary to have the same comparison star among the fields of vision. We have also obtained absolute photometry of 2002 GT on June 13, 2013.

  11. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    International Nuclear Information System (INIS)

    Gomez, S.L.; Lenart, V.M.

    2015-01-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n 2 increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  12. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, S.L.; Lenart, V.M., E-mail: sgomez@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Fisica; Turchiello, R.T. [Universidade Federal Tecnologica do Parana (UFTPR), Ponta Grossa, PR (Brazil). Dept. de Fisica; Goya, G.F. [Department of Condensed Matter Physics, Aragon Institute of Nanoscience, Zaragoza (Spain)

    2015-10-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n{sub 2} increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  13. The application of drug delivery system about nanoparticles in nuclear medicine

    International Nuclear Information System (INIS)

    Yao Ning; Wang Rongfu

    2013-01-01

    The development of nuclear medicine relies on the advancement of precise probes at the cellular and molecular levels. Nanoparticle as a new molecular probe, is mainly consists of the targeting groups, imaging groups, the superb biocompatible 'shells' and the modify groups. These nanoparticles have the better image contrast by targeting positioning in the target tissues and cells. At the same time, because of the diversity of the materials and the uniqueness of the structures, the nanoparticles can realize multimodal imaging at molecular level, which complement each other's advantages of different imaging modals. If the treatment groups are joined into the nanoparticles, a new nanoparticles are formed-the theranosis nanoparticles, which have realized the diagnosis and therapy at the molecular level synchronously. In addition, the application of intelligent nanoprobes can achieve the smart control of drug release and reduce the side effects of cancer treatment. Anyhow, the development of this new drug delivery system about nanoparticles has brought about a new breakthrough on the nuclear medicine. (authors)

  14. Fabrication of multicolor fluorescent polyvinyl alcohol through surface modification with conjugated polymers by oxidative polymerization

    Science.gov (United States)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-06-01

    A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.

  15. Experimental verification of the imposing principle for maximum permissible levels of multicolor laser radiation

    Directory of Open Access Journals (Sweden)

    Ivashin V.A.

    2013-12-01

    Full Text Available Aims. The study presents the results of experimental research to verify the principle overlay for maximum permissible levels (MPL of multicolor laser radiation single exposure on eyes. This principle of the independence of the effects of radiation with each wavelength (the imposing principle, was founded and generalized to a wide range of exposure conditions. Experimental verification of this approach in relation to the impact of laser radiation on tissue fundus of an eye, as shows the analysis of the literature was not carried out. Material and methods. Was used in the experimental laser generating radiation with wavelengths: Л1 =0,532 microns, A2=0,556to 0,562 microns and A3=0,619to 0,621 urn. Experiments were carried out on eyes of rabbits with evenly pigmented eye bottom. Results. At comparison of results of processing of the experimental data with the calculated data it is shown that these levels are close by their parameters. Conclusions. For the first time in the Russian Federation had been performed experimental studies on the validity of multi-colored laser radiation on the organ of vision. In view of the objective coincidence of the experimental data with the calculated data, we can conclude that the mathematical formulas work.

  16. Liquid-liquid interfacial nanoparticle assemblies

    Science.gov (United States)

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  17. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  18. Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions

    Science.gov (United States)

    Bogatu, I. N.; Galkin, S. A.

    2017-10-01

    Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.

  19. One-Step Protein Conjugation to Upconversion Nanoparticles.

    Science.gov (United States)

    Lu, Jie; Chen, Yinghui; Liu, Deming; Ren, Wei; Lu, Yiqing; Shi, Yu; Piper, James; Paulsen, Ian; Jin, Dayong

    2015-10-20

    The emerging upconversion nanoparticles offer a fascinating library of ultrasensitive luminescent probes for a range of biotechnology applications from biomarker discovery to single molecule tracking, early disease diagnosis, deep tissue imaging, and drug delivery and therapies. The effective bioconjugation of inorganic nanoparticles to the molecule-specific proteins, free of agglomeration, nonspecific binding, or biomolecule deactivation, is crucial for molecular recognition of target molecules or cells. The current available protocols require multiple steps which can lead to low probe stability, specificity, and reproducibility. Here we report a simple and rapid protein bioconjugation method based on a one-step ligand exchange using the DNAs as the linker. Our method benefits from the robust DNA-protein conjugates as well as from multiple ions binding capability. Protein can be preconjugated via an amino group at the 3' end of a synthetic DNA molecule, so that the 5' end phosphoric acid group and multiple phosphate oxygen atoms in the phosphodiester bonds are exposed to replace the oleic acid ligands on the surface of upconversion nanoparticles due to their stronger chelating capability to lanthanides. We demonstrated that our method can efficiently pull out the upconversion nanoparticles from organic solvent into an aqueous phase. The upconversion nanoparticles then become hydrophilic, stable, and specific biomolecules recognition. This allows us to successfully functionalize the upconversion nanoparticles with horseradish peroxidise (HRP) for catalytic colorimetric assay and for streptavidin (SA)-biotin immunoassays.

  20. Use of Multicolor Flow Cytometry for Isolation of Specific Cell Populations Deriving from Differentiated Human Embryonic Stem Cells

    NARCIS (Netherlands)

    Mengarelli, Isabella; Fryga, Andrew; Barberi, Tiziano

    2016-01-01

    Flow Cytometry-Sorting (FCM-Sorting) is a technique commonly used to identify and isolate specific types of cells from a heterogeneous population of live cells. Here we describe a multicolor flow cytometry technique that uses five distinct cell surface antigens to isolate four live populations with

  1. Hydrothermal synthesis of functionalized CdS nanoparticles and their application as fluorescence probes in the determination of uracil and thymine

    International Nuclear Information System (INIS)

    Lu Yaxiang; Li Li; Ding Yaping; Zhang Fenfen; Wang Yaping; Yu Weijun

    2012-01-01

    A novel, sensitive, and convenient method for the determination of uracil and thymine by functionalized CdS nanoparticles (NPs) was proposed. CdS NPs were prepared by hydrothermal process and modified with thioglycollic acid (TGA) in aqueous solution. The fluorescence intensity of functionalized CdS NPs was quenched in the presence of uracil or thymine. Under optimal conditions, the relative fluorescence intensity (F 0 /F) was proportional to the concentration in the range of 9.0x10 -6 -1.0x10 -4 mol/L for uracil (r=0.9985) and 8.8x10 -7 -1.5x10 -4 mol/L for thymine (r=0.9960). The corresponding detection limits were 9.6x10 -7 mol/L and 3.2x10 -7 mol/L, respectively. In addition, the possible quenching mechanism was also discussed. - Highlights: → Nano-CdS fluorescence probes were synthesized with good optical properties. → Uracil and thymine were successfully detected by CdS fluorescence probes. → Wide linear ranges and low detection limits were obtained.

  2. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  3. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  4. The Surveillance Dynamic State GSS "Intelsat 10-02" on Base Multicolored Photometrical Data

    Science.gov (United States)

    Sukhov, P. P.; Karpenko, G. F.; Epishev, V. P.; Motrunich, I. I.

    2011-09-01

    Complex coordinate and multicolored photometric observations of active geostationary satellite (GSS) "Intelsat 10-02" (28358/2004022A, sub point GSS 359.0 E, with inclination to the equator i=0.05, the eccentricity e=0.00) took place at the "Mayaki" station, located nearby Odessa, on October 6,7,12,13,14, 2010 and on March 4, 2011. On those dates the satellite was nearby the border of the Earth's shadow. On basis of multicolored photometric observations some of its optical and geometrical characteristics were calculated. The analysis of light variation of GSS in B,V,R spectral regions of Johnson's system and the color indexes variation show that during the dates of observation the systems of stabilization of the platform of the transceiver antenna and the solar panels worked in the normal operating mode. During the observations the tracking panels of GSS "Intelsat 10-02" are well preserved relatively to the direction of Sun. The rotation of SB panels happens about axis, which is perpendicular to the equatorial plane. The orientation of the main axis of the platform, within calculation errors, remained unchanged in to the direction of the Earth's mass center. The analyses of the coordinate and photometric information for this GSS show how we can effectively control the dynamic state of the satellite and evaluate the optical characteristics of visible surface of spacecraft components and their behavior on its orbit using the photometric observations

  5. Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids.

    Science.gov (United States)

    Zhai, Hong; Feng, Ting; Dong, Lingyu; Wang, Liyun; Wang, Xiangfeng; Liu, Hailing; Liu, Yuan; Chen, Luan; Xie, MengXia

    2016-08-01

    A novel dual emission ratiometric fluorescence probe for determination of glucose has been developed. The reference dye fluorescence isothiocyanate (FITC) has been encapsulated in the silica nanoparticles and then the red emission CdTe QDs were grafted on the surface of the silica particles to obtain the fluorescence probe. With glucose and dopamine as substrates, the glucose level was proportional to the fluorescence ratio change of above probe caused by dopamine oxidation, which was produced via bienzyme catalysis (glucose oxidase and horseradish peroxidase). The established approach was sensitive and selective, and has been applied to determine the glucose in beverage, urine and serum samples. The average recoveries of the glucose at various spiking levels ranged from 95.5% to 108.9% with relative standard deviations from 1.5% to 4.3%. The results provided a clue to develop sensors for rapid determination of the target analytes from complex matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Li, Baoxin; Qi, Yingying; Jin, Yan [Shaanxi Normal University, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Xi' an (China)

    2009-04-15

    We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg{sup 2+}) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg{sup 2+} aptamer is rich in thymine (T) and readily forms T-Hg{sup 2+}-T configuration in the presence of Hg{sup 2+}. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg{sup 2+}-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg{sup 2+} concentration through a five-decade range of 1 x 10{sup -4} mol L{sup -1} to 1 x 10{sup -9} mol L{sup -1}. Even with the naked eye, we could identify micromolar Hg{sup 2+} concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg{sup 2+} over other metal cations including K{sup +}, Ba{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Al{sup 3+}, and Fe{sup 3+}. The major advantages of this Hg{sup 2+} assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg{sup 2+} detection. (orig.)

  7. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.

    Science.gov (United States)

    Xie, Xiaoji; Xu, Wei; Liu, Xiaogang

    2012-09-18

    The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics

  8. Near-field Spectroscopy of Surface Plasmons in Flat Gold Nanoparticles

    International Nuclear Information System (INIS)

    Achermann, Marc; Shuford, Kevin L.; Schatz, George C.; Dahanayaka, D.H.; Bumm, Lloyd A; Klimov, Victor I.

    2007-01-01

    We use near-field interference spectroscopy with a broadband femtosecond, white-light probe to study local surface plasmon resonances in flat gold nanoparticles (FGNPs). Depending on nanoparticle dimensions, local near-field extinction spectra exhibit none, one, or two resonances in the range of visible wavelengths (1.6-2.6 eV). The measured spectra can be accurately described in terms of interference between the field emitted by the probe aperture and the field reradiated by driven FGNP surface plasmon oscillations. The measured resonances are in good agreement with those predicted by calculations using discrete dipole approximation. We observe that the amplitudes of these resonances are dependent upon the spatial position of the near-field probe, which indicates the possibility of spatially selective excitation of specific plasmon modes

  9. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    Science.gov (United States)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  10. Protease-activated quantum dot probes

    International Nuclear Information System (INIS)

    Chang, Emmanuel; Miller, Jordan S.; Sun, Jiantang; Yu, William W.; Colvin, Vicki L.; Drezek, Rebekah; West, Jennifer L.

    2005-01-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker

  11. Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling

    Directory of Open Access Journals (Sweden)

    Nai-Tzu Chen

    2012-12-01

    Full Text Available Förster resonance energy transfer (FRET may be regarded as a “smart” technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of “visible” and “activatable” FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery.

  12. A Conjugated Aptamer-Gold Nanoparticle Fluorescent Probe for Highly Sensitive Detection of rHuEPO-α

    Directory of Open Access Journals (Sweden)

    Zhaoyang Zhang

    2011-11-01

    Full Text Available We present here a novel conjugated aptamer-gold nanoparticle (Apt-AuNPs fluorescent probe and its application for specific detection of recombinant human erythropoietin-α (rHuEPO-α. In this nanobiosensor, 12 nm AuNPs function as both a nano-scaffold and a nano-quencher (fluorescent energy acceptor, on the surface of which the complementary sequences are linked (as cODN-AuNPs and pre-hybridized with carboxymethylfluorescein (FAM-labeled anti-rHuEPO-α aptamers. Upon target protein binding, the aptamers can be released from the AuNP surface and the fluorescence signal is restored. Key variables such as the length of linker, the hybridization site and length have been designed and optimized. Full performance evaluation including sensitivity, linear range and interference substances are also described. This nanobiosensor provides a promising approach for a simple and direct quantification of rHuEPO-α concentrations as low as 0.92 nM within a few hours.

  13. Multicolor photoluminescence in ITQ-16 zeolite film

    KAUST Repository

    Chen, Yanli

    2016-09-07

    Exploring the native defects of zeolites is highly important for understanding the properties of zeolites, such as catalysis and optics. Here, ITQ-16 films were prepared via the secondary growth method in the presence of Ge atoms. Various intrinsic defects of ITQ-16 films were fully studied through photoluminescence and FTIR characterizations. It was found that both the as-synthesized and calcined ITQ-16 films displayed multicolor photoluminescence including ultraviolet, blue, green and red emissions by exciting upon appropriate wavelengths. The results indicate that Si―OH and non-bridging oxygen hole centers(NBOHCs) are responsible for the origin of green and red emissions at 540―800 nm, while according to a variety of emission bands of calcined ITQ-16 film, blue emission bands at around 446 and 462 nm are attributed to peroxy free radicals(≡SiO2), ultraviolet emissions ranging from 250 nm to 450 nm are suggested originating from a singlet-to-triplet transition of two-fold-coordinated Si and Ge, respectively. © 2016, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH.

  14. Multicolor Upconversion Nanoprobes Based on a Dual Luminescence Resonance Energy Transfer Assay for Simultaneous Detection and Bioimaging of [Ca2+ ]i and pHi in Living Cells.

    Science.gov (United States)

    Song, Xinyue; Yue, Zihong; Zhang, Jiayu; Jiang, Yanxialei; Wang, Zonghua; Zhang, Shusheng

    2018-04-25

    Intracellular [Ca 2+ ] i and pH i have a close relationship, and their abnormal levels can result in cell dysfunction and accompanying diseases. Thus, simultaneous determination of [Ca 2+ ] i and pH i can more accurately investigate complex biological processes in an integrated platform. Herein, multicolor upconversion nanoparticles (UCNPs) were prepared with the advantages of no spectral overlapping, single NIR excitation wavelengths, and greater tissue penetration depth. The upconversion nanoprobes were easily prepared by the attachment of two fluorescent dyes, Fluo-4 and SNARF-4F. Based on the dual luminescence resonance energy transfer (LRET) process, the blue and green fluorescence of the UCNPs were specially quenched and selectively recovered after the detachment and/or absorbance change of the attached fluorescent dyes, enabling dual detection. Importantly, the developed nanoprobe could successfully be applied for the detection of [Ca 2+ ] i and pH i change in adenosine triphosphate (ATP) and ethylene glycol tetraacetic acid (EGTA) stimulation in living cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  16. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    Science.gov (United States)

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.

  17. Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors

    Directory of Open Access Journals (Sweden)

    Fatima Abi-Ghaida

    2015-01-01

    Full Text Available A new class of multifunctional silica nanoparticles carrying boron clusters (10-vertex closo-decaborate and incorporating luminescent centers (fluorescein has been developed as potential probes/carriers for potential application in boron neutron capture therapy (BNCT. These silica nanoparticles were charged in situ with silylated-fluorescein fluorophores via the Stöber method and their surface was further functionalized with decaborate-triethoxysilane precursors. The resulting decaborate dye-doped silica nanoparticles were characterized by TEM, solid state NMR, DLS, nitrogen sorption, elemental analysis, and fluorescence spectroscopy.

  18. A single-source solid-precursor method for making eco-friendly doped semiconductor nanoparticles emitting multi-color luminescence.

    Science.gov (United States)

    Manzoor, K; Aditya, V; Vadera, S R; Kumar, N; Kutty, T R N

    2007-02-01

    A novel synthesis method is presented for the preparation of eco-friendly, doped semiconductor nanocrystals encapsulated within oxide-shells, both formed sequentially from a single-source solid-precursor. Highly luminescent ZnS nanoparticles, in situ doped with Cu(+)-Al3+ pairs and encapsulated with ZnO shells are prepared by the thermal decomposition of a solid-precursor compound, zinc sulfato-thiourea-oxyhydroxide, showing layered crystal structure. The precursor compound is prepared by an aqueous wet-chemical reaction involving necessary chemical reagents required for the precipitation, doping and inorganic surface capping of the nanoparticles. The elemental analysis (C, H, N, S, O, Zn), quantitative estimation of different chemical groups (SO4(2-) and NH4(-)) and infrared studies suggested that the precursor compound is formed by the intercalation of thiourea, and/or its derivatives thiocarbamate (CSNH2(-)), dithiocarbamate (CS2NH2(-)), etc., and ammonia into the gallery space of zinc-sulfato-oxyhydroxide corbel where the Zn(II) ions are both in the octahedral as well as tetrahedral coordination in the ratio 3 : 2 and the dopant ions are incorporated within octahedral voids. The powder X-ray diffraction of precursor compound shows high intensity basal reflection corresponding to the large lattice-plane spacing of d = 11.23 angstroms and the Rietveld analysis suggested orthorhombic structure with a = 9.71 angstroms, b = 12.48 angstroms, c = 26.43 angstroms, and beta = 90 degrees. Transmission electron microscopy studies show the presence of micrometer sized acicular monocrystallites with prismatic platy morphology. Controlled thermolysis of the solid-precursor at 70-110 degrees C leads to the collapse of layered structure due to the hydrolysis of interlayer thiourea molecules or its derivatives and the S2- ions liberated thereby reacts with the tetrahedral Zn(II) atoms leading to the precipitation of ZnS nanoparticles at the gallery space. During this process

  19. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  20. DNA nanoparticles with core-shell morphology.

    Science.gov (United States)

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  1. Constructive nanolithography and nanochemistry : local probe oxidation and chemical modification

    NARCIS (Netherlands)

    Wouters, D.; Schubert, U.S.

    2003-01-01

    The possibility to prepare and use submicrometer-sized patterns in successive functionalization reactions with quaternary ammonium salts and (functional) chlorosilanes, as well as cationic gold nanoparticles, is presented. Submicrometer-sized structures were prepared by local probe oxidation of

  2. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  3. Influence of CdS nanoparticles grain morphology on laser-induced absorption

    Science.gov (United States)

    Ebothé, Jean; Michel, Jean; Kityk, I. V.; Lakshminarayana, G.; Yanchuk, O. M.; Marchuk, O. V.

    2018-06-01

    Using external illumination of a 7 nanosecond (ns) doubled frequency Nd: YAG laser emitting at λ = 532 nm with frequency repetition 10 Hz it was established a possibility of significant changes of the absorption at the probing wavelength 1150 nm of continuous wave (cw) He-Ne laser for the CdS nanoparticles embedded into the PVA polymer matrix. The effect is observed only during the two beam laser coherent treatment and this effect is a consequence of interference of two coherent beams. It is shown a principal role of the grain morphology in the efficiency of the process, which is more important than the nanoparticle sizes. The photoinduced absorption is manifested in the space distribution of the probing laser beam. The principal role of the grain interfaces between the nanoparticle interfaces and the surrounding polymer matrix is shown. The effect is almost independent of the nanoparticle sizes. It may be used for laser operation by nanocomposites.

  4. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    Science.gov (United States)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  5. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    International Nuclear Information System (INIS)

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari

    2005-01-01

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH 2 ). The CHPNH 2 -QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging

  6. Curcumin-incorporated albumin nanoparticles and its tumor image

    International Nuclear Information System (INIS)

    Gong, Guangming; Wu, Rongchun; Pan, Qinqin; Wang, Kaikai; Sun, Yong; Lu, Ying

    2015-01-01

    Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)–curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA–CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA–CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA–CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes. (paper)

  7. Curcumin-incorporated albumin nanoparticles and its tumor image

    Science.gov (United States)

    Gong, Guangming; Pan, Qinqin; Wang, Kaikai; Wu, Rongchun; Sun, Yong; Lu, Ying

    2015-01-01

    Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)-curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA-CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA-CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA-CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes.

  8. Curcumin-incorporated albumin nanoparticles and its tumor image.

    Science.gov (United States)

    Gong, Guangming; Pan, Qinqin; Wang, Kaikai; Wu, Rongchun; Sun, Yong; Lu, Ying

    2015-01-30

    Albumin is an ideal carrier for hydrophobic drugs. This paper reports a facile route to develop human serum albumin (HSA)-curcumin (CCM) nanoparticles, in which β-mercaptoethanol (β-ME) acted as an inducer and CCM acted as a bridge. Fluorescence quenching and conformational changes in HSA-CCM nanoparticles occurred during assembly. Disulfide bonds and hydrophobic interactions may play a key role in assembly. HSA-CCM nanoparticles were about 130 nm in size, and the solubility of CCM increased by more than 500 times. The HSA-CCM nanoparticles could accumulate at the cytoplasm of tumor cells and target the tumor tissues. Therefore, HSA nanoparticles fabricated by β-ME denaturation are promising nanocarriers for hydrophobic substances from chemotherapy drugs to imaging probes.

  9. Numerical modeling of the dispersion of ceramic nanoparticles during ultrasonic processing of aluminum-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Daojie Zhang

    2014-10-01

    The modeling parametric study includes the effects of the fluid flow, the ultrasonic probe location, nanoparticle size distribution, and initial location where the nanoparticles are released into the molten alloy. It was determined that the nanoparticles can be distributed quickly and uniformly into the molten 6061 alloy.

  10. A Real-Time Apple Grading System Using Multicolor Space

    Directory of Open Access Journals (Sweden)

    Hayrettin Toylan

    2014-01-01

    Full Text Available This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identification success for the yellow fields was obtained depending on the values of the parameter y of CIE XYZ color space. With the designed system, three kinds of apples (Golden, Starking, and Jonagold were investigated by classifying them into four groups with respect to two parameters, color and size. Finally, 99% success rate was achieved in the analyses conducted for 595 apples.

  11. Structure and function of nanoparticle-protein conjugates

    International Nuclear Information System (INIS)

    Aubin-Tam, M-E; Hamad-Schifferli, K

    2008-01-01

    Conjugation of proteins to nanoparticles has numerous applications in sensing, imaging, delivery, catalysis, therapy and control of protein structure and activity. Therefore, characterizing the nanoparticle-protein interface is of great importance. A variety of covalent and non-covalent linking chemistries have been reported for nanoparticle attachment. Site-specific labeling is desirable in order to control the protein orientation on the nanoparticle, which is crucial in many applications such as fluorescence resonance energy transfer. We evaluate methods for successful site-specific attachment. Typically, a specific protein residue is linked directly to the nanoparticle core or to the ligand. As conjugation often affects the protein structure and function, techniques to probe structure and activity are assessed. We also examine how molecular dynamics simulations of conjugates would complete those experimental techniques in order to provide atomistic details on the effect of nanoparticle attachment. Characterization studies of nanoparticle-protein complexes show that the structure and function are influenced by the chemistry of the nanoparticle ligand, the nanoparticle size, the nanoparticle material, the stoichiometry of the conjugates, the labeling site on the protein and the nature of the linkage (covalent versus non-covalent)

  12. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  13. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R [Department of Chemistry and Center of Nanoscale Materials, University of Puerto Rico, Rio Piedras, PO Box 23346 San Juan, PR 00931-3346 (Puerto Rico)

    2007-04-15

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO{sub 3} and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 {mu}m) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron.

  14. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    International Nuclear Information System (INIS)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R

    2007-01-01

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO 3 and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 μm) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron

  15. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip.

    Science.gov (United States)

    Wang, Chunying; Hou, Fei; Ma, Yicai

    2015-06-15

    A novel multicolor quantum dots (QDs) based immunochromatographic test strip (ICTS) was developed for simultaneous quantitative detection of multiple tumor markers, by utilizing alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) as models. The immunosensor could realize simultaneous quantitative detection of tumor markers with only one test line and one control line on the nitrocellulose membrane (NC membrane) due to the introduction of multicolor QDs. In this method, a mixture of mouse anti-AFP McAb and mouse anti-CEA McAb was coated on NC membrane as test line and goat anti-mouse IgG antibody was coated as control line. Anti-AFP McAb-QDs546 conjugates and anti-CEA McAb-QDs620 conjugates were mixed and applied to the conjugate pad. Simultaneous quantitative detection of multiple tumor markers was achieved by detecting the fluorescence intensity of captured QDs labels on test line and control line using a test strip reader. Under the optimum conditions, AFP and CEA could be detected as low as 3 ng/mL and 2 ng/mL in 15 min with a sample volume of 80 μL, and no obvious cross-reactivity was observed. The immunosensor was validated with 130 clinical samples and in which it exhibited high sensitivity (93% for AFP and 87% for CEA) and specificity (94% for AFP and 97% for CEA). The immunosensor also demonstrated high recoveries (87.5-113% for AFP and 90-97.3% for CEA) and low relative standard deviations (RSDs) (2.8-6.2% for AFP and 4.9-9.6% for CEA) when testing spiked human serum. This novel multicolor QDs based ICTS provides an easy and rapid, simultaneous quantitative detecting strategy for point-of-care testing of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors

    Science.gov (United States)

    2015-08-27

    copyright information. 13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report...II-VI heterojunctions such as multi-color photodetectors and solar cells [2]. Mixing lattice-matched II-VI and III-V semiconductors could be an...at 77 K, further silicon oxide surface passivation can be done to suppress the surface leakage [10] in the future work. Figure 10 The dark I-V

  17. Determination of sertraline in pharmaceutical and biological samples using 1, 10-phenanthroline-terbium probe and silver nanoparticles enhanced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lotfi, Ali, E-mail: alilotfi67@gmail.com [Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz (Iran, Islamic Republic of); Manzoori, Jamshid L. [Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz (Iran, Islamic Republic of); Mohagheghi, Arash [Clinical Psychiatry Research Center, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2017-05-15

    Sertraline is an antidepressant widely prescribed for major depressive disorders. In this contribution we report a novel, rapid and sensitive spectrofluorimetric technique, developed and validated for the determination of sertraline in pharmaceutical, human urine and human plasma samples, based on the fluorescence enhancement of the sertraline by 1, 10-phenanthroline-terbium probe with Ag nanoparticles (AgNPs). The effect of pH, buffer concentration, the order of addition of reagents, terbium and 1, 10-phenanthroline concentrations, and concentration of Ag nanoparticles (AgNPs) as well as reaction time on the fluorescence intensity were investigated and the optimum conditions were determined. The linear range for determination of sertraline was obtained as 0.001–3 mg L{sup −1}. The limit of detection (b+3s) and the limit of quantification was calculated as 2.9×10{sup −4} mg L{sup −1} and 9.8×10{sup −4} mg L{sup −1}, respectively. The interference effects of common excipients found in pharmaceutical preparations were studied. The presented technique was used to determine the sertraline in pharmaceutical samples, human urine and plasma as real samples. The presented method was indicated a comparable results with the standard analytical techniques for sertraline. Good linearity, reproducibility, recovery and limit of detection have made this method suitable for determination of sertraline in various types of samples.

  18. Determination of sertraline in pharmaceutical and biological samples using 1, 10-phenanthroline-terbium probe and silver nanoparticles enhanced fluorescence

    International Nuclear Information System (INIS)

    Lotfi, Ali; Manzoori, Jamshid L.; Mohagheghi, Arash

    2017-01-01

    Sertraline is an antidepressant widely prescribed for major depressive disorders. In this contribution we report a novel, rapid and sensitive spectrofluorimetric technique, developed and validated for the determination of sertraline in pharmaceutical, human urine and human plasma samples, based on the fluorescence enhancement of the sertraline by 1, 10-phenanthroline-terbium probe with Ag nanoparticles (AgNPs). The effect of pH, buffer concentration, the order of addition of reagents, terbium and 1, 10-phenanthroline concentrations, and concentration of Ag nanoparticles (AgNPs) as well as reaction time on the fluorescence intensity were investigated and the optimum conditions were determined. The linear range for determination of sertraline was obtained as 0.001–3 mg L −1 . The limit of detection (b+3s) and the limit of quantification was calculated as 2.9×10 −4 mg L −1 and 9.8×10 −4 mg L −1 , respectively. The interference effects of common excipients found in pharmaceutical preparations were studied. The presented technique was used to determine the sertraline in pharmaceutical samples, human urine and plasma as real samples. The presented method was indicated a comparable results with the standard analytical techniques for sertraline. Good linearity, reproducibility, recovery and limit of detection have made this method suitable for determination of sertraline in various types of samples.

  19. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    Science.gov (United States)

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  20. Nanoparticles as multimodal photon transducers of ionizing radiation

    Science.gov (United States)

    Pratt, Edwin C.; Shaffer, Travis M.; Zhang, Qize; Drain, Charles Michael; Grimm, Jan

    2018-05-01

    In biomedical imaging, nanoparticles combined with radionuclides that generate Cerenkov luminescence are used in diagnostic imaging, photon-induced therapies and as activatable probes. In these applications, the nanoparticle is often viewed as a carrier inert to ionizing radiation from the radionuclide. However, certain phenomena such as enhanced nanoparticle luminescence and generation of reactive oxygen species cannot be completely explained by Cerenkov luminescence interactions with nanoparticles. Herein, we report methods to examine the mechanisms of nanoparticle excitation by radionuclides, including interactions with Cerenkov luminescence, β particles and γ radiation. We demonstrate that β-scintillation contributes appreciably to excitation and reactivity in certain nanoparticle systems, and that excitation by radionuclides of nanoparticles composed of large atomic number atoms generates X-rays, enabling multiplexed imaging through single photon emission computed tomography. These findings demonstrate practical optical imaging and therapy using radionuclides with emission energies below the Cerenkov threshold, thereby expanding the list of applicable radionuclides.

  1. The Status of MUSIC: A Multicolor Sub/millimeter MKID Instrument

    Science.gov (United States)

    Schlaerth, J. A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Nguyen, H. T.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.

    2012-05-01

    We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation.

  2. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  3. Molecular cytogenetic analysis of human blastocysts andcytotrophoblasts by multi-color FISH and Spectra Imaging analyses

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf; Jung,Christine J.; Nguyen, Ha-Nam; Chu, Lisa W.; Pedersen, Roger A.; Fisher,Susan J.; Weier, Heinz-Ulrich G.

    2006-02-08

    Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.

  4. Enriching PMMA nanospheres with adjustable charges as novel templates for multicolored dye-PMMA nanocomposites

    International Nuclear Information System (INIS)

    Wang Xumei; Xu Shuping; Xu Weiqing; Liang Chongyang; Li Hongrui; Sun Fei

    2011-01-01

    Multicolored fluorescent dye loaded PMMA nanospheres were synthesized by the electrostatic adsorption of dye molecules on the charged PMMA nanospheres, whose charges were adjusted by choosing different initiators. The charged PMMA nanospheres have a wider capacity and advantage for combining the charged dyes. The fluorescent dye-PMMA composite nanospheres possess the advantages of higher brightness, longer lifetime and stronger resistance to photobleaching relative to dye molecules. Dye leakage remained lower than 5% over one week. These fluorescent nanospheres have been used in biological labels in cell imaging. They can easily stain blood cancer cells without further surface modification.

  5. Targeted Nanoparticles for Kidney Cancer Therapy

    Science.gov (United States)

    2014-12-01

    with logarithmic time scale. The instrument uses a 1.3 mm diameter by 60 mm long stainless steel probe that is immersed in the nanofluids to obtain the...the PL emission spectrum of Fe3O4 ferrofluid. An emission peak is observed at 416 nm upon excitation at 365 nm wavelength(3.39 eV) and Figure 2c...represents the corresponding PLE (excitation) spectrum for Fe3O4 nanoparticles at 416 nm (2.98 eV) emission of Fe3O4 nanoparticles. The observed result is

  6. Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells

    International Nuclear Information System (INIS)

    Martin, Amanda L.; Hickey, Jennifer L.; Ablack, Amber L.; Lewis, John D.; Luyt, Leonard G.; Gillies, Elizabeth R.

    2010-01-01

    The imaging of molecular markers associated with disease offers the possibility for earlier detection and improved treatment monitoring. Receptors for gastrin-releasing peptide are overexpressed on prostate cancer cells offering a promising imaging target, and analogs of bombesin, an amphibian tetradecapeptide have been previously demonstrated to target these receptors. Therefore, the pan-bombesin analog [β-Ala11, Phe13, Nle14]bombesin-(7-14) was conjugated through a linker to dye-functionalized superparamagnetic iron oxide nanoparticles for the development of a new potential magnetic resonance imaging probe. The peptide was conjugated via click chemistry, demonstrating a complementary alternative methodology to conventional peptide-nanoparticle conjugation strategies. The peptide-functionalized nanoparticles were then demonstrated to be selectively taken up by PC-3 prostate cancer cells relative to unfunctionalized nanoparticles and this uptake was inhibited by the presence of free peptide, confirming the specificity of the interaction. This study suggests that these nanoparticles have the potential to serve as magnetic resonance imaging probes for the detection of prostate cancer.

  7. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection

    International Nuclear Information System (INIS)

    Shi Yupeng; Zhang Heng; Zhang Zhaomin; Yi Changqing; Yue Zhenfeng; Teng, Kar-Seng; Li Meijin; Yang Mengsu

    2013-01-01

    Advances in the controlled assembly of nanoscale building blocks have resulted in functional devices which can find applications in electronics, biomedical imaging, drug delivery etc. In this study, novel covalent nanohybrid materials based upon [Ru(bpy) 3 ] 2+ -doped silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs), which could be conditioned as OFF–ON probes for glutathione (GSH) detection, were designed and assembled in sequence, with the disulfide bonds as the bridging elements. The structural and optical properties of the nanohybrid architectures were characterized using transmission electron microscopy, UV–vis spectroscopy and fluorescence spectroscopy, respectively. Zeta potential measurements, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were employed to monitor the reaction processes of the SiNPs–S–S–COOH and SiNPs–S–S–AuNPs synthesis. It was found that the covalent nanohybrid architectures were fluorescently dark (OFF state), indicating that SiNPs were effectively quenched by AuNPs. The fluorescence of the OFF–ON probe was resumed (ON state) when the bridge of the disulfide bond was cleaved by reducing reagents such as GSH. This work provides a new platform and strategy for GSH detection using covalent nanohybrid materials. (paper)

  8. Tuning structure of oppositely charged nanoparticle and protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K., E-mail: sugam@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Callow, P. [Institut Laue Langevin, DS/LSS, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2014-04-24

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ∼ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.)

  9. Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry

    International Nuclear Information System (INIS)

    McPhail, M J; Fontaine, A A; Krane, M H; Goss, L; Crafton, J

    2015-01-01

    Color crosstalk and chromatic aberration can bias estimates of fluid velocity measured by color particle shadow velocimetry (CPSV), using multicolor illumination and a color camera. This article describes corrections to remove these bias errors, and their evaluation. Color crosstalk removal is demonstrated with linear unmixing. It is also shown that chromatic aberrations may be removed using either scale calibration, or by processing an image illuminated by all colors simultaneously. CPSV measurements of a fully developed turbulent pipe flow of glycerin were conducted. Corrected velocity statistics from these measurements were compared to both single-color PSV and LDV measurements and showed excellent agreement to fourth-order, to well into the viscous sublayer. Recommendations for practical assessment and correction of color aberration and color crosstalk are discussed. (paper)

  10. Radiolytic formation of iron oxyhydroxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, T.; Wren, J.C., E-mail: tsuther4@uwo.ca [The Univ. of Western Ontario, London, ON (Canada)

    2014-07-01

    The formation of iron oxyhydroxide nanoparticles under gamma irradiation of ferrous ion solutions is a process in the infancy of its understanding. Herein we present work to probe the mechanism by which these nanoparticles are formed. These results can be used to better understand the activity transport processes occurring within a reactor environment which may pose both environmental and safety concerns. Initial ferrous concentrations and solution pH were modified and found to have little effect on final particle size and composition. The nanoparticles were formed in the presence of scavengers and it was found that hydroxyl radicals promote the particle formation while solvated electrons diminish it. Post-synthesis heating was found to shift the initially-formed lepidocrocite particles towards a mixture of goethite and maghemite. (author)

  11. Insights into post-annealing and silver doping effects on the internal microstructure of ZnO nanoparticles through X-ray diffraction probe

    Science.gov (United States)

    Obeydavi, Ali; Dastafkan, Kamran; Rahimi, Mohammad; Ghadam Dezfouli, Mohammad Amin

    2017-07-01

    ZnO nanoparticles were synthesized via Pechini method at various post-annealing temperatures (400°, 500°, and 600 °C) and silver doping concentrations (Zn:Ag molar ratios of 30, 20, and 10). Multifarious microstructural features including crystallite size, size-strain based broadening, residual stress, preferential orientation, crystallinity degree, lattice parameters, unit cell variation, and stacking fault probability were surveyed through phase analysis, Williamson-Hall plot, texture coefficient and unit cell calculations. X-ray probing verified good crystallinity with a hexagonal close pack Wurtzite morphology. Williamson-Hall analysis exhibited distributions of crystallite size and microstrain as well as their contributions on the line broadening of the host ZnO and guest Ag phases upon annealing-doping treatments. Textural analysis revealed the alteration in anisotropic crystallinity of the host phase and transformation of the preferred directions, (100) and (101), as function of annealing-doping processes. Besides, while guest Ag phase was shown to be polycrystalline with randomly orientated crystals at moderate concentration with respect to thermal treatment, preferential orientation went through a major change, (220) to (111), with increment in Ag loadings. Under identical synthetic conditions, the distinction in the lattice constants and unit cell variation between pure and doped ZnO nanoparticles was enforced and results verified major impressionability via annealing and doping factors.

  12. Design of a Multi-Color Lamp Using High Brightness RGB LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Song, S.B.; Kang, S.H.; Yeo, I.S. [Chonnam National University, Kwangju (Korea)

    2003-02-01

    This paper proposes the design of a multi-color lamp using high brightness RGB LEDs for color variation. Appropriate number of RGB LEDs is so chosen according to the color mixing theory that the overall LEDs represent a color temperature of 6500K. Also, the chosen RGB LEDs are suitably arranged by using an optical design program. The lamp has an internal controller circuit, so it can be directly connected to the existing incandescent lamp socket. It's main body is comprised of two PCB layers. The upper layer contains 44 LEDs and the lower one has a simple microcontroller-based PWM control circuit. The lamp has functions of both ON/OFF control and PWM control, and enables color variation of over 100,000 colors and of more than 10 patterns. (author). 7 refs., 11 figs., 3 tabs.

  13. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    International Nuclear Information System (INIS)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi; Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S

    2011-01-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  14. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Harshala J; Huang, Jing-Hong; Liu, Ru-Shi [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Lai, Tsung-Ching; Jan, Yi-Hua; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China); Hwu, Yeu-Kuang [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tsai, Din Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chuang, Shih-Yi; Pang, Jong-Hwei S, E-mail: rsliu@ntu.edu.tw, E-mail: mhsiao@gate.sinica.edu.tw [Graduate Institute of Clinical Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan (China)

    2011-09-30

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  15. Bioactive Polymeric Nanoparticles for Periodontal Therapy.

    Science.gov (United States)

    Osorio, Raquel; Alfonso-Rodríguez, Camilo Andrés; Medina-Castillo, Antonio L; Alaminos, Miguel; Toledano, Manuel

    2016-01-01

    to design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease. PolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Precipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect. The ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.

  16. Selective fluorescence response and magnetic separation probe for 2,4,6-trinitrotoluene based on iron oxide magnetic nanoparticles.

    Science.gov (United States)

    Zou, Wen-Sheng; Wang, Ya-Qin; Wang, Feng; Shao, Qun; Zhang, Jun; Liu, Jin

    2013-05-01

    Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC-HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid-base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC-HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC-HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05-1.5 μmol L(-1), with a detection limit of 37.2 nmol L(-1) and RSD of 4.7 % (n = 7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.

  17. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    Science.gov (United States)

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Understanding charge carrier relaxation processes in terbium arsenide nanoparticles using transient absorption spectroscopy

    Science.gov (United States)

    Vanderhoef, Laura R.

    Erbium arsenide nanoparticles epitaxially grown within III-V semiconductors have been shown to improve the performance of devices for applications ranging from thermoelectrics to THz pulse generation. The small size of rare-earth nanoparticles suggests that interesting electronic properties might emerge as a result of both spatial confinement and surface states. However, ErAs nanoparticles do not exhibit any signs of quantum confinement or an emergent bandgap, and these experimental observations are understood from theory. The incorporation of other rare-earth monopnictide nanoparticles into III-V hosts is a likely path to engineering carrier excitation, relaxation and transport dynamics for optoelectronic device applications. However, the electronic structure of these other rare-earth monopnictide nanoparticles remains poorly understood. The objective of this research is to explore the electronic structure and optical properties of III-V materials containing novel rare-earth monopnictides. We use ultrafast pump-probe spectroscopy to investigate the electronic structure of TbAs nanoparticles in III-V hosts. We start with TbAs:GaAs, which was expected to be similar to ErAs:GaAs. We study the dynamics of carrier relaxation into the TbAs states using optical pump terahertz probe transient absorption spectroscopy. By analyzing how the carrier relaxation rates depend on pump fluence and sample temperature, we conclude that the TbAs states are saturable. Saturable traps suggest the existence of a bandgap for TbAs nanoparticles, in sharp contrast with previous results for ErAs. We then apply the same experimental technique to two samples of TbAs nanoparticles in InGaAs with different concentrations of TbAs. We observe similar relaxation dynamics associated with trap saturation, though the ability to resolve these processes is contingent upon a high enough TbAs concentration in the sample. We have also constructed an optical pump optical probe transient absorption

  19. Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles.

    Science.gov (United States)

    Sun, Tong; Wang, Dengchao; Mirkin, Michael V

    2018-06-18

    Electrochemical experiments at individual nanoparticles (NPs) can provide new insights into their structure-activity relationships. By using small nanoelectrodes as tips in a scanning electrochemical microscope (SECM), we recently imaged individual surface-bound 10-50 nm metal NPs. Herein, we introduce a new mode of SECM operation based on tunneling between the tip and a nanoparticle immobilized on the insulating surface. The obtained current vs. distance curves show the transition from the conventional feedback response to electron tunneling between the tip and the NP at separation distances of less than about 3 nm. In addition to high-resolution imaging of the NP topography, the tunneling mode enables measurement of the heterogeneous kinetics at a single NP without making an ohmic contact with it. The developed method should be useful for studying the effects of nanoparticle size and geometry on electrocatalytic activity in real-world applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Choi, H.W.; Lee, K.H.; Hur, N.H.; Lim, H.B.

    2014-01-01

    Highlights: • Sandwich-type immunoassay using ICP-MS and nanoparticles to determine biomarkers. • CeO 2 -deposited mesoporous silica nanoparticles were synthesized as a probe. • Ratiometric measurement significantly improved the calibration linearity. • Excellent detection limit was achieved by signal amplification. - Abstract: CeO 2 -deposited mesoporous silica nanoparticles were synthesized as a probe to determine carcinoembryonic antigen (CEA) in serum by inductively coupled plasma-mass spectrometry (ICP-MS). The prepared mesoporous nanoparticles were modified and tagged to the target for sandwich-type immunoassay. Fe 3 O 4 magnetic nanoparticles (MNPs) were also synthesized and immobilized with antibody to extract the target biomarker. The calibration curve of the synthesized CeO 2 -deposited silica nanoparticles, which was plotted by the signal ratio of 140 Ce/ 57 Fe measured by ICP-MS vs. the concentration of CEA, showed excellent linearity and sensitivity owing to the signal amplification and low spectral interference. Under optimal conditions, the sandwich-type analytical method was applied to determine CEA in serum spiked in the range of 0.001–5 ng mL −1 and showed a limit of detection of 0.36 ng mL −1 . Since the deposited CeO 2 in the mesoporous silica layer can be substituted by other metal compounds, various kinds of metal-deposited nanoparticles can be prepared as probe materials for multiplex detection in bioanalysis

  1. and Au nanoparticles for SERS applications

    Directory of Open Access Journals (Sweden)

    Fazio Enza

    2018-01-01

    Full Text Available The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  2. Glutamate decarboxylase-derived IDDM autoantigens displayed on self-assembled protein nanoparticles

    International Nuclear Information System (INIS)

    Choi, Hyoung; Ahn, Ji-Young; Sim, Sang Jun; Lee, Jeewon

    2005-01-01

    The recombinant ferritin heavy chain (FTN-H) formed self-assembled spherical nanoparticles with the size comparable to native one. We tried to express the GAD65 COOH-terminal fragments, i.e., 448-585 (GAD65 448-585 ), 487-585 (GAD65 487-585 ), and 512-585 (GAD65 512-585 ) amino acid fragments, using FTN-H as N-terminus fusion expression partner in Escherichia coli. All of recombinant fusion proteins (FTN-H::GAD65 448-585 , FTN-H::GAD65 487-585 , and FTN-H::GAD65 512-585 ) also formed spherical nanoparticles due probably to the self-assembly function of the fused ferritin heavy chain. The antigenic epitopes within GAD65 448-585 , GAD65 487-585 , and GAD65 512-585 against insulin-dependent diabetes mellitus (IDDM) marker (autoantibodies against GAD65) were localized at the surface of the spherical protein nanoparticles so that anti-GAD65 Ab could recognize them. Protein nanoparticles like FTN-H seem to provide distinct advantages over other inorganic nanoparticles (e.g., Au, Ag, CdSe, etc.) in that through the bacterial synthesis, the active capture probes can be located at the nanoparticle surface with constant orientation/conformation via covalent cross-linking without complex chemistry. Also it is possible for the protein nanoparticles to have uniform particle size, which is rarely achieved in the chemical synthesis of inorganic nanoparticles. Thus, the recombinant ferritin particles can be used as a three-dimensional (spherical) and nanometer-scale probe structure that is a key component in ultra-sensitive protein chip for detecting protein-small molecule interactions and protein-protein interactions

  3. Drug delivery into microneedle-porated nails from nanoparticle reservoirs.

    Science.gov (United States)

    Chiu, Wing Sin; Belsey, Natalie A; Garrett, Natalie L; Moger, Julian; Price, Gareth J; Delgado-Charro, M Begoña; Guy, Richard H

    2015-12-28

    This study demonstrates the potential of polymeric nanoparticles as drug reservoirs for sustained topical drug delivery into microneedle-treated human nail. Laser scanning confocal microscopy was used to image the delivery of a fluorescent model compound from nanoparticles into the nail. A label-free imaging technique, stimulated Raman scattering microscopy, was applied, in conjunction with two-photon fluorescence imaging, to probe the disposition of nanoparticles and an associated lipophilic 'active' in a microneedle-porated nail. The results provide clear evidence that the nanoparticles function as immobile reservoirs, sequestered on the nail surface and in the microneedle-generated pores, from which the active payload can be released and diffuse laterally into the nail over an extended period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Multicolor photometric study of M31 globular clusters

    International Nuclear Information System (INIS)

    Fan Zhou; Ma Jun; Zhou Xu

    2009-01-01

    We present the photometry of 30 globular clusters (GCs) and GC candidates in 15 intermediate-band filters covering the wavelength region from ∼3000 to ∼10000 A using the archival CCD images of M31 observed as part of the Beijing - Arizona - Taiwan - Connecticut (BATC) Multicolor Sky Survey. We transform these intermediate-band photometric data into the photometry in the standard U BV RI broad-bands. These M31 GC candidates are selected from the Revised Bologna Catalog (RBC V.3.5), and most of these candidates do not have any photometric data. Therefore, the presented photometric data are a supplement to the RBC V.3.5. We find that 4 out of 61 GCs and GC candidates in RBC V.3.5 do not show any signal on the BATC images at their locations. By applying a linear fit of the distribution in the color-magnitude diagram of blue GCs and GC candidates using data from the RBC V.3.5, in this study, we find the 'blue-tilt' of blue M31 GCs with a high confidence at 99.95% or 3.47σ for the confirmed GCs, and > 99.99% or 4.87σ for GCs and GC candidates. (research papers)

  5. Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Chan, H.T.; Do, Y.Y.; Huang, P.L.; Chien, P.L.; Chan, T.S.; Liu, R.S.; Huang, C.Y.; Yang, S.Y.; Horng, H.E.

    2006-01-01

    In this work, we study the preparation and properties of bio-compatible magnetic nanoparticles for immunoassay and DNA detection. The magnetite (Fe 3 O 4 ) nanoparticles were prepared by a chemical co-precipitation method and dextran was selected as the surfactant to suspend the nanoparticles. Suspended particles associated with avidin followed by biotin were qualitatively analyzed by enzyme-linked immunosorbent assay (ELISA) method. We found further the ethylenediamine blocked activated residual groups efficiently, hence enhancing the attachment of biotin for probing the avidin

  6. Bacteriophage T4 Nanoparticles as Materials in Sensor Applications: Variables That Influence Their Organization and Assembly on Surfaces

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2009-08-01

    Full Text Available Bacteriophage T4 nanoparticles possess characteristics that make them ideal candidates as materials for sensors, particularly as sensor probes. Their surface can be modified, either through genetic engineering or direct chemical conjugation to display functional moieties such as antibodies or other proteins to recognize a specific target. However, in order for T4 nanoparticles to be utilized as a sensor probe, it is necessary to understand and control the variables that determine their assembly and organization on a surface. The aim of this work is to discuss some of variables that we have identified as influencing the behavior of T4 nanoparticles on surfaces. The effect of pH, ionic strength, substrate characteristics, nanoparticle concentration and charge was addressed qualitatively using atomic force microscopy (AFM.

  7. Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khandadash, Raz; Machtey, Victoria [Bar Ilan University, Department of Chemistry (Israel); Shainer, Inbal [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences (Israel); Gottlieb, Hugo E. [Bar Ilan University, Department of Chemistry (Israel); Gothilf, Yoav [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience (Israel); Ebenstein, Yuval [Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry (Israel); Weiss, Aryeh [Bar Ilan University, School of Engineering (Israel); Byk, Gerardo, E-mail: gerardo.byk@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2014-12-15

    Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.

  8. Heating efficiency in magnetic nanoparticle hyperthermia

    International Nuclear Information System (INIS)

    Deatsch, Alison E.; Evans, Benjamin A.

    2014-01-01

    Magnetic nanoparticles for hyperthermic treatment of cancers have gained significant attention in recent years. In magnetic hyperthermia, three independent mechanisms result in thermal energy upon stimulation: Néel relaxation, Brownian relaxation, and hysteresis loss. The relative contribution of each is strongly dependent on size, shape, crystalline anisotropy, and degree of aggregation or agglomeration of the nanoparticles. We review the effects of each of these physical mechanisms in light of recent experimental studies and suggest routes for progress in the field. Particular attention is given to the influence of the collective behaviors of nanoparticles in suspension. A number of recent studies have probed the effect of nanoparticle concentration on heating efficiency and have reported superficially contradictory results. We contextualize these studies and show that they consistently indicate a decrease in magnetic relaxation time with increasing nanoparticle concentration, in both Brownian- and Néel-dominated regimes. This leads to a predictable effect on heating efficiency and alleviates a significant source of confusion within the field. - Highlights: • Magnetic nanoparticle hyperthermia. • Heating depends on individual properties and collective properties. • We review recent studies with respect to loss mechanisms. • Collective behavior is a key source of confusion in the field. • We contextualize recent studies to elucidate consistencies and alleviate confusion

  9. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective.

    Science.gov (United States)

    Septiadi, Dedy; Crippa, Federica; Moore, Thomas Lee; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2018-05-01

    Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Bhattacharya, Dipsikha; Sahu, Sumanta K.; Banerjee, Indranil; Das, Manasmita; Mishra, Debashish; Maiti, Tapas K.; Pramanik, Panchanan

    2011-01-01

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  11. A Single Molecule Investigation of the Photostability of Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Kulatunga, Pasad; Lagerholm, B. Christoffer

    2012-01-01

    Quantum dots (QDs) are very attractive probes for multi-color fluorescence applications. We report here however that single QDs that are subject to continuous blue excitation from a 100W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a per...... is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination....

  12. Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.W. [Department of Chemistry, NSBI, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of); Lee, K.H.; Hur, N.H. [Department of Chemistry, Sogang University, Shinsu-dong, Mapo-gu, Seoul (Korea, Republic of); Lim, H.B., E-mail: plasma@dankook.ac.kr [Department of Chemistry, NSBI, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2014-10-17

    Highlights: • Sandwich-type immunoassay using ICP-MS and nanoparticles to determine biomarkers. • CeO{sub 2}-deposited mesoporous silica nanoparticles were synthesized as a probe. • Ratiometric measurement significantly improved the calibration linearity. • Excellent detection limit was achieved by signal amplification. - Abstract: CeO{sub 2}-deposited mesoporous silica nanoparticles were synthesized as a probe to determine carcinoembryonic antigen (CEA) in serum by inductively coupled plasma-mass spectrometry (ICP-MS). The prepared mesoporous nanoparticles were modified and tagged to the target for sandwich-type immunoassay. Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) were also synthesized and immobilized with antibody to extract the target biomarker. The calibration curve of the synthesized CeO{sub 2}-deposited silica nanoparticles, which was plotted by the signal ratio of {sup 140}Ce/{sup 57}Fe measured by ICP-MS vs. the concentration of CEA, showed excellent linearity and sensitivity owing to the signal amplification and low spectral interference. Under optimal conditions, the sandwich-type analytical method was applied to determine CEA in serum spiked in the range of 0.001–5 ng mL{sup −1} and showed a limit of detection of 0.36 ng mL{sup −1}. Since the deposited CeO{sub 2} in the mesoporous silica layer can be substituted by other metal compounds, various kinds of metal-deposited nanoparticles can be prepared as probe materials for multiplex detection in bioanalysis.

  13. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging.

    Science.gov (United States)

    Ma, Zhi-Ya; Liu, Yu-Ping; Bai, Ling-Yu; An, Jie; Zhang, Lin; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di

    2015-10-07

    Magnetic fluorescent nanoparticles (NPs) have great potential applications for diagnostics, imaging and therapy. We developed a facile polyol method to synthesize multifunctional Fe3O4@CeF3:Tb@CeF3 NPs with small size (CA) to obtain carboxyl-functionalized NPs (Fe3O4@CeF3:Tb@CeF3-COOH). Folic acid (FA) as an affinity ligand was then covalently conjugated onto NPs to yield Fe3O4@CeF3:Tb@CeF3-FA NPs. They were then applied as multimodal imaging agents for simultaneous in vitro targeted fluorescence imaging and magnetic resonance imaging (MRI) of HeLa cells with overexpressed folate receptors (FR). The results indicated that these NPs had strong luminescence and enhanced T2-weighted MR contrast and would be promising candidates as multimodal probes for both fluorescence and MRI imaging.

  14. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy.

    Science.gov (United States)

    Kolodziejczyk, Agnieszka; Jakubowska, Aleksandra; Kucinska, Magdalena; Wasiak, Tomasz; Komorowski, Piotr; Makowski, Krzysztof; Walkowiak, Bogdan

    2018-05-10

    Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.hy926), when exposed to silver nanoparticles, as measured using force spectroscopy, could be effectively used as a bio-indicator of the physiological state of the cells. Silver nanoparticles were characterized with transmission electron microscopy and dynamic light scattering techniques. Tetrazolium salt reduction test was used to determine cell viability after treatment with silver nanoparticles. An elasticity of native cells was examined in the Hanks' buffer whereas fixed cells were softly fixed with formaldehyde. Additional aspect of the work is the comparative force spectroscopy utilizing AFM probes of ball-shape and conical geometries, in order to understand what changes in cell elasticity, caused by SNPs, were detectable with each probe. As a supplement to elasticity studies, cell morphology observation by atomic force microscopy and detection of silver nanoparticles inside cells using transmission electron microscopy were also performed. Cells exposed to silver nanoparticles at the highest selected concentrations (3.6 μg/mL, 16 μg/mL) are less elastic. It may be associated with the reorganization of the cellular cytoskeleton and the "strengthening" of the cell cortex caused by presence of silver nanoparticles. This observation does not depend on cell fixation. Agglomerates of silver nanoparticles were observed on the cell membrane as well as inside the cells. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Multicolor upconversion emission of dispersed ultrasmall cubic Sr2LuF7 nanocrystals synthesized by a solvothermal process

    International Nuclear Information System (INIS)

    Gong, Lunjun; Ma, Mo; Xu, Changfu; Li, Xujun; Wang, Suiping; Lin, Jianguo; Yang, Qibin

    2013-01-01

    Lanthanide (Ln 3+ ) doped Sr 2 LuF 7 (Ln 3+ =Er 3+ /Tm 3+ /Yb 3+ ) nanocrystals (NCs) were synthesized via a solvothermal process using oleate as stabilizing agent. The as-synthesized NCs with a mean diameter of sub-20 nm can be well dispersed in cyclohexane and show a pure cubic phase structure with space group Fm3 ¯ m. Following appropriate lanthanide ion doping, the NCs show intense red, green, blue and white-color upconversion emission (UC) under the excitation of a 980 nm laser. Predominant near-infrared UC can also be obtained in the Yb 3+ /Tm 3+ doped Sr 2 LuF 7 NCs. The energy transfer UC mechanisms for the fluorescent intensity were also investigated. The desirable property of the ultrasmall dispersed NCs makes them promising materials for the applications in miniaturized solid-state light sources, multicolor three-dimensional display devices and fluorescent labels for biomedical imaging. - Highlights: ► Cubic-structure (Fm3 ¯ m) Sr 2 LuF 7 nanocrystals were synthesized for the first time. ► Nanocrystals (sub-20 nm) with cubic or spherical shape can be well dispersed. ► By doping properly, the nanocrystals show intense multicolor upconversion. ► Predominant near-infrared upconversion can be obtained in Sr 2 LuF 7 nanocrystals. ► Upconversion mechanism for the fluorescent intensity is mainly energy transfer.

  16. An Ultrasensitive Electrochemiluminescence Immunoassay for Carbohydrate Antigen 19-9 in Serum Based on Antibody Labeled Fe3O4 Nanoparticles as Capture Probes and Graphene/CdTe Quantum Dot Bionanoconjugates as Signal Amplifiers

    Science.gov (United States)

    Gan, Ning; Zhou, Jing; Xiong, Ping; Li, Tianhua; Jiang, Shan; Cao, Yuting; Jiang, Qianli

    2013-01-01

    The CdTe quantum dots (QDs), graphene nanocomposite (CdTe-G) and dextran–Fe3O4 magnetic nanoparticles have been synthesized for developing an ultrasensitive electrochemiluminescence (ECL) immunoassay for Carcinoembryonic antigen 19-9 (CA 19-9) in serums. Firstly, the capture probes (CA 19-9 Ab1/Fe3O4) for enriching CA 19-9 were synthesized by immobilizing the CA 19-9’s first antibody (CA 19-9 Ab1) on magnetic nanoparticles (dextran-Fe3O4). Secondly, the signal probes (CA 19-9 Ab2/CdTe-G), which can emit an ECL signal, were formed by attaching the secondary CA 19-9 antibody (CA 19-9 Ab2) to the surface of the CdTe-G. Thirdly, the above two probes were used for conjugating with a serial of CA 19-9 concentrations. Graphene can immobilize dozens of CdTe QDs on their surface, which can emit stronger ECL intensity than CdTe QDs. Based on the amplified signal, ultrasensitive antigen detection can be realized. Under the optimal conditions, the ECL signal depended linearly on the logarithm of CA 19-9 concentration from 0.005 to 100 pg/mL, and the detection limit was 0.002 pg/mL. Finally, five samples of human serum were tested, and the results were compared with a time-resolved fluorescence assay (TRFA). The novel immunoassay provides a stable, specific and highly sensitive immunoassay protocol for tumor marker detection at very low levels, which can be applied in early diagnosis of tumor. PMID:23685872

  17. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    Science.gov (United States)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  18. Imaging carbon nanoparticles and related cytotoxicity

    International Nuclear Information System (INIS)

    Cheng, C; Porter, A E; Welland, M; Muller, K; Skepper, J N; Koziol, K; Midgley, P

    2009-01-01

    Carbon-based nanoparticles have attracted significant attention due to their unique physical, chemical, and electrical properties. Numerous studies have been published on carbon nanoparticle toxicity; however, the results remain contradictory. An ideal approach is to combine a cell viability assay with nanometer scale imaging to elucidate the detailed physiological and structural effects of cellular exposure to nanoparticles. We have developed and applied a combination of advanced microscopy techniques to image carbon nanoparticles within cells. Specifically, we have used EFTEM, HAADF-STEM, and tomography and confocal microscopy to generate 3-D images enabling determination of nanoparticle spatial distribution in a cell. With these techniques, we can differentiate between the carbon nanoparticles and the cell in both stained and unstained sections. We found carbon nanoparticles (C 60 , single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT)) within the cytoplasm, lysosomes, and nucleus of human monocyte-derived macrophage cells (HMM). C 60 aggregated along the plasma and nuclear membrane while MWNTs and SWNTs were seen penetrating the plasma and nuclear membranes. Both the Neutral Red (NR) assay and ultra-structural analysis showed an increase in cell death after exposure to MWNTs and SWNTs. SWNTs were more toxic than MWNTs. For both MWNTs and SWNTs, we correlated uptake of the nanoparticles with a significant increase in necrosis. In conclusion, high resolution imaging studies provide us with significant insight into the localised interactions between carbon nanoparticles and cells. Viability assays alone only provide a broad toxicological picture of nanoparticle effects on cells whereas the high resolution images associate the spatial distributions of the nanoparticles within the cell with increased incidence of necrosis. This combined approach will enable us to probe the mechanisms of particle uptake and subsequent chemical changes within

  19. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    Science.gov (United States)

    Nguyen, Hoai Nam; Thu Ha, Phuong; Sao Nguyen, Anh; Nguyen, Dac Tu; Doan Do, Hai; Nguyen Thi, Quy; Nhung Hoang Thi, My

    2016-06-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics.

  20. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    International Nuclear Information System (INIS)

    Nguyen, Hoai Nam; Ha, Phuong Thu; Do, Hai Doan; Nguyen, Anh Sao; Nguyen, Dac Tu; Thi, Quy Nguyen; Thi, My Nhung Hoang

    2016-01-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics. (paper)

  1. Analytical detection and biological assay of antileukemic drug using gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: rajselva_77@yahoo.co.in; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: mkalagar@yahoo.com; Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-11-12

    Gold nanoparticles are reported and evaluated as probes for the detection of anticancer drug 6-mercaptopurine (6-MP). The nature of binding between 6-MP and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The bound antileukemic drug is fluorescent and the quenching property of gold nanoparticles could be exploited for biological investigations. The 6-MP-colloidal gold complex is observed to have appreciable antibacterial and antifungal activity against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus fumigatus, and Aspergillus niger. The experimental studies suggest that gold nanoparticles have the potential to be used as effective carriers for anticancer drugs.

  2. Probing Photocatalytic Characteristics of Sb-Doped TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lingjing Luo

    2014-01-01

    Full Text Available Sb-doped TiO2 nanoparticle with varied dopant concentrations was synthesized using titanium tetrachloride (TiCl4 and antimony chloride (SbCl3 as the precursors. The properties of Sb-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, fluorescence spectrophotometer, and Uv-vis spectrophotometer. The absorption edge of TiO2 nanoparticles could be extended to visible region after doping with antimony, in contrast to the UV absorption of pure TiO2. The results showed that the photocatalytic activity of Sb-doped TiO2 nanoparticles was much more active than pure TiO2. The 0.1% Sb-doped TiO2 nanoparticles demonstrated the best photocatalytic activity which was better than that of the Degussa P25 under visible light irradiation using terephthalic acid as fluorescent probe. The effects of Sb dopant on the photocatalytic activity and the involved mechanism were extensively investigated in this work as well.

  3. Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO

    International Nuclear Information System (INIS)

    Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P.; Suzuki, R.; Ishibashi, S.

    2001-01-01

    Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects

  4. Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO

    Science.gov (United States)

    Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.

    2001-09-01

    Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.

  5. Atomic Force Microscopy Probing of Receptor–Nanoparticle Interactions for Riboflavin Receptor Targeted Gold–Dendrimer Nanocomposites

    Science.gov (United States)

    2015-01-01

    Riboflavin receptors are overexpressed in malignant cells from certain human breast and prostate cancers, and they constitute a group of potential surface markers important for cancer targeted delivery of therapeutic agents and imaging molecules. Here we report on the fabrication and atomic force microscopy (AFM) characterization of a core–shell nanocomposite consisting of a gold nanoparticle (AuNP) coated with riboflavin receptor-targeting poly(amido amine) dendrimer. We designed this nanocomposite for potential applications such as a cancer targeted imaging material based on its surface plasmon resonance properties conferred by AuNP. We employed AFM as a technique for probing the binding interaction between the nanocomposite and riboflavin binding protein (RfBP) in solution. AFM enabled precise measurement of the AuNP height distribution before (13.5 nm) and after chemisorption of riboflavin-conjugated dendrimer (AuNP–dendrimer; 20.5 nm). Binding of RfBP to the AuNP–dendrimer caused a height increase to 26.7 nm, which decreased to 22.8 nm when coincubated with riboflavin as a competitive ligand, supporting interaction of AuNP–dendrimer and its target protein. In summary, physical determination of size distribution by AFM imaging can serve as a quantitative approach to monitor and characterize the nanoscale interaction between a dendrimer-covered AuNP and target protein molecules in vitro. PMID:24571134

  6. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution

    International Nuclear Information System (INIS)

    Cai Zhaoxia; Yang Hong; Zhang Yi; Yan Xiuping

    2006-01-01

    Water-soluble L-cysteine-capped-CdS nanoparticles were prepared in aqueous solution at room temperature through a straightforward one-pot process by using safe and low-cost inorganic salts as precursors, and characterized by transmission electron microscopy, X-ray diffraction spectrometry, Fourier transform infrared spectrometry, spectrofluorometry and ultraviolet-visible spectrometry. The prepared L-cysteine-capped-CdS nanoparticles were evaluated as fluorescence probe for Hg(II) detection. The fluorescence quenching of the L-cysteine-capped-CdS nanoparticles depended on the concentration and pH of Hg(II) solution. Maximum fluorescence quenching was observed at pH 7.4 with the excitation and emission wavelengths of 360 nm and 495 nm, respectively. Quenching of its fluorescence due to Hg(II) at the 20 nmol l -1 level was unaffected by the presence of 5 x 10 6 -fold excesses of Na(I) and K(I), 5 x 10 5 -fold excesses of Mg(II), 5 x 10 4 -fold excesses of Ca(II), 500-fold excesses of Al(III), 91-fold excesses of Mn(II), 23.5-fold excesses of Pb(II), 25-fold excesses of Fe(III), 25-fold excesses of Ag(I), 8.5-fold excesses of Ni(II) and 5-fold excesses of Cu(II). Under optimal conditions, the quenched fluorescence intensity increased linearly with the concentration of Hg(II) ranging from 16 nmol l -1 to 112 nmol l -1 . The limit of detection for Hg(II) was 2.4 nmol l -1 . The developed method was applied to the detection of trace Hg(II) in aqueous solutions

  7. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications

    International Nuclear Information System (INIS)

    Li Ming; Cushing, Scott K; Lankford, Jessica; Wu, Nianqiang; Zhang Jianming; Ma Dongling; Aguilar, Zoraida P

    2012-01-01

    To meet the requirement of Raman probes (labels) for biocompatible applications, a synthetic approach has been developed to sandwich the Raman-probe (malachite green isothiocyanate, MGITC) molecules between the gold core and the silica shell in gold–SiO 2 composite nanoparticles. The gold–MGITC–SiO 2 sandwiched structure not only prevents the Raman probe from leaking out but also improves the solubility of the nanoparticles in organic solvents and in aqueous solutions even with high ionic strength. To amplify the Raman signal, three types of core, gold nanospheres, nanorods and nanostars, have been chosen as the substrates of the Raman probe. The effect of the core shape on the surface-enhanced Raman scattering (SERS) has been investigated. The colloidal nanostars showed the highest SERS enhancement factor while the nanospheres possessed the lowest SERS activity under excitation with 532 and 785 nm lasers. Three-dimensional finite-difference time domain (FDTD) simulation showed significant differences in the local electromagnetic field distributions surrounding the nanospheres, nanorods, and nanostars, which were induced by the localized surface plasmon resonance (LSPR). The electromagnetic field was enhanced remarkably around the two ends of the nanorods and around the sharp tips of the nanostars. This local electromagnetic enhancement made the dominant contribution to the SERS enhancement. Both the experiments and the simulation revealed the order nanostars > nanorods > nanospheres in terms of the enhancement factor. Finally, the biological application of the nanostar–MGITC–SiO 2 nanoparticles has been demonstrated in the monitoring of DNA hybridization. In short, the gold–MGITC–SiO 2 sandwiched nanoparticles can be used as a Raman probe that features high sensitivity, good water solubility and stability, low-background fluorescence, and the absence of photobleaching for future biological applications. (paper)

  8. Nanoparticle assembled microcapsules for application as pH and ammonia sensor

    International Nuclear Information System (INIS)

    Amali, Arlin Jose; Awwad, Nour H.; Rana, Rohit Kumar; Patra, Digambara

    2011-01-01

    Graphical abstract: HPTS encapsulated nanoparticle assembled microcapsule is exploited as dual excitations ratiometic pH sensor. This nanoparticle assembled microcapsule based fluorescence sensor can determine ammonia and offers a robust, simple and fast sensing material. Highlights: ► A novel HPTS encapsulated nanoparticle assembled microcapsule is developed. ► Its dual excitation facilitates a ratiometic pH sensor. ► It is successfully applied for the determination of ammonia. ► It provides a robust, simple and fast sensing material. - Abstract: The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8–8.0, and can be successfully applied for the determination of ammonia in the concentration range 0–1.2 mM, which is important for aquatic life and the environment.

  9. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis.

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Yang, Wenguang; Wen, Yangdong; Wang, Zhidong; Li, Wen Jung; Liu, Lianqing

    2017-05-17

    In this article, we present a novel method of spatial manipulation and assembly of nanoparticles via atomic force microscopy tip-induced dielectrophoresis (AFM-DEP). This method combines the high-accuracy positioning of AFM with the parallel manipulation of DEP. A spatially nonuniform electric field is induced by applying an alternating current (AC) voltage between the conductive AFM probe and an indium tin oxide glass substrate. The AFM probe acted as a movable DEP tweezer for nanomanipulation and assembly of nanoparticles. The mechanism of AFM-DEP was analyzed by numerical simulation. The effects of solution depth, gap distance, AC voltage, solution concentration, and duration time were experimentally studied and optimized. Arrays of 200 nm polystyrene nanoparticles were assembled into various nanostructures, including lines, ellipsoids, and arrays of dots. The sizes and shapes of the assembled structures were controllable. It was thus demonstrated that AFM-DEP is a flexible and powerful tool for nanomanipulation.

  10. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques

    NARCIS (Netherlands)

    Rayavarapu, Raja Gopal; Petersen, Wilma; Ungureanu, Constantin; Post, Janine N.; van Leeuwen, Ton G.; Manohar, Srirang

    2007-01-01

    We have synthesized and characterized gold nanoparticles (spheres and rods) with optical extinction bands within the "optical imaging window." The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging

  11. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    Science.gov (United States)

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  12. Horseradish peroxidase and antibody labeled gold nanoparticle probe for amplified immunoassay of ciguatoxin in fish samples based on capillary electrophoresis with electrochemical detection.

    Science.gov (United States)

    Zhang, Zhaoxiang; Liu, Ying; Zhang, Chaoying; Luan, Wenxiu

    2015-03-01

    This paper describes a new amplified immunoassay with horseradish peroxidase (HRP) and antibody (Ab) labeled gold nanoparticles (AuNPs) probe hyphenated to capillary electrophoresis (CE) with electrochemical (EC) detection for ultrasensitive determination of ciguatoxin CTX1B. AuNPs were conjugated with HRP and Ab, and then incubated with limited amount of CTX1B to produce immunocomplex. The immunoreactive sample was injected into capillary for CE separation and EC detection. Enhanced sensitivity was obtained by adopting the AuNPs as carriers of HRP and Ab at high HRP/Ab molar ratio. The calibration curve of CTX1B was in the range of 0.06-90 ng/mL. The detection limit was 0.045 ng/mL, which is 38-fold lower than that of HPLC-MS method for CTX1B analysis. The proposed method was successfully applied for the quantification of CTX1B in contamined fish samples by simultaneously labeling Ab and HRP on AuNPs. The amplified IA with HRP and Ab labeled AuNPs probe hyphenated to CE and EC detection provides a sensitive analytical approach for the determination of trace ciguatoxin in complex samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    Science.gov (United States)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  14. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques

    NARCIS (Netherlands)

    Rayavarapu, R.G.; Petersen, Wilhelmina; Ungureanu, C.; Post, Janine Nicole; van Leeuwen, Ton; Manohar, Srirang

    2007-01-01

    We have synthesized and characterized gold nanoparticles (spheres and rods) with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging

  15. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Swati, E-mail: swatijain.iitd@gmail.com; Chattopadhyay, Sruti, E-mail: sruticiitd@gmail.com; Jackeray, Richa; Abid, Zainul; Singh, Harpal, E-mail: harpal2000@yahoo.com [Centre for Biomedical Engineering, Indian Institute of Technology-Delhi (India)

    2016-05-15

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10{sup −19} g or 21 × 10{sup 4} bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10{sup 2} cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract.

  16. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    International Nuclear Information System (INIS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, Zainul; Singh, Harpal

    2016-01-01

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10"−"1"9 g or 21 × 10"4 bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10"2 cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract

  17. AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Gabriel T., E-mail: gtlandi@gmail.com [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Arantes, Fabiana R. [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Cornejo, Daniel R. [Instituto de Física da Universidade de São Paulo, São Paulo 05508-090 (Brazil); Bakuzis, Andris F. [Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia-GO (Brazil); Andreu, Irene; Natividad, Eva [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza 50018 (Spain)

    2017-01-01

    The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed within nano-carriers. In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper we show how AC susceptibility may be used to obtain information regarding the influence of the dipolar interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is implemented using a mean-field approximation, whereas the particle-particle aggregation is modeled using a distribution of anisotropy constants. The model is then applied to two samples studied at different concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of cubic magnetite nanoparticles embedded on polymeric nanospheres. We also introduce a simple technique to address the presence of the dipolar interaction in a given sample, based on the height of the AC susceptibility peaks for different driving frequencies. - Highlights: We discuss the importance of the dipolar interaction in magnetic nanoparticle samples. It is shown that AC susceptibility may be used to estimate the extent of this interaction. We develop a model that accounts for particle aggregation. The theoretical model is then fitted to distinct magnetite samples.

  18. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  19. Porphyrins as SERRS spectral probes of chemically functionalized Ag nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Šišková, Karolína; Vlčková, B.; Turpin, P. Y.; Thorel, A.; Grosjean, A.

    2008-01-01

    Roč. 48, č. 1 (2008), s. 44-52 ISSN 0924-2031. [International Conference on Advanced Vibrational Spectroscopy (ICAVS-4) /4./. Corfu, 10.06.2007-15.06.2007] R&D Projects: GA ČR GA203/07/0717 Institutional research plan: CEZ:AV0Z40500505 Keywords : SERRS * citrate-modified Ag nanoparticles * laser ablation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.810, year: 2008

  20. Single nickel-related defects in molecular-sized nanodiamonds for multicolor bioimaging: an ab initio study

    Science.gov (United States)

    Thiering, Gergő; Londero, Elisa; Gali, Adam

    2014-09-01

    Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamonds. Furthermore, they should exhibit a sharp and nearly temperature-independent zero-phonon line. In this study, we show by hybrid density functional theory calculations that nickel doped nanodiamonds exhibit the desired properties, thus opening the avenue to practical applications. In particular, harnessing the strong quantum confinement effect in molecule-sized nanodiamonds is very promising for achieving multicolor imaging by single nickel-related defects.

  1. Single nickel-related defects in molecular-sized nanodiamonds for multicolor bioimaging: an ab initio study.

    Science.gov (United States)

    Thiering, Gergő; Londero, Elisa; Gali, Adam

    2014-10-21

    Fluorescent nanodiamonds constitute an outstanding alternative to semiconductor quantum dots and dye molecules for in vivo biomarker applications, where the fluorescence comes from optically active point defects acting as color centers in the nanodiamonds. For practical purposes, these color centers should be photostable as a function of the laser power or the surface termination of nanodiamonds. Furthermore, they should exhibit a sharp and nearly temperature-independent zero-phonon line. In this study, we show by hybrid density functional theory calculations that nickel doped nanodiamonds exhibit the desired properties, thus opening the avenue to practical applications. In particular, harnessing the strong quantum confinement effect in molecule-sized nanodiamonds is very promising for achieving multicolor imaging by single nickel-related defects.

  2. Selective porous gates made from colloidal silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Roberto Nisticò

    2015-11-01

    Full Text Available Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS, and using polystyrene-block-poly(ethylene oxide (PS-b-PEO copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field. Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

  3. Highly sensitive detection of lead(II) ion using multicolor CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhong, W.; Zhang, C.; Gao, Q.; Li, H.

    2012-01-01

    Multicolor and water-soluble CdTe quantum dots (QDs) were synthesized with thioglycolic acid (TGA) as stabilizer. These QDs have a good size distribution, display high fluorescence quantum yield, and can be applied to the ultrasensitive detection of Pb(II) ion by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and quenching of luminescence is most effective for the smallest particles. The quenching mechanism is discussed. Fairly selective detection was accomplished by utilizing QDs with a diameter of 1. 6 nm which resulted in a detection limit of 4. 7 nmol L -1 concentration of Pb(II). The method was successfully applied to the determination of Pb(II) in spinach and citrus leaves, and the results are in good agreement with those obtained with atomic absorption spectrometry. (author)

  4. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Hui; Ma, Xiaoyuan; Liu, Ying; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Xu, Baocai

    2015-12-15

    Salmonella typhimurium and Staphylococcus aureus are most common causes of food-associated disease. A Raman based biosensor was developed for S. typhimurium and S. aureus detection simultaneously. The biosensor was based on nanoparticles enhanced Raman intensity and the specific recognition of aptamer. The Raman signal probe and the capture probe are built. Gold nanoparticles (GNPs) modified with Raman molecules (Mercaptobenzoic acid and 5,5'-Dithiobis(2-nitrobenzoic acid)) and aptamer are used as the signal probe for S. typhimurium and S. aureus, respectively. Fe3O4 magnetic gold nanoparticles (MGNPs) immobilized with both aptamer of S. typhimurium and S. aureus are used as the capture probe. When S. typhimurium and S. aureus are added in the reaction system, the capture probe will capture the target bacteria through the specific binding effect of aptamer. And then the signal probe will be connected to the bacteria also by the effect of aptamer to form the sandwich like detection structure. The Raman intensified spectrum was measured to quantify S. typhimurium and S. aureus. Under optimal conditions, the SERS intensity of MBA at 1582 cm(-1) are used to measure S. typhimurium (y=186.4762+704.8571x, R(2)=0.9921) and the SERS intensity of DNTB at 1333 cm(-1) are used to measure S. aureus (y=135.2381+211.4286x, R(2)=0.9946) in the range of 10(2)-10(7) cfu mL(-1). The LOD is 35 cfu mL(-1) for S. aureus and 15 cfu mL(-1) for S. typhimurium. This method is simple and rapid, results in high sensitivity and specificity, and can be used to detect actual samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nanoparticle based bio-bar code technology for trace analysis of aflatoxin B1 in Chinese herbs

    Directory of Open Access Journals (Sweden)

    Yu-yan Yu

    2018-04-01

    Full Text Available A novel and sensitive assay for aflatoxin B1 (AFB1 detection has been developed by using bio-bar code assay (BCA. The method that relies on polyclonal antibodies encoded with DNA modified gold nanoparticle (NP and monoclonal antibodies modified magnetic microparticle (MMP, and subsequent detection of amplified target in the form of bio-bar code using a fluorescent quantitative polymerase chain reaction (FQ-PCR detection method. First, NP probes encoded with DNA that was unique to AFB1, MMP probes with monoclonal antibodies that bind AFB1 specifically were prepared. Then, the MMP-AFB1-NP sandwich compounds were acquired, dehybridization of the oligonucleotides on the nanoparticle surface allows the determination of the presence of AFB1 by identifying the oligonucleotide sequence released from the NP through FQ-PCR detection. The bio-bar code techniques system for detecting AFB1 was established, and the sensitivity limit was about 10−8 ng/mL, comparable ELISA assays for detecting the same target, it showed that we can detect AFB1 at low attomolar levels with the bio-bar-code amplification approach. This is also the first demonstration of a bio-bar code type assay for the detection of AFB1 in Chinese herbs. Keywords: Aflatoxin B1, Bio-bar code assay, Chinese herbs, Magnetic microparticle probes, Nanoparticle probes

  6. Development of multi-color scintillator based X-ray image intensifier

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi

    2004-01-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier has been developed. An europium activated Y 2 O 2 S scintillator, emitting red, green and blue photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, it is possible for a sensitivity of the red color component to become six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range, by nearly two orders of ten. With this image intensifier, it is possible to image simultaneously complex objects containing various different X-ray transmission from paper, water or plastic to heavy metals. This high sensitivity intensifier, operated at lower X-ray exposure, causes less degradation of scintillator materials and less colorization of output screen glass, and thus helps achieve a longer lifetime. This color scintillator based image intensifier is being introduced for X-ray inspection in various fields

  7. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  8. Multi-color single particle tracking with quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva C Arnspang

    Full Text Available Quantum dots (QDs have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g. multiplex single molecule sensitivity applications such as single particle tracking (SPT. In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations, and hydrodynamic radii of eight types of commercially available water soluble QDs. In this study, we show that the fluorescence intensity of CdSe core QDs increases as the emission of the QDs shifts towards the red but that hybrid CdSe/CdTe core QDs are less bright than the furthest red-shifted CdSe QDs. We further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC-SPT with QDs is possible at an image acquisition rate of at least 25 Hz. We demonstrate the technique by measuring the lateral dynamics of a lipid, biotin-cap-DPPE, in the cellular plasma membrane of live cells using four different colors of QDs; QD565, QD605, QD655, and QD705 as labels.

  9. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  10. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    Science.gov (United States)

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  11. Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: ymiao@anl.gov [Argonne National Laboratory, Lemont, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Argonne National Laboratory, Lemont, IL 60439 (United States); Zhou, Zhangjian [University of Science and Technology Beijing, Beijing 100082 (China); Liu, Xiang; Lan, Kuan-Che [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Zhang, Guangming [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Science and Technology Beijing, Beijing 100082 (China); Miller, Michael K.; Powers, Kathy A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Stubbins, James F. [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2016-11-15

    Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high-resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y{sub 2}Ti{sub 2−x}O{sub 7−2x} stoichiometry were found to have a pyrochlore structure, whereas smaller Y{sub x}Ti{sub y}O{sub z} nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODS steels. - Highlights: • The structural and chemical characteristics of nanoparticles are revealed. • Nanoparticles' crystal structure and elemental composition are size-dependent. • Characteristics of austenitic ODS steels are compared to that of an F/M ODS steel. • Hypothesis about the formation mechanism of nanoparticles is proposed accordingly.

  12. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    Science.gov (United States)

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  13. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    Science.gov (United States)

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  14. Ratiometric colorimetric determination of coenzyme A using gold nanoparticles and a binuclear uranyl complex as optical probes

    International Nuclear Information System (INIS)

    Wu, Rurong; Liao, Lifu; Li, Shijun; Yang, Yanyan; Xiao, Xilin; Nie, Changming

    2016-01-01

    We describe a ratiometric colorimetric method for the determination of coenzyme A (CoA) by using gold nanoparticles (AuNPs) and bis-uranyl-bis-sulfosalophen (BUBSS) as optical probes. BUBSS is a binuclear uranyl complex and formed through the chelating reaction of two uranyl ions with bis-sulfosalophen. CoA is captured by the AuNPs via the thiol group and this leads to the formation of CoA-AuNPs. In a second step, BUBSS binds two CoA-AuNPs through a coordination reaction between the uranyl ions in BUBSS and the phosphate groups in CoA-AuNPs. This causes the CoA-AuNPs to aggregate and results in a color change from wine red to blue. A ratiometric colorimetric assay was established for CoA based on the ratiometric measurement of absorbance changes at 650 and 525 nm. Their ratio is linearly related to the concentration of CoA in the 0 to 1.2 μmol⋅L -1 range, with a 6 nmol⋅ L- 1 detection limit under optimal conditions. The method was successfully applied to the determination of CoA in spiked liver samples with recoveries between 99.4 and 102.6 %. (author)

  15. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Ke [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China); Xu, Liang [The University of Kansas, Department of Molecular Biosciences (United States); Wu, Daocheng, E-mail: wudaocheng@mail.xjtu.edu.cn [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China)

    2014-12-15

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications.

  16. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    International Nuclear Information System (INIS)

    Liu, Hao; Li, Ke; Xu, Liang; Wu, Daocheng

    2014-01-01

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications

  17. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles.

    Science.gov (United States)

    Cui, Zhimin; Han, Cuiping; Li, Haibing

    2011-04-07

    A versatile yet simple strategy for the fabrication of a highly selective and sensitive fenamithion probe based on Rhodamine B (RB) modified silver nanoparticles (RB-Ag NPs) was developed. The advantage of our system over classical assays is that it combined fluorescence with colorimetry which can realize the prompt on-site and real-time detection of fenamithion with high sensitivity (0.1 nM) in aqueous solution. Moreover, the detection system presents excellent anti-disturbance ability when exposed to a series of interfering ionic/pesticides mixtures and can be applied to the determination of fenamithion in real vegetables and different water samples with the limit of detection (LOD) as low as 10 nM (0.0026 mg L(-1)), which is in accord with the maximum contamination level of 0.001∼0.25 mg L(-1) for organophosphorus pesticides as defined by the U.S. Environmental Protection Agency (EPA). Advantage is taken of the fact that RB would be displaced from the surface of the Ag NPs because of the stronger coordination ability of Ag NPs with fenamithion, an amino-containing organophosphorus pesticide, accompanying the clustered Ag NPs (9 nm) dissipating into smaller individual particles (7 nm). Based on this phenomenon, a novel analyte-induced etching mechanism was proposed. © The Royal Society of Chemistry 2011

  18. Probing colloidal forces between a Si3N4 AFM tip and single nanoparticles of silica and alumina.

    Science.gov (United States)

    Drelich, J; Long, J; Xu, Z; Masliyah, J; White, C L

    2006-11-15

    The atomic force microscope (AFM) has been used to measure surface forces between silicon nitride AFM tips and individual nanoparticles deposited on substrates in 10(-4) and 10(-2) M KCl solutions. Silica nanoparticles (10 nm diameter) were deposited on an alumina substrate and alumina particles (5 to 80 nm diameter) were deposited on a mica substrate using aqueous suspensions. Ionic concentrations and pH were used to manage attractive substrate-particle electrostatic forces. The AFM tip was located on deposited nanoparticles using an operator controlled offset to achieve stepwise tip movements. Nanoparticles were found to have a negligible effect on long-range tip-substrate interactions, however, the forces between the tip and nanoparticle were detectable at small separations. Exponentially increasing short-range repulsive forces, attributed to the hydration forces, were observed for silica nanoparticles. The effective range of hydration forces was found to be 2-3 nm with the decay length of 0.8-1.3 nm. These parameters are in a good agreement with the results reported for macroscopic surfaces of silica obtained using the surface force apparatus suggesting that hydration forces for the silica nanoparticles are similar to those for flat silica surfaces. Hydration forces were not observed for either alumina substrates or alumina nanoparticles in both 10(-4) M KCl solution at pH 6.5 and 10(-2) M KCl at pH 10.2. Instead, strong attractive forces between the silicon nitride tip and the alumina (nanoparticles and substrate) were observed.

  19. Using magnetic nanoparticles to manipulate biological objects

    International Nuclear Information System (INIS)

    Liu Yi; Gao Yu; Xu Chenjie

    2013-01-01

    The use of magnetic nanoparticles (MNPs) for the manipulation of biological objects, including proteins, genes, cellular organelles, bacteria, cells, and organs, are reviewed. MNPs are popular candidates for controlling and probing biological objects with a magnetic force. In the past decade, progress in the synthesis and surface engineering of MNPs has further enhanced this popularity. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  20. Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Cichomski, M.; Tomaszewska, E.; Kosla, K.; Kozlowski, W.; Kowalczyk, P.J.; Grobelny, J.

    2011-01-01

    Self-assembled monolayer of dithiol molecules, deposited on polycrystalline Au (111), prepared at room atmosphere, was studied using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Dithiols were used as interface, which chemically bonds to the deposited gold nanoparticles through strong covalent bonds. The size and size distribution of the deposited nanoparticles were measured using dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The AFM results showed that nanoparticles are immobilized and stable during scanning procedure and do not contaminate the AFM tip. The size of monodisperse nanoparticles obtained from the DLS measurements is slightly higher than that obtained from the AFM and SEM measurements. This is due to the fact that the DLS measures the hydrodynamic radius, dependent on the protective chemical layer on nanoparticles. - Research Highlights: → Dithiols molecules create chemically bounded layers on a Au (111) surface. → Gold nanoparticles can be chemically bounded to a self-assembled monolayer. → Nanoparticles are stable during AFM probe interactions.

  1. Covalently Assembled NIR Nanoplatform for Simultaneous Fluorescence Imaging and Photodynamic Therapy of Cancer Cells

    NARCIS (Netherlands)

    Liu, Kai; Liu, Xiaomin; Zeng, Qinghui; Zhang, Youlin; Tu, Langping; Liu, Tao; Kong, Xianggui; Wang, Yinghui; Cao, Feng; Lambrechts, Saskia A. G.; Aalders, Maurice C. G.; Zhang, Hong

    2012-01-01

    A highly efficient multifunctional nanoplatform for simultaneous upconversion luminescence (UCL) Imaging and photodynamic therapy has been developed on the basis of selective energy transfer from multicolor luminescent NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs) to photosensitizers (PS).

  2. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells

    NARCIS (Netherlands)

    Liu, K.; Liu, X.; Zeng, Q.; Zhang, Y.; Tu, L.; Liu, T.; Kong, X.; Wang, Y.; Cao, F.; Lambrechts, S.A.G.; Aalders, M.C.G.; Zhang, H.

    2012-01-01

    A highly efficient multifunctional nanoplatform for simultaneous upconversion luminescence (UCL) imaging and photodynamic therapy has been developed on the basis of selective energy transfer from multicolor luminescent NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs) to photosensitizers (PS).

  3. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  4. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  6. PSMA-Targeted Nano-Conjugates as Dual-Modality (MRI/PET) Imaging Probes for the Non-Invasive Detection of Prostate Cancer

    National Research Council Canada - National Science Library

    Sun, Xiankai

    2008-01-01

    The goal of this project is to develop dual modality imaging probes for the detection of prostate cancer by doping radioisotopes to iron oxide nanoparticles, so that the sensitivity and specificity...

  7. 3D Plasmonic Ensembles of Graphene Oxide and Nobel Metal Nanoparticles with Ultrahigh SERS Activity and Sensitivity

    OpenAIRE

    Jing Lin; Xiansong Wang; Guangxia Shen; Daxiang Cui

    2016-01-01

    We describe a comparison study on 3D ensembles of graphene oxide (GO) and metal nanoparticles (silver nanoparticles (AgNPs), gold nanoparticles (GNPs), and gold nanorods (GNRs)) for surface-enhanced Raman scattering (SERS) application. For the first time, GNRs were successfully assembled on the surfaces of GO by means of electrostatic interactions without adding any surfactant. The SERS properties of GO/AgNPs, GO/GNPs, and GO/GNRs were compared using 2-mercaptopyridine (2-Mpy) as probing mole...

  8. Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review

    International Nuclear Information System (INIS)

    Su Hong-Ying; Wu Chang-Qiang; Ai Hua; Li Dan-Yang

    2015-01-01

    Recent progress of the preparation and applications of superparamagnetic iron oxide (SPIO) clusters as magnetic resonance imaging (MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles (NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery, taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs’ size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers—such as polymeric micelles, vesicles, liposomes, and layer-by-layer (LbL) capsules—have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin–spin (T 2 ) relaxivity and convenience for further functionalization. (topical review)

  9. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    Science.gov (United States)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  10. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  11. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  12. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  13. Spectroscopic studies of energy transfer in fluorene co-polymer blend nanoparticles

    Science.gov (United States)

    Gao, Jian; Grey, John K.

    2012-01-01

    Nanoparticles of poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) [PFB] and poly(9,9-dioctylfluorene-co-benzothiadiazole) [F8BT] (1:1 w/w) were studied using scanned probe and single particle spectroscopy techniques. Photoluminescence (PL spectra of ∼58 and ∼100 nm PFB/F8BT nanoparticles show efficient energy transfer from the PFB (donor) component to the F8BT (acceptor) component that is independent of particle size. We propose that nanoparticles are phase segregated into discrete PFB/F8BT nanodomains on the order of ∼20-40 nm for both particle sizes. Pressure-dependent nanoparticle PL spectra support this assignment where lineshape maxima of each component red-shift in a similar manner due to increased interchain packing within the single nanodomains.

  14. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides

    International Nuclear Information System (INIS)

    Hua Lin; Chen Jianrong; Ge Liya; Tan, Swee Ngin

    2007-01-01

    Silver nanoparticle synthesized from chemical reduction has been successfully utilized as a matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of peptides. Acting as a substrate to adsorb analytes, as well as a transmission medium for UV laser, silver nanoparticle was found to assist in the desorption/ionization of peptides with little or no induced fragmentation. The size of the nanoparticle was typically in the range of 160 ± 20 nm. One of the key advantages of silver nanoparticle for peptides analysis is its simple step for on-probe sample preparation. In addition, it also minimizes the interferences of sodium dodecyl sulfate (SDS) surfactant background signal, resulting in cleaner mass spectra and more sensitive signal, when compared to α-cyano-4-hydroxycinnamic acid (CCA) matrix

  15. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    KAUST Repository

    Tian, Qiwei

    2013-06-12

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  16. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy

    KAUST Repository

    Tian, Qiwei; Hu, Junqing; Zhu, Yihan; Zou, Rujia; Chen, Zhigang; Yang, Shiping; Li, Runwei; Su, Qianqian; Han, Yu; Liu, Xiaogang

    2013-01-01

    Photothermal nanomaterials have recently attracted significant research interest due to their potential applications in biological imaging and therapeutics. However, the development of small-sized photothermal nanomaterials with high thermal stability remains a formidable challenge. Here, we report the rational design and synthesis of ultrasmall (<10 nm) Fe3O 4@Cu2-xS core-shell nanoparticles, which offer both high photothermal stability and superparamagnetic properties. Specifically, these core-shell nanoparticles have proven effective as probes for T 2-weighted magnetic resonance imaging and infrared thermal imaging because of their strong absorption at the near-infrared region centered around 960 nm. Importantly, the photothermal effect of the nanoparticles can be precisely controlled by varying the Cu content in the core-shell structure. Furthermore, we demonstrate in vitro and in vivo photothermal ablation of cancer cells using these multifunctional nanoparticles. The results should provide improved understanding of synergistic effect resulting from the integration of magnetism with photothermal phenomenon, important for developing multimode nanoparticle probes for biomedical applications. © 2013 American Chemical Society.

  17. Surface plasmon enhancement in gold nanoparticles in the presence of an optical gain medium: an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, K; Sreekanth, K V; Sidharthan, R; Murukeshan, V M [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Xing Bengang, E-mail: mmurukeshan@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2011-10-26

    The localized surface plasmon (LSP) enhancement in a gold nanoparticle is demonstrated in this paper. The enhancement of LSP is influenced by both size and the dielectric gain medium surrounding the nanoparticles. The nanoparticle is found to induce plasmonic enhancement of varying degrees depending on its size, and it is inferred that a gold nanoparticle of size 60 nm exhibits the maximum LSP for 532 nm excitation. Singularity due to cancellation of SP loss by an infinite gain medium and LSP enhancement are studied using a pump-probe Rayleigh scattering experiment. Gold nanoparticles of average size 60 nm exhibit the lowest threshold power to observe Rayleigh scattering. Furthermore, compared with the bare nanoparticles, a 12.5 fold enhancement of LSP is observed when the nanoparticle of average size 60 nm is kept in the gain medium.

  18. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Science.gov (United States)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-03-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  19. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    International Nuclear Information System (INIS)

    Ahangar, Laleh Enayati; Mehrgardi, Masoud A.

    2011-01-01

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  20. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    Energy Technology Data Exchange (ETDEWEB)

    Ahangar, Laleh Enayati [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mehrgardi, Masoud A., E-mail: m.mehrgardi@gmail.co [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-02-15

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  1. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  2. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    Science.gov (United States)

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  3. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    Science.gov (United States)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  4. A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe.

    Science.gov (United States)

    Li, Xiaojian; Wang, Yaoguang; Shi, Li; Ma, Hongmin; Zhang, Yong; Du, Bin; Wu, Dan; Wei, Qin

    2017-10-15

    An electrochemiluminescence (ECL) biosensor was developed for detection of Concanavalin A (Con A). Chitosan/Ru(bpy) 3 2+ /silica/Fe 3 O 4 nanomaterials (CRuSi-Fe 3 O 4 ) were synthesized through W/O microemulsion route. The added Fe 3 O 4 nanoparticles can simplify the prepared process and enhance the conductivity of nanomaterials which can increase the ECL intensity of luminophor CRuSi-Fe 3 O 4 . In addition, the layered structure of CRuSi-Fe 3 O 4 can immobilize lots of Con A using glutaraldehyde as the coupling agent which can improve the sensitivity of the biosensor. Then the quenching probe glucose functionalized NiCo 2 S 4 nanoparticles-grown on carboxylic graphene (NiCo 2 S 4 -COOH-rGO@Glu) was anchored on the modified-electrode via the specific carbohydrate-Con A interaction. Here, NiCo 2 S 4 was used to quench the ECL of CRuSi-Fe 3 O 4 , graphene was used to grow NiCo 2 S 4 nanoparticles as carrier materials and glucose was served as the recognition element for bounding Con A. Therefore, a desirable quenching ECL signal was measured with S 2 O 8 2- as the coreactant of CRuSi-Fe 3 O 4 . Under the optimization of determination conditions, a linear response range for Con A from 0.5pgmL -1 to 100ngmL -1 was obtained, and the detection limit was calculated to be 0.18pgmL -1 (S/N=3). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hybrid gold nanoparticles in molecular imaging and radiotherapy

    International Nuclear Information System (INIS)

    Katti, K.V.; Kannan, R.; Katti, K.; Kattumuri, V.; Pandrapragada, R.; Rahing, V.; Cutler, C.; Boote, E.; Casteel, S.W.; Smith, C.J.; Robertson, J.D.; Jurrison, S.

    2006-01-01

    Metallic nanoparticles, because of their size, chemical and physical properties, are particularly attractive as therapeutic probes in treating cancer. Central to any clinical advances in nanoparticulate based therapy will be to produce hybrid nanoparticles that can be targeted to vascular, extracellular or cell surface receptors. Development of hybrid nanoparticles that specifically target cancer vasculature has received considerable attention. Most cancers have leaky vasculature and the defective vascular architecture, created due to the rapid vascularisation necessary to serve fast growing cancers, in combination with poor lymphatic drainage allows increased permeation and retention effects. The leaky vasculature, because of higher porosity and permeability, serve as natural high affinity targets to metallic nanoparticles. Another attractive approach toward the application of nanotechnology to nanomedicine is the utility of nanoparticles that display inherent therapeutic properties. For example radioactive gold nanoparticles present attractive prospects in therapy of cancer. The radioactive properties of Au-198 (β(max) = 0.96 MeV; t(1/2) = 2.7 d) and Au-199 (β(max) 0.46 MeV; t(1/2) = 3.14 d) make them ideal candidates for use in radiotherapeutic applications. In addition, they both have imageable gamma emissions for dosimetry and pharmacokinetic studies and Au-199 can be made carrier-free by indirect methods. Gold nanoparticles are of interest for treatment of disease as they can deliver agents directly into cells and cellular components with a higher concentration of radioactivity, e.g. higher dose of radioactivity, to cancerous tumor cells

  6. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes

    International Nuclear Information System (INIS)

    Jia Nengqin; Lian Qiong; Tian Zhong; Yin Min; Che, Shouhui; Shen Hebai; Duan Xin; Jing Lihong; Gao Mingyuan

    2010-01-01

    Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.

  7. Distribution and Biological Effects of Nanoparticles in the Reproductive System.

    Science.gov (United States)

    Liu, Ying; Li, Hongxia; Xiao, Kai

    2016-01-01

    Nanoparticles have shown great potential in biomedical applications such as imaging probes and drug delivery. However, the increasing use of nanoparticles has raised concerns about their adverse effects on human health and environment. Reproductive tissues and gametes represent highly delicate biological systems with the essential function of transmitting genetic information to the offspring, which is highly sensitive to environmental toxicants. This review aims to summarzie the penetration of physiological barriers (blood-testis barrier and placental barrier), distribution and biological effects of nanoparticles in the reproductive system, which is essential to control the beneficial effects of nanoparticles applications and to avoid their adverse effects on the reproductive system. We referred to a large number of relevant peer-reviewed research articles about the reproductive toxicity of nanoparticles. The comprehensive information was summarized into two parts: physiological barrier penetration and biological effects of nanoparticles in male or female reproductive system; distribution and metabolism of nanoparticles in the reproductive system. The representative examples were also presented in four tables. The in vitro and in vivo studies imply that some nanoparticles are able to cross the blood-testis barrier or placental barrier, and their penetration depends on the physicochemical characteristics of nanoparticles (e.g., composition, shape, particle size and surface coating). The toxicity assays indicate that nanoparticles might induce adverse physiological effects and impede fertility or embryogenesis. The barrier penetration, adverse physiological effects, distribution and metabolism are closely related to physicochemical characteristics of nanoparticles. Further systematic and mechanistic studies using well-characterized nanoparticles, relevant administration routes, and doses relevant to the expected exposure level are required to improve our

  8. Disulfide-induced self-assembled targets : A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-01-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol-modified probes, each of which specifically

  9. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, E. (Ehsan); M. Hosseini (Morteza); Davari, M.D. (Mehdi D.); Ganjali, M.R. (Mohammad R.); M.P. Peppelenbosch (Maikel); F. Rezaee (Farhad)

    2017-01-01

    textabstractA modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which

  10. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    International Nuclear Information System (INIS)

    Jiang Jingkun; Oberdoerster, Guenter; Biswas, Pratim

    2009-01-01

    Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO 2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO 2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO 2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO 2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO 2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.

  11. Optical and morphological properties of infrared emitting functionalized silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iovino, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Malvindi, M.A. [Istituto Italiano di Tecnologia, Center for Bio-Molecular Nanotechnologies@Unile, Via Barsanti, Arnesano, I-73010 Lecce (Italy); Agnello, S., E-mail: simonpietro.agnello@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Buscarino, G.; Alessi, A. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Pompa, P.P. [Istituto Italiano di Tecnologia, Center for Bio-Molecular Nanotechnologies@Unile, Via Barsanti, Arnesano, I-73010 Lecce (Italy); Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2013-11-01

    The loading process of functionalized silica nanoparticles was investigated in order to obtain nanoparticles having functional groups on their surface and Near-Infrared (NIR) emission properties. The NIR emission induced by O{sub 2} loading was studied in silica nanoparticles, produced by pyrogenic and microemulsion methods, with size ranging from 20 to 120 nm. Loading was carried out by thermal treatments in O{sub 2} atmosphere up to 400 °C and 90 bar. The effects of the thermal treatments on the NIR emission and on the structural properties were studied by luminescence and Raman techniques, whereas the morphological features were investigated by Transmission Electron Microscopy and Atomic Force Microscopy. Our data show that silica nanoparticles produced by pyrogenic technique can be loaded with O{sub 2} at lower temperature than the ones obtained by microemulsion and have a higher luminescence intensity due to the internal porosity of the latter. The treatments do not affect the nanosize of the microemulsion particles and provide NIR emitting probes of selected size. Post-processing surface functionalization of the pyrogenic nanoparticles does not affect their emission properties and provides high efficiency NIR emitters with functionalized surface. - Highlights: • Pyrogenic and microemulsion silica nanoparticles with near infrared emission. • Functionalization of nanoparticles does not change the NIR emission. • Porosity limits the emission properties of nanoparticles.

  12. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chang-Tong [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Tao, He; Jackson, Alexander W [Institute of Chemical and Engineering Sciences, Agency for Science Technology and Research (Singapore); Chandrasekharan, Prashant [Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (Singapore); Padmanabhan, Parasuraman [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Gulyás, Balázs; Halldin, Christer [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden)

    2015-05-18

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  13. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    International Nuclear Information System (INIS)

    Yang, Chang-Tong; Tao, He; Jackson, Alexander W; Chandrasekharan, Prashant; Padmanabhan, Parasuraman; Gulyás, Balázs; Halldin, Christer

    2015-01-01

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  14. Radioactive probe studies of coordination modes of heavy metal ions from natural waters to functionalized magnetic nanoparticles

    CERN Document Server

    Carvalho Soares, J; Lopes, C; Araujo, J

    We propose to use PAC, Perturbed Angular Correlations, to study the local environment of ionic species (Hg$^{2+}$, Cd$^{2+}$) coordinated on functionalized magnetic nanoparticles. Studies include the analysis of different nanoparticle sizes (30-100nm), and the monitoring of time/steps dependence of the coordination of those cations at the nanoparticle surfaces. Combined with theoretical calculations, the obtained data will support the understanding of local coordination modes, which is essential to help to improve methods of magnetically assisted separation of such hazardous contaminants from water.

  15. Quantitative ptychographic reconstruction by applying a probe constraint

    Science.gov (United States)

    Reinhardt, J.; Schroer, C. G.

    2018-04-01

    The coherent scanning technique X-ray ptychography has become a routine tool for high-resolution imaging and nanoanalysis in various fields of research such as chemistry, biology or materials science. Often the ptychographic reconstruction results are analysed in order to yield absolute quantitative values for the object transmission and illuminating probe function. In this work, we address a common ambiguity encountered in scaling the object transmission and probe intensity via the application of an additional constraint to the reconstruction algorithm. A ptychographic measurement of a model sample containing nanoparticles is used as a test data set against which to benchmark in the reconstruction results depending on the type of constraint used. Achieving quantitative absolute values for the reconstructed object transmission is essential for advanced investigation of samples that are changing over time, e.g., during in-situ experiments or in general when different data sets are compared.

  16. Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection

    International Nuclear Information System (INIS)

    Gong Peijun; Peng Zheyang; Wang Yao; Qiao Ru; Mao Weixing; Qian Haisheng; Zhang Mengya; Li Congcong; Shi Shenyuan

    2013-01-01

    In this paper, we report a fabrication of streptavidin-coated magnetic nanoparticles used for DNA detection. Initially, amino-functionalized Fe 3 O 4 nanoparticles with high saturation magnetization are prepared by a photopolymerization method using allylamine as monomer. It is followed by covalent immobilization of streptavidin onto the particle surface via a two-step reaction using glutaraldehyde as coupling agent. Streptavidin-coated magnetic nanoparticles are characterized and further tested for their ability to capture DNA target after binding biotinylated oligonucleotide probes. The results show that the products (∼27.2 nm) have a maximum biotin-binding capacity of 0.71 nmol mg −1 when the immobilization reaction is conducted with a mass ratio of streptavidin to magnetic carriers above 0.2 in phosphate buffered saline (pH 7.4) for 24 h. In addition, highly negative ζ-potential and good magnetic susceptibility of the nanocomposites make them applicable for DNA collection and detection, which is verified by the results from the preliminary application of streptavidin-coated magnetic nanoparticles in DNA detection. Therefore, the magnetic nanoparticles provide a promising approach for rapid collection and detection of gene.

  17. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects the measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.

  18. The sandwich-type electrochemiluminescence immunosensor for {alpha}-fetoprotein based on enrichment by Fe{sub 3}O{sub 4}-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hankun [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering of Ningbo University, Ningbo 315211 (China); Gan Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering of Ningbo University, Ningbo 315211 (China); Li Tianhua; Cao Yuting; Zeng Saolin [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering of Ningbo University, Ningbo 315211 (China); Zheng Lei, E-mail: nfyyzl@163.com [Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Guo Zhiyong [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering of Ningbo University, Ningbo 315211 (China)

    2012-10-09

    Highlights: Black-Right-Pointing-Pointer Sandwich immunoreaction, testing a large number of samples simultaneously. Black-Right-Pointing-Pointer The magnetic separation and enrichment by Fe{sub 3}O{sub 4}-Au magnetic nano probes. Black-Right-Pointing-Pointer The amplification of detection signal by CdS-Au composite nanoparticles labeled anti-AFP. Black-Right-Pointing-Pointer Almost no background signal, which greatly improve the sensitivity of detection. - Abstract: A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of {alpha}-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe{sub 3}O{sub 4}-Au nanoparticles, which was first employed to capture AFP antigens to form Fe{sub 3}O{sub 4}-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe{sub 3}O{sub 4}-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe{sub 3}O{sub 4}-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL{sup -1} with a detection limit of 0.2 pg mL{sup -1}. The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the

  19. Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion.

    Science.gov (United States)

    Petit, Tristan; Yuzawa, Hayato; Nagasaka, Masanari; Yamanoi, Ryoko; Osawa, Eiji; Kosugi, Nobuhiro; Aziz, Emad F

    2015-08-06

    The structure of interfacial water layers around nanoparticles dispersed in an aqueous environment may have a significant impact on their reactivity and on their interaction with biological species. Using transmission soft X-ray absorption spectroscopy in liquid, we demonstrate that the unoccupied electronic states of oxygen atoms from water molecules in aqueous colloidal dispersions of nanodiamonds have a different signature than bulk water. X-ray absorption spectroscopy can thus probe interfacial water molecules in colloidal dispersions. The impacts of nanodiamond surface chemistry and concentration on interfacial water electronic signature are discussed.

  20. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  1. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    Science.gov (United States)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  2. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition.

    Science.gov (United States)

    Holmberg, Rebecca J; Aharen, Tomoko; Murugesu, Muralee

    2012-12-20

    Magnetic nanoparticles have been developed in recent years with applications in unique and crucial areas such as biomedicine, data storage, environmental remediation, catalysis, and so forth. NaYF4 nanoparticles were synthesized and isolated with lanthanide dopant percentages, confirmed by ICP-OES measurements, of Er, Yb, Tb, Gd, and Dy that were in agreement with the targeted ratios. SEM images showed a distinct variation in particle size and shape with dopant type and percentage. HRTEM and XRD studies confirmed the particles to be crystalline, possessing both α and β phases. Magnetic measurements determined that all of the nanoparticles were paramagnetic and did not exhibit a blocking temperature from 2 to 300 K. The multifunctional properties of these nanoparticles make them suitable for many applications, such as multimodal imaging probes, up-conversion fluorescent markers, as well as MRI contrast agents.

  3. Multicolor photometry of the nearby galaxy cluster A119

    International Nuclear Information System (INIS)

    Tian Jintao; Zhou Xu; Jiang Zhaoji; Ma Jun; Wu Zhenyu; Fan Zhou; Zhang Tianmeng; Zou Hu; Yuan Qirong; Wu Jianghua

    2012-01-01

    This paper presents multicolor optical photometry of the nearby galaxy cluster Abell 119 (z = 0.0442) with the Beijing-Arizona-Taiwan-Connecticut system of 15 intermediate bands. Within the BATC field of view of 58' × 58', there are 368 galaxies with known spectroscopic redshifts, including 238 member galaxies (called sample I). Based on the spectral energy distributions of 1376 galaxies brighter than i BATC = 19.5, the photometric redshift technique and the color-magnitude relation of early-type galaxies are applied to select faint member galaxies. As a result, 117 faint galaxies were selected as new member galaxies. Combined with sample I, an enlarged sample (called sample II) of 355 member galaxies is obtained. Spatial distribution and localized velocity structure for two samples demonstrate that A119 is a dynamically complex cluster with at least three prominent substructures in the central region within 1 Mpc. A large velocity dispersion for the central clump indicates a merging along the line of sight. No significant evidence for morphology or luminosity segregations is found in either sample. With the PEGASE evolutionary synthesis model, the environmental effect on the properties of star formation is confirmed. Faint galaxies in the low-density region tend to have longer time scales of star formation, smaller mean stellar ages, and lower metallicities in their interstellar medium, which is in agreement with the context of the hierarchical cosmological scenario. (research papers)

  4. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  5. Multicolor Fluorescence Writing Based on Host-Guest Interactions and Force-Induced Fluorescence-Color Memory.

    Science.gov (United States)

    Matsunaga, Yuki; Yang, Jye-Shane

    2015-06-26

    A new strategy is reported for multicolor fluorescence writing on thin solid films with mechanical forces. This concept is illustrated by the use of a green-fluorescent pentiptycene derivative 1, which forms variably colored fluorescent exciplexes: a change from yellow to red was observed with anilines, and fluorescence quenching (a change to black) occurred in the presence of benzoquinone. Mechanical forces, such as grinding and shearing, induced a crystalline-to-amorphous phase transition in both the pristine and guest-adsorbed solids that led to a change in the fluorescence color (mechanofluorochromism) and a memory of the resulting color. Fluorescence drawings of five or more colors were created on glass or paper and could be readily erased by exposure to air and dichloromethane fumes. The structural and mechanistic aspects of the observations are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanoparticle manipulation in the near-substrate areas of low-temperature, high-density rf plasmas

    International Nuclear Information System (INIS)

    Rutkevych, P.P.; Ostrikov, K.; Xu, S.

    2005-01-01

    Manipulation of a single nanoparticle in the near-substrate areas of high-density plasmas of low-temperature glow discharges is studied. It is shown that the nanoparticles can be efficiently manipulated by the thermophoretic force controlled by external heating of the substrate stage. Particle deposition onto or repulsion from nanostructured carbon surfaces critically depends on the values of the neutral gas temperature gradient in the near-substrate areas, which is directly measured in situ in different heating regimes by originally developed temperature gradient probe. The measured values of the near-surface temperature gradient are used in the numerical model of nanoparticle dynamics in a variable-length presheath. Specific conditions enabling the nanoparticle to overcome the repulsive potential and deposit on the substrate during the discharge operation are investigated. The results are relevant to fabrication of various nanostructured films employing structural incorporation of the plasma-grown nanoparticles, in particular, to nanoparticle deposition in the plasma-enhanced chemical-vapor deposition of carbon nanostructures in hydrocarbon-based plasmas

  7. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Nikki; Greenlee, Lauren F., E-mail: lauren.greenlee@nist.gov [National Institute of Standards and Technology, Materials Reliability Division (United States)

    2012-03-15

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO{sub 4}{center_dot}7H{sub 2}O or FeCl{sub 3}), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  8. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    International Nuclear Information System (INIS)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-01-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO 4 ·7H 2 O or FeCl 3 ), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05–0.9) and borohydride-to-iron (0.5–8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  9. Direct patterning of nanoparticles and biomolecules by liquid nanodispensing.

    Science.gov (United States)

    Fabié, Laure; Agostini, Pierre; Stopel, Martijn; Blum, Christian; Lassagne, Benjamin; Subramaniam, Vinod; Ondarçuhu, Thierry

    2015-03-14

    We report on the localized deposition of nanoparticles and proteins, nano-objects commonly used in many nanodevices, by the liquid nanodispensing (NADIS) technique which consists in depositing droplets of a solution through a nanochannel drilled at the apex of an AFM tip. We demonstrate that the size of spots can be adjusted from microns down to sub-50 nm by tuning the channel diameter, independently of the chemical nature of the solute. In the case of nanoparticles, we demonstrated the ultimate limit of the method and showed that large arrays of single (or pairs of) nanoparticles can be reproducibly deposited. We further explored the possibility to deposit different visible fluorescent proteins using NADIS without loss of protein function. The intrinsic fluorescence of these proteins is characteristic of their structural integrity; the retention of fluorescence after NADIS deposition demonstrates that the proteins are intact and functional. This study demonstrates that NADIS can be a viable alternative to other scanning probe lithography techniques since it combines high resolution direct writing of nanoparticles or biomolecules with the versatility of liquid lithography techniques.

  10. Copper nanoparticle modified carbon electrode for determination of dopamine

    International Nuclear Information System (INIS)

    Oztekin, Yasemin; Tok, Mutahire; Bilici, Esra; Mikoliunaite, Lina; Yazicigil, Zafer; Ramanaviciene, Almira; Ramanavicius, Arunas

    2012-01-01

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  11. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military c...

  12. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH.

    Science.gov (United States)

    Schäferling, Michael

    2016-05-01

    Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  13. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    Science.gov (United States)

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  14. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  15. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  16. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  17. Radiation chemical route for preparation of metal nanoparticles

    International Nuclear Information System (INIS)

    Kapoor, S.; Mukherjee, T.

    2006-01-01

    Nanoparticles show properties that are neither seen in the bulk or at atomic level. The unusual properties are governed by quantum size effect. Due to this various methodologies have been endeavored to control the size of the particles. In the present work we show the use of two complimentary techniques (radiation and photo) to synthesize and control the size of the metal particles. In-situ synthesis of fine silver, thallium and cadmium particles has been carried out by gamma-irradiation and electron pulse irradiation at room temperature in the pre-organized gel of polyacrylamide or cyclodextrin cavity. The role of generation of nuclei in high concentrations in stabilization of metal nanoparticles in hydrophobic cavity is shown. Similarly the importance of entrapment of metal ions in the polymer matrix during its formation is highlighted. The work is further extended to exploit the microemulsion droplets for stabilization of Cd nanoparticles. Utility of pulse radiolysis in probing the mechanism of the formation of metal nanoparticles is also shown. Ultrafast laser pulses were employed to control the morphology of the pre-prepared Pt nanoparticles. The changes in reduction of shape and size are considered to occur through melting and vaporization of the nanoparticles. Pt nanoparticles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at ≥150 degree C giving CO 2 . Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave ∼7% CO conversion per hr. However, radiolytically prepared Pt nanoaprticles stabilized by gelatin gave ∼10% conversion per hr. The data indicates that catalytic oxidation of CO takes place

  18. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    International Nuclear Information System (INIS)

    Tuan Anh, Nguyen; Tuyen Dao, T P; Nhan Le, N T; Mau Chien, Dang; To Hoai, Nguyen; T Chi, Nguyen; Tran, T Khai

    2012-01-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid. (paper)

  19. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles.

    Science.gov (United States)

    Zhan, Qiuqiang; Liu, Haichun; Wang, Baoju; Wu, Qiusheng; Pu, Rui; Zhou, Chao; Huang, Bingru; Peng, Xingyun; Ågren, Hans; He, Sailing

    2017-10-20

    Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.

  20. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-01-01

    Highlights: • Fe 3 O 4 nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe 3 O 4 NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe 3 O 4 nanoparticles and Fe 3 O 4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl 2 ·4H 2 O and FeCl 3 ·6H 2 O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe 3 O 4 MNPs consisting of Fe 2+ and Fe 3+ ions with 543.3-mM −1 s −1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  1. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    International Nuclear Information System (INIS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Chen, Chien-Fu; Cheng, Chao-Min

    2013-01-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h. (paper)

  2. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  3. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    KAUST Repository

    Tian, Qiwei; Wang, Qian; Yao, Kexin; Teng, Baiyang; Zhang, Jizhe; Yang, Shiping; Han, Yu

    2013-01-01

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    KAUST Repository

    Tian, Qiwei

    2013-11-27

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  6. Novel magnetic heating probe for multimodal cancer treatment.

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2015-05-01

    Multifunctional materials consisting of polymers and magnetic nanoparticles (MNPs) are highly sought after in the field of biomedical engineering. These materials offer new opportunities for the development of novel cancer treatment modalities that can increase the efficacy of cancer therapy. In this paper, a novel probe for multimodal cancer treatment is proposed and analyzed. The probe is essentially a cannula with two main parts: a distal heat generating tip made of a magnetic nanocomposite and a proximal insulated shaft. A description of the concept and functional operations of the probe is presented. In an effort to assess its feasibility, the authors evaluated the ability of probe tip (made of PMMA-Fe3O4 nanocomposite) to generate heat in biological tissue using alternating magnetic field (AMF) parameters (field strength and frequency) that are acceptable for human use. Heat generation by MNPs was determined using the linear response theory. The effects of Fe3O4 volume fraction on heat generation as well as treatment time on the thermal dose were studied. The finite element method model was tested for its validity using an analytical model. Lesions were revealed to have an ellipsoidal shape and their sizes were affected by treatment time. However, their shapes remained unchanged. The comparison with the analytical model showed reasonably a good agreement to within 2%. Furthermore, the authors' numerical predictions also showed reasonable agreement with the experimental results previously reported in the literature. The authors' predictions demonstrate the feasibility of their novel probe to achieve reasonable lesion sizes, during hyperthermic or ablative heating using AMF parameters (field strength and frequency) that are acceptable for human use.

  7. Gold-coated iron nanoparticles in transparent Si{sub 3}N{sub 4} matrix thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marcos, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain); Cespedes, E. [Keele University, Institute for Science and Technology in Medicine, Guy Hilton Research Centre (United Kingdom); Jimenez-Villacorta, F. [Northeastern University, Department of Chemical Engineering (United States); Munoz-Martin, A. [Universidad Autonoma de Madrid, Centro de Microanalisis de Materiales (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain)

    2013-06-15

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si{sub 3}N{sub 4} system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si{sub 3}N{sub 4} multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  8. On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2009-01-01

    The crystallographic orientation of Au nanoparticles electrodeposited at glassy carbon (nano-Au/GC) electrodes (prepared by potential step electrolysis) is markedly influenced by the width of the potential step. The oxygen reduction reaction (ORR) and the reductive desorption of cysteine have been studied on nano-Au/GC electrodes. Furthermore, electron backscatter diffraction (EBSD) technique has been used to probe the crystallographic orientation of the electrodeposited Au nanoparticles. That is, Au nanoparticles prepared in short time (5-60 s) have been found rich in the Au(1 1 1) facet orientation and are characterized by a relatively small particle size (ca. 10-50 nm) as well as high particle density (number of particles per unit area) as revealed by SEM images. Whereas Au nanoparticles prepared by longer electrolysis time (>60 s) are found to be much enriched in the Au(1 0 0) and Au(1 1 0) facets and are characterized by a relatively large particle size (>100 nm). EBSD patterns provided definitive information about the crystal orientations mapping of Au nanoparticles prepared at various deposition times.

  9. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    Science.gov (United States)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  10. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study

    Science.gov (United States)

    Zilnyk, K. D.; Pradeep, K. G.; Choi, P.; Sandim, H. R. Z.; Raabe, D.

    2017-08-01

    Oxide-dispersion strengthened materials are important candidates for several high-temperature structural applications in advanced nuclear power plants. Most of the desirable mechanical properties presented by these materials are due to the dispersion of stable nanoparticles in the matrix. Samples of ODS-Eurofer steel were annealed for 4320 h (6 months) at 800 °C. The material was characterized using atom probe tomography in both conditions (prior and after heat treatment). The particles number density, size distribution, and chemical compositions were determined. No significant changes were observed between the two conditions indicating a high thermal stability of the Y-rich nanoparticles at 800 °C.

  11. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    International Nuclear Information System (INIS)

    Wang Zhechen; Ding Xunlei; Ma Yanping; Xue Wei; He Shenggui; Xiao Wenchang

    2008-01-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  12. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    Science.gov (United States)

    Wang, Zhe-Chen; Xiao, Wen-Chang; Ding, Xun-Lei; Ma, Yan-Ping; Xue, Wei; He, Sheng-Gui

    2008-12-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  13. Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates.

    Science.gov (United States)

    Bouduban, Marine E F; Burgos-Caminal, Andrés; Ossola, Rachele; Teuscher, Joël; Moser, Jacques-E

    2017-06-01

    Highly photoluminescent hybrid lead halide perovskite nanoparticles have recently attracted wide interest in the context of high-stake applications, such as light emitting diodes (LEDs), light emitting transistors and lasers. In addition, they constitute ideal model systems to explore energy and charge transport phenomena occurring at the boundaries of nanocrystalline grains forming thin films in high-efficiency perovskite solar cells (PSCs). Here we report a complete photophysical study of CH 3 NH 3 PbBr 3 perovskite nanoparticles suspended in chlorobenzene and highlight some important interaction properties. Colloidal suspensions under study were constituted of dispersed aggregates of quasi-2D platelets of a range of thicknesses, decorated with 3D-like spherical nanoparticles. These types of nanostructures possess different optical properties that afford a handle for probing them individually. The photophysics of the colloidal particles was studied by femtosecond pump-probe spectroscopy and time-correlated single-photon counting. We show here that a cascade of energy and exciton-mediated charge transfer occurs between nanostructures: upon photoexcitation, localized excitons within one nanostructure can either recombine on a ps timescale, yielding a short-lived emission, or form charge-transfer states (CTSs) across adjacent domains, resulting in longer-lived photoluminescence in the millisecond timescale. Furthermore, CTSs exhibit a clear signature in the form of a strong photoinduced electroabsorption evidenced in femtosecond transient absorption measurements. Charge transfer dynamics at the surface of the nanoparticles have been studied with various quenchers in solution. Efficient hole transfer to N , N , N ', N '-tetrakis(4-methoxyphenyl)benzidine (MeO-TPD) and 1,4-bis(diphenyl-amino)benzene (BDB) donors was attested by the quenching of the nanoparticles emission. The charge transfer rate was limited by the organic layer used to stabilize the nanoparticles

  14. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    Science.gov (United States)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  15. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    International Nuclear Information System (INIS)

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; Thevuthasan, S; El-Khoury, P Z; Hess, W P; Kayani, Asghar

    2013-01-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag + ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. (paper)

  16. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.

    Science.gov (United States)

    Santhosh, Poornima Budime; Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kulkarni, Mukta; Genova, Julia; Eleršič, Kristina; Iglič, Aleš; Kralj-Iglič, Veronika; Ulrih, Nataša Poklar

    2014-02-01

    The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide (γ-Fe2O3) nanoparticles, neutral and negatively charged cobalt ferrite (CoFe2O4) nanoparticles were encapsulated in neutral lipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine lipid mixture. Membrane fluidity was assessed through the anisotropy measurements using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Though the interaction of both the types of nanoparticles reduced the membrane fluidity, the results were more pronounced in the negatively charged liposomes encapsulated with positively charged iron oxide nanoparticles due to strong electrostatic attractions. X-ray photoelectron spectroscopy results also confirmed the presence of significant quantity of positively charged iron oxide nanoparticles in negatively charged liposomes. Through thermally induced shape fluctuation measurements of the giant liposomes, a considerable reduction in the bending elasticity modulus was observed for cobalt ferrite nanoparticles. The experimental results were supported by the simulation studies using modified Langevin-Poisson-Boltzmann model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics.

    Science.gov (United States)

    Wei, Yinghui; Luo, Xiaoting; Guan, Jiani; Ma, Jianping; Zhong, Yicong; Luo, Jingwen; Li, Fanzhu

    2017-11-01

    The aim of this work is to develop biodegradable nanoparticles for improved kidney bioavailability of rhein (RH). RH-loaded nanoparticles were prepared using an emulsification solvent evaporation method and fully characterized by several techniques. Kidney pharmacokinetics was assessed by implanting a microdialysis probe in rat's kidney cortex. Blood samples were simultaneously collected (via femoral artery) for assessing plasma pharmacokinetics. Optimized nanoparticles were small, with a mean particle size of 132.6 ± 5.95 nm, and homogeneously dispersed. The charge on the particles was nearly zero, the encapsulation efficiency was 62.71 ± 3.02%, and the drug loading was 1.56 ± 0.15%. In vitro release of RH from the nanoparticles showed an initial burst release followed by a sustained release. Plasma and kidney pharmacokinetics showed that encapsulation of RH into nanoparticles significantly increased its kidney bioavailability (AUC kidney /AUC plasma  = 0.586 ± 0.072), clearly indicating that nanoparticles are a promising strategy for kidney drug delivery.

  18. Electrostatically self-assembled films containing II-VI semiconductor nanoparticles: Optical and electrical properties

    International Nuclear Information System (INIS)

    Suryajaya; Nabok, A.V.; Tsargorodskaya, A.; Hassan, A.K.; Davis, F.

    2008-01-01

    CdS and ZnS semiconducting colloid nanoparticles were deposited as thin films using the technique of electrostatic self-assembly. The process of alternative deposition of Poly-allylamine Hydrochloride (PAH) and CdS (or ZnS) layers were monitored with a novel optical method of total internal reflection ellipsometry (TIRE). The fitting of TIRE spectra allowed the evaluation of the parameter (thickness, refractive index and extinction coefficients) of all consecutively deposited layers. I-V characteristics of the films obtained were studied in sandwich structures on Indium Tin Oxide (ITO) conductive electrodes using the mercury probe technique. The presence of CdS (or ZnS) nanoparticles in the polyelectrolyte films leads to a switching behaviour, which may be attributed to the resonance electron tunneling via semiconducting nanoparticles

  19. The characteristics of laser welded magnesium alloy using silver nanoparticles as insert material

    International Nuclear Information System (INIS)

    Ishak, M.; Maekawa, K.; Yamasaki, K.

    2012-01-01

    Highlights: ► Ag nanoparticles are used as insert material for welding Mg alloy with laser. ► We examine the microstructure and mechanical properties of welded Mg alloys. ► Nananoparticle promote grain refinement to the weld structure. ► Finer nanoparticle produces high weld efficiency and mechanical properties. - Abstract: This paper describes the characteristics of the laser welding of thin-sheet magnesium alloys using silver (Ag) nanoparticles as an insert material. The experiment was conducted using nanoparticles with 5 nm and 100 nm diameters that were welded with a Nd:YAG laser. The microstructure and mechanical properties of the specimens welded using inserts with different sizes of nanoparticles and without an insert material, were examined. Electron probe micro-analyzer (EPMA) analysis was conducted to confirm the existence of Ag in the welded area. The introduction of the Ag nanoparticle insert promoted large area of fine grain and broadened the acceptable range of scanning speed parameters compared to welds without an insert. Welds with 5 nm nanoparticles yielded the highest fracture load of up to 818 N while the lowest fracture load was found for weld specimens with 100 nm nanoparticles. This lower fracture load was due to larger voids and a smaller throat length, which contributed to a lower fracture load when using larger nanoparticles.

  20. Probing the impact of loading rate on the mechanical properties of viral nanoparticles

    NARCIS (Netherlands)

    Snijder, J.; Ivanovska, I.L.; Baclayon, M.; Roos, W.H.; Wuite, G.J.L.

    2012-01-01

    The effects of changes in the loading rate during the forced dissociation of single bonds have been studied for a wide variety of interactions. Less is known on the loading rate dependent behaviour of more complex systems that consist of multiple bonds. Here we focus on viral nanoparticles, in

  1. Plasma-Induced Wafer-Scale Self-Assembly of Silver Nanoparticles and Application to Biochemical Sensing

    Directory of Open Access Journals (Sweden)

    Yunbo Shi

    2015-06-01

    Full Text Available In this work, the wafer-scale silver nanoparticles fabricated by a self-assembly method was demonstrated based on a magnetron sputtering and plasma treatment process. Silver nanoparticles of different sizes and shapes were prepared, and the effects of the plasma treatment time, plasma gas composition, and power were systematically investigated to develop a method for low-cost and large-scale fabrication of silver nanoparticles. Furthermore, the surface-enhanced Raman scattering experiments: crystal violet, as the probe, was absorbed on the silver nanoparticles film of different size and density, and get the phenomena of surface-enhanced Raman scattering and surface-enhanced fluorescence. The results show that the proposed technique provides a rapid method for the fabrication of silver nanomaterial; the method is adaptable to large-scale production and is compatible with the fabrication of other materials and biosensors.

  2. The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hongling; Hou Peng; Zhang Wengxing [Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan (China); Kim, Young Keun [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Wu Junhua, E-mail: feitianshenhu@yahoo.com [Research Institute of Engineering and Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2010-08-20

    We report the one-pot nanoemulsion synthesis of FeAu magnetic-optical multifunctional nanoparticles coated by the biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO). The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the resulting nanoparticles. The structural characterization identifies the crystallographic parameter 4.072 A of the cubic phase and the morphology analysis gives the nanoparticle shape, size and size distribution, showing the high crystallinity of the FeAu nanoparticles and an average particle size of {approx} 6.5 nm. In addition there is direct confirmation of the alloying by elemental point probing of an individual nanoparticle. Following the visual demonstration of a rapid, efficient and reversible dispersion-collection process of the nanoparticles in solution, the magnetic measurement manifests a soft ferromagnetic behavior of the nanoparticles with a small coercivity of {approx} 60 Oe at room temperature. The corresponding magnetic hysteresis curves were effectively assessed by modified bi-phase Langevin equations, which were satisfactorily explained in terms of a bimodal particle size distribution. The UV-vis studies display the broadband absorption of the PEO-PPO-PEO-coated nanoparticles with the maximum surface plasmon resonance around 585 nm. The characterization and analysis, therefore, shows the unification of iron and gold into one alloy nanostructure entity covered by the biocompatible triblock copolymer thin film, preserving the optical and magnetic properties of the individual constituents. This gives the prospect of enhanced performance in applications.

  3. The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles

    International Nuclear Information System (INIS)

    Liu Hongling; Hou Peng; Zhang Wengxing; Kim, Young Keun; Wu Junhua

    2010-01-01

    We report the one-pot nanoemulsion synthesis of FeAu magnetic-optical multifunctional nanoparticles coated by the biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO). The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the resulting nanoparticles. The structural characterization identifies the crystallographic parameter 4.072 A of the cubic phase and the morphology analysis gives the nanoparticle shape, size and size distribution, showing the high crystallinity of the FeAu nanoparticles and an average particle size of ∼ 6.5 nm. In addition there is direct confirmation of the alloying by elemental point probing of an individual nanoparticle. Following the visual demonstration of a rapid, efficient and reversible dispersion-collection process of the nanoparticles in solution, the magnetic measurement manifests a soft ferromagnetic behavior of the nanoparticles with a small coercivity of ∼ 60 Oe at room temperature. The corresponding magnetic hysteresis curves were effectively assessed by modified bi-phase Langevin equations, which were satisfactorily explained in terms of a bimodal particle size distribution. The UV-vis studies display the broadband absorption of the PEO-PPO-PEO-coated nanoparticles with the maximum surface plasmon resonance around 585 nm. The characterization and analysis, therefore, shows the unification of iron and gold into one alloy nanostructure entity covered by the biocompatible triblock copolymer thin film, preserving the optical and magnetic properties of the individual constituents. This gives the prospect of enhanced performance in applications.

  4. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.

    Science.gov (United States)

    Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M

    2018-05-08

    Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.

  5. The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yasemin Budama-Kilinc

    2017-04-01

    Full Text Available Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability.  Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI, loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid (PLGA and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity. DOI: http://dx.doi.org/10.17807/orbital.v9i1.934 

  6. The effect of changes in π-conjugated terthienyl systems using thienyl and ethylenedioxybenzene functionalized thieno[3,4-b]pyrazine precursors: Multicolored low band gap polymers

    International Nuclear Information System (INIS)

    Tarkuc, Simge; Unver, Elif Kose; Udum, Yasemin Arslan; Tanyeli, Cihangir; Toppare, Levent

    2010-01-01

    New classes of thieno[3,4-b]pyrazines containing thienyl and ethylenedioxy phenyl units on electron-withdrawing moieties of π-conjugated terthienyl were synthesized. The effect of structural differences on electrochemical and optoelectronic properties of the resulting polymers was investigated. Changes in the electronic nature of the functional groups enable to tune the electrochemical properties of the π-conjugated terthienyl monomers by lowering oxidation potential from 0.62 V (DTTP) to 0.56 V (DBTP). Spectroelectrochemical analyses revealed that the neutral polymer (PDBTP) is dark green in its neutral state revealing π-π* transitions in two well-separated bands at 410 and 751 nm. The electronic band gap of polymer, defined as the onset of the π-π* transition, is found to be 1.0 eV. Using the thienyl unit instead of ethylenedioxy phenyl, a red shift in the band gap (0.95 eV) is observed. The polymer, PDTTP, exhibits multicolor electrochromism and can be switched between a dark yellow neutral state, a green intermediate state, and a brown oxidized state. PDBTP also shows a multicolored electrochromic behavior with three distinct states: dark green at the neutral state, a brown intermediate state, and a brown-violet oxidized state.

  7. Probing the active sites for CO dissociation on ruthenium nanoparticles

    DEFF Research Database (Denmark)

    Strebel, Christian Ejersbo; Murphy, Shane; Nielsen, Rasmus Munksgård

    2012-01-01

    affect the CO dissociation activity. The Ru nanoparticles were synthesized in a UHV chamber by gas-aggregation magnetron sputtering in the size range from 3 to 15 nm and the morphology was investigated in situ by scanning tunneling microscopy and ex situ by high resolution transmission electron...... microscopy. Surprisingly, it was found that larger particles were more active per surface area for CO dissociation. It is suggested that this is due to larger particles exposing a more rough surface than the smaller particles, giving rise to a higher relative amount of under-coordinated adsorption sites...... on the larger particles. The induced surface roughness is proposed to be a consequence of the growth processes in the gas-aggregation chamber....

  8. Green Chemistry Techniques for Gold Nanoparticles Synthesis

    Science.gov (United States)

    Cannavino, Sarah A.; King, Christy A.; Ferrara, Davon W.

    Gold nanoparticles (AuNPs) are often utilized in many technological and research applications ranging from the detection of tumors, molecular and biological sensors, and as nanoantennas to probe physical processes. As these applications move from the research laboratory to industrial settings, there is a need to develop efficient and sustainable synthesis techniques. Recent research has shown that several food products and beverages containing polyphenols, a common antioxidant, can be used as reducing agents in the synthesis of AuNPs in solution. In this study, we explore a variety of products to determine which allow for the most reproducible solution of nanoparticles based on the size and shapes of particles present. We analyzed the AuNPs solutions using extinction spectroscopy and atomic force microscopy. We also develop a laboratory activity to introduce introductory chemistry and physics students to AuNP synthesis techniques and analysis.

  9. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hybridization thermodynamics of DNA bound to gold nanoparticles

    International Nuclear Information System (INIS)

    Lang, Brian

    2010-01-01

    Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, Δ r G o , the enthalpy, Δ r H o , and entropy, Δ r S o , were small. The change in Δ r G o between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.

  11. Molecular Probes: An Innovative Technology for Monitoring Membrane Processes

    Science.gov (United States)

    Santoro, Sergio

    The ultimate objective of this study is to use molecular probes as an innovative and alternative technology contributing to the advance of membrane science by monitoring membrane processes in-situ, on-line and at sub-micron scale. An optical sensor for oxygen sensing was developed by the immobilization of tris (1,10-phenanthroline) ruthenium (II) (Ru(phen)3) in a dense polymeric membrane made of polystyrene (PS) or Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The emission of the probe was quenched by both the temperature and by the oxygen. Moreover, the oxygen sensitivity was affected by the oxygen permeability of the membrane. The evaluation of the oxygen concentration is prone to errors since the emission of a single probe depends on several parameters (i.e. optical path, source intensity). The correction of these artefacts was obtained by the immobilization of a second luminescent molecule non-sensitive to the oxygen, Coumarin. The potential of the luminescent ratiometric sensor for the non-invasive monitoring of oxygen in food packaging using polymeric films with different oxygen permeability was evaluated. Emphasis was given to the efficiency of the optical sensor for the on-line, in-situ and non invasive monitoring of the oxygen by comparing the experimental data with a model which takes into account the oxygen permeability of the packaging materials evaluated independently. A nano-thermometer based on silica nano-particles doped with Ru(phen)3 was developed. A systematic study shows how it is possible to control the properties of the nano-particles as well as their temperature sensitivity. The nano-thermometer was immobilized on a membrane surface by dip-coating providing information about the temperature on the membrane surface. Hydrophobic porous membrane made of Poly(vinylidene fluoride) was prepared via electrospinning and employed in a direct contact membrane distillation process. Using a designed membrane module and a membrane doped with Ru

  12. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    Science.gov (United States)

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  13. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    Science.gov (United States)

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  14. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    Science.gov (United States)

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples.

    Science.gov (United States)

    Xiang, Guoqiang; Wang, Yule; Zhang, Heng; Fan, Huanhuan; Fan, Lu; He, Lijun; Jiang, Xiuming; Zhao, Wenjie

    2018-09-15

    In this work, a simple and effective strategy for designing a ratiometric fluorescent nanosensor was described. A carbon dots (CDs) based dual-emission nanosensor for nitrite was prepared by coating the CDs on to dye-doped silica nanoparticles. Dual-emission silica nanoparticles fluorescence was quenched in sulfuric acid using potassium bromate (KBrO 3 ). The nitrite present catalyzed the KBrO 3 oxidation, resulting in ratiometric fluorescence response of the dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated. Under optimized conditions, the limit of detection was 1.0 ng mL -1 and the linear range 10-160 ng mL -1 . Furthermore, the sensor was suitable for nitrite determination in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    Science.gov (United States)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  17. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    International Nuclear Information System (INIS)

    He, Yi; Peng, Rufang

    2014-01-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl 4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (∼25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng. (paper)

  18. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    Science.gov (United States)

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  19. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting.

    Science.gov (United States)

    Pansieri, Jonathan; Plissonneau, Marie; Stransky-Heilkron, Nathalie; Dumoulin, Mireille; Heinrich-Balard, Laurence; Rivory, Pascaline; Morfin, Jean-François; Toth, Eva; Saraiva, Maria Joao; Allémann, Eric; Tillement, Olivier; Forge, Vincent; Lux, François; Marquette, Christel

    2017-07-01

    Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses. The ability of the functionalized nanoparticles to target amyloid fibrils made of β-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy. Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with K D values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles. Moreover, they allowed the detection of amyloid deposits on pathological tissues. Such functionalized nanoparticles could represent promising flexible and multimodal imaging tools for the early diagnostic of amyloid diseases, in other words, Alzheimer's disease, Type 2 diabetes mellitus and the familial amyloidotic polyneuropathy.

  20. Structural and optical investigations of oxygen defects in zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Sahai, Anshuman; Goswami, Navendu

    2015-01-01

    ZnO nanoparticles (NPs) were prepared implementing chemical precipitation method. Structural and optical characterizations of synthesized ZnO NPs were thoroughly probed applying X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), UV- Visible absorption and fluorescence (FL) spectroscopy. The XRD and TEM analyses revealed hexagonal wurtzite phase with 25-30 nm size. EDX analysis indicated oxygen (O) rich composition of nanoparticles. In accordance with EDX, XPS analysis verifies O i rich stoichiometry of prepared NPs. Furthermore, concurrence of lattice oxygen (O L ), interstitial oxygen (O i ) and oxygen vacancy (V O ) in ZnO NPs was demonstrated through XPS analysis. Size quantization of nanoparticles is evident by blue shift of UV-Visible absorption energy. The FL spectroscopic investigations ascertain the existence of several discrete and defect states and radiative transitions occurring therein. Display of visible emission from oxygen defect states and most importantly, excess of O i defects in prepared ZnO nanoparticles, was well established through FL study

  1. On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions.

    Science.gov (United States)

    Mun, Ellina A; Hannell, Claire; Rogers, Sarah E; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2014-01-14

    Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

  2. Electroanalytical Evaluation of Nanoparticles by Nano-impact Electrochemistry

    Science.gov (United States)

    Karimi, Anahita

    Applications of engineered nanoparticles in electronics, catalysis, solid oxide fuel cells, medicine and sensing continue to increase. Traditionally, nanoparticle systems are characterized by spectroscopic and microscopic techniques. These methods are cumbersome and expensive, which limit their routine use for screening purposes. Electrochemistry is a powerful, yet underutilized tool, for the detection and classification of nanoparticles. The first part of this dissertation investigates a recently developed electrochemical method -- nanoparticle collision electrochemistry -- for detection and characterization of nanoparticles. Three independent projects have been described to evaluate the use of this technique for characterizing nanoparticle based systems including: conjugation with biomolecules, interaction with environmental contaminants and fundamental investigation of conformational changes of nanoparticle capping ligands. The thesis reports the first use of nano-impact electrochemistry to quantitatively investigate bioconjugation and biomolecular recognition at conductive nanoparticles. Furthermore, we also demonstrate the potential of this method as a single step, reagentless and label-free technique for the ultra-sensitive detection of biomolecular targets. A fundamental study of biorecognition is important for the development of therapeutics and molecular diagnosis probes in the biomedical, biosensing and biotechnology fields. The second project describes the use of this method as a screening tool of particle reactivity. We study the interaction and adsorption of a toxic environmental metalloid (Arsenic) with metal oxide nanoparticles to extract mechanistic, speciation and loading information. We discuss the potential of this approach to complement or replace costly characterization techniques and enable routine study of nanoparticles and their reactivity. In the third project, we use the nano-impact method to study the pH-dependent conformational changes

  3. Effect of gamma irradiation on Korean traditional multicolored paintwork

    Science.gov (United States)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  4. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly.

    Science.gov (United States)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-28

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.

  5. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    International Nuclear Information System (INIS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Elbaum, Danek; Koper, Kamil; Stępień, Piotr; Szewczyk, Sebastian; Paterczyk, Bohdan

    2013-01-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er 3+ and Yb 3+ doped NaYF 4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF 4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics. (paper)

  6. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Szewczyk, Sebastian; Paterczyk, Bohdan; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Stępień, Piotr; Elbaum, Danek

    2013-06-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er3+ and Yb3+ doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics.

  7. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  8. Uptake of Retinoic Acid-Modified PMMA Nanoparticles in LX-2 and Liver Tissue by Raman Imaging and Intravital Microscopy.

    Science.gov (United States)

    Yildirim, Turgay; Matthäus, Christian; Press, Adrian T; Schubert, Stephanie; Bauer, Michael; Popp, Jürgen; Schubert, Ulrich S

    2017-10-01

    A primary amino-functionalized methyl methacrylate-based statistical copolymer is covalently coupled with retinoic acid (RA) and a fluorescent dye (DY590) in order to investigate the feasibility of the RA containing polymeric nanoparticles for Raman imaging studies and to study the possible selectivity of RA for hepatic stellate cells via intravital microscopy. Cationic nanoparticles are prepared by utilizing the nanoprecipitation method using modified polymers. Raman studies show that RA functional nanoparticles can be detectable in all tested cells without any need of additional label. Moreover, intravital microscopy indicates that DY590 is eliminated through the hepatobiliary route but not if used as covalently attached tracing molecule for nanoparticles. However, it is a suitable probe for sensitive detection of polymeric nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications

    Science.gov (United States)

    Imran, Mohd; Rahman Ansari, Akhalakur; Hussain Shaik, Aabid; Abdulaziz; Hussain, Shahir; Khan, Afzal; Rehaan Chandan, Mohammed

    2018-03-01

    Ferrofluids are stable dispersion of iron oxide nanoparticles in a carrier fluid which find potential applications in heat transfer. Fe3O4 nanoparticles of mean size in the range of 5–10 nm were synthesized using conventional co-precipitation method. This work deals with the synthesis of ferrofluids using mineral oil as a carrier fluid and oleic acid coated Fe3O4 nanoparticles as dispersed phase. Morphology (shape and size) and crystallinity of the synthesized nanoparticle is captured using TEM and XRD. Oleic acid coating on nanoparticle is probed using FTIR for confirming the stability of ferrofluid. Thermal properties of mineral oil based ferrofluid with varying concentration of nanoparticles are evaluated in terms of thermal conductivity. It was found that the thermal conductivity of ferrofluid increases upto 2.5% (w/v) nanoparticle loading, where a maximum enhancement of ∼51% in thermal conductivity was recorded as compared to the base fluid.

  10. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    Science.gov (United States)

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  11. Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies.

    Science.gov (United States)

    Skotadis, Evangelos; Voutyras, Konstantinos; Chatzipetrou, Marianneza; Tsekenis, Georgios; Patsiouras, Lampros; Madianos, Leonidas; Chatzandroulis, Stavros; Zergioti, Ioanna; Tsoukalas, Dimitris

    2016-07-15

    A novel nanoparticle based biosensor for the fast and simple detection of DNA hybridization events is presented. The sensor utilizes hybridized DNA's charge transport properties, combining them with metallic nanoparticle networks that act as nano-gapped electrodes. The DNA hybridization events can be detected by a significant reduction in the sensor's resistance due to the conductive bridging offered by hybridized DNA. By modifying the nanoparticle surface coverage, which can be controlled experimentally being a function of deposition time, and the structural properties of the electrodes, an optimized biosensor for the in situ detection of DNA hybridization events is ultimately fabricated. The fabricated biosensor exhibits a wide response range, covering four orders of magnitude, a limit of detection of 1nM and can detect a single base pair mismatch between probe and complementary DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. PREFACE: Quantum dots as probes in biology

    Science.gov (United States)

    Cieplak, Marek

    2013-05-01

    photosynthetic systems. The next paper, by Olejnik et al, discussed metallic QDs which enhance photosynthetic function in light-harvesting biomolecular complexes. Such hybrid structures with gold QDs are shown to exhibit a strong increase in the fluorescence quantum yield. The next two papers, by Sikora et al and Kaminska et al deal with the ZnO nanoparticles passivated by MgO. In the first of these two papers, the authors describe the behavior of ZnO/MgO when introduced to human cancer cells. In the second, the authors describe the QDs with an extra outer layer of Fe2O3 which makes the nanoparticles superparamagnetic and also capable of generation of reactive oxygen species which could be applied to form localized centers of toxicity for cancer treatment. Finally, in the last paper by Yatsunenko et al, the authors discuss several semiconducting QDs like ZnO with various rare-earth dopands. They propose a microwave-driven hydrothermal technology to make them, characterize their luminescence and demonstrate their usefulness in the early recognition of cancer tissues. Quantum dots as probes in biology contents Quantum dots as probes in biologyMarek Cieplak Luminescent nanoparticles and their applications in the life sciencesVarun K A Sreenivasan, Andrei V Zvyagin and Ewa M Goldys Ferredoxin:NADP+ oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid Krzysztof Szczepaniak, Remigiusz Worch and Joanna Grzyb Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dotsMaria Olejnik, Bartosz Krajnik, Dorota Kowalska, Guanhua Lin and Sebastian Mackowski Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgOBożena Sikora, Krzysztof Fronc, Izabela Kamińska, Kamil Koper, Piotr Stępień and Danek Elbaum Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles I Kamińska, B Sikora, K Fronc, P Dziawa, K Sobczak, R Minikayev, W

  13. Development of a kit-like radiofluorinated biomolecule leading to a controlled self-assembly of 18F nanoparticles for a smart PET imaging application.

    Science.gov (United States)

    Lin, Jianguo; Wang, Wei; Li, Ke; Huang, Hongbo; Lv, Gaochao; Peng, Ying; Luo, Shineng; Qiu, Ling

    2017-06-13

    A kit-like 18 F-fluorination method has been successfully applied to prepare an activatable probe 1 with good radiochemical yield and high specific activity. The probe has good in vitro stability and favorable cell membrane permeability. A controlled condensation reaction was initiated, and self-assembly into nanoparticles occurred when the probe was in a reducing environment. Positron emission tomography (PET) imaging of the biothiol level in living subjects was conveniently and precisely realized using this probe. The present study may provide a new platform for the development of "smart" PET tracers for tumor imaging.

  14. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  15. Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?

    Science.gov (United States)

    Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W

    2016-03-01

    A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

  16. Multi-colored immunochromatography using nanobeads for rapid and sensitive typing of seasonal influenza viruses.

    Science.gov (United States)

    Sakurai, Akira; Takayama, Katsuyoshi; Nomura, Namiko; Yamamoto, Naoki; Sakoda, Yoshihiro; Kobayashi, Yukuharu; Kida, Hiroshi; Shibasaki, Futoshi

    2014-12-01

    Immunochromatography (IC) is an antigen-detection assay that plays an important role in the rapid diagnosis of influenza viruses because of its rapid turnaround and ease of use. Despite the usefulness of IC, the limit of detection of common IC kits is as high as 10(3)-10(4) plaque forming units (pfu) per reaction, resulting in their limited sensitivities. Early diagnosis within 24h would provide more appropriate timing of treatment. In this study, a multi-colored NanoAct™ bead IC was established to detect seasonal influenza viruses. This method has approximately 10-fold higher sensitivity than that of colloidal gold or colored latex bead IC assays, and does not require specific instruments. More notably, NanoAct™ bead IC can distinguish influenza A and B viruses from clinical samples with a straightforward readout composed of colored lines. Our results will provide new strategies for the diagnosis, treatment, and a chance to survey of influenza viruses in developing countries and in the field research. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  18. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  19. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    International Nuclear Information System (INIS)

    Bolker, Asaf; Kalish, Rafi; Saguy, Cecile

    2014-01-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques. (paper)

  20. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  1. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    Science.gov (United States)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  2. A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Self-Healing Function.

    Science.gov (United States)

    Xiong, Yuan; Zhu, Minshen; Wang, Zhenguang; Schneider, Julian; Huang, He; Kershaw, Stephen V; Zhi, Chunyi; Rogach, Andrey L

    2018-05-01

    A cellulose paper is used impregnated with light-emitting CdTe nanocrystals and carbon dots, and filled with a polyurethane to fabricate uniform transparent composite films with bright photoluminescence of red (R), green (G), and blue (B) (RGB) colors. A building brick-like assembly method is introduced to realize RGB multicolor emission patterns from this composite material. By sectioning out individual pixels from monochrome-emissive composite sheets, the advantage of the self-healing properties of polyurethane is taken to arrange and weld them into a RGB patterned fabric by brief exposure to ethanol. This provides an approach to form single layer RGB light-emitting pixels, such as potentially required in the display applications, without the use of any lithographic or etching processing. The method can utilize a wide range of different solution-based kinds of light-emitting materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Membrane-based assay for iodide ions based on anti-leaching of gold nanoparticles.

    Science.gov (United States)

    Shen, Yu-Wei; Hsu, Pang-Hung; Unnikrishnan, Binesh; Li, Yu-Jia; Huang, Chih-Ching

    2014-02-26

    We report a label-free colorimetric strategy for the highly selective and sensitive detection of iodide (I(-)) ions in human urine sample, seawater and edible salt. A poly(N-vinyl-2-pyrrolidone)-stabilized Au nanoparticle (34.2-nm) was prepared to detect I(-) ions using silver (Ag(+)) and cyanide (CN(-)) ions as leaching agents in a glycine-NaOH (pH 9.0) solution. For the visual detection of the I(-) ions by naked eye, and for long time stability of the probe, Au nanoparticles (NPs) decorated mixed cellulose ester membrane (MCEM) was prepared (Au NPs/MCEM). The Au NPs-based probe (CN(-)/Ag(+)-Au NPs/MCEM) operates on the principle that Ag(+) ions form a monolyar silver atoms/ions by aurophilic/argentophilic interactions on the Au NPs and it accelerates the leaching rate of Au atoms in presence of CN(-) ions. However, when I(-) is introduced into this system, it inhibits the leaching of Au atoms because of the strong interactions between Ag/Au ions and I(-) ions. Inductively coupled plasma mass spectrometry, surface-assisted laser desorption/ionization time-of-flight mass spectrometry were used to characterize the surface properties of the Au NPs in the presence of Ag(+) and I(-). Under optimal solution conditions, the CN(-)/Ag(+)-Au NPs/MCEM probe enabled the detection of I(-) by the naked eye at nanomolar concentrations with high selectivity (at least 1000-fold over other anions). In addition, this cost-effective probe allowed the determination of I(-) ions in complex samples, such as urine, seawater, and edible salt samples.

  4. Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Valipour, Akram

    2016-01-01

    The aim of this study was to develop an electrochemical immunoassay system to detect of human chorionic gonadotropin (hCG). The immunosensor was constructed by covalent immobilization of silver nanoparticles (AgNPs) onto a nanocomposite containing graphene, chitosan (Chit) and 1-methyl-3-octylimidazolium tetrafluoroborate as ionic liquid (IL). Silver nanoparticles were used as a linker to immobilize hCG antibody onto the modified electrode. The amino groups of the antibody were covalently attached to an AgNP/g-IL-Chit nanocomposite. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to characterize the assembly process of the immunosensor. Riboflavin was used as the redox probe. Differential pulse voltammetry demonstrated that the formation of antibody–antigen complexes decreases the peak current of redox pair at the AgNP/Gr-IL-Chit/GCE (at a working potential of −0.38 V). The signal changes of riboflavin are used to detect hCG with broad response ranges from 0.0212 to 530 mIU.mL −1 and a low detection limit of 0.0066 ± 0.02 mIU.mL −1 . (author)

  5. A signal amplification assay for HSV type 1 viral DNA detection using nanoparticles and direct acoustic profiling

    Directory of Open Access Journals (Sweden)

    Hammond Richard

    2010-02-01

    Full Text Available Abstract Background Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor. Results In the study the performance of semi-homogeneous and homogeneous assay formats (suited to rapid, single step tests were evaluated utilising different diameter gold nanoparticles at varying DNA concentrations. Mathematical models were built to understand the effects of mass transport in the flow cell, the binding kinetics of targets to nanoparticles in solution, the packing geometries of targets on the nanoparticle, the packing of nanoparticles on the sensor surface and the effect of surface shear stiffness on the response of the acoustic sensor. This lead to the selection of optimised 15 nm nanoparticles that could be used with a 6 minute total assay time to achieve a limit of detection sensitivity of 5.2 × 10-12 M. Larger diameter nanoparticles gave poorer limits of detection than smaller particles. The limit of detection was three orders of magnitude lower than that observed using a hybridisation assay without nanoparticle signal amplification. Conclusions An analytical model was developed to determine optimal nanoparticle diameter, concentration and probe density, which allowed efficient and rapid optimisation of assay parameters

  6. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  7. Friction behavior of nano-textured polyimide surfaces measured by AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wu, Chunxia; Che, Hongwei; Hou, Junxian [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); Jia, Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-30

    Highlights: • Flat PI film and nano-textured PI film were prepared by spin-coating process. • The nano-textured PI surface has effectively reduced the adhesion and friction. • Friction increased with the increasing of contact area and adhesion. • The growth rate of friction decreased with the increasing of applied load. - Abstract: Flat polyimide (PI) film and silicon dioxide nanoparticle-textured PI film were prepared by means of the spin-coating technique. The adhesion and friction properties of the flat PI surface and nano-textured PI surface were investigated by a series of Atomic force microscope (AFM) colloidal probes. Experimental results revealed that the nano-textured PI surface can significantly reduce the adhesive force and friction force, compared with the flat PI surface. The main reason is that the nano-textures can reduce the contact area between the sample surface and colloidal probe. The effect of colloidal probe size on the friction behavior of the flat and nano-textured PI surfaces was evaluated. The adhesive force and friction force of nano-textured PI surface were increased with the increasing of the size of interacting pairs (AFM colloidal probe) due to the increased contact area. Moreover, the friction forces of flat and nano-textured PI surfaces were increased with applied load and sliding velocity.

  8. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  9. Precipitation of PEG/Carboxyl-Modified Gold Nanoparticles with Magnesium Pyrophosphate: A New Platform for Real-Time Monitoring of Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Qin, Ailin; Fu, Lok Tin; Wong, Jacky K F; Chau, Li Yin; Yip, Shea Ping; Lee, Thomas M H

    2017-03-29

    Gold nanoparticles have proven to be promising for decentralized nucleic acid testing by virtue of their simple visual readout and absorbance-based quantification. A major challenge toward their practical application is to achieve ultrasensitive detection without compromising simplicity. The conventional strategy of thermocycling amplification is unfavorable (because of both instrumentation and preparation of thermostable oligonucleotide-modified gold nanoparticle probes). Herein, on the basis of a previously unreported co-precipitation phenomenon between thiolated poly(ethylene glycol)/11-mercaptoundecanoic acid co-modified gold nanoparticles and magnesium pyrophosphate crystals (an isothermal DNA amplification reaction byproduct), a new ultrasensitive and simple DNA assay platform is developed. The binding mechanism underlying the co-precipitation phenomenon is found to be caused by the complexation of carboxyl and pyrophosphate with free magnesium ions. Remarkably, poly(ethylene glycol) does not hinder the binding and effectively stabilizes gold nanoparticles against magnesium ion-induced aggregation (without pyrophosphate). In fact, a similar phenomenon is observed in other poly(ethylene glycol)- and carboxyl-containing nanomaterials. When the gold nanoparticle probe is incorporated into a loop-mediated isothermal amplification reaction, it remains as a red dispersion for a negative sample (in the absence of a target DNA sequence) but appears as a red precipitate for a positive sample (in the presence of a target). This results in a first-of-its-kind gold nanoparticle-based DNA assay platform with isothermal amplification and real-time monitoring capabilities.

  10. Encapsulating Reactive Nanoparticles in Carbon Nanotubes Using Flame-Based Synthesis

    Science.gov (United States)

    2008-12-22

    Nanoparticles, Nanotubes, and Nanowires,” Corning /Rutgers Research Symposium, Corning , NY, Feb 25, 2008. Zak, A., D’Esposito, C., and Tse, S.D., Premixed...configuration, there is excellent control of pyrolysis effects. By mounting a substrate probe to a linear translation stage, CNT growth and...are largely comprised of pyrolysis vapors that have not passed through the oxidation zone. As such, soot formation processes, which compete with CNT

  11. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.

    Science.gov (United States)

    Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A

    2018-04-01

    Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    Science.gov (United States)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  13. Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Abrikossova, Natalia; Skoglund, Caroline; Ahrén, Maria; Uvdal, Kajsa; Bengtsson, Torbjörn

    2012-01-01

    We have previously shown that gadolinium oxide (Gd 2 O 3 ) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd 2 O 3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd 2 O 3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd 2 O 3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd 2 O 3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes. (paper)

  14. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    International Nuclear Information System (INIS)

    Jiang Shan; Zhang Yong; Lim, Kian Meng; Sim, Eugene K W; Ye Lei

    2009-01-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF 4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  15. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    Science.gov (United States)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  16. Synthesis and functionalization of NaGdF4:Yb,Er@NaGdF4 core–shell nanoparticles for possible application as multimodal contrast agents

    Directory of Open Access Journals (Sweden)

    Dovile Baziulyte-Paulaviciene

    2017-09-01

    Full Text Available Upconverting nanoparticles (UCNPs are promising, new imaging probes capable of serving as multimodal contrast agents. In this study, monodisperse and ultrasmall core and core–shell UCNPs were synthesized via a thermal decomposition method. Furthermore, it was shown that the epitaxial growth of a NaGdF4 optical inert layer covering the NaGdF4:Yb,Er core effectively minimizes surface quenching due to the spatial isolation of the core from the surroundings. The mean diameter of the synthesized core and core–shell nanoparticles was ≈8 and ≈16 nm, respectively. Hydrophobic UCNPs were converted into hydrophilic ones using a nonionic surfactant Tween 80. The successful coating of the UCNPs by Tween 80 has been confirmed by Fourier transform infrared (FTIR spectroscopy. Scanning electron microscopy (SEM, powder X-ray diffraction (XRD, photoluminescence (PL spectra and magnetic resonance (MR T1 relaxation measurements were used to characterize the size, crystal structure, optical and magnetic properties of the core and core–shell nanoparticles. Moreover, Tween 80-coated core–shell nanoparticles presented enhanced optical and MR signal intensity, good colloidal stability, low cytotoxicity and nonspecific internalization into two different breast cancer cell lines, which indicates that these nanoparticles could be applied as an efficient, dual-modal contrast probe for in vivo bioimaging.

  17. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation

    Science.gov (United States)

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL-1 with a detection limit of 0.98 μg mL-1. This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid.

  18. Engineered diamond nanopillars as mobile probes for high sensitivity metrology in fluid

    Science.gov (United States)

    Andrich, P.; de Las Casas, C. F.; Heremans, F. J.; Awschalom, D. D.; Aleman, B. J.; Ohno, K.; Lee, J. C.; Hu, E. L.

    2015-03-01

    The nitrogen-vacancy (NV) center`s optical addressability and exceptional spin coherence properties at room temperature, along with diamond`s biocompatibility, has put this defect at the frontier of metrology applications in biological environments. To push the spatial resolution to the nanoscale, extensive research efforts focus on using NV centers embedded in nanodiamonds (NDs). However, this approach has been hindered by degraded spin coherence properties in NDs and the lack of a platform for spatial control of the nanoparticles in fluid. In this work, we combine the use of high quality diamond membranes with a top-down patterning technique to fabricate diamond nanoparticles with engineered and highly reproducible shape, size, and NV center density. We obtain NDs, easily releasable from the substrate into a water suspension, which contain single NV centers exhibiting consistently long spin coherence times (up to 700 μs). Additionally, we demonstrate highly stable, three-dimensional optical trapping of the nanoparticles within a microfluidic circuit. This level of control enables a bulk-like DC magnetic sensitivity and gives access to dynamical decoupling techniques on contactless, miniaturized diamond probes. This work was supported by DARPA, AFOSR, and the DIAMANT program.

  19. An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2016-01-01

    We describe a method for the determination of cocaine that is based on a glassy carbon electrode modified with a nanocomposite consisting of multiwalled carbon nanotubes, an ionic liquid, and chitosan. The electrode was made cocaine-responsive by immobilizing a cocaine-specific aptamer and platinum nanoparticles (PtNPs) on the modified electrode. The use of PtNPs resulted in the acceleration of the electron transfer kinetics of the reduction of the redox probe rutin and enhances sensitivity. The sensor, best operated at a working voltage of 260 mV vs. Ag/AgCl, has a linear response to cocaine in the 1 nM to 11 μM concentration range, and the detection limit is 100 pM (at an S/N ratio of 3). We think this strategy to represent a promising platform for the sensitive and selective determination of cocaine. The sensor is adequately stable and was successfully applied to the determination of cocaine in spiked serum. (author)

  20. Epoxy based photoresist/carbon nanoparticle composites

    DEFF Research Database (Denmark)

    Lillemose, Michael; Gammelgaard, Lauge; Richter, Jacob

    2008-01-01

    We have fabricated composites of SU-8 polymer and three different types of carbon nanoparticles (NPs) using ultrasonic mixing. Structures of composite thin films have been patterned on a characterization chip with standard UV photolithography. Using a four-point bending probe, a well defined stress...... is applied to the composite thin film and we have demonstrated that the composites are piezoresistive. Stable gauge factors of 5-9 have been measured, but we have also observed piezoresistive responses with gauge factors as high as 50. As SU-8 is much softer than silicon and the gauge factor of the composite...

  1. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  2. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  3. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.

    Science.gov (United States)

    Angelakeris, M

    2017-06-01

    Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles

    International Nuclear Information System (INIS)

    Yang, H.; Zou, L.G.; Zhang, S.; Gong, M.F.; Zhang, D.; Qi, Y.Y.; Zhou, S.W.; Diao, X.W.

    2013-01-01

    Aim: To investigate the feasibility of evaluating tumour lymphangiogenesis using magnetic resonance imaging (MRI) in vivo. Materials and methods: Water-soluble polyethylene glycol (PEG)-GoldMag nanoparticles were obtained by combining GoldMag with PEG. The PEG-GoldMag nanoparticles were bound to anti-podoplanin antibody (PodAb) to construct PEG-GoldMag-pod molecular probes targeting lymphatic endothelial cells (LECs). The characteristics of the PEG-GoldMag-pod nanoparticles were tested. Using these nanoparticles, tumour lymphangiogenesis was evaluated using MRI in vitro and in vivo. Results: The average size of PEG-GoldMag nanoparticles was about 66.8 nm, and the nanoparticles were stably dispersed in the liquid phase for at least 15 days. After incubation for 24 h at different iron concentrations ranging from 5–45 μg/ml, the LECs were labelled with PEG-GoldMag-pod nanoparticles, in particular the breast cancer LECs. Dose-dependence was observed in the labelling efficiencies and MRI images of the labelled cells. In vitro, the labelling efficiencies and MRI images showed that the nanoparticles could detect podoplanin expression in LECs. In induced rat models of breast cancer, PEG-GoldMag-pod nanoparticles combined with lymphatic vessels were significantly detectable at MRI 60 min after nanoparticle administration, the signal intensity was negatively correlated with the lymphatic vessel density of breast cancer (r = −0.864, P = 0.000). Conclusions: The present study proves the feasibility of evaluating tumour lymphangiogenesis with MRI in vivo

  5. Radioactive gold nanoparticles with beta energy and auger electron cascades in nanomedicine: green nanotechnology and radiochemical approaches

    International Nuclear Information System (INIS)

    Katti, Kattesh V.

    2016-01-01

    In our continued efforts to apply Green Nanotechnology for the development of therapeutic radioactive gold nanoparticles, we have developed a new generation of 198 Au theranostic probes. Laminin receptors are overexpressed in a large number of human tumors and the high in vivo affinity of EGCG toward Laminin receptors has allowed us to develop Laminin receptor specific radioactive gold nanoparticles to achieve tumor specificity. This lecture will provide: (a) Oncological aspects of Auger electrons through nanomedicine; (b) details on the intervention of nuclear activation analysis and various radioanalytical approaches for the production of tumor specific radioactive gold-198 nanoparticles; and (c) full in vivo investigations on therapeutic properties of EGCG-198-AuNP agent in treating prostate tumors

  6. Electrospun nanofibers decorated with bio-sonochemically synthesized gold nanoparticles as an ultrasensitive probe in amalgam-based mercury (II) detection system.

    Science.gov (United States)

    Parsaee, Zohreh

    2018-06-01

    In this study, bio-ultrasound-assisted synthesized gold nanoparticles using Gracilaria canaliculata algae have been immobilized on a polymeric support and used as a glassy probe chemosensor for detection and rapid removal of Hg 2+ ions. The function of the suggested chemosensor has been explained based on gold-amalgam formation and its catalytic role on the reaction of sodium borohydride and rhodamine B (RhB) with fluorescent and colorimetric sensing function. The catalyzed reduction of RhB by the gold amalgam led to a distinguished color change from red and yellow florescence to colorless by converting the amount of Hg 2+ deposited on Au-NPs. The detection limit of the colorimetric and fluorescence assays for Hg 2+ was 2.21 nM and 1.10 nM respectively. By exposing the mentioned colorless solution to air for at least 2 h, unexpectedly it was observed that the color and fluorescence of RhB were restored. Have the benefit of the above phenomenon a recyclable and portable glass-based sensor has been provided by immobilizing the Au-NPs and RB on the glass slide using electrospinning. Moreover, the introduced combinatorial membrane has facilitated the detection and removal of Hg 2+ ions in various Hg (II)-contaminated real water samples with efficiency of up to 99%. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles.

    Science.gov (United States)

    Martin, Matthew N; Allen, Andrew J; MacCuspie, Robert I; Hackley, Vincent A

    2014-09-30

    Little is understood regarding the impact that molecular coatings have on nanoparticle dissolution kinetics and agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles from the dispersion, making quantitative time-dependent measurements of the mechanisms of nanoparticle loss particularly challenging. In this article, we present in situ ultra-small-angle X-ray scattering (USAXS) results, simultaneously quantifying dissolution, agglomeration, and stability limits of silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) protein. When the BSA corona is disrupted, we find that the loss of silver from the nanoparticle core is well matched by a second-order kinetic rate reaction, arising from the oxidative dissolution of silver. Dissolution and agglomeration are quantified, and morphological transitions throughout the process are qualified. By probing the BSA-AgNP suspension around its stability limits, we provide insight into the destabilization mechanism by which individual particles rapidly dissolve as a whole rather than undergo slow dissolution from the aqueous interface inward, once the BSA layer is breached. Because USAXS rapidly measures over the entire nanometer to micrometer size range during the dissolution process, many insights are also gained into the stabilization of NPs by protein and its ability to protect the labile metal core from the solution environment by prohibiting the diffusion of reactive species. This approach can be extended to a wide variety of coating molecules and reactive metal nanoparticle systems to carefully survey their stability limits, revealing the likely mechanisms of coating breakdown and ensuing reactions.

  8. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    International Nuclear Information System (INIS)

    Genina, Elina A; Terentyuk, G S; Khlebtsov, B N; Bashkatov, A N; Tuchin, Valerii V

    2012-01-01

    The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and the optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.

  9. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Genina, Elina A; Terentyuk, G S; Khlebtsov, B N; Bashkatov, A N; Tuchin, Valerii V

    2012-06-30

    The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and the optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.

  10. A multifunctional probe for ICP-MS determination and multimodal imaging of cancer cells.

    Science.gov (United States)

    Yang, Bin; Zhang, Yuan; Chen, Beibei; He, Man; Yin, Xiao; Wang, Han; Li, Xiaoting; Hu, Bin

    2017-10-15

    Inductively coupled plasma-mass spectrometry (ICP-MS) based bioassay and multimodal imaging have attracted increasing attention in the current development of cancer research and theranostics. Herein, a sensitive, simple, timesaving, and reliable immunoassay for cancer cells counting and dual-modal imaging was proposed by using ICP-MS detection and down-conversion fluorescence (FL)/upconversion luminescence (UCL) with the aid of a multifunctional probe for the first time. The probe consisted of a recognition unit of goat anti-mouse IgG to label the anti-EpCAM antibody attached cells, a fluorescent dye (Cy3) moiety for FL imaging as well as upconversion nanoparticles (UCNPs) tag for both ICP-MS quantification and UCL imaging of cancer cells. Under the optimized conditions, an excellent linearity and sensitivity were achieved owing to the signal amplification effect of nanoparticles and low spectral interference. Accordingly, a limit of detection (3σ) of 1×10 2 HepG2 cells and a relative standard deviation of 7.1% for seven replicate determinations of 1×10 3 HepG2 cells were obtained. This work proposed a method to employ UCNPs with highly integrated functionalities enabling us not only to count but also to see the cancer cells, opening a promising avenue for biological research and clinical theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP.

    Science.gov (United States)

    Zhou, Hankun; Gan, Ning; Li, Tianhua; Cao, Yuting; Zeng, Saolin; Zheng, Lei; Guo, Zhiyong

    2012-10-09

    A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe(3)O(4)-Au nanoparticles, which was first employed to capture AFP antigens to form Fe(3)O(4)-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe(3)O(4)-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe(3)O(4)-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL(-1) with a detection limit of 0.2 pg mL(-1). The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Fe2O3-Au hybrid nanoparticles for sensing applications via SERS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States)

    2017-07-27

    Multifunctional iron oxide-gold hybrid nanostructures have been produced via solution chemistries and investigated for analyte detection. Gold nanoparticles of various shapes have been used for probing surface-enhanced Raman scattering (SERS) effects as they display unique optical properties in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies. The “hot spots” were created by using a seeded reaction to increase the gold loading on the iron oxide support by 43% by weight. SERS Nanomaterials were evaluated for their ability to promote surface-enhanced Raman scattering of a model analyte, 4-mercaptophenol. The data shows an enhancement effect of the model analyte on gold decorated iron oxide nanoparticles.

  13. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  14. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  15. ANALYSIS OF THE ELECTROPHYSICAL AND PHOTOELECTRIC PROPERTIES OF NANOCOMPOSITE POLYMERS BY THE MODIFIED KELVIN PROBE

    Directory of Open Access Journals (Sweden)

    K. U. Pantsialeyeu

    2017-01-01

    Full Text Available At present for analysis of the homogeneity of materials properties are becoming widely used various modifications of a scanning Kelvin probe. These methods allow mapping the spatial distribution of the electrostatic potential. Analysis of the electropotential profile is not sufficient to describe any specific physical parameters of the polymer nanocomposites. Therefore, we use an external energy impact, such as light. Purpose of paper is the modification of the Kelvin scanning probe and the conduct of experimental studies of the spatial distribution and response of the electrostatic potential of the actual polymer nanocomposites to the optical probing.Carried out the investigations on experimental Low density polyethylene composites. Carbon nanomaterials and nanoparticles of silicon dioxide or aluminum as fillers are used. As a result, maps of the spatial distribution of the electrostatic potential relative values and the surface photovoltage. Statistical analysis of the electrophysical and photoelectric properties homogeneity, depending on the component composition of the composites carried out. In addition, with reference to matrix polymers, the Kelvin scanning probe, in combination with the optical probing, made it possible to detect a piezoelectric effect. The latter, can used as a basis for the development of new methods for studying the mechanical properties of matrix polymers.

  16. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

    Directory of Open Access Journals (Sweden)

    Hauptmann Giselbert

    2011-04-01

    Full Text Available Abstract Background In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. Results We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA. Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts

  17. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  18. A hydrophobic organelle probe based on aggregation-induced emission: Nanosuspension preparation and direct use for endoplasmic reticulum imaging in living cells

    Science.gov (United States)

    Zheng, Sichao; Huang, Cuihong; Zhao, Xuyan; Zhang, Yong; Liu, Shuwen; Zhu, Qiuhua

    2018-01-01

    Organic fluorophores have a wide range of biological uses and are usually needed to be prepared as water-soluble compounds or nanoparticles for applications in aqueous biosystems owing to their hydrophobic properties, which often is a complex, time-consuming and high-cost process. Here, the nanoparticle preparation of hydrophobic fluorophores and their application in cell imaging have been investigated. It was found: a) fetal bovine serum (FBS) shows an excellent dispersion effect on hydrophobic small-molecule organic compounds; b) a hydrophobic C6-unsubstituted tetrahydropyrimidine (Me-THP-Naph) can be prepared as nanosuspensions utilizing cell culture medium with 10% FBS and directly be used as a specific real-time imaging probe for the endoplasmic reticulum (ER), a dynamic organelle playing a crucial role in many cellular processes. Compared with existing ER-targeted organic fluorescent probes, Me-THP-Naph, a product of an efficient five-component reaction that we developed, has unconventional aggregation-induced emission characteristics and shows advantages of low cost, long-term staining, good photostability, high signal-to-noise ratio and excellent biocompatibility, which make it a potential specific probe for real-time ER imaging. More importantly, this work affords a simple strategy for direct application of hydrophobic organic compounds in aqueous biological systems.

  19. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  20. Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Kim, Seoung Ryul; Choi, Mina; Lee, Jeong Yeon; Han, Beom Seok; Park, Sue Nie; Yu, Mi Kyung; Jon, Sangyong; Jeong, Jayoung

    2009-01-01

    Recent advances in the development of nanotechnology and devices now make it possible to accurately deliver drugs or genes to the lung. Magnetic nanoparticles can be used as contrast agents, thermal therapy for cancer, and be made to concentrate to target sites through an external magnetic field. However, these advantages may also become problematic when taking into account safety and toxicological factors. This study demonstrated the pulmonary toxicity and kinetic profile of anti-biofouling polymer coated, Cy5.5-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) by optical imaging. Negatively charged, 36 nm-sized, Cy5.5-conjugated TCL-SPION was prepared for optical imaging probe. Cy5.5-conjugated TCL-SPION was intratracheally instilled into the lung by a non-surgical method. Cy5.5-conjugated TCL-SPION slightly induced pulmonary inflammation. The instilled nanoparticles were distributed mainly in the lung and excreted in the urine via glomerular filtration. Urinary excretion was peaked at 3 h after instillation. No toxicity was found under the concentration of 1.8 mg/kg and the half-lives of nanoparticles in the lung and urine were estimated to be about 14.4 ± 0.54 h and 24.7 ± 1.02 h, respectively. Although further studies are required, our results showed that Cy5.5-conjugated TCL-SPION can be a good candidate for use in pulmonary delivery vehicles and diagnostic probes.

  1. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application

    International Nuclear Information System (INIS)

    Zhang Jingdong; Oyama, Munetaka

    2005-01-01

    This work describes an improved seed-mediated growth approach for the direct attachment and growth of mono-dispersed gold nanoparticles on nanostructured indium tin oxide (ITO) surfaces. It was demonstrated that, when the seeding procedure of our previously reported seed-mediated growth process on an ITO surface was modified, the density of gold nanospheres directly grown on the surface could be highly improved, while the emergence of nanorods was restrained. By field emission scanning electron microscopy (FE-SEM) and cyclic voltammetry, the growth of gold nanoparticles with increasing growth time on the defect sites of nanostructured ITO surface was monitored. Using a [Fe(China) 6 ] 3- /[Fe(China) 6 ] 4- redox probe, the increasingly facile heterogeneous electron transfer kinetics resulting from the deposition and growth of gold nanoparticle arrays was observed. The as-prepared gold nanoparticle arrays exhibited high catalytic activity toward the electrooxidation of nitric oxide, which could provide electroanalytical application for nitric oxide sensing

  2. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    Science.gov (United States)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  3. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.

    Science.gov (United States)

    Liu, Qianlang; March, Katia; Crozier, Peter A

    2017-07-01

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO 2 anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO 2 showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1eV above the MgO valence band. At the surfaces of TiO 2 nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Probing suitable therapeutic nanoparticles for controlled drug delivery and diagnostic reproductive health biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Rakhi [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); National Institute of Animal Welfare, Ministry of Environment, Forest and Climate Change, Faridabad, Haryana 121 004 (India); Jha, Pradeep K., E-mail: jha.rk.pk@gmail.com [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Gupta, Santosh; Bhuvaneshwaran, S.P. [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Hossain, Maidul [Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102 (India); Guha, Sujoy K. [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India)

    2016-04-01

    Nanomaterial mediated drug delivery represents a highly promising technique while its selectivity for reproductive healthcare application still remains a challenge. Since the delicate structure and functional role of reproductive tissue and gametes require the use of biocompatible nanomedicine/devices that do not affect fertility or the development of resulting offspring, this paper reports an intercomparative study of human spermatozoa interaction with three different nanoparticles (NPs) namely; iron oxide (Fe{sub 3}O{sub 4)}, multiwalled carbon nanotubes (MWCNT) and graphene platelet nanopowder (GPN) to probe their suitability for drug delivery carrier and biomarker development purposes. ATR–FTIR results revealed that the sperm cell interaction with GPN had maximum amide I absorption for cell proteins and C=O stretching of the peptide backbone at the band around 1657 cm{sup −1} followed by iron oxide NPs whereas MWCNT had no absorption. These results showed that GPN followed by iron oxide NPs got maximally entrapped by cell membrane protein with maximum disruption but MWCNT exhibited less entrapment but significantly higher internalization which was further validated by morphological analysis of these cell NP interaction by SEM, HRTEM and fluorescence microscopy. The uptake kinetics and penetration mechanism of NPs were examined with isothermal titration calorimetry (ITC). Interestingly, ITC results confirmed ATR–FTIR and morphological observations that the binding of GPN and Fe{sub 3}O{sub 4} NPs with cell was exothermic and their bindings were favored by both negative enthalpy and positive entropy whereas in the case of MWCNT it was endothermic supported by unfavorable positive enthalpy and a favorable entropy change. Hence, it was evident that MWCNT had better internalization efficiency without disrupting the sperm lipid membrane compared to Fe{sub 3}O{sub 4} and GPN NPs. Therefore, this work proposes CNT as promising means. - Highlights: • Biophysical

  5. Hematite Nanoparticles-Modified Electrode Based Electrochemical Sensing Platform for Dopamine

    Directory of Open Access Journals (Sweden)

    Khosro Zangeneh Kamali

    2014-01-01

    Full Text Available Hematite (α-Fe2O3 nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN6]3−/4− redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8 by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0–2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0–35 μM with LoD of 236 nM for DA.

  6. Hematite Nanoparticles-Modified Electrode Based Electrochemical Sensing Platform for Dopamine

    Science.gov (United States)

    Zangeneh Kamali, Khosro; Alagarsamy, Pandikumar; Huang, Nay Ming; Ong, Boon Hoong; Lim, Hong Ngee

    2014-01-01

    Hematite (α-Fe2O3) nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallinity. The electrochemical behavior of a GC/α-Fe2O3 electrode was studied using CV and EIS techniques with an electrochemical probe, [Fe(CN)6]3−/4− redox couple. The electrocatalytic activity was investigated toward DA oxidation in a phosphate buffer solution (pH 6.8) by varying different experimental parameters. The chronoamperometric study showed a linear response in the range of 0–2 μM with LoD of 1.6 μM for DA. Square wave voltammetry showed a linear response in the range of 0–35 μM with LoD of 236 nM for DA. PMID:25136664

  7. Europium polyoxometalates encapsulated in silica nanoparticles - characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Cristina S.; Granadeiro, Carlos M.; Cunha-Silva, Luis; Eaton, Peter; Balula, Salete S.; Pereira, Eulalia [REQUIMTE/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto (Portugal); Ananias, Duarte [CICECO, Departamento de Quimica, Universidade de Aveiro (Portugal); Gago, Sandra [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Feio, Gabriel [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Carvalho, Patricia A. [ICEMS/Departamento de Bioengenharia, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-06-15

    The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW{sub 11}){sub x} (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, {sup 31}P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW{sub 11}){sub x} rate at SiO{sub 2} nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Deflection-voltage curve modelling in atomic force microscopy and its use in DC electrostatic manipulation of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Toset, J; Casuso, I; Samitier, J; Gomila, G [Departament d' Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-CREBEC, Parc CientIfic de Barcelona, C/Josep Samitier 1-5, 08028 Barcelona (Spain)

    2007-01-10

    A model of deflection-voltage curves in atomic force microscopy and its use in DC electrostatic nanomanipulation experiments are presented. The proposed model predicts the deflection of the atomic force microscope probe as a function of the applied probe-substrate voltage, as well as the distance and voltage at which the tip collapses irreversibly onto the substrate due to electrostatic forces. The model is verified experimentally and its use in DC electrostatic manipulation of 25 nm radius gold nanoparticles is demonstrated.

  9. Study of ferritin nanoparticles

    International Nuclear Information System (INIS)

    Lancok, A.; Kohout, J.; Volfova, L.; Miglierini, M.

    2015-01-01

    Moessbauer spectrometry confirms the presence of hematite, ferrihydrite and maghemite/magnetite in ferritin derived from human spleen tissues. The minerals are present in a form of small (about 4-5 nm in size) grains with highly disordered structure. Consequently, at room temperature all agglomerates of ferritin nanoparticles show non-magnetic behaviour. Magnetic states are revealed at low enough temperatures below the so-called blocking temperature. Employing Moessbauer effect measurements, the latter was determined to be of 16 K for the human spleen. Structural features of these tissues were studied by TEM technique. Employing 57 Fe nuclei as local probes both structural and magnetic features of the biological materials were investigated by Moessbauer spectrometry. It was possible to identify iron atoms and their neighbours. (authors)

  10. Temperature-controlled transfer and self-wiring for multi-color light-emitting diode arrays

    International Nuclear Information System (INIS)

    Onoe, Hiroaki; Nakai, Akihito; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2009-01-01

    We propose an integration method for arranging light-emitting diode (LED) bare chips on a flexible substrate for multi-color inorganic LED displays. The LED bare chips (240 µm × 240 µm × 75 µm), which were diced on an adhesive sheet by the manufacturer, were transferred to a flexible polyimide substrate by our temperature-controlled transfer (TCT) and self-wiring (SW) processes. In these processes, low-melting point solder (LMPS) and poly-(ethylene glycol) (PEG) worked as adhesive layers for the LED chips during the TCT processes, and the adhesion force of the LMPS and PEG layers was controlled by changing the temperature to melt and solidify the layers. After the TCT processes, electrical connection between the transferred LED chips and the flexible substrate was automatically established via the SW process, by using the surface tension of the melted LMPS. This TCT/SW method enabled us to (i) handle arrays of commercially available bare chips, (ii) arrange multiple types of chips on the circuit substrate by simply repeating the TCT processes and (iii) establish electrical connection between the chips and the substrate automatically. Applying this transfer printing and wiring method, we experimentally demonstrated a 5-by-5 flexible LED array and a two-color (blue and green) LED array

  11. Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Lijun; Min, Yue; Wang, Zhigang; Riggio, Cristina; Calatayud, M Pilar; Pinkernelle, Josephine; Raffa, Vittoria; Goya, Gerardo F; Keilhoff, Gerburg; Cuschieri, Alfred

    2015-03-01

    The magnetic signals from magnetite nanoparticle-labeled PC12 cells were assessed by magnetic force microscopy by deploying a localized external magnetic field to magnetize the nanoparticles and the magnetic tip simultaneously so that the interaction between the tip and PC12 cell-associated Fe3O4 nanoparticles could be detected at lift heights (the distance between the tip and the sample) larger than 100 nm. The use of large lift heights during the raster scanning of the probe eliminates the non-magnetic interference from the complex and rugged cell surface and yet maintains the sufficient sensitivity for magnetic detection. The magnetic signals of the cell-bound nanoparticles were semi-quantified by analyzing cell surface roughness upon three-dimensional reconstruction generated by the phase shift of the cantilever oscillation. The obtained data can be used for the evaluation of the overall cellular magnetization as well as the maximum magnetic forces from magnetic nanoparticle-labeled cells which is crucial for the biomedical application of these nanomaterials.

  12. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    Science.gov (United States)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  13. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  14. Polyol-synthesized Zn{sub 0.9}Mn{sub 0.1}S nanoparticles as potential luminescent and magnetic bimodal imaging probes: synthesis, characterization, and toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Gaceur, M.; Giraud, M., E-mail: marion.giraud@univ-paris-diderot.fr; Hemadi, M.; Nowak, S. [ITODYS, Universite Paris Diderot, Sorbonne Paris Cite (France); Menguy, N. [IMPMC, Universite Pierre et Marie Curie (France); Quisefit, J. P. [LISA, Universite Paris Diderot, Universite Paris Est Creteil (France); David, K. [Universite de Cergy-Pontoise, ERRMECe EA1391, Institut des Materiaux (France); Jahanbin, T.; Benderbous, S. [INSERM U-825, Pavillon Baudot (France); Boissiere, M. [Universite de Cergy-Pontoise, ERRMECe EA1391, Institut des Materiaux (France); Ammar, S., E-mail: ammarmer@univ-paris-diderot.fr [ITODYS, Universite Paris Diderot, Sorbonne Paris Cite (France)

    2012-07-15

    We report here the synthesis, by the polyol method, of Mn-doped ZnS nanocrystals with the zinc blende structure. Phase transfer of the as-produced quantum dots from organic solvent into water was achieved by surface complexation with mercaptoacetate ligands. The magnetic and optical properties of the powders and aqueous colloids obtained were evaluated by SQUID magnetometry as well as electronic absorption and emission spectroscopies, to test their potential as magnetic and luminescent bimodal probes for medical imaging. With a 10 % concentration of Mn{sup 2+}, the nanoparticles are paramagnetic at body temperature, and the aqueous colloids they form have high relaxivity with a r{sub 1} value of 20 mM{sup -1} s{sup -1} at 3 T. They are highly luminescent with a blue-green emission on 405-nm excitation. Viability assays and genotoxicity tests on Chinese hamster ovarian cells revealed neither acute cellular death, nor cell toxicity, nor damage to the nucleus after exposure for 24 h to particle doses of up to 100 {mu}g mL{sup -1}.

  15. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen

    International Nuclear Information System (INIS)

    Marín-Suárez, Marta; Arias-Martos, María C.; Fernández-Sánchez, Jorge F.; Fernández-Gutiérrez, Alberto; Galeano-Díaz, Teresa

    2013-01-01

    We report on a strategy to model both the size (d) and the polydispersity (PdI) of magnetic oxygen-sensitive nanoparticles with a typical size of 200 nm in order to increase the surface area. The strategy is based on experimental design and Response Surface Methodology. Nanoparticles were prepared by mini emulsion solvent evaporation of solutions of poly(styrene-co-maleic anhydride). Features of this strategy include (1) a quick selection of the most important variables that govern d and PdI; (2) a better understanding of the parameters that affect the performance of the polymer; and (3) optimized conditions for the synthesis of nanoparticles of targeted d and PdI. The results were used to produce nanoparticles in sizes that range from 100 to 300 nm and with small polydispersity. The addition of a platinum porphyrin complex that acts as a luminescent probe for oxygen and of magnetite (Fe 3 O 4 ) to the polymeric particles, did not affect d and PdI, thus demonstrating that this strategy simplifies their synthesis. The resulting luminescent and magnetic sensor nanoparticles respond to dissolved oxygen with sensitivity (Stern-Volmer constant) of around 35 bar −1 . (author)

  16. Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation

    Directory of Open Access Journals (Sweden)

    Roberta D'Agata

    2017-01-01

    Full Text Available Gold nanoparticles (AuNPs exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion. The behaviour of the modified AuNP dispersion as a consequence of the competitive displacement of the biotinylated oligonucleotide has been investigated and the critical role of displaced oligonucletides in triggering the quasi one-dimensional aggregation of nanoparticles is demonstrated for the first time. The thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays.

  17. Manipulation of pH induced sensitivity of a fluorescent probe in presence of silver nanoparticles

    International Nuclear Information System (INIS)

    Kacmaz, Sibel; Ertekin, Kadriye; Oter, Ozlem; Hizliateş, Cevher Gundogdu; Ergun, Yavuz; Celik, Erdal

    2015-01-01

    In this study, pH induced spectral response of the newly synthesized carbazole derivative (9-butyl-bis-3-(4-(dimethylamino) phenyl) allylidene)-9H-carbazole-3,6-diamine) has been declared. We utilized silver nanoparticles (AgNPs) along with ionic liquid as additives for manipulation of the spectral response. Plasticized ethyl cellulose (EC) was used as matrix material. Fibers and porous films were produced by electrospinning technique. The emission intensity at 631 nm has been followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for pH sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger pH ranges, increased surface area and enhancement in all sensor dynamics. Additionally, we performed manipulation of the pKa within the same matrix exploiting the silver NPs. Characteristics of the pH induced response for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in the signal intensity after 16 months. Our sensitivity and stability tests are still in progress. - Highlights: • A carbozole derivative was used for the first time for sensing of pH along with silver nanoparticles. • The sensor slides fabricated in form of nanofibers. • The Ag containing and Ag-free slides were produced by electrospinning technique. • pH Sensitivity of the dye was compared for both; Ag containing and Ag-free forms. • We performed manipulation of the pKa within the same matrix exploiting the silver NPs.

  18. Manipulation of pH induced sensitivity of a fluorescent probe in presence of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kacmaz, Sibel [Giresun University, Faculty of Engineering, Department of Food Engineering, 28200 Giresun (Turkey); Ertekin, Kadriye [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey); Oter, Ozlem; Hizliateş, Cevher Gundogdu; Ergun, Yavuz [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); Celik, Erdal [University of Dokuz Eylul, Faculty of Engineering, Department of Metallurgical and Materials Engineering, 35160 Izmir (Turkey); University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey)

    2015-12-15

    In this study, pH induced spectral response of the newly synthesized carbazole derivative (9-butyl-bis-3-(4-(dimethylamino) phenyl) allylidene)-9H-carbazole-3,6-diamine) has been declared. We utilized silver nanoparticles (AgNPs) along with ionic liquid as additives for manipulation of the spectral response. Plasticized ethyl cellulose (EC) was used as matrix material. Fibers and porous films were produced by electrospinning technique. The emission intensity at 631 nm has been followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for pH sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger pH ranges, increased surface area and enhancement in all sensor dynamics. Additionally, we performed manipulation of the pKa within the same matrix exploiting the silver NPs. Characteristics of the pH induced response for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in the signal intensity after 16 months. Our sensitivity and stability tests are still in progress. - Highlights: • A carbozole derivative was used for the first time for sensing of pH along with silver nanoparticles. • The sensor slides fabricated in form of nanofibers. • The Ag containing and Ag-free slides were produced by electrospinning technique. • pH Sensitivity of the dye was compared for both; Ag containing and Ag-free forms. • We performed manipulation of the pKa within the same matrix exploiting the silver NPs.

  19. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    Science.gov (United States)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    International Nuclear Information System (INIS)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-01-01

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); Su, Cheng-Yong [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou (China)

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.

    Science.gov (United States)

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-06-03

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range.

  3. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    Science.gov (United States)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  4. CMC-coated Fe{sub 3}O{sub 4} nanoparticles as new MRI probes for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sitthichai, Sudarat [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pilapong, Chalermchai, E-mail: chalermchai.pilapong@cmu.ac.th [Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • Fe{sub 3}O{sub 4} nanoparticles (NPs) are superparamagnetic. • CMC is water-soluble and nontoxic cellulose-derivative polymer. • CMC-coated Fe{sub 3}O{sub 4} NPs were successfully prepared by co-precipitation method. • The promising NPs that can be used for magnetic resonance imaging application. - Abstract: Pure Fe{sub 3}O{sub 4} nanoparticles and Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl{sub 2}·4H{sub 2}O and FeCl{sub 3}·6H{sub 2}O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe{sub 3}O{sub 4} MNPs consisting of Fe{sup 2+} and Fe{sup 3+} ions with 543.3-mM{sup −1} s{sup −1} high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  5. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging

    Science.gov (United States)

    Li, Ning; Jie, Meng-Meng; Yang, Min; Tang, Li; Chen, Si-Yuan; Sun, Xue-Mei; Tang, Bo; Yang, Shi-Ming

    2018-04-01

    Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.

  6. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    Science.gov (United States)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  7. Handheld magnetic probe with permanent magnet and Hall sensor for identifying sentinel lymph nodes in breast cancer patients.

    Science.gov (United States)

    Sekino, Masaki; Kuwahata, Akihiro; Ookubo, Tetsu; Shiozawa, Mikio; Ohashi, Kaichi; Kaneko, Miki; Saito, Itsuro; Inoue, Yusuke; Ohsaki, Hiroyuki; Takei, Hiroyuki; Kusakabe, Moriaki

    2018-01-19

    The newly developed radioisotope-free technique based on magnetic nanoparticle detection using a magnetic probe is a promising method for sentinel lymph node biopsy. In this study, a novel handheld magnetic probe with a permanent magnet and magnetic sensor is developed to detect the sentinel lymph nodes in breast cancer patients. An outstanding feature of the probe is the precise positioning of the sensor at the magnetic null point of the magnet, leading to highly sensitive measurements unaffected by the strong ambient magnetic fields of the magnet. Numerical and experimental results show that the longitudinal detection length is approximately 10 mm, for 140 μg of iron. Clinical tests were performed, for the first time, using magnetic and blue dye tracers-without radioisotopes-in breast cancer patients to demonstrate the performance of the probe. The nodes were identified through transcutaneous and ex-vivo measurements, and the iron accumulation in the nodes was quantitatively revealed. These results show that the handheld magnetic probe is useful in sentinel lymph node biopsy and that magnetic techniques are widely being accepted as future standard methods in medical institutions lacking nuclear medicine facilities.

  8. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; hide

    2011-01-01

    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  9. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  10. Characterization of KCNE1 inside Lipodisq Nanoparticles for EPR Spectroscopic Studies of Membrane Proteins.

    Science.gov (United States)

    Sahu, Indra D; Zhang, Rongfu; Dunagan, Megan M; Craig, Andrew F; Lorigan, Gary A

    2017-06-01

    EPR spectroscopic studies of membrane proteins in a physiologically relevant native membrane-bound state are extremely challenging due to the complexity observed in inhomogeneity sample preparation and dynamic motion of the spin-label. Traditionally, detergent micelles are the most widely used membrane mimetics for membrane proteins due to their smaller size and homogeneity, providing high-resolution structure analysis by solution NMR spectroscopy. However, it is often difficult to examine whether the protein structure in a micelle environment is the same as that of the respective membrane-bound state. Recently, lipodisq nanoparticles have been introduced as a potentially good membrane mimetic system for structural studies of membrane proteins. However, a detailed characterization of a spin-labeled membrane protein incorporated into lipodisq nanoparticles is still lacking. In this work, lipodisq nanoparticles were used as a membrane mimic system for probing the structural and dynamic properties of the integral membrane protein KCNE1 using site-directed spin labeling EPR spectroscopy. The characterization of spin-labeled KCNE1 incorporated into lipodisq nanoparticles was carried out using CW-EPR titration experiments for the EPR spectral line shape analysis and pulsed EPR titration experiment for the phase memory time (T m ) measurements. The CW-EPR titration experiment indicated an increase in spectral line broadening with the addition of the SMA polymer which approaches close to the rigid limit at a lipid to polymer weight ratio of 1:1, providing a clear solubilization of the protein-lipid complex. Similarly, the T m titration experiment indicated an increase in T m values with the addition of SMA polymer and approaches ∼2 μs at a lipid to polymer weight ratio of 1:2. Additionally, CW-EPR spectral line shape analysis was performed on six inside and six outside the membrane spin-label probes of KCNE1 in lipodisq nanoparticles. The results indicated significant

  11. Direct nucleation of silver nanoparticles on graphene sheet.

    Science.gov (United States)

    Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J

    2012-08-01

    Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.

  12. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry.

    Science.gov (United States)

    LaGrow, Alec P; Besong, Tabot M D; AlYami, Noktan M; Katsiev, Khabiboulakh; Anjum, Dalaver H; Abdelkader, Ahmed; Costa, Pedro M F J; Burlakov, Victor M; Goriely, Alain; Bakr, Osman M

    2017-02-21

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  13. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry

    KAUST Repository

    LaGrow, Alec P.; Besong, Tabot M.D.; AlYami, Noktan; Katsiev, Khabiboulakh; Anjum, Dalaver H.; Abdelkader, Ahmed; Da Costa, Pedro M. F. J.; Burlakov, Victor M.; Goriely, Alain; Bakr, Osman

    2017-01-01

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  14. Trapping shape-controlled nanoparticle nucleation and growth stages via continuous-flow chemistry

    KAUST Repository

    LaGrow, Alec P.

    2017-02-06

    Continuous flow chemistry is used to trap the nucleation and growth stages of platinum-nickel nano-octahedra with second time resolution and high throughputs to probe their properties ex situ. The growth starts from poorly crystalline particles (nucleation) at 5 seconds, to crystalline 1.5 nm particles bounded by the {111}-facets at 7.5 seconds, followed by truncation and further growth to octahedral nanoparticles at 20 seconds.

  15. Laser-induced incandescence of titania nanoparticles synthesized in a flame

    Science.gov (United States)

    Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.

    2009-09-01

    Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.

  16. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.

    Science.gov (United States)

    Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei

    2016-08-01

    To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.

  17. Growth of hexagonal NaGdF{sub 4} nanocrystals based on cubic Ln{sup 3+}: CaF{sub 2} precursors and the multi-color upconversion emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Lei; Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn; Yu, Yunlong; Zhang, Rui; Ling, Hang; Xu, Ju; Huang, Feng; Wang, Yuansheng, E-mail: yswang@fjirsm.ac.cn

    2014-04-05

    Graphical abstract: We reported a novel hetero-valence cation exchange route to synthesize Ln: NaGdF4 upconversion nanocrystals for the first time. -- Highlights: • The Ln3+: NaGdF4 nanocrystals were synthesized based on the Ln3+: CaF2 precursors. • The microstructures of nanocrystals were characterized. • The multi-color upconversion emissions were easily realized. -- Abstract: Lanthanide-doped upconversion nanomaterials have attracted great attention recently for their potential applications in the fields of bio-label, three-dimensional display, solar cell and so on. In this article, we report a new strategy to prepare hexagonal Ln{sup 3+}:NaGdF{sub 4} upconversion nanocrystals. Unlike the routine way of synthesizing NaGdF{sub 4} nanocrystals through nucleation and growth, the formation of hexagonal NaGdF{sub 4} nanocrystals herein is realized based on the Ln{sup 3+}-doped cubic CaF{sub 2} precursors, following a hetero-valence cation exchange process between Gd{sup 3+}/Na{sup +} and Ca{sup 2+}. Evidently, Ln{sup 3+} dopants in the CaF{sub 2} precursors are retained in the finally formed hexagonal NaGdF{sub 4} nanocrystals and, subsequently, multi-color upconversion emissions are easily realized by simply adjusting the Ln{sup 3+} dopant species and contents in the CaF{sub 2} precursors. This novel hetero-valence cation exchange route may open up a new pathway to synthesize nanomaterials that cannot be fabricated directly.

  18. Synthesis, Tunable Multicolor Output, and High Pure Red Upconversion Emission of Lanthanide-Doped Lu2O3 Nanosheets

    Directory of Open Access Journals (Sweden)

    Lingzhen Yin

    2013-01-01

    Full Text Available Yb3+ and Ln3+ (Ln = Er, Ho codoped Lu2O3 square nanocubic sheets were successfully synthesized via a facile hydrothermal method followed by a subsequent dehydration process. The crystal phase, morphology, and composition of hydroxide precursors and target oxides were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, and energy-dispersive X-ray spectroscope (EDS. Results present the as-prepared Lu2O3 crystallized in cubic phase, and the monodispersed square nanosheets were maintained both in hydroxide and oxides. Moreover, under 980 nm laser diode (LD excitation, multicolor output from red to yellow was realized by codoped different lanthanide ions in Lu2O3. It is noteworthy that high pure strong red upconversion emission with red to green ratio of 443.3 of Er-containing nanocrystals was obtained, which is beneficial for in vivo optical bioimaging.

  19. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles

    International Nuclear Information System (INIS)

    Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T.

    2015-01-01

    The critical role of Mn partitioning in the formation of ordered NiAl nanoparticles in ferritic steels has been examined through a combination of atom probe tomography (APT) and thermodynamic and first-principles calculations. Our APT study reveals that Mn partitions to the NiAl nanoparticles, and dramatically increases the particle number density by more than an order of magnitude, leading to a threefold enhancement in strengthening. Atomistic structural analyses reveal that Mn is energetically favored to partition to the NiAl nanoparticles by preferentially occupying the Al sublattice, which not only increases the driving force, but also reduces the strain energy for nucleation, thereby significantly decreasing the critical energy for formation of the NiAl nanoparticles in ferritic steels. In addition, the effects of Mn on the precipitation strengthening mechanisms were quantitatively evaluated in terms of chemical strengthening, coherency strengthening, modulus strengthening and order strengthening

  20. Effect of gamma irradiation on Korean traditional multicolored paintwork

    International Nuclear Information System (INIS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-01-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe 2 O 3 ), Jangdan (Minium; Pb 3 O 4 ), Whangyun (Crocoite; PbCrO 4 ), and Jidang (Rutile; TiO 2 ), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d’Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong. - Highlights: • Effects of gamma irradiation on the Dancheong were evaluated. • We confirmed that optical and structural properties of Dancheong were maintained. • Irradiation can contribute the