Comparison of multiaxial fatigue damage models under variable amplitude loading
Chen, Hong; Shang, De Guang; Tian, Yu Jie [Beijing Univ. of Technology, Beijing (China); Liu, Jian Zhong [Beijing Institute of Aeronautical Materials, Beijing (China)
2012-11-15
Based on the cycle counting method of Wang and Brown and on the linear accumulation damage rule of Miner, four multiaxial fatigue damage models without any weight factors proposed by Pan et al., Varvani Farahani, Shang and Wang, and Shang et al. are used to compute fatigue damage. The procedure is evaluated using the low cycle fatigue experimental data of 7050 T7451 aluminum alloy and En15R steel under tension/torsion variable amplitude loading. The results reveal that the procedure is convenient for engineering design and application, and that the four multiaxial fatigue damage models provide good life estimates.
Critical plane approach to multiaxial variable amplitude fatigue loading
Yingyu Wang
2015-07-01
Full Text Available A new critical plane approach based on the modified Manson-Coffin curve method (MMCCM is presented in this paper for predicting fatigue lifetime under variable amplitude (VA multiaxial fatigue loading. The critical plane is assumed to coincide with that material plane experiencing the maximum variance of the resolved shear strain. Fatigue damage is hypothesized to be a function of both the amplitude of the resolved shear strain and the so-called critical plane stress ratio. The latter quantity depends on the mean value and the variance of the stress perpendicular to the critical plane as well as on the variance of the shear stress resolved along the direction experiencing the maximum variance of the resolved shear strain. Load cycles are counted from the resolved shear strain time history by using the classic rain flow counting method. Palmgren-Miner’s linear damage rule is applied to estimate cumulative fatigue damage. The accuracy and reliability of the proposed approach is checked by using several experimental data taken from the literature. The estimated fatigue lives based on the new approach are seen to be in sound agreement with the experimental results.
On the assessment of multiaxial fatigue damage under variable amplitude loading
V. Anes
2016-07-01
Full Text Available In this work, the performance of the SSF criterion is evaluated under variable amplitude loading conditions. The main objective was to inspect the validity of the hypothesis in which the SSF damage map remains valid for any high strength steel. In order to achieve that, fatigue life correlation of the 1050QT steel and 304L stainless steel was analyzed under multiaxial loading conditions. The loading block considered in the study comprises 360 proportional loading cycles with different stress amplitude ratios and stress levels. Despite being made of proportional branches, this loading block is a non-proportional loading due to its principal directions variation. This feature allows the evaluation of combined loading effects under variable amplitude loading conditions, which makes this loading block suitable to mimic the loading effects usually found in the field. Results show very good agreements, which reinforces the aforementioned hypothesis.
Fatigue crack growth under variable amplitude loading
Sidawi, Jihad A.
1994-01-01
Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.
N. Zuhair Faruq
2016-07-01
Full Text Available The present paper is concerned with the formulation of an elasto-plastic strain based approach suitable for assessing fatigue strength of notched components subjected to in-service variable amplitude cyclic loading. The hypothesis is formed that the crack initiation plane is closely aligned with the plane of maximum shear strain amplitude, its orientation and the associated stress/strain quantities being determined using the Maximum Variance Method. Fatigue damage is estimated by applying the Modified Manson-Coffin Curve Method (MMCCM along with the Point Method (PM. In the proposed approach, the required critical distance is treated as a material property whose value is not affected either by the sharpness of the notch being assessed or by the profile of the load spectrum being applied. The detrimental effect of non-zero mean stresses and degree of multiaxiality of the local stress/strain histories is also considered. The accuracy and reliability of the proposed design methodology was checked against several experimental data taken from the literature and generated under different uniaxial variable amplitude load histories. In order to determine the required local stress/strain states, refined elasto-plastic finite element models were solved using commercial software ANSYS®. This preliminary validation exercise allowed us to prove that the proposed approach is capable of estimates laying within an error factor of about 2. These preliminary results are certainly promising, strongly supporting the idea that the proposed design strategy can successfully be used to assess the fatigue lifetime of notched metallic components subjected to in-service multiaxial variable amplitude loading sequences.
Nonlinear cumulative damage model for multiaxial fatigue
SHANG De-guang; SUN Guo-qin; DENG Jing; YAN Chu-liang
2006-01-01
On the basis of the continuum fatigue damage theory,a nonlinear uniaxial fatigue cumulative damage model is first proposed.In order to describe multiaxial fatigue damage characteristics,a nonlinear multiaxial fatigue cumulative damage model is developed based on the critical plane approach,The proposed model can consider the multiaxial fatigue limit,mean hydrostatic pressure and the unseparated characteristic for the damage variables and loading parameters.The recurrence formula of fatigue damage model was derived under multilevel loading,which is used to predict multiaxial fatigue life.The results showed that the proposed nonlinear multiaxial fatigue cumulative damage model is better than Miner's rule.
Variable-amplitude oscillatory shear response of amorphous materials
Perchikov, Nathan; Bouchbinder, Eran
2014-06-01
Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.
Use of elastic stresses for a multiaxial fatigue prediction
Růžička M.
2007-11-01
Full Text Available A new computational method derived from Papuga PCr multiaxial criterion is presented in the paper. While the PCr criterion is suitable for a comparison of a local multiaxial loading with a fatigue limit, the PCF criterion derived is focused on computation within a finite life. Its use is intended for a variable amplitude multiaxial loading, where the Palmgren-Miner damage cumulation law is applied. The PCF method is based on local elastic stresses and their action within the standard S-N curves of smooth specimens. No arrangement concerning the stress gradient effect was applied, since the experiments serving for comparison were carried on smooth and unnotched specimens. The experimental set covers different load paths applied to specimens manufactured of CSN 41 1523 structural steel. Computational results are promising for cases with load paths formed from single unclosed lines, but for the cases with load paths related to closed constructs it provides too conservative solution. A need for a further term counting for the multiaxial hardening is discussed.
Variable weight spectral amplitude coding for multiservice OCDMA networks
Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.
2017-09-01
The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.
Variable amplitude fatigue of autofrettaged diesel injection parts
Bergmann, J.W. [Materials Research and Testing Institute, Bauhaus University Weimar (Germany); Herz, E. [Robert Bosch GmbH, Stuttgart (Germany); Hertel, O.; Vormwald, M. [Technische Universitaet Darmstadt, FB 13 Bauingenieurwesen, Inst. fuer Stahlbau und Werkstoffmechechanik, Darmstadt (Germany); Thumser, R.
2008-10-15
Experimental and analytical investigations of constant and variable amplitude fatigue life of not autofrettaged and autofrettaged components have been performed. In variable amplitude loading the new standardised COmmon-RAil-Load sequence CORAL has been used as well as two-level-tests with small cycles at high mean stresses interrupted by large cycles for the evaluation of load sequence effects. The results of the two level tests show that small cycles with amplitudes far below the fatigue limit cause fatigue damage. Life calculations have been performed according to the nominal stress approach with S-N-curves and improved Miner's Rule, linear-elastic fracture mechanics with 3D-weight functions, elastic-plastic fracture mechanics applying an extended strip yield-model, and explicit 3D-FE-simulation of fatigue crack growth with predefined crack fronts. All approaches are appropriate for predicting realistic variable amplitude lives. From a practical point of view the explicit 3D-FE-simulation of fatigue crack growth is too time-consuming. However, such simulations show that the approaches based on linear-elastic fracture mechanics and elastic-plastic fracture mechanics with extended strip yield-model capture the essential physics of fatigue crack growth in a realistic way. (Abstract Copyright [2008], Wiley Periodicals, Inc.) [German] Die Lebensdauer nicht autofrettierter und autofrettierter Bauteile unter einstufiger und betriebsaehnlicher Innendruckbelastung wurde experimentell und analytisch untersucht. Als betriebsaehnliche Belastung wurde die COmmon-RAil-Load sequence CORAL entwickelt. Zur weiteren Klaerung von Lastfolgeeinfluessen wurden Zweistufenversuche durchgefuehrt mit dem Ergebnis, dass kleine Schwingspiele noch bei mitteldruckbewerteten Amplituden weit unterhalb der halben Dauerfestigkeit schaedigen. Die folgenden Lebensdauervorhersagemethoden wurden ueberprueft: Nennspannungskonzept mit Varianten der Miner-Regel linear-elastische Bruchmechanik mit
Measuring amplitudes of harmonics and combination frequencies in variable stars
Bellinger, E. P.; Wysocki, D.; Kanbur, S. M.
2016-05-01
Discoveries of RR Lyrae and Cepheid variable stars with multiple modes of pulsation have increased tremendously in recent years. The Fourier spectra of these stars can be quite complicated due to the large number of combination frequencies that can exist between their modes. As a result, light- curve fits to these stars often suffer from undesirable ringing effects that arise from noisy observations and poor phase coverage. These non-physical overfitting artifacts also occur when fitting the harmonics of single-mode stars. Here we present a new method for fitting light curves that is much more robust against these effects. We prove that the amplitude measurement problem is very difficult (NP-hard) and provide a heuristic algorithm for solving it quickly and accurately.
Measuring amplitudes of harmonics and combination frequencies in variable stars
Bellinger, Earl P; Kanbur, Shashi M
2015-01-01
Discoveries of RR Lyrae and Cepheid variable stars with multiple modes of pulsation have increased tremendously in recent years. The Fourier spectra of these stars can be quite complicated due to the large number of combination frequencies that can exist between their modes. As a result, light-curve fits to these stars often suffer from undesirable ringing effects that arise from noisy observations and poor phase coverage. These non-physical overfitting artifacts also occur when fitting the harmonics of single-mode stars as well. Here we present a new method for fitting light curves that is much more robust against these effects. We prove that the amplitude measurement problem is very difficult (NP-hard) and provide a heuristic algorithm for solving it quickly and accurately.
Incorporation of Mean/Maximum Stress Effects in the Multiaxial Racetrack Filter
Marco Antonio Meggiolaro
2016-10-01
Full Text Available This work extends the Multiaxial Racetrack Filter (MRF to incorporate mean or maximum stress effects, adopting a filter amplitude that depends on the current stress level along the stress or strain path. In this way, a small stress or strain amplitude event can be filtered out if associated with a non-damaging low mean or peak stress level, while another event with the very same amplitude can be preserved if happening under a more damaging high mean or peak stress level. The variable value of the filter amplitude must be calculated in real time, thus it cannot depend on the peak or mean stresses along a load event, because it would require cycle identification and as so information about future events. Instead, mean/maximum stress effects are modeled in the filter as a function of the current (instantaneous hydrostatic or normal stress along the multiaxial load path, respectively for invariantbased and critical-plane models. The MRF efficiency is evaluated from tension-torsion experiments in 316L stainless steel tubular specimens under non-proportional (NP load paths, showing it can robustly filter out nondamaging events even under multiaxial NP variable amplitude loading histories
A multiaxial incremental fatigue damage formulation using nested damage surfaces
Marco Antonio Meggiolaro
2016-07-01
Full Text Available Multiaxial fatigue damage calculations under non-proportional variable amplitude loadings still remains a quite challenging task in practical applications, in part because most fatigue models require cycle identification and counting to single out individual load events before quantifying the damage induced by them. Moreover, to account for the non-proportionality of the load path of each event, semi-empirical methods are required to calculate path-equivalent ranges, e.g. using a convex enclosure or the MOI (Moment Of Inertia method. In this work, a novel Incremental Fatigue Damage methodology is introduced to continuously account for the accumulation of multiaxial fatigue damage under service loads, without requiring rainflow counters or path-equivalent range estimators. The proposed approach is not based on questionable Continuum Damage Mechanics concepts or on the integration of elastoplastic work. Instead, fatigue damage itself is continuously integrated, based on damage parameters adopted by traditional fatigue models well tested in engineering practice. A framework of nested damage surfaces is introduced, allowing the calculation of fatigue damage even for general 6D multiaxial load histories. The proposed approach is validated by non-proportional tensiontorsion experiments on tubular 316L stainless steel specimens.
Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler
Guzik, Joyce Ann [Los Alamos National Laboratory; Kosak, Mary Katherine [Los Alamos National Laboratory; Bradley, Paul Andrew [Los Alamos National Laboratory; Jackiewicz, Jason [New Mexico State University, Las Cruces, NM
2015-08-17
The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence of correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.
An Amplitude Spectral Capon Estimator with a Variable Filter Length
Nielsen, Jesper Kjær; Smaragdis, Paris; Christensen, Mads Græsbøll;
2012-01-01
The filter bank methods have been a popular non-parametric way of computing the complex amplitude spectrum. So far, the length of the filters in these filter banks has been set to some constant value independently of the data. In this paper, we take the first step towards considering the filter...
Amplitude Variability in gamma Dor and delta Scuti stars observed by the Kepler Spacecraft
Guzik, Joyce A; Bradley, Paul A; Jackiewicz, Jason
2016-01-01
The NASA Kepler spacecraft data revealed a large number of multimode nonradially pulsating gamma Dor and delta Sct variable star candidates. The high precision long time-series photometry makes it possible to study amplitude variations of the frequencies. We summarize recent literature on amplitude and frequency variations in pulsating variables. We are searching for amplitude variability in several dozen faint gamma Doradus or delta Scuti variable-star candidates observed as part of the Kepler Guest Observer program. We apply several methods, including a Matlab-script wavelet analysis developed by J. Jackiewicz, and the wavelet technique of the VSTAR software (http://www.aavso.org/vstar-overview). Here we show results for two stars, KIC 2167444 and KIC 2301163. We discuss the magnitude and timescale of the amplitude variations, and the presence or absence of correlations between amplitude variations for different frequencies of a given star. Amplitude variations may be detectable using Kepler data even for s...
Spatiotemporal variability of extreme temperature frequency and amplitude in China
Zhang, Yuanjie; Gao, Zhiqiu; Pan, Zaitao; Li, Dan; Huang, Xinhui
2017-03-01
Temperature extremes in China are examined based on daily maximum and minimum temperatures from station observations and multiple global climate models. The magnitude and frequency of extremes are expressed in terms of return values and periods, respectively, estimated by the fitted Generalized Extreme Value (GEV) distribution of annual extreme temperatures. The observations suggest that changes in temperature extremes considerably exceed changes in the respective climatological means during the past five decades, with greater amplitude of increases in cold extremes than in warm extremes. The frequency of warm (cold) extremes increases (decreases) over most areas, with an increasingly faster rate as the extremity level rises. Changes in warm extremes are more dependent on the varying shape of GEV distribution than the location shift, whereas changes in cold extremes are more closely associated with the location shift. The models simulate the overall pattern of temperature extremes during 1961-1981 reasonably well in China, but they show a smaller asymmetry between changes in warm and cold extremes primarily due to their underestimation of increases in cold extremes especially over southern China. Projections from a high emission scenario show the multi-model median change in warm and cold extremes by 2040 relative to 1971 will be 2.6 °C and 2.8 °C, respectively, with the strongest changes in cold extremes shifting southward. By 2040, warm extremes at the 1971 20-year return values would occur about every three years, while the 1971 cold extremes would occur once in > 500 years.
Shortcuts in multiple dimensions: the multiaxial racetrack filter
M.A. Meggiolaro
2015-07-01
Full Text Available Filtering techniques have been proposed for multiaxial load histories, usually aiming to filter out non-reversals, i.e. sampling points that do not constitute a reversal in any of its stress or strain components. However, the path between two reversals is needed to evaluate the equivalent stress or strain associated with each event. Filtering out too many points in such path would almost certainly result in lower equivalent stresses or strains than expected. To avoid such issues, it is important to consider how a measured multiaxial loading path deviates from its course using some metric, such as the von Mises stress or strain. In this work, a multiaxial version of the racetrack filter is proposed, which is able to perform efficient filtering even for 6D nonproportional histories. In the Multiaxial Racetrack algorithm, the stress or strain history is represented in a 6D space, only requiring from the user a desired scalar filtering amplitude r. For uniaxial histories, the proposed algorithm exactly reproduces the classic racetrack filter. The efficiency of the proposed Multiaxial Racetrack filter is qualitatively verified from a tension-torsion history example, showing the reduction in the number of data points for larger filter amplitudes r. The procedure can efficiently filter out non-damaging events but preserving the overall multiaxial path shape and multiaxial reversion points, which usually do not coincide with the reversion points of individual stress or strain components.
Crack simulation models in variable amplitude loading - a review
Luiz Carlos H. Ricardo
2016-02-01
Full Text Available This work presents a review of crack propagation simulation models considering plane stress and plane strain conditions. It is presented also a chronological different methodologies used to perform the crack advance by finite element method. Some procedures used to edit variable spectrum loading and the effects during crack propagation processes, like retardation, in the fatigue life of the structures are discussed. Based on this work there is no consensus in the scientific community to determine the best way to simulate crack propagation under variable spectrum loading due the combination of metallurgic and mechanical factors regarding, for example, how to select and edit the representative spectrum loading to be used in the crack propagation simulation.
DESIGN NOTE: A fast high-voltage pulse generator with variable amplitude and duration
Upadhyay, Jankee; Navathe, C. P.
2006-07-01
A high-voltage pulse generator based on a self-matched transmission line with variable pulse amplitude and duration is developed. Two avalanche transistor stacks are used as switches. The pulse width is varied by adjusting the delay in triggering two switches whereas amplitude is adjusted by adjusting load resistance. A pulse with amplitude of 800 V to 3.8 kV and width of 5 ns to 38 ns can be obtained using this circuit.
Biasing vector network analyzers using variable frequency and amplitude signals
Nobles, J. E.; Zagorodnii, V.; Hutchison, A.; Celinski, Z.
2016-08-01
We report the development of a test setup designed to provide a variable frequency biasing signal to a vector network analyzer (VNA). The test setup is currently used for the testing of liquid crystal (LC) based devices in the microwave region. The use of an AC bias for LC based devices minimizes the negative effects associated with ionic impurities in the media encountered with DC biasing. The test setup utilizes bias tees on the VNA test station to inject the bias signal. The square wave biasing signal is variable from 0.5 to 36.0 V peak-to-peak (VPP) with a frequency range of DC to 10 kHz. The test setup protects the VNA from transient processes, voltage spikes, and high-frequency leakage. Additionally, the signals to the VNA are fused to ½ amp and clipped to a maximum of 36 VPP based on bias tee limitations. This setup allows us to measure S-parameters as a function of both the voltage and the frequency of the applied bias signal.
McHardy, I M
2012-01-01
The old EXOSAT medium energy measurements of high frequency (HF) AGN power spectral normalisation are re-examined in the light of accurate black hole mass determinations which were not available when these data were first published (Green et al 1993). It is found that the normalised variability amplitude (NVA), measured directly from the power spectrum, is proportional to M^{beta} where beta ~ -0.54 +/- 0.08. As NVA is the square root of the power, these observations show that the normalisation of the HF power spectrum for this sample of AGN varies very close to inversely with black hole mass. Almost the same value of $\\beta$ is obtained whether the quasar 3C273 is included in the sample or not, suggesting that the same process that drives X-ray variability in Seyfert galaxies applies also to 3C273. These observations support the work of Gierlinski et al (2008) who show that an almost exactly linear anticorrelation is required if the normalisations of the HF power spectra of AGN and X-ray binary systems are t...
Amplitude variables of circle on the pedagogic pommel horse in gymnastics.
Baudry, Ludovic; Sforza, Chiarella; Leroy, David; Lovecchio, Nicola; Gautier, Geoffroy; Thouvarecq, Régis
2009-05-01
The movement amplitude is a key component of numerous elements in gymnastics. The purpose of the present study is to highlight the most pertinent amplitude variable of the circle performed on the pedagogic pommel horse. Twelve gymnasts (6 expert gymnasts vs. 6 nonexpert gymnasts) performed 10 circles on this event. A Vicon 512 system was used to record the 3-dimensional position of 11 markers fixed on the gymnasts. Our results revealed than 4 amplitude variables permitted us to significantly discriminate the levels of performance of the gymnasts (p gymnasts and to measure improvement in movements after specific training.
Development of high-voltage pulse generator with variable amplitude and duration
Upadhyay, J.; Sharma, M. L.; Ahuja, Aakash B.; Navathe, C. P.
2014-06-01
A high voltage pulse generator with variable amplitude (100-3000 V) and duration (100-2000 μs) has been designed and developed. The variable duration pulse has been generated by adopting a simple and novel technique of varying the turn off delay time of a high voltage Metal Oxide Semiconductor Field Effect Transistor (MOSFET) based switch by varying external gate resistance. The pulse amplitude is made variable by adjusting biasing supply of the high voltage switch. The high voltage switch has been developed using a MOSFET based stack of 3 kV rating with switching time of 7 ns.
Intraindividual reaction time variability affects P300 amplitude rather than latency
Anusha eRamchurn
2014-07-01
Full Text Available The neural correlates of intraindividual response variability were investigated in a serial choice reaction time (CRT task. Reaction times (RTs from the faster and slower portions of the RT distribution for the task were separately aggregated and associated P300 event-related potentials computed. Independent behavioral measures of executive function and IQ were also recorded. Across frontal, fronto-central, central, centro-parietal and parietal scalp regions, P300 amplitudes were significantly greater for faster relative to slower behavioral responses. However, P300 peak amplitude latencies did not differ according to the speed of the behavioral RT. Importantly, controlling for select independent measures of executive function attenuated shared variance in P300 amplitude for faster and slower trials. The findings suggest that P300 amplitude rather than latency is associated with the speed of behavioral RTs, and the possibility that fluctuations in executive control underlie variability in speeded responding.
VizieR Online Data Catalog: VVV high amplitude NIR variable stars (Contreras Pena+, 2017)
Contreras Pena, C.; Lucas, P. W.; Minniti, D.; Kurtev, R.; Stimson, W.; Navarro Molina, C.; Borissova, J.; Kumar, M. S. N.; Thompson, M. A.; Gledhill, T.; Terzi, R.; Froebrich, D.; Caratti o Garatti, A.
2017-08-01
We present the single epoch ZYJHKs photometry obtained from VVV catalogues for 816 high-amplitude variables. We also present the amplitude of the Ks light curve of the objects derived from 2010-2015 photometry. For each object we also provide a provisional classification derived from the shape of the light curve. For objects found to be likely associated with SFRs we present an spectral index derived from the object's spectral energy distribution. (2 data files).
吴志荣; 胡绪腾; 宋迎东
2013-01-01
工程中的大多构件承受着复杂的载荷形式,将单轴疲劳模型应用到多轴载荷情况已不能满足工程精度的要求,多轴载荷下的疲劳寿命计算日益引起人们的重视.基于临界平面的思想,结合Fatemi-Socie(FS)模型和Smith-Watson-Topper(SWT)参数各自的优点,提出一种新的多轴疲劳寿命预测模型.该模型以最大切应变幅与最大切应变幅平面上修正SWT参数的和作为多轴疲劳损伤控制参量,此参量可以同时考虑非比例附加循环硬化和平均应力对材料多轴疲劳寿命的影响,能同时适用于比例和非比例加载下的多轴疲劳问题.采用纯钛Ti、BT9钛合金、304不锈钢、S45C钢和1045HR钢5种材料多轴疲劳试验数据对提出的模型进行评估和验证,对几种材料比例和非比例加载下的多轴疲劳寿命预测结果大都分布在试验结果的2倍分散带之内,结果表明提出的多轴疲劳寿命模型具有较高的预测精度.%The most components of engineering structures are usually subjected to a complex loading. It is unable to meet the requirements of engineering precision if a uniaxial fatigue model is used under multi-axial loading. The calculation of fatigue life prediction under multiaxial loading causes people's attention more and more. A new multiaxial fatigue life prediction model is proposed based on the critical plane criteria. The model integrates the respective advantages of Fatemi-Socie(FS) model and Smith-Watson-Topper(SWT) parameter. The damage parameter in this model takes the sum of the maximum shear strain amplitude and the modified SWT parameter on the maximum shear strain amplitude plain. It can consider the effects of additional cyclic hardening due to non-proportional loading and mean stress on the multi-axial fatigue life of material. The proposed model can be applied to proportional and non-proportional loading. The model is evaluated by the multiaxial fatigue test data of pure titanium, BT9
Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook
2017-08-01
El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.
WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY
Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)
2015-03-10
We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.
Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach
Sofiane Maachou
2014-04-01
Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.
Detection of Low-Amplitude Photometric Variability of Magnetic White Dwarfs
Valeev, A. F.; Antonyuk, K. A.; Pit, N. V.; Moskvitin, A. S.; Grauzhanina, A. O.; Gadelshin, D. R.; Kolesnikov, S. V.; Burlakova, T. E.; Galazutdinov, G. A.; Gutaev, A. G.; Zhuchkov, R. Ya.; Ikhsanova, A. I.; Joshi, A.; Pandey, J. C.; Zhuzhulina, E. A.; Valyavin, G. G.
2017-06-01
We present the results of the ongoing photometric survey of magnetic white dwarfs. Variability of fluxes from WD 0009+501, GD 229, GRW+70°8247, and GD 56 has been detected. The detected variability of GD 356 is specially discussed. In case of GRW+70°8247 the V-band photometric variability amplitude is about 0fm04, the most probable period is from days to several tens of days. The degenerate GD 229 demonstrates the amplitude of the flux variation of about 0fm05 with a period between 10 and 20 days. In both cases the variability is most likely associated with rotation of these stars. These findings contradict with an idea on the existence of a special class of strong-magnetic very slowly rotating white dwarfs, the periods of which are estimated to have tens or even hundreds of years.
Fatigue Crack and Delamination Growth in Fibre Metal Laminates under Variable Amplitude Loading
Khan, S.
2013-01-01
This thesis presents the investigation into the fatigue propagation and delamination growth of Fibre Metal Laminates under variable amplitude loading. As explained in the first chapter, the motivation of the research is twofold: first, to obtain a clear understanding and detailed characterization of
Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers
Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com
2009-05-11
A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.
Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua
2011-08-01
With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.
Multiaxial fatigue low cycle fatigue testing
Zamrik, S. Y.
1985-01-01
Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.
Klistorner, A I; Graham, S L
2001-08-01
The interindividual variability of the visual evoked potential (VEP) has been recognized as a problem for interpretation of clinical results. This study examines whether VEP variability can be reduced by scaling responses according to underlying electroencephalogram (EEG) activity. A multifocal objective perimeter provided different random check patterns to each of 58 points extending out to 32 degrees nasally. A multichannel VEP was recorded (bipolar occipital cross electrodes, 7 min/eye). One hundred normal subjects (age 58.9 +/- 10.7 years) were tested. The amplitude and inter-eye asymmetry coefficient for each point of the field was calculated. VEP signals were then normalized according to underlying EEG activity recorded using Fourier transform to quantify EEG levels. High alpha-rhythm and electrocardiogram contamination were removed before scaling. High intersubject variability was present in the multifocal VEP, with amplitude in women on average 33% larger than in men. The variability for all left eyes was 42.2% +/- 3.9%, for right eyes 41.7% +/- 4.4% (coefficient of variability [CV]). There was a strong correlation between EEG activity and the amplitude of the VEP (left eye, r = 0.83; P < 0.001; right eye, r = 0.82; P < 0.001). When this was used to normalize VEP results, the CVs dropped to 24.6% +/- 3.1% (P < 0.0001) and 24.0% +/- 3.2% (P < 0.0001), respectively. The gender difference was effectively removed. Using underlying EEG amplitudes to normalize an individual's VEP substantially reduces intersubject variability, including differences between men and women. This renders the use of a normal database more reliable when applying the multifocal VEP in the clinical detection of visual field changes.
Klistorner, A; Graham, S L
2005-11-01
The multi-focal visual evoked potential (mfVEP) has been recently introduced as an alternative to subjective perimetry in detecting visual field defects. This study examines the source of variability in the mfVEP amplitude, and determines the relationship of this variability to the strength of the signal itself across the visual field. It also investigates possible means to reduce the effects of this variability on between-test interpretation to allow for easier detection of progression. 85 normal subjects participated in the study. The mfVEP was recorded using Accumap (ObjectiVision Pty Ltd, Sydney, Australia). Each subject was tested twice with an interval between visits of 3-4 weeks. Comparison between tests was performed using coefficient of variability (CV). Variability was also analysed using scaling and clustering procedures. In the majority of the retinal areas CV fell within 15-20%. Variability increased with eccentricity, but there was no age dependency. There was a significant reduction of variability (by 15.8 +/- 6%, Student's t-test p<0.0001) when a scaling procedure was applied and this was consistent at all eccentricities. A clustering procedure reduced variability on average by a further 18.5 +/- 4.5% (Student's t-test p<0.0001). This result was also consistent at all eccentricities. Between test comparisons of raw mfVEP traces is limited by a variability of at least 15%. While this variability required the amplitude of the individual VEP signal to change by 30-40% in order to detect progression, scaling and clustering procedures were able to reduce the required change to 20-25%, thus making an interpretation of consecutive test results more clinically viable.
Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels
Etube, L. S.
1998-01-01
The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to 70OMPa. These steels are thought to exhib...
Multiaxial diagnosis: An integral approach
Adalberto Campo Arias
2003-01-01
All patients must be diagnosed with an integral, multiaxial or bio-psycho-social model. This approach makes possible understanding biological,personality, social, and cultural factor or background of ill people. Multiaxial perspective gives diagnosis more accurate and reliable. Moreover, it makes clinical practice more warm and humane.
An unusual very low-mass high-amplitude pre-main sequence periodic variable
Rodriguez-Ledesma, Maria V; Ibrahimov, Mansur; Messina, Sergio; Parihar, Padmakar; Hessman, Frederic; de Oliveira, Catarina Alves; Herbst, William
2012-01-01
We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 ha...
Folguera, Guillermo; Bastías, Daniel A; Bozinovic, Francisco
2009-11-01
Global climate change is one of the greatest threats to biodiversity; one of the most important effects is increase in the mean earth surface temperature. However, another but poorly studied main effect of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We tested the effects of daily thermal amplitude with constant mean (24-24 degrees C, 27-21 degrees C and 32-16 degrees C) on different performance traits (rollover speed, body mass balance and survival) in populations of woodlouse (Porcellio laevis) from two altitudes. We observed that maximum performance showed a significant effect of population in the first but not in the fifth week, and only the population effect was significant for optimum temperature. Interestingly, populations under higher amplitude in environmental temperature exhibited higher resistance to a fluctuating climatic regime. We suggest that our results indicate that thermal variability may produce important effects on biodiversity. Therefore, in order to develop more realistic scenarios of global climate change effects on biodiversity, the effects of thermal variability as well as mean need to be examined simultaneously.
Day-to-day variability of geomagnetic hourly amplitudes at low latitudes
Okeke, F. N.; Agodi Onwumechili, C.; Rabiu, Babatunde A.
1998-08-01
A study of the variability of the amplitude of Sq at a fixed hour from one day to the next at nine stations from the dip equator to about 22° north of it has produced interesting results. The amplitude and sign of the variability change virtually randomly, making the mean practically zero. The variability occurs at all hours of the day. Its magnitudes in the components D, H and Z have the same diurnal variation, which peaks in the noon period like Sq(H) in low latitudes, and a weak seasonal variation that peaks at the June solstice (local summer). It is demonstrated that changes in the current intensities of the equatorial electrojet (EEJ) and the worldwide part of the Sq (WSq) current layers have contrasting phases and can sometimes be in antiphase. Indeed, the changes are mostly independent. Inclusion of the magnetic element D revealed that the EEJ current system has not only an east-west but also a north-south component. The study shows that the meridional component of the EEJ current intensity evidenced at the Kodaikanal and Annamalainagar stations is an integral part of the zonal component at Trivandrum. This confirms the results of Rastogi (1996) and validates those of Onwumechili (1997). The results suggest that ionospheric conductivity mainly controls the magnitude, while the electric field and ultimately winds mainly control the phase and randomness of the day-to-day variability of the hourly amplitudes of Sq. The random component is attributed to local and/or regional atmospheric winds, probably of gravity wave origin.
A DIGITAL CALIBRATION ALGORITHM WITH VARIABLE-AMPLITUDE DITHERING FOR DOMAIN-EXTENDED PIPELINE ADCS
Ting Li
2014-02-01
Full Text Available The pseudorandom noise dither (PN dither technique is used to measure domain-extended pipeline analog-to-digital converter (ADC gain errors and to calibrate them digitally, while the digital error correction technique is used to correct the comparator offsets through the use of redundancy bits. However, both these techniques suffer from three disadvantages: slow convergence speed, deduction of the amplitude of the transmitting signal, and deduction of the redundancy space. A digital calibration algorithm with variable-amplitude dithering for domain-extended pipeline ADCs is used in this research to overcome these disadvantages. The proposed algorithm is implemented in a 12-bit, 100 MS/s sample-rate pipeline ADC. The simulation results illustrate both static and dynamic performance improvement after calibration. Moreover, the convergence speed is much faster.
Beat-to-beat T-wave amplitude variability in the long QT syndrome.
Extramiana, Fabrice; Tatar, Charif; Maison-Blanche, Pierre; Denjoy, Isabelle; Messali, Anne; Dejode, Patrick; Iserin, Frank; Leenhardt, Antoine
2010-09-01
Long QT syndrome (LQTS) is a primary electrical disease characterized by QT prolongation and increased repolarization dispersion leading to T-wave amplitude beat-to-beat changes. We aimed to quantify beat-to-beat T-wave amplitude variability from ambulatory Holter recordings in genotyped LQTS patients. Seventy genotyped LQTS patients (mean age 23 +/- 15 years, 42 males, 50% LQT1, 39% LQT2, and 11% LQT3) and 70 normal matched control subjects underwent a 24-h digital Holter recording. Using the Tvar software (Ela Medical, Sorin group), the beat-to-beat variance of the T-wave amplitude (TAV in microV) [corrected] was assessed on 50-ms consecutive clusters during three 1-h periods: one with around average diurnal heart rate (Day Fast), one nocturnal period (Night), and one diurnal period with around average nocturnal heart rate (Day Slow). TAV was increased in LQTS patients during the two diurnal periods but not at night (during the Day Fast period, mean TAV was 34 +/- 20 microV [corrected] in LQTS patients vs. 27 +/- 10 microV [corrected] in controls, P < 0.05). This effect depended on the genotype. In LQT1, TAV was larger when compared with controls for both Day Fast and Slow periods, but in LQT2 only Day Fast shows higher TAV. Oppositely, in LQT3 the TAV was higher than in the control group during the Day slow period (mean TAV = 34 +/- 20 vs. 25 +/- 8 microV [corrected] in controls, P < 0.05). In genotyped LQTS patients beat-to-beat T-wave amplitude variability was increased when compared with control subjects. That pattern was modulated by circadian influences in a gene-dependent manner.
G328: A Small-Amplitude Red Variable with a Period Near One Day
Bao-An Yao; Chang-Jun Shen; Chun-Sheng Zhang; Han-Ming Hu; Qing Lin
2006-01-01
G328 = A65 = L3314 (V = 13.83, B - V = 1.91) is a field star in the direction of the globular cluster M4. If we take E(B - V) = 0.40, then its (B - V)0 = 1.51,corresponding to a spectral type of K5III if it is a giant star; or of dM2 if it is a dwarf.Observations at both the MSSSO and Yurnan Observatory have shown that G328 is a new variable with peak to peak amplitude (≌) 0.05 mag in V. While it is not unusual for so red a star to be a variable, special attention must be paid to its short period of about one day.If the variability is due to pulsation, the spectral type and luminosity as well as effective temperature should be determined in order to compare it with Xiong's theory.
Multiaxial ratcheting of 20 carbon steel: Macroscopic experiments and microscopic observations
Dong, Yawei [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Kang, Guozheng, E-mail: guozhengkang@yahoo.com.cn [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Yujie; Jiang, Han [School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)
2013-09-15
The multiaxial ratcheting behaviors of polycrystalline 20 ordinary carbon steel were investigated at room temperature. The macroscopic experimental results showed that the studied multiaxial ratcheting depends greatly on the mean stress, stress amplitude and loading path. The axial ratcheting strain increased with the increase of applied mean stress and stress amplitude. Apparent additional hardening was observed in the non-proportionally multiaxial cyclic loading. The multiaxial ratcheting of 20 carbon steel was lower than the corresponding uniaxial one and varies with different loading paths. Dislocation patterns and their evolutions of the multiaxial ratcheting of different loading paths were then investigated using transmission electron microscopy. The obtained images showed that, with the increasing number of loading cycles, the dislocation patterns evolved from dislocation lines and networks to dislocation tangles, walls and cells. After certain cycles, sub-grains were formed because of the re-arrangement of dislocations in the walls of cells and inside the cells since the cross slip of dislocations can be easily activated for the 20 carbon steel, a kind of body-centered cubic metal. The dislocation evolution of the multiaxial ratcheting is much quicker than that of the uniaxial one. With the reference to the uniaxial one of 20 carbon steel, the macroscopic multiaxial ratcheting behaviors can be qualitatively correlated with the microscopic observation of the dislocation patterns and their evolution. - Highlights: • Multiaxial loading hardly changes the cyclic stable feature of 20 carbon steel. • Multiaxial ratcheting of 20 carbon steel depends greatly on the load path. • Dislocation patterns evolve quicker in the multiaxial case. • The stabilized dislocation pattern is sub-grain, rather than the dislocation cell. • Sub-grains formed after certain cycles make the stable ratcheting strain rate large.
Chasnyk V. I.
2013-12-01
Full Text Available The conventional approach to calculating the space charge for the traveling-wave tube (TWT with phase velocity jumps is to use the same values of the depression coefficient as the ones for homogeneous helical TWTs. However, if the variable component of the exciting current in the expressions for determining the reduction coefficient is changed in amplitude, then the reduction factor is a complex value. Perhaps the neglect of this fact can significantly affect the volume discharge calculated value, and hence the non-synchronization parameter, for those of its values, which are characteristic of the TWT with a phase velocity jump. In this paper, formulas has been obtained for computation of real and imaginary parts of the complex reduction coefficient for a cylindrical electrons beam with exponential variable amplitude of variable current component in the TWT. Influence of complex reduction coefficient on the parameters of the TWT operating in the linear mode is estimated. It is shown that taking into account the imaginary part of the reduction coefficient for linear operation of the TWT makes it possible to change the estimated amount of space charge 1.5 to 2 times, which in its turn has quite a strong effect on the formation of the initial conditions of the nonlinear mode and, subsequently, on the output characteristics of the TWT.
GRMHD simulations of visibility amplitude variability for Event Horizon Telescope images of Sgr A*
Medeiros, Lia; Ozel, Feryal; Psaltis, Dimitrios; Kim, Junhan; Marrone, Daniel P; Sadowski, Aleksander
2016-01-01
Synthesis imaging of the black hole in the center of the Milky Way, Sgr A*, with the Event Horizon Telescope (EHT) rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence GRMHD simulations of Sgr A*. We employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented perpendicular to the spin axis of the black hole typically decrease smoothly over baseline lengths that are comparable to those of the EHT. On the other hand, the visibility amplitudes for baselines oriented parallel to the spin axis show significant structure with one or more minima. This suggests that fitting EHT observations with geometric models will lead to reasonably accurate determination of the orientation of the black-hole on the plane of the sky. However, in the disk-dominated models, the locations and dept...
Homotopy Classification of Multiaxial Actions
Cappell, Sylvain; Yan, Min
2011-01-01
A U(n)-manifold is multiaxial if the isotropy groups are always conjugate to unitary subgroups. The classification and the concordance of such manifolds have been studied by Davis, Hsiang and Morgan under much more strict conditions. We show that in general, without much extra condition, the homotopy classification of multiaxial manifolds can be split into a direct sum of the classification of pairs of adjacent strata, which can be computed by the classical surgery theory. Moreover, we also compute the homotopy classification for the case of the standard representation sphere. We also present the result for the similar multiaxial Sp(n)-manifolds.
The Kepler-SEP Mission: Harvesting the South Ecliptic Pole large-amplitude variables with Kepler
Szabó, R; Kołaczkowski, Z; Moskalik, P; Ivezić, Ž; Udalski, A; Szabados, L; Kuehn, C; Smolec, R; Pigulski, A; Bedding, T; Ngeow, C C; Guzik, J A; Ostrowski, J; De Cat, P; Antoci, V; Borkovits, T; Soszyński, I; Poleski, R; Kozłowski, Sz; Pietrukowicz, P; Skowron, J; Szczygieł, D; Wyrzykowski, Ł; Szymański, M; Pietrzyński, G; Ulaczyk, K; Plachy, E; Schou, J; Evans, N R; Kopaczki, G
2013-01-01
As a response to the white paper call, we propose to turn Kepler to the South Ecliptic Pole (SEP) and observe thousands of large amplitude variables for years with high cadence in the frame of the Kepler-SEP Mission. The degraded pointing stability will still allow observing these stars with reasonable (probably better than mmag) accuracy. Long-term continuous monitoring already proved to be extremely helpful to investigate several areas of stellar astrophysics. Space-based missions opened a new window to the dynamics of pulsation in several class of pulsating variable stars and facilitated detailed studies of eclipsing binaries. The main aim of this mission is to better understand the fascinating dynamics behind various stellar pulsational phenomena (resonances, mode coupling, chaos, mode selection) and interior physics (turbulent convection, opacities). This will also improve the applicability of these astrophysical tools for distance measurements, population and stellar evolution studies. We investigated t...
Low-Amplitude Variables: Distinguishing RR Lyrae stars from Eclipsing Binaries
Kinman, T D
2010-01-01
It is not easy to identify and classify low-amplitude variables, but it is important that the classification is done correctly. We use photometry and spectroscopy to classify low-amplitude variables in a 246 deg^2 part of the Akerlof et al. (2002) field. Akerlof and collaborators found that 38% of the RR Lyrae stars in their 2000 deg^2 test field were RR1 (type c). This suggests that these RR Lyrae stars belong to an Oosterhoff Type II population while their period distribution is primarily Oosterhoff Type I. Our observations support their RR0 (type ab) classifications, however 6 of the 7 stars that they classified as RR1 (type c) are eclipsing binaries. Our classifications are supported by spectroscopic metallicities, line-broadening and Galactic rotation measurements. Our 246 deg^2 field contains 16 RR Lyrae stars that are brighter than m_R = 14.5; only four of these are RR1 (type c). This corresponds to an Oosterhoff Type I population in agreement with the period distribution.
Garelli, Fabricio; Camocardi, Pablo [CONICET, LEICI, Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900), La Plata (Argentina); Mantz, Ricardo J. [CICpBA, LEICI, Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900), La Plata (Argentina)
2010-06-15
This work proposes the application of a recent compensation technique for input constraints avoidance to the pitch control of a wind turbine. The pitch angle actuators commonly present a hard limit on their rate of change together with the natural amplitude saturation, and a dynamics during their unconstrained operation that can be modeled as a first-order linear system. This dynamic behavior of the pitch actuator requires a particular design of the compensation method, which is based on variable structure systems to avoid both amplitude and rate input saturation by means of an auxiliary loop. The developed methodology reduces the pitch actuator activity necessary to regulate the generated power around its nominal value when facing sudden wind gusts. Another interesting feature of the proposal is that it allows the operator to fix conservative bounds for the actuator speed operation in order to increment the structural robustness of the wind turbine and to extend in this way the service life of the energy system. The effectiveness of the proposed strategy is evaluated by simulation results in an autonomous wind energy conversion system for water pumping with a brushless double feed induction generator (BDFIG). (author)
Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels
Etube, Linus Sone
The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to TOOMPa. These steels are thought to exhibit fatigue resistance properties which are different when compared with conventional fixed platform steels such as BS 4360 50D and BS 7191 355D. The difference in their behaviour was heightened by the discovery, in the late 80s and early 90s, of extensive cracking around the spud can regions of several Jack-ups operating in the North Sea. It was thought that these steels may be more susceptible to hydrogen cracking and embrittlement. There was the additional requirement to study their behaviour under realistic loading conditions typical of the North Sea environment. This thesis contains results of an investigation undertaken to assess the performance of a typical high strength weldable Jack-up steel under realistic loading and environmental conditions. Details of the methodology employed to develop a typical Jack-up Offshore Standard load History (JOSH) are presented. The factors which influence fatigue resistance of structural steels used in the construction of Jack-up structures are highlighted. The methods used to model the relevant factors for inclusion in JOSH are presented with particular emphasis on loading and structural response interaction. Results and details of experimental variable amplitude corrosion fatigue (VACF) tests conducted using JOSH are reported and discussed with respect to crack growth mechanisms in high strength weldable Jack-up steels. Different fracture mechanics models for VACF crack growth prediction are compared and an improved generalised methodology for fast
Paul, Surajit Kumar
2014-09-01
This paper has presented a life prediction model in the field of multiaxial low-cycle fatigue. The proposed model is generally applied for constant amplitude multiaxial proportional and non-proportional loading. Depending upon applied strain path the equivalent strain varies within a cycle. Equivalent average strain amplitude is considered as fatigue damage parameter in the proposed model. The model has requirement of only two material constants and no other tuning parameters. The model is examined by the proportional and non-proportional low-cycle fatigue life experimental data for eight different types of materials. The model is successfully correlated with multiaxial fatigue lives of eight different materials.
Ferri, Raffaele; Rundo, Francesco; Novelli, Luana; Terzano, Mario G; Parrino, Liborio; Bruni, Oliviero
2012-04-01
The aim of this study was to arrange an automatic quantitative measure of the electroencephalographic (EEG) signal amplitude variability during non-rapid eye movement (NREM) sleep, correlated with the visually extracted cyclic alternating pattern (CAP) parameters. Ninety-eight polysomnographic EEG recordings of normal controls were used. A new algorithm based on the analysis of the EEG amplitude variability during NREM sleep was designed and applied to all recordings, which were also scored visually for CAP. All measurements obtained with the new algorithm correlated positively with corresponding CAP parameters. In particular, total CAP time correlated with total NREM variability time (r = 0.596; P < 1E-07), light sleep CAP time with light sleep variability time (r = 0.597; P < 1E-07) and slow wave sleep CAP time with slow wave sleep variability time (r = 0.809; P < 1E-07). Only the duration of CAP A phases showed a low correlation with the duration of variability events. Finally, the age-related modifications of CAP time and of NREM variability time were found to be very similar. The new method for the automatic analysis of NREM sleep amplitude variability presented here correlates significantly with visual CAP parameters; its application requires a minimum work time, compared to CAP analysis, and might be used in large studies involving numerous recordings in which NREM sleep EEG amplitude variability needs to be assessed.
1981-08-01
helicopter pilot and consequently has the status of an international standard. The benefits gained in any substantial deviation from this arrangement must be...questions which were designed to highlight the benefits and deficiencies of the multi-axis isometric control system. The questions and abbreviated...34 ambidextrous " by installing controllers for both left and right hand operation. Such a system would have a fundamental influence on cockpit layout since
Discovery of Fast, Large-amplitude Optical Variability of V648 Car (=SS73-17)
Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.
2012-09-01
We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ~520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.
Multi-axial mechanical stimulation of tissue engineered cartilage: Review
S D Waldman
2007-04-01
Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.
无
2001-01-01
An experimental study was carried out on the strain cycliccharacteristics and ratcheting of 316Lstainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tensioncompression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.
Learning Upright Standing on a Multiaxial Balance Board.
Valle, Maria Stella; Casabona, Antonino; Cavallaro, Carlo; Castorina, Gabriele; Cioni, Matteo
2015-01-01
Upright stance on a balance board is a skill requiring complex rearrangement of the postural control. Despite the large use of these boards in training the standing posture, a comprehensive analysis of the learning process underlying the control of these devices is lacking. In this paper learning to maintain a stable stance on a multiaxial oscillating board was studied by analyzing performance changes over short and long periods. Healthy participants were asked to keep the board orientation as horizontal as possible for 20 sec, performing two sessions of 8 trials separated by 15-min pause. Memory consolidation was tested one week later. Amplitude and variability of the oscillations around horizontal plane and area and sway path of the board displacement decreased rapidly over the first session. The performance was stable during the second session, and retained after 1 week. A similar behavior was observed in the anterior-posterior and medial-lateral directions for amplitude and variability parameters, with less stable balance in the anterior-posterior direction. Approximate entropy and mean power frequency, assessing temporal dynamics and frequency content of oscillations, changed only in the anterior-posterior direction during the retention test. Overall, the ability to stand on a balance board is rapidly acquired, and retained for long time. The asymmetric stability between anterior-posterior and medial-lateral directions replicates a structure observed in other standing stances, suggesting a possible transfer from previous postural experiences. Conversely, changes in the temporal dynamics and the frequency content could be associated with new postural strategies developed later during memory consolidation.
Field Load Acquisition and variable amplitude fatigue testing on maxi-scooter motorcycles
N. Petrone
2014-10-01
Full Text Available Aim of the present work was the instrumentation of a maxi scooter for the field collection of service loads acting on the scooter main components such as frame, fork, handlebar, rear frame and suspension. Service loads were collected on an instrumented Yamaha Tmax scooter equipped with 22 channels during a set of field tests that were representing a predefined road mix, covering a mileage of 270 km. Field load histories were used to develop an accelerated test procedure for the accelerated bench fatigue testing of a new model prototype whose mission was set to 50000 km. The acceleration procedure allowed a time reduction from 1600 hrs to 122 hrs bench equivalent testing. Both the benchmark scooter Tmax and a maxi-scooter prototype under development underwent the bench variable amplitude fatigue testing. The results of the fatigue tests on the prototype allowed to identify some critical bolted connections and to reduce some stress concentration features causing the appearance of small cracks that were found also after during 50000 km of driving tests.
Discovery of fast, large-amplitude optical variability of V648 Car (=SS73-17)
Angeloni, R; Lopes, C E Ferreira; Masetti, N
2012-01-01
We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed amongst the very few hard X-ray emitting symbiotic stars. We performed milli-magnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over time scales of minutes. To our knowledge, it is amongst the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic WDs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The ASAS long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche Lobe overflow, and a binary period of about 520 days. On the basis of the outstanding physical properties of V648 Car as hinted by its fast and long-term optical variabil...
LIFE PREDICTION APPROACH FOR RANDOM MULTIAXIAL FATIGUE
Wang Lei; Wang Dejun
2005-01-01
According to the concept of critical plane, a life prediction approach for random multiaxial fatigue is presented. First, the critical plane under the multiaxial random loading is determined based on the concept of the weight-averaged maximum shear strain direction. Then the shear and normal strain histories on the determined critical plane are calculated and taken as the subject of multiaxial load simplifying and multiaxial cycle counting. Furthermore, a multiaxial fatigue life prediction model including the parameters resulted from multiaxial cycle counting is presented and applied to calculating the fatigue damage generated from each cycle. Finally, the cumulative damage is added up using Miner's linear rule, and the fatigue prediction life is given. The experiments under multiaxial loading blocks are used for the verification of the proposed method. The prediction has a good correction with the experimental results.
Morgan, Kathy Y; Black, Lauren D
2014-01-01
This chapter details the creation of three-dimensional fibrin hydrogels as an engineered myocardial tissue and introduces a mechanical stretch bioreactor system that allows for the cycle-to-cycle variable amplitude mechanical stretch of the constructs as a method of conditioning the constructs to be more similar to native tissue. Though mechanical stimulation has been established as a standard method of improving construct development, most studies have been performed under constant frequency and constant amplitude, even though variability is a critical aspect of healthy cardiac physiology. The introduction of variability in other organ systems has demonstrated beneficial effects to cell function in vitro. We hypothesize that the introduction of variability in engineered cardiac tissue could have a similar effect.
Haigh, Sarah M; Gupta, Akshat; Barb, Scott M; Glass, Summer A F; Minshew, Nancy J; Dinstein, Ilan; Heeger, David J; Eack, Shaun M; Behrmann, Marlene
2016-08-01
Autism and schizophrenia share multiple phenotypic and genotypic markers, and there is ongoing debate regarding the relationship of these two disorders. To examine whether cortical dynamics are similar across these disorders, we directly compared fMRI responses to visual, somatosensory and auditory stimuli in adults with autism (N=15), with schizophrenia (N=15), and matched controls (N=15). All participants completed a one-back letter detection task presented at fixation (to control attention) while task-irrelevant sensory stimulation was delivered to the different modalities. We focused specifically on the response amplitudes and the variability in sensory fMRI responses of the two groups, given the evidence of greater trial-to-trial variability in adults with autism. Both autism and schizophrenia individuals showed weaker signal-to-noise ratios (SNR) in sensory-evoked responses compared to controls (d>0.42), but for different reasons. For the autism group, the fMRI response amplitudes were indistinguishable from controls but were more variable trial-to-trial (d=0.47). For the schizophrenia group, response amplitudes were smaller compared to autism (d=0.44) and control groups (d=0.74), but were not significantly more variable (d<0.29). These differential group profiles suggest (1) that greater trial-to-trial variability in cortical responses may be specific to autism and is not a defining characteristic of schizophrenia, and (2) that blunted response amplitudes may be characteristic of schizophrenia. The relationship between the amplitude and the variability of cortical activity might serve as a specific signature differentiating these neurodevelopmental disorders. Identifying the neural basis of these responses and their relationship to the underlying genetic bases may substantially enlighten the understanding of both disorders.
Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei
2015-02-01
An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.
Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie
2014-12-01
The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations.
Frequency and Spatial Shaping of Inputs for Multiaxis Shaker Testing
Craig C. Smith
1996-01-01
Full Text Available Controlled amplitude and phase relationships between multiaxial shaker inputs (i.e., spatial shaping provides for more realistic simulation of a service environment than does conventional frequency shaping alone. Spatial shaping is described in terms of a basic mathematical model relating test article response (absolute and relative motions to excitation by the shaker. Advantages and objectives are viewed through spectral relationships. The objective of simulating dynamic responses as in service is shown to be the duplication of the resultant cross-modal response for all important modes, even if the sources of excitation in service are unknown.
Amplitude variability over trials in hemodynamic responses in adolescents with ADHD
Sørensen, L; Eichele, T; van Wageningen, H
2016-01-01
variable response times. In this study, we asked whether ADHD IIV in reaction time on a commonly-used test of attention might be related to variation in hemodynamic responses (HRs) observed trial-to-trial. Based on previous studies linking IIV to regions within the "default mode" network (DMN), we...... predicted that adolescents with ADHD would have higher HR variability in the DMN compared with controls, and this in turn would be related to behavioral IIV. We also explored the influence of social anxiety on HR variability in ADHD as means to test whether higher arousal associated with high trait anxiety...... would affect the neural abnormalities. We assessed single-trial variability of HRs, estimated from fMRI event-related responses elicited during an auditory oddball paradigm in adolescents with ADHD and healthy controls (11-18 years old; N = 46). Adolescents with ADHD had higher HR variability compared...
Fatigue Performance under Multiaxial Loading
1990-01-01
to 1 1/2-inches were included. In the case of 3/4 and 1 1/2-inch specimens of HY80 4-42 steel , greater lives were obtained for the 1 1/2-inch material...COMMITTEE MARITIME COLLEGE Dr. William Sandberg Dr. W. R. Porter AMERICAN IRON AND STEEL INSTITUTE WELDING RESEARCH COUNCIL Mr. Alexander D. Wilson Dr...Various Specimen Types ...... .4-14 4-4 HY Steel Test Members Used to Investigate Multiaxial Fatigue Response ..... ............. .4-28 4-5 Effect of Mean
Fatigue behaviour of fiberglass wind turbine blade material under variable amplitude loading
Delft, D.R.V. Van; Winkel, G.D. de [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands); Joosse, P.A. [Stork Product Engineering b.v., Amsterdam (Netherlands)
1996-09-01
In the work presented here fatigue tests with the WISPER and WISPERX load sequence have been carried out and analysed. The test programme includes tests at low stress levels which results in fatigue lives of 50 millions of cycles. The results are compared with constant amplitude tests in the very high cycle range, carried out in a previous programme. The results are also compared with ECN results in the lower cycle range (on identical specimens). It appeared, that the difference between the fatigue life of the specimens tested with the WISPER and the WISPERX load sequence is larger than can be expected from the theoretical damage rates. Moreover, the slope of the S-N data differs from theoretical values obtained by using commonly applied design rules. (au)
A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude
Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan
2012-07-01
In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of gas-switch and available capacitor recovery time.
Basri, Gibor; Batalha, Natalie; Gilliland, Ronald L; Jenkins, Jon; Borucki, William J; Koch, David; Caldwell, Doug; Dupree, Andrea K; Latham, David W; Marcy, Geoffrey W; Meibom, Soeren; Howell, Steve; Brown, Tim
2010-01-01
We provide an overview of stellar variability in the first quarter of data from the Kepler mission. The intent of this paper is to examine the entire sample of over 150,000 target stars for periodic behavior in their lightcurves, and relate this to stellar characteristics. These data constitute an unprecedented study of stellar variability given its great precision and complete time coverage (with a half hour cadence). Because the full Kepler pipeline is not currently suitable for a study of stellar variability of this sort, we describe our procedures for treating the "raw" pipeline data. About half of the total sample exhibits convincing periodic variability up to two weeks, with amplitudes ranging from differential intensity changes less than 10^{-4} up to more than 10 percent. K and M dwarfs have a greater fraction of period behavior than G dwarfs. The giants in the sample have distinctive quasi-periodic behavior, but are not periodic in the way we define it. Not all periodicities are due to rotation, and ...
Multiaxial yield behaviour of polypropylene
Lang R.
2010-06-01
Full Text Available In order to characterize the yield behavior of polypropylene as a function of pressure and to verify the applicability of the Drucker-Prager yield function, various tests were conducted to cover a wide range of stress states from uniaxial tension and compression to multiaxial tension and confined compression. Tests were performed below and above the glass transition temperature, to study the combined effect of pressure and temperature. The pressure sensitivity coefficient as an intrinsic material parameter was determined as a function of temperature. Increasing pressure sensitivity values were found with increasing temperature, which can be related to the change in the free volume and thus, to the enhanced molecular mobility. A best-fit Drucker-Prager yield function was applied to the experimental yield stresses and an average error between the predictions and the measurements of 7 % was obtained.
Dori, Guy; Gershinsky, Michal; Ben-Haim, Simona; Lewis, Basil S; Bitterman, Haim
2011-11-01
To detect and quantify consistent ECG amplitude changes, the "ECG variability contour" (EVC) method was proposed. Using this method we investigated amplitude changes in subjects undergoing myocardial perfusion imaging (MPI) with Dipyridamole (Dp). Fifty-three patients having reversible perfusion defects and 19 normal subjects (NS) who were free of: perfusion defects on their MPI, standard ST-T changes during Dp stress, and a negative clinical follow up. Mean ∏¹() was similar for the NS and patient group (6.2 ± 6.1 vs. 6.3 ± 6.2, P = 0.95). was 4.6 ± 3.0 in patients not having ST-T changes during Dp stress (n = 42), whereas in patients having ST-T changes (n = 11) it was 13.1 ± 10.2 (P was smaller than , which in turn was smaller than . The values of , , and for the NS, patients without and with ST-T changes were: 26.8 ± 28.6, 42.6 ± 41.8, 44.9 ± 36.5; 19.6 ± 20.8, 26.4 ± 31.4, 38.7 ± 27.3; 51.0 ± 30.0, 71.0 ± 36.8, 75.1 ± 20.9, respectively (P EVC method. The EVC method did not distinguish between NS and patients in this clinical setting.
Aerts, C; Baglin, A; Degroote, P; Oreiro, R; Vuckovic, M; Smolders, K; Acke, B; Verhoelst, T; Desmet, M; Godart, M; Noels, A; Dupret, M -A; Auvergne, M; Baudin, F; Catala, C; Michel, E; Samadi, R
2010-01-01
We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD\\,50064 ($V=8.21$).CoRoT space photometry and follow-up high-resolution spectroscopy, with a time base of 137\\,d and 169\\,d, respectively, was gathered, analysed and interpreted using standard time series analysis and light curve modelling methods as well as spectral line diagnostics.The space photometry reveals one period of 37\\,d, which undergoes a sudden amplitude change with a factor 1.6. The pulsation period is confirmed in the spectroscopy, which additionally reveals metal line radial velocity values differing by $\\sim 30\\,$km\\,s$^{-1}$ depending on the spectral line and on the epoch. We estimate \\teff$\\sim$13\\,500\\,K, \\logg$\\sim$1.5 from the equivalent width of Si lines. The Balmer lines reveal that the star undergoes episodes of changing mass loss on a time scale similar to the changes in the photometric and spectroscopic variability, with an average value of $\\log\\dot{\\rm M}\\simeq-5$ (in M$_\\o...
Multiaxial fatigue strength of severely notched titanium grade 5 alloy
F. Berto
2015-07-01
Full Text Available The multiaxial fatigue strength of severely notched titanium grade 5 alloy (Ti-6Al-4V is investigated. Experimental tests under combined tension and torsion loading, both in-phase and out-of-phase, have been carried out on axisymmetric V-notched specimens considering different nominal load ratios (R = -1, 0. All specimens are characterized by a notch tip radius less than 0.1 mm, a notch depth of 6 mm and a notch opening angle equal to 90 degrees. The experimental data from multiaxial tests are compared with those from pure tension and pure torsion tests on un-notched and notched specimens, carried out at load ratio ranging from R = -3 to R = 0.5. In total, more than 160 new fatigue data are examined, first in terms of nominal stress amplitudes referred to the net area and then in terms of the local strain energy density averaged over a control volume surrounding the V-notch tip. The dependence of the control radius on the loading mode is analysed showing a very different notch sensitivity for tension and torsion. For the titanium alloy Ti-6Al-4V, the control volume is found to be strongly dependent on the loading mode
Multiaxial evaluation of violent criminals.
Ortiz-Tallo, Margarita; Cardenal, Violeta; Blanca, Maria José; Sánchez, Luis Miguel; Morales, Inmaculada
2007-06-01
A multiaxial assessment and personality evaluation was performed on a group of 70 people (65 men and 5 women) who were recently incarcerated in Málaga, Spain for having committed violent crimes, such as murder and sex-based violence. Analysis of scores on the MCMI indicated that there were chiefly two clearly differentiated personality profiles related to two personality disorders present in the group, the antisocial and the dependent personality disorder with compulsive traits. The "antisocial-psychotic group" presented a clear relation with clinical syndromes, specifically alcohol and drug abuse with delusional disorder, and they had committed a higher proportion of murders. On the Big Five Questionnaire, the "dependent-compulsive group" scored higher than average on Emotional Stability and Agreeableness, whereas the antisocial-psychotic group scored lower than average on Emotional Stability. These findings are in accord with those of Megargee, who concluded that violent criminals can be divided into two categories, the undercontrolled (antisocial) and the overcontrolled (dependent).
Multiaxial fatigue criterion based on parameters from torsion and axial S-N curve
M. Margetin
2016-07-01
Full Text Available Multiaxial high cycle fatigue is a topic that concerns nearly all industrial domains. In recent years, a great deal of recommendations how to address problems with multiaxial fatigue life time estimation have been made and a huge progress in the field has been achieved. Until now, however, no universal criterion for multiaxial fatigue has been proposed. Addressing this situation, this paper offers a design of a new multiaxial criterion for high cycle fatigue. This criterion is based on critical plane search. Damage parameter consists of a combination of normal and shear stresses on a critical plane (which is a plane with maximal shear stress amplitude. Material parameters used in proposed criterion are obtained from torsion and axial S-N curves. Proposed criterion correctly calculates life time for boundary loading condition (pure torsion and pure axial loading. Application of proposed model is demonstrated on biaxial loading and the results are verified with testing program using specimens made from S355 steel. Fatigue material parameters for proposed criterion and multiple sets of data for different combination of axial and torsional loading have been obtained during the experiment.
Evaluation of new multiaxial damage parameters on low carbon steel
A. S. Cruces
2017-07-01
Full Text Available Most mechanical components are subjected to the complex fatigue loading conditions, where both amplitude and direction of loading cycles change over the time. The estimation of damage caused by these complex loading scenarios are often done by simplified uniaxial fatigue theories, which ultimately leads to higher factor of safety during the final design considerations. Critical plane-based fatigue theories have been considered more accurate for computing the fatigue damage for multiaxial loading conditions in comparison to energy-based and equivalent stress-based theories. Two recently developed fatigue theories have been evaluated in this work for the available test data. Test data includes significant amount of biaxial load paths.
Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris
Pongsak Khokhuntod; Jian-Ning Fu; Chayan Boonyarak; Kanokwan Marak; Li Chen; Shi-Yang Jiang
2007-01-01
Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006.High-quality photometric data provided in the literature were used to analyze the pulsation of the star,with the derived multiple frequencies fitted to our new data.Besides the dominant frequency and its harmonics,one low frequency(2.27402 cd-1)is discovered,which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light.Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature.we analyzed the long-term variability of AD CMi with the O-C technique.The results provide the updated value of period of 0.122974478 days.and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system.of which some parameters are hereby deduced.
Pulsation and Long-Term Variability of the High-Amplitude δ Scuti Star AD Canis Minoris
Khokhuntod, Pongsak; Fu, Jian-Ning; Boonyarak, Chayan; Marak, Kanokwan; Chen, Li; Jiang, Shi-Yang
2007-06-01
Time-series photometry was made for the large-amplitude δ Scuti star AD CMi in 2005 and 2006. High-quality photometric data provided in the literature were used to analyze the pulsation of the star, with the derived multiple frequencies fitted to our new data. Besides the dominant frequency and its harmonics, one low frequency (2.27402 c d-1) is discovered, which provides a reasonable interpretation for the long-noticed luminosity variation at the maximum and minimum light. Combining the nine new times of light maxima determined from the new data with the 64 times collected from the literature, we analyzed the long-term variability of AD CMi with the O-C technique. The results provide the updated value of period of 0.122974478 days, and seem to be in favor of the model of combination of the evolutionary effect and light-time effect of a binary system, of which some parameters are hereby deduced.
Molnár, L; Kolenberg, K; Borkovits, T; Antoci, V; Vida, K; Ngeow, C C; Guzik, J A; Plachy, E; Castanheira, B
2013-01-01
As a response to the Kepler white paper call, we propose to keep Kepler pointing to its current field of view and continue observing thousands of large amplitude variables (Cepheid, RR Lyrae and delta Scuti stars among others) with high cadence in the Kep-Cont Mission. The degraded pointing stability will still allow observation of these stars with reasonable (better than millimag) precision. The Kep-Cont mission will allow studying the nonradial modes in Blazhko-modulated and first overtone RR Lyrae stars and will give a better view on the period jitter of the only Kepler Cepheid in the field. With continued continuous observation of the Kepler RR Lyrae sample we may get closer to the origin of the century-old Blazhko problem. Longer time-span may also uncover new dynamical effects like apsidal motion in eclipsing binaries. A continued mission will have the advantage of providing unprecedented, many-years-long homogeneous and continuous photometric data of the same targets. We investigate the pragmatic detai...
Unit cell geometry of multiaxial preforms for structural composites
Ko, Frank; Lei, Charles; Rahman, Anisur; Du, G. W.; Cai, Yun-Jia
1993-01-01
The objective of this study is to investigate the yarn geometry of multiaxial preforms. The importance of multiaxial preforms for structural composites is well recognized by the industry but, to exploit their full potential, engineering design rules must be established. This study is a step in that direction. In this work the preform geometry for knitted and braided preforms was studied by making a range of well designed samples and studying them by photo microscopy. The structural geometry of the preforms is related to the processing parameters. Based on solid modeling and B-spline methodology a software package is developed. This computer code enables real time structural representations of complex fiber architecture based on the rule of preform manufacturing. The code has the capability of zooming and section plotting. These capabilities provide a powerful means to study the effect of processing variables on the preform geometry. the code also can be extended to an auto mesh generator for downstream structural analysis using finite element method. This report is organized into six sections. In the first section the scope and background of this work is elaborated. In section two the unit cell geometries of braided and multi-axial warp knitted preforms is discussed. The theoretical frame work of yarn path modeling and solid modeling is presented in section three. The thin section microscopy carried out to observe the structural geometry of the preforms is the subject in section four. The structural geometry is related to the processing parameters in section five. Section six documents the implementation of the modeling techniques into the computer code MP-CAD. A user manual for the software is also presented here. The source codes and published papers are listed in the Appendices.
无
2002-01-01
An experimental study was carried out on the strain cyclic characteristics and ratcheting of U71Mn rail steel subjectedto non-proportional multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled circular load path. The ratcheting was investigated for the stress-controlled multiaxial circular, ellipticaland rhombic load paths with different mean stresses, stress amplitudes and their histories. The experiment showsthat U71Mn rail steel features the cyclic non-hardening/softening, and its strain cyclic characteristics depend greatlyon the strain amplitude but slightly on its history. However, the ratcheting of U71Mn rail steel depends greatly notonly on the values of mean stress and stress amplitude, but also on their histories. In the meantime, the shape ofload path and its history also apparently influence the ratcheting. The ratcheting changes with the different loadingpaths.
M. Cova
2015-07-01
Full Text Available The critical plane calculation for multiaxial damage assessment is often a demanding task, particularly for large FEM models of real components. Anyway, in actual engineering requests, sometime, it is possible to take advantage of the specific properties of the investigated case. This paper deals with the problem of a mechanical component loaded by multiple, but “time-separated”, multiaxial external loads. The specific material damage is dependent from the max principal stress variation with a significant mean stress sensitivity too. A specifically fitted procedure was developed for a fast computation, at each node of a large FEM model, of the direction undergoing the maximum fatigue damage; the procedure is defined according to an effective stress definition based on the max principal stress amplitude and mean value. The procedure is presented in a general form, applicable to the similar cases.
Effects of multiaxial cyclic loading conditions on the evolution of porous defects
Mbiakop Armel
2014-06-01
Full Text Available Multiaxial loading conditions are one of the important parameters in estimating the lifetime of structure both in high and low cycle fatigue ([1 3]. In order to understand the coupling between the macroscopic multiaxial loading and the microscopic defects, we propose to investigate the evolution of an elasto-plastic porous material up to failure under low cycle fatigue conditions. The analysis is performed numerically, using finite elements, on a periodic 3D unit-cell under the assumption of finite strains and subjected to various stress triaxialities, translated as ratios between deviatoric, hydrostatic stress and Lode angles. The present discussion introduces several novel factors in the analysis: (i 3D geometry in cyclic loading (ii finite strains (iii free evolving void shape (iiii different hardening laws. That one of the important factors is the void shape and that its evolution during cyclic loading depends on its multiaxiality. Moreover, these factors will equally influence the apparent macroscopic hardening or softening of the material and the initiation of localized shear zones at the microscopic level. The Lode angle has a significant impact on the evolution of the aspect ratios and the ellipsoidicity of the pores, but has only a weak influence on the evolution of macroscopic variables such as the stress or the porosity. As a consequence, the results show that multiaxiality of the loading have an important on the evolution and growth of defects, pores in the present case problem, but are less important in the definition of the yield surface.
Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride
2012-01-05
Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride...3. DATES COVERED (From - To) January 2010–January 2013 4. TITLE AND SUBTITLE Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride 5a
Fuzzy neural network variable amplitude hydraulic system fault diagnosis%模糊神经网络变幅液压系统故障诊断
冯文洁; 李万莉; 嘉红霞
2014-01-01
针对变幅液压系统复杂性、不确定性、模糊性的特点，提出基于故障树的模糊神经网络作为变幅液压系统故障诊断的方法。该方法利用故障树知识提取变幅液压系统故障诊断的输入变量和输出变量，引入模糊逻辑的概念，采用模糊隶属函数来描述这些故障的程度，利用Levenberg-Marquardt优化算法对神经网络进行训练，系统推理速度快，容错能力强，并通过实例分析验证了变幅液压系统模糊神经网络故障诊断的有效性。%For variable amplitude hydraulic system complexity, uncertainty, ambiguity, it proposes fuzzy neural network based on fault tree as a method for variable amplitude hydraulic system fault diagnosis. The method extracts fault diagnosis input and output variables of variable amplitude hydraulic system using fault tree knowledge, introducing the concept of fuzzy logic, fuzzy membership functions to describe the extent to which these failures, using fuzzy membership functions to describe the extent of these failures, using Levenberg-Marquardt algorithm to train the neural network system, getting a better performance in inference speed and fault-tolerant, and analyzing and verifying the effectiveness of variable ampli-tude hydraulic system fuzzy neural network fault diagnosis through case.
Random accumulated damage evaluation under multiaxial fatigue loading conditions
V. Anes
2015-07-01
Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.
Multiaxial magnetic ordering in NdMg
Deldem, M; Galera, R M; Morin, P; Schmitt, D; Ouladdiaf, B
1998-01-01
NdMg is a cubic compound (CsCl-type) which orders antiferromagnetically at T sub N =61 K. The magnetization measurements show a second transition at T sub R =35 K. Over the whole order range, the powder neutron diffraction pattern can be indexed on the hypothesis of a collinear structure, the magnetic moments being parallel to the wave vector. The neutron diffraction experiments on a single crystal, under an applied magnetic field, establish that the transition at T sub R corresponds to a change from a collinear structure to a multiaxial one. The magnetic moments successively point along a fourfold axis, in the collinear structure, and along twofold axes in the multiaxial one. This sequence of magnetic structures is consistent with the coexistence of ferroquadrupolar gamma-couplings and antiferroquadrupolar epsilon-couplings. (author)
Multiaxial mechanical behavior of biological materials.
Sacks, Michael S; Sun, Wei
2003-01-01
For native and engineered biological tissues, there exist many physiological, surgical, and medical device applications where multiaxial material characterization and modeling is required. Because biological tissues and many biocompatible elastomers are incompressible, planar biaxial testing allows for a two-dimensional (2-D) stress-state that can be used to fully characterize their three-dimensional (3-D) mechanical properties. Biological tissues exhibit complex mechanical behaviors not easily accounted for in classic elastomeric constitutive models. Accounting for these behaviors by careful experimental evaluation and formulation of constitutive models continues to be a challenging area in biomechanical modeling and simulation. The focus of this review is to describe the application of multiaxial testing techniques to soft tissues and their relation to modern biomechanical constitutive theories.
Comparison of two multiaxial fatigue models applied to dental implants
JM. Ayllon
2015-07-01
Full Text Available This paper presents two multiaxial fatigue life prediction models applied to a commercial dental implant. One model is called Variable Initiation Length Model and takes into account both the crack initiation and propagation phases. The second model combines the Theory of Critical Distance with a critical plane damage model to characterise the initiation and initial propagation of micro/meso cracks in the material. This paper discusses which material properties are necessary for the implementation of these models and how to obtain them in the laboratory from simple test specimens. It also describes the FE models developed for the stress/strain and stress intensity factor characterisation in the implant. The results of applying both life prediction models are compared with experimental results arising from the application of ISO-14801 standard to a commercial dental implant.
A Geometric Model of Multiaxial Warp-knitted Preform for Composite Reinforcement
周荣星; 李炜; 陈南梁; 冯勋伟
2003-01-01
A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.
Multi-axis analog adaptive feedforward cancellation of cryocooler vibration
Collins, Simon Andrew
1994-01-01
The vibration produced by Stirling cryocoolers is incompatible with spacecraft-borne precision-pointing imaging instruments. Thermal considerations prevent the addition of sufficient mechanical isolation to eliminate the effects of this vibration. The objective of this research is the design, analysis, and experimental verification of a multi-axis vibration cancellation system for the expander of a split Stirling cryocooler. Cancellation of the periodic cryocooler vibration is achieved with a set of load cells, a custom three-axis electrodynamic actuator, and a narrowband adaptive feedforward controller. In order to size the actuator, a simple model of the cryocooler's vibration is combined with a first-order analysis of a four-magnet two-return-plate forcing element. While the resulting actuator has sufficient force capability, it exhibits significant nonlinearity. A nonlinear actuator model is developed that accounts for in-plane flexure restraint due to both large-amplitude static deflections and large-amplitude vibrations. Numerical solutions of the nonlinear model accurately reflect jump phenomena and higher harmonics observed in the actuator's response. The adaptive feedforward controller employs the filtered-x least-mean-square (FXLMS) algorithm to update an adaptive filter. Rather than implementing this filter with a digital signal processor (DSP), for which there is little flight heritage, a continuous-time analog realization of the FXLMS filter is selected. Theoretically, the FXLMS filter may be represented by an equivalent linear transfer function. However a comprehensive treatment of factors associated with the actual implementation reveals the limitations of the transfer function representation. Factors such as harmonic distortion of the reference signal and imperfect quadrature are shown to result in frequency-shifted terms in the filter's output. The presence of these output components is confirmed experimentally, and their effect on performance is
Manuel de Freitas
2016-10-01
Full Text Available Materials can be classified as shear or tensile sensitive, depending on the main fatigue microcrack initiation process under multiaxial loadings. The nature of the initiating microcrack can be evaluated from a stress scale factor (SSF, which usually multiplies the hydrostatic or the normal stress term from the adopted multiaxial fatigue damage parameter. Low SSF values are associated with a shear-sensitive material, while a large SSF indicates that a tensile-based multiaxial fatigue damage model should be used instead. For tension-torsion histories, a recent published approach combines the shear and normal stress amplitudes using a SSF polynomial function that depends on the stress amplitude ratio (SAR between the shear and the normal components. Alternatively, critical-plane models calculate damage on the plane where damage is maximized, adopting a SSF value that is assumed constant for a given material, sometimes varying with the fatigue life (in cycles, but not with the SAR, the stress amplitude level, or the loading path shape. In this work, in-phase proportional tension-torsion tests in 42CrMo4 steel specimens for several values of the SAR are presented. The SSF approach is then compared with critical-plane models, based on their predicted fatigue lives and the observed values for these tension-torsion histories
Multiaxial mechanical behavior of the porcine anterior lens capsule.
Heistand, M R; Pedrigi, R M; Delange, S L; Dziezyc, J; Humphrey, J D
2005-11-01
The biomechanics of the lens capsule of the eye is important both in physiologic processes such as accommodation and clinical treatments such as cataract surgery. Although the lens capsule experiences multiaxial stresses in vivo, there have been no measurements of its multiaxial properties or possible regional heterogeneities. Rather all prior mechanical data have come from 1-D pressure-volume or uniaxial force-length tests. Here, we report a new experimental approach to study in situ the regional, multiaxial mechanical behavior of the lens capsule. Moreover, we report multiaxial data suggesting that the porcine anterior lens capsule exhibits a typical nonlinear pseudo-elastic behavior over finite strains, that the in situ state is pre-stressed multi-axially, and that the meridional and circumferential directions are principal directions of strain, which is nearly equi-biaxial at the pole but less so towards the equator. Such data are fundamental to much needed constitutive formulations.
Latyshev, A V
2016-01-01
In the present work the second Stokes problem about behaviour of the rarefied gas filling half-space is formulated. A plane limiting half-space makes harmonious fluctuations with variable amplitude in the plane. The amplitude changes on the exponential law. The kinetic equation with model integral of collisions in the form $\\tau$-model is used. The case of diffusion reflexions of gas molecules from a wall is considered. Eigen solutions (continuous modes) of the initial kinetic equation corresponding to the continuous spectrum are searched. Properties of dispersion function are studied. It is investigated the discrete spectrum of the problem consisting of zero of the dispersion functions in the complex plane. It is shown, that number of zero of dispersion function to equally doubled index of problem coefficient. The problem coefficient is understood as the relation of boundary values of dispersion function from above and from below on the real axis. Further are eigen solutions (discrete modes) of the initial k...
Characterization of multiaxial warp knit composites
Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.
1991-01-01
The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.
Thermomechanical Multiaxial Fatigue Testing Capability Developed
1996-01-01
Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.
Ault, T. R.; Cole, J. E.; St. George, S.
2012-11-01
We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.
Microstructural study of multiaxial low cycle fatigue
Masao Sakane
2015-07-01
Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.
D. Nof
2007-09-01
Full Text Available Radiation is of fundamental importance to climate modeling and it is customary to assume that it is also important for the variability of North Atlantic Deep Water (NADW formation and the meridional overturning cell (MOC. Numerous articles follow this scenario and incorporate radiation into the calculation. Using relatively old heat-flux maps based on measurements taken in the nineteen sixties, Sandal and Nof (2007 recently suggested that, even though the radiation terms are of the same order as the other heat-flux terms, they are not important for the variability of the NADW and the MOC. They proposed that only sensible and latent heat fluxes are important for the long-term variability of the convection, i.e., for processes such as Heinrich events, which supposedly correspond to turning convection on-and-off in the Atlantic.
Here, we place this suggestion on a firmer ground by presenting new and accurate up-to-date heat flux maps that also suggest that the radiation is of no major consequence to the NADW variability. Also, we attribute the relative importance of sensible and latent heat fluxes and the contrasting negligible role of radiation to the fact that the latent and sensible heat fluxes are primarily proportional to the difference between the sea surface and the air temperature whereas the radiation is primarily proportional to the sea surface temperature, i.e., radiation is approximately independent of the atmospheric temperature. Due the small heat capacity ratio of air/water (1/4, the difference between the ocean temperature and the air temperature varies dramatically between the state of active and inactive MOC, whereas the ocean temperature by itself varies very modestly between a state of active and inactive convection.
Fojtík F.
2010-12-01
Full Text Available The contribution describes the experimental results obtained from the combined loading of the specimens in the field of high-cycle fatigue. Those specimens were manufactured from common construction steel 11523.1, melt T31052.The following experiments were performed: The first set of the specimen was loaded by the alternating bending amplitude. The second set was loaded by the amplitude of the bending in combination with constant inner overpressure. The results were evaluated by the conjugated strength criterion and another generally used multiaxial fatigue criteria. The stress-strain analysis of the specimens by FEM was performed to determine parameters (constants of particular strength criteria.
Fatigue Behavior of 2A12 Aluminum Alloy Under Multiaxial Loading
CHEN Ya-jun
2017-08-01
Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under multiple variables, and the failure mechanism was investigated by scanning electron microscopy (SEM. The results show that under the loading condition of equivalent stress, the fatigue life decreases with the increase of phase angle. For the phase angle 0°, some special features can be observed in the crack initial zone, such as the tire pattern,fishbone pattern and stalactite pattern. There are secondary cracks and vague fatigue striations in the crack propagation zone; the multiaxial fatigue life decreases with the change of mean stress for tension or torsion. Some white flocculent oxides can be found in the crack initiation zone, and secondary crack as well as shear-type elongated dimples in the instantaneous fracture zone; facing different loading waveforms, the multiaxial life of sine wave is the longest, triangle wave in the second place, and the square wave is the shortest, under the loading condition of equivalent stress, square wave leads to the maximum structural energy dissipation. Under the low and high two step loading, 2A12 shows training effect.
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
Uniaxial and Multiaxial Creep Testing of Copper
Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi [VTT Industrial Systems, Helsinki (Finland)
2003-12-01
Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density (<100/mm{sup 2}) and a typical maximum dimension of less than about 1 {mu}m near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also
Experience with current multiaxial diagnostic systems: a critical review.
Kastrup, Marianne
2002-01-01
It is difficult to capture the complexity of the psychiatric condition with a single diagnostic category, and a multiaxial approach provides a more comprehensive picture of the current disorder. The WPA section on classification has developed a multiaxial schema based on the ICD-10 family of classifications. Four axes are proposed. Axis I: on clinical disorders; axis II: on disabilities; axis III: on contextual factors, and axis IV: on quality of life. Even though the multiaxial approach has been widely taught and surveys report on its international acceptability, daily use by clinicians of the 'non-diagnostic' axes have till now been limited, despite expressed interest by the very same clinicians. The multiaxial formulation is still developing and transcultural experiences need to be gained.
MULTIAXIAL CREEP-FATIGUE LIFE EVALUATION UNDER PROPORTIONAL LOADING
Y.Noguchi; M.Miyahara
2004-01-01
A new method was proposed for the multiaxial creep-fatigue life evaluation under proportional loadings. Because this method was derived from the strain range partitioning method with a multiaxiality factor, it was possible to consider the influence of both creep-fatigue interaction and multiaxial stress state on fatigue life. In order to predict the combined axial-torsional fatigue life the damage under combined loading was defined as linear summation of the damages under axial loading and torsional loading.Axial-torsional creep-fatigue tests were carried out using tubular specimens of 316LC austenitic stainless steel and the ferritic rotor steel. This rotor steel was developed for the permanent magnet type eddy current retarder in heavy trucks. Experimentally obtained lives of both steels were well corresponded with the lives predicted by the proposed method. It was found that the proposed method was effective in multiaxial fatigue life evaluation under proportional creep-fatigue loadings.
Evolution of the Millon Clinical Multiaxial Inventory.
Choca, James P; Grossman, Seth D
2015-01-01
Dr. Theodore Millon (1928-2014) was a primary architect for the personality disorders in the DSM-III, a structure that has endured into the DSM-5. His 1969 book, Modern Psychopathology, created an elegant framework into which the well-known personality prototypes could be fitted and understood. His theoretical work soon led into the creation of several psychological inventories, most notably the Millon Clinical Multiaxial Inventory (MCMI). The MCMI, now in preparation for its 4th major edition, has been a very popular instrument among clinicians. This article explores the history of the MCMI's development from its origins, through 2 distinct theoretical phases, and to its current status as the MCMI-IV is finalized.
Dual Numbers Approach in Multiaxis Machines Error Modeling
Jaroslav Hrdina
2014-01-01
Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.
Multiaxis, Lightweight, Computer-Controlled Exercise System
Haynes, Leonard; Bachrach, Benjamin; Harvey, William
2006-01-01
The multipurpose, multiaxial, isokinetic dynamometer (MMID) is a computer-controlled system of exercise machinery that can serve as a means for quantitatively assessing a subject s muscle coordination, range of motion, strength, and overall physical condition with respect to a wide variety of forces, motions, and exercise regimens. The MMID is easily reconfigurable and compactly stowable and, in comparison with prior computer-controlled exercise systems, it weighs less, costs less, and offers more capabilities. Whereas a typical prior isokinetic exercise machine is limited to operation in only one plane, the MMID can operate along any path. In addition, the MMID is not limited to the isokinetic (constant-speed) mode of operation. The MMID provides for control and/or measurement of position, force, and/or speed of exertion in as many as six degrees of freedom simultaneously; hence, it can accommodate more complex, more nearly natural combinations of motions and, in so doing, offers greater capabilities for physical conditioning and evaluation. The MMID (see figure) includes as many as eight active modules, each of which can be anchored to a floor, wall, ceiling, or other fixed object. A cable is payed out from a reel in each module to a bar or other suitable object that is gripped and manipulated by the subject. The reel is driven by a DC brushless motor or other suitable electric motor via a gear reduction unit. The motor can be made to function as either a driver or an electromagnetic brake, depending on the required nature of the interaction with the subject. The module includes a force and a displacement sensor for real-time monitoring of the tension in and displacement of the cable, respectively. In response to commands from a control computer, the motor can be operated to generate a required tension in the cable, to displace the cable a required distance, or to reel the cable in or out at a required speed. The computer can be programmed, either locally or via
Local strain energy density to assess the multiaxial fatigue strength of titanium alloys
Filippo Berto
2016-07-01
Full Text Available The present paper investigates the multiaxial fatigue strength of sharp V-notched components made of titanium grade 5 alloy (Ti-6Al-4V. Axisymmetric notched specimens have been tested under combined tension and torsion fatigue loadings, both proportional and non-proportional, taking into account different nominal load ratios (R = -1 and 0. All tested samples have a notch root radius about equal to 0.1 mm, a notch depth of 6 mm and an opening angle of 90 degrees. The fatigue results obtained by applying multiaxial loadings are discussed together with those related to pure tension and pure torsion experimental fatigue tests, carried out on both smooth and notched specimens at load ratios R ranging between -3 and 0.5. Altogether, more than 250 fatigue results (19 S-N curves are examined, first on the basis of nominal stress amplitudes referred to the net area and secondly by means of the strain energy density averaged over a control volume embracing the V-notch tip. The effect of the loading mode on the control volume size has been analysed, highlighting a wide difference in the notch sensitivity of the considered material under tension and torsion loadings. Accordingly, the control radius of the considered titanium alloy (Ti-6Al-4V is found to be strongly affected by the loading mode.
Creating a Multi-axis Machining Postprocessor
Petr Vavruška
2012-01-01
Full Text Available This paper focuses on the postprocessor creation process. When using standard commercially available postprocessors it is often very difficult to modify its internal source code, and it is a very complex process, in many cases even impossible, to implement the newly-developed functions. It is therefore very important to have a method for creating a postprocessor for any CAM system, which allows CL data (Cutter Location data to be generated to a separate text file. The goal of our work is to verify the proposed method for creating a postprocessor. Postprocessor functions for multi-axis machiningare dealt with in this work. A file with CL data must be translated by the postprocessor into an NC program that has been customized for a specific production machine and its control system. The postprocessor is therefore verified by applications for machining free-form surfaces of complex parts, and by executing the NC programs that are generated on real machine tools. This is also presented here.
Multiaxial diagnosis and the psychosomatic model of disease.
Oken, D
2000-01-01
Current medical diagnosis reflects the prevailing biomedical model of disease. A need exists for a new system of diagnosis that, instead, is based on the psychosomatic model. This article presents an analysis of the underlying framework of the multiaxial system developed in recent years for diagnosis in Psychiatry that indicates its relevance to the psychosomatic model. It goes on to describe a new multiaxial system of diagnosis derived from that analysis that allows diagnosis to be stated as a process of adaptation in the environment, which includes biological, psychological, and social factors. The practical application of this system to the broad range of medical illnesses is explained and illustrated. This multiaxial approach represents a first step toward, and a stimulus for, the development of a better diagnostic system that can provide one basis for the crucial transformation of medical care to reflect the psychosomatic model of disease.
Atlantoaxial stabilization using multiaxial C-1 posterior arch screws.
Donnellan, Michael B; Sergides, Ioannis G; Sears, William R
2008-12-01
The authors present a novel technique of atlantoaxial fixation using multiaxial C-1 posterior arch screws. The technique involves the insertion of bilateral multiaxial C-1 posterior arch screws, which are connected by crosslinked rods to bilateral multiaxial C-2 pars screws. The clinical results are presented in 3 patients in whom anomalies of the vertebral arteries, C-1 lateral masses, and/or posterior arch of C-1 presented difficulty using existing fixation techniques with transarticular screws, C-1 lateral mass screws, or posterior wiring. The C-1 posterior arch screws achieved solid fixation and their insertion appeared to be technically less demanding than that of transarticular or C-1 lateral mass screws. This technique may reduce the risk of complications compared with existing techniques, especially in patients with anatomical variants of the vertebral artery, C-1 lateral masses, or C-1 posterior arch. This technique may prove to be an attractive fixation option in patients with normal anatomy.
D Tomasi
Full Text Available Data-driven functional connectivity density (FCD mapping is being increasingly utilized to assess brain connectomics at rest in the healthy brain and its disruption in neuropsychiatric diseases with the underlying assumption that the spatiotemporal hub distribution is stationary. However, recent studies show that functional connectivity is highly dynamic. Here we study the temporal variability of the local FCD (lFCD at high spatiotemporal resolution (2-mm isotropic; 0.72s using a sliding-window approach and 'resting-state' datasets from 40 healthy subjects collected under the Human Connectome Project. Prominent functional connectivity hubs in visual and posterior parietal cortices had pronounced temporal changes in local FCD. These dynamic patterns in the strength of the lFCD hubs occurred in cortical gray matter with high sensitivity (up to 85% and specificity (> 85% and showed high reproducibility (up to 72% across sessions and high test-retest reliability (ICC(3,1 > 0.5. The temporal changes in lFCD predominantly occurred in medial occipitoparietal regions and were proportional to the strength of the connectivity hubs. The temporal variability of the lFCD was associated with the amplitude of the low frequency fluctuations (ALFF. Pure randomness did not account for the probability distribution of lFCD. Shannon entropy increased in proportion to the strength of the lFCD hubs suggesting high average flow of information per unit of time in the lFCD hubs, particularly in medial occipitoparietal regions. Thus, the higher dynamic range of the lFCD hubs is consistent with their role in the complex orchestration of interacting brain networks.
František FOJTÍK
2011-06-01
Full Text Available The paper describes the experimental results obtained for the combined loading of the specimens in the region of high-cycle fatigue. The specimens were manufactured from common structural steel 11523.1, melt T31052. The following experiments were performed: The first set of the specimens was loaded by the alternating torque amplitude. The second set was loaded by the in fully reversed push-pull. The third set of specimens was loaded by the combination of the torque and of the fully reversed push-pull. The phase shift is zero in this experiment. The results were evaluated by the modified conjugated strength criterion and other generally used multiaxial fatigue criteria. The stress-strain analysis of the specimens by FEM was performed to determine parameters (constants of particular strength criteria.
On the evolution and comparison of multiaxial fatigue criteria
B. Kenmeugne
2012-02-01
Full Text Available This paper opens up with the definition of some fatigue criteria for multiaxial cyclic loading. This introduces the problem of the prevalence of random multiaxial loading in the service environment ofmechanical components. Following this introduction, a survey of fatigue criteria found in the literature is presented. A comparative analysis of some fatigue models is also presented. This analysis suggests that the selection of a fatigue criterion be based on whether or not the principal directions of stress tensors are mobile or invariable with time.
The Latent Personality Structure of the Millon Clinical Multiaxial Inventory.
Lichtenberg, James W.; O'Brien, Karen M.
Among the more recent personality assessment tools used by counseling psychologists is Millon's Clinical Multiaxial Inventory (MCMI). This instrument was created, in part, to reflect the changes that had occurred in psychologists' understanding of personality, psychopathology, and diagnostic assessment. The MCMI is derived from Millon's biosocial…
Korean Cultural Influences on the Millon Clinical Multiaxial Inventory III.
Gunsalus, Ae-Jung Chang; Kelly, Kevin R.
2001-01-01
Investigates the effect of Korean culture on the results of the Millon Clinical Multiaxial Inventory-III (MCMI-III) by comparing profiles of 147 Korean and 132 American college students. Results indicate that MCMI-III personality profile differences exist between Korean and American college students. Discusses implications for mental health…
Concurrent Validity of the Millon Clinical Multiaxial Inventory Depression Scales.
Goldberg, Joel O.; And Others
1987-01-01
Compared two new measures of depression (Millon Multiaxial Inventory Dysthymia and Major Depression subscales) with two established instruments: Beck Depression Inventory, a self-report measure which emphasizes the cognitive-affective aspects of depression, and Hamilton Rating Scale for Depression, an interview measure that emphasizes somatic…
Korean Cultural Influences on the Millon Clinical Multiaxial Inventory III.
Gunsalus, Ae-Jung Chang; Kelly, Kevin R.
2001-01-01
Investigates the effect of Korean culture on the results of the Millon Clinical Multiaxial Inventory-III (MCMI-III) by comparing profiles of 147 Korean and 132 American college students. Results indicate that MCMI-III personality profile differences exist between Korean and American college students. Discusses implications for mental health…
Artificial immune algorithm implementation for optimized multi-axis sculptured surface CNC machining
Fountas, N. A.; Kechagias, J. D.; Vaxevanidis, N. M.
2016-11-01
This paper presents the results obtained by the implementation of an artificial immune algorithm to optimize standard multi-axis tool-paths applied to machine free-form surfaces. The investigation for its applicability was based on a full factorial experimental design addressing the two additional axes for tool inclination as independent variables whilst a multi-objective response was formulated by taking into consideration surface deviation and tool path time; objectives assessed directly from computer-aided manufacturing environment A standard sculptured part was developed by scratch considering its benchmark specifications and a cutting-edge surface machining tool-path was applied to study the effects of the pattern formulated when dynamically inclining a toroidal end-mill and guiding it towards the feed direction under fixed lead and tilt inclination angles. The results obtained form the series of the experiments were used for the fitness function creation the algorithm was about to sequentially evaluate. It was found that the artificial immune algorithm employed has the ability of attaining optimal values for inclination angles facilitating thus the complexity of such manufacturing process and ensuring full potentials in multi-axis machining modelling operations for producing enhanced CNC manufacturing programs. Results suggested that the proposed algorithm implementation may reduce the mean experimental objective value to 51.5%
Hu, Guangli; Liu, Junwei; Graham-Brady, Lori; Ramesh, K. T.
2015-05-01
We present a validated fully 3D mechanism-based micromechanical constitutive model for brittle solids under dynamic multiaxial loading conditions. Flaw statistics are explicitly incorporated through a defect density, and evolving flaw distributions in both orientation and size. Interactions among cracks are modeled by means of a crack-matrix-effective-medium approach. A tensorial damage parameter is defined based upon the crack length and orientation development under local effective stress fields. At low confining stresses, the wing-cracking mechanism dominates, leading to the degradation of the modulus and peak strength of the material, whereas at high enough confining stresses, the cracking mechanism is completely shut-down and dislocation mechanisms become dominant. The model handles general multiaxial stress states, accounts for evolving internal variables in the form of evolving flaw size and orientation distributions, includes evolving anisotropic damage and irreversible damage strains in a thermodynamically consistent fashion, incorporates rate-dependence through the micromechanics, and includes dynamic bulking based on independent experimental data. Simulation results are discussed and compared with experimental results on one specific structural ceramic, aluminum nitride. We demonstrate that this 3D constitutive model is capable of capturing the general constitutive response of structural ceramics.
Maestro, Sandra; Rossi, Giuseppe; Curzio, Olivia; Felloni, Beatrice; Grassi, Cinzia; Intorcia, Claudia; Petrozzi, Angela; Salsedo, Helen; Muratori, Filippo
2014-01-01
A group of 291 preschoolers consecutively enrolled at the Early Childhood Mental Health Service of IRCSS Stella Maris (Italy) were assessed using the Diagnostic Classification Zero to Three (DC:0-3; ZERO TO THREE, 1994). All active variables were extracted from its five axes, and a multiple correspondence analysis was performed. This analysis evidenced four multiaxial clinical profiles: (a) Multisystem developmental disorders (Axis I) were correlated with the underinvolved quality of relationship (Axis II), medical conditions (Axis III), and a low level of emotional functioning (Axis V); (b) regulatory disorders (Axis I) were correlated with maladaptive or angry/hostile relationship (Axis II), medical conditions (Axis III), and an immature level of emotional functioning (Axis V); (c) affective disorders (Axis I) were correlated with anxious/tense relationship (Axis II), stress factors (Axis IV), and emotional functioning vulnerable to stress (Axis V); and (d) adjustment, feeding, and sleeping disorders (Axis I) were correlated with mild relationship disorders (Axis II) and important impact of stress factors (Axis IV). These findings support DC:0-3 as a valid tool to detect multiaxial profiles that could be useful to plan comprehensive treatments of the disorders.
Roberto Brighenti
2015-10-01
Full Text Available Structural components made of fibre-reinforced materials are frequently used in engineering applications. Fibre-reinforced composites are multiphase materials, and complex mechanical phenomena take place at limit conditions but also during normal service situations, especially under fatigue loading, causing a progressive deterioration and damage. Under repeated loading, the degradation mainly occurs in the matrix material and at the fibre-matrix interface, and such a degradation has to be quantified for design structural assessment purposes. To this end, damage mechanics and fracture mechanics theories can be suitably applied to examine such a problem. Damage concepts can be applied to the matrix mechanical characteristics and, by adopting a 3-D mixed mode fracture description of the fibre-matrix detachment, fatigue fracture mechanics concepts can be used to determine the progressive fibre debonding responsible for the loss of load bearing capacity of the reinforcing phase. In the present paper, a micromechanical model is used to evaluate the unixial or multiaxial fatigue behaviour of structures with equi-oriented or randomly distributed fibres. The spatial fibre arrangement is taken into account through a statistical description of their orientation angles for which a Gaussian-like distribution is assumed, whereas the mechanical effect of the fibres on the composite is accounted for by a homogenization approach aimed at obtaining the macroscopic elastic constants of the material. The composite material behaves as an isotropic one for randomly distributed fibres, while it is transversally isotropic for unidirectional fibres. The fibre arrangement in the structural component influences the fatigue life with respect to the biaxiality ratio for multiaxial constant amplitude fatigue loading. One representative parametric example is discussed.
Multiaxial vibration fatigue-A theoretical and experimental comparison
Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha
2016-08-01
Random vibration excitation is a common cause of failure, especially if natural dynamics is excited. The high-cycle vibration-fatigue analysis typically requires the structural dynamics analysis, the response analysis and the fatigue analysis. The material parameters (S-N curve) are obtained at uniaxial stress state. However, in real structures the stress state is rarely uniaxial and the direct application of the S-N curve is difficult. The stress tensor is reduced to a more manageable representation using a multiaxial criterion. In this study, maximum normal stress, maximum shear stress, maximum normal-and-shear stress, C-S criterion, Projection-by- Projection and the Preumont and Piéfort criterion for multiaxial stress state are compared theoretically and experimentally. The crack location and the time-to-failure were compared. The time-to-failure was found relatively accurate with all multiaxial criteria; however, the crack-location estimation was found not to be accurate enough for either of the compared criteria. The study proves the applicability of the vibration-fatigue analysis procedure on real vibrating structures with rich structural dynamics. Random vibration excitation is a common cause of failure, especially if natural dynamics is excited. The high-cycle vibration-fatigue analysis typically requires the structural dynamics analysis, the response analysis and the fatigue analysis. The material parameters (S-N curve) are obtained at uniaxial stress state. However, in real structures the stress state is rarely uniaxial and the direct application of the S-N curve is difficult. The stress tensor is reduced to a more manageable representation using a multiaxial criterion. In this study, maximum normal stress, maximum shear stress, maximum normaland-shear stress, C-S criterion, Projection-by-Projection and the Preumont and Piéfort criterion for multiaxial stress state are compared theoretically and experimentally. The crack location and the time
Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4
Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)
2016-05-15
Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.
Multiaxial and thermomechanical fatigue considerations in damage tolerant design
Leese, G. E.; Bill, R. C.
1985-01-01
In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.
Quality of life: a dimension in multiaxial classification.
Kastrup, M; Mezzich, J E
2001-01-01
The study provides an overview of the historical aspects of multiaxial classification. Particular reference is paid to the multiaxial formats of ICD-10, DSM-IV and the WPA International Guidelines for Diagnostic Assessment (IGDA). The IGDA proposes a tetraaxial format with quality of life as one axis as well as an axis on symptomatology, an axis on adaptive functioning and an axis on environmental/psychosocial conditions. The axis on quality of life is added in recognition of the increasing importance placed upon the patient's perception of his/her capacity of self fulfillment and the attention paid to quality of life as a major descriptor of health status as well as an outcome measure of clinical care.
Multiaxial Temperature- and Time-Dependent Failure Model
Richardson, David; McLennan, Michael; Anderson, Gregory; Macon, David; Batista-Rodriquez, Alicia
2003-01-01
A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from -20 to 115 F (-29 to 46 C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months..
Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration
Irvine, T.
2016-09-01
Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested according. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.
Reliability Assessment of Graphite Specimens under Multiaxial Stresses
Sookdeo, Steven; Nemeth, Noel N.; Bratton, Robert L.
2008-01-01
An investigation was conducted to predict the failure strength response of IG-100 nuclear grade graphite exposed to multiaxial stresses. As part of this effort, a review of failure criteria accounting for the stochastic strength response is provided. The experimental work was performed in the early 1990s at the Oak Ridge National Laboratory (ORNL) on hollow graphite tubes under the action of axial tensile loading and internal pressurization. As part of the investigation, finite-element analysis (FEA) was performed and compared with results of FEA from the original ORNL report. The new analysis generally compared well with the original analysis, although some discrepancies in the location of peak stresses was noted. The Ceramics Analysis and Reliability Evaluation of Structures Life prediction code (CARES/Life) was used with the FEA results to predict the quadrants I (tensile-tensile) and quadrant IV (compression-tension) strength response of the graphite tubes for the principle of independent action (PIA), the Weibull normal stress averaging (NSA), and the Batdorf multiaxial failure theories. The CARES/Life reliability analysis showed that all three failure theories gave similar results in quadrant I but that in quadrant IV, the PIA and Weibull normal stress-averaging theories were not conservative, whereas the Batdorf theory was able to correlate well with experimental results. The conclusion of the study was that the Batdorf theory should generally be used to predict the reliability response of graphite and brittle materials in multiaxial loading situations.
Calculation of multi-loop superstring amplitudes
Danilov, G. S.
2016-12-01
The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.
夏天翔; 姚卫星; 刘向民; 嵇应凤
2015-01-01
Based on Miner’s law and probability theory, the probability density function of damage sum under the 2-stage step loading spectrum is proposed, by taking the logarithm normal distribution of the fatigue life into account. The method to determine the scatter of the accumulative fatigue damage is further proposed. A series of experiments under multiaxial 2-stage step loading spectra are conducted on LY12CZ aluminum alloy, which is commonly used in aviation industry. Combined with the test results of the paper and the references, the applicability of Miner’s law is investigated under multiaxial 2-stage step loading spectra, after considering the material dispersion. The result shows that, for the constant path variable amplitude spectra and variable path constant amplitude spectra, since the amplitudes of the two stages are similiar, the applicability of Miner’s law is affected by the variation of the non-proportionality of the multiaxial loadings. Larger non-proportionality leads to better applicability. For the variable path variable amplitude spectra, since the amplitudes of the two stages are significantly different, Miner’s law is not applicable.%将材料疲劳寿命的对数正态分布参数引入Miner疲劳损伤累积理论，推导出两级阶梯谱下的疲劳损伤概率密度函数；进而给出累积损伤分散带。使用航空工业常用的LY12CZ铝合金，进行一系列多轴两级阶梯谱试验。依据补充的和文献已有的试验，使用本文方法计算考虑材料分散性后不同阶梯谱下的损伤分散带。通过对比损伤分散带和Miner理论计算值，考察不同类型多轴阶梯谱下Miner理论的适用性。分析结果表明，对于恒路径变幅谱和变路径常幅谱，由于前后级载荷的幅值较为接近，Miner 理论的适用性与载荷非比例度的变化情况有关，载荷非比例度变化越大，Miner 理论的适用性越好；对于变路径变幅谱，由于幅值差别较大，
The multiaxial assessment and the DSM-III: a conceptual analysis.
Bronschtein, Eitan
2015-12-01
With the release of the DSM-III, multiaxial assessment, which was a new concept, was introduced to daily clinical practice. This article will review the history and the development of the concept of multiaxial assessment and will focus on the its relationship to the DSM-III. In conclusion I will discuss different critiques of the concept.
Interaction of fatigue and creep of GH33 under multi-axial stress at high temperature
无
2003-01-01
Low-cycle fatigue experiments of tension-compression, torsion and tension-torsion with holding time were performed.The interaction law of creep and fatigue under multiaxial stress at high temperature was investigated, and the micro-mechanism ofequilibrium diagrams was analyzed. A united equation of fatigue life under multiaxial stress was proposed.
Multiaxial fatigue assessment of welded joints using the notch stress approach
Pedersen, Mikkel Melters
2016-01-01
This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria, including equivalent stress-, interaction equation- and critical...
Constitutive Model for Multiaxial Ratcheting Predictions of Cyclic Softening Weld Metal
GAO Hong; CHEN Xu; JIAO Rong
2005-01-01
A series of fully reversed axial, torsional strain-controlled cyclic tests and two multiaxial ratcheting tests were conducted on weld metal specimens using an Instron8521 tension-torsional servo-controlled testing machine. The weld metal showed clear cyclic softening under axial, torsional and multiaxial loading. A modified kinematic hardening rule was proposed in which a multiaxial-loading-dependent parameter incorporated the radial evanescence term of the Burlet-Cailletaud mode with the Ohno-Wang kinematic hardening rule to predict the multiaxial ratcheting effects. The introduction of yield stress evolved with accumulated plasticity strain enables the model to predict cyclic plasticity behavior of cyclic softening or cyclic hardening materials. Thus modified model considers the isotropic hardening as well as kinematic hardening of yield surface, and it can present description of plasticity behavior and ratcheting of cyclic softening and cyclic hardening materials well under multiaxial loading.
Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.
Kristensen, J H; Hoatson, G L; Vold, R L
1998-11-01
The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1.
Buenzli, Esther [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Marley, Mark S. [NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States); Apai, Dániel [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Saumon, Didier [Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States); Biller, Beth A. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Crossfield, Ian J. M. [Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721 (United States); Radigan, Jacqueline, E-mail: buenzli@mpia.de [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2015-10-20
The re-emergence of the 0.99 μm FeH feature in brown dwarfs of early- to mid-T spectral type has been suggested as evidence for cloud disruption where flux from deep, hot regions below the Fe cloud deck can emerge. The same mechanism could account for color changes at the L/T transition and photometric variability. We present the first observations of spectroscopic variability of brown dwarfs covering the 0.99 μm FeH feature. We observed the spatially resolved very nearby brown dwarf binary WISE J104915.57–531906.1 (Luhman 16AB), a late-L and early-T dwarf, with Hubble Space Telescope/WFC3 in the G102 grism at 0.8–1.15 μm. We find significant variability at all wavelengths for both brown dwarfs, with peak-to-valley amplitudes of 9.3% for Luhman 16B and 4.5% for Luhman 16A. This represents the first unambiguous detection of variability in Luhman 16A. We estimate a rotational period between 4.5 and 5.5 hr, very similar to Luhman 16B. Variability in both components complicates the interpretation of spatially unresolved observations. The probability for finding large amplitude variability in any two brown dwarfs is less than 10%. Our finding may suggest that a common but yet unknown feature of the binary is important for the occurrence of variability. For both objects, the amplitude is nearly constant at all wavelengths except in the deep K i feature below 0.84 μm. No variations are seen across the 0.99 μm FeH feature. The observations lend strong further support to cloud height variations rather than holes in the silicate clouds, but cannot fully rule out holes in the iron clouds. We re-evaluate the diagnostic potential of the FeH feature as a tracer of cloud patchiness.
Creep-fatigue damage under multiaxial conditions. [LMFBR
Lobitz, D.W.; Nickell, R.E.
1977-02-01
ASME Code rules for design against creep-fatigue damage for Class 1 nuclear components operating at elevated temperatures are currently being studied by ASME working groups and task forces with a view toward major modification. In addition, the design rules being developed for Class 2 and Class 3 components would be affected by any major modifications of Class 1 Rules. The report represents an attempt to evaluate the differences between two competing procedures--linear damage summation and strainrange partitioning--for multiaxial stress conditions. A modified version of strainrange partitioning is also developed to alleviate some limitations on nonproportional loading.
Treatment of multiaxial creep-fatigue by strainrange partitioning
Manson, S. S.; Halford, G. R.
1976-01-01
The paper investigates some basic concepts and their application for extending the strain-range partitioning method for treating elevated-temperature creep-fatigue interactions from uniaxial to multiaxial situations. The problem is restricted to initiation of an engineering-size crack and to proportional loading. The basic parameters are the Mises-Hencky equivalent stress and strain, and a rule is formulated for choosing the sign of the dominant principal direction. Creep and plastic ratchet strains can also be taken into account. The interaction damage rule is formulated. An application to hold-time tests in torsion illustrates the use of the rules developed.
A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations
Shay, R. M., Jr.; Caruthers, J. M.
1987-01-01
Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.
Aspect of cumulative fatigue damage under multiaxial strain cycling.
Zamrik, S. Y.; Tang, P. Y.
1972-01-01
The concept of order of loading and its effect on cumulative fatigue damage under multiaxial strain cyclings was investigated. The effect is illustrated through nonlinear relationships between biaxial fatigue damage and cycle-ratio diagrams. Uniaxial theories such as Miner's method, the convergence method, and the double linear damage rule in its special and generalized form, were examined and extended to the biaxial case through the octahedral shear strain theory. The generalized double linear damage rule was found more applicable to biaxial cumulative fatigue damage.
The multi-axis vibration environment and man.
Lovesey, E J
1970-12-01
Many investigations into the effects of vibration on man have been performed since Mallock's first study of London Underground vibrations in 1902. The vibration research has tended to be confined to the vertical (heave) axis, yet recent experiments have indicated that low frequency vibration along the lateral (sway) axis has a greater adverse effect upon comfort and performance. Measurements of the vibration environments in current forms of transport including motor vehicles, hovercraft and aircraft etc have shown that appreciable quantities of vibration along all three axes exist. Further vibration research should consider the effects of multi-axis vibrations upon man rather than limit tests to single axis vibration.
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
2 þ wT T kð Þexp T kð ÞFE 2 ð10:2Þ The optimization software currently has three methods available: Powell’s method, a genetic algorithm (GA...multiaxial experimentation. The software can accommodate control modes for load, stroke , and strain implemented through stroke (pseudo-strain). The load...and stroke control utilize the built-in capabilities of the test frame controller. However; the pseudo-strain control requires an understanding of the
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
ModelSim/Simulink Cosimulation and FPGA Realization of a Multiaxis Motion Controller
Ying-Shieh Kung
2015-01-01
Full Text Available This paper is to implement a multiaxis servo controller and a motion trajectory planning within one chip. At first, SoPC (system on a programmable chip technology which is composed of an Altera FPGA (field programmable gate arrays chip and an embedded soft-core Nios II processor is taken as the development of a multiaxis motion control IC. The multiaxis motion control IC has two modules. The first module is Nios II processor which realizes the motion trajectory planning by software. It includes the step, circular, window, star, and helical motion trajectory. The second module presents a function of the multiaxis position/speed/current controller IP (intellectual property by hardware. And VHDL (VHSIC Hardware Description Language is applied to describe the multiaxis servo controller behavior. Before the FPGA realization, a cosimulation work by ModelSim/Simulink is applied to test the VHDL code. Then, this IP combined by Nios II processor will be downloaded to FPGA. Therefore, a fully digital multiaxis motion controller can be realized by a single FPGA chip. Finally, to verify the effectiveness and correctness of the proposed multiaxis motion control IP, a three-axis motion platform (XYZ table is constructed and some experimental results are presented.
[Posterior atlantoaxial fixation using vertex multiaxial screw system].
Zhong, Dejun; Song, Yueming
2007-06-01
This study aims to assess the effectiveness and advantages of Vertex multiaxial screw system in use for stabilizing the atlanto-axial junction. The entry point of the atlas was located 18-20 mm lateral to the midline and 2.0 mm superior to the inferior border of posterior arch, and the direction of screw was chosen to be about 10 degrees medial to the sagittal plane and about 5 degrees cephalad to the transverse plane. In odontoid vertebra (C2), the direction of the drill bit was guided directly by the medial and superior aspect of the individual C2 pedicle. All screws were placed properly without incidence of nerve or blood vessel injury, and no complication appeared in operation and after surgery. All cases were followed up for an average of 9 months, all cases achieved well reposition and fixation of atlantoaxial joint, average JOA grade was 9.6 before preoperation and 15.9 after operation. Fixation of the atlantoaxial complex using Vertex multiaxial screw system seemed to be a reliable technique and should be considered a good alternative in atlantoaxial fusion. The technique could be used in young patiens.
Experimental study of aluminium honeycomb behaviour under dynamic multiaxial loading
Markiewicz E.
2012-08-01
Full Text Available Split Hopkinson Pressure Bar system (SHPB with large-diameter and Nylon bars introducing a shear-compression loading device is used in order to investigate the dynamic behaviour of aluminium honeycomb under multiaxial loadings conditions. All shear-compression configurations including the loading angle variation from 0∘ to 60∘ are performed with an impact velocity of about 15m/s. The adapted SHPB system with the device are validated numerically and a phenomenon of separation between the input bar and the input beveled bar is observed. Numerical results suggest that this phenomenon provides a cutting of the reflected wave. An electro optical extensometer is employed in experiments. A good agreement between the numerical elastic waves and the experimental ones is obtained. Experimental results show a significant effect of the loading angle on the apparent stress-strain curves. The initial peak value and the plateau stress decrease with the increase of the loading angle. The combined shear-compression device with an enhancement at the alignment set-up provides efficient results for samples dynamically loaded. This device will be used to investigate the influence of the in-plane orientation angle on the deformation mechanisms and multiaxial behaviour of aluminium honeycomb under dynamic and quasi-static loading conditions.
Multiaxial fatigue analysis for IMIC of ITER upper ELM coil
Zhang, S.W., E-mail: zhangsw@ipp.cn; Song, Y.T.; Wang, Z.W.; Lu, S.; Ji, X.; Du, S.S.; Liu, X.F.; Feng, C.L.; Yang, H.; Wang, S.K.; Luo, Z.R.
2014-04-15
Highlights: • The structural analysis provides the initial stresses. • Constant and variation of principal stress direction provide the design codes. • Two methods can be recommended for the ELM coils. • IMIC meets the fatigue criteria. - Abstract: Inconel Jacketed Mineral Insulated Conductor (IMIC) is a very important component of International Thermonuclear Experimental Reactor (ITER) Edge Localized Modes (ELM) coils, which are located between the vacuum vessel (VV) and blanket shield modules and subject to high radiation levels, high temperature and high magnetic field. These coils will experience thermal pulsed, cyclic electromagnetic (EM) load during operation. They are designed to sustain at 1.5e8 total stress cycles and shall have sufficient strength and excellent fatigue to transport and bear the high cyclic load. For IMIC, multiaxial fatigue analysis is used to evaluate failure. Two methods based on the alternating stress and mean stress in American Society of Mechanical Engineers (ASME) code provide the design codes for multiaxial fatigue evaluation: constant principal stress direction and variation of principal stress direction. Results show that using the two methods obtains basically the same equivalent alternating stress. Both of them can be recommended for the ELM coils and IMIC can meet the fatigue criteria.
The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.
Sanyal, Arnav; Scheffelin, Joanna; Keaveny, Tony M
2015-01-01
Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (lCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36),mechanical anisotropy (range of E3/E1¼3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension,compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space.The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal box like shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized strain space combined with a piecewise linear yield criterion in two planes for normalshear loading (mean error SD: 4.660.8% for the finite element data versus the criterion).This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.
Nemeth, Noel
2013-01-01
Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software
Saito, S.; Stawarz, L.; Tanaka, Y.T.; Takahashi, T.; Madejski, G.; D' Ammando, F.
2013-03-20
Here we report on the detailed analysis of the γ-ray light curve of a luminous blazar PKS 1510-089 observed in the GeV range with the Large Area Telescope (LAT) onboard the Fermi satellite during the period 2011 September - December. By investigating the properties of the detected three major flares with the shortest possible time binning allowed by the photon statistics, we find a variety of temporal characteristics and variability patterns. This includes a clearly asymmetric profile (with a faster flux rise and a slower decay) of the flare resolved on sub-daily timescales, a superposition of many short uncorrelated flaring events forming the apparently coherent longer-duration outburst, and a huge single isolated outburst unresolved down to the timescale of three-hours. In the latter case we estimate the corresponding γ-ray flux doubling timescale to be below one hour, which is extreme and never previously reported for any active galaxy
Michels, R; Siebel, U; Freyberger, H J; Schönell, H; Dilling, H
2001-01-01
Forty-five raters in 7 German centres took part in a multicentric field trial of the multiaxial system of ICD-10, delivering a total of 488 multiaxial assessments of 12 written case summaries. In addition to the multi-axial ratings (including main and subsidiary psychiatry diagnoses, level of social dysfunctioning and psychosocial stressors), assessments were made by the raters of the aetiology, treatment indications and prognosis of the main psychiatric disorder. There were significant correlations between these judgements and the measures of the multiaxial ratings: 62% of the cases diagnosed as endogenous were assessed as having a high level of social dysfunctioning (the proportion for all cases being 50.4%) and 63.4% as having a low number of stressors (vs. 52.8% in all cases). In contrast, cases diagnosed as reactive were assessed as having a lower level of social dysfunctioning and more social stressors. Cases whose prognosis was poor showed a higher rate of comorbidity and a high level of social dysfunctioning. The results demonstrate that the multiaxial approach reflects factors important to the process of clinical treatment and decision making and delivers preliminary evidence of this system's treatment and prognostic validity.
A review of creep analysis and design under multi-axial stress states
Yao, H.-T. [School of Mechanical and Power Engineering, East China University of Science and Technology, 130, Meilong Street, PO Box 402, Shanghai 200237 (China); Xuan Fuzhen [School of Mechanical and Power Engineering, East China University of Science and Technology, 130, Meilong Street, PO Box 402, Shanghai 200237 (China)], E-mail: fzxuan@ecust.edu.cn; Wang Zhengdong; Tu Shantung [School of Mechanical and Power Engineering, East China University of Science and Technology, 130, Meilong Street, PO Box 402, Shanghai 200237 (China)
2007-10-15
The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented.
HE Zhen-jun; SONG Yu-pu
2008-01-01
Multiaxial compression tests were performed on 100 mm × 100 mm × 100 nun high-strength high-performance concrete (HSHPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gerstle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.
Spronck, J.; Pereira, S.F.; Braat, J.J.M.
2007-01-01
We show the theoretical limitations of a multi-axial nulling interferometer with respect to longitudinal polarization. We furthermore analyze the filtering capabilities of a single-mode fiber in this case.
Ultimate Strength of Wind Turbine Blades under Multiaxial Loading
Haselbach, Philipp Ulrich
loading effects and its influence on the ultimate strength of typical wind turbine rotor blade structures and to develop methods to perform reliable prediction of failure. For this purpose, origin and consequence of some of the typically occurring failure types in wind turbine rotor blades...... the ultimate strength of wind turbine rotor blades under multiaxial loadings. Failure origin and effects are studied numerically and experimentally with the purpose to investigate root causes of blade failure and to find generalities for their origin. The main contributions from this PhD study covering...... criteria are studied and their limitations demonstrated by comparing numerical and experimental results of a full scale blade loaded to ultimate failure. The main contributions from this PhD thesis dealing with failure origin and effects are the determination of generalities of failure. For buckling driven...
Prospective multiaxial motion correction for fMRI.
Ward, H A; Riederer, S J; Grimm, R C; Ehman, R L; Felmlee, J P; Jack, C R
2000-03-01
Corruption of the image time series due to interimage head motion limits the clinical utility of functional MRI. This paper presents a method for real-time prospective correction of rotation and translation in all six degrees of rigid body motion. By incorporating an orbital navigator (ONAV) echo for each of the sagittal, axial, and coronal planes into the fMRI pulse sequence, rotation and translation can be measured and the spatial orientation of the image acquisition sequence that follows can be corrected prospectively in as little as 160 msec. Testing of the method using a computerized motion phantom capable of performing complex multiaxial motion showed subdegree rotational and submillimeter translational accuracy over a range of +/-8 degrees and +/-8 mm of motion. In vivo images demonstrate correction of simultaneous through-plane and in-plane motion and improved detection of fMRI activation in the presence of head motion.
Multiaxial Cyclic Thermoplasticity Analysis with Besseling's Subvolume Method
Mcknight, R. L.
1983-01-01
A modification was formulated to Besseling's Subvolume Method to allow it to use multilinear stress-strain curves which are temperature dependent to perform cyclic thermoplasticity analyses. This method automotically reproduces certain aspects of real material behavior important in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These include the Bauschinger effect, cross-hardening, and memory. This constitutive equation was implemented in a finite element computer program called CYANIDE. Subsequently, classical time dependent plasticity (creep) was added to the program. Since its inception, this program was assessed against laboratory and component testing and engine experience. The ability of this program to simulate AGTE material response characteristics was verified by this experience and its utility in providing data for life analyses was demonstrated. In this area of life analysis, the multiaxial thermoplasticity capabilities of the method have proved a match for the actual AGTE life experience.
Designing aluminium friction stir welded joints against multiaxial fatigue
L. Susmel
2016-07-01
Full Text Available The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM in estimating multiaxial fatigue strength of aluminium friction stir (FS welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.
Multiaxial fatigue of aluminium friction stir welded joints: preliminary results
D. G. Hattingh
2015-07-01
Full Text Available The aim of the present research is to check the accuracy of the Modified Wöhler Curve Method (MWCM in estimating the fatigue strength of friction stir (FS welded tubular joints of Al 6082-T6 subjected to in-phase and out-of-phase multiaxial fatigue loading. The welded samples being investigated were manufactured by equipping an MTS I-STIR process development system with a retracting tool that was specifically designed and optimised for this purpose. These specimens were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out by using the generated experimental results allowed us to prove that the MWCM (applied in terms of nominal stresses is highly accurate in predicting the fatigue strength of the tested FS welded joints, its usage resulting in estimates falling with the uniaxial and torsional calibration scatter bands.
Study on signal characteristic analysis of multi-axis load measurement sensors
Hwang, Sang-Kyun; Hwang, Hui-Yun
2016-11-01
This study suggested a tactile sensor with piezoelectric sensors in a fibrous shape to detect multi-axial loads (vertical load and horizontal load) simultaneously for the skins of unmanned robots. The sensor was designed by finite element analyses. A simple detecting scheme of the multi-axial loads was constructed by lab-scale experiments. Verification tests of the developed tactile sensor confirmed that applied vertical and horizontal loads could be detected with less than 4% error.
Performance of resin transfer molded multiaxial warp knit composites
Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor
Modular design and development methodology for robotic multi-axis F/M sensors
Liang, Qiao-Kang; Zhang, Dan; Coppola, Gianmarc; Wu, Wan-Neng; Zou, Kun-Lin; Wang, Yao-Nan; Sun, Wei; Ge, Yun-Jian; Ge, Yu
2016-04-01
Accurate Force/Moment (F/M) measurements are required in many applications, and multi-axis F/M sensors have been utilized a wide variety of robotic systems since 1970s. A multi-axis F/M sensor is capable of measuring multiple components of force terms along x-, y-, z-axis (Fx, Fy, Fz), and the moments terms about x-, y- and z-axis (Mx, My and Mz) simultaneously. In this manuscript, we describe experimental and theoretical approaches for using modular Elastic Elements (EE) to efficiently achieve multi-axis, high-performance F/M sensors. Specifically, the proposed approach employs combinations of simple modular elements (e.g. lamella and diaphragm) in monolithic constructions to develop various multi-axis F/M sensors. Models of multi-axis F/M sensors are established, and the experimental results indicate that the new approach could be widely used for development of multi-axis F/M sensors for many other different applications.
Modular design and development methodology for robotic multi-axis F/M sensors.
Liang, Qiao-Kang; Zhang, Dan; Coppola, Gianmarc; Wu, Wan-Neng; Zou, Kun-Lin; Wang, Yao-Nan; Sun, Wei; Ge, Yun-Jian; Ge, Yu
2016-04-22
Accurate Force/Moment (F/M) measurements are required in many applications, and multi-axis F/M sensors have been utilized a wide variety of robotic systems since 1970s. A multi-axis F/M sensor is capable of measuring multiple components of force terms along x-, y-, z-axis (Fx, Fy, Fz), and the moments terms about x-, y- and z-axis (Mx, My and Mz) simultaneously. In this manuscript, we describe experimental and theoretical approaches for using modular Elastic Elements (EE) to efficiently achieve multi-axis, high-performance F/M sensors. Specifically, the proposed approach employs combinations of simple modular elements (e.g. lamella and diaphragm) in monolithic constructions to develop various multi-axis F/M sensors. Models of multi-axis F/M sensors are established, and the experimental results indicate that the new approach could be widely used for development of multi-axis F/M sensors for many other different applications.
Large-scale Networked Multi-axis Control solution using EtherCAT and Soft Logic
Zhiyuan Cheng
2013-09-01
Full Text Available Aiming at the deficiencies of the traditional multi-axis control solution such as complex networked structure, poor clustered-control feature and unsatisfactory engineering practicability, the paper firstly optimized the existing solution in networked fieldbus, controller model, engineering reliability and maintainability. Then it proposed a novel solution combined high speed real-time EtherCAT (Ethernet for control Automation Technology fieldbus with soft logic controller. The new solution took advantage of extraordinary real-time performance of EtherCAT and made good use of powerful clustered-control architecture of soft logic controller. Thus the new solution is concise and effective to solve the Large-scale networked controlling problem of 1100 distributed motors. Compared with the traditional schemes, the engineering practice shows that the novel solution has the advantage of perfect real-time performance, powerful clustered-control capability, flexible and variable networked structure, excellent engineering practicability.The novel solution is worth using for reference in solve similar large-scale networked controlling problems.
Automating QCD amplitudes with on-shell methods
Badger, Simon
2016-01-01
We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes.
Amplitudes, acquisition and imaging
Bloor, Robert
1998-12-31
Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.
Scattering amplitudes in gauge theories
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Beltrao, Marcelo A.N.; Reis, Felippe T.C.; Castrodeza, Enrique M.; Bastian, Fernando L. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia
2005-07-01
The fatigue behavior of base metal, weld metal and heat affected zone of longitudinal welded joints of API 5L X-70 pipeline steel used in oil and gas transportation were studied. Fatigue tests were carried under load control for R = 0.1 and 0.5 with constant and variable amplitude, in this case with application of alternate tensile overloads (75 and 100% of maximum load) at 0,5 mm crack growth intervals. The fatigue tests results were obtained by a vs. N and da/dN vs. {delta}K curves. It can be inferred from a vs. N curves that the specimens submitted to R = 0.5 showed smaller fatigue lives than the ones under R = 0.1, with application of overloads or not. The da/dN vs. {delta}K curves exhibited the highest propagation rates for welded joints submitted to R = 0.5. The overloads promoted delay on crack growth at the three regions of the welded joints, the effect being more pronounced for R 0.1. However, for both R values, the effect of crack propagation delay with the overloads decreased with the increase of {delta}K value. (author)
Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading.
Mahtabi, M J; Shamsaei, Nima
2015-03-01
The realistic loading condition for many components is multiaxial arising from multidirectional loading or geometry complexities. In this study, some multiaxial stress-based classical and critical plane fatigue models are briefly reviewed and their application for martensitic Nitinol under torsion and in-phase axial-torsion loading is evaluated. These models include von Mises equivalent stress, Tresca, Findley, McDiarmid, and a proposed stress-based Fatemi-Socie-type model. As the fatigue cracks appear to be on the maximum shear plane for the martensitic Nitinol, all the models examined here consider the shear stress as the primary damage parameter. Among all the models considered in this study, the proposed Fatemi-Socie-type model provides a better prediction for fatigue lives when compared to torsion and in-phase multiaxial fatigue experimental data from literature. Analyses indicate that critical plane approaches are more appropriate for multiaxial fatigue prediction of Nitinol alloys, at least in martensitic phase. Finally, recommendations are made to calibrate more reliable multiaxial fatigue models for Nitinol. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geometric multiaxial representation of N -qubit mixed symmetric separable states
SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik
2017-08-01
The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.
Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive
Popelar, C.F.; Liechti, K.M. [Univ. of Texas, Austin, TX (United States)
1997-07-01
Many polymeric materials, including structural adhesives, exhibit a nonlinear viscoelastic response. The nonlinear free volume approach is based on the Doolittle concept that the free volume controls the mobility of polymer molecules and, thus, the inherent time scale of the material. It then follows that factors such as temperature and moisture, which change the free volume, will influence the time scale. Furthermore, stress-induced dilatation will also affect the free volume and, hence, the time scale. However, during this investigation dilatational effects alone were found to be insufficient in describing the response of near pure shear tests performed on a bisphenol A epoxy with an amido amine hardener. Thus, the free volume approach presented here has been modified to include distortional effects in the inherent time scale of the material. In addition to predicting the global response under a variety of multiaxial stress states, the modified free volume theory also accurately predicts the local displacement fields, including those associated with a localized region, as determined from geometric moire measurements at various stages of deformation.
Multiaxial mixed-mode cracking - small crack initiation and propagation
Freitas, M. de; Reis, L.; Li Bin [Lisbon Univ. (Portugal). ICEMS - Inst. of Material and Surface Science and Engineering
2006-07-01
Both the fatigue crack path and fatigue life of CK45 steel and 42CrMo4 steel under various multiaxial loading paths are studied in this paper. The replica method was applied to monitor the crack initiation and small crack growth, the fractographic analyses were carried out on the fracture surface and the crack initiation angle was measured. The effects of non-proportional loading on both the crack path and fatigue life were studied, and the flattening of asperities on the crack surface due to compressive normal stress was also observed. An improved model is proposed based on correcting the strain range parameter of the ASME code approach, taking into account the additional hardening caused by the non-proportional loading path, which can improve the predictions of the fatigue lives for various non-proportional loading paths and provide an easy way to overcome the drawbacks of the current ASME code approach for non-proportional fatigue. Based on these corrected strain range parameters, a strain intensity factor range is used to correlate with the experimental results of small crack growth rates. It is concluded that the orientation of the early crack growth can be predicted well by the critical damage plane, but the fatigue life can not be predicted accurately using only the parameters on the critical plane, since the damage on all the planes contributes to fatigue damage as stated by the integral approaches. (orig.)
Coverage of multiaxial fatigue criteria in fatigue limit region
Papuga J.
2007-11-01
Full Text Available There is a power of methods aimed at calculation of equivalent fatigue limit for arbitrary multiaxial loading. Although there are so many ways of computation, their thorough mutual comparison in a larger scale is missing. The database project presented in this paper comprise of several databases crowned with the FatLim database, which comprise of a huge number of experimental results and of 18 computational method working in the category mentioned before. The great block of data was acquired using in-house fatigue software PragTic, which is offered as a freeware application. The FatLim database follows its philosophy of a simple and non-paid accessibility. Its query tool written in MySQL and PhP allows to users to evaluate a practical usability of tested methods on load cases, which the users define. All the issues covered within this paper are available on the website www.pragtic.com, structure of which is described here.
Microstructure: Property correlation. [multiaxial fatigue damage evolution in waspaloy
Jayaraman, N.
1990-01-01
Strain controlled torsional and biaxial (tension-torsion) low cycle fatigue behavior of Waspaloy was studied at room temperature as a function of heat treatment. Biaxial tests were conducted under proportional (when the axial and torsional strain cycles are in-phase) and non-proportional (when the axial and torsional strain cycles are 90 deg out-of-phase) cyclic conditions. The deformation behavior under these different cyclic conditions were evaluated by slip trace analysis. For this, a Schmidt-type factor was defined for multiaxial loading conditions and it was shown that when the slip deformation is predominant, non-proportional cycles are more damaging than proportional or pure axial or torsional cycles. This was attributed to the fact that under non-proportional cyclic conditions, deformation was through multiple slip as opposed single slip for other loading conditions, which gave rise to increased hardening. The total life for a given test condition was found to be independent of heat treatment. This was interpreted as being due to the differences in the cycles to initiation and propagation of cracks.
A multiaxial theory of viscoplasticity for isotropic materials
Robinson, D. N.; Ellis, J. R.
1986-01-01
Many viscoplastic constitutive models for high temperature structural alloys are based exclusively on uniaxial test data. Generalization to multiaxial states of stress is made by assuming the stress dependence to be on the second principal invariant (J sub 2) of the deviatoric stress, frequently called the effective stress. If such a J sub 2 theory, based on uniaxial testing, is called upon to predict behavior under conditions other than uniaxial, e.g., pure shear, and it does so poorly, nothing is left to adjust in the theory. For a fully isotropic material whose inelastic deformation behavior is relatively independent of hydrostatic stress, the most general stress dependence is on the two (non-zero) principal invariants of the deviatoric stress, J sub 2 and J sub 3. These invariants constitute what is known as an integrity basis for the material. A time dependent constitutive theory with stress dependence on J sub 2 and J sub 3 is presented, that reduces to a known J sub 2 theory as a special case.
PRIGo: a new multi-axis goniometer for macromolecular crystallography
Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)
2015-05-09
The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.
Krakhmalev, O. N.; Petreshin, D. I.; Fedonin, O. N.
2016-04-01
There is a developed method of correction of the integrated motion deviations of industrial robots and multiaxis machines, which are caused by the primary geometrical deviations of their segments. This method can be used to develop a control system providing the motion correction for industrial robots and multiaxis machines.
Real topological string amplitudes
Narain, K. S.; Piazzalunga, N.; Tanzini, A.
2017-03-01
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.
A comparison of methods for calculating notch tip strains and stresses under multiaxial loading
M. Lutovinov
2016-10-01
Full Text Available Selected methods for calculating notch tip strains and stresses in elastic–plastic isotropic bodies subjected to multiaxial monotonic loading were compared. The methods use sets of equations where hypothetical notch tip elastic strains and stresses obtained from FEM calculations serve as an input. The comparison was performed within two separate groups of methods: the first group consists of the methods intended for cases of multiaxial proportional loading and the second group deals with multiaxial non-proportional loading. Originally, the precision of the methods was validated by comparison with results obtained from elastic–plastic FEM analyses. Since computer performance at the time was lower than nowadays, verification of the proposed methods on FEM models with a finer mesh was needed. Such verification was carried out and is presented in this paper. The effect of various formulations of material stress–strain curve was also evaluated
[Erik Essen-Möller and the roots of multiaxial classification in psychiatry].
Jäger, M; Frasch, K; Becker, T
2011-05-01
Against the background of the preparation of ICD-11 and DSM-V, the historical roots of a multiaxial diagnostic assessment in psychiatry are reviewed. The principles of such an approach are traced back to the Swedish psychiatrist Erik Essen-Möller who had proposed a distinction between aetiological and descriptive aspects in the classification of mental disorders. Furthermore, he suggested to break down the descriptive classification into the cross-sectional psychopathological picture and the clinical course. Nowadays, a multiaxial assessment is used in diagnostic systems such as DSM-IV. However, these current concepts differ considerably from Essen-Möller's suggestions. A return to the original approach of multiaxial diagnostic assessment comprising the axes "syndromes", "course types" and "aetiology" would be in line with current neurobiological findings and may provide a bridge between the traditional categorical diagnostic approach and dimensional models.
Design and implementation of a multi-axis precision movement machine based on MAS theory
Li MA; Linlin CI; Genyan GE
2009-01-01
A model construction of a multi-agent system (MAS) and the basic function of the agent are described.The precision control method using the multi-CPU of a programmable logic controller (PLC) is introduced,and a distributed method using multiple CPUs to control different motion machines is given.The test results indicate that in industrial control fields,the combination of using the credible PLC to control the motion machine and multi-CPU task distributing methods can solve multi-axis machine linkage and implication,providing a more credible method for multi-axis motion units.
Lavrov Kirill
2016-01-01
Full Text Available The hyperelastic orthotropic material model is proposed to describe the nonlinear behavior of concrete under monotonic multiaxial loading with taking into account the tension-compression anisotropy. The orthotropy is introduced for the correct description of concrete cracking. The hyperelasticity provides unconditional thermodynamical consistency and advantages in numerical solving of boundary value problems. Identification of model parameters is based on four experimental deformation diagrams of concrete: axial stress - axial strain and axial stress - transverse strain under uniaxial tension and compression. The results of the hyperelastic orthotropic model are compared with Karpenko’s orthotropic model and experimental data for multiaxial loading.
Sullivan, T. L.; Chamis, C. C.
1972-01-01
Tubular specimens were potted in metal grips to determine the feasibility of this gripping method in applying multiaxial loads. Strain gage rosettes were used to assess grip transitional strains, through thickness strain variation and strain variations along the tube length and circumference. The investigation was limited to loading 0, 45, plus or minus 45, and 90 deg graphite/epoxy and glass/epoxy tubes in axial tension. Results include modifications made to the grips to reduce transitional strains, illustrations of the tube failure modes, and some material properties. The gripping concept shows promise as a satisfactory technique for applying multiaxial loads to high-strength, high-modulus fiber composite tubes.
Kalluri, Sreeramesh
2013-01-01
Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.
Mechanical models of amplitude and frequency modulation
Bellomonte, L; Guastella, I; Sperandeo-Mineo, R M [GRIAF - Research Group on Teaching/Learning Physics, DI.F.TE.R. -Dipartimento di Fisica e Tecnologie Relative, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy)
2005-05-01
This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.
Protostring scattering amplitudes
Thorn, Charles B.
2016-11-01
We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.
Protostring Scattering Amplitudes
Thorn, Charles B
2016-01-01
We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...
Evaluation method of multiaxial low cycle fatigue life for cubic single crystal material
CHEN Jiping; DING Zhiping
2007-01-01
The coupling effect of normal stress and shear stress on orthotropic materials happens when applied loading deflects from the directions of the principal axes of the material coordinate system.By taking account of the coupling effects,formulas of equivalent stress and strain for cubic single crystal materials are cited.Using the equivalent strain and equivalent stress for such material and a variable k,which is introduced to express the effect of asymmetrical cyclic loading on fatigue life,a low cycle fatigue (LCF) life prediction model for such material in multiaxial stress starts is proposed.On the basis of the yield criterion and constitutive model of cubic single crystal materials,a subroutine to calculate the thermo elastic-plastic stress-strain of the material on an ANSYS platform was developed.The cyclic stress-strain of DD3 notched specimens under asymmetrical loading at 680℃ was analyzed.Low cycle fatigue test data of the single crystal nickel-based superalloy are used to fit the different parameters of the power law with multiple linear regression analysis.The equivalent stress and strain for a cubic single crystal material as failure parameters have the largest correlation coefficient.A power law exists between k and the failure cycle.The model was validated with LCF test data of CMSX-2 and DD3 single crystal nickel-based superalloys.All the test data fall into the factor of 2.5 for CMSX-2 hollow cylinder specimens and 2.0 scatter band for DD3 notched specimens,respectively.
Predictive validity of the physical disorders axis of the DSM multiaxial diagnostic system.
Saavedra, J E; Mezzich, J E; Salloum, I M; Kirisci, L
2001-07-01
This paper reports on the predictive validity of the physical disorders axis (axis III) of the DSM multiaxial diagnostic system at 3-year follow-up. A total of 515 general psychiatric patients were assessed with a semistructured procedure that covers all DSM-III diagnoses and axes, and were subsequently followed up for 3 years. Outcome was assessed with several measures of adaptive functioning. Baseline axis III was analyzed according to a) presence of any physical disorder, b) the number of these, c) presence of major chronic physical disorders (MCPD), and d) the number of these. Prediction of impairment in functioning (Strauss-Carpenter Scale), derived from baseline axis III, ranged from a correlation coefficient of .18 when expressed as the presence of any physical disorder to .35 when represented by the number of MCPD. Furthermore, within patients with specific psychiatric disorders, it was found that number of MCPD reached a predictive validity of .55 for patients with dysthymic disorders, .44 for those with anxiety disorders, and .41 for those with major depression. Comparative multiple regression analyses, controlling for demographic and clinical variables, showed that the number of MCPD at baseline was the most important predictor of functioning outcome among patients with dysthymic disorders and major depression. The number of MCPD experienced by general psychiatric patients seems to be an important predictor of future functioning, particularly for patients with certain psychiatric disorders. This points out the importance of considering the relationship between psychiatric and MCPD when conducting systematic clinical assessments towards the prediction of course and outcome.
Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code
Jadaan, Osama M.
1998-01-01
High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the
Holonomy-flux spinfoam amplitude
Perini, Claudio
2012-01-01
We introduce a holomorphic representation for the Lorentzian EPRL spinfoam on arbitrary 2-complexes. The representation is obtained via the Ashtekar-Lewandowski-Marolf-Mour\\~ao-Thiemann heat kernel coherent state transform. The new variables are classical holonomy-flux phase space variables $(h,X)\\simeq \\mathcal T^*SU(2)$ of Hamiltonian loop quantum gravity prescribing the holonomies of the Ashtekar connection $A=\\Gamma + \\gamma K$, and their conjugate gravitational fluxes. For small heat kernel `time' the spinfoam amplitude is peaked on classical space-time geometries, where at most countably many curvatures are allowed for non-zero Barbero-Immirzi parameter. We briefly comment on the possibility to use the alternative flipped classical limit.
王伟; 魏洪兴; 甄彧
2012-01-01
倾翻是汽车起重机最为严重的安全事故之一,为防止汽车起重机倾翻事故的发生,建立合理有效的防倾翻安全检测方法具有重要意义.针对传统力矩限制器未考虑随汽车起重机工作方位(转台回转角度)变化汽车起重机本身抗倾翻力矩能力不同的问题,通过力矩分析分别建立起变幅油缸最大允许油压Fmax与相应的起重臂长度L、变幅角度β、转台回转角度α的关系模型Fmax=fmax(α,β,L),并建立起汽车起重机最大允许吊重Gmax和L、β、α的关系模型Gmax=gmax(α,β,L)；基于Fmax=fmax(α,β,L)和Gmax=gmax(α,β,L)两模型分别给出相应的防倾翻安全检测方法；针对起重机几种不同典型工况,以Gmax模型为例进行仿真分析,通过安装相应传感器并以所建防倾翻理论模型为基础构建防倾翻监控器,试验验证结果表明,最大允许吊重理论值与试验检测值基本一致,两者间决定系数R2=0.93.%Tip over of track crane is one of the most fatal accidents arising every year in the world. It is important to study an effective and available inspection method of tip over in order to avoid catastrophic accident happening. The traditional moment limiters of truck crane have some disadvantages because the designer reckons without the change of overturning moment caused by the change of corresponding working azimuth angle of track crane. After the torque being analyzed, the relation model Fmax =f(a, β, L), which is between maximum acceptable oil pressure of variable amplitude oil cylinder Fmax and arm-length of crane boom L, variable delta amplitude of crane boom fi, working azimuth angle of turntable a is constructed, and the relation maximum acceptable lifting capacity model Gmax= g(a,β, L) is also set up. Based on the two theory models derived, the corresponding rollover protection methods are given respectively. In the end, the above models and methods are verified via site tests. The Gmax= g(a,
Taylor, Tomasz R.
2017-05-01
This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.
Fretting fatigue crack propagation rate under variable loading conditions
C. Gandiolle
2016-01-01
Full Text Available Fretting fatigue experiments aim to represent industrial problems and most of them endure variable loading. Being able to assess lifetime of assemblies, especially for low propagation rate conditions, is essential as experimental validation is often too expensive. Both experimental and numerical approaches are proposed to follow the crack propagation rate of steel on steel cylinder/plane fretting fatigue contact submitted to variable loading conditions. An original experimental monitoring has been implemented on the fretting-fatigue test device to observe crack propagation using a potential drop technique. A calibration curve relating crack length and electrical potential was established for the studied contact. It allows direct knowledge of the crack length and crack propagation rate. It was applied to mixed load test showing crack arrest for the last loading condition. To explain this behavior, a 2-dimensional FE modeling was implemented to simulate the complexes multi-axial contact stressing. The crack propagation rate was formalized using an effective stress intensity factor amplitude ΔKeff coupled with Paris law of the material. The crack arrest condition for a given loading was related to ΔKeff along the expected crack path crossing the material crack arrest threshold ΔK0. The failure was related to ΔKeff reaching the critical stress intensity factor KIC. A good correlation with experiments was observed allowing to predict the crack arrest condition although the model tends to overestimate the final crack length extension.
Spronck, J.F.P.; Pereira, S.F.
2009-01-01
We show a fundamental limitation of multi-axial beam combiners in nulling interferometry. The longitudinal electric field induced by the focusing optics can drastically limit the performance of such a nulling interferometer. We further analyze the filtering capabilities of a single-mode optical fibe
RAMAZAN ERDEM
2016-08-01
The usage of electrical and electronic equipments has been increasing in daily life, which has a potential hazardous impact on humans and other living organisms. In this paper, multi-axial fabrics containing steel yarns and carbon filaments, and their polyester (PES) resin-reinforced composites have been prepared for electromagnetic shielding applications. The electromagnetic shielding effectiveness (EMSE) of these structures was determined by using coaxial transmission line measurement technique. There were eight different multi-axial fabrics constructed. It was observed that the amount and the orientation of carbon and stainless steel yarns influenced the EMSE performances of multi-axial fabrics and their reinforced PES composites. The structures containing both carbon filaments and stainless steel yarns exhibited better EMSE than the ones including only one type of conductive yarns or filaments. Also, the EMSE performance of multi-axial fabrics was found better than their reinforced composites. The best EMSE results were obtained for the fabric, including two layers of yarns (steel and carbon) on top of each otherin the centre with the angle of 45 and $−$45$^{\\circ}$.
An Exploration of the Base Rate Scores of the Millon Clinical Multiaxial Inventory-III
Grove, William M.; Vrieze, Scott I.
2009-01-01
The Millon Clinical Multiaxial Inventory (3rd ed.; MCMI-III) is a widely used psychological assessment of clinical and personality disorders. Unlike typical tests, the MCMI-III uses a base-rate score transformation to incorporate prior probabilities of disorder (i.e., base rates) in test output and diagnostic thresholds. The authors describe the…
Tellisi, Nazzar; Ilizarov, Svetlana; Fragomen, Austin T; Rozbruch, S Robert
2008-05-01
A case of Ollier's disease with deformity and shortening of the humerus is presented. Lengthening of 9 cm and deformity correction of 50 degrees were accomplished with excellent functional and cosmetic results. Unique features of this case were the use of a multiaxial correction monolateral frame and the formation of normal bone within the region of diseased Ollier's bone.
Loendersloot, R.; Lomov, S.V.; Akkerman, R.; Verpoest, I.
2006-01-01
The geometry of multiaxial multiply carbon reinforcement under shear deformation is studied. A description based on the distortions of the fibres bundles, induced by the stitch yarn is proposed. These distortions are recognised to be dominant for the impregnation behaviour and the damage initiation,
Crack mode and life of Ti-6Al-4V under multiaxial low cycle fatigue
Takamoto Itoh
2015-10-01
Full Text Available This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of λ=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. λ is a principal stress ratio and is defined as λ=II/I, where I and II are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at λ=0 is a uniaxial loading test and that at λ=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing λ induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.
Stable deep nulling in polychromatic unpolarized light with multiaxial beam combination.
Buisset, Christophe; Rejeaunier, Xavier; Rabbia, Yves; Barillot, Marc
2007-11-10
In the context of the space-based nulling mission ESA-Darwin, Thales Alenia Space has developed a nulling breadboard for the European Space Agency (ESA): the multiaperture imaging interferometer (MAII) to demonstrate deep and stable nulling and to investigate various subsystems of the ESA-Darwin interferometer. Recently, we have extended our investigations to the multiaxial beam combination. This combination scheme presents many advantages: simplicity, compactness, and a high coupling efficiency for a three-beam combination. The near-infrared (lambda approximately 1.55 microm) MAII breadboard has been upgraded to the multiaxial beam combination. Polarization and stability issues have been thoroughly investigated. We report on the recent results we have obtained with the multiaxial configuration of MAII in unpolarized light with a relative spectral bandwidth of 5%: nulling ratios of mean value N=1.7 x 10(-5), stable over 1 h with a standard deviation sigma( N )=5.7 x 10(-7). These results indicate that the multiaxial beam combination has the potential to meet Darwin requirements.
Multiaxial Fatigue Life Prediction for Steels Based on Some Simple Approximations
Li, Jing; Yao, Zhi-feng; Zhang, Zhong-ping
2015-01-01
The Roessle-Fatemi's hardness method (HM) and Muralidharan-Manson's modified universal slopes method (MUSM) were employed to determine the uniaxial fatigue properties of steels from easily obtained tensile properties. Both methods give good life predictions, while the Roessle-Fatemi's HM is somewhat better. Furthermore, for predicting multiaxial fatigue lives of steels in the absence of any fatigue data, the Li's modified Wang-Brown model (MWB) was used in combination with the HM method (MWB-HM) as well as the MUSM method (MWB-MUSM), respectively. Correlation between the yield strength and the Brinell hardness was also developed to estimate the multiaxial fatigue lives of steels based only on hardness and elasticity modulus. It is shown that multiaxial fatigue lives were predicted fairly well by all the methods, and the MWB-MUSM method is slightly more accurate. In addition, a computer-based procedure for multiaxial fatigue life assessment incorporating MWB-MUSM approach was proposed and implemented to predict the fatigue life of an intermediate compressor casing. The predicted results are promising.
Ball, Samuel A.; Nich, Charla; Rounsaville, Bruce J.; Eagan, Dorothy; Carroll, Kathleen M.
2004-01-01
The concurrent and predictive validity of 2 different methods of Millon Clinical Multiaxial Inventory-III subtyping (protocol sorting, cluster analysis) was evaluated in 125 recently detoxified opioid-dependent outpatients in a 12-week randomized clinical trial. Participants received naltrexone and relapse prevention group counseling and were…
Rossi, G.M.P.; Derksen, J.J.L.
2015-01-01
This article examines the influence of the Millon Clinical Multiaxial Inventory (MCMI) as a clinical and research instrument beyond the borders of the United States. The MCMI's theoretical and empirical grounding, its alignment with the Diagnostic and Statistical Manual of Mental Disorders (DSM), an
Martin, James E.; van Swol, Frank
2015-07-01
In this paper, we show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In this paper, the case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. The ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.
Review of Response and Damage of Linear and Nonlinear Systems under Multiaxial Vibration
Ed Habtour
2014-01-01
Full Text Available A review of past and recent developments in multiaxial excitation of linear and nonlinear structures is presented. The objective is to review some of the basic approaches used in the analytical and experimental methods for kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. In addition, comparison between uniaxial and multiaxial excitations and their impact on a structure’s life-cycles is provided. The importance of understanding failure mechanisms in complex structures has led to the development of a vast range of theoretical, numerical, and experimental techniques to address complex dynamical effects. Therefore, it is imperative to identify the failure mechanisms of structures through experimental and virtual failure assessment based on correctly identified dynamic loads. For that reason, techniques for mapping the dynamic loads to fatigue were provided. Future research areas in structural dynamics due to multiaxial excitation are identified as (i effect of dynamic couplings, (ii modal interaction, (iii modal identification and experimental methods for flexible structures, and (iv computational models for large deformation in response to multiaxial excitation.
Multi-axial active isolation for seismic protection of buildings
Chang, Chia-Ming
Structural control technology has been widely accepted as an effective means for the protection of structures against seismic hazards. Passive base isolation is one of the common structural control techniques used to enhance the performance of structures subjected to severe earthquake excitations. Isolation bearings employed at the base of a structure naturally increase its flexibility, but concurrently result in large base displacements. The combination of base isolation with active control, i.e., active base isolation, creates the possibility of achieving a balanced level of control performance, reducing both floor accelerations as well as base displacements. Many theoretical papers have been written by researchers regarding active base isolation, and a few experiments have been performed to verify these theories; however, challenges in appropriately scaling the structural system and modeling the complex nature of control-structure interaction have limited the applicability of these results. Moreover, most experiments only focus on the implementation of active base isolation under unidirectional excitations. Earthquakes are intrinsically multi-dimensional, resulting in out-of-plane responses, including torsional responses. Therefore, an active isolation system for buildings using multi-axial active control devices against multi-directional excitations must be considered. The focus of this dissertation is the development and experimental verification of active isolation strategies for multi-story buildings subjected to bi-directional earthquake loadings. First, a model building is designed to match the characteristics of a representative full-scale structure. The selected isolation bearings feature low friction and high vertical stiffness, providing stable behavior. In the context of the multi-dimensional response control, three, custom-manufactured actuators are employed to mitigate both in-plane and out-of-plane responses. To obtain a high-fidelity model of the
Multiaxial probabilistic elastic-plastic constitutive simulations of soils
Sadrinezhad, Arezoo
Fokker-Planck-Kolmogorov (FPK) equation approach has recently been developed to simulate elastic-plastic constitutive behaviors of materials with uncertain material properties. The FPK equation approach transforms the stochastic constitutive rate equation, which is a stochastic, nonlinear, ordinary differential equation (ODE) in the stress-pseudo time space into a second-order accurate, deterministic, linear FPK partial differential equation (PDE) in the probability density of stress-pseudo time space. This approach does not suffer from the drawbacks of the traditional approaches such as the Monte Carlo approach and the perturbation approach for solving nonlinear ODEs with random coefficients. In this study, the existing one dimensional FPK framework for probabilistic constitutive modeling of soils is extended to multi--dimension. However, the multivariate FPK PDEs cannot be solved using the traditional mathematical techniques such as finite difference techniques due to their high computational cost. Therefore, computationally efficient algorithms based on the Fourier spectral approach are developed for solving a class of FPK PDEs that arises in probabilistic elasto-plasticity. This class includes linear FPK PDEs in (stress) space and (pseudo) time - having space-independent but time-dependent, and both space- and time-dependent coefficients - with impulse initial conditions and reflecting boundary conditions. The solution algorithms, rely on first mapping the stress space of the governing PDE between 0 and 2pi using the change of coordinates rule, followed by approximating the solution of the PDE in the 2pi-periodic domain by a finite Fourier series in the stress space and unknown time-dependent solution coefficients. Finally, the time-dependent solution coefficients are obtained from the initial condition. The accuracy and efficiency of the developed algorithms are tested. The developed algorithms are used to simulate uniaxial and multiaxial, monotonic and cyclic
Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes
Mamedov, F
2002-01-01
We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that $WZ\\gamma$ production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.
Periods and Superstring Amplitudes
Stieberger, S
2016-01-01
Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...
Light Meson Distribution Amplitudes
Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.
2010-01-01
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
Quantitative Seismic Amplitude Analysis
Dey, A. K.
2011-01-01
The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...
Arya, V. K.; Kaufman, A.
1989-01-01
A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model.
Creep and creep damage in copper under uniaxial/multiaxial loading
Auerkari, Pertti; Holmstroem, Stefan; Salonen, Jorma [VTT Industrial Systems, Espoo (Finland)
2003-08-01
Multiaxial tensile loading is known to enhance accumulation of creep cavitation and cracking damage in polycrystalline metals under given equivalent loading stress and temperature. To study whether this could potentially lead to significant creep damage under long-term repository conditions, multiaxial creep testing and damage evaluation has been initiated. Multiaxial creep testing of OFP copper has been performed using sharp notches in compact tension (CT) specimens. The loading conditions (reference stress and temperature) have been selected to produce an estimated time to either failure or at least to measurable creep damage within the maximum intended testing time or about 5000 hours. For appropriate material and finite element (FE) modelling to set correct loading in multiaxial testing and to obtain a reasonable stress state conversion, parallel uniaxial creep testing has also been performed on the same material. In addition, to support the uniaxial testing and materials modelling, an overall creep rupture life assessment was performed for OFP copper, based on ECCC guidelines and PD6605 including uniaxial creep testing data from the literature. To observe potential creep damage, the multiaxial tests have been also interrupted for metallography about every 2000 h of testing, and inspected by scanning electron microscopy (SEM) for indications of damage. For comparison, metallographic inspection including transmission electron microscopy (TEM) was performed for the same material in as-new state. The initial as-new state as well as later tested states of the material appear to involve grain boundary phases, which are sometimes apparent in SEM but can also require TEM to be resolved. Until now, the multiaxial creep test at lowest reference stress (46 MPa/150 deg C) has been interrupted at 3000, 5000 and 7000 h of testing for inspection in SEM. In these inspections, only occasional scattered evidence of some possible cavitation damage has been found so far. On the
Multiaxial elastoplastic cyclic loading of austenitic 316L steel
V. Mazánová
2017-04-01
Full Text Available Cyclic stress-strain response and fatigue damage character has been investigated in austenitic stainless steel 316L. Hollow cylindrical specimens have been cyclically deformed in combined tension-compression and torsion under constant strain rate condition and different constant strain and shear strain amplitudes. In-phase and 90° out-of-phase cyclic straining was applied and the stress response has been monitored. Cyclic hardening/softening curves were assessed in both channels. Cyclic softening followed for higher strain amplitudes by long-term cyclic hardening was observed. Cyclic stress-strain curves were determined. Study of the surface damage in fractured specimens revealed the types and directions of principal cracks and the sources of fatigue crack initiation in slip bands.
Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics
Noh, Yohan; Bimbo, Joao; Sareh, Sina; Wurdemann, Helge; Fraś, Jan; Chathuranga, Damith Suresh; Liu, Hongbin; Housden, James; Althoefer, Kaspar; Rhode, Kawal
2016-01-01
This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor’s main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human–robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery) robot, and includes its design, fabrication, and evaluation tests. PMID:27869689
Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics.
Noh, Yohan; Bimbo, Joao; Sareh, Sina; Wurdemann, Helge; Fraś, Jan; Chathuranga, Damith Suresh; Liu, Hongbin; Housden, James; Althoefer, Kaspar; Rhode, Kawal
2016-11-17
This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor's main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human-robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery) robot, and includes its design, fabrication, and evaluation tests.
Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device.
Gizzi, Alessio; Giannitelli, Sara Maria; Trombetta, Marcella; Cherubini, Christian; Filippi, Simonetta; De Ninno, Adele; Businaro, Luca; Gerardino, Annamaria; Rainer, Alberto
2017-07-14
This paper describes the computationally informed design and experimental validation of a microfluidic chip device with multi-axial stretching capabilities. The device, based on PDMS soft-lithography, consisted of a thin porous membrane, mounted between two fluidic compartments, and tensioned via a set of vacuum-driven actuators. A finite element analysis solver implementing a set of different nonlinear elastic and hyperelastic material models was used to drive the design and optimization of chip geometry and to investigate the resulting deformation patterns under multi-axial loading. Computational results were cross-validated by experimental testing of prototypal devices featuring the in silico optimized geometry. The proposed methodology represents a suite of computationally handy simulation tools that might find application in the design and in silico mechanical characterization of a wide range of stretchable microfluidic devices.
Effect of multiaxial forging on microstructure and mechanical properties of Mg-o.8Ca alloy
Yurchenko, N. Yu; Stepanov, N. D.; Salishchev, G. A.; Rokhlin, L. L.; Dobatkin, S. V.
2014-08-01
It was shown that multiaxial forging with continuous decrease of temperature from 450°C to 250°C turns coarse structure of the Mg-0.8Ca alloy in homogenized state with grain size of several hundreeds gm into fine structure with average grain size of about 2.1 gm. Refinement of structure is accompanied by drastic increase of mechanical properties: tensile yield strength increases from 50 MPa to 193 MPa, ultimate tensile strength increases from 78 to 308 MPa and elongation to fracture increases from 3.0% to 7.2%. The microstructural evolution during multiaxial forging is studied using optical microscopy, scanning electron microscopy and EBSD analysis. The mechanisms responsible for refinement of microstructure are discussed
Optimization of inverse model identification for multi-axial test rig control
Müller Tino
2016-01-01
Full Text Available Laboratory testing of multi-axial fatigue situations improves repeatability and allows a time condensing of tests which can be carried out until component failure, compared to field testing. To achieve realistic and convincing durability results, precise load data reconstruction is necessary. Cross-talk and a high number of degrees of freedom negatively affect the control accuracy. Therefore a multiple input/multiple output (MIMO model of the system, capturing all inherent cross-couplings is identified. In a first step the model order is estimated based on the physical fundamentals of a one channel hydraulic-servo system. Subsequently, the structure of the MIMO model is optimized using correlation of the outputs, to increase control stability and reduce complexity of the parameter optimization. The identification process is successfully applied to the iterative control of a multi-axial suspension rig. The results show accurate control, with increased stability compared to control without structure optimization.
Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics
Yohan Noh
2016-11-01
Full Text Available This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor’s main advantages are: (1 Low power consumption; (2 low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges; (3 the ability to be embedded into different mechanical structures; (4 miniaturisation; (5 simple manufacture and customisation to fit a wide-range of robot systems; and (6 low-cost fabrication and assembly of sensor structure. For these reasons, the proposed multi-axis force/torque sensor can be used in a wide range of application areas including medical robotics, manufacturing, and areas involving human–robot interaction. This paper shows the application of our concept of a force/torque sensor to flexible continuum manipulators: A cylindrical MIS (Minimally Invasive Surgery robot, and includes its design, fabrication, and evaluation tests.
PREDICTION OF NUPECS MULTI-AXIS LOADING TESTS OF CONCRETE SHEAR WALLS.
Miller, C.; Hofmayer, C.; Wang, Y.; Chokshi, N.; Murphy, A.; Kitada, Y.
2001-03-22
The Nuclear Power Engineering Corporation (NUPEC) of Japan is performing multi-axis loading tests of reinforced concrete (RC) shear wall models. The project, which includes both static and dynamic cyclic tests, started in 1994 and is scheduled to be completed in 2004. The static tests are performed on single elements, box type and. cylindrical type structures. Both unidirectional and multidirectional loads are placed on the models during the static test phase. The dynamic tests will be performed on a shaking table for both the box type and cylindrical type structures. As part of collaborative efforts between the US and Japan the US Nuclear Regulatory Commission (NRC) and Brookhaven National Laboratory (BNL) are participating in the multi-axial cyclic static loading tests and the shaking table tests. The multi-axis loading tests are unique and will provide significant insights into the effect of out-of-plane loads on the capacity of shear wall structures. Current analysis methods use simplified assumptions and do not specifically take this effect into account. Since the fragility levels of RC shear walls are key elements in a seismic PRA of a nuclear plant, it is important to verify the methodology for determining these levels. The NUPEC tests will provide valuable data for this purpose. Pre-test predictions of the box type structure's response to the multi-axis static loading are discussed in this paper. The tests were performed by NUPEC between June and August 2000. Two models are used to make these predictions. The first is au engineering model typical of those used in current design analyses. The second is a finite element model of the structure utilizing the ANSYS computer code. In both cases cyclic load behavior into the inelastic range is considered.
Bergström, J S; Rimnac, C M; Kurtz, S M
2003-04-01
The development of theoretical failure, fatigue, and wear models for ultra-high molecular weight polyethylene (UHMWPE) used in joint replacements has been hindered by the lack of a validated constitutive model that can accurately predict large deformation mechanical behavior under clinically relevant, multiaxial loading conditions. Recently, a new Hybrid constitutive model for unirradiated UHMWPE was developed Bergström et al., (Biomaterials 23 (2002) 2329) based on a physics-motivated framework which incorporates the governing micro-mechanisms of polymers into an effective and accurate continuum representation. The goal of the present study was to compare the predictive capability of the new Hybrid model with the J(2)-plasticity model for four conventional and highly crosslinked UHMWPE materials during multiaxial loading. After calibration under uniaxial loading, the predictive capabilities of the J(2)-plasticity and Hybrid model were tested by comparing the load-displacement curves from experimental multiaxial (small punch) tests with simulated load-displacement curves calculated using a finite element model of the experimental apparatus. The quality of the model predictions was quantified using the coefficient of determination (r(2)). The results of the study demonstrate that the Hybrid model outperforms the J(2)-plasticity model both for combined uniaxial tension and compression predictions and for simulating multiaxial large deformation mechanical behavior produced by the small punch test. The results further suggest that the parameters of the HM may be generalizable for a wide range of conventional, highly crosslinked, and thermally treated UHMWPE materials, based on the characterization of four material properties related to the elastic modulus, yield stress, rate of strain hardening, and locking stretch of the polymer chains. Most importantly, from a practical perspective, these four key material properties for the Hybrid constitutive model can be measured
A multiaxial elastic potential with error-minimizing approximation to rubberlike elasticity
Gu, Zhi-Xiang; Yuan, Lu; Yin, Zheng-Nan; Xiao, Heng
2015-10-01
This study is concerned with a new, explicit approach by means of which forms of the large strain elastic potential for multiaxial rubberlike elasticity may be obtained based on data for a single deformation mode. As a departure from usual studies, here for the first time errors may be estimated and rendered minimal for all possible deformation modes and, furthermore, failure behavior may be incorporated. Numerical examples presented are in accurate agreement with Treloar's well-known data.
Chao, Luen-Yuan; Shetty, Dinesh K.
1990-01-01
The present comparison of the Batdorf (1974) flaw density and orientation distribution approach with Evans' (1978) elemental strength approach, with a view to identities in fracture criteria and distribution functions, notes that despite their fundamental differences in multiaxial loading fracture probabilities, the two approaches yield identical predictions. Lamon's (1988) assertion to the contrary, in light of different theoretical predictions by the two methods for the case of alumina disks loaded in flexure, is demonstrated to be in error.
Zheng-Yong Yu
2017-05-01
Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.
Micro-vision servo control of a multi-axis alignment system for optical fiber assembly
Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin
2017-04-01
This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately.
3D analytic cone-beam reconstruction for multiaxial CT acquisitions.
Yin, Zhye; De Man, Bruno; Pack, Jed
2009-01-01
A conventional 3rd generation Computed Tomography (CT) system with a single circular source trajectory is limited in terms of longitudinal scan coverage since extending the scan coverage beyond 40 mm results in significant cone-beam artifacts. A multiaxial CT acquisition is achieved by combining multiple sequential 3rd generation axial scans or by performing a single axial multisource CT scan with multiple longitudinally offset sources. Data from multiple axial scans or multiple sources provide complementary information. For full-scan acquisitions, we present a window-based 3D analytic cone-beam reconstruction algorithm by tessellating data from neighboring axial datasets. We also show that multi-axial CT acquisition can extend the axial scan coverage while minimizing cone-beam artifacts. For half-scan acquisitions, one cannot take advantage of conjugate rays. We propose a cone-angle dependent weighting approach to combine multi-axial half-scan data. We compute the relative contribution from each axial dataset to each voxel based on the X-ray beam collimation, the respective cone-angles, and the spacing between the axial scans. We present numerical experiments to demonstrate that the proposed techniques successfully reduce cone-beam artifacts at very large volumetric coverage.
Bergström, J S; Rimnac, C M; Kurtz, S M
2005-03-01
The development of accurate theoretical failure, fatigue, and wear models for ultra-high molecular weight polyethylene (UHMWPE) is an important step towards better understanding the micromechanisms of the surface damage that occur in load bearing orthopaedic components and improving the lifetime of joint arthoplasties. Previous attempts to analytically predict the clinically observed damage, wear, and fatigue failure modes have met with limited success due to the complicated interaction between microstructural deformations and continuum level stresses. In this work, we examined monotonic uniaxial and multiaxial loading to failure of UHMWPE using eight failure criteria (maximum principal stress, Mises stress, Tresca stress, hydrostatic stress, Coulomb stress, maximum principal strain, Mises strain, and chain stretch). The quality of the predictions of the different models was assessed by comparing uniaxial tension and small punch test data at different rates with the failure model predictions. The experimental data were obtained for two conventional (unirradiated and gamma radiation sterilized in nitrogen) and two highly crosslinked (150kGy, remelted and annealed) UHMWPE materials. Of the different failures models examined, the chain stretch failure model was found to capture uniaxial and multiaxial failure data most accurately for all of the UHMWPE materials. In addition, the chain stretch failure criterion can readily be calculated for contemporary UHMWPE materials based on available uniaxial tension data. These results lay the foundation for future developments of damage and wear models capable of predicting multiaxial failure under cyclic loading conditions.
Fatigue Failure Results for Multi-Axial versus Uniaxial Stress Screen Vibration Testing
Wayne E. Whiteman
2002-01-01
Full Text Available To date, the failure potential and prediction between simultaneous multi-axial versus sequentially applied uniaxial vibration stress screen testing has been the subject of great debate. In most applications, current vibration tests are done by sequentially applying uniaxial excitation to the test specimen along three orthogonal axes. The most common standards for testing military equipment are published in MIL-STD-810F and NAVMAT P-9492. Previous research had shown that uniaxial testing may be unrealistic and inadequate. This current research effort is a continuing effort to systematically investigate the differences between fatigue damage mechanisms and the effects of uniaxial versus tri-axial testing. This includes assessing the ability of the tri-axial method in predicting the formation of damage mechanisms, specifically looking at the effects of stress or fatigue failure. Multi-axial testing achieves the synergistic effect of exciting all modes simultaneously and induces a more realistic vibration stress loading condition. As such, it better approximates real-world operating conditions. This paper provides the latest results on the differences between multi-axial and uniaxial testing of a simple notched cantilever beam.
PULSE AMPLITUDE DISTRIBUTION RECORDER
Cowper, G.
1958-08-12
A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.
Quantitative laryngeal electromyography: turns and amplitude analysis.
Statham, Melissa McCarty; Rosen, Clark A; Nandedkar, Sanjeev D; Munin, Michael C
2010-10-01
Laryngeal electromyography (LEMG) is primarily a qualitative examination, with no standardized approach to interpretation. The objectives of our study were to establish quantitative norms for motor unit recruitment in controls and to compare with interference pattern analysis in patients with unilateral vocal fold paralysis (VFP). Retrospective case-control study We performed LEMG of the thyroarytenoid-lateral cricoarytenoid muscle complex (TA-LCA) in 21 controls and 16 patients with unilateral VFP. Our standardized protocol used a concentric needle electrode with subjects performing variable force TA-LCA contraction. To quantify the interference pattern density, we measured turns and mean amplitude per turn for ≥10 epochs (each 500 milliseconds). Logarithmic regression analysis between amplitude and turns was used to calculate slope and intercept. Standard deviation was calculated to further define the confidence interval, enabling generation of a linear-scale graphical "cloud" of activity containing ≥90% of data points for controls and patients. Median age of controls and patients was similar (50.7 vs. 48.5 years). In controls, TA-LCA amplitude with variable contraction ranged from 145-1112 μV, and regression analysis comparing mean amplitude per turn to root-mean-square amplitude demonstrated high correlation (R = 0.82). In controls performing variable contraction, median turns per second was significantly higher compared to patients (450 vs. 290, P = .002). We first present interference pattern analysis in the TA-LCA in healthy adults and patients with unilateral VFP. Our findings indicate that motor unit recruitment can be quantitatively measured within the TA-LCA. Additionally, patients with unilateral VFP had significantly reduced turns when compared with controls.
Cross-Symmetric Expansion of $\\pi \\pi$ Amplitude Near Threshold
Bolokhov, A A; Manida, I S; Polyakov, M V; Sherman, S G
1996-01-01
The near-threshold expansion of the $\\pi \\pi$ amplitude is developed using the crossing-covariant independent variables. The independent threshold parameters entering the real part of the amplitude in an explicitly Lorentz-invariant way are free from restrictions of isotopic and crossing symmetries. Parameters of the expansion of the imaginary part are recovered by the perturbative unitarity relations.
CHY formula and MHV amplitudes
Du, Yi-jian; Wu, Yong-shi
2016-01-01
In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.
Amplitude dependent closest tune approach
Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department
2016-01-01
Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.
Graviton amplitudes from collinear limits of gauge amplitudes
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2015-05-11
We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity.
On the Period-Amplitude and Amplitude-Period Relationships
Wilson, Robert M.; Hathaway, David H.
2008-01-01
Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.
挤压AZ31B镁合金多轴疲劳寿命预测%MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY
熊缨; 程利霞
2012-01-01
采用挤压AZ31B镁合金薄壁圆筒试样,分别进行了单轴和多轴加载下的对称应变控制疲劳实验,研究了不同加载路径对疲劳寿命的影响.单轴加载包括对称拉压和扭转路径,多轴加载包括45°比例加载和90°非比例加载路径.结果表明,在加载的等效应变幅值为0.3％ 0.55％附近,4种加载路径下的应变-寿命曲线均出现了不连续的拐点；比例加载路径在等效应变幅大于0.45％时疲劳寿命最高,拉压路径在等效应变幅小于0.45％时疲劳寿命最高；非比例加载路径的疲劳寿命最低.使用基于临界平面法的多轴疲劳模型FS,SWT以及修正SWT分别预测了各个路径加载下的疲劳寿命.预测结果表明,SWT模型对于拉压和循环扭转加载下寿命预测结果误差较大；FS模型与修正SWT模型可以较好地预测挤压AZ31B镁合金各个路径加载下的疲劳寿命.%Magnesium alloy components were widely used in automobile and aircraft industries, due to their light weight, high specific strength, stiffness, damping capacity, machinability, and recyclability. Engineering components subjected cyclic loading inevitably and led to fatigue failure. Most studies on magnesium alloy were focus on uniaxial fatigue, very limited work has been done of magnesium alloys under multiaxial loading. In this study, strain-controlled multiaxial fatigue experiments were conducted on extruded AZ31B magnesium alloy using thin-walled tubular specimens in ambient air. Four loading paths, including fully reversed tension-compression, cyclic torsion, 45° in-phase axial-torsion and 90° out-of-phase axial-torsion, were adopted in the fatigue experiments. It is observed that the strain-life curve displays a distinguishable kink under each loading path at the equivalent strain amplitude around 0.3% to 0.55%. The fatigue life -under the proportional loading path is the highest when equivalent strain amplitudes higher than 0.45%, and the fatigue
Large amplitude oscillatory elongation flow
Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia
2008-01-01
A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t + ...
Closed string amplitudes as single-valued open string amplitudes
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2014-04-15
We show that the single trace heterotic N-point tree-level gauge amplitude A{sub N}{sup HET} can be obtained from the corresponding type I amplitude A{sub N}{sup I} by the single-valued (sv) projection: A{sub N}{sup HET}=sv(A{sub N}{sup I}). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α{sup ′}-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai–Lewellen–Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang–Mills and supergravity theories.
Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept
Wing, David J.
1994-01-01
The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated
Wei, Haoyang
A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.
Taming Tree Amplitudes In General Relativity
Benincasa, Paolo; Cachazo, Freddy; 10.1088/1126-6708/2007/11/057
2008-01-01
We give a proof of BCFW recursion relations for all tree-level amplitudes of gravitons in General Relativity. The proof follows the same basic steps as in the BCFW construction and it is an extension of the one given for next-to-MHV amplitudes by one of the authors and P. Svr\\v{c}ek in hep-th/0502160. The main obstacle to overcome is to prove that deformed graviton amplitudes vanish as the complex variable parameterizing the deformation is taken to infinity. This step is done by first proving an auxiliary recursion relation where the vanishing at infinity follows directly from a Feynman diagram analysis. The auxiliary recursion relation gives rise to a representation of gravity amplitudes where the vanishing under the BCFW deformation can be directly proven. Since all our steps are based only on Feynman diagrams, our proof completely establishes the validity of BCFW recursion relations. This means that many results in the literature that were derived assuming their validity become true statements.
Taming tree amplitudes in general relativity
Benincasa, Paolo; Boucher-Veronneau, Camille; Cachazo, Freddy
2007-11-01
We give a proof of BCFW recursion relations for all tree-level amplitudes of gravitons in General Relativity. The proof follows the same basic steps as in the BCFW construction and it is an extension of the one given for next-to-MHV amplitudes by one of the authors and P. Svrcek in hep-th/0502160. The main obstacle to overcome is to prove that deformed graviton amplitudes vanish as the complex variable parameterizing the deformation is taken to infinity. This step is done by first proving an auxiliary recursion relation where the vanishing at infinity follows directly from a Feynman diagram analysis. The auxiliary recursion relation gives rise to a representation of gravity amplitudes where the vanishing under the BCFW deformation can be directly proven. Since all our steps are based only on Feynman diagrams, our proof completely establishes the validity of BCFW recursion relations. This means that many results in the literature that were derived assuming their validity become true statements.
LI Ang; XIE Pin-Hua; LIU Cheng; LIU Jian-Guo; LIU Wen-Qing
2007-01-01
A scanning multi-axis differential optical absorption spectroscopy (DOAS) system is developed for monitoring tropospheric NO2 abundance. Measurements at different viewing angles near the horizon can be performed sequentially with one telescope collecting scattered sunlight reflected by a moving mirror. Tropospheric NO2 diurnal variations can be derived from slant column densities (SCDs) of different elevation angles. The result from a field campaign in Beijing in summer of 2005 reveals potential possibility for the monitoring of tropospheric NO2 by multi-axis DOAS technique.
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES
G.Z.Kang; Q.Gao; J.Zhang
2004-01-01
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 400-600C for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results.
Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics
Noh, Yohan; Bimbo, Joao; Sareh, Sina; Wurdemann, Helge; Fraś, Jan; Chathuranga, Damith Suresh; Liu, Hongbin; Housden, James; Althoefer, Kaspar; Rhode, Kawal
2016-01-01
This paper presents a multi-axis force/torque sensor based on simply-supported beam and optoelectronic technology. The sensor’s main advantages are: (1) Low power consumption; (2) low-level noise in comparison with conventional methods of force sensing (e.g., using strain gauges); (3) the ability to be embedded into different mechanical structures; (4) miniaturisation; (5) simple manufacture and customisation to fit a wide-range of robot systems; and (6) low-cost fabrication and assembly of s...
A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain
M. Malnati
2014-04-01
Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.
Development of Craze and Impact Resistance in Glazing Plastics by Multiaxial Stretching
Kline, G M; Wolock, I; Axilrod, B M; Sherman, M A; George, D A; Cohen, V
1956-01-01
The loss of strength of cast polymethyl methacrylate plastic as a result of crazing is of considerable importance to the aircraft industry. Because of the critical need for basic information on the nature of crazing and the effects of various treatments and environmental conditions on its incidence and magnitude, an investigation of this phenomenon was undertaken. The following factors were examined: (1) the effect of stress-solvent crazing on tensile strength of polymethyl methacrylate; (2) the critical stress and strain for onset of crazing at various temperatures; (3) the effect of molecular weight on crazing; and (4) the effect of multiaxial stretching on crazing of polymethyl methacrylate and other acrylic glazing materials.
Pedrigi, R M; Staff, E; David, G; Glenn, S; Humphrey, J D
2007-02-01
Hyperglycemia can alter the mechanical properties of tissues through the formation of advanced glycation endproducts in matrix proteins that have long half-lives. We used a custom experimental system and subdomain finite element method to quantify alterations in the regional multiaxial mechanical properties of porcine lens capsules that were cultured for 8 or 14 weeks in high glucose versus control media. Findings revealed that high glucose significantly stiffened the capsules in both the circumferential and the meridional directions, but it did not affect the known regional variations in anisotropy. Such information could be important in the design of both improved clinical procedures and intraocular implants for diabetic patients.
Static performance of an axisymmetric nozzle with post-exit vanes for multiaxis thrust vectoring
Berrier, Bobby L.; Mason, Mary L.
1988-01-01
An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the nozzle internal performance of an axisymmetric convergent-divergent nozzle with post-exit vanes installed for multiaxis thrust vectoring. The effects of vane curvature, vane location relative to the nozzle exit, number of vanes, and vane deflection angle were determined. A comparison of the post-exit-vane thrust-vectoring concept with other thrust-vectoring concepts is provided. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 1.6 to 6.0.
Fatigue of weld ends under combined in- and out-of-phase multiaxial loading
E. Shams
2016-10-01
Full Text Available Weld start and end points are fatigue failure sensitive locations. Their fatigue behaviour especially in thin sheet structures under multiaxial load conditions is not sufficiently explored so far. Therefore, a research project was initiated to increase the knowledge concerning this topic, which is of special interest in the automotive industry. In the present study, fatigue tests on welded joints were conducted. In the numerical part of the study, notch stresses were calculated with an idealised weld end model. A numerical method which combines the geometrical and statistical size effect to an integrated approach was used, in order to consider the size effects
On Triple-Cut of Scattering Amplitudes
Mastrolia, Pierpaolo
2007-01-01
It is analysed the triple-cut of one-loop amplitudes in dimensional regularisation within spinor-helicity representation. The triple-cut is defined as a difference of two double-cuts with the same particle content, and a same propagator carrying, respectively, causal and anti-causal prescription in each of the two cuts. That turns out into an effective tool for extracting the coefficients of the three-point functions (and higher-point ones) from one-loop-amplitudes. The phase-space integration is oversimplified by using residues theorem to perform the integration over the spinor variables, via the holomorphic anomaly, and a trivial integration on the Feynman parameter. The results are valid for arbitrary values of dimensions.
一种基于临界平面法的多轴疲劳寿命预测模型∗%Multiaxial Fatigue Life Prediction Model Based on Critical Plane Approach
周维; 刘义伦; 李松柏; 杨大炼; 陶洁
2015-01-01
在多轴交变应力作用下，由于非比例循环附加强化效应导致疲劳寿命降低。针对这一问题，以薄壁圆管疲劳试件为研究对象，在分析临界平面上剪应变和正应变随相位角变化特征的基础上，引入了一个新的有效循环变量———临界平面上的等效应力，提出了一种新的多轴疲劳预测模型。新的损伤参量不含经验常数，便于工程实际的运用。通过和铝合金7075-T651多轴疲劳实验数据比较，结果表明，所提出的多轴寿命预测模型具有更好的预测精度，适用于比例与非比例加载条件。%The cyclic hardening by non-proportional loading will reduce the fatigue life under multiaxial cyclic stress.In order to solve this problem,a new damage parameter for multi-axial fatigue was proposed by introducing a new effective loop variable-the equivalent stress of the critical plane,based on the analysis for the state of the shear strain and strain changing with phase angle characteristics on the critical plane of the thin-walled cylindrical specimen. It is convenient for engineering application because of its non-material constants in this parameter.Compared with the data from aluminum alloy 7075-T65 1 multiaxial fatigue experiment,the results show that multiaxial life prediction model has better prediction precision,suitable for proportional and non-proportional loading conditions.
The vibration discomfort of standing people: evaluation of multi-axis vibration.
Thuong, Olivier; Griffin, Michael J
2015-01-01
Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.
Pressure vessels design methods using the codes, fracture mechanics and multiaxial fatigue
Fatima Majid
2016-10-01
Full Text Available This paper gives a highlight about pressure vessel (PV methods of design to initiate new engineers and new researchers to understand the basics and to have a summary about the knowhow of PV design. This understanding will contribute to enhance their knowledge in the selection of the appropriate method. There are several types of tanks distinguished by the operating pressure, temperature and the safety system to predict. The selection of one or the other of these tanks depends on environmental regulations, the geographic location and the used materials. The design theory of PVs is very detailed in various codes and standards API, such as ASME, CODAP ... as well as the standards of material selection such as EN 10025 or EN 10028. While designing a PV, we must design the fatigue of its material through the different methods and theories, we can find in the literature, and specific codes. In this work, a focus on the fatigue lifetime calculation through fracture mechanics theory and the different methods found in the ASME VIII DIV 2, the API 579-1 and EN 13445-3, Annex B, will be detailed by giving a comparison between these methods. In many articles in the literature the uniaxial fatigue has been very detailed. Meanwhile, the multiaxial effect has not been considered as it must be. In this paper we will lead a discussion about the biaxial fatigue due to cyclic pressure in thick-walled PV. Besides, an overview of multiaxial fatigue in PVs is detailed
Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys
Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.
2013-01-01
An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).
Wang, John T.; Bomarito, Geoffrey F.
2016-01-01
This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.
Positive Amplitudes In The Amplituhedron
Arkani-Hamed, Nima; Trnka, Jaroslav
2014-01-01
The all-loop integrand for scattering amplitudes in planar N = 4 SYM is determined by an "amplitude form" with logarithmic singularities on the boundary of the amplituhedron. In this note we provide strong evidence for a new striking property of the superamplitude, which we conjecture to be true to all loop orders: the amplitude form is positive when evaluated inside the amplituhedron. The statement is sensibly formulated thanks to the natural "bosonization" of the superamplitude associated with the amplituhedron geometry. However this positivity is not manifest in any of the current approaches to scattering amplitudes, and in particular not in the cellulations of the amplituhedron related to on-shell diagrams and the positive grassmannian. The surprising positivity of the form suggests the existence of a "dual amplituhedron" formulation where this feature would be made obvious. We also suggest that the positivity is associated with an extended picture of amplituhedron geometry, with the amplituhedron sitting...
Model selection for amplitude analysis
Guegan, Baptiste; Stevens, Justin; Williams, Mike
2015-01-01
Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a data-driven method for limiting model complexity through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. A method is also proposed for obtaining the significance of a resonance in a multivariate amplitude analysis.
Brookes, Stephen Peter
2009-12-19
With increasing environmental awareness and the general need to economise on the use of fossil fuels, there is growing pressure for industry to produce lighter, more efficient, gas turbine engines. One such material that will help to achieve these improvements is the intermetallic gamma titanium aluminide ({gamma}-TiAl) alloy. At only half the density of current nickel-based superalloys its weight saving capability is highly desirable, however, its mechanical properties have not yet been fully explored especially, when it is to be considered for structural components in aeronautical gas turbine engines. Critical components in these engines typically experience large variations in temperatures and multiaxial states of stress under non-isothermal conditions. These stress states are known as tri-axial thermo-mechanical fatigue (TMF). The work presented here investigates the effects these multi-axial stresses, have on a {gamma}-TiAl, (Ti-45Al-5Nb-0.2B-0.2C) alloy under TMF conditions. The uniaxial, torsional and axialtorsional TMF behaviour of this {gamma}-TiAl alloy have been examined at 400 - 800 C with strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted at both thermomechanical in-phase (IP) and out-of-phase (OP). Selected tests additionally contained a 180 seconds hold period. Fatigue lifetimes are strongly influenced by the strain amplitude, a small increase in amplitude reduces the lifetime considerably. The uniaxial IP tests showed significantly longer fatigue lifetimes than of all the tests performed. Torsional loading although have shorter fatigue lifetimes than the uniaxial IP loading they have longer fatigue lifetimes than the uniaxial OP loading. The non-proportional axial-torsional 90 degree OP test is most damaging which resulted in a shorter lifetime than the uniaxial OP test with the same Mises equivalent mechanical strain amplitude. A hold period at maximum temperatures reduced the lifetime for all tests regardless of the temperature
Competition between microstructure and defect in multiaxial high cycle fatigue
F. Morel
2015-07-01
Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on
Notched multiaxial fatigue of Al7050-T7451: on the need for an equivalent process zone size
J.L.A Ferreira
2017-07-01
Full Text Available The aim of this work is to investigate stress gradient effects on the fatigue life estimation of notched Al 7050-T7451 specimens under combined torsion and push-pull loading conditions. Initially, simple push-pull and torsion fatigue tests in plain and notched specimens were independently conducted not only to obtain the material properties necessary to calibrate a standard multiaxial critical plane based model, but also to raise the critical distance versus life curves in tension (L – Nf and in torsion (L – Nf. This latter step also required a Finite Element Elastic Stress Analysis of the notched specimens tested in the medium high-cycle fatigue regime. Then, proportional multiaxial fatigue tests were carried out using this same notched geometry. The combination of a multiaxial model with the theory of critical distance (TCD was applied to estimate fatigue lives. For this aluminium alloy, neither the use of the L – Nf nor L – Nf combined with the predictive multiaxial model was able to estimate lives in an accurate way.
Bao, Qianzong; Qiang, Li-E.
2017-08-01
A theoretical study of testing nonlocal gravity in its Newtonian regime with gravity gradient measurements in space is given. For certain solutions of the modification to Newton’s law in nonlocal gravity, a null test and a lower bound on related parameters may be given with future high precision multi-axis gravity gradiometers along elliptic orbits.
Dana, Richard H.; And Others
Three standard assessment instruments (Rorschach, Millon Clinical Multiaxial Inventory and 16PF) were administered to 12 participating Rosebud Sioux Indians--6 males, 6 females. Reports were generated for each instrument. Consensual and unique concepts contained in all the reports were analyzed in order to describe the contents. Six judges, all…
Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah
2015-10-01
Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.
Lomov, S.V.; Barburski, M.; Stoilova, Tz.; Verpoest, I.; Akkerman, R.; Loendersloot, R.; Thije, ten R.H.W.
2005-01-01
Deformability of bi- and quadri-axial multi-axial multiply stitched preforms is studied in biaxial tension, shear (picture frame test) and compression. The results complement KES-F measurements in the low load range, reported in the Part 2 of the series (Compos A, 34, 2003, 359–70). The biaxial tens
Computing Maximally Supersymmetric Scattering Amplitudes
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at
Scattering Amplitudes in Gauge Theories
Schubert, Ulrich
2014-01-01
This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...
Factorization of Chiral String Amplitudes
Huang, Yu-tin; Yuan, Ellis Ye
2016-01-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Shape of Pion Distribution Amplitude
Radyushkin, Anatoly
2009-11-01
A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.
Nonsinglet pentagons and NMHV amplitudes
A.V. Belitsky
2015-07-01
Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
General split helicity gluon tree amplitudes in open twistor string theory
Dolan, Louise; Goddard, Peter
2010-05-01
We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].
Vollenbroek-Hutten, Miriam M.R.; Hermens, Hermie J.; Wever, Daniel; Gorter, Michiel; Rinket, Joost; IJzerman, Maarten J.
2004-01-01
Objective: To investigate the effects of a multidisciplinary back school programme (Roessingh Back Rehabilitation Programme, RRP) compared with usual care, as well as differences in treatment outcome between subgroups defined using two multiaxial assessment instruments: the Multidimensional Pain Inv
张小元; 张克实; 黄世鸿; 顾思远
2013-01-01
对建筑用Q235结构钢分别在单轴和多轴载荷下进行低周疲劳试验，并利用测得的试验结果对寿命评估方法进行研究。研究结果表明：在相同Von Mises等效应变幅值下，材料的比例拉扭路径疲劳寿命高于单轴拉压疲劳寿命，而非比例路径疲劳寿命低于单轴拉压疲劳寿命。按等效应变法进行寿命预测，在非比例加载路径下的预测结果远远超出2倍寿命安全范围区；按临界面法的KBM和Socie模型进行寿命预测能够得到较好的结果，但对圆形路径的高应变幅区得到的结果则过高估计了材料的寿命。在考虑循环过程临界面法向应变影响的基础上，提出了一个改进的考虑临界面拉伸影响的模型，其对比例和非比例路径循环下低周疲劳寿命的评估与实测吻合较好。%Low cycle fatigue tests on Q235 steel under uniaxial and multiaxial loadings were conduc-ted, and the fatigue life evaluation formulas were studied based on experiments .The low-cycle ex-perimental results of strain show that the fatigue life of the metal under proportionally multiaxial load -ing is longer than that under uniaxial loading , but the fatigue life of the metal under non-proportion-ally multiaxial loading is shorter under the condition of given Von Mises'equivalent strain amplitude controlled by machine .Using the equivalent strain approach to evaluate the low-cycle fatigue life, it can be found that the life value under non-proportionally multiaxial loading was 2 times larger than that given in the experiments .Adopting KBM or Socie model of the critical plane approach , al-though the life prediction become better evidently , over estimation is still inevitable for the low-cycle fatigue under round loading path with large strain amplitude .Based on the consideration of the ten-sion effect on normal of the critical plane during the cycle , a modified critical plane model is pro-posed, in which the tension factor
Time and frequency domain models for multiaxial fatigue life estimation under random loading
Andrea Carpinteri
2015-07-01
Full Text Available Engineering structures and components are often subjected to random fatigue loading produced, for example, by wind turbulences, marine waves and vibrations. The methods available in the literature for fatigue assessment under random loading are formulated in time domain or, alternatively, in frequency domain. The former methods require the knowledge of the loading time history, and a large number of experimental tests/numerical simulations is needed to obtain statistically reliable results. The latter methods are generally more advantageous with respect to the time domain ones, allowing a rapid fatigue damage evaluation. In the present paper, a multiaxial criterion formulated in the frequency-domain is presented to estimate the fatigue lives of smooth metallic structures subjected to combined bending and torsion random loading. A comparison in terms of fatigue life prediction by employing a time domain methods, previously proposed by the authors, is also performed.
A multi-axial ferroelastic switching model using the homogenized energy approach
Oates, William S.; Peng, Xiao
2009-03-01
A new constitutive modeling framework is presented to predict polarization reorientation from mechanical loading in ferroelectric materials. The modeling framework employs a homogenized energy approach to predict the reorientation of local polarization variants in response to multi-axial mechanical loading. Single crystal energy relations are given and integrated into a polycrystal model using a reduced order modeling technique that employs a set of stochastic parameters which accommodate material inhomogeneities. The homogenized energy approach provides a methodology that simplifies computations required to predict nonlinear polarization reorientation from applied stresses. The new formulation circumvents the need for large scale minimization problems of multi-well energy potentials and facilitates constitutive model integration into finite element codes and nonlinear control designs. The theory is presented, numerically implemented, and compared with experiments on lead zirconate titanate given in the literature.
An approach to error elimination for multi-axis CNC machining and robot manipulation
XIONG; CaiHua
2007-01-01
The geometrical accuracy of a machined feature on a workpiece during machining processes is mainly affected by the kinematic chain errors of multi-axis CNC machines and robots, locating precision of fixtures, and datum errors on the workpiece. It is necessary to find a way to minimize the feature errors on the workpiece. In this paper, the kinematic chain errors are transformed into the displacements of the workpiece. The relationship between the kinematic chain errors and the displacements of the position and orientation of the workpiece is developed. A mapping model between the displacements of workpieces and the datum errors, and adjustments of fixtures is established. The suitable sets of unit basis twists for each of the commonly encountered types of feature and the corresponding locating directions are analyzed, and an error elimination (EE) method of the machined feature is formulated. A case study is given to verify the EE method.
Multiaxial yield surface of transversely isotropic foams: Part II—Experimental
Shafiq, Muhammad; Ayyagari, Ravi Sastri; Ehaab, Mohammad; Vural, Murat
2015-03-01
A robust understanding and modeling of the yield behavior in solid foams under complex stress states is essential to design and analysis of optimal structures using these lightweight materials. In pursuit of this objective a new custom-built Multi-Axial Testing Apparatus (MATA) is developed to probe the yield surface of transversely isotropic Divinycell H-100 PVC foam under a multitude of uniaxial, biaxial and triaxial strain paths. Experimental yield data produced constitutes the most comprehensive data set ever produced for any foam as it covers the entire spectrum of stress paths from hydrostatic compression to hydrostatic tension. Experimental results reveal that yielding in foams exhibits not only a quadratic pressure dependence, which is widely recognized in literature, but also a significant linear pressure dependence, which has been largely overlooked in previous studies. A new energy-based yield criterion developed for transversely isotropic foams is also validated using the experimental yield data.
A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries.
Gleason, R L; Gray, S P; Wilson, E; Humphrey, J D
2004-12-01
Much of our understanding of vascular mechanotransduction has come from studies using either cell culture or in vivo animal models, but the recent success of organ culture systems offers an exciting alternative. In studying cell-mediated vascular adaptations to altered loading, organ culture allows one to impose well-controlled mechanical loads and to perform multiaxial mechanical tests on the same vessel throughout the culture period, and thereby to observe cell-mediated vascular adaptations independent of neural and hormonal effects. Here, we present a computer-controlled perfused organ culture and biomechanical testing device designed for small caliber (50-5000 micron) blood vessels. This device can control precisely the pulsatile pressure, luminal flow, and axial load (or stretch) and perform intermittent biaxial (pressure-diameter and axial load-length) and functional tests to quantify adaptations in mechanical behavior and cellular function, respectively. Device capabilities are demonstrated by culturing mouse carotid arteries for 4 days.
Comparison of Fourier and model-based estimators in single mode multiaxial interferometry
Tatulli, E
2006-01-01
There are several solutions to code the signal arising from optical long baseline multi-aperture interferometers. In this paper,we focus on the {\\bf non homothetic spatial coding scheme} (multiaxial) with the fringe pattern coded along one dimension on one detector(all-in-one). After describing the physical principles governing single mode interferometers using that sort of recombination scheme, we analyze two different existing methods that measure the source visibility. The first technique, so-called Fourier estimator, consists in integrating the high frequency peak of the power spectral density of the interferogram. The second method, so-called model-based estimator, has been specifically developed for the AMBER instrument of the VLTI and deals with directly modelling the interferogram recorded on the detector. Performances of both estimators are computed in terms of Signal to Noise Ratio (SNR) of the visibility, assuming that the interferograms are perturbed by photon and detector noises. Theoretical expr...
The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel
Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan
2015-06-11
The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.
Evaluation of multiaxial stress in textured cubic films by x-ray diffraction
Zhang Jian-Min; Xu Ke-Wei
2005-01-01
X-ray diffraction is used extensively to determine the residual stress in bulk or thin film materials on the assumptions that the material is composed of fine crystals with random orientation and the stress state is biaxial and homogeneous through the x-ray penetrating region. The stress is calculated from the gradient of ε～ sin2 ψ linear relation. But the method cannot be used in textured films due to nonlinear relation. In this paper, a novel method is proposed for measuring the multiaxial stresses in cubic films with any [hkl] fibre texture. As an example, a detailed analysis is given for measuring three-dimensional stresses in FCC films with [111] fibre texture.
Leigh, Roland J.; Corlett, Gary K.; Friess, Udo; Monks, Paul S.
2006-10-01
The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62°N, 1.12°W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2.
Employing Helicity Amplitudes for Resummation
Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in $4$- and $d$-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard m...
Employing Helicity Amplitudes for Resummation
Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are dire
Extracting amplitudes from photoproduction data
Workman, R. L.
2011-09-01
We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).
Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A
2013-12-01
Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications.
Multiaxial Fatigue Analyses of Stress Joints for Deepwater Steel Catenary Risers
ZHENG Wen-qing; YANG He-zhen; LI Qing-quan
2012-01-01
In the present study,the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition.Connected with the riser and the platform,stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater.When the riser is under a high pressure and deepwater working condition,the stress state for the joint is more complex,and the fatigue damage is easy to occur at this position.Stress joint discussed in this paper includes two types:Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ),and multiaxial fatigue analysis results are given for comparison.Global dynamic analysis for an SCR is performed fiust,and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis.Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention.Besides,the damage character of the two types of stress joints differs:for TSJ,the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ,the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body.Compared with SSJ,TSJ shows a higher stress level but better fatigue performance,and it will have a higher material cost.In consideration of various factors,designers should choose the most suitable type and also geometric parameters.
Multiaxial mechanical behavior of human fetal membranes and its relationship to microstructure.
Buerzle, W; Haller, C M; Jabareen, M; Egger, J; Mallik, A S; Ochsenbein-Koelble, N; Ehrbar, M; Mazza, E
2013-08-01
This study was directed to the measurement of the mechanical response of fetal membranes to physiologically relevant loading conditions. Characteristic mechanical parameters were determined and their relation to the microstructural constituents collagen and elastin as well as to the pyridinium cross-link concentrations analyzed. 51 samples from twelve fetal membranes were tested on a custom-built inflation device, which allows mechanical characterization within a multiaxial state of stress. Methods of nonlinear continuum mechanics were used to extract representative mechanical parameters. Established biochemical assays were applied for the determination of the collagen and elastin content. Collagen cross-link concentrations were determined by high-performance liquid chromatography measurements. The results indicate a distinct correlation between the mechanical parameters of high stretch stiffness and membrane tension at rupture and the biochemical data of collagen content and pyridinoline as well as deoxypyridinoline concentrations. No correlation was observed between the mechanical parameters and the elastin content. Moreover, the low stretch stiffness is, with a value of 105 ± 31 × 10(-3) N/ mm much higher for a biaxial state of stress compared to a uniaxial stress configuration. Determination of constitutive model equations leads to better predictive capabilities for a reduced polynomial hyperelastic model with only terms related to the second invariant, I 2, of the right Cauchy-Green deformation tensor. Relevant insights were obtained on the mechanical behavior of fetal membranes. Collagen and its cross-linking were shown to determine membrane's stiffness and strength for multiaxial stress states. Their nonlinear deformation behavior characterizes the fetal membranes as I 2 material.
Multiaxial fatigue analyses of stress joints for deepwater steel catenary risers
Zheng, Wen-qing; Yang, He-zhen; Li, Qing-quan
2012-12-01
In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater. When the riser is under a high pressure and deepwater working condition, the stress state for the joint is more complex, and the fatigue damage is easy to occur at this position. Stress joint discussed in this paper includes two types: Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ), and multiaxial fatigue analysis results are given for comparison. Global dynamic analysis for an SCR is performed first, and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis. Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention. Besides, the damage character of the two types of stress joints differs: for TSJ, the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ, the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body. Compared with SSJ, TSJ shows a higher stress level but better fatigue performance, and it will have a higher material cost. In consideration of various factors, designers should choose the most suitable type and also geometric parameters.
Francesco Paradisi
2015-01-01
Full Text Available The effects of a non-articulated SACH and a multiaxial foot-ankle mechanism on the performance of low-activity users are of great interest for practitioners in amputee rehabilitation. The aim of this study is to compare these two prosthetic feet and assess possible improvements introduced by the increased degrees of freedom provided by the multiaxial foot. For this purpose, a group of 20 hypomobile transtibial amputees (TTAs had their usual SACH replaced with a multiaxial foot. Participants’ functional mobility, involving ambulatory skills in overground level walking, ramps, and stairs, was evaluated by performing Six-Minute Walking Test (6MWT, Locomotor Capability Index-5 (LCI-5, Hill Assessment Index (HAI, and Stair Assessment Index (SAI. Balance performances were assessed using Berg Balance Scale (BBS and analysing upper body accelerations during gait. Moreover, the Prosthesis Evaluation Questionnaire (PEQ was performed to indicate the prosthesis-related quality of life. Results showed that participants walked faster using the multiaxial foot (p<0.05 maintaining the same upright gait stability. Significant improvements with the multiaxial foot were also observed in BBS, LCI-5, and SAI times and 4 of 9 subscales of the PEQ. Our findings demonstrate that a multiaxial foot represents a considerable alternative solution with respect to the conventional SACH in the prosthetic prescription for hypomobile TTAs.
Ning, Fuda; Wang, Hui; Cong, Weilong; Fernando, P K S C
2017-04-01
Rotary ultrasonic machining (RUM) has been investigated in machining of brittle, ductile, as well as composite materials. Ultrasonic vibration amplitude, as one of the most important input variables, affects almost all the output variables in RUM. Numerous investigations on measuring ultrasonic vibration amplitude without RUM machining have been reported. In recent years, ultrasonic vibration amplitude measurement with RUM of ductile materials has been investigated. It is found that the ultrasonic vibration amplitude with RUM was different from that without RUM under the same input variables. RUM is primarily used in machining of brittle materials through brittle fracture removal. With this reason, the method for measuring ultrasonic vibration amplitude in RUM of ductile materials is not feasible for measuring that in RUM of brittle materials. However, there are no reported methods for measuring ultrasonic vibration amplitude in RUM of brittle materials. In this study, ultrasonic vibration amplitude in RUM of brittle materials is investigated by establishing a mechanistic amplitude model through cutting force. Pilot experiments are conducted to validate the calculation model. The results show that there are no significant differences between amplitude values calculated by model and those obtained from experimental investigations. The model can provide a relationship between ultrasonic vibration amplitude and input variables, which is a foundation for building models to predict other output variables in RUM.
Gauge and Gravity Amplitude Relations
Carrasco, John Joseph M
2015-01-01
In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.
High Amplitude Secondary Mass Drive
DYCK,CHRISTOPHER WILLIAM; ALLEN,JAMES J.; HUBER,ROBERT JOHN; SNIEGOWSKI,JEFFRY J.
2000-07-06
In this paper we describe a high amplitude electrostatic drive for surface micromachined mechanical oscillators that may be suitable for vibratory gyroscopes. It is an advanced design of a previously reported dual mass oscillator (Dyck, et. al., 1999). The structure is a 2 degree-of-freedom, parallel-plate driven motion amplifier, termed the secondary mass drive oscillator (SMD oscillator). During each cycle the device contacts the drive plates, generating large electrostatic forces. Peak-to-peak amplitudes of 54 {micro}m have been obtained by operating the structure in air with an applied voltage of 11 V. We describe the structure, present the analysis and design equations, and show recent results that have been obtained, including frequency response data, power dissipation, and out-of- plane motion.
Infrared singularities in QCD amplitudes
Gardi, Einan
2009-01-01
We review recent progress in determining the infrared singularity structure of on-shell scattering amplitudes in massless gauge theories. We present a simple ansatz where soft singularities of any scattering amplitude of massless partons, to any loop order, are written as a sum over colour dipoles, governed by the cusp anomalous dimension. We explain how this formula was obtained, as the simplest solution to a newly-derived set of equations constraining the singularity structure to all orders. We emphasize the physical ideas underlying this derivation: the factorization of soft and collinear modes, the special properties of soft gluon interactions, and the notion of the cusp anomaly. Finally, we briefly discuss potential multi-loop contributions going beyond the sum-over-dipoles formula, which cannot be excluded at present.
Movement amplitude and tempo change in piano performance
Palmer, Caroline
2004-05-01
Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.
Pulse amplitude modulated chlorophyll fluorometer
Greenbaum, Elias; Wu, Jie
2015-12-29
Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.
All-Multiplicity Amplitudes with Massive Scalars
Forde, D; Forde, Darren; Kosower, David A.
2005-01-01
We compute two infinite series of tree-level amplitudes with a massive scalar pair and an arbitrary number of gluons. We provide results for amplitudes where all gluons have identical helicity, and amplitudes with one gluon of opposite helicity. These amplitudes are useful for unitarity-based one-loop calculations in nonsupersymmetric gauge theories generally, and QCD in particular.
Ratnayake, Nalin A.; Koshimoto, Ed T.; Taylor, Brian R.
2011-01-01
The problem of parameter estimation on hybrid-wing-body type aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aero- dynamic control effectors that act in coplanar motion. This fact adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of system inputs must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, asymmetric, single-surface maneuvers are used to excite multiple axes of aircraft motion simultaneously. Time history reconstructions of the moment coefficients computed by the solved regression models are then compared to each other in order to assess relative model accuracy. The reduced flight-test time required for inner surface parameter estimation using multi-axis methods was found to come at the cost of slightly reduced accuracy and statistical confidence for linear regression methods. Since the multi-axis maneuvers captured parameter estimates similar to both longitudinal and lateral-directional maneuvers combined, the number of test points required for the inner, aileron-like surfaces could in theory have been reduced by 50%. While trends were similar, however, individual parameters as estimated by a multi-axis model were typically different by an average absolute difference of roughly 15-20%, with decreased statistical significance, than those estimated by a single-axis model. The multi-axis model exhibited an increase in overall fit error of roughly 1-5% for the linear regression estimates with respect to the single-axis model, when applied to flight data designed for each, respectively.
McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-05-01
This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.
Maile, K.; Purper, H.; Theofel, H.; Gaudig, W.
1996-12-31
Based on results obtained by research projects examining the deformation performance and failure of heat-resistant steels under long-term creep, the contribution explains the different damaging effects of multiaxial or uniaxial stress with regard to cree-induced damage. (orig./RHM) [Deutsch] Anhand von Ergebnissen durchgefuehrter Forschungsvorhaben, die sich mit dem Verformungs- und Versagensverhalten von warmfesten Staehlen im Zeitstandbereich befassen, wurden die Unterschiede zwischen mehr- und einachsiger Beanspruchung im Hinblick auf die Kriechschaedigungsentwicklung herausgestellt. (orig./RHM)
Crisis in Amplitude Control Hides in Multistability
Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan
2016-12-01
A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.
Crack Propagation in Plane Strain under Variable Amplitude Loading
Ricardo, Luiz Carlos Hernandes
2010-01-01
Crack propagation simulation began with developing of finite element method; the analyses were conducted to obtain a basic understanding of the crack growth and closure processes. Today structural and materials engineers develop structures and materials properties using this technique. In this pa...
Subramani Sockalingam
2017-02-01
Full Text Available High-velocity transverse impact of ballistic fabrics and yarns by projectiles subject individual fibers to multi-axial dynamic loading. Single-fiber transverse impact experiments with the current state-of-the-art experimental capabilities are challenging due to the associated micron length-scale. Kevlar® KM2 fibers exhibit a nonlinear inelastic behavior in transverse compression with an elastic limit less than 1.5% strain. The effect of this transverse behavior on a single KM2 fiber subjected to a cylindrical and a fragment-simulating projectile (FSP transverse impact is studied with a 3D finite element model. The inelastic behavior results in a significant reduction of fiber bounce velocity and projectile-fiber contact forces up to 38% compared to an elastic impact response. The multiaxial stress states during impact including transverse compression, axial tension, axial compression and interlaminar shear are presented at the location of failure. In addition, the models show a strain concentration over a small length in the fiber under the projectile-fiber contact. A failure criterion, based on maximum axial tensile strain accounting for the gage length, strain rate and multiaxial loading degradation effects are applied to predict the single-fiber breaking speed. Results are compared to the elastic response to assess the importance of inelastic material behavior on failure during a transverse impact.
Silva, Luiz L. da; Filho, Nelson do N.A.; Gomes, Paulo de T.V.; Rabello, Emerson G.; Mansur, Tanius R., E-mail: silvall@cdtn.br, E-mail: nnaf@cdtn.br, E-mail: ptvg@cdtn.br, E-mail: egr@cdtn.br, E-mail: tanius@cdtn.br [Centro de Desenvolvimento da Tencologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2013-07-01
Fatigue is the fail phenomenon of a material subjected to cyclic loads. This phenomenon affects any component under loads (forces, temperatures, etc.) that changes in time. When there is a combined load, originating multiaxial fatigue, which is the most of the real loads, worst is the situation. Before the component fail, the fatigue phenomenon produces damages to its material and this is a cumulative process that could not be reduced. In the continuum mechanic context, material damage is defined as a parameter that reduces the component resistance and this could cause its fail. The process of damage measuring by changes in electrical resistance is used in this work, and from experimental results of SAE 8620 steel specimens subjected to multiaxial fatigue in corrosive and neutral environment, the remaining specimen time life could be determined. Each specimen has its initial electrical resistance measured and after a certain number of fatigue cycles stopping points, its electrical resistance was measured again. In order to study multiaxial fatigue in specimens, a machine that induces simultaneously bending and torsional loads in the specimen was developed. Air at the temperature range of 18 deg C and 20 deg C was considered neutral environment. The corrosive environment was a NaCl solution with a concentration of 3,5% in weigh. The experimental results showed that the measuring fatigue damage using the changes in electrical resistance is efficient and that is possible to estimate the effect of a corrosive environment in the fatigue damage. (author)
Experimental generation of amplitude squeezed vector beams
Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph
2016-01-01
We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.
Low amplitude impact of damaged PBX 9501
Idar, Deanne J.; Straight, James W.; Osborn, Michael A.; Coulter, William L.; Buntain, Gregory A.
2000-04-01
Low amplitude impact tests on pristine and damaged, `baseline' and `aged' PBX 9501 specimens were performed to determine the critical impact-velocity threshold for violent reactions. HE damage was achieved by a single impact ranging in velocity from 36.9 to 54.4 m/s. External blast gauge and ballistic pendulum data were used to evaluate reaction violence relative to a steady-state detonation. Strain gage data were used to evaluate the response of the explosive to impact and characterize subsequent reaction profiles. Test results show that the damaged threshold 1) is lower than the pristine threshold and 2) is invariant to PBX 9501 lot-to-lot and age variables.
Gunzburg Robert
2006-04-01
Full Text Available Abstract Background Spinal manipulation has been found to create demonstrable segmental and intersegmental spinal motions thought to be biomechanically related to its mechanisms. In the case of impulsive-type instrument device comparisons, significant differences in the force-time characteristics and concomitant motion responses of spinal manipulative instruments have been reported, but studies investigating the response to multiple thrusts (multiple impulse trains have not been conducted. The purpose of this study was to determine multi-axial segmental and intersegmental motion responses of ovine lumbar vertebrae to single impulse and multiple impulse spinal manipulative thrusts (SMTs. Methods Fifteen adolescent Merino sheep were examined. Tri-axial accelerometers were attached to intraosseous pins rigidly fixed to the L1 and L2 lumbar spinous processes under fluoroscopic guidance while the animals were anesthetized. A hand-held electromechanical chiropractic adjusting instrument (Impulse was used to apply single and repeated force impulses (13 total over a 2.5 second time interval at three different force settings (low, medium, and high along the posteroanterior axis of the T12 spinous process. Axial (AX, posteroanterior (PA, and medial-lateral (ML acceleration responses in adjacent segments (L1, L2 were recorded at a rate of 5000 samples per second. Peak-peak segmental accelerations (L1, L2 and intersegmental acceleration transfer (L1–L2 for each axis and each force setting were computed from the acceleration-time recordings. The initial acceleration response for a single thrust and the maximum acceleration response observed during the 12 multiple impulse trains were compared using a paired observations t-test (POTT, alpha = .05. Results Segmental and intersegmental acceleration responses mirrored the peak force magnitude produced by the Impulse Adjusting Instrument. Accelerations were greatest for AX and PA measurement axes. Compared to
Multi-axial load application and DIC measurement of advanced composite beam deformation behavior
Berggreen C.
2010-06-01
Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during
Evaluation of the AZ31 cyclic elastic-plastic behaviour under multiaxial loading conditions
V. Anes
2014-10-01
Full Text Available Components and structures are designed based in their material’s mechanical properties such as Young's modulus or yield stress among others. Often those properties are obtained under monotonic mechanical tests but rarely under cyclic ones. It is assumed that those properties are maintained during the material fatigue life. However, under cyclic loadings, materials tend to change their mechanical properties, which can improve their strength (material hardening or degrade their mechanical capabilities (material softening or even a mix of both. This type of material behaviour is the so-called cyclic plasticity that is dependent of several factors such as the load type, load level, and microstructure. This subject is of most importance in design of structures and components against fatigue failures in particular in the case of magnesium alloys. Magnesium alloys due to their hexagonal compact microstructure have only 3 slip planes plus 1 twining plane which results in a peculiar mechanical behaviour under cyclic loading conditions especially under multiaxial loadings. Therefore, it is necessary to have a cyclic elastic-plastic model that allows estimating the material mechanical properties for a certain stress level and loading type. In this paper it is discussed several aspects of the magnesium alloys cyclic properties under uniaxial and multiaxial loading conditions at several stress levels taking into account experimental data. A series of fatigue tests under strain control were performed in hour glass specimens test made of a magnesium alloy, AZ31BF. The strain/stress relation for uniaxial loadings, axial and shear was experimentally obtained and compared with the estimations obtained from the theoretical elastic-plastic models found in the state-of-the-art. Results show that the AZ31BF magnesium alloy has a peculiar mechanical behaviour, which is quite different from the steel one. Moreover, the state of the art cyclic models do not capture in
Amplitude recruitment of cochlear potential
LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang
2001-01-01
Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.
Paradisi, Francesco; Delussu, Anna Sofia; Brunelli, Stefano; Iosa, Marco; Pellegrini, Roberto; Zenardi, Daniele; Traballesi, Marco
2015-01-01
The effects of a non-articulated SACH and a multiaxial foot-ankle mechanism on the performance of low-activity users are of great interest for practitioners in amputee rehabilitation. The aim of this study is to compare these two prosthetic feet and assess possible improvements introduced by the increased degrees of freedom provided by the multiaxial foot. For this purpose, a group of 20 hypomobile transtibial amputees (TTAs) had their usual SACH replaced with a multiaxial foot. Participants' functional mobility, involving ambulatory skills in overground level walking, ramps, and stairs, was evaluated by performing Six-Minute Walking Test (6 MWT), Locomotor Capability Index-5 (LCI-5), Hill Assessment Index (HAI), and Stair Assessment Index (SAI). Balance performances were assessed using Berg Balance Scale (BBS) and analysing upper body accelerations during gait. Moreover, the Prosthesis Evaluation Questionnaire (PEQ) was performed to indicate the prosthesis-related quality of life. Results showed that participants walked faster using the multiaxial foot (p foot were also observed in BBS, LCI-5, and SAI times and 4 of 9 subscales of the PEQ. Our findings demonstrate that a multiaxial foot represents a considerable alternative solution with respect to the conventional SACH in the prosthetic prescription for hypomobile TTAs.
Multi-axis control based on movement control cards in NC systems
Jiang, Tingbiao; Wei, Yunquan
2005-12-01
Today most movement control cards need special control software of topper computers and are only suitable for fixed-axis controls. Consequently, the number of axes which can be controlled is limited. Advanced manufacture technology develops at a very high speed, and that development brings forth. New requirements for movement control in mechanisms and electronics. This paper introduces products of the 5th generation of movement control cards, PMAC 2A-PC/104, made by the Delta Tau Company in the USA. Based on an analysis of PMAC 2A-PC/104, this paper first describes two aspects relevant to the hardware structure of movement control cards and the interrelated software of the topper computers. Then, two methods are presented for solving these problems. The first method is to set limit switches on the movement control cards; all of them can be used to control each moving axis. The second method is to program applied software with existing programming language (for example, VC ++, Visual Basic, Delphi, and so forth). This program is much easier to operate and expand by its users. By using a limit switch, users can choose different axes in movement control cards. Also, users can change parts of the parameters in the control software of topper computers to realize different control axes. Combining these 2 methods proves to be convenient for realizing multi-axis control in numerical control systems.
Christopher C. Ihueze
2015-07-01
Full Text Available This paper focuses on the design of natural fiber composites and analysis of multiaxial stresses in relation to yield limit stresses of composites loaded off the fibers axis. ASTM D638-10 standard for tensile test was used to design and compose composites of plantain fiber reinforced polyester (PFRP. While the rule of mixtures was used in the evaluation of properties of composites in the fiber direction the evaluation of properties perpendicular or transverse to the fiber direction was done based on the value of the orthogonal stresses evaluated using ANSYS finite element software, the application of the Brintrup equation and Halpin–Tai equation. The yield strength for the plantain empty fruit bunch fiber reinforced polyester resin (PEFBFRP was estimated as 33.69 MPa while the yield strength of plantain pseudo stem fiber reinforced polyester resin (PPSFRP was estimated as 29.24 MPa. Above all, the PEFBFRP with average light absorbance peak of 45.47 was found to have better mechanical properties than the PPSFRP with average light absorbance peak of 45.77.
Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N.m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ˜1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
Fuloria, Devasri; Nageswararao, P. [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Jha, S. [Nuclear Fuel Complex Limited, Hyderabad 501301 (India); Srivastava, D. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 40085 (India)
2016-04-15
In the present work, the mechanical behavior of Zircaloy-4 subjected to various deformation strains by multiaxial forging (MAF) at cryogenic temperature (CT) was investigated. The alloy was strained up to different number of cycles, viz., 6 cycles, 9 cycles, and 12 cycles at cumulative strains of 2.96, 4.44, and 5.91, respectively. The mechanical properties of the alloy were investigated by performing the universal tensile test and the Vickers hardness test. Both the test showed improvement in the ultimate tensile strength and hardness value by 51% and 26%, respectively, at the highest cumulative strain of 5.91. The electron backscattered diffraction (EBSD) measurement and transmission electron microscopy (TEM) were used for analyzing the deformed microstructure. The microstructures of the alloy underwent deformation at various cumulative strains/cycles showed grain refinement with the evolution of shear and twin bands that were highest for the alloy deformed at the highest number of cycles. The effective grain refinement was due to twins formation and their intersection, which led to the improvement in mechanical properties of the MAFed alloy, as observed in the present work. - Highlights: • Zircaloy-4 was subjected to MAF at cryogenic temperature. • Microstructural evolution was studied through EBSD and TEM. • Deformed microstructure was marked with various types of twinning and shear banding. • Twins formations are responsible for effective grain refinement and enhanced mechanical properties.
Development of a Very High Cycle Fatigue (VHCF multiaxial testing device
M. Vieira
2016-07-01
Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.
Villarraga, M L; Kurtz, S M; Herr, M P; Edidin, A A
2003-08-01
Previous observations of reduced uniaxial elongation, fracture resistance, and crack propagation resistance of highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) have contributed to concern that the technology may not be appropriate for systems undergoing cyclic fatigue loading. Using a "total life" approach, we examined the influence of radiation crosslinking on the fatigue response of UHMWPE under cyclic loading via the small punch test. Our goal in this study was to evaluate the suitability of the small punch test for conducting miniature-specimen, cyclic loading, and fatigue experiments of conventional and highly crosslinked UHMWPE. We subjected four types of conventional and highly crosslinked UHMWPE to cyclic loading at 200 N/s and at body temperature in a small punch test apparatus. After failure, the fracture surfaces were characterized with the use of field emission scanning electron microscopy to evaluate the fatigue mechanisms. Cyclic small punch testing under load control was found to be an effective and repeatable method for relative assessment of the fatigue resistance of conventional and highly crosslinked UHMWPE specimens under multiaxial loading conditions. For each of the four conventional and highly crosslinked UHMWPE materials evaluated in this study, fatigue failures were consistently produced according to a power law relationship in the low cycle regimen, corresponding to failures below 10000 cycles. The fatigue failures were all found to be consistent with a single source of initiation and propagation to failure. Our long-term goal in this research is to develop miniature-specimen fatigue testing techniques for characterization of retrieved UHMWPE inserts.
Qiang Cheng
2013-01-01
Full Text Available Traditional approaches about error modeling and analysis of machine tool few consider the probability characteristics of the geometric error and volumetric error systematically. However, the individual geometric error measured at different points is variational and stochastic, and therefore the resultant volumetric error is aslo stochastic and uncertain. In order to address the stochastic characteristic of the volumetric error for multiaxis machine tool, a new probability analysis mathematical model of volumetric error is proposed in this paper. According to multibody system theory, a mean value analysis model for volumetric error is established with consideration of geometric errors. The probability characteristics of geometric errors are obtained by statistical analysis to the measured sample data. Based on probability statistics and stochastic process theory, the variance analysis model of volumetric error is established in matrix, which can avoid the complex mathematics operations during the direct differential. A four-axis horizontal machining center is selected as an illustration example. The analysis results can reveal the stochastic characteristic of volumetric error and are also helpful to make full use of the best workspace to reduce the random uncertainty of the volumetric error and improve the machining accuracy.
Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring
Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Miller, Mark; Fedder, Gary K.
2009-08-01
The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa.
Multiaxial Fatigue Analysis on Reeled Deepwater Steel Catenary Risers with Girth Weld Defects
杨和振; 丁金鸿; 李清泉; 李华军
2014-01-01
In the present study, we simulated the reel-lay installation process of deepwater steel catenary risers (SCRs) using the finite element method and proposed multiaxial fatigue analysis for reeled SCRs. The reel-lay method is one of the most efficient and economical pipeline installation methods. However, material properties of reeled risers may change, especially in the weld zone, which can affect the fatigue performance. Applying finite element analysis (FEA), we simulated an installation load history through the reel, aligner, and straightener and analyzed the property variations. The impact of weld defects during the installation process, lack of penetration and lack of fusion, was also discussed. Based on the FEA results, we used the Brown-Miller criterion combined with the critical plane approach to predict the fatigue life of reeled and non-reeled models. The results indicated that a weld defect has a significant influence on the material properties of a riser, and the reel-lay method can significantly reduce the fatigue life of SCRs. The analysis conclusion can help designers understand the mechanical performance of welds during reel-lay installation.
Understanding the effect of speed of exertion on isokinetic strength using a multiaxial dynamometer.
Nimbarte, Ashish D; Aghazadeh, Fereydoun; Bogolu, Sai Chaitanya R; Rajulu, Sudhakar L
2009-01-01
In this study a multiaxial isokinetic dynamometer was used to measure strength during various upper-body isokinetic exertions. Ten male participants performed 7 different upper-body isokinetic exertions. In addition, to evaluate the effect of speed on strength, each participant performed sitting pull exertions at the speed of 0.026, 0.130, and 0.260 m/s. Average isokinetic strength increased from 236.6 +/- 39.1 to 291.8 +/- 65.8 N with the initial increase in speed from 0.026 to 0.130 m/s. The average isokinetic strength decreased to 276.7 +/- 87.2 N with a further increase in speed to 0.260 m/s. The curve between isokinetic strength and speed followed a bell-shaped curve (fitted with the Gaussian function, R(2) = .9). The results of this study could be useful in deciding on the work pace of various manual material handling tasks requiring maximal and/or near maximal exertions.
Multiaxial fatigue analysis on reeled deepwater steel catenary risers with girth weld defects
Yang, He-zhen; Ding, Jin-hong; Li, Qing-quan; Li, Hua-jun
2014-12-01
In the present study, we simulated the reel-lay installation process of deepwater steel catenary risers (SCRs) using the finite element method and proposed multiaxial fatigue analysis for reeled SCRs. The reel-lay method is one of the most efficient and economical pipeline installation methods. However, material properties of reeled risers may change, especially in the weld zone, which can affect the fatigue performance. Applying finite element analysis (FEA), we simulated an installation load history through the reel, aligner, and straightener and analyzed the property variations. The impact of weld defects during the installation process, lack of penetration and lack of fusion, was also discussed. Based on the FEA results, we used the Brown-Miller criterion combined with the critical plane approach to predict the fatigue life of reeled and non-reeled models. The results indicated that a weld defect has a significant influence on the material properties of a riser, and the reel-lay method can significantly reduce the fatigue life of SCRs. The analysis conclusion can help designers understand the mechanical performance of welds during reel-lay installation.
A Modified Method for Calculating Notch-Root Stresses and Strains under Multiaxial Loading
Liu Jianhui
2014-04-01
Full Text Available Based on the analysis of notch-root stresses and strains in bodies subjected to multiaxial loading, a quantitative relationship between Neuber rule and the equivalent strain energy density method is found. In the case of elastic range, both Neuber rule and the equivalent strain energy density method get the same estimation of the local stresses and strains. Whereas in the case of elastic-plastic range, Neuber rule generally overestimates the notch-root stresses and strains and the equivalent strain energy density method tends to underestimate the notch-root stresses and strains. A modified method is presented considering the material constants of elastic-plastic Poisson's ratio, elastic modulus, shear elastic modulus, and yield stress. The essence of the modified model is to add a modified coefficient to Neuber rule, which makes the calculated results tend to be more precise and reveals its energy meaning. This approach considers the elastic-plastic properties of the material itself and avoids the blindness of selecting coefficient values. Finally the calculation results using the modified model are validated with the experimental data.
Analysis of the uniaxial and multiaxial mechanical response of a tissue-engineered vascular graft.
Mauri, Arabella; Zeisberger, Steffen M; Hoerstrup, Simon P; Mazza, Edoardo
2013-03-01
Tissue engineering is aimed at the fabrication of autologous cardiovascular implants, for example, heart valves or vascular grafts. To date, the mechanical characterization of tissue-engineered vascular grafts (TEVGs) has focused mainly on the material's strength and not on the deformation behavior. A total of 31 samples obtained from 3 mature grafts (out of the cells of a single donor) were tested in uniaxial stress and uniaxial strain configurations to characterize their stiffness under uniaxial and biaxial stress states, respectively. Corresponding measurements were carried out on samples of an ovine artery. A physiological stiffness parameter was defined for data analysis and the uniaxial and multiaxial response compared, also in terms of anisotropy. The tension-strain curve of uniaxial stress tests is highly nonlinear, whereas the results show a more gradual deformation response of the material under a uniaxial strain configuration, which better represents the physiological state of biaxial stress. Stiffness parameters and anisotropy factors are significantly influenced by the selection of the testing configuration. Tangent stiffness of a TEVG at physiological loading conditions is significantly (p<0.05) higher for uniaxial stress as compared to uniaxial strain. The same is observed for the ovine tissue. The anisotropy of the scaffold is shown to partially transfer to the mature TEVG. The results of this study show that for a TEVG characterization, a physiological biaxial testing configuration should be preferred to the commonly used uniaxial stress.
Interpretation of cardiovascular outcome trials in type 2 diabetes needs a multiaxial approach.
Johansen, Odd Erik
2015-08-10
In cardiovascular (CV) diabetology a "one-size fits-all" approach needs caution as vasculopathy and CV manifestations in patients with type 2 diabetes (T2D) with short disease duration are different as compared to those with longer duration. This is of relevance when interpreting results of CV outcome trials as responses to any intervention aimed to reduce CV risk might be different in patients with established vasculopathy as compared to those without, where also the duration of the intervention may play a role. Additionally, the mode-of-action of the intervention and its assumed time to peak CV risk modulation need to be taken into account: an intervention with possibly immediate effects, like on blood pressure or other direct functional dynamic parameters such as endothelial function or renal hemodynamics, could likely provide a meaningful impact on CV outcomes over a shorter time span than interventions that primarily target pathways that work on atherosclerotic processes, organ-remodelling, or vessel integrity. We are now faced with CV outcome results to interpret from a plethora of outcomes trials in T2D, some of which are testing the CV risk modulation predominantly beyond glucose lowering, e.g., as is the case for several trials testing the newer therapy classes di-peptidyl peptidase-4 inhibitors, glucagon-like protein-1 receptor analogues and sodium glucose co-transporter-2 inhibitors, and this paper reviews the data that support a call for a multiaxial approach to interpret these results.
Yielding and post-yield behaviour of closed-cell cellular materials under multiaxial dynamic loading
Vesenjak, Matej; Ren, Zoran
2016-05-01
The paper focuses on characterisation of yielding and post-yield behaviour of metals with closed-cell cellular structure when subjected to multiaxial dynamic loading, considering the influence of the relative density, base material, strain rate and pore gas pressure. Research was conducted by extensive parametric fully-coupled computational simulations using the finite element code LS-DYNA. Results have shown that the macroscopic yield stress of cellular material rises with increase of the relative density, while its dependence on the hydrostatic stress decreases. The yield limit also rises with increase of the strain rate, while the hydrostatic stress influence remains more or less the same at different strain-rates. The macroscopic yield limit of the cellular material is also strongly influenced by the choice of base material since the base materials with higher yield limit contribute also to higher macroscopic yield limit of the cellular material. By increasing the pore gas filler pressure the dependence on hydrostatic stress increases while at the same time the yield surface shifts along the hydrostatic axis in the negative direction. This means that yielding at compression is delayed due to influence of the initial pore pressure and occurs at higher compressive loading, while the opposite is true for tensile loading.
Rossi, Gina; Derksen, Jan
2015-01-01
This article examines the influence of the Millon Clinical Multiaxial Inventory (MCMI) as a clinical and research instrument beyond the borders of the United States. The MCMI's theoretical and empirical grounding, its alignment with the Diagnostic and Statistical Manual of Mental Disorders (DSM), and scales that can be interpreted both categorically and dimensionally, are the primary features that make the test attractive. We begin with studies that evaluated the construct equivalence of the different language adaptations. Data from the most widely researched non English-language forms (Danish, Dutch, and Spanish) show excellent comparability with Millon's original. Nevertheless, significant problems were noted in efforts to create clinical groups that would allow for equivalence of diagnostic accuracy when using the cutoff scores. Although dimensional aspects of the scale scores were not affected by this, the adapted measures might show attenuated diagnostic accuracy compared with Millon's original. Next, we present MCMI studies conducted in clinical settings to document where the adapted tests have made their greatest impact in the international literature. A wide variety of clinical applications demonstrated broad utility, and given the high number of issues addressed, we think Millon's influence will certainly stand the test of time in different domains and settings.
Measurement of multiaxial ply strength by an off-axis flexure test
Crews, John H., Jr.; Naik, Rajiv A.
1992-01-01
An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.
Interpretation of cardiovascular outcome trials in type 2diabetes needs a multiaxial approach
2015-01-01
In cardiovascular （CV） diabetology a ＂one-size fitsall＂approach needs caution as vasculopathy and CVmanifestations in patients with type 2 diabetes （T2D）with short disease duration are different as comparedto those with longer duration. This is of relevance wheninterpreting results of CV outcome trials as responsesto any intervention aimed to reduce CV risk might bedifferent in patients with established vasculopathy ascompared to those without, where also the durationof the intervention may play a role. Additionally, themode-of-action of the intervention and its assumedtime to peak CV risk modulation need to be takeninto account an intervention with possibly immediateeffects, like on blood pressure or other direct functionaldynamic parameters such as endothelial function orrenal hemodynamics, could likely provide a meaningfulimpact on CV outcomes over a shorter time span thaninterventions that primarily target pathways that workon atherosclerotic processes, organ-remodelling, orvessel integrity. We are now faced with CV outcomeresults to interpret from a plethora of outcomes trials inT2D, some of which are testing the CV risk modulationpredominantly beyond glucose lowering, e.g. , as isthe case for several trials testing the newer therapyclasses di-peptidyl peptidase-4 inhibitors, glucagonlikeprotein-1 receptor analogues and sodium glucoseco-transporter-2 inhibitors, and this paper reviews thedata that support a call for a multiaxial approach tointerpret these results.
Multiaxial fatigue of in-service aluminium longerons for helicopter rotor-blades
A. Shanyavskiy
2016-10-01
Full Text Available Fatigue cracking of longerons manufactured from Al-alloy AVT-1 for helicopter in-service rotor-blades was considered and crack growth period and equivalent of tensile stress for different blade sections were estimated. Complicated case of in-service blades multiaxial cyclically bending-rotating and tension can be considered based on introduced earlier master curve constructed for aluminum alloys in the simple case of uniaxial tension with stress R-ratio near to zero. Calculated equivalent tensile stress was compared for different blade sections and it was shown that in-service blades experienced not principle difference in this value in the crack growth direction by the investigated sections. It is not above the designed equivalent stress level. Crack growth period estimation in longerons based on fatigue striation spacing or meso-beach-marks measurements has shown that monitoring system introduced designer in longerons can be effectively used for in-time crack detecting independently on the failed section when can appeared because of various type of material faults or in-service damages
Multiaxial fatigue of in-service aluminium longerons for helicopter rotor-blades
A. Shanyavskiy
2016-07-01
Full Text Available Fatigue cracking of longerons manufactured from Al-alloy AVT-1 for helicopter in-service rotorblades was considered and crack growth period and equivalent of tensile stress for different blade sections were estimated. Complicated case of in-service blades multiaxial cyclically bending-rotating and tension can be considered based on introduced earlier master curve constructed for aluminum alloys in the simple case of uniaxial tension with stress R-ratio near to zero. Calculated equivalent tensile stress was compared for different blade sections and it was shown that in-service blades experienced not principle difference in this value in the crack growth direction by the investigated sections. It is not above the designed equivalent stress level. Crack growth period estimation in longerons based on fatigue striation spacing or meso-beach-marks measurements has shown that monitoring system introduced designer in longerons can be effectively used for in-time crack detecting independently on the failed section when can appeared because of various type of material faults or in-service damages.
Amplitude-Modulated Bursting: A Novel Class of Bursting Rhythms
Vo, Theodore; Kramer, Mark A.; Kaper, Tasso J.
2016-12-01
We report on the discovery of a novel class of bursting rhythms, called amplitude-modulated bursting (AMB), in a model for intracellular calcium dynamics. We find that these rhythms are robust and exist on open parameter sets. We develop a new mathematical framework with broad applicability to detect, classify, and rigorously analyze AMB. Here we illustrate this framework in the context of AMB in a model of intracellular calcium dynamics. In the process, we discover a novel family of singularities, called toral folded singularities, which are the organizing centers for the amplitude modulation and exist generically in slow-fast systems with two or more slow variables.
All tree amplitudes of supersymmetric Einstein-Yang-Mills theory
Adamo, Tim; Roehrig, Kai A; Skinner, David
2015-01-01
We present a new formula for all tree amplitudes in four dimensional supergravity coupled to super Yang-Mills. Like the Cachazo-He-Yuan formula, our expression is supported on solutions of the scattering equations, but with momenta written in terms of spinor helicity variables. Supersymmetry and parity are both manifest. In the pure gravity and pure Yang-Mills sectors, it reduces to the known twistor-string formulae. We show that the formula behaves correctly under factorization. We sketch how these amplitudes may be obtained from a four-dimensional (ambi)twistor string.
Relations Between Helicity Coupling Amplitude and L-S Coupling Amplitude
WU Ning; RUAN Tu-Nan
2001-01-01
Relations between helicity coupling amplitude and L-S coupling amplitude are discussed. The equivalence condition for these two kinematic analysis methods and the limitations of the L-S coupling amplitude are also studied in this paper.``
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Constructing Amplitudes from Their Soft Limits
Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC
2011-12-09
The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.
Constructing amplitudes from their soft limits
Boucher-Veronneau, Camille; Larkoski, Andrew J.
2011-09-01
The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an ( n - 1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which "soft" particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.
A Note on Loop Amplitudes in QED
Brandhuber, Andreas; Vincon, Massimiliano
2009-01-01
We consider the two-loop four-point amplitude in N=2 super QED, and show that there exists an approximate recursive structure similar to that captured by the ABDK/BDS ansatz for MHV amplitudes in N=4 super Yang-Mills. Furthermore, we present a simple relation between the box coefficients of one-loop photon MHV amplitudes in (super) QED, and sums of box coefficients of one-loop MHV amplitudes in (super) Yang-Mills.
Yujie LIU; Qing GAO; Guozheng KANG
2011-01-01
Based on the time-dependent strain cyclic characteristics and fatigue behaviors of SS304 stainless steel under multi-axial cyclic loading at 700℃, and in the frameof unified visoco-plastic cyclic constitutive model and continuum damage mechanics theory, the damage-coupled multi-axial time-dependent constitutive model and fatigue failure model were proposed. In the model, the evolution equation of damage was introduced in and the time-dependent effects, e.g. holding time, loading rate, were taken into account. The model was applied to the simulation of whole-life cyclic deformation behaviors and prediction of LCF life for SS304 stainless steel in multiaxial time-dependent low cycle fatigue tests. It is shown that the simulated results agree well with experimental ones.
Tsunami Focusing and Leading Amplitude
Kanoglu, U.
2016-12-01
Tsunamis transform substantially through spatial and temporal spreading from their source region. This substantial spreading might result unique maximum tsunami wave heights which might be attributed to the source configuration, directivity, the waveguide structures of mid-ocean ridges and continental shelves, focusing and defocusing through submarine seamounts, random focusing due to small changes in bathymetry, dispersion, and, most likely, combination of some of these effects. In terms of the maximum tsunami wave height, after Okal and Synolakis (2016 Geophys. J. Int. 204, 719-735), it is clear that dispersion would be one of the reasons to drive the leading wave amplitude in a tsunami wave train. Okal and Synolakis (2016), referring to this phenomenon as sequencing -later waves in the train becoming higher than the leading one, considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp) formalism, in addition to LeMéhauté and Wang's (1995 Water waves generated by underwater explosion, World Scientific, 367 pp), to evaluate linear dispersive tsunami propagation from a circular plug uplifted on an ocean of constant depth. They identified transition distance, as the second wave being larger, performing parametric study for the radius of the plug and the depth of the ocean. Here, we extend Okal and Synolakis' (2016) analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave (Tadepalli and Synolakis, 1994 Proc. R. Soc. A: Math. Phys. Eng. Sci. 445, 99-112). First, we investigate the focusing feature in the leading-depression side, which enhance tsunami wave height as presented by Kanoglu et al. (2013 Proc. R. Soc. A: Math. Phys. Eng. Sci. 469, 20130015). We then discuss the results in terms of leading wave amplitude presenting a parametric study and identify a simple relation for the transition distance. The solution presented here could be used to better analyze dispersive
Pham, M. S.; Creuziger, A.; Iadicola, M.; Rollett, A. D.
2017-02-01
This study investigates the joint impact of preferred texture and latent hardening on the plastic anisotropy of face centered cubic (FCC) materials. The main result is that both aspects have significant impact on the anisotropy, but the two can either counteract each other or synergistically reinforce each other to maximize anisotropy. Preferred texture results in significant anisotropy in plastic yielding. However, the latent hardening significantly alters the texture-induced anisotropy. In addition, one latent hardening type can cancel out the anisotropy of another type. Consequently, if all dislocation-based latent hardening types are included at the same level as the self-hardening, the result might not reveal the complexity of plastic anisotropy. The present study of the synergistic influence of detailed latent hardening and texture presented helps provide new insights into the complex anisotropic behavior of FCC materials during multi-axial forming. the stress at which the material initially yields is not a function of material orientation with respect to the frame of the test (i.e., isotropic yielding); there exists a multi-axial yield locus that is described by a single value of stress that corresponds to yield in uniaxial tension (i.e., stress equivalency); on hardening, the multi-axial yield locus expands by the same amount in every direction in the π-plane, which is the plane that has its normal parallel to [111] in the deviatoric stress space (i.e., isotropic hardening); there is an associated flow rule, i.e., the strain increment is normal to the yield locus.
Quantum Amplitude Amplification and Estimation
Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain
2000-01-01
Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...
Mayugo, J A.; Camanho, P. P.; Maimi, P.; Davila, C. G.
2010-01-01
An analytical model based on the analysis of a cracked unit cell of a composite laminate subjected to multiaxial loads is proposed to predict the onset and accumulation of transverse matrix cracks in the 90(sub n) plies of uniformly stressed [plus or minus Theta/90(sub n)](sub s) laminates. The model predicts the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate, and it accounts for the effect of the ply thickness on the ply strength. Several examples describing the predictions of laminate response, from damage onset up to final failure under both uniaxial and multiaxial loads, are presented.
Mayugo, J A.; Camanho, P. P.; Maimi, P.; Davila, C. G.
2010-01-01
An analytical model based on the analysis of a cracked unit cell of a composite laminate subjected to multiaxial loads is proposed to predict the onset and accumulation of transverse matrix cracks in the 90(sub n) plies of uniformly stressed [plus or minus Theta/90(sub n)](sub s) laminates. The model predicts the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate, and it accounts for the effect of the ply thickness on the ply strength. Several examples describing the predictions of laminate response, from damage onset up to final failure under both uniaxial and multiaxial loads, are presented.
T-wave amplitude is related to physical fitness status.
Arbel, Yaron; Birati, Edo Y; Shapira, Itzhak; Topilsky, Yan; Wirguin, Michal; Canaani M D, Jonathan
2012-07-01
Abnormalities in repolarization may reflect underlying myocardial pathology and play a prominent role in arrhythmogenesis The T-wave amplitude has been associated with cardiovascular outcome in patients with acute myocardial infarction (MI) Additionally, T-wave amplitude is considered a predictor of arrhythmias, as well as being related to an individual's inflammatory status. The combined influence of different variables, such as inflammation, cardiovascular risk factors and physical fitness status, on the T-wave amplitude has not been evaluated to date. The aim of this study was to identify factors that affect the T-wave amplitude. Data from 255 consecutive apparently healthy individuals included in the Tel Aviv Medical Center Inflammation Survey (TAMCIS) were reviewed. All patients had undergone a physical examination and an exercise stress test, and different inflammatory and metabolic biomarkers (fibrinogen, potassium, and high-sensitivity C-reactive protein) were measured. Multivariate stepwise analysis revealed that the body mass index and the resting heart rate were significantly associated with the T-wave amplitude (β=-0.34, P physical fitness and not to his/her inflammatory status. ©2012, Wiley Periodicals, Inc.
Skovgaard, A M; Isager, T; Jørgensen, O S
1988-01-01
diagnostic systems. Diagnostic reliability was measured as percentage of interrater agreement. The highest diagnostic reliability was obtained in psychotic disorders, the lowest in personality disorders. The MAS implied improved diagnostic reliability of mental retardation, somatic disorders......The study was conducted to compare an experimental multiaxial diagnostic system (MAS) with traditional multicategorical diagnoses in child psychiatric work. Sixteen written case histories were circulated to 21 child psychiatrists, who made diagnoses independently of one another, using two different...... and developmental disorders. Adjustment reaction (reactio maladaptiva) was the diagnosis most commonly used, but with varying reliability in both systems. The reliability of the socio-economic and psychosocial axes were generally high....
Strack, Stephen; Millon, Theodore
2007-08-01
For over 35 years, Mllion's (1996) model of personality and the Millon Clinical Multiaxial Inventory (Millon, 1977, 1987, 2006) have been useful resources for clinicians to understand and assess personality disorders (PDs) and clinical syndromes in psychiatric patients. In this article, we highlight significant features of the model and test that have proved valuable to personologists in their quest for a more satisfactory taxonomy of PDs based on continuously distributed traits. We also describe Millon's (1996)prototypal domain approach to personality that combines dimensional and categorical elements for the description of PDs and their normal counterparts.
Fesich, Thomas M.; Herter, Karl-Heinz; Schuler, Xaver
2012-12-15
Objective of the project was the experimental assurance of investigations on the theoretical basis of multiaxial fatigue loading. The review of the applicability of existing hypotheses, as well as the extension of the corresponding data base was carried out by experimental studies in fatigue tests under complex multiaxial loading for a ferritic and austenitic material. To investigate the influence of complex multiaxial stress conditions on the fatigue behavior, in this project notched cylindrical specimens were examined under alternating tensile/pressure loading and alternating torsional loading. Through the notch in the notched section inhomogeneous, multiaxial stress states are generated. By uniaxial alternating tests on unnotched specimens and a further series of tests on unnotched specimens under alternating torsional loading an evaluation of the impact and influence of the notch of stress on fatigue behavior was possible. A series of experiments with superimposition of alternating torsional and alternating tensile/pressure loading permits verification of the effect of phase-shifted stress and rotating principal coordinate system. All experiments were performed at room temperature. As part of the research project, the experimental results with the ferritic and austenitic materials were evaluated in terms of material behavior (hardening or softening) under cyclic loading. These were to uniaxial alternating tensile/pressure tests, alternating torsional tests (unnotched cylindrical specimens), alternating tensile/pressure tests on notched cylindrical specimens, alternating torsional tests on notched cylindrical specimens, alternating tensiontorsion tests with complex proportional stresses on unnotched cylindrical specimens (superimposition of normal and shear stress components), as well as alternating tension-torsion tests with complex non-proportional strain on unnotched cylindrical specimens (superimposition of normal and shear stress components with 90 phase
Gurun, B; Thio, Y S; Bucknall, D G
2009-12-01
A unique multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle x-ray scattering (SAXS) and wide angle x-ray scattering (WAXS) measurements. The device can operate at strain rates of 0.0005-0.3 s(-1) and induce strains up to stretch ratios of 5. Measurements can either be made at ambient or at elevated temperatures (up to approximately 150 degrees C), the latter using a heating unit. The capabilities of the device coupled with simultaneous SAXS/WAXS measurements have been demonstrated by studying the morphological evolution of a number of polymers and their nanocomposites.
Chevalier, Luc; 10.1002/pen.10948
2010-01-01
We present an experimental approach to discriminate hyper-elastic models describing the mechanical behavior of rubber-like materials. An evaluation of the displacement field obtained by digital image correlation allows us to evaluate the heterogeneous strain field observed during these tests. We focus on the particular case of hyper-elastic models to simulate the behavior of some rubber-like materials. Assuming incompressibility of the material, the hyper-elastic potential is determined from tension and compression tests. A biaxial loading condition is obtained in a multiaxial testing machine and model predictions are compared with experimental results.
Maile, K.; Purper, H.; Sheng, S.; Theofel, H.
1993-01-01
Summing up the results, one comes to the following conclusions: The phenomenological damage patterns of uniaxially loaded fatigue specimens and of multiaxially loaded components are comparable, but the development in time of the damage can not be directly compared. In uniaxially loaded fatigue specimens, the intensive damage development begins very late, i.e. in the last 10% of life, whereas a more continuous damage development is observed at the elbow. The estimation of remaining life on the basis of the damage at the elbow surface, requires knowledge about the damage gradient in wall thickness direction. (orig./MM)
Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills
Zaal, Peter M. T.; Mobertz, Xander R. I.
2017-01-01
The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.
Wearable Conductive Fiber Sensors for Multi-Axis Human Joint Angle Measurements
Asada H Harry
2005-03-01
Full Text Available Abstract Background The practice of continuous, long-term monitoring of human joint motion is one that finds many applications, especially in the medical and rehabilitation fields. There is a lack of acceptable devices available to perform such measurements in the field in a reliable and non-intrusive way over a long period of time. The purpose of this study was therefore to develop such a wearable joint monitoring sensor capable of continuous, day-to-day monitoring. Methods A novel technique of incorporating conductive fibers into flexible, skin-tight fabrics surrounding a joint is developed. Resistance changes across these conductive fibers are measured, and directly related to specific single or multi-axis joint angles through the use of a non-linear predictor after an initial, one-time calibration. Because these sensors are intended for multiple uses, an automated registration algorithm has been devised using a sensitivity template matched to an array of sensors spanning the joints of interest. In this way, a sensor array can be taken off and put back on an individual for multiple uses, with the sensors automatically calibrating themselves each time. Results The wearable sensors designed are comfortable, and acceptable for long-term wear in everyday settings. Results have shown the feasibility of this type of sensor, with accurate measurements of joint motion for both a single-axis knee joint and a double axis hip joint when compared to a standard goniometer used to measure joint angles. Self-registration of the sensors was found to be possible with only a few simple motions by the patient. Conclusion After preliminary experiments involving a pants sensing garment for lower body monitoring, it has been seen that this methodology is effective for monitoring joint motion of the hip and knee. This design therefore produces a robust, comfortable, truly wearable joint monitoring device.
The effects of multiaxial and uniaxial unstable surface balance training in college athletes.
Eisen, Tracey C; Danoff, Jerome V; Leone, James E; Miller, Todd A
2010-07-01
The purpose of this study was to compare the effects of 2 different types of unstable surface balance training (uniaxial on a rocker board [RB] and multiaxial on a dynadisc [DD]) on balance in division 1 collegiate athletes in sports that are at high risk for ankle sprains. Subjects (n = 36) consisted of male soccer players and female volleyball and soccer players who were equally and randomly assigned to 1 of 3 groups (CON, DD, and RB). Balance training consisting of balancing on 1 leg on either the RB or DD, while repeatedly catching a 1-kg ball was performed 3 times per week for 4 weeks. Balance was tested with the Star Excursion Balance Test (SEBT) before, halfway through, and at the completion of the balance training. Control (CON) subjects also were given the balance test but did not participate in the training. A 3-way repeated analysis of variance revealed that no group individually changed SEBT scores from pre (CON, 0.98 +/- 0.086; DD, 0.98 +/- 0.083; RB, 0.97 +/- 0.085) to post (CON, 1.00 +/- 0.090; DD, 1.01 +/- 0.088; RB, 1.02 +/- 0.068) after balance training. When the 2 treatment groups were combined (DD and RB), the p value decreased and came closer to significance (p = 0.136). When all 3 groups were combined, there was a significant difference in SEBT scores from pretraining (CON + DD + RB; 0.98 +/- 0.085) to posttraining (CON + DD + RB; 1.01 +/- 0.082), which likely indicates low statistical power. The increase in physical activity the subjects experienced during the return to in-season activity, may have contributed to the significant differences in SEBT scores over time but not between DD or RB training. Therefore, a threshold level of physical activity may exist that is necessary to maintain balance during the off-season.
Dressing, H; Kühner, C; Gass, P
2007-07-01
Stalking is a widespread phenomenon describing a pattern of intrusive and threatening behaviour that leads to the victim's perception of being harassed and of him or her being rendered fearful. Physical assault and even homicide may occur in the context of stalking. Anglo-Saxon studies have revealed a lifetime prevalence of being a victim of stalking ranging from 4-7% in men and 12-17% in women. Recently, these rates have been confirmed by the first community based study carried out in Germany. As a stalker can have a number of victims during his or her lifetime, the prevalence of stalkers may be less than this, although at present data for this are lacking. Although the phenomenology of stalking appears to be rather homogenous, fairly distinct stalker typologies and perpetrator-victim relationships have to be considered. Requests for psychiatric and forensic assessment of stalkers are increasing. According to the German penal code, psychiatrists must provide expert opinion on criminal responsibility and the placement of stalkers. So far, all typologies of stalkers refer to the Anglo-Saxon cultural background and do not consider the special needs of German forensic psychiatry. In particular, the psychopathological dimension is widely neglected in common typologies. The present paper proposes a multiaxial typology of stalking that considers the psychopathological dimension, the relationship between stalker and victim and motivational aspects. Consequences for the forensic psychiatric assessment according to section 20, 21 StGB are outlined. It should be pointed out that stalking is not a new diagnostic category, but only involves, at a descriptive level, deviation from a normal behavioural pattern. The central components of the forensic psychiatric assessment remain the known diagnostic categories, the effects of which on behaviour can be analysed.
Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning.
Kalra, Vibha; Lee, Jung Hun; Park, Jay Hoon; Marquez, Manuel; Joo, Yong Lak
2009-10-01
Multiaxial (triaxial/coaxial) electrospinning is utilized to fabricate block copolymer (poly(styrene-b-isoprene), PS-b-PI) nanofibers covered with a silica shell. The thermally stable silica shell allows post-fabrication annealing of the fibers to obtain equilibrium self-assembly. For the case of coaxial nanofibers, block copolymers with different isoprene volume fractions are studied to understand the effect of physical confinement and interfacial interaction on self-assembled structures. Various confined assemblies such as co-existing cylinders and concentric lamellar rings are obtained with the styrene domain next to the silica shell. This confined assembly is then utilized as a template to guide the placement of functional nanoparticles such as magnetite selectively into the PI domain in self-assembled nanofibers. To further investigate the effect of interfacial interaction and frustration due to the physically confined environment, triaxial configuration is used where the middle layer of the self-assembling material is sandwiched between the innermost and outermost silica layers. The results reveal that confined block-copolymer assembly is significantly altered by the presence and interaction with both inner and outer silica layers. When nanoparticles are incorporated into PS-b-PI and placed as the middle layer, the PI phase with magnetite nanoparticles migrates next to the silica layers. The migration of the PI phase to the silica layers is also observed for the blend of PS and PS-b-PI as the middle layer. These materials not only provide a platform to further study the effect of confinement and wall interactions on self-assembly but can also help develop an approach to fabricate multilayered, multistructured nanofibers for high-end applications such as drug delivery.
Sokolis, Dimitrios P
2012-01-01
There is a scarcity of data regarding the mechanical properties of the ureter, although this would facilitate our understanding of its physiology and pathophysiology, and the development of suitable biomaterials for replacement. There is hence an urgent need for multiaxial experimental data and methodical constitutive formulations, which we aim at presenting through this report. The zero-stress state of wall tissue, serving as the starting geometry for biomechanical analyses, was accordingly determined and the 3D passive behaviour of ureteral specimens, isolated from healthy rabbits, was studied under a physiologic range of finite inflation and longitudinal extension. Two most-commonly employed descriptors of soft tissue behaviour were chosen to fit the material response: the Fung-type strain-energy function (SEF) and its combination with a quadratic function. Both SEFs were tested in the thick-walled setting, with incompressibility enforced explicitly or via a Lagrange multiplier. The deformational response of the ureter exhibited an exponential and not the sigmoidal dependency on pressure that requests implementation of two-term SEFs. Indeed, the four-parameter Fung-type SEF resulted in reasonable fit of both the external radius and longitudinal force vs. lumen pressure data, and fitting accuracy was not improved when attempting the seven-parameter Fung-type or biphasic SEFs. There were also serious over-parameterisation problems with those models, favouring the implementation of the SEF with the smallest number of parameters. The material parameters optimised revealed significant mechanical anisotropy, with longitudinal properties being stiffer than circumferential ones under equibiaxial stress states. We conclude that ureter displays a nonlinear anisotropic mechanical response that is well-characterised by the four-parameter Fung-type SEF.
Brh V128 is a Double-Mode High-Amplitude delta Scuti Star
Bernhard, K.; Pejcha, O.; Proksch, W.; Quester, W.; van Cauteren, P.; Wils, P.
2004-08-01
CCD-V and unfiltered photometric data show that Brh V128 = GSC 1893-89 is a new high-amplitude double-mode Delta Scuti variable with a fundamental period of 0.1534 days and a period ratio of 0.767. The amplitude of the first overtone pulsation is slightly larger than that of the fundamental mode.
The multi-axial material fatigue under the combined loading with mean stress in three dimensions
Fojtík F.
2009-12-01
Full Text Available This contribution describes the application of Fuxa's conjugated strength criterion on the experimental results under combined loading of specimens made from common construction steel 11523.0, melt T31052. The specimens were stepwise loaded by the torque amplitude, combination of torque amplitude and tension pre-stress, further by the amplitude of the torque in combination with inner overpressure and axial tension force. The last set of specimens was loaded by the torque amplitude in combination with inner and external overpressure and with axial tension force. To obtain the data required as the input values for the conjugated criterion the stress/strain analysis of the specimens by the finite element method in software ANSYS was performed. The experiments were performed on modified testing machine equipped by overpressure chamber.
Navelet-Noualhier, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-06-15
Helicity amplitudes are expressed via the spinor amplitudes in terms of the Joos invariant which have been shown by Williams to be free from kinematical singularities. This procedure allows to analyze the kinematical singularities of helicity amplitudes and separate them out, which results into the definition of regularized helicity amplitudes. A crossing matrix for helicity amplitudes, is written down, corresponding to the continuation path used to cross spinor amplitudes. We verify explicitly that the corresponding crossing matrix for regularized helicity amplitudes is uniform as it should be. Kinematical constraints which generalize, to the case of arbitrary spins and masses, relations which must hold between helicity amplitudes at some values of the energy variable in {pi}N {yields} {pi}N, {pi}{pi} {yields} NN-bar and NN-bar {yields} NN-bar reactions, appear as a consequence of the existence of poles in the crossing matrix between regularized helicity amplitudes. An english version of this work has been written with G. Cohen-Tannoudji and A. Morel and submitted for publication to Annals of Physics. (author) [French] Les amplitudes d'helicite pour une reaction a deux corps sont exprimees, par l'intermediaire des amplitudes spinorielles, en fonction d'amplitudes invariantes de Joos qui sont, comme l'a montre Williams, sans singularites cinematiques. Ce procede nous permet d'analyser puis d'eliminer les singularites cinematiques des amplitudes d'helicite. Ceci nous conduit a la definition d'amplitudes d'helicite 'regularisees'. Une relation de 'croisement' entre amplitudes d'helicite est ecrite; elle realise leur prolongement analytique le long du chemin utilise pour 'croiser' les amplitudes spinorielles. Nous verifions que les elements de la matrice de croisement entre amplitudes d'helicite 'regularisees' sont bien uniformes. Les contraintes cinematiques qui
Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.
1998-01-01
High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and
Frins, E.; Bobrowski, N.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U.
2014-12-01
In March 2012 the emissions of NO2 and SO2 from a power station located on the east side of Montevideo Bay (34° 53‧ 10″ S, 56° 11‧ 49″ W) were quantified by simultaneously using mobile and scanning multi-axis differential optical absorption spectroscopy (in the following mobile DOAS and scanning DOAS, respectively). The facility produces electricity by means of two technologies: internal combustion motors and steam generators. The motors are powered with centrifuged heavy oil and produce a maximum power of 80 MW approximately. The steam generators produce approximately 305 MW and are powered with heavy fuel oil. We compare the emissions obtained from the measured slant column densities (mobile DOAS and scanning DOAS) with the emissions estimated from fuel mass balance. On one occasion it was possible to distinguish between the two types of sources, observing two plumes with different SO2 and NO2 emission rates. During the period of the campaign the mean SO2 emission flux was determined to be 0.36 (±0.12) kg s-1 and 0.26 (±0.09) kg s-1 retrieved from mobile and scanning DOAS respectively, while the calculated SO2 flux from the sulphur content of the fuel was 0.34 (±0.03) kg s-1. The average NO2 flux calculated from mobile DOAS was determined to be 11 (±3) × 10-3 kg s-1. Using the scanning DOAS approach a mean NO2 flux of 5.4 (±1.7) × 10-3 kg s-1 was obtained, which is significantly lower than by the mobile measurements. The differences between the results of mobile MAX-DOAS measurements and scanning DOAS measurements are most probably caused by the variability and the limited knowledge of the wind speed and direction.
EPR = ER, scattering amplitude and entanglement entropy change
Seki, Shigenori, E-mail: sigenori@hanyang.ac.kr [Research Institute for Natural Science, Hanyang University, Seoul 133-791 (Korea, Republic of); Sin, Sang-Jin, E-mail: sjsin@hanyang.ac.kr [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)
2014-07-30
We study the causal structure of the minimal surface of the four-gluon scattering, and find a world-sheet wormhole parametrized by Mandelstam variables, thereby demonstrate the EPR = ER relation for gluon scattering. We also propose that scattering amplitude is the change of the entanglement entropy by generalizing the holographic entanglement entropy of Ryu–Takayanagi to the case where two regions are divided in space–time.
Effective anisotropy through traveltime and amplitude matching
Wang, Hui
2014-08-05
Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.
An amplitude modulated radio frequency plasma generator
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
Discontinuities of multi-Regge amplitudes
Fadin, V S
2014-01-01
In the BFKL approach, discontinuities of multiple production amplitudes in invariant masses of produced particles are discussed. It turns out that they are in evident contradiction with the BDS ansatz for $n$-gluon amplitudes in the planar $N$=4 SYM at $n\\ge 6$. An explicit expression for the NLO discontinuity of the two-to-four amplitude in the invariant mass of two produced gluons is is presented.
On the singularities of massive superstring amplitudes
Foda, O.
1987-06-04
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.
DVCS amplitude with kinematical twist-3 terms
Radyushkin, A V
2000-01-01
We compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude we include the operators of twist-3 which appear as total derivatives of twist-2 operators. Our results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. We find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without...... Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...
Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.
2016-07-01
The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This study uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random size obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.
J. Toribio
2015-07-01
Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.
Lin, D H; Yin, F C
1998-08-01
The constitutive law of the material comprising any structure is essential for mechanical analysis since this law enables calculation of the stresses from the deformations and vice versa. To date, there is no constitutive law for actively contracting myocardial tissue. Using 2,3-butanedione monoxime to protect the myocardium from mechanical trauma, we subjected thin midwall slices of rabbit myocardium to multiaxial stretching first in the passive state and then during steady-state barium contracture or during tetani in ryanodine-loaded tissue. Assuming transverse isotropy in both the passive and active conditions, we used our previously described methods (Humphrey et al., 1990a) to obtain both passive and active constitutive laws. The major results of this study are: (1) This is the first multiaxial constitutive law for actively contracting mammalian myocardium. (2) The functional forms of the constitutive law for barium contracture and ryanodine-induced tetani are the same but differ from those in the passive state. Hence, one cannot simply substitute differing values for the coefficients of the passive law to describe the active tissue properties. (3) There are significant stresses developed in the cross-fiber direction (more than 40 percent of those in the fiber direction) that cannot be attributed to either deformation effects or nonparallel muscle fibers. These results provide the foundation for future mechanical analyses of the heart.
Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A
2013-11-01
A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery.
Runciman, Amanda; Xu, David; Pelton, Alan R; Ritchie, Robert O
2011-08-01
Medical devices, particularly endovascular stents, manufactured from superelastic Nitinol, a near-equiatomic alloy of Ni and Ti, are subjected to complex mixed-mode loading conditions in vivo, including axial tension and compression, radial compression, pulsatile, bending and torsion. Fatigue lifetime prediction methodologies for Nitinol, however, are invariably based on uniaxial loading and thus fall short of accurately predicting the safe lifetime of stents under the complex multiaxial loading conditions experienced physiologically. While there is a considerable body of research documented on the cyclic fatigue of Nitinol in uniaxial tension or bending, there remains an almost total lack of comprehensive fatigue lifetime data for other loading conditions, such as torsion and tension/torsion. In this work, thin-walled Nitinol tubes were cycled in torsion at various mean and alternating strains to investigate the fatigue life behavior of Nitinol and results compared to equivalent fatigue data collected under uniaxial tensile/bending loads. Using these strain-life results for various loading modes and an equivalent referential (Lagrangian) strain approach, a strategy for normalizing these data is presented. Based on this strategy, a fatigue lifetime prediction model for the multiaxial loading of Nitinol is presented utilizing a modified Coffin-Manson approach where the number of cycles to failure is related to the equivalent alternating transformation strain.
Fesich, Thomas M. [Stuttgart Univ. (Germany). Inst. fuer Materialpruefung, Werkstoffkunde und Festigkeitslehre
2012-11-01
Technical components are loaded by forces and moments that can be constant or dynamic. Therefore multi-axial loadings can develop dependent on load and/or geometry of the component. The evaluation of multi-axial loadings is still not solved, mainly because the time dependent stresses can cause in complex loading states. Since in contrary to static failures no significant changes of material characteristics are observable in case of fatigue failures a sufficiently accurate lifetime assessment is of main importance. In nuclear engineering the components are mostly individual constructions that need the demonstration of fatigue resistance in the frame of a local fatigue analysis. For the materials side the Woehler curve is sufficient since representative component test would not be economic. The national standards include guidelines for the determination of reference values for complex fatigue loadings that are very conservative or only applicable for definite tasks. The presented of an advanced integrated multi-axial fatigue life concept is an experimentally verified technique that allows a realistic evaluation of the multi-axial loading of components and lifetime assessment based on the so called fatigue damage parameter.
Secondary threshold amplitudes for sinuous streak breakdown
Cossu, Carlo; Brandt, Luca; Bagheri, Shervin; Henningson, Dan S.
2011-07-01
The nonlinear stability of laminar sinuously bent streaks is studied for the plane Couette flow at Re = 500 in a nearly minimal box and for the Blasius boundary layer at Reδ*=700. The initial perturbations are nonlinearly saturated streamwise streaks of amplitude AU perturbed with sinuous perturbations of amplitude AW. The local boundary of the basin of attraction of the linearly stable laminar flow is computed by bisection and projected in the AU - AW plane providing a well defined critical curve. Different streak transition scenarios are seen to correspond to different regions of the critical curve. The modal instability of the streaks is responsible for transition for AU = 25%-27% for the considered flows, where sinuous perturbations of amplitude below AW ≈ 1%-2% are sufficient to counteract the streak viscous dissipation and induce breakdown. The critical amplitude of the sinuous perturbations increases when the streamwise streak amplitude is decreased. With secondary perturbations amplitude AW ≈ 4%, breakdown is induced on stable streamwise streaks with AU ≈ 13%, following the secondary transient growth scenario first examined by Schoppa and Hussain [J. Fluid Mech. 453, 57 (2002)]. A cross-over, where the critical amplitude of the sinuous perturbation becomes larger than the amplitude of streamwise streaks, is observed for streaks of small amplitude AU < 5%-6%. In this case, the transition is induced by an initial transient amplification of streamwise vortices, forced by the decaying sinuous mode. This is followed by the growth of the streaks and final breakdown. The shape of the critical AU - AW curve is very similar for Couette and boundary layer flows and seems to be relatively insensitive to the nature of the edge states on the basin boundary. The shape of this critical curve indicates that the stability of streamwise streaks should always be assessed in terms of both the streak amplitude and the amplitude of spanwise velocity perturbations.
Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg
Ivan Demšar, Jože Duhovnik, Blaž Lešnik, Matej Supej
2015-12-01
Full Text Available The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW, various skiing regimes were simulated. Change of Flexion Angle (CoFA and Range of Motion (RoM in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1° was significantly lower compared to an intact leg (5.9 ± 1.8° and the control group (6.5 ± 2.3°. In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2° was significantly larger than that of the intact leg (34.7 ± 4.4°. The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing.
Friedel, M. J.; Asch, T. H.; Oden, C.
2012-08-01
The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot-Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the
Friedel, M.J.; Asch, T.H.; Oden, C.
2012-01-01
The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot–Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the
Biofeedback improves postural control recovery from multi-axis discrete perturbations
Sienko Kathleen H
2012-08-01
Full Text Available Abstract Background Multi-axis vibrotactile feedback has been shown to significantly reduce the root-mean-square (RMS sway, elliptical fits to sway trajectory area, and the time spent outside of the no feedback zone in individuals with vestibular deficits during continuous multidirectional support surface perturbations. The purpose of this study was to examine the effect of multidirectional vibrotactile biofeedback on postural stability during discrete multidirectional support surface perturbations. Methods The vibrotactile biofeedback device mapped tilt estimates onto the torso using a 3-row by 16-column tactor array. The number of columns displayed was varied to determine the effect of spatial resolution upon subject response. Torso kinematics and center of pressure data were measured in six subjects with vestibular deficits. Transient and steady state postural responses with and without feedback were characterized in response to eight perturbation directions. Four feedback conditions in addition to the tactors off (no feedback configuration were evaluated. Postural response data captured by both a force plate and an inertial measurement unit worn on the torso were partitioned into three distinct phases: ballistic, recovery, and steady state. Results The results suggest that feedback has minimal effects during the ballistic phase (body’s outbound trajectory in response to the perturbation, and the greatest effects during the recovery (return toward baseline and steady state (post-recovery phases. Specifically, feedback significantly decreases the time required for the body tilt to return to baseline values and significantly increases the velocity of the body’s return to baseline values. Furthermore, feedback significantly decreases root mean square roll and pitch sway and significantly increases the amount of time spent in the no feedback zone. All four feedback conditions produced comparable performance improvements. Incidences of delayed
Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state
Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin
2009-10-15
Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given
BCFW construction of the Veneziano amplitude
Fotopoulos, Angelos, E-mail: foto@to.infn.it [Dipartimento di Fisica Teorica dell Universita di Torino and INFN Sezione di Torino, via P. Giuria 1, I-10125 Torino (Italy)
2011-06-10
In this paper we demonstrate how one can compute the Veneziano amplitude for bosonic string theory using the Britto-Cachazo-Feng-Witten method. We use an educated ansatz for the cubic amplitude of two tachyons and an arbitrary level string state.
BCFW construction of the Veneziano amplitude
Fotopoulos, Angelos
2011-06-01
In this paper we demonstrate how one can compute the Veneziano amplitude for bosonic string theory using the Britto-Cachazo-Feng-Witten method. We use an educated ansatz for the cubic amplitude of two tachyons and an arbitrary level string state.
Interlimb coupling strength scales with movement amplitude.
Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J
2008-05-23
The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.
Robust seismic images amplitude recovery using curvelets
Moghaddam, Peyman P.; Herrmann, Felix J.; Stolk, C.C.
2007-01-01
In this paper, we recover the amplitude of a seismic image by approximating the normal (demigration-migration) operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that
Off-shell amplitudes and Grassmannians
Bork, L. V.; Onishchenko, A. I.
2017-09-01
The Grassmannian representation for gauge-invariant amplitudes for arbitrary number of legs with one of them being off-shell is derived for the case of N = 4 SYM. The obtained formula are successfully checked against known BCFW results for MHV n , NMHV4 and NMHV5 amplitudes.
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are n
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are
The Lorentzian proper vertex amplitude: Asymptotics
Engle, Jonathan; Zipfel, Antonia
2015-01-01
In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semi-classical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the EPRL case by an extra `projector' term which scales linearly with spins only in the asymptotic limit. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a non-degenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.
Amplitude image processing by diffractive optics.
Cagigal, Manuel P; Valle, Pedro J; Canales, V F
2016-02-22
In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.
Superstring amplitudes as a Mellin transform of supergravity
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2013-08-01
At the tree level, the maximally helicity violating amplitudes of N gauge bosons in open superstring theory and of N gravitons in supergravity are known to have simple representations in terms of tree graphs. For superstrings, the graphs encode integral representations of certain generalized Gaussian hypergeometric functions of kinematic invariants while for supergravity, they represent specific kinematic expressions constructed from spinor-helicity variables. We establish a superstring/supergravity correspondence for this class of amplitudes, by constructing a mapping between the positions of gauge boson vertices at the disk boundary and the helicity spinors associated to gravitons. After replacing vertex positions by a larger set of (N(N−3))/2 coordinates, the superstring amplitudes become (multiple) Mellin transforms of supergravity amplitudes, from the projective space into the dual Mellin space of (N(N−3))/2 kinematic invariants. Similarly, inverse Mellin transforms transmute open superstrings into supergravity. We elaborate on the properties of multiple Mellin and inverse Mellin transforms in the framework of superstring/supergravity correspondence.
Remote identification of the vibration amplitude of ship hull
A. N. Pinchuk
2014-01-01
Full Text Available The aim is to develop the methodological support to determine vibration amplitude of the ship hull remotely using a coherent radar centimeter range based on the variation of the Doppler signal spectrum reflected from a vibrating surface.The paper presents a synthesized mathematical model of the radio signal reflected from the vibrating surface. It is the signal of coherent radar of continuous radiation with a known carrier frequency and the amplitude of the radiated signal. In the synthesis it was believed that the displacement in the radial direction with respect to the vibrating surface radar was sinusoidal.The dependences of the vibration amplitude on the value of the normalized Doppler radio signal spectrum at the second harmonic frequency are obtained. Cycle results of field experiments to study the variability of the sea surface, determining the level of its roughness, allows us to establish that the energy of surface waves of gravitational-capillary range has a high correlation with the wind speed. It is proved that the ratio of the spectral density levels at vibration frequency and its multiple frequencies is specified by the index of phase modulation linearly related to the amplitude of vibration of the ship hull.The results are significant for radar (radar detection of water targets using the coherent radar of centimeter range, ensuring the correct records of noise generated by the scattering of radio waves from the water surface.
Holographic corrections to meson scattering amplitudes
Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk
2017-06-15
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Hidden simplicity of gauge theory amplitudes
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Hidden simplicity of gauge theory amplitudes
Drummond, J. M.
2010-11-01
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Holographic Corrections to Meson Scattering Amplitudes
Armoni, Adi
2016-01-01
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Softness and Amplitudes' Positivity for Spinning Particles
Bellazzini, Brando
2016-01-01
We derive positivity bounds for scattering amplitudes of particles with arbitrary spin using unitarity, analyticity and crossing symmetry. The bounds imply the positivity of certain low-energy coefficients of the effective action that controls the dynamics of the light degrees of freedom. We show that low-energy amplitudes strictly softer than $O(p^4)$ do not admit unitary ultraviolet completions unless the theory is free. This enforces a bound on the energy growth of scattering amplitudes in the region of validity of the effective theory. We discuss explicit examples including the Goldstino from spontaneous supersymmetry breaking, and the theory of a spin-1/2 fermion with a shift symmetry.
Target tracking based on frequency spectrum amplitude
Guo Huidong; Zhang Xinhua; Xia Zhijun
2006-01-01
The amplitude of frequency spectrum can be integrated with probabilistic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The probabilistic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.
Renormalization of position space amplitudes in a massless QFT
Todorov, Ivan
2017-03-01
Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].
Gao, Kai
2016-01-01
The conventional Perfectly Matched Layer (PML) is unstable for certain kinds of anisotropic media. This instability is intrinsic and independent of PML formulation or implementation. The Multi-axial PML (MPML) removes such instability using a nonzero damping coefficient in the direction parallel with the interface between a PML and the investigated domain. The damping ratio of MPML is the ratio between the damping coefficients along the directions parallel with and perpendicular to the interface between a PML and the investigated domain. No quantitative approach is available for obtaining these damping ratios for general anisotropic media. We develop a quantitative approach to determining optimal damping ratios to not only stabilize PMLs, but also minimize the artificial reflections from MPMLs. Numerical tests based on finite-difference method show that our new method can effectively provide a set of optimal MPML damping ratios for elastic-wave propagation in 2D and 3D general anisotropic media.
Dimitrov, Nikolay Krasimirov; Bitsche, Robert; Blasques, José Pedro Albergaria Amaral
2017-01-01
properties, progressive material failure, and system reliability effects. An example analysis of reliability against material failure is demonstrated for a blade cross section. Based on the study we discuss the implications of using a system reliability approach, the effect of spatial correlation length......This paper presents a methodology for structural reliability analysis of wind turbine blades. The study introduces several novel elements by taking into account loading direction using a multiaxial probabilistic load model, considering random material strength, spatial correlation between material......, type of material degradation algorithm, and reliability methods on the system failure probability, as well as the main factors that have an influence on the reliability. (C) 2017 Elsevier Ltd. All rights reserved....
R. J. Leigh
2006-12-01
Full Text Available A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O_{4}, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through, the application of several simplifying assumptions a tropospheric concentration of NO_{2} is derived and compared with an urban background in-situ chemiluminescence detector. The remote sensing and in-situ techniques show good agreement. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO_{2} concentrations on a city-wide scale.
V-Notched Bar Creep Life Prediction: GH3536 Ni-Based Superalloy Under Multiaxial Stress State
Zhang, D. X.; Wang, J. P.; Wen, Z. X.; Liu, D. S.; Yue, Z. F.
2016-07-01
In this study, creep experiments on smooth and circumferential V-type notched round bars were conducted in GH3536 Ni-based superalloy at 750 °C to identify notch strengthening effect in notched specimens. FE analysis was carried out, coupled with continuum damage mechanics (CDM), to analyze stress distribution and damage evolution under multiaxial stress state. The creep deformation of smooth specimens and the rupture life of both smooth and notched specimens showed good agreement between experimental results and FE analysis predictions; the creep rupture life for the notched specimen was successfully predicted via the "skeletal point" concept. Both creep damage analysis and the observed fracture morphology suggest that creep rupture started first at the root in the V-type notched specimens, and shifted to the region close to the notch root when the notch was relatively shallow compared to U-type notched specimens.
Gueye, M.; Zighem, F.; Belmeguenai, M.; Gabor, M.; Tiusan, C.; Faurie, D.
2016-07-01
In this paper a unique expression of the anisotropy field induced by any multiaxial stress state in a magnetic thin film and probed by ferromagnetic resonance is derived. This analytical development has been made using the uniaxial equivalent stress concept, for which correspondances between definitions given by different authors in the literature is found. The proposed model for the anisotropy field has been applied to \\text{C}{{\\text{o}}2}\\text{FeAl} thin films (25 nm) stressed both by piezoelectric actuation (non-equi-biaxial) or by bending tests (uniaxial) and measured with a broadband ferromagnetic resonance technique. The overall exprimental data can be easily plotted on a unique graph from which the magnetostriction coefficient has been estimated.
Winberg Nodal, Máximo; Vilalta Suárez, Ramón J
2009-11-01
In this paper, the presence of personality disorders in a forensic sample is analysed using the Millon Clinical Multiaxial Inventory (MCMI-II). The sample was made up of 86 individuals from both civil and criminal settings: plaintiffs in family cases and complainants and defendants in various crimes, especially in partner abuse. The results reveal a great number of records of Compulsive Personality Disorder, reaching 70%, regardless of whether they were from the civil or the criminal setting or whether they were a plaintiff or a defendant. It is concluded that this inventory seems to lack statistical validity for this purpose. Moreover, this test may only describe the typical characteristics of forensic evaluation rather than the personality of the individuals assessed, and it is oversensitive to context; hence, the conclusions derived from the use of the MCMI-II in the forensic field may accept as valid a great deal of distorted or unspecific profiles.
Caparrós, Beatriz Caparrós; Hoz, Esperanza Villar
2013-01-01
Despite the controversy generated by the conceptualization of personality disorders, it is well established that the inflexibility of coping styles and dysfunctional behaviors associated with them can lead to a considerable impairment in interpersonal relationships. Although communication is one of the most important processes in relating to others, few empirical studies have been undertaken on the influence of dysfunctional personality patterns on communication styles, which is the main objective of the present cross-sectional study. A total of 529 Spanish university students were assessed using the Millon Clinical Multiaxial Inventory III (MCMI-III), Millon, Davis, and Millon, 1997, and the Communicator Style Measure (Norton, 1978). Results show statistically significant relationships between different personality patterns and styles of communication and suggest that narcissistic, histrionic and compulsive patterns are related to positive communication styles in a non-clinical sample. The implications of this study are discussed.
Leigh, R. J.; Corlett, G. K.; Frieß, U.; Monks, P. S.
2007-09-01
A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. Trends derived from remote sensing and in-situ techniques show agreement to within 15 to 40% depending on conditions. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale.
Open String Amplitudes in Various Gauges
Fuji, H; Suzuki, H; Fuji, Hiroyuki; Nakayama, Shinsaku; Suzuki, Hisao
2007-01-01
Recently, Schnabl constructed the analytic solution of the open string tachyon. Subsequently, the absence of the physical states at the vacuum was proved. The development relies heavily on the use of the gauge condition different from the ordinary one. It was shown that the choice of gauge simplifies the analysis drastically. When we perform the calculation of the amplitudes in Schnabl gauge, we find that the off-shell amplitudes of the Schnabl gauge is still very complicated. In this paper, we propose the use of the propagator in the modified Schnabl gauge and show that this modified use of the Schnabl gauge simplifies the computation of the off-shell amplitudes drastically. We also compute the amplitudes of open superstring in this gauge.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Off-shell Amplitudes in Superstring Theory
Sen, Ashoke
2014-01-01
Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for superstring and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter when the supermoduli space is not holomorphically projected. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism.
Feynman Amplitudes in Mathematics and Physics
Bloch, Spencer
2015-01-01
These are notes of lectures given at the CMI conference in August, 2014 at ICMAT in Madrid. The focus is on some mathematical questions associated to Feynman amplitudes, including Hodge structures, relations with string theory, and monodromy (Cutkosky rules).
Stora's fine notion of divergent amplitudes
Várilly, Joseph C
2016-01-01
Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Open string amplitudes of closed topological vertex
Takasaki, Kanehisa
2016-01-01
The closed topological vertex is the simplest "off-strip" case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an "on-strip" subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.
Amplitudes for left-handed strings
Siegel, W
2015-01-01
We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.
Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg
Demšar, Ivan; Duhovnik, Jože; Lešnik, Blaž; Supej, Matej
2015-01-01
The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key points The RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects. The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects. The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the
On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades
Noever Castelos, Pablo; Balzani, Claudio
2016-09-01
For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization
Simple parametrization of the. pi. -N amplitude
McLeod, R.J.; Afnan, I.R.
1985-07-01
We present a simple parametrization of the S-, P-, and D-wave ..pi..-N amplitudes using separable potentials for T/sub ..pi../<1 GeV. The effect of the inelasticity is included in the Green's function while maintaining consistency with unitarity. The P/sub 11/ amplitude is written as a pole plus nonpole in order to describe pion absorption in A> or =2.
Feynman amplitudes and limits of heights
Amini, O.; Bloch, S. J.; Burgos Gil, J. I.; Fresán, J.
2016-10-01
We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.
Nucleon distribution amplitudes from lattice QCD
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Kaltenbrunner, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)
2008-04-15
We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)
Vowel identification by amplitude and phase contrast.
Molis, Michelle R; Diedesch, Anna; Gallun, Frederick; Leek, Marjorie R
2013-02-01
Vowel identification is largely dependent on listeners' access to the frequency of two or three peaks in the amplitude spectrum. Earlier work has demonstrated that, whereas normal-hearing listeners can identify harmonic complexes with vowel-like spectral shapes even with very little amplitude contrast between "formant" components and remaining harmonic components, listeners with hearing loss require greater amplitude differences. This is likely the result of the poor frequency resolution that often accompanies hearing loss. Here, we describe an additional acoustic dimension for emphasizing formant versus non-formant harmonics that may supplement amplitude contrast information. The purpose of this study was to determine whether listeners were able to identify "vowel-like" sounds using temporal (component phase) contrast, which may be less affected by cochlear loss than spectral cues, and whether overall identification improves when congruent temporal and spectral information are provided together. Five normal-hearing and five hearing-impaired listeners identified three vowels over many presentations. Harmonics representing formant peaks were varied in amplitude, phase, or a combination of both. In addition to requiring less amplitude contrast, normal-hearing listeners could accurately identify the sounds with less phase contrast than required by people with hearing loss. However, both normal-hearing and hearing-impaired groups demonstrated the ability to identify vowel-like sounds based solely on component phase shifts, with no amplitude contrast information, and they also showed improved performance when congruent phase and amplitude cues were combined. For nearly all listeners, the combination of spectral and temporal information improved identification in comparison to either dimension alone.
Employing Helicity Amplitudes for Resummation in SCET
Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J
2016-01-01
Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.
Quartic amplitudes for Minkowski higher spin
Bengtsson, Anders K H
2016-01-01
The problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.
Amplitude metrics for cellular circadian bioluminescence reporters.
St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J
2014-12-01
Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary
Effective gluon interactions from superstring disk amplitudes
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
焊接接头多轴高周疲劳评估方法%Multiaxial high-cycle fatigue assessment method for welded joints
张晓阳; 刘金勇; 曲先强
2014-01-01
本文主要对焊接接头的多轴高周疲劳评估方法展开研究．针对某管板焊接接头，分别采用Von Mises等效应力法、Eurocode3规范方法、IIW规范方法以及修正Wöhler曲线方法（ MWCM ）计算其多轴高周疲劳损伤寿命，并与试验寿命进行比较．对四种方法预测寿命的标准差进行分析．结果显示，等效应力法能够准确预测比例加载下的多轴高周疲劳寿命，但并不适用于估算非比例加载下的多轴疲劳损伤寿命，且预测结果偏于危险．MWCM既能够适用于比例加载下的多轴高周疲劳损伤寿命预测，也适用于非比例加载下的多轴高周疲劳损伤寿命预测，且预测寿命的标准差较小．%The multiaxial high-cycle fatigue assessment method for welded joints was carried out .Von Mises equivalent stress method, Eurocode3 recommended method , IIW recommended method and Modified Wöhler Curve Method ( MWCM ) were used to evaluate multiaxial high-cycle fatigue life of tube-plate welded joints , and results were compared with experimental fatigue life.Then the standard errors of estimated fatigue life for the four methods were analyzed .Results show that equiva-lent stress method can only be used to calculate multiaxial high-cycle fatigue life under proportional added multiaxial loads, whereas MWCM performed well to evaluate multiaxial fatigue life for welded structures subject to both proportional and non-proportional added multiaxial loads , moreover has a small standard error .
Amplitude Modulations of Acoustic Communication Signals
Turesson, Hjalmar K.
2011-12-01
In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a
Maharana, Jnanadeva
2016-01-01
The properties of the high energy behavior of the scattering amplitude of massive, neutral and spinless particles in higher dimensional field theories are investigated. The axiomatic formulation of Lehmann, Symanzik and Zimmermann is adopted. The analyticity properties of the causal, the retarded and the advanced functions associated with the four point elastic amplitudes are studied. The analog of the Lehmann-Jost-Dyson representation is obtained in higher dimensional field theories. The generalized J-L-D representation is utilized to derive the t-plane analyticity property of the amplitude. The existence of an ellipse analogous to the Lehmann ellipse is demonstrated. Thus a fixed-t dispersion relation can be written down with finite number of subtractions due to the temperedness of the amplitudes. The domain of analyticity of scattering amplitude in $s$ and $t$ variables is extended by imposing unitarity constraints. A generalized version of Martin's theorem is derived to prove the existence of such a domai...
Scattering amplitudes in open superstring theory
Schlotterer, Oliver
2011-07-15
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Gurun, Bilge; Bucknall, David G.; Thio, Yonathan S.; Teoh, Chin Ching; Harkin-Jones, Eileen (GIT); (Queens)
2013-01-10
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer.
无
2010-01-01
The transition location of a boundary layer depends on the amplitude and characteristic of initial disturbances. The larger the amplitude and the amplification rate of the initial disturbances are,the more upstream the transition location is. However,the environment surrounding the flying vehicle is variable,so the amplitude and characteristic of the disturbances triggered in the boundary layer through receptivity are also variable. In this paper,how the transition location varies in response to the variation of the initial disturbance amplitudes is studied by using direct numerical simulation. The results show that if the initial disturbance amplitudes become smaller,the transition location moves downstream correspondingly,but there is a time delay compared to the time of arrival of the disturbances with reduced amplitudes. Moreover,the speed of moving downstream is appreciably lower than the propagation speed of the disturbances. On the other hand,if the amplitudes of the initial disturbances recover their original value,the transition would immediately take place whenever the disturbances reach the former transition location,but the laminar flow between the new and old transition locations would not become turbulent immediately. Theoretical explanations are provided based on the transition mechanism found by our group.
VizieR Online Data Catalog: Kepler δ Sct stars amplitude modulation (Bowman+, 2016)
Bowman, D. M.; Kurtz, D. W.; Breger, M.; Murphy, S. J.; Holdsworth, D. L.
2016-06-01
We searched for amplitude modulation of pulsation modes in δ Sct stars observed by the Kepler Space Telescope. The number of pulsation modes out of a maximum of twelve that have constant amplitudes and variable amplitudes are given in the columns NoMod and AMod, respectively, along with stellar parameters from Huber et al. (2014, Cat. J/ApJS/211/2). Table 1 is the full version for all 983 δ Sct stars the abridged version of the paper. (1 data file).
风电用多轴向经编织物的结构设计%THE STRUCTURE DESIGN OF MULTIAXIAL WARP KNITTED FABRIC IN WIND POWER GENERATION
王雪芳; 丛洪莲; 张爱军
2012-01-01
多轴向经编技术是一种新型的多头衬纬编织技术,该技术生产的多轴向经编织物具有尺寸稳定、延伸率小等特点,在产业用领域已受到广泛的重视.本文介绍了多轴向经编织物的结构与性能以及纱层方向的表示方法,从风力发电机叶片结构、多轴向经编织物材料、叶片受力分析、制造工艺方面详细介绍了多轴向经编织物在风力发电机叶片中的应用,以双斜向经编织物为例,采用WKCAD设计仿真并分析.%Multiaxial warp knitted technology is the way that can lay-in more weft at the same time, the mul-tiaxial warp knitted fabric produced by this technology has stable size, small elongation and other characteristics, has been appreciated in the industrial field extensively. This paper introduces the structure and performance of multiaxial warp knitted fabric and the method to show the direction of the lay-in yarn, introduces the application of multiaxial warp knitted fabric in wind power generation in detail including the structure of the blade, the materials, the stress analysis of the blade and the manufacturing process. As a example of biaxial warp knitted fabric, design and analysis it based on WKCAD.
2013-10-01
AD_________________ Award Number: W81XWH-11-1-0748 TITLE: Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial...Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing Return Prosthetic Feet During Simple... athlete . Amputee performance will also be compared to a non-amputee control group. Body At this time we can report that 100% of experimental
M. Saifur Rahman
2012-12-01
Full Text Available Recently, a unified Krylov-Bogoliubov-Mitropolskii method has been presented (by Shamsul \\cite{1} for solving an $n$-th, $n=2$ or $n>2$, order nonlinear differential equation. Instead of amplitude(s and phase(s, a set of variables is used in \\cite{1} to obtain a general formula in which the nonlinear differential equations can be solved. By a simple variables transformation the usual form solutions (i.e., in terms of amplitude(s and phase(s have been found. In this paper a perturbation technique is developed to calculate the initial values of the variables used in \\cite{1}. By the noted transformation the initial amplitude(s and phase(s can be calculated quickly. Usually the conditional equations are nonlinear algebraic or transcendental equations; so that a numerical method is used to solve them. Rink \\cite{7} earlier employed an asymptotic method for solving the conditional equations of a second-order differential equation; but his derived results were not so good. The new results agree with their exact values (or numerical results nicely. The method can be applied whether the eigen-values of the unperturbed equation are purely imaginary, complex conjugate or real. Thus the derived solution is a general one and covers the three cases, i.e., un-damped, under-damped and over-damped.
Spinfoam cosmology with the proper vertex amplitude
Vilensky, Ilya
2016-01-01
The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.
A description of seismic amplitude techniques
Shadlow, James
2014-02-01
The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Analytic representations of Yang-Mills amplitudes
Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.; Feng, Bo
2016-12-01
Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space-fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
Amplitude-modulated fiber-ring laser
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Speech production in amplitude-modulated noise
Macdonald, Ewen N; Raufer, Stefan
2013-01-01
The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...
Amplitude-modulated fiber-ring laser
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
On Arbitrary Phases in Quantum Amplitude Amplification
Hoyer, P
2000-01-01
We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.
Nonlinear (Super)Symmetries and Amplitudes
Kallosh, Renata
2016-01-01
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E_{7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N\\geq 5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.
Analytic Representations of Yang-Mills Amplitudes
Bjerrum-Bohr, N E J; Damgaard, Poul H; Feng, Bo
2016-01-01
Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
Maharana, Jnanadeva
2017-01-01
The properties of the high energy behavior of the scattering amplitude of massive, neutral, and spinless particles in higher dimensional field theories are investigated. The axiomatic formulation of Lehmann, Symanzik, and Zimmermann (LSZ) is adopted. The analyticity properties of the causal, the retarded, and the advanced functions associated with the four point elastic amplitudes are studied. The analog of the Lehmann-Jost-Dyson representation is obtained in higher dimensional field theories. The generalized J-L-D representation is utilized to derive the t-plane analyticity property of the amplitude. The existence of an ellipse analogous to the Lehmann ellipse is demonstrated. Thus a fixed-t dispersion relation can be written down with a finite number of subtractions due to the temperedness of the amplitudes. The domain of analyticity of scattering amplitude in s and t variables is extended by imposing unitarity constraints. A generalized version of Martin's theorem is derived to prove the existence of such a domain in D-dimensional field theories. It is shown that the amplitude can be expanded in a power series in t which converges for |" separators=" t | < R , R being s-independent. The positivity properties of absorptive amplitudes are derived to prove the t-plane analyticity of amplitude. In the extended analyticity domain dispersion relations are written with two subtractions. The bound on the total cross section is derived from LSZ axioms without any extra ad hoc assumptions.
Modified π π amplitude with σ pole
Bydžovský, P.; Kamiński, R.; Nazari, V.
2014-12-01
A set of well-known once subtracted dispersion relations with imposed crossing symmetry condition is used to modify unitary multichannel S (π π , K K ¯, and η η ) and P (π π , ρ 2 π , and ρ σ ) wave amplitudes mostly below 1 GeV. Before the modifications, these amplitudes significantly did not satisfy the crossing symmetry condition and did not describe the π π threshold region. Moreover, the pole of the S wave amplitude related with the f0(500 ) meson (former f0(600 ) or σ ) had much smaller imaginary part and bigger real one in comparison with those in the newest Particle Data Group Tables. Here, these amplitudes are supplemented by near threshold expansion polynomials and refitted to the experimental data in the effective two pion mass from the threshold to 1.8 GeV and to the dispersion relations up to 1.1 GeV. In result the self consistent, i.e., unitary and fulfilling the crossing symmetry condition, S and P wave amplitudes are formed and the σ pole becomes much narrower and lighter. To eliminate doubts about the uniqueness of the so obtained sigma pole position short and purely mathematical proof of the uniqueness of the results is also presented. This analysis is addressed to a wide group of physicists and aims at providing a very effective and easy method of modification of, many presently used, π π amplitudes with a heavy and broad σ meson without changing of their original mathematical structure.
Gluon scattering amplitudes at strong coupling
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2007-06-15
We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.
Topographic quantitative EEG amplitude in recovered alcoholics.
Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S
1992-05-01
Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.
Amplitude Models for Discrimination and Yield Estimation
Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
Fatigue Reliability under Multiple-Amplitude Loads
Talreja, R.
1979-01-01
A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution...... for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...
Probability amplitude in quantum like games
Grib, A A; Starkov, K
2003-01-01
Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude are given. The first game is described by the quantum formalism of spin one half system for which two noncommuting observables are measured. The second game corresponds to the spin one case. Quantum logical orthocomplemented nondistributive lattices for these two games are presented. Interference terms for the probability amplitudes are analyzed by using so called contextual approach to probability (in the von Mises frequency approach). We underline that our games are not based on using of some microscopic systems. The whole scenario is macroscopic.
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
New structures in scattering amplitudes: A review
Benincasa, Paolo
2014-02-01
We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories.
External and internal limitations in amplitude-modulation processing
Ewert, Stephan; Dau, Torsten
2004-01-01
Three experiments are presented to explore the relative role of "external" signal variability and "internal" resolution limitations of the auditory system in the detection and discrimination of amplitude modulations (AM). In the first experiment, AM-depth discrimination performance was determined......, 16, 64, and 256 Hz, applied to either a band-limited random-noise carrier or a deterministic ("frozen") noise carrier, as a function of carrier bandwidth (8 to 2048 Hz). In general, detection thresholds were higher for the random- than for the frozen-noise carriers. For both carrier types, thresholds......-filterbank models. The predictions revealed that AM-depth discrimination and AM detection are limited by a combination of the external signal variability and an internal "Weber-fraction" noise process....
Amplitude ratios in ρ0 leptoproductions and GPDs
Goloskokov S.V.
2017-01-01
Using the model results we calculate the ratio of different helicity amplitudes for a transversely polarized proton target to the leading twist longitudinal amplitude. Our results are close to the amplitude ratios measured by HERMES.
Effect Of Vibration Amplitude Level On Seated Occupant Reaction Time
Amzar Azizan; Ratchaphon Ittianuwat; Zhengqing Liu
2015-01-01
... r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude low vibration amplitude and medium vibration amplitude for 20-minutes in separate days...
Microwave Imaging using Amplitude-only Data
Rubæk, Tonny; Zhurbenko, Vitaliy
2010-01-01
This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using am...
Connected formulas for amplitudes in standard model
He, Song; Zhang, Yong
2017-03-01
Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
Audio steganography by amplitude or phase modification
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
Hyperlogarithms and periods in Feynman amplitudes
Todorov, Ivan
2016-01-01
The role of hyperlogarithms and multiple zeta values (and their generalizations) in Feynman amplitudes is being gradually recognized since the mid 1990's. The present lecture provides a concise introduction to a fast developing subjects that attracts the attention to a wide range of specialists - from number theorists to particle physicists.
Polynomial structures in one-loop amplitudes
Britto, R.; Feng, B.; Yang, G.
2008-01-01
A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2epsilon)-dimensional master integrals; these formulas
Integral coefficients for one-loop amplitudes
Britto, R.; Feng, B.
2008-01-01
We present a set of algebraic functions for evaluating the coefficients of the scalar integral basis of a general one-loop amplitude. The functions are derived from unitarity cuts, but the complete cut-integral procedure has been carried out in generality so that it never needs to be repeated. Where
Amplitude Correction Factors of KVN Observations
Lee, Sang-Sung; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan
2015-01-01
We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3 and NRAO~512, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combinat...
Holographic corrections to the Veneziano amplitude
Armoni, Adi; Ireson, Edwin
2017-08-01
We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.
The CMU Baryon Amplitude Analysis Program
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Generalised Unitarity for Dimensionally Regulated Amplitudes
Bobadilla, W J Torres; Mastrolia, P; Mirabella, E
2015-01-01
We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.
Consonant confusions in amplitude-expanded speech.
Freyman, R L; Nerbonne, G P
1996-12-01
The perceptual consequences of expanding the amplitude variations in speech were studied under conditions in which spectral information was obscured by signal correlated noise that had an envelope correlated with the speech envelope, but had a flat amplitude spectrum. The noise samples, created individually from 22 vowel-consonant-vowel nonsense words, were used as maskers of those words, with signal-to-noise ratios ranging from -15 to 0 dB. Amplitude expansion was by a factor of 3.0 in terms of decibels. In the first experiment, presentation level for speech peaks was 80 dB SPL. Consonant recognition performance for expanded speech by 50 listeners with normal hearing was as much as 30 percentage points poorer than for unexpanded speech and the types of errors were dramatically different, especially in the midrange of S-N ratios. In a second experiment presentation level was varied to determine whether reductions in consonant levels produced by expansion were responsible for the differences between conditions. Recognition performance for unexpanded speech at 40 dB SPL was nearly equivalent to that for expanded speech at 80 dB SPL. The error patterns obtained in these two conditions were different, suggesting that the differences between conditions in Experiment 1 were due largely to expanded amplitude envelopes rather than differences in audibility.
Microwave Imaging using Amplitude-only Data
Rubæk, Tonny; Zhurbenko, Vitaliy
2010-01-01
This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using am...
Particle Distribution Modification by Low Amplitude Modes
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2009-08-28
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Stora's fine notion of divergent amplitudes
Joseph C. Várilly
2016-11-01
Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Anders Winkler
2015-07-01
Full Text Available Plastics belong to the most complex and probably least understood engineering materials of today. Combining the best aspects of design, mechanical properties and manufacturing, the structural integrity of plastics is on par with aluminium and can in some cases even rival those of steels. One of the most important aspects of plastics is the ability to tailor-drive their material properties for a specific purpose or towards a specific strength value. The morphology of plastics is directly dependent on the manufacturing process, e.g. injection moulding, extruding and casting. Plastics contain multiple phases (crystalline, amorphous, oriented, and are in no sense at all isotropic, although integrally deduced mechanical properties may appear to claim the opposite. As such, it becomes obvious that attempting to analyse such materials using conventional material models and explanations of mechanics is an inherently complex task. The static situation alone requires concepts such as creep, relaxation and rate effects to be incorporated on a numerical level. If the load situation changes, such that cyclic loading is acting on the continuum, with the morphology taken into account (without considering the actual geometrical shape, then the result is that of a complex multiaxial fatigue case. Classical theories used for treating fatigue such as SN or eN analysis have proven much less successful for plastics than they have for metals. Fatigue crack propagation using fracture mechanics has seen some success in application, although appropriate crack initiation criteria still need to be established. The physical facts are more than intriguing. For injection moulded parts (being the most common manufacturing process in place, fracture is in most cases seen to initiate from inside the material, unless the surface has been mechanically compromised. This appears to hold true regardless of the load case. In this review, we have scrutinised physically useful methods
ABJM amplitudes and the positive orthogonal Grassmannian
Huang, Yu-tin [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, CongKao [Centre for Research in String Theory, Department of Physics,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)
2014-02-25
A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG{sub 2} orthogonal Grassmannian to form a larger OG{sub k}, where 2k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG{sub k} that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of dlog forms, over the positive orthogonal Grassmannian.
Santosa, H.; Hobara, Y.
2017-01-01
The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.
于强
2013-01-01
为了揭示出多轴非比例加载下疲劳短裂纹扩展的规律,利用搜寻临界面的方法确定短裂纹的萌生与扩展的方向,在临界面上分析多轴非比例加载与单轴加载下疲劳短裂纹扩展律的相似性,应用载荷的等效原理,类比单轴加载的研究过程,并将力学参数加以修改,导出多轴非比例加载下疲劳短裂纹扩展速率的计算公式.%As the laws of short fatigue cracks growth under non-proportional multiaxial loading are supposed to be revealed, what is expected to be achieved is mainly about the direction of initiation and propagation for short fatigue crack is determined by the method of searching for critical plane. The similarity of short fatigue crack growth rate by non-proportional multiaxial loading and multiaxial loading respectively is analyzed on the critical plane. Moreover, the equivalence of loading is applied. The process of multiaxial loading is analogized. The mechanical parameter is modified. Therefore, the formula of short fatigue crack growth rate by non-proportional multi-axial loading could be carried out.
Fredette, Luke; Singh, Rajendra
2017-02-01
A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.
Lihang Feng
Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field.
Smit, K; Kok, J G M; Lagendijk, J J W; Raaymakers, B W
2014-04-07
At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.
Rautenberg, M., E-mail: mrautenb@gmail.com [AREVA, AREVA NP, 10 rue Juliette Récamier, 69456 Lyon (France); CIRIMAT, CNRS/UPS/INPT, 4 allée Emile Monso, 31030 Toulouse (France); Poquillon, D. [CIRIMAT, CNRS/UPS/INPT, 4 allée Emile Monso, 31030 Toulouse (France); Pilvin, P. [LIMATB, University Bretagne-Sud, rue de Saint-Maudé, 56321 Lorient (France); Grosjean, C. [AREVA, AREVA NP, 10 rue Juliette Récamier, 69456 Lyon (France); CIRIMAT, CNRS/UPS/INPT, 4 allée Emile Monso, 31030 Toulouse (France); Cloué, J.M. [AREVA, AREVA NP, 10 rue Juliette Récamier, 69456 Lyon (France); Feaugas, X. [LEMMA, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle (France)
2014-04-01
Zirconium alloys are widely used in the nuclear industry. Several components, such as cladding or guide tubes, undergo strong mechanical loading during and after their use inside the pressurized water reactors. The current requirements on higher fuel performances lead to the developing on new Zr based alloys exhibiting better mechanical properties. In this framework, creep behaviors of recrystallized Zircaloy-4 and M5™, have been investigated and then compared. In order to give a better understanding of the thermal creep anisotropy of Zr-based alloys, multi-axial creep tests have been carried out at 673 K. Using a specific device, creep conditions have been set using different values of β = σ{sub zz}/σ{sub θθ}, σ{sub zz} and σ{sub θθ} being respectively the axial and hoop creep stresses. Both axial and hoop strains are measured during each test which is carried out until stationary creep is stabilized. The steady-state strain rates are then used to build isocreep curves. Considering the isocreep curves, the M5™ alloy shows a largely improved creep resistance compared to the recrystallized Zircaloy-4, especially for tubes under high hoop loadings (0 < β < 1). The isocreep curves are then compared with simulations performed using two different mechanical models. Model 1 uses a von Mises yield criterion, the model 2 is based on a Hill yield criterion. For both models, a coefficient derived from Norton law is used to assess the stress dependence.
Omata, Naoto; Mizuno, Tomoyuki; Mitsuya, Hironori; Wada, Yuji
2013-11-01
Impairment of neuronal plasticity is important in the pathophysiology of mood disorder. Both zinc deficiency and social isolation impair neuronal plasticity. Both cause a depressive state. However, in experiments using animals, their combined loading induced manic-like behavior. Therefore, it was inferred that moderate impairment of neuronal plasticity induces a depressive state, and that further impairment of neuronal plasticity induces a manic state. However, some kind of load toward neuronal function through neural transmission can influence mood disorder symptoms without direct effects on neuronal plasticity. Our hypothesis is that mania is an aggravation of depression from the perspective of neuronal plasticity, and that multiaxial evaluation by neuronal plasticity and neuronal load through neural transmission is useful for understanding the pathophysiology of mood disorder. There are many clinical aspects that have been difficult to interpret in mood disorder: Why is a mood stabilizer or electric convulsive therapy useful for both mania and depression? What is the pathophysiology of the mixed state? Why does manic switching by an antidepressant occur or not? Our hypothesis is useful to understand these aspects, and using this hypothesis, it is expected that the pathophysiology of mood disorder and clinical mechanism of mood stabilizers and antidepressants can now be understood as an integrated story.
Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field
Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.
2014-04-01
At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.
Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong
2015-01-01
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
The Pin-Loaded Small One-Bar Specimen in Use to Determine Uniaxial and Multiaxial Creep Data
Ali, Balhassn S. M.
2016-09-01
Two novel small specimen creep testing techniques are presented in this paper. The pin-loaded small one-bar specimen (OBS) and the small notched specimen with four loading pins (SNS4) are designed to determine the remaining lifetime for the high-temperature components. The small OBS is suitable for use in obtaining both uniaxial creep strain and creep rupture life data and the SNS4 is designed to obtain the multiaxial behaviour using small material samples. The specimens can be made from small material samples removed from the component surface or from the heat-affected zone. The specimens can be loaded through pin connections for testing. A conversion relationship and conversion factor have been obtained and used to convert the OBS creep data to the corresponding uniaxial data. For validation two materials have been used, P92 and P91 steels at 650°C. The advantages of these testing techniques are highlighted; the recommendations for future research are also given.
Benasciutti, D.
2014-09-01
The “equivalent von Mises stress” (EVMS) was first proposed in 1994 by Preumont and co-workers as a frequency domain reformulation of von Mises stress, for the fatigue analysis of vibrating structures under multiaxial random stresses. The EVMS criterion is a simple, but very powerful tool to estimate fatigue damage with time domain analysis of simulated stress histories, or frequency domain evaluation by spectral methods. Despite its simplicity, the EVMS criterion is based on some inherent assumptions, which may lead to inaccurate damage estimations in some particular conditions (e.g. materials with very different axial/bending and torsion S-N curves). This paper aims to derive some analytical expressions to measure the accuracy of EVMS criterion for various combinations of material fatigue properties and loading conditions (e.g. combined axial/bending and torsion loadings). These expressions constitute an original contribution, as similar analytical approaches have not been proposed in literature. The accuracy of EVMS approach is then tested with typical material fatigue properties from literature. The range of applicability of EVMS criterion is then be identified for specified intervals and combinations of S-N parameters.
Effect of multiaxial deformation Max-strain on the structure and properties of Ti-Ni alloy
Khmelevskaya, I. Yu; Kawalla, R.; Prokoshkin, S. D.; Komarov, V. S.
2014-08-01
The severe plastic deformation (SPD) forming ultrafine-grained (nanocrystalline or nanosubgrained) structure is one of the most effective ways to improve the functional properties of Ti-Ni-based shape memory alloys [1, 2]. In the present work, the SPD of near-equiatomic Ti-Ni alloy was carried out using the multi-axial deformation module Max-strain, which is a part of the physical simulation system "Gleeble 3500". The deformation was performed at a constant temperature of 400°C with speed of 0.5 mm/s in six passes without interpass pauses. The accumulated true strain was about 3. As a result, a mixed ultrafine-grained/subgrained structure with grain/subgrain sizes from 50 to 300 nm and a high density of free dislocations formed. The resulting structure is close to a nanoscale region and provides a significant advantage in the basic functional property - completely recoverable strain - as compared with a conventional recrystallized structure: 7% versus 2%.
The detection of fake-bad and fake-good responding on the Millon Clinical Multiaxial Inventory III.
Daubert, S D; Metzler, A E
2000-12-01
The purpose of this study was to examine the effectiveness of the 3 Modifying Indices of the Millon Clinical Multiaxial Inventory III (MCMI-III) in the detection of fake-bad and fake-good responding. The sample consisted of 160 psychiatric outpatients. Paired t tests were performed to examine the effects of instructional set (faking vs. standard instructions). As hypothesized, instructional set produced significant differences on Scale X, Scale Y, and Scale Z in both fake-bad and fake-good analyses. Single-scale cutoff scores were as effective as multiple-scale cutoffs. The overall rates of successful classification indicated moderate effectiveness and utility of the MCMI-III Modifying Indices in the detection of dissimulated responding. When base rates were varied to more closely approximate a general clinical population, overall classification accuracy increased, but identification of faking (positive predictive power) gradually eroded with declining base-rate estimates. At lower base rates of faking, MCMI-III standard cutoff points yielded a high number of false positives.
Rogers, R; Salekin, R T; Sewell, K W
1999-08-01
Relevant to forensic practice, the Supreme Court in Daubert v. Merrell Dow Pharmaceuticals, Inc. (1993) established the boundaries for the admissibility of scientific evidence that take into account its trustworthiness as assessed via evidentiary reliability. In conducting forensic evaluations, psychologists and other mental health professionals must be able to offer valid diagnoses, including Axis II disorders. The most widely available measure of personality disorders is the Million Clinical Multiaxial Inventory (MCMI) and its subsequent revisions (MCMI-II and MCMI-III). We address the critical question, "Do the MCMI-II and MCMI-III meet the requirements of Daubert?" Fundamental problems in the scientific validity and error rates for MCMI-III appear to preclude its admissibility under Daubert for the assessment of Axis II disorders. We address the construct validity for the MCMI and MCMI-II via a meta-analysis of 33 studies. The resulting multitrait-multimethod approach allowed us to address their convergent and discriminant validity through method effects (Marsh, 1990). With reference to Daubert, the results suggest a circumscribed use for the MCMI-II with good evidence of construct validity for Avoidant, Schizotypal, and Borderline personality disorders.
R. J. Leigh
2007-09-01
Full Text Available A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O_{4}, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through the application of several simplifying assumptions a tropospheric concentration of NO_{2} is derived and compared with an urban background in-situ chemiluminescence detector. Trends derived from remote sensing and in-situ techniques show agreement to within 15 to 40% depending on conditions. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO_{2} concentrations on a city-wide scale.
Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2013-01-01
This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.
Amplitude Equations for Electrostatic Waves multiple species
Crawford, J D; Crawford, John David; Jayaraman, Anandhan
1997-01-01
The amplitude equation for an unstable electrostatic wave is analyzed using an expansion in the mode amplitude $A(t)$. In the limit of weak instability, i.e. $\\gamma\\to 0^+$ where $\\gamma$ is the linear growth rate, the nonlinear coefficients are singular and their singularities predict the dependence of $A(t)$ on $\\gamma$. Generically the scaling $|A(t)|=\\gamma^{5/2}r(\\gamma t)$ as orders. This result predicts the electric field scaling $|E_k|\\sim\\gamma^{5/2}$ will hold universally for these instabilities (including beam-plasma and two-stream configurations) throughout the dynamical evolution and in the time-asymptotic state. In exceptional cases, such as infinitely massive ions, the coefficients are less singular and the more familiar trapping scaling $|E_k|\\sim\\gamma^2$ is recovered.