Fatigue life assessment under multiaxial variable amplitude loading
International Nuclear Information System (INIS)
Morilhat, P.; Kenmeugne, B.; Vidal-Salle, E.; Robert, J.L.
1996-06-01
A variable amplitude multiaxial fatigue life prediction method is presented in this paper. It is based on a stress as input data are the stress tensor histories which may be calculated by FEM analysis or measured directly on the structure during the service loading. The different steps of he method are first presented then its experimental validation is realized for log and finite fatigue lives through biaxial variable amplitude loading tests using cruciform steel samples. (authors). 9 refs., 7 figs
Gates, Nicholas R.
The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue
Directory of Open Access Journals (Sweden)
C.M. Sonsino
2016-07-01
Full Text Available Regarding the fatigue behaviour of EN AC-42000 T6 (A 356 T6, which is the most frequently used cast aluminium alloy for automotive safety components, especially under non-proportional constant and variable normal and shear stress amplitudes with changing principal stress directions, a poor level of knowledge was available. The reported investigations show that, under non-proportional normal and shear stresses, fatigue life is increased in contrast to ductile steels where life is reduced due to changing principal stress directions. This behaviour caused by the low ductility of this alloy (e < 10% compared to quenched and tempered steels suggests the application of the Normal (Principal Stress Hypothesis (NSH. For all of the investigated stress states under multiaxial constant and variable (Gaussian spectrum amplitudes without and with mean stresses, the NSH was able to depict the life increase by the non-proportionality and delivered, for most cases, conservative but non-exaggerated results.
Reinforcing Saccadic Amplitude Variability
Paeye, Celine; Madelain, Laurent
2011-01-01
Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…
Multiaxial Fatigue Properties of 2A12 Aluminum Alloy Under Different Stress Amplitude Ratio Loadings
Directory of Open Access Journals (Sweden)
CHEN Ya-jun
2017-09-01
Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under different stress amplitude ratios, the fracture morphology and the fatigue loading curve were observed to study the failure mechanism. The results show that, under the one stage loading condition, the fatigue life prolongs with the stress amplitude ratio increasing. Under pure torsion loading, smooth and even area exists in the fracture surface. As the stress amplitude ratio increases, the number of scratch reduces, the fatigue striation and some special morphology such as the fishbone pattern, scale pattern and honeycomb pattern can be observed; under cumulative paths of different stress amplitude ratios, the variation of multiaxial fatigue life changes with first stage loading cycles; under cumulative paths of high-low stress amplitude ratio, the cycle hardening occurs obviously in the axial direction for the first stage high stress amplitude ratio loading and 2A12 alloy shows training effect.
International Nuclear Information System (INIS)
Westphal, T; Nijssen, R P L
2014-01-01
The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort
Westphal, T.; Nijssen, R. P. L.
2014-12-01
The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.
Damage accumulation of bovine bone under variable amplitude loads
Directory of Open Access Journals (Sweden)
Abbey M. Campbell
2016-12-01
Full Text Available Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR, a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile (4000 μϵ, brittle due to high cyclic amplitude loading (>9000 μϵ, and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 –6750 μϵ. Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism. Keywords: Bone fatigue, Bone fracture, Health system monitoring, Failure prediction
Variable amplitude fatigue crack growth behavior - a short overview
International Nuclear Information System (INIS)
Singh, Konjengbam Darunkumar; Parry, Matthew Roger; Sinclair, Ian
2011-01-01
A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented
Variable amplitude fatigue crack growth behavior - a short overview
Energy Technology Data Exchange (ETDEWEB)
Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol (United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)
2011-03-15
A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented.
Variable weight spectral amplitude coding for multiservice OCDMA networks
Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.
2017-09-01
The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.
GSC4813-0981 = V921 Mon, a new low-amplitude δ Scuti star with variable amplitude
Galeev, A.; Bikmaev, I.; Shimansky, V.; Deminova, N.
2014-11-01
GSC 4813-0981 = V921 Mon is a low-amplitude δ Scuti-type variable with an amplitude of 0.018^m-0.027^m in different bands and a period of 48.5 minutes. The fundamental parameters of the atmosphere and physical characteristics, determined from medium-resolution spectra, are: T_{eff}=8700 K, log g=3.95 dex, [M/H]=0, M=1.7 M_{⊙}, R=2.3 R_{⊙}. We performed a long-term analysis of the variations using a ten-year data set of CCD observations (2003-2013) acquired in BVR with the 1.5-m Russian-Turkish telescope (RTT150, TUBITAK National Observatory). A preliminary result is that the amplitude of the variability changes; it was decreasing during 2003-2008, but is now increasing.
An Amplitude Spectral Capon Estimator with a Variable Filter Length
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Smaragdis, Paris; Christensen, Mads Græsbøll
2012-01-01
The filter bank methods have been a popular non-parametric way of computing the complex amplitude spectrum. So far, the length of the filters in these filter banks has been set to some constant value independently of the data. In this paper, we take the first step towards considering the filter...
Crack Propagation in Plane Strain under Variable Amplitude Loading
DEFF Research Database (Denmark)
Ricardo, Luiz Carlos Hernandes
2010-01-01
. In this paper procedures to determine the crack opening and closure by finite elements analyses in plane strain will be presented. The objective of this paper is also provide a review of retardation models under variable spectrum loading considering plane strain constraint as well as their correlation...
Biasing vector network analyzers using variable frequency and amplitude signals
Nobles, J. E.; Zagorodnii, V.; Hutchison, A.; Celinski, Z.
2016-08-01
We report the development of a test setup designed to provide a variable frequency biasing signal to a vector network analyzer (VNA). The test setup is currently used for the testing of liquid crystal (LC) based devices in the microwave region. The use of an AC bias for LC based devices minimizes the negative effects associated with ionic impurities in the media encountered with DC biasing. The test setup utilizes bias tees on the VNA test station to inject the bias signal. The square wave biasing signal is variable from 0.5 to 36.0 V peak-to-peak (VPP) with a frequency range of DC to 10 kHz. The test setup protects the VNA from transient processes, voltage spikes, and high-frequency leakage. Additionally, the signals to the VNA are fused to ½ amp and clipped to a maximum of 36 VPP based on bias tee limitations. This setup allows us to measure S-parameters as a function of both the voltage and the frequency of the applied bias signal.
Particle dynamics in a wave with variable amplitude
International Nuclear Information System (INIS)
Cary, J.R.
1990-01-01
The analysis of the phase evolution between separatrix crossings has been published in Physics D. The analysis of diffusion due to separatrix crossing in a resonance with a slow temporal variation has been written up and published in Physica D. A new method of solving the problem of transport of charged particles through a spatially-dependent accelerating structure was found. This method essentially relies on the use of a nonmonotonically increasing time variable in the analysis. Advances in the use of Hamilton-Jacobi methods to obtain invariant surfaces of accelerators have been made. A two-dimensional Hamilton-Jacobi solver was improved by including the Broyden update method for calculating the Jacobian. 20 refs., 6 figs
Directory of Open Access Journals (Sweden)
Komačka Jozef
2016-05-01
Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.
International Nuclear Information System (INIS)
Akita, Koichi; Kodama, Shotaro; Misawa, Hiroshi
1994-01-01
X-ray fractography is a method of analysing the causes of accidental fracture of machine components or structures. Almost all of the previous research on this problem has been carried out using constant amplitude fatigue tests. However, the actual loads on components and structures are usually of variable amplitudes. In this study, X-ray fractography was applied to fatigue fractured surfaces produced by variable amplitude loading. Fatigue tests were carried out on Ni-Cr-Mo steel CT specimens under the conditions of repeated, two-step and multiple-step loading. Residual stresses were measured on the fatigue fractured surface by an X-ray diffraction method. The relationships between residual stress and stress intensity factor or crack propagation rate were studied. They were discussed in terms of the quantitative expressions under constant amplitude loading, proposed by the authors in previous papers. The main results obtained were as follows : (1) It was possible to estimate the crack propagation rate of the fatigue fractured surface under variable amplitude loading by using the relationship between residual stress and stress intensity factor under constant amplitude loading. (2) The compressive residual stress components on the fatigue fractured surface correspond with cyclic softening of the material rather than with compressive plastic deformation at the crack tip. (author)
Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook
2018-06-01
El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.
WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY
International Nuclear Information System (INIS)
Heinze, Aren N.; Metchev, Stanimir; Kellogg, Kendra
2015-01-01
We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution
WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY
Energy Technology Data Exchange (ETDEWEB)
Heinze, Aren N.; Metchev, Stanimir [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 (Canada)
2015-03-10
We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability that may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.
Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach
Directory of Open Access Journals (Sweden)
Sofiane Maachou
2014-04-01
Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.
Cyclic deformation and fatigue data for Ti–6Al–4V ELI under variable amplitude loading
Directory of Open Access Journals (Sweden)
Patricio E. Carrion
2017-08-01
Full Text Available This article presents the strain-based experimental data for Ti–6Al–4V ELI under non-constant amplitude cyclic loading. Uniaxial strain-controlled fatigue experiments were conducted under three different loading conditions, including two-level block loading (i.e. high-low and low-high, periodic overload, and variable amplitude loading. Tests were performed under fully-reversed, and mean strain/stress conditions. For each test conducted, two sets of data were collected; the cyclic stress–strain response (i.e. hysteresis loops in log10 increments, and the peak and valley values of stress and strain for each cycle. Residual fatigue lives are reported for tests with two-level block loading, while for periodic overload and variable amplitude experiments, fatigue lives are reported in terms of number of blocks to failure.
Multiaxial Stress-Strain Modeling and Effect of Additional Hardening due to Nonproportional Loading
International Nuclear Information System (INIS)
Rashed, G.; Ghajar, R.; Farrahi, G.
2007-01-01
Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with the other researchers' experimental data published in the literature, which are in a reasonable agreement with the experimental data. The relationship presented here is convenient for the engineering applications
Fatigue Crack and Delamination Growth in Fibre Metal Laminates under Variable Amplitude Loading
Khan, S.
2013-01-01
This thesis presents the investigation into the fatigue propagation and delamination growth of Fibre Metal Laminates under variable amplitude loading. As explained in the first chapter, the motivation of the research is twofold: first, to obtain a clear understanding and detailed characterization of
Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers
Energy Technology Data Exchange (ETDEWEB)
Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com
2009-05-11
A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.
Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers
International Nuclear Information System (INIS)
Amour, Rabia; Tribeche, Mouloud
2009-01-01
A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.
GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A*
Medeiros, Lia; Chan, Chi-kwan; Özel, Feryal; Psaltis, Dimitrios; Kim, Junhan; Marrone, Daniel P.; Sa¸dowski, Aleksander
2018-04-01
The Event Horizon Telescope will generate horizon scale images of the black hole in the center of the Milky Way, Sgr A*. Image reconstruction using interferometric visibilities rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence disk- and jet-dominated GRMHD simulations of Sgr A*. We also employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented parallel and perpendicular to the spin axis of the black hole follow general trends that do not depend strongly on accretion-flow properties. This suggests that fitting Event Horizon Telescope observations with simple geometric models may lead to a reasonably accurate determination of the orientation of the black hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes are highly variable and are not related simply to the size of the black hole shadow. This suggests that using time-independent models to infer additional black hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.
Spitzer observations of large amplitude variables in the LMC and IC 1613
Directory of Open Access Journals (Sweden)
Whitelock Patricia A.
2017-01-01
Full Text Available The 3.6 and 4.5 ìm characteristics of asymptotic giant branch variables in the LMC and IC 1613 are discussed. For C-rich Mira variables there is a very clear periodluminosity-colour relation, where the [3.6] . [4.5] colour is associated with the amount of circumstellar material and correlated with the pulsation amplitude. The [4.5] periodluminosity relation for dusty stars is approximately one mag brighter than for their naked counterparts with comparable periods.
Study of the behavior of welded assemblies subjected to cyclic loads of variable amplitudes
International Nuclear Information System (INIS)
Plumier, A.
1977-01-01
The optimum design of structures subjected to variable loads requires the fatigue loading to be defined not only by the extreme stresses which can occur in the structure, but also by the distribution of the amplitudes of loadings. This emphasizes the importance of relations allowing the definition of permissible stresses under variable amplitude loading on the basis of permissible stresses under constant amplitude loading: such relations lead to a thorough use of the very numerous results acquired in classical fatigue testings. The statistical analysis of our tests results confirms, for four as welded joints, the good fit of theoretical values calculated on the basis of BIERETT's theory, so that this theory seems precise enough for calculations rules. However, the differences between theory and experiments, as well as regards the passage from classical fatigue to programmed fatigue, as for the definition of resistance of a welded joint on the basis of classes in classial fatigue, can reach as much as 30%. This lack of precision can be reduced by precise definition of joints classes, also defining permissible sizes of welds defects, on the one hand, and by the precise definition of a curve taking account of an influence of the severity of the notch effect of joints on the passage from classical fatigue to programmed fatigue, on the other hand. Our tests results, which were obtained on joints with very weak or very strong notches led to suggest such a curve
Variability of phase and amplitude fronts due to horizontal refraction in shallow water.
Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F
2018-01-01
The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.
An accurate fatigue damage model for welded joints subjected to variable amplitude loading
Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.
2017-12-01
Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.
A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results
Larsen, Curtis E.; Irvine, Tom
2013-01-01
A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.
Multi-axial mechanical stimulation of tissue engineered cartilage: Review
Directory of Open Access Journals (Sweden)
S D Waldman
2007-04-01
Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.
Discovery of Fast, Large-amplitude Optical Variability of V648 Car (=SS73-17)
Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.
2012-09-01
We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ~520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.
DISCOVERY OF FAST, LARGE-AMPLITUDE OPTICAL VARIABILITY OF V648 Car (=SS73-17)
International Nuclear Information System (INIS)
Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.
2012-01-01
We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ∼520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.
International Nuclear Information System (INIS)
Taheri, S.; Vincent, L.; Le-Roux, J.C.
2013-01-01
The application of Miner's rule using a loading issued from a mock-up of a RHR system (removal heat system) of PWR plant, made of 304 steel gives a very important non-conservative fatigue life in strain control when strain fatigue curve is used. This result is due to the absence of sequence effect in Miner's rule. Many non linear damage accumulation models have been proposed to get a sequence effect. Shortcomings of some non linear damage accumulation models are discussed. So Smith-Watson-Topper and Fatemi-Socie criterions with a linear damage accumulation rule are then applied to experimental data. A major issue is the need for an elastic-plastic constitutive law which is difficult to propose in the presence of high cycle secondary hardening observed in austenitic stainless steels. A conservative model for fatigue damage accumulation under variable amplitude loading is then proposed for austenitic stainless steels in strain control, which does not need a constitutive law, but takes into account plasticity through cyclic strain stress curve. The model uses a linear damage accumulation rule. This model is based on the fact that for stainless steels, pre-hardening is detrimental for fatigue life in strain control, while it is beneficial in stress control. In the presence of low mean stress, the model is approved based on a large number of tests. Moreover the model allows to explain the larger detrimental effect of a tension mean stress in strain control tests than in stress control tests. (authors)
Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei
2015-02-01
An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.
Yıldırım, Halid Can; Marquis, Gary; Sonsino, Cetin Morris
2015-01-01
Investigations with longitudinal stiffeners of the steel grade S700 under fully-reversed, constant amplitude loading and under variable amplitude loading with a straight-line spectrum show impressive fatigue strength improvement by high-frequency mechanical impact (HFMI) treatment. However, the degree of improvement was for variable amplitude loading lower when compared to constant amplitude loading due to local plasticity which occurs during larger load levels and consequently reduces the be...
Haigh, Sarah M; Gupta, Akshat; Barb, Scott M; Glass, Summer A F; Minshew, Nancy J; Dinstein, Ilan; Heeger, David J; Eack, Shaun M; Behrmann, Marlene
2016-08-01
Autism and schizophrenia share multiple phenotypic and genotypic markers, and there is ongoing debate regarding the relationship of these two disorders. To examine whether cortical dynamics are similar across these disorders, we directly compared fMRI responses to visual, somatosensory and auditory stimuli in adults with autism (N=15), with schizophrenia (N=15), and matched controls (N=15). All participants completed a one-back letter detection task presented at fixation (to control attention) while task-irrelevant sensory stimulation was delivered to the different modalities. We focused specifically on the response amplitudes and the variability in sensory fMRI responses of the two groups, given the evidence of greater trial-to-trial variability in adults with autism. Both autism and schizophrenia individuals showed weaker signal-to-noise ratios (SNR) in sensory-evoked responses compared to controls (d>0.42), but for different reasons. For the autism group, the fMRI response amplitudes were indistinguishable from controls but were more variable trial-to-trial (d=0.47). For the schizophrenia group, response amplitudes were smaller compared to autism (d=0.44) and control groups (d=0.74), but were not significantly more variable (dautism and is not a defining characteristic of schizophrenia, and (2) that blunted response amplitudes may be characteristic of schizophrenia. The relationship between the amplitude and the variability of cortical activity might serve as a specific signature differentiating these neurodevelopmental disorders. Identifying the neural basis of these responses and their relationship to the underlying genetic bases may substantially enlighten the understanding of both disorders. Copyright © 2016 Elsevier B.V. All rights reserved.
Multiaxial creep-fatigue rules
International Nuclear Information System (INIS)
Spindler, M.W.; Hales, R.; Ainsworth, R.A.
1997-01-01
Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs
International Nuclear Information System (INIS)
Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Hong, Jie; Scarpa, Fabrizio; Liu, Baolong
2014-01-01
The work describes the design, manufacturing and testing of a smart rotor support with shape memory alloy metal rubber (SMA-MR) elements, able to provide variable stiffness and damping characteristics with temperature, motion amplitude and excitation frequency. Differences in damping behavior and nonlinear stiffness between SMA-MR and more traditional metal rubber supports are discussed. The mechanical performance shown by the prototype demonstrates the feasibility of using the SMA-MR concept for active vibration control in rotordynamics, in particular at high temperatures and large amplitude vibrations. (paper)
Directory of Open Access Journals (Sweden)
Jin-Feng Jiao
2018-01-01
Full Text Available The fatigue stress amplitude of the welded cross plate-hollow sphere joint (WCPHSJ in a grid structure varies due to the random loading produced by suspending cranes. A total of 14 specimens considering three different types of WCPHSJs were prepared and tested using a specially designed test rig. Four typical loading conditions, “low-high,” “high-low,” “low-high-low,” and “high-low-high,” were first considered in the tests to investigate the fatigue behavior under variable load amplitudes, followed by metallographic analyses. The experimental and metallographic analysis results provide a fundamental understanding on the fatigue fracture form and fatigue mechanism of WCPHSJs. Based on the available data from constant-amplitude fatigue tests, the variable-amplitude fatigue life of the three types of WCPHSJs was estimated using the Miner rule and Corten-Dolan theory. Since both accumulative damage theories yield virtually same damaging results, the Miner rule is hence suggested to estimate the fatigue life of WCPHSJs.
Yang, H. Q.; West, Jeff
2018-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
A photometric study of the giant red variable stars with small amplitudes
International Nuclear Information System (INIS)
Wisse, P.N.J.
1979-01-01
Three colour UBV observations of southern semiregular and irregular red variable stars are presented. Well covered light and colour curves have been obtained for ca. 40 stars. In most cases the observations span more than one cycle. A short description is given for all individual variables. The observations are accurate enough to reveal many minor irregularities in the light variation. The SRb and Lb variables define a narrow curved strip in the (U-B) - (B-V) diagram. This strip has been called the Locus of Red Variables (LRV). The (U-B) of the variables is about 0.5 magnitudes bluer than that of the K III giants. (Auth.)
Chidori, Kazuhiro; Yamamoto, Yuji
2017-01-01
The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.
Mobility of solid vortex matter in 'shaking' ac magnetic fields of variable amplitude
International Nuclear Information System (INIS)
Moreno, A.J.; Valenzuela, S.O.; Pasquini, G.; Bekeris, V.
2004-01-01
The vortex solid in high temperature superconductors exhibits several regimes and dynamical behaviors. A temporarily symmetric magnetic ac field (e.g. sinusoidal, square, triangular) can increase the vortex lattice mobility and a temporarily asymmetric one (e.g. sawtooth) can decrease it. In this work, we study the effect on the mobility of the vortex solid as a function of the amplitude of an ac symmetric 'shaking' field when it is applied to previously prepared high and low mobility configurations. This study was carried out in high quality twinned YBCO single crystals and vortex mobility was studied through ac susceptibility measurements
Effect of Variable Amplitude Blocks' Ordering on the Functional Fatigue of Superelastic NiTi Wires
Soul, Hugo; Yawny, Alejandro
2017-12-01
Accumulation of superelastic cycles in NiTi uniaxial element generates changes on the stress-strain response. Basically, there is an uneven drop of martensitic transformation stress plateaus and an increase of residual strain. This evolution associated with deterioration of superelastic characteristics is referred to as "functional fatigue" and occurs due to irreversible microstructural changes taking place each time a material domain transforms. Unlike complete cycles, for which straining is continued up to elastic loading of martensite, partial cycles result in a differentiated evolution of those material portions affected by the transformation. It is then expected that the global stress-strain response would reflect the previous cycling history of the specimen. In the present work, the consequences of cycling of NiTi wires using blocks of different strain amplitudes interspersed in different sequences are analyzed. The effect of successive increasing, successive decreasing, and interleaved strain amplitudes on the evolution of the superelastic response is characterized. The feasibility of postulating a functional fatigue criterion similar to the Miner's cumulative damage law used in structural fatigue analysis is discussed. The relation of the observed stress-strain response with the transformational history of the specimen can be rationalized by considering that the stress-induced transformation proceeds via localized propagating fronts.
Amplitude variability over trials in hemodynamic responses in adolescents with ADHD
DEFF Research Database (Denmark)
Sørensen, L; Eichele, T; van Wageningen, H
2016-01-01
variable response times. In this study, we asked whether ADHD IIV in reaction time on a commonly-used test of attention might be related to variation in hemodynamic responses (HRs) observed trial-to-trial. Based on previous studies linking IIV to regions within the "default mode" network (DMN), we...... predicted that adolescents with ADHD would have higher HR variability in the DMN compared with controls, and this in turn would be related to behavioral IIV. We also explored the influence of social anxiety on HR variability in ADHD as means to test whether higher arousal associated with high trait anxiety...... would affect the neural abnormalities. We assessed single-trial variability of HRs, estimated from fMRI event-related responses elicited during an auditory oddball paradigm in adolescents with ADHD and healthy controls (11-18 years old; N = 46). Adolescents with ADHD had higher HR variability compared...
Fatigue behaviour of fiberglass wind turbine blade material under variable amplitude loading
Energy Technology Data Exchange (ETDEWEB)
Delft, D R.V. Van; Winkel, G.D. de [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands); Joosse, P A [Stork Product Engineering b.v., Amsterdam (Netherlands)
1996-09-01
In the work presented here fatigue tests with the WISPER and WISPERX load sequence have been carried out and analysed. The test programme includes tests at low stress levels which results in fatigue lives of 50 millions of cycles. The results are compared with constant amplitude tests in the very high cycle range, carried out in a previous programme. The results are also compared with ECN results in the lower cycle range (on identical specimens). It appeared, that the difference between the fatigue life of the specimens tested with the WISPER and the WISPERX load sequence is larger than can be expected from the theoretical damage rates. Moreover, the slope of the S-N data differs from theoretical values obtained by using commonly applied design rules. (au)
Energy Technology Data Exchange (ETDEWEB)
Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)
2017-06-15
In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.
International Nuclear Information System (INIS)
Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.
2017-01-01
In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.
International Nuclear Information System (INIS)
Robert Buchler, J.; Wood, Peter R.; Soszynski, Igor
2009-01-01
A search for variable stars with ultra-low amplitudes (ULAs), in the millimagnitude range, has been made in the combined MACHO and OGLE databases in the broad vicinity of the Cepheid instability strip in the HR diagram. A total of 25 singly periodic and 4 multiply periodic ULA objects have been uncovered. Our analysis does not allow us to distinguish between pulsational and ellipsoidal (binary) variabilities, nor between Large Magellanic Cloud (LMC) and foreground objects. However, the objects are strongly clustered and appear to be associated with the pulsational instability strips of LMC Pop. I and II variables. When combined with the ULA variables of Buchler et al., a total of 20 objects fall close to the classical Cepheid instability strip. However, they appear to fall on parallel period-magnitude (PM) relations that are shifted to slightly higher magnitude which would confer them a different evolutionary status. Low-amplitude RV Tauri and Pop. II Cepheids have been uncovered that do not appear in the MACHO or OGLE catalogs. Interestingly, a set of binaries seem to lie on a PM relation that is essentially parallel to that of the RV Tauri/Pop. II Cepheids.
Latash, M; Gottleib, G
1990-01-01
Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.
Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung
2018-04-01
Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.
The effect of multi-axiality on damage with alternating stress
International Nuclear Information System (INIS)
Hug, J.; Zenner, H.; Schram, A.
1992-01-01
The aim of this project is a better understanding of the development of damage with multi-axial alternating stress. Hollow samples of the materials X6 CrNiTi 18 0 and Ck 15 are submitted to equal phase, phase displaced and consecutively alternating normal and thrust stresses. The amplitude ratio τ/σ is 1/2. Apart from the service life, the cyclic alternating deformation behaviour and the initiation and prapagation of microcracks are examined. (orig./MM) [de
Multiaxial fatigue criterion based on parameters from torsion and axial S-N curve
Directory of Open Access Journals (Sweden)
M. Margetin
2016-07-01
Full Text Available Multiaxial high cycle fatigue is a topic that concerns nearly all industrial domains. In recent years, a great deal of recommendations how to address problems with multiaxial fatigue life time estimation have been made and a huge progress in the field has been achieved. Until now, however, no universal criterion for multiaxial fatigue has been proposed. Addressing this situation, this paper offers a design of a new multiaxial criterion for high cycle fatigue. This criterion is based on critical plane search. Damage parameter consists of a combination of normal and shear stresses on a critical plane (which is a plane with maximal shear stress amplitude. Material parameters used in proposed criterion are obtained from torsion and axial S-N curves. Proposed criterion correctly calculates life time for boundary loading condition (pure torsion and pure axial loading. Application of proposed model is demonstrated on biaxial loading and the results are verified with testing program using specimens made from S355 steel. Fatigue material parameters for proposed criterion and multiple sets of data for different combination of axial and torsional loading have been obtained during the experiment.
Directory of Open Access Journals (Sweden)
Takahiro Morishita
2017-07-01
Full Text Available In cyclic multiaxial stress/strain condition under nonproportional loading in which principal direction of stress/strain are changed in a cycle, it becomes difficult to analyze stress/strain ranges because of complexity of multiaxial stress/strain states depending on time in cycles. In order to evaluate stress/strain simply and suitably under non-proportional loading, Itoh and Sakane have proposed a method called as IS-method and a strain parameter for life evaluation under non-proportional loading NP. In the method, 6-components of stress/strain are converted to an equivalent stress/strain indicating the amplitude and the direction of principal stress/strain as a function of time as well as an intensity of loading nonproportionality fNP. Based on IS-method, the authors also have developed a tool which enables to analyze multiaxial stress/strain condition with the nonproportionality of loading history and evaluate failure life under nonproportional multiaxial loading. The tool indicates the analyzed results on monitor and users can understand visually not only variation of the stress/strain conditions but also non-proportionality during the cycle, which helps the design of material strength.
Evaluation of new multiaxial damage parameters on low carbon steel
Directory of Open Access Journals (Sweden)
A. S. Cruces
2017-07-01
Full Text Available Most mechanical components are subjected to the complex fatigue loading conditions, where both amplitude and direction of loading cycles change over the time. The estimation of damage caused by these complex loading scenarios are often done by simplified uniaxial fatigue theories, which ultimately leads to higher factor of safety during the final design considerations. Critical plane-based fatigue theories have been considered more accurate for computing the fatigue damage for multiaxial loading conditions in comparison to energy-based and equivalent stress-based theories. Two recently developed fatigue theories have been evaluated in this work for the available test data. Test data includes significant amount of biaxial load paths.
International Nuclear Information System (INIS)
Morishita, Takahiro; Itoh, Takamoto; Bao, Zhenlong
2016-01-01
Multiaxial fatigue tests under non-proportional loading in which principal directions of stress and strain are changed in a cycle were carried out using a developed multiaxial fatigue testing machine which can load a push–pull and reversed torsion loading with cyclic inner and outer pressure. This paper presents the developed testing machine and experimental results under several multiaxial loading conditions including non-proportional loading. In strain control tests, the failure life is reduced in accordance with increasing inner pressure at each strain path. The failure life can be correlated by von Mises' equivalent stress amplitude relatively well independent of not only inner pressure but also loading path. In load control tests, the failure life is reduced largely by non-proportional loading but the influence of inner and outer pressure on the failure life is relative small.
Constitutive relations describing creep deformation for multi-axial time-dependent stress states
McCartney, L. N.
1981-02-01
A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.
International Nuclear Information System (INIS)
Taheri, Said; Vincent, Ludovic; Leroux, Jean C.
2014-01-01
The application of Miner's rule using a loading issued from a mock-up of a RHR (removal heat system) of PWR plant, made of 304 steel gives a very important non-conservative fatigue lifetime in strain control when strain fatigue curve is used. A large number of test in strain and stress control are performed in different laboratories. Two modeling of literature Smith-Watson-Topper (SWT) and Fatemi-Socie (FS) have been used to simulate these tests. Much better responses than Miner's rule are obtained. However these models need an elastic-plastic constitutive law which is difficult to propose in the presence of high cycle secondary hardening observed in austenitic stainless steels. So a conservative model for fatigue damage accumulation under variable amplitude loading is proposed for austenitic stainless steels (AISI 304, 316) in strain control, which does not need a constitutive law. Linear damage accumulation is used, while, sequence effect is taken into account using the elastic-plastic memory effect through cyclic strain stress curves with pre-hardening. This modeling is based on the fact that for stainless steels, pre-hardening is detrimental for fatigue life in strain control while it is beneficial in stress control. In the case of materials that do not demonstrate load sequence memory the modeling is identical to Miner rule. In the presence of low mean stress, the modeling is approved based on a large number of tests. Moreover the modeling permits to explain the larger detrimental effect of a tension mean stress in strain control tests than in stress control tests. To extend the modeling to higher values of mean stress it is proposed to divide mean stress effect into maximal and 'real' mean stress effects. Extending this work to the case of significant mean stress is ongoing. (authors)
Directory of Open Access Journals (Sweden)
M. Cova
2015-07-01
Full Text Available The critical plane calculation for multiaxial damage assessment is often a demanding task, particularly for large FEM models of real components. Anyway, in actual engineering requests, sometime, it is possible to take advantage of the specific properties of the investigated case. This paper deals with the problem of a mechanical component loaded by multiple, but “time-separated”, multiaxial external loads. The specific material damage is dependent from the max principal stress variation with a significant mean stress sensitivity too. A specifically fitted procedure was developed for a fast computation, at each node of a large FEM model, of the direction undergoing the maximum fatigue damage; the procedure is defined according to an effective stress definition based on the max principal stress amplitude and mean value. The procedure is presented in a general form, applicable to the similar cases.
Effects of multiaxial cyclic loading conditions on the evolution of porous defects
Directory of Open Access Journals (Sweden)
Mbiakop Armel
2014-06-01
Full Text Available Multiaxial loading conditions are one of the important parameters in estimating the lifetime of structure both in high and low cycle fatigue ([1 3]. In order to understand the coupling between the macroscopic multiaxial loading and the microscopic defects, we propose to investigate the evolution of an elasto-plastic porous material up to failure under low cycle fatigue conditions. The analysis is performed numerically, using finite elements, on a periodic 3D unit-cell under the assumption of finite strains and subjected to various stress triaxialities, translated as ratios between deviatoric, hydrostatic stress and Lode angles. The present discussion introduces several novel factors in the analysis: (i 3D geometry in cyclic loading (ii finite strains (iii free evolving void shape (iiii different hardening laws. That one of the important factors is the void shape and that its evolution during cyclic loading depends on its multiaxiality. Moreover, these factors will equally influence the apparent macroscopic hardening or softening of the material and the initiation of localized shear zones at the microscopic level. The Lode angle has a significant impact on the evolution of the aspect ratios and the ellipsoidicity of the pores, but has only a weak influence on the evolution of macroscopic variables such as the stress or the porosity. As a consequence, the results show that multiaxiality of the loading have an important on the evolution and growth of defects, pores in the present case problem, but are less important in the definition of the yield surface.
Random accumulated damage evaluation under multiaxial fatigue loading conditions
Directory of Open Access Journals (Sweden)
V. Anes
2015-07-01
Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.
Phenomenological model for coupled multi-axial piezoelectricity
Wei, Yuchen; Pellegrino, Sergio
2018-03-01
A quantitative calibration of an existing phenomenological model for polycrystalline ferroelectric ceramics is presented. The model relies on remnant strain and polarization as independent variables. Innovative experimental and numerical model identification procedures are developed for the characterization of the coupled electro-mechanical, multi-axial nonlinear constitutive law. Experiments were conducted on thin PZT-5A4E plates subjected to cross-thickness electric field. Unimorph structures with different thickness ratios between PZT-5A4E plate and substrate were tested, to subject the piezo plates to coupled electro-mechanical fields. Material state histories in electric field-strain-polarization space and stress-strain-polarization space were recorded. An optimization procedure is employed for the determination of the model parameters, and the calibrated constitutive law predicts both the uncoupled and coupled experimental observations accurately.
Comparison of two multiaxial fatigue models applied to dental implants
Directory of Open Access Journals (Sweden)
JM. Ayllon
2015-07-01
Full Text Available This paper presents two multiaxial fatigue life prediction models applied to a commercial dental implant. One model is called Variable Initiation Length Model and takes into account both the crack initiation and propagation phases. The second model combines the Theory of Critical Distance with a critical plane damage model to characterise the initiation and initial propagation of micro/meso cracks in the material. This paper discusses which material properties are necessary for the implementation of these models and how to obtain them in the laboratory from simple test specimens. It also describes the FE models developed for the stress/strain and stress intensity factor characterisation in the implant. The results of applying both life prediction models are compared with experimental results arising from the application of ISO-14801 standard to a commercial dental implant.
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.
Directory of Open Access Journals (Sweden)
Andrea Carpinteri
2017-07-01
Full Text Available In the present paper, the multiaxial fatigue life assessment of notched structural components is performed by employing a strain-based multiaxial fatigue criterion. Such a criterion, depending on the critical plane concept, is extended by implementing the control volume concept reated to the Strain Energy Density (SED approach: a material point located at a certain distance from the notch tip is assumed to be the verification point where to perform the above assessment. Such a distance, measured along the notch bisector, is a function of both the biaxiality ratio (defined as the ratio between the applied shear stress amplitude and the normal stress amplitude and the control volume radii under Mode I and Mode III. Once the position of the verification point is determined, the fatigue lifetime is assessed through an equivalent strain amplitude, acting on the critical plane, together with a unique material reference curve (i.e. the Manson-Coffin curve. Some uniaxial and multiaxial fatigue data related to V-notched round bars made of titanium grade 5 alloy (Ti-6Al-4V are examined to validate the present criterion.
Creep-fatigue damage under multiaxial conditions
International Nuclear Information System (INIS)
Lobitz, D.W.; Nickell, R.E.
1977-02-01
ASME Code rules for design against creep-fatigue damage for Class 1 nuclear components operating at elevated temperatures are currently being studied by ASME working groups and task forces with a view toward major modification. In addition, the design rules being developed for Class 2 and Class 3 components would be affected by any major modifications of Class 1 Rules. The report represents an attempt to evaluate the differences between two competing procedures--linear damage summation and strainrange partitioning--for multiaxial stress conditions. A modified version of strainrange partitioning is also developed to alleviate some limitations on nonproportional loading
Microstructural study of multiaxial low cycle fatigue
Directory of Open Access Journals (Sweden)
Masao Sakane
2015-07-01
Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.
Multi-axial response of idealized cermets
International Nuclear Information System (INIS)
Pickering, E.G.; Bele, E.; Deshpande, V.S.
2016-01-01
The yield response of two idealized cermets comprising mono and bi-disperse steel spheres in a Sn/Pb solder matrix has been investigated for a range of axisymmetric stress states. Proportional stress path experiments are reported, from which are extracted the initial yield surfaces and their evolution with increasing plastic strain. The initial yield strength is nearly independent of the hydrostatic pressure but the strain hardening rate increases with stress triaxiality up to a critical value. For higher triaxialities, the responses are independent of hydrostatic pressure. Multi-axial measurements along with X-ray tomography were used to demonstrate that the deformation of these idealized cermets occurs by two competing mechanisms: (i) a granular flow mechanism that operates at low levels of triaxiality, where volumetric dilation occurs under compressive stress states, and (ii) a plastically incompressible mechanism that operates at high stress triaxialities. A phenomenological viscoplastic constitutive model that incorporates both deformation mechanisms is presented. While such multi-axial measurements are difficult for commercial cermets with yield strengths on the order of a few GPa, the form of their constitutive relation is expected to be similar to that of the idealized cermets presented here.
International Nuclear Information System (INIS)
Ma Jun; Jia Ya; Yi Ming; Tang Jun; Xia Yafeng
2009-01-01
In this paper, a new scheme is proposed to eliminate the useless spiral wave and turbulence in the excitable media. The activator amplitudes of few sites in the media are sampled and restricted within the appropriate thresholds. At first, the local control is imposed on the center of the media, and then the local control is introduced into the left border in the media. The numerical simulation results confirm that the whole media can reach homogeneous within few time units even if the spatiotemporal noise is imposed on the whole media. To check the model independence of this scheme, the scheme is used to remove the spiral wave in the Fitzhugh-Nagumo model firstly. In our numerical simulation, the whole system is discretized into 400 x 400 sites. Then the scheme is used to eliminate the stable rotating spiral wave, meandering spiral and spiral turbulence in the modified Fitzhugh-Nagumo model, respectively. Finally, this scheme is used to remove the stable rotating spiral wave in the Belousov-Zhabotinsky (BZ) reaction. All the results just confirm its effectiveness to eliminate the spiral wave and turbulence. The criterion for thresholds selection is also discussed in the end of this paper.
Uniaxial and Multiaxial Creep Testing of Copper
International Nuclear Information System (INIS)
Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi
2003-12-01
Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density ( 2 ) and a typical maximum dimension of less than about 1 μm near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also recommended that longer
Fatigue Behavior of 2A12 Aluminum Alloy Under Multiaxial Loading
Directory of Open Access Journals (Sweden)
CHEN Ya-jun
2017-08-01
Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under multiple variables, and the failure mechanism was investigated by scanning electron microscopy (SEM. The results show that under the loading condition of equivalent stress, the fatigue life decreases with the increase of phase angle. For the phase angle 0°, some special features can be observed in the crack initial zone, such as the tire pattern,fishbone pattern and stalactite pattern. There are secondary cracks and vague fatigue striations in the crack propagation zone; the multiaxial fatigue life decreases with the change of mean stress for tension or torsion. Some white flocculent oxides can be found in the crack initiation zone, and secondary crack as well as shear-type elongated dimples in the instantaneous fracture zone; facing different loading waveforms, the multiaxial life of sine wave is the longest, triangle wave in the second place, and the square wave is the shortest, under the loading condition of equivalent stress, square wave leads to the maximum structural energy dissipation. Under the low and high two step loading, 2A12 shows training effect.
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
Multiaxial low cycle fatigue life under non-proportional loading
International Nuclear Information System (INIS)
Itoh, Takamoto; Sakane, Masao; Ohsuga, Kazuki
2013-01-01
A simple and clear method of evaluating stress and strain ranges under non-proportional multiaxial loading where principal directions of stress and strain are changed during a cycle is needed for assessing multiaxial fatigue. This paper proposes a simple method of determining the principal stress and strain ranges and the severity of non-proportional loading with defining the rotation angles of the maximum principal stress and strain in a three dimensional stress and strain space. This study also discusses properties of multiaxial low cycle fatigue lives for various materials fatigued under non-proportional loadings and shows an applicability of a parameter proposed by author for multiaxial low cycle fatigue life evaluation
Chazen, C. R.; Altabet, M.; Herbert, T. D.
2008-12-01
Understanding the natural climate variations in the eastern tropical Pacific is crucial for predicting the evolution of the El Niño-Southern Oscillation (ENSO) system and for anticipating the ways in which increases in atmospheric CO2 will affect climate. Here we present the first continuous, high-resolution (11-12 yr) climate record across the mid-Holocene transition (10ka-1.4ka) from the Peru-Chile Margin near the epicenter of the modern ENSO system. Although the high productivity of the Peru margin should promote high deposition rates, and the anaerobic bottom water conditions should inhibit sediment mixing by benthic organisms, nearly all sediment cores recovered from this region suffer from major gaps in Holocene sedimentation. Our data comes from a ~5 meter piston core collected from the mid-Peruvian shelf (15° 15"S, 75° 58"W, ~250mwd) in the heart of the oxygen minimum/denitrification zone that provides the first uninterrupted archive of conditions along the Peru-Chile margin. A suite of geochemical proxies allow us to reconstruct sea surface temperature (SST- Uk'37), phytoplankton productivity (C37total and %BSi), and thermocline ventilation (δ15N), variables that are tightly correlated to ENSO events today. Despite the observation that the mean late Holocene state of all three variables did not change over the last 10,000 years, our data reveal a dramatic increase in climate variability after the mid Holocene (~5ka); represented by prolonged periods (50-200yrs) of climate extremes, which are absent in the early Holocene. To further investigate these climate extremes we examine benthic foraminiferal assemblages and oxygen isotopes in combination with our other proxy records in selected late Holocene sections. The roughly centennial-scale oscillations do not show typical El Niño-La Niña correlations between proxies. We therefore posit that a significant fraction of super-ENSO variance during the course of the Holocene may originate outside the tropics
Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride
2012-01-05
Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride
Dual Numbers Approach in Multiaxis Machines Error Modeling
Directory of Open Access Journals (Sweden)
Jaroslav Hrdina
2014-01-01
Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.
Multiaxial pedicle screw designs: static and dynamic mechanical testing.
Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R
2004-02-15
Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.
International Nuclear Information System (INIS)
Schelp, M.; Eifler, D.
2000-01-01
Cyclic single steps tests were performed on tempered and quenched specimens of the steel 42CrMoS4. Strain, temperature and electrical resistance measurements yielded an empirical prediction of fatigue life according to Coffin, Manson and Morrow. All measured values are based on physical processes and therefore show a strong interaction. A new testing procedure was developed permitting hysteresis measurements to be used for the characterization and description of fatigue behaviour under variable amplitude loading. The basic idea is to combine fatigue tests with any kind of load spectrum with single step tests. This offers the possibility to apply lifetime prediction methods normally used for single step tests for those with random or service loading. (orig.)
Multiaxis, Lightweight, Computer-Controlled Exercise System
Haynes, Leonard; Bachrach, Benjamin; Harvey, William
2006-01-01
The multipurpose, multiaxial, isokinetic dynamometer (MMID) is a computer-controlled system of exercise machinery that can serve as a means for quantitatively assessing a subject s muscle coordination, range of motion, strength, and overall physical condition with respect to a wide variety of forces, motions, and exercise regimens. The MMID is easily reconfigurable and compactly stowable and, in comparison with prior computer-controlled exercise systems, it weighs less, costs less, and offers more capabilities. Whereas a typical prior isokinetic exercise machine is limited to operation in only one plane, the MMID can operate along any path. In addition, the MMID is not limited to the isokinetic (constant-speed) mode of operation. The MMID provides for control and/or measurement of position, force, and/or speed of exertion in as many as six degrees of freedom simultaneously; hence, it can accommodate more complex, more nearly natural combinations of motions and, in so doing, offers greater capabilities for physical conditioning and evaluation. The MMID (see figure) includes as many as eight active modules, each of which can be anchored to a floor, wall, ceiling, or other fixed object. A cable is payed out from a reel in each module to a bar or other suitable object that is gripped and manipulated by the subject. The reel is driven by a DC brushless motor or other suitable electric motor via a gear reduction unit. The motor can be made to function as either a driver or an electromagnetic brake, depending on the required nature of the interaction with the subject. The module includes a force and a displacement sensor for real-time monitoring of the tension in and displacement of the cable, respectively. In response to commands from a control computer, the motor can be operated to generate a required tension in the cable, to displace the cable a required distance, or to reel the cable in or out at a required speed. The computer can be programmed, either locally or via
Multiaxial creep of fine grained 0.5Cr-0.5Mo-0.25V and coarse grained 1Cr-0.5Mo steels
International Nuclear Information System (INIS)
Browne, R.J.; Flewitt, P.E.J.; Lonsdale, D.
1991-01-01
To explore the multiaxial creep response of materials used for electrical power generating plant, two steels, a fine grained 0.5Cr-0.5Mo-0.25V steel in a normalised and tempered condition with high creep ductility and a coarse grained 1Cr-0.5Mo steel in a quenched and tempered condition with low uniaxial creep ductility, have been selected. A range of multiaxial stress testing techniques which span the stress states that would allow identification of any technique dependent variables has been used. The deformation and failure of the normalised and tempered 0.5Cr-0.5Mo-0.25V steel for a range of multiaxial test techniques and, therefore, stress states may be described by an equivalent stress criterion. The results from the multiaxial tests carried out on the fully bainitic 1Cr-0.5Mo steel show that the multiaxial stress rupture criterion (MSRC) varies with stress state; at high triaxiality (notch), it is controlled by the maximum principal stress, whereas at low triaxiality (shear) it is dependent on both maximum principal stress and equivalent stress. Furthermore, a simple description of stress state based on maximum principal and equivalent stress does not define this uniquely, since the MSRC derived from uniaxial and torsion testing does not describe the failure of notch, tube, or double shear tests. (author)
Creating a Multi-axis Machining Postprocessor
Directory of Open Access Journals (Sweden)
Petr Vavruška
2012-01-01
Full Text Available This paper focuses on the postprocessor creation process. When using standard commercially available postprocessors it is often very difficult to modify its internal source code, and it is a very complex process, in many cases even impossible, to implement the newly-developed functions. It is therefore very important to have a method for creating a postprocessor for any CAM system, which allows CL data (Cutter Location data to be generated to a separate text file. The goal of our work is to verify the proposed method for creating a postprocessor. Postprocessor functions for multi-axis machiningare dealt with in this work. A file with CL data must be translated by the postprocessor into an NC program that has been customized for a specific production machine and its control system. The postprocessor is therefore verified by applications for machining free-form surfaces of complex parts, and by executing the NC programs that are generated on real machine tools. This is also presented here.
Multiaxial creep-fatigue life analysis using strainrange partitioning
International Nuclear Information System (INIS)
Manson, S.S.; Halford, G.R.
1976-01-01
Strain-Range Partitioning is a recently developed method for treating creep-fatigue interaction at elevated temperature. Most of the work to date has been on uniaxially loaded specimens, whereas practical applications often involve load multiaxiality. This paper shows how the method can be extended to treat multiaxiality through a set of rules for combining the strain components in the three principal directions. Closed hysteresis loops, as well as plastic and creep strain ratcheting, are included. An application to hold-time tests in torsion is used to illustrate the approach
Evaluation of electromagnetic shielding effectiveness of multi-axial ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... ... Lecture Workshops · Refresher Courses · Symposia. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Evaluation of electromagnetic shielding effectiveness of multi-axial fabrics and their reinforced PES composites. RAMAZAN ERDEM. Volume 39 Issue 4 August 2016 pp 963-970 ...
Evaluation of electromagnetic shielding effectiveness of multi-axial ...
Indian Academy of Sciences (India)
The usage of electrical and electronic equipments has been increasing in daily life, which has a potential hazardous impact on humans and other living organisms. In this paper, multi-axial fabrics containing steel yarns and carbon filaments, and their polyester (PES) resin-reinforced composites have been prepared for ...
Concurrent Validity of the Millon Clinical Multiaxial Inventory Depression Scales.
Goldberg, Joel O.; And Others
1987-01-01
Compared two new measures of depression (Millon Multiaxial Inventory Dysthymia and Major Depression subscales) with two established instruments: Beck Depression Inventory, a self-report measure which emphasizes the cognitive-affective aspects of depression, and Hamilton Rating Scale for Depression, an interview measure that emphasizes somatic…
Directory of Open Access Journals (Sweden)
Roberto Brighenti
2015-10-01
Full Text Available Structural components made of fibre-reinforced materials are frequently used in engineering applications. Fibre-reinforced composites are multiphase materials, and complex mechanical phenomena take place at limit conditions but also during normal service situations, especially under fatigue loading, causing a progressive deterioration and damage. Under repeated loading, the degradation mainly occurs in the matrix material and at the fibre-matrix interface, and such a degradation has to be quantified for design structural assessment purposes. To this end, damage mechanics and fracture mechanics theories can be suitably applied to examine such a problem. Damage concepts can be applied to the matrix mechanical characteristics and, by adopting a 3-D mixed mode fracture description of the fibre-matrix detachment, fatigue fracture mechanics concepts can be used to determine the progressive fibre debonding responsible for the loss of load bearing capacity of the reinforcing phase. In the present paper, a micromechanical model is used to evaluate the unixial or multiaxial fatigue behaviour of structures with equi-oriented or randomly distributed fibres. The spatial fibre arrangement is taken into account through a statistical description of their orientation angles for which a Gaussian-like distribution is assumed, whereas the mechanical effect of the fibres on the composite is accounted for by a homogenization approach aimed at obtaining the macroscopic elastic constants of the material. The composite material behaves as an isotropic one for randomly distributed fibres, while it is transversally isotropic for unidirectional fibres. The fibre arrangement in the structural component influences the fatigue life with respect to the biaxiality ratio for multiaxial constant amplitude fatigue loading. One representative parametric example is discussed.
Multiaxial elastoplastic cyclic loading of austenitic 316L steel
Czech Academy of Sciences Publication Activity Database
Mazánová, Veronika; Polák, Jaroslav; Škorík, Viktor; Kruml, Tomáš
2017-01-01
Roč. 11, č. 40 (2017), s. 162-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA13-23652S; GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic stress-strain curve * Multiaxial cyclic loading Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis
Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4
Energy Technology Data Exchange (ETDEWEB)
Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)
2016-05-15
Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.
Influence of multiaxial preloading on the strength of concrete
International Nuclear Information System (INIS)
Linse, D.
1975-01-01
In a preliminary study about the influence of the loading direction discs of 20/20/5 cm were loaded at different stress-rates in one direction, then unloaded and loaded up to failure again. Two series of each about 15 specimens were tested: the first series was reloaded in the same direction as it was loaded before. If the preloading was not greater than about 90% of the original short-term uniaxial strength βsub(p), one could achieve in the second loading a higher strength than the strength βsub(p). The second series was reloaded normal to the direction of preloading. By an other series of about 50 specimens the influence of triaxial preloading on the uniaxial strength of concrete was tested. Cubes of 10cm were loaded by brush bearing platens up to a stress which was maximally three times higher than the uniaxial short-term strength βsub(p), then unloaded and tested again under uniaxial compression. The achieved ultimate strength of the cubes at the second loading was obviously dependent upon the stress-state and the stress-rate of the preloading. Multiaxial preloading which is far below the ultimate multiaxial strength can considerably defect the remaining strength of concrete. The decrease in strength was defined by the reduction of the uniaxial strength. It can be assumed that the remaining multiaxial strength is reduced at least to the same rate. Further tests are planned
International Nuclear Information System (INIS)
Kilkenny, D.; Flanagan, C.
1983-01-01
The small amplitude variations in the light curves of the R CrB stars, S Aps and UW Cen, are examined. The periodicity of these variations appears to be changing rapidly in S Aps and slowly, if at all, in UW Cen. The evolutionary consequences of these effects are discussed. (author)
Classification of Headache Disorders: Extending to a Multiaxial System.
Martin, Paul R
2016-11-01
This article argues for extending the International Classification of Headache Disorders to include information that goes beyond diagnosis. The obvious model is a multiaxial system as has been developed for other taxonomies. An axis for recording disability and impact on functioning, and an axis for recording the triggers of headache/migraine, are perhaps the strongest contenders for adding to the system, but there are other possibilities such as lifestyle factors relevant to headache. Extensions such as these would contribute to headache management, provide clear targets for change, and encourage adoption of a biopsychosocial perspective. © 2016 American Headache Society.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Fracture criteria of reactor graphite under multiaxial stresses
International Nuclear Information System (INIS)
Sato, S.; Kawamata, K.; Kurumada, A.; Oku, T.
1987-01-01
New fracture criteria for graphite under multiaxial stresses are presented for designing core and support materials of a high temperature gas cooled reactor. Different kinds of fracture strength tests are carried out for a near isotropic graphite IG-11. Results show that, under the stress state in which tensile stresses are predominant, the maximum principal stress theory is seen as applicable for brittle fracture. Under the stress state in which compressive stresses are predominant there may be two fracture modes for brittle fracture, namely, slipping fracture and mode II fracture. For the former fracture mode the maximum shear stress criterion is suitable, but for the latter fracture mode a new mode II fracture criterion including a restraint effect for cracks is verified to be applicable. Also a statistical correction for brittle fracture criteria under multiaxial stresses is discussed. By considering the allowable stress values for safe design, the specified minimum ultimate strengths corresponding to a survival probability of 99% at the 95% confidence level are presented. (orig./HP)
Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.
Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q
2017-02-01
Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.
Czech Academy of Sciences Publication Activity Database
Fauvaud, S.; Sareyan, J.P.; Ribas, I.; Rodriguez, E.; Lampens, P.; Klingenberg, G.; Farrell, J.A.; Fumagalli, F.; Simonetti, J.H.; Wolf, M.; Santacana, G.; Zhou, A.; Michel, R.; Fox-Machado, L.; Alvarez, M.; Nava-Vega, A.; Lopez-Gonzalez, M.J.; Casanova, V.M.; Aceituno, F.J.; Scheggia, I.; Rives, J.-J.; Hintz, E.G.; Van Cauteren, P.; Helvaci, M.; Yesilyaprak, C.; Graham, K.A.; Král, L.; Kocián, R.; Kučáková, Hana; Fauvaud, M.; Granslo, B.H.; Michelet, J.; Nicholson, M.P.; Vugnon, J.-M.; Kotková, Lenka; Truparova, K.; Ulusoy, G.; Yasarsoy, B.; Avdibegovic, A.; Blazek, M.; Kliner, J.; Zasche, P.; Bartosikova, S.; Vilasek, M.; Trondal, O.; Van Den Abbeel, F.; Behrend, R.; Wuecher, H.
2010-01-01
Roč. 515, June (2010), A39/1-A39/7 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : variables stars * BL Camelopardalis * oscillations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010
International Nuclear Information System (INIS)
Fesich, Thomas M.
2012-01-01
In general, technical components are loaded and stressed by forces and moments both constant and variable over time. Multi-axial stress conditions can arise as a function of the load on, and/or the geometry of, a component. Assessing the impact on stability of multi-axial stress conditions is a problem for which no generally valid solution has as yet been found, especially when loads and stresses vary over time. This is also due to the fact that the development over time of stresses can give rise to very complex stress conditions. Assessing the lifetime of power plant components subjected to complex vibration loads and stresses often is not reliable if performed by means of conventional codes and approaches, or is associated with high degrees of conservatism. The MPA AIM-Life concept developed at the Stuttgart MPA/IMWF, which is an advanced and verified strength hypothesis based on energy considerations, allows such assessments to be made more reliably, numerically efficient, and avoiding excessive conservatism. (orig.)
Designing aluminium friction stir welded joints against multiaxial fatigue
Directory of Open Access Journals (Sweden)
L. Susmel
2016-07-01
Full Text Available The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM in estimating multiaxial fatigue strength of aluminium friction stir (FS welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.
Multiaxial fatigue of aluminium friction stir welded joints: preliminary results
Directory of Open Access Journals (Sweden)
D. G. Hattingh
2015-07-01
Full Text Available The aim of the present research is to check the accuracy of the Modified Wöhler Curve Method (MWCM in estimating the fatigue strength of friction stir (FS welded tubular joints of Al 6082-T6 subjected to in-phase and out-of-phase multiaxial fatigue loading. The welded samples being investigated were manufactured by equipping an MTS I-STIR process development system with a retracting tool that was specifically designed and optimised for this purpose. These specimens were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out by using the generated experimental results allowed us to prove that the MWCM (applied in terms of nominal stresses is highly accurate in predicting the fatigue strength of the tested FS welded joints, its usage resulting in estimates falling with the uniaxial and torsional calibration scatter bands.
A study on multi-axial fatigue model based on structural stress
International Nuclear Information System (INIS)
Kim, Cheol; Kim, Jong Sung; Jin, Tae Eun; Dong, P.
2004-01-01
In nuclear components, cyclic loadings that cause complex states of stress are common. Through a reference review, four sources of the multi-axial fatigue data were collected from LBF, University of Illinois, EPRI, and TWI. All these tests were conducted using tube to flange specimens with a circumferential fillet welds. The loading conditions were mostly bending/ torsion combinations, except that TWI used tension/ torsion combinations. None of fatigue correlation parameters have been demonstrated to be satisfactory in correlating the multi-axial fatigue data outside of their own. In this paper, we proposed the characterizing multi-axial fatigue behavior in terms of the structural stress methods by using some of the well-known multi-axial fatigue data available in the references
A review of creep analysis and design under multi-axial stress states
International Nuclear Information System (INIS)
Yao, H.-T.; Xuan Fuzhen; Wang Zhengdong; Tu Shantung
2007-01-01
The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented
Microcrack propagation under multiaxial loading - experiment and simulation
International Nuclear Information System (INIS)
Poetter, K.; Suhartono, A.; Yousefi, F.; Zenner, H.; Duewel, V.; Schram, A.
2000-01-01
The accuracy of lifetime prediction for technical components subjected to cyclic loading is still not satisfying. One essential reason for the deviation between the results of the lifetime calculation and experimental results is that it is not yet possible to generate a model capable to describe the microstructural damage process which occurs in the tested material and to integrate this model in the calculation. All of the present research results recognize that the growth of microcracks is significantly influenced by the microstructure of the material. In order to take into account the influence of the microstructure on the damage process a simulation model is suggested in this paper which considers the local stress state in addition to the random nature of the material structure in the form of grain boundaries and slip systems. The results generated by means of the simulation model are compared and verified with those experiences obtained from multiaxial fatigue testing of the investigated aluminum material. For this purpose the surfaces of the tested specimens are carefully observed to discover and analyze microcracks which are classified according to their number, length, and orientation. Moreover the mechanisms of crack initiation and propagation are major points of interest for the comparison of theoretical and experimental results. The developed computer software is suitable to simulate the microcrack initiation, the propagation and coalescence of microcracks as well as the transition of stage I cracks to stage II cracks for uniaxial and multiaxial loading. Results obtained from the simulation model could be verified with the experiment. The future aim to be emphasized is the utilization of the parameter investigations carried out with the computer simulation model in order to improve the lifetime prediction. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Saito, S.; Stawarz, L.; Tanaka, Y.T.; Takahashi, T.; Madejski, G.; D' Ammando, F.
2013-03-20
Here we report on the detailed analysis of the γ-ray light curve of a luminous blazar PKS 1510-089 observed in the GeV range with the Large Area Telescope (LAT) onboard the Fermi satellite during the period 2011 September - December. By investigating the properties of the detected three major flares with the shortest possible time binning allowed by the photon statistics, we find a variety of temporal characteristics and variability patterns. This includes a clearly asymmetric profile (with a faster flux rise and a slower decay) of the flare resolved on sub-daily timescales, a superposition of many short uncorrelated flaring events forming the apparently coherent longer-duration outburst, and a huge single isolated outburst unresolved down to the timescale of three-hours. In the latter case we estimate the corresponding γ-ray flux doubling timescale to be below one hour, which is extreme and never previously reported for any active galaxy
Diphoton generalized distribution amplitudes
International Nuclear Information System (INIS)
El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.
2008-01-01
We calculate the leading order diphoton generalized distribution amplitudes by calculating the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region at the Born order and in the leading logarithmic approximation. As in the case of the anomalous photon structure functions, the γγ generalized distribution amplitudes exhibit a characteristic lnQ 2 behavior and obey inhomogeneous QCD evolution equations.
Driver, Brian E; Khalil, Ayesha; Henry, Timothy; Kazmi, Faraz; Adil, Amina; Smith, Stephen W
Precordial normal variant ST elevation (NV-STE), previously often called "early repolarization," may be difficult to differentiate from subtle ischemic STE due to left anterior descending (LAD) occlusion. We previously derived and validated a logistic regression formula that was far superior to STE alone for differentiating the two entities on the ECG. The tool uses R-wave amplitude in lead V4 (RAV4), ST elevation at 60 ms after the J-point in lead V3 (STE60V3) and the computerized Bazett-corrected QT interval (QTc-B). The 3-variable formula is: 1.196 x STE60V3 + 0.059 × QTc-B - 0.326 × RAV4 with a value ≥23.4 likely to be acute myocardial infarction (AMI). Adding QRS voltage in V2 (QRSV2) would improve the accuracy of the formula. 355 consecutive cases of proven LAD occlusion were reviewed, and those that were obvious ST elevation myocardial infarction were excluded. Exclusion was based on one straight or convex ST segment in V2-V6, 1 millimeter of summed inferior ST depression, any anterior ST depression, Q-waves, "terminal QRS distortion," or any ST elevation >5 mm. The NV-STE group comprised emergency department patients with chest pain who ruled out for AMI by serial troponins, had a cardiologist ECG read of "NV-STE," and had at least 1 mm of STE in V2 and V3. R-wave amplitude in lead V4 (RAV4), ST elevation at 60 ms after the J-point in lead V3 (STE60V3) and the computerized Bazett-corrected QT interval (QTc-B) had previously been measured in all ECGs; physicians blinded to outcome then measured QRSV2 in all ECGs. A 4-variable formula was derived to more accurately classify LAD occlusion vs. NV-STE and optimize area under the curve (AUC) and compared with the previous 3-variable formula. There were 143 subtle LAD occlusions and 171 NV-STE. A low QRSV2 added diagnostic utility. The derived 4-variable formula is: 0.052*QTc-B - 0.151*QRSV2 - 0.268*RV4 + 1.062*STE60V3. The 3-variable formula had an AUC of 0.9538 vs. 0.9686 for the 4-variable formula (p = 0
Two Photon Distribution Amplitudes
International Nuclear Information System (INIS)
El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.
2008-01-01
The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations
Amplitudes, acquisition and imaging
Energy Technology Data Exchange (ETDEWEB)
Bloor, Robert
1998-12-31
Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.
Energy Technology Data Exchange (ETDEWEB)
Broedel, Johannes [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States); Dixon, Lance J. [SLAC National Accelerator Laboratory, Stanford University, Stanford, CA (United States)
2012-07-01
Amplitudes in gauge thoeries obtain contributions from color and kinematics. While these two parts of the amplitude seem to exhibit different symmetry structures, it turns out that they can be reorganized in a way to behave equally, which leads to the so-called color-kinematic dual representations of amplitudes. Astonishingly, the existence of those representations allows squaring to related gravitational theories right away. Contrary to the Kawaii-Levellen-Tye relations, which have been used to relate gauge theories and gravity previously, this method is applicable not only to tree amplitudes but also at loop level. In this talk, the basic technique is introduced followed by a discussion of the existence of color-kinematic dual representations for amplitudes derived from gauge theory actions which are deformed by higher-operator insertions. In addition, it is commented on the implications for deformed gravitational theories.
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Variable amplitude fatigue, modelling and testing
International Nuclear Information System (INIS)
Svensson, Thomas.
1993-01-01
Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated
Coverage of multiaxial fatigue criteria in fatigue limit region
Directory of Open Access Journals (Sweden)
Papuga J.
2007-11-01
Full Text Available There is a power of methods aimed at calculation of equivalent fatigue limit for arbitrary multiaxial loading. Although there are so many ways of computation, their thorough mutual comparison in a larger scale is missing. The database project presented in this paper comprise of several databases crowned with the FatLim database, which comprise of a huge number of experimental results and of 18 computational method working in the category mentioned before. The great block of data was acquired using in-house fatigue software PragTic, which is offered as a freeware application. The FatLim database follows its philosophy of a simple and non-paid accessibility. Its query tool written in MySQL and PhP allows to users to evaluate a practical usability of tested methods on load cases, which the users define. All the issues covered within this paper are available on the website www.pragtic.com, structure of which is described here.
PRIGo: a new multi-axis goniometer for macromolecular crystallography
Energy Technology Data Exchange (ETDEWEB)
Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)
2015-05-09
The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.
Characterization of a multi-axis ion chamber array.
Simon, Thomas A; Kozelka, Jakub; Simon, William E; Kahler, Darren; Li, Jonathan; Liu, Chihray
2010-11-01
The aim of this work was to characterize a multi-axis ion chamber array (IC PROFILER; Sun Nuclear Corporation, Melbourne, FL, USA) that has the potential to simplify the acquisition of LINAC beam data. The IC PROFILER (or panel) measurement response was characterized with respect to radiation beam properties, including dose, dose per pulse, pulse rate frequency (PRF), and energy. Panel properties were also studied, including detector-calibration stability, power-on time, backscatter dependence, and the panel's agreement with water tank measurements [profiles, fractional depth dose (FDD), and output factors]. The panel's relative deviation was typically within (+/-) 1% of an independent (or nominal) response for all properties that were tested. Notable results were (a) a detectable relative field shape change of approximately 1% with linear accelerator PRF changes; (b) a large range in backscatter thickness had a minimal effect on the measured dose distribution (typically less than 1%); (c) the error spread in profile comparison between the panel and scanning water tank (Blue Phantom, CC13; IBA Schwarzenbruck, DE) was approximately (+/-) 0.75%. The ability of the panel to accurately reproduce water tank profiles, FDDs, and output factors is an indication of its abilities as a dosimetry system. The benefits of using the panel versus a scanning water tank are less setup time and less error susceptibility. The same measurements (including device setup and breakdown) for both systems took 180 min with the water tank versus 30 min with the panel. The time-savings increase as the measurement load is increased.
Efficient lifetime estimation techniques for general multiaxial loading
Papuga, Jan; Halama, Radim; Fusek, Martin; Rojíček, Jaroslav; Fojtík, František; Horák, David; Pecha, Marek; Tomčala, Jiří; Čermák, Martin; Hapla, Václav; Sojka, Radim; Kružík, Jakub
2017-07-01
In this paper, we discuss and present our progress toward a project, which is focused on fatigue life prediction under multiaxial loading in the domain of low-cycle fatigue, i.e. cases, where the plasticity cannot be neglected. First, the elastic-plastic solution in the finite element analysis is enhanced and verified on own experiments. Second, the method by Jiang describing the instantaneous damage increase by analyses of load time by time, is in implementation phase. In addition, simplified routines for conversion of elastic stresses-strains to elastic-plastic ones as proposed by Firat and Ye et.al. are evaluated on the basis of data gathered from external sources. In order to produce high quality complex analyses, which could be feasible in an acceptable time, and allow the period for next analyses of results to be expanded; the core of PragTic fatigue solver used for all fatigue computations are being re-implemented to get the fully parallelized scalable solution.
Indian Academy of Sciences (India)
IAS Admin
wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...
Real topological string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)
2017-03-15
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.
Multiaxial fatigue assessment of welded joints using the notch stress approach
DEFF Research Database (Denmark)
Pedersen, Mikkel Melters
2016-01-01
This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria, including equivalent stress-, interaction equation- and critical...... plane approaches. The investigation is carried out by testing the criteria on a large amount of fatigue test results collected from the literature (351 specimens total). Subsequently, the probability of achieving a non-conservative fatigue assessment is calculated in order to evaluate the different...
Multiaxial brittle failure of a 3D carbon-carbon composite
International Nuclear Information System (INIS)
Davy, Catherine
2001-01-01
Several industrial equipments, for example in aeronautics, civil or military nuclear applications, imply multi-axially loaded brittle materials for which reliable failure models are needed. In that context, our study focuses on a 3D carbon-carbon composite submitted in service to a triaxial strain state along its orthotropy axes. A failure criterion based on a bibliographical analysis is identified thanks to uniaxial tensile tests, and validated through an original multiaxial experiment. The scatter on its failure characteristics is also identified. (author) [fr
Directory of Open Access Journals (Sweden)
Weilian Qu
2017-01-01
Full Text Available The low-cycle fatigue experiments of mild carbon Q235B steel and its related welded-metal specimens are performed under uniaxial, in-phase, and 90° out-of-phase loading conditions. Significant additional cyclic hardening for 90° out-of-phase loading conditions is observed for both base metal and its related weldment. Besides, welding process produces extra additional hardening under the same loading conditions compared with the base metal. Multiaxial low-cycle fatigue strength under 90° out-of-phase loading conditions is significantly reduced for both base-metal and welded-metal specimens. The weldment has lower fatigue life than the base metal under the given loading conditions, and the fatigue life reduction of weldment increases with the increasing strain amplitude. The KBM, FS, and MKBM critical plane parameters are evaluated for the fatigue data obtained. The FS and MKBM parameters are found to show better correlation with fatigue lives for both base-metal and welded-metal specimens.
International Nuclear Information System (INIS)
Hansen, J.D.
1976-01-01
This article discusses the partial wave analysis of two, three and four meson systems. The difference between the two approaches, referred to as amplitude and Ascoli analysis is discussed. Some of the results obtained with these methods are shown. (B.R.H.)
Multiaxial probabilistic elastic-plastic constitutive simulations of soils
Sadrinezhad, Arezoo
Fokker-Planck-Kolmogorov (FPK) equation approach has recently been developed to simulate elastic-plastic constitutive behaviors of materials with uncertain material properties. The FPK equation approach transforms the stochastic constitutive rate equation, which is a stochastic, nonlinear, ordinary differential equation (ODE) in the stress-pseudo time space into a second-order accurate, deterministic, linear FPK partial differential equation (PDE) in the probability density of stress-pseudo time space. This approach does not suffer from the drawbacks of the traditional approaches such as the Monte Carlo approach and the perturbation approach for solving nonlinear ODEs with random coefficients. In this study, the existing one dimensional FPK framework for probabilistic constitutive modeling of soils is extended to multi--dimension. However, the multivariate FPK PDEs cannot be solved using the traditional mathematical techniques such as finite difference techniques due to their high computational cost. Therefore, computationally efficient algorithms based on the Fourier spectral approach are developed for solving a class of FPK PDEs that arises in probabilistic elasto-plasticity. This class includes linear FPK PDEs in (stress) space and (pseudo) time - having space-independent but time-dependent, and both space- and time-dependent coefficients - with impulse initial conditions and reflecting boundary conditions. The solution algorithms, rely on first mapping the stress space of the governing PDE between 0 and 2pi using the change of coordinates rule, followed by approximating the solution of the PDE in the 2pi-periodic domain by a finite Fourier series in the stress space and unknown time-dependent solution coefficients. Finally, the time-dependent solution coefficients are obtained from the initial condition. The accuracy and efficiency of the developed algorithms are tested. The developed algorithms are used to simulate uniaxial and multiaxial, monotonic and cyclic
Review of Response and Damage of Linear and Nonlinear Systems under Multiaxial Vibration
Directory of Open Access Journals (Sweden)
Ed Habtour
2014-01-01
Full Text Available A review of past and recent developments in multiaxial excitation of linear and nonlinear structures is presented. The objective is to review some of the basic approaches used in the analytical and experimental methods for kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. In addition, comparison between uniaxial and multiaxial excitations and their impact on a structure’s life-cycles is provided. The importance of understanding failure mechanisms in complex structures has led to the development of a vast range of theoretical, numerical, and experimental techniques to address complex dynamical effects. Therefore, it is imperative to identify the failure mechanisms of structures through experimental and virtual failure assessment based on correctly identified dynamic loads. For that reason, techniques for mapping the dynamic loads to fatigue were provided. Future research areas in structural dynamics due to multiaxial excitation are identified as (i effect of dynamic couplings, (ii modal interaction, (iii modal identification and experimental methods for flexible structures, and (iv computational models for large deformation in response to multiaxial excitation.
Crack mode and life of Ti-6Al-4V under multiaxial low cycle fatigue
Directory of Open Access Journals (Sweden)
Takamoto Itoh
2015-10-01
Full Text Available This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of λ=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. λ is a principal stress ratio and is defined as λ=II/I, where I and II are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at λ=0 is a uniaxial loading test and that at λ=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing λ induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.
John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos
2012-01-01
In this paper we are reporting on the first successful campaign of systematic, automated and massive multiaxial tests for composite material constitutive characterization. The 6 degrees of freedom system developed at the Naval Research Laboratory (NRL) called NRL66.3, was used for this task. This was the inaugural run that served as the validation of the...
Light Meson Distribution Amplitudes
Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.
2010-01-01
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
DEFF Research Database (Denmark)
Skovgaard, A M; Isager, T; Jørgensen, O S
1988-01-01
The study was conducted to compare an experimental multiaxial diagnostic system (MAS) with traditional multicategorical diagnoses in child psychiatric work. Sixteen written case histories were circulated to 21 child psychiatrists, who made diagnoses independently of one another, using two different...
Optimization of inverse model identification for multi-axial test rig control
Directory of Open Access Journals (Sweden)
Müller Tino
2016-01-01
Full Text Available Laboratory testing of multi-axial fatigue situations improves repeatability and allows a time condensing of tests which can be carried out until component failure, compared to field testing. To achieve realistic and convincing durability results, precise load data reconstruction is necessary. Cross-talk and a high number of degrees of freedom negatively affect the control accuracy. Therefore a multiple input/multiple output (MIMO model of the system, capturing all inherent cross-couplings is identified. In a first step the model order is estimated based on the physical fundamentals of a one channel hydraulic-servo system. Subsequently, the structure of the MIMO model is optimized using correlation of the outputs, to increase control stability and reduce complexity of the parameter optimization. The identification process is successfully applied to the iterative control of a multi-axial suspension rig. The results show accurate control, with increased stability compared to control without structure optimization.
Multiaxial loading of large-diameter, thin-walled tube rock specimens
International Nuclear Information System (INIS)
Hecker, S.S.; Petrovic, J.J.
1981-01-01
A large-scale mechanical testing facility permits previously impossible thin-walled tube multiaxial loading experiments on rock materials. Constraints are removed regarding tube wall thickness in relation to rock microstructural features and tube diameter as well as test machine load capacity. Thin-walled tube studies clarify the influence of intermediate principal stress sigma 2 on rock fracture and help define a realistic rock fracture criterion for all multiaxial stressing situations. By comparing results of thin-walled and thick-walled tube fracture investigations, effects of stress gradients can be established. Finally, influence of stress path on rock fracture, an area largely ignored in current rock failure criteria, can be examined in detail using controlled loading changes as well as specimen prestrains
Stress factors for the deformation systems of zirconium under multiaxial stress
International Nuclear Information System (INIS)
Hobson, D.O.
1976-01-01
Calculation of the resolved shear stresses (rss) that act on various deformation systems in metals and, in particular, the determination of those systems subjected to the highest rss by a given set of multiaxial stresses is of importance in the study of texture development, yielding and plastic flow. This study examines the geometrical influences of any stress state on the deformation modes of zirconium. One slip mode and three twinning modes, comprising twenty-one deformation systems, are considered. Stress factors computed for these systems are shown on a coordinate system that allows specimen orientation, most highly stressed deformation system, and stress factor to be shown without ambiguity. The information in this report allows the determination of the rss that results from any multiaxial stress state; this information also allows the prediction of the deformation modes that might operate for any specimen orientation in that strss state
Validation of a new multiaxial criteria for creep-fatigue damage evaluation
International Nuclear Information System (INIS)
Cabrillat, M.T.; Martin, P.
1989-01-01
For many years, design codes evaluated creep damage using the Von Mises criterion to take account of multiaxiality of stresses. However, recent studies have confirmed that the Von Mises criterion is overconservative for nonuniaxial stress state. Various criteria have been put forward to take account of the real stress state. This paper describes a criterion which was introduced in 1987 and the various studies which led to its adoption
Determination of the critical plane and durability estimation for a multiaxial cyclic loading
Burago, N. G.; Nikitin, A. D.; Nikitin, I. S.; Yakushev, V. L.
2018-03-01
An analytical procedure is proposed to determine the critical plane orientation according to the Findley criterion for the multiaxial cyclic loading. The cases of in-phase and anti-phase cyclic loading are considered. Calculations of the stress state are carried out for the system of the gas turbine engine compressor disk and blades for flight loading cycles. The formulas obtained are used for estimations of the fatigue durability of this essential element of structure.
Directory of Open Access Journals (Sweden)
Zheng-Yong Yu
2017-05-01
Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.
International Nuclear Information System (INIS)
Kussmaul, K.; Blind, D.; Herter, K.H.; Eisele, U.; Schuler, X.
1995-01-01
Within the scope of a research project nuclear piping components (T-branches and elbows) with dimensions like the primary coolant lines of PWR plants were investigated. In addition to the experimental full scale tests, extensive numerical calculations by means of the finite element method (FEM) as well as fracture mechanics analyses were performed. The applicability of these methods was verified by comparison with the experimental results. The calculation of fracture mechanics parameters as well as the calculated component stress enabled a statement on crack initiation. The failure behavior could be evaluated by means of the multiaxiality of stress state in the ligament (gradient of the quotient of the multiaxiality of stress state q). With respect to practical application on other pressurized components it is shown how to use the procedure (e.g. in a LBB analysis). A quantitative assessment with regard to crack initiation is possible by comparison of the effective crack initiation value J ieff with the calculated component stress. If the multiaxiality of stress state and the q gradient in the ligament of the fracture ligament of the fracture mechanics specimen and the pressurized component to be evaluated is comparable a quantitative assessment is possible as for crack extension and maximum load. If there is no comparability of the gradients a qualitative assessment is possible for the failure behavior
Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling
International Nuclear Information System (INIS)
Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo
2017-01-01
Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)
Micro-vision servo control of a multi-axis alignment system for optical fiber assembly
International Nuclear Information System (INIS)
Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin
2017-01-01
This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately. (paper)
Unifying relations for scattering amplitudes
Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao
2018-02-01
We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.
Hidden beauty in multiloop amplitudes
International Nuclear Information System (INIS)
Cachazo, Freddy; Spradlin, Marcus; Volovich, Anastasia
2006-01-01
Planar L-loop maximally helicity violating amplitudes in N = 4 supersymmetric Yang-Mills theory are believed to possess the remarkable property of satisfying iteration relations in L. We propose a simple new method for studying iteration relations for four-particle amplitudes which involves the use of certain linear differential operators and eliminates the need to fully evaluate any loop integrals. We carry out this procedure in explicit detail for the two-loop amplitude and prove that this method can be applied to any multiloop integral, allowing a conjectured iteration relation for any given amplitude to be tested up to polynomials in logarithms
International Nuclear Information System (INIS)
Bern, Z.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.J.; Kosower, D.A.
2004-01-01
Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes
Analytical structure of the 3. -->. 3 forward scattering amplitude
Energy Technology Data Exchange (ETDEWEB)
Logunov, A A; Medvedev, B V; Muzafarov, L M; Pavlov, V P; Polivanov, M K; Sukhanov, A D [AN SSSR, Moscow. Matematicheskij Inst.
1979-08-01
Analytical properties of the amplitude of 3..-->..3 forward scattering established in the framework of the Bogolyubov axiomatic approach are described. The amplitudes of the different channels of the process are boundary values of a unique analytical function of invariant variables. Crossing-symmetry property of the amplitude is proved. Analysis of the absorptive part of the amplitude is performed and the generalized optical theorem is proved which connects one of the contributions into the absorptive part with the distribution function of the inclusive process.
International Nuclear Information System (INIS)
Penkalla, H.J.; Nickel, H.; Schubert, F.
1989-01-01
At temperatures above 800 0 C the material behaviour under mechanical load is determined by creep. The service of heat exchanging components leads to multiaxial loading conditions. For design and inelastic analysis of the component behaviour time dependent design values and suitable constitutive equations are necessary. The present report gives a survey of the approaches to describing creep under multiaxial loading. Norton's law and v. Mises' theory are applied. The load combinations of internal pressure, tensile and torsional stress are studied more closely, cyclic stress superposition in the tensile-pulsating range is discussed and cases of partial relaxation are examined. Experimental results are presented for the loading conditions discussed, and satisfactory agreement between theory and experiment has been found up to now for these results. Regarding lifetime determination under multiaxial creep load, a more precise analysis of creep damage is presented suggesting a suitable deviatoric stress for evaluation in the long-time range. (orig.)
Wei, Haoyang
A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.
Multiaxial creep of tubes of Alloy 800 and Alloy 617 at high temperature
International Nuclear Information System (INIS)
Penkalla, H.J.; Schubert, F.; Nickel, H.
1989-01-01
The deformation behaviour under multiaxial loading at temperature higher than 800 deg. C is strongly controlled by creep. For dimensioning and inelastic analysis the use of v. Mises theory and Norton's creep law for stationary creep are demonstrated for different combination of internal pressure and axial or torsional stress or strains. The experimental results are in satisfactory agreement with the theoretical predicted deformation behaviour if values for the coefficient k and n in Norton's creep law are used, which are close to the real creep resistance in the component. (author). 11 refs, 12 figs, 2 tabs
Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel
Czech Academy of Sciences Publication Activity Database
Mazánová, Veronika; Škorík, Viktor; Kruml, Tomáš; Polák, Jaroslav
2017-01-01
Roč. 100, JUL (2017), s. 466-476 ISSN 0142-1123 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic plasticity * Damage mechanism * Multiaxial straining Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016
International Nuclear Information System (INIS)
Blanchard, W.K.; Heldt, L.A.; Koss, D.
1984-01-01
A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension
Fatigue of weld ends under combined in- and out-of-phase multiaxial loading
Directory of Open Access Journals (Sweden)
E. Shams
2016-10-01
Full Text Available Weld start and end points are fatigue failure sensitive locations. Their fatigue behaviour especially in thin sheet structures under multiaxial load conditions is not sufficiently explored so far. Therefore, a research project was initiated to increase the knowledge concerning this topic, which is of special interest in the automotive industry. In the present study, fatigue tests on welded joints were conducted. In the numerical part of the study, notch stresses were calculated with an idealised weld end model. A numerical method which combines the geometrical and statistical size effect to an integrated approach was used, in order to consider the size effects
Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning
2007-01-01
The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.
A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain
Directory of Open Access Journals (Sweden)
M. Malnati
2014-04-01
Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.
Experimental creep behaviour determination of cladding tube materials under multi-axial loadings
International Nuclear Information System (INIS)
Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc
2009-01-01
Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.
Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings
International Nuclear Information System (INIS)
1993-01-01
The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de
Energy Technology Data Exchange (ETDEWEB)
Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)
2016-06-15
The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.
Competition between microstructure and defect in multiaxial high cycle fatigue
Directory of Open Access Journals (Sweden)
F. Morel
2015-07-01
Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on
Slicing algorithms for multi-axis 3-D metal printing of overhangs
International Nuclear Information System (INIS)
Lee, Kyu Bok; Jee, Hae Seong
2015-01-01
A group of 3D metal printing or Additive metal manufacturing (AMM) processes, officially categorized as 'directed energy deposition (DED)' according to American Society for Testing and Materials (ASTM) classification, has enabled the building of full dense metallic tools and parts using metal powders precisely delivered and controlled with no powder bed. Mold making and metalworking are being taken in an entirely new direction. The overhang/undercut problem in DED processes, as much as other Additive manufacturing (AM) processes, has long remained unsolved, and the ones equipped with more than 3-axis tool mechanism turn out to be capable of depositing overhang/undercut features onto the part to be made. Multi-axis machines introduced for resolving the problem, however, require advanced preprocess software support for the process management that controls multi-axis tool paths. This study proposes slicing algorithms, sophisticatedly designed for the control of the tool paths on a 5-axis base table, to build overhang/undercut features. A methodical approach, using an auto-partitioning algorithm for generating three-dimensional layer (3DL) information, is proposed in this study, and various overhang features, as case studies, have been investigated and implemented by using the proposed method.
International Nuclear Information System (INIS)
Tayal, M.
1986-10-01
The finite element code ELESTRES models the two-dimensional axisymmetric behaviour of a CANDU fuel element during normal operation. The main focus of the code is to estimate temperatures, fission gas release, and axial variations of deformation/stresses in the pellet and in the sheath. Thus the code is able to predict details like stresses/strains at circumferential ridges. This paper describes the current version of ELESTRES. The emphasis is on a recent addition: multiaxial stresses in the sheath near circumferential ridges. For accuracy in the critical region, a fine mesh is used near the ridge. To keep computing costs low, a coarse mesh is used near the midplane of the pellet. Predictions of ELESTRES show good agreement with abouth 80 measurements of fission-gas-release. In this paper, we also present ELESTRES predictions of hoop strains in sheaths, for two irradiations: element ABS and bundle GB. For both irradiations, predictions, compare favourably with measurements. An illustrative example shows that near circumferential ridges, bending contributes to multiaxial stresses in the sheath. This can have a significant effect on sheath integrity, such as during stress-corrosion-cracking due to power-increases, or during corrosion-assisted-fatigue due to power cycling
Cycle counting procedure for fatigue failure preditions for complicated multi-axial stress histories
International Nuclear Information System (INIS)
Jones, D.P.; Friedrich, C.M.; Hoppe, R.G.
1977-12-01
A procedure has been developed to determine the cumulative fatigue damage in structures experiencing complicated multi-axial stress histories. The procedure is a generalization of the rainflow method developed by Matsuishi and Endo for one-dimensional situations. It provides a consistent treatment of three-dimensional stress states that is especially suited to computer programming applications for the post-processing of finite element stress data. The procedure includes a unique method to account for the rotation of principal stresses with time during the stress history and for the cumulative fatigue damage resulting from partial stress reversals within a stress cycle. The general procedure and necessary equations for programming are presented. Comparisons are made with life predictions using Section III of the ASME Boiler and Pressure Vessel Code for two hypothetical multi-axial stress histories for which the principal stresses are rotating with time. These comparisons show that the cycle counting method provides a consistent unambiguous interpretation of the fatigue design procedure in the ASME Code for these cases. Finally, the fatigue life of a perforated plate, as analyzed by finite elements, is computed for the combination of several hypothetical stress histories. This example demonstrates the utility of the proposed method when used in conjunction with finite element programs
Slicing algorithms for multi-axis 3-D metal printing of overhangs
Energy Technology Data Exchange (ETDEWEB)
Lee, Kyu Bok; Jee, Hae Seong [Hongik University, Seoul (Korea, Republic of)
2015-11-15
A group of 3D metal printing or Additive metal manufacturing (AMM) processes, officially categorized as 'directed energy deposition (DED)' according to American Society for Testing and Materials (ASTM) classification, has enabled the building of full dense metallic tools and parts using metal powders precisely delivered and controlled with no powder bed. Mold making and metalworking are being taken in an entirely new direction. The overhang/undercut problem in DED processes, as much as other Additive manufacturing (AM) processes, has long remained unsolved, and the ones equipped with more than 3-axis tool mechanism turn out to be capable of depositing overhang/undercut features onto the part to be made. Multi-axis machines introduced for resolving the problem, however, require advanced preprocess software support for the process management that controls multi-axis tool paths. This study proposes slicing algorithms, sophisticatedly designed for the control of the tool paths on a 5-axis base table, to build overhang/undercut features. A methodical approach, using an auto-partitioning algorithm for generating three-dimensional layer (3DL) information, is proposed in this study, and various overhang features, as case studies, have been investigated and implemented by using the proposed method.
Experimental study on the Kaiser effect of AE under multiaxial loading in granite
International Nuclear Information System (INIS)
Watanabe, Hidehiko; Hiroi, Takehiro
2012-01-01
Knowledge of the in-situ stresses is essential for underground excavation design, particularly in evaluating stability of excavation. Acoustic Emission method, which utilizes the Kaiser effect, is one of the simple methods for measuring in-situ stresses. Experiments on the Kaiser effect has been carried out under uniaxial compression and triaxial compression (σ 1 > σ 2 = σ 3 ), but has not been carried out under the three different principal stresses (σ 1 > σ 2 > σ 3 ). In this study, we performed two experiments on the Kaiser effect under multiaxial loading, using a hollow cylindrical granite specimen. The rapidly increasing point of cumulative AE event count was determined as the peak point of AE event count rate increment (AERI). The main results are summarized as follows. (1) In the case of the cyclic incremental σ 1 loading under σ 2 ≠σ 3 , the large peak point of AERI appeared just before the pre-stress level. And as more stresses prior to just before the peak point were estimated, the estimated error showed a tendency to increase. (2) In the case of re-loading under the lower σ 2 and σ 3 more than pre-loading, the estimated stresses using the three peak points of AERI corresponded to the pre-differential stresses (σ 1 -σ 2 ), (σ 1 -σ 3 ) and pre-axial stress σ 1 . The magnitudes of the three principal stresses were estimated under multiaxial loading from the Kaiser effect, using only one specimen. (author)
Directory of Open Access Journals (Sweden)
Niamchaona Wichian
2018-01-01
Full Text Available New high strength steels are widely used nowadays in many industrial areas as in automotive industry. These steels are more resistant and provide higher fatigue limits than latter ones but they are also more sensible to small defects. Natural defects that outcome from metallurgy (as shrinkage, inclusion, void are not considered in this study. We focus on small manufacturing defects such as cutting edge defects generated by punching or other surface defects due to stamping. These defects are harmful on the material fatigue behaviour due to high stress concentration at defects root. They also generate stress gradient that is beneficial from the fatigue strength point of view. This study focusses on the stress gradient (it does not account for the size effect from cylindrical defect on specimen edge. Practically a normal stress gradient is added in multiaxial fatigue criteria formulation. Both critical plane approach and integral approach are involved in the present study. This gradient is calculated from stress states at defects root by using FEM. Criteria fatigue function at N cycles is used to assess the material fatigue strength. Obviously multiaxial fatigue criteria accounting for stress gradient give more precise fatigue functions than criteria that do not consider the gradient influence.
Multiaxial stress analysis taking account of the penetration depth of x-rays, (1)
International Nuclear Information System (INIS)
Sasaki, Toshihiko; Yoshioka, Yasuo; Kuramoto, Makoto.
1983-01-01
The new theory of X-ray multiaxial stress measurement is proposed. This method takes accounts of the influence concerning to the stress gradient and to the dependence of the penetration depth of X-rays upon the incidence angle. As a basic assumption, it's assumed that (1) stress gradient is linear in respect to the depth from the specimen surface, (2) the penetration depth of X-rays shows linear dependence upon sin 2 PSI, and (3) the lattice strain determined by X-rays corresponds to the weighted averaging strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near to the surface is expressed by making use of three surface stresses and six stress gradients in this theory. It was proved that these nine stress elements were able to be solved through X-ray method by applying ''the integral method'' proposed by Lode and Peiter in 1976. The verification of the validity on this method was carried out through the numerical simulation and residual stress measurement of a ground S55C. As a result, it was found that this method could get a satisfactory accuracy. This method can estimate the multiaxial stress distribution within the surface layer nondestructively. (author)
Multiscalar production amplitudes beyond threshold
Argyres, E N; Kleiss, R H
1993-01-01
We present exact tree-order amplitudes for $H^* \\to n~H$, for final states containing one or two particles with non-zero three-momentum, for various interaction potentials. We show that there are potentials leading to tree amplitudes that satisfy unitarity, not only at threshold but also in the above kinematical configurations and probably beyond. As a by-product, we also calculate $2\\to n$ tree amplitudes at threshold and show that for the unbroken $\\phi^4$ theory they vanish for $n>4~$, for the Standard Model Higgs they vanish for $n\\ge 3~$ and for a model potential, respecting tree-order unitarity, for $n$ even and $n>4~$. Finally, we calculate the imaginary part of the one-loop $1\\to n$ amplitude in both symmetric and spontaneously broken $\\phi^4$ theory.
Amplitude damping of vortex modes
CSIR Research Space (South Africa)
Dudley, Angela L
2010-09-01
Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...
Energy Technology Data Exchange (ETDEWEB)
Navelet-Noualhier, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-06-15
Helicity amplitudes are expressed via the spinor amplitudes in terms of the Joos invariant which have been shown by Williams to be free from kinematical singularities. This procedure allows to analyze the kinematical singularities of helicity amplitudes and separate them out, which results into the definition of regularized helicity amplitudes. A crossing matrix for helicity amplitudes, is written down, corresponding to the continuation path used to cross spinor amplitudes. We verify explicitly that the corresponding crossing matrix for regularized helicity amplitudes is uniform as it should be. Kinematical constraints which generalize, to the case of arbitrary spins and masses, relations which must hold between helicity amplitudes at some values of the energy variable in {pi}N {yields} {pi}N, {pi}{pi} {yields} NN-bar and NN-bar {yields} NN-bar reactions, appear as a consequence of the existence of poles in the crossing matrix between regularized helicity amplitudes. An english version of this work has been written with G. Cohen-Tannoudji and A. Morel and submitted for publication to Annals of Physics. (author) [French] Les amplitudes d'helicite pour une reaction a deux corps sont exprimees, par l'intermediaire des amplitudes spinorielles, en fonction d'amplitudes invariantes de Joos qui sont, comme l'a montre Williams, sans singularites cinematiques. Ce procede nous permet d'analyser puis d'eliminer les singularites cinematiques des amplitudes d'helicite. Ceci nous conduit a la definition d'amplitudes d'helicite 'regularisees'. Une relation de 'croisement' entre amplitudes d'helicite est ecrite; elle realise leur prolongement analytique le long du chemin utilise pour 'croiser' les amplitudes spinorielles. Nous verifions que les elements de la matrice de croisement entre amplitudes d'helicite 'regularisees' sont bien uniformes. Les contraintes cinematiques qui generalisent, au cas de masses et de spins arbitraires, les relations obtenues dans les reactions {pi
Energy Technology Data Exchange (ETDEWEB)
Brookes, Stephen Peter
2009-12-19
With increasing environmental awareness and the general need to economise on the use of fossil fuels, there is growing pressure for industry to produce lighter, more efficient, gas turbine engines. One such material that will help to achieve these improvements is the intermetallic gamma titanium aluminide ({gamma}-TiAl) alloy. At only half the density of current nickel-based superalloys its weight saving capability is highly desirable, however, its mechanical properties have not yet been fully explored especially, when it is to be considered for structural components in aeronautical gas turbine engines. Critical components in these engines typically experience large variations in temperatures and multiaxial states of stress under non-isothermal conditions. These stress states are known as tri-axial thermo-mechanical fatigue (TMF). The work presented here investigates the effects these multi-axial stresses, have on a {gamma}-TiAl, (Ti-45Al-5Nb-0.2B-0.2C) alloy under TMF conditions. The uniaxial, torsional and axialtorsional TMF behaviour of this {gamma}-TiAl alloy have been examined at 400 - 800 C with strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted at both thermomechanical in-phase (IP) and out-of-phase (OP). Selected tests additionally contained a 180 seconds hold period. Fatigue lifetimes are strongly influenced by the strain amplitude, a small increase in amplitude reduces the lifetime considerably. The uniaxial IP tests showed significantly longer fatigue lifetimes than of all the tests performed. Torsional loading although have shorter fatigue lifetimes than the uniaxial IP loading they have longer fatigue lifetimes than the uniaxial OP loading. The non-proportional axial-torsional 90 degree OP test is most damaging which resulted in a shorter lifetime than the uniaxial OP test with the same Mises equivalent mechanical strain amplitude. A hold period at maximum temperatures reduced the lifetime for all tests regardless of the temperature
Motivic amplitudes and cluster coordinates
International Nuclear Information System (INIS)
Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.
2014-01-01
In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity
Numerical measures of the degree of non-proportionality of multiaxial fatigue loadings
Directory of Open Access Journals (Sweden)
A. Bolchoun
2015-07-01
constant and variable amplitude loadings.
DEFF Research Database (Denmark)
Quaresimin, M.; Carraro, P.A.; Mikkelsen, Lars Pilgaard
2014-01-01
In this work an experimental investigation on damage initiation and evolution in laminates under cyclic loading is presented. The stacking sequence [0/θ2/0/-θ2]s has been adopted in order to investigate the influence of the local multiaxial stress state in the off-axis plies and the possible effect...
Energy Technology Data Exchange (ETDEWEB)
Swindeman, R.W.; Houck, C.W.
1984-03-01
The results obtained from a number of metallographic examinations of Type 304 stainless steel specimens were compiled. Samples were obtained from uniaxial and multiaxial tests covering a very broad span of temperatures and times. Special emphasis was on the identification of failure modes, cracking patterns, grain distortion, and grain-boundary microstructures. Uniaxial specimens exhibited the following sequence of failure modes with increasing temperature and time: ductile plastic tearing, ductile plastic shear, wedge cracking, and microvoid cracking. Over most of the temperature range examined (482 to 871/sup 0/C), M/sub 23/C/sub 6/ precipitated on grain boundaries at long times. Sigma phase and possibly ferrite were often present in the stressed areas at temperatures as low as 482/sup 0/C (900/sup 0/F). These metallurgical features promoted a severe loss in creep ductility at long times and low temperatures. Most multiaxial tests were performed under conditions that promoted wedge cracking. Stress gradients also favored surface crack initiation rather than bulk damage. Testing times for multiaxial tests were less than 10,000 h; hence, there was insufficient time for the development of embrittling features such as microvoids, sigma, and ferrite. Long-time multiaxial tests to failure are recommended.
Measurement of amplitude fluctuations in a rapid response photomultiplier
International Nuclear Information System (INIS)
Raimbault, P.
1961-01-01
In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [fr
Nonsinglet pentagons and NMHV amplitudes
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2015-07-01
Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
Nonsinglet pentagons and NMHV amplitudes
Energy Technology Data Exchange (ETDEWEB)
Belitsky, A.V., E-mail: andrei.belitsky@asu.edu
2015-07-15
Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
Cluster polylogarithms for scattering amplitudes
International Nuclear Information System (INIS)
Golden, John; Paulos, Miguel F; Spradlin, Marcus; Volovich, Anastasia
2014-01-01
Motivated by the cluster structure of two-loop scattering amplitudes in N=4 Yang-Mills theory we define cluster polylogarithm functions. We find that all such functions of weight four are made up of a single simple building block associated with the A 2 cluster algebra. Adding the requirement of locality on generalized Stasheff polytopes, we find that these A 2 building blocks arrange themselves to form a unique function associated with the A 3 cluster algebra. This A 3 function manifests all of the cluster algebraic structure of the two-loop n-particle MHV amplitudes for all n, and we use it to provide an explicit representation for the most complicated part of the n = 7 amplitude as an example. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Topological amplitudes in string theory
International Nuclear Information System (INIS)
Antoniadis, I.; Taylor, T.R.
1993-07-01
We show that certain type II string amplitudes at genus g are given by the topological partition F g discussed recently by Bershadsky, Cecotti, Ooguri and Vafa. These amplitudes give rise to a term in the four-dimensional effective action of the form Σ g F g W 2g , where W is the chiral superfield of N = 2 supergravitational multiplet. The holomorphic anomaly of F g is related to non-localities of the effective action due to the propagation of massless states. This result generalizes the holomorphic anomaly of the one loop case which is known to lead to non-harmonic gravitational couplings. (author). 22 refs, 2 figs
Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions
International Nuclear Information System (INIS)
Zielinski, R.E.; Stacy, E.; Burgan, C.E.
In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone
The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing
International Nuclear Information System (INIS)
Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.
1983-01-01
The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate
The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel
Energy Technology Data Exchange (ETDEWEB)
Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan
2015-06-11
The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.
Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors
Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.
2018-04-01
The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.
General split helicity gluon tree amplitudes in open twistor string theory
Dolan, Louise; Goddard, Peter
2010-05-01
We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].
Fatigue damage assessment under multi-axial non-proportional cyclic loading
International Nuclear Information System (INIS)
Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.
2016-01-01
Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)
Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A
2013-12-01
Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Application du concept de maillon faible à un critère d'endurance multiaxial
Flacelière, L.; Morel, F.; Palin-Luc, T.
2002-12-01
En fatigue à grand nombre de cycle, il est aujourd'hui admis que la distribution des contraintes, ainsi que la taille des composants, sont responsables de variations de la limite de fatigue. Sous chargement uniaxial ou multiaxial, on peut montrer qu'une approche statistique dite du maillon le plus faible, combiné à un critère multiaxial d'endurance basé sur une analyse micro plastique, permet de prédire la limite de fatigue de plusieurs matériaux métalliques. Quatre types de chargement sont analysés (traction-compression, torsion, flexion rotative et flexion plane), puis comparées aux résultats expérimentaux, pour une fonte et deux aciers haute résistance. L'approche statistique proposée permet d'intégrer un certain nombre d'aspects: la dispersion des données pour tous types de chargement, l'effet de gradient et l'influence de la présence de défauts matériaux. Enfin, ce modèle rend également compte de la diminution de la limite de fatigue avec l'augmentation du volume contraint. Les prédictions des probabilités de rupture sont raisonnables bien que seules des limites de fatigue relatives à des probabilités de rupture de 50% soient utilisées pour l'identification des paramètres du modèle.
International Nuclear Information System (INIS)
Mandelstam, S.
1986-06-01
Work on the derivation of an explicit perturbation series for string and superstring amplitudes is reviewed. The light-cone approach is emphasized, but some work on the Polyakov approach is also mentioned, and the two methods are compared. The calculation of the measure factor is outlined in the interacting-string picture
Scattering Amplitudes from Intersection Theory.
Mizera, Sebastian
2018-04-06
We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.
Positivity of spin foam amplitudes
International Nuclear Information System (INIS)
Baez, John C; Christensen, J Daniel
2002-01-01
The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model
Employing Helicity Amplitudes for Resummation
Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are
Employing helicity amplitudes for resummation
International Nuclear Information System (INIS)
Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.
2015-08-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.
Discontinuity formulas for multiparticle amplitudes
International Nuclear Information System (INIS)
Stapp, H.P.
1976-03-01
It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations
Distribution amplitudes of vector mesons
Energy Technology Data Exchange (ETDEWEB)
Braun, V.M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Broemmel, D. [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2007-11-15
Results are presented for the lowest moment of the distribution amplitude for the K{sup *} vector meson. Both longitudinal and transverse moments are investigated. We use two flavours of O(a) improved Wilson fermions, together with a non-perturbative renormalisation of the matrix element. (orig.)
Holmlund, P; Lundström, R
2001-01-01
The study was aimed to investigate the mechanical impedance of the sitting human body and to compare data obtained in laboratory single-axis investigations with multi-axis data from in vehicle measurements. The experiments were performed in a laboratory for single-axis measurements. The multi-axis exposure was generated with an eight-seat minibus where the rear seats had been replaced with a rigid one. The subjects in the multi-axis experiment all participated in the single-axis experiments. There are quite a few investigations in the literature describing the human response to single-axis exposure. The response from the human body can be expected to be affected by multi-axis input in a different way than from a single-axis exposure. The present knowledge of the effect of multiple axis exposure is very limited. The measurements were performed using a specially designed force and accelerometer plate. This plate was placed between the subject and the hard seat. Outcome shows a clear difference between mechanical impedance for multi-axis exposure compared to single-axis. This is especially clear in the x-direction where the difference is very large. The conclusion is that it seems unlikely that single-axis mechanical impedance data can be directly transferred to a multi-axis environment. This is due to the force cross-talk between different directions.
Scruncher phase and amplitude control
International Nuclear Information System (INIS)
DeHaven, R.A.; Morris, C.L.; Johnson, R.; Davis, J.; O'Donnell, J.M.
1992-01-01
The analog controller for phase and amplitude control of a 402.5 MHz super conducting cavity is described in this paper. The cavity is a single cell with niobium explosively bonded to a copper cavity. It is used as an energy compressor for pions at the Clinton P. Anderson Meson Physics Facility (LAMPF). The controller maintains cavity frequency to within 4 degrees in phase of the LAMPF beam frequency. Field amplitude is maintained to within 2 percent. This control is accomplished at critical coupling (Q load of 1 x 10 9 ) with the use of only a 30 watt rf amplifier for accelerating fields of 6 MV/m. The design includes the use of piezoelectric crystals for fast resonance control. Three types of control, self excited, VCO, and a reference frequency driven, were tried on this cavity and we present a comparison of their performance. (Author) 4 figs., ref
SCRUNCHER phase and amplitude control
International Nuclear Information System (INIS)
DeHaven, R.A.; Morris, C.L.; Johnson, R.; Davis, J.; O'Donnell, J.M.
1992-01-01
The analog controller for phase and amplitude control of a 402.5 MHz super conducting cavity is described in this paper. The cavity is a single cell with niobium explosively bonded to a copper cavity. It is used as an energy compressor for pions at the Clinton P. Anderson Meson Physics Facility (LAMPF). The controller maintains cavity frequency to within 4 degrees in phase of the LAMPF beam frequency. Field amplitude is maintained to within 2 percent. This control is accomplished at critical coupling (Q loaded of 1 x 10 9 ) with the use of only a 30 watt rf amplifier for accelerating fields of 6 MV/m. The design includes the use of piezoelectric crystals for fast resonance control. Three types of control, self excited VCO, and a reference frequency driven, were tried on this cavity and we present a comparison of their performance
Periodic instantons and scattering amplitudes
International Nuclear Information System (INIS)
Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.
1991-04-01
We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)
Determination of the scattering amplitude
International Nuclear Information System (INIS)
Gangal, A.D.; Kupsch, J.
1984-01-01
The problem to determine the elastic scattering amplitude from the differential cross-section by the unitarity equation is reexamined. We prove that the solution is unique and can be determined by a convergent iteration if the parameter lambda=sin μ of Newton and Martin is bounded by lambda 2 approx.=0.86. The method is based on a fixed point theorem for holomorphic mappings in a complex Banach space. (orig.)
Pulse amplitude modulated chlorophyll fluorometer
Greenbaum, Elias; Wu, Jie
2015-12-29
Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.
Semiclassical approach to fidelity amplitude
International Nuclear Information System (INIS)
García-Mata, Ignacio; Vallejos, Raúl O; Wisniacki, Diego A
2011-01-01
The fidelity amplitude (FA) is a quantity of paramount importance in echo-type experiments. We use semiclassical theory to study the average FA for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit - attained approximately by strongly chaotic systems - and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us to bridge the gap between both the extreme cases. (paper)
Li, Yijun; Nie, Min; Wang, Qi
2018-01-10
Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.
Energy Technology Data Exchange (ETDEWEB)
McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-05-01
This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.
Energy Technology Data Exchange (ETDEWEB)
McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-05-12
This report describes the third set of tests (the “DCL^{a} shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.
Sahoo, K. C.; Goyal, Sunil; Parameswaran, P.; Ravi, S.; Laha, K.
2018-03-01
The role of the multiaxial state of stress on creep deformation and rupture behavior of 304HCu austenitic stainless steel was assessed by performing creep rupture tests on both smooth and notched specimens of the steel. The multiaxial state of stress was introduced by incorporating circumferential U-notches of different root radii ranging from 0.25 to 5.00 mm on the smooth specimens of the steel. Creep tests were carried out at 973 K over the stress range of 140 to 220 MPa. In the presence of notch, the creep rupture strength of the steel was found to increase with the associated decrease in rupture ductility. Over the investigated stress range and notch sharpness, the strengthening was found to increase drastically with notch sharpness and tended toward saturation. The fractographic studies revealed the mixed mode of failure consisting of transgranular dimples and intergranular creep cavitation for shallow notches, whereas the failure was predominantly intergranular for relatively sharper notches. Detailed finite element analysis of stress distribution across the notch throat plane on creep exposure was carried out to assess the creep failure of the material in the presence of notch. The reduction in von-Mises stress across the notch throat plane, which was greater for sharper notches, increased the creep rupture strength of the material. The variation in fracture behavior of the material in the presence of notch was elucidated based on the von-Mises, maximum principal, and hydrostatic stresses. Electron backscatter diffraction analysis of creep strain distribution across the notch revealed localized creep straining at the notch root for sharper notches. A master curve for predicting creep rupture life under the multiaxial state of stress was generated considering the representative stress having contributions from both the von-Mises and principal stress components of the stress field in the notch throat plane. Rupture ductility was also predicted based on the
Time-amplitude converter; Convertisseur temps-amplitude
Energy Technology Data Exchange (ETDEWEB)
Banner, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1961-07-01
It is normal in high energy physics to measure the time of flight of a particle in order to determine its mass. This can be done by the method which consists in transforming the time measurement into an analysis of amplitude, which is easier; a time-amplitude converter has therefore been built for this purpose. The apparatus here described uses a double grid control tube 6 BN 6 whose resolution time, as measured with a pulse generator, is 5 x 10{sup -11} s. The analysis of the response of a particle counter, made up of a scintillator and a photomultiplier, indicates that a time of resolution of 5 x 10{sup -10} s. can be obtained. A time of this order of magnitude is obtained experimentally with the converter. This converter has been used in the study of the time of flight of particles in a secondary beam of the accelerator Saturne. It has thus been possible to measure the energy spectrum of {pi}-mesons, of protons, and of deutons emitted from a polyethylene target bombarded by 1,4 and 2 GeV protons. (author) [French] Pour determiner la masse d'une particule, il est courant, en physique des hautes energies, de mesurer le temps de vol de cette particule. Cela peut etre fait par la methode qui consiste a transformer la mesure d'un temps en une analyse d'amplitude, plus aisee; aussi a-t-on, a cet effet, cree un convertisseur temps-amplitude. L'appareillage decrit dans cet article utilise un tube a double grille de commande 6 BN 6 dont le temps de resolution mesure avec un generateur d'impulsion est de 5.10{sup -11} s. L'analyse de la reponse d'un compteur de particules, constitue par un scintillateur et un photomultiplicateur, indique qu'un temps de resolution de 5.10{sup -10} s peut etre obtenu. Un temps de cet ordre est atteint experimentalement avec le convertisseur. Ce convertisseur a servi a l'etude du temps de vol des particules dans un faisceau secondaire de l'accelerateur Saturne. On a mesure ainsi le spectre d'energie des mesons {pi}, des protons, des deutons
International Nuclear Information System (INIS)
Aktaa, J.; Weick, M.; Petersen, C.
2007-01-01
Full text of publication follows: Toward test blanket module (TBM) in ITER and DEMO fusion power plants design rules for components built from EUROFER 97 get more and more in the midpoint of interest. One of the specific characteristic of EUROFER 97 as a ferritic-martensitic steel is its cyclic softening yielding to lower stresses under strain controlled fatigue loading and thus longer lifetimes. However our thermo-mechanical and multiaxial fatigue tests showed lifetimes remarkably lower than those expected on the base of isothermal uniaxial fatigue tests. Reduced cyclic softening observed in these experiments is believed as one of the reasons of the shorter fatigue lifetimes. When applying the design rules, derived for EUROFER 97 on the base of isothermal uniaxial data considering the recommendations in the ASME and RCC-MR code, to our thermo-mechanical and multiaxial fatigue tests for verification strong loss in their conservatism has been found. The lifetimes observed in a part of the multiaxial experiments are even lower than the design lifetimes supposed to be sufficiently conservative. To overcome this problem new design rules are proposed among others on the base of damage and lifetime prediction model developed lately for EUROFER 97. In this paper the experimental findings as well as the new design approaches will be presented and discussed. (authors)
International Nuclear Information System (INIS)
Silva, Luiz L. da; Filho, Nelson do N.A.; Gomes, Paulo de T.V.; Rabello, Emerson G.; Mansur, Tanius R.
2013-01-01
Fatigue is the fail phenomenon of a material subjected to cyclic loads. This phenomenon affects any component under loads (forces, temperatures, etc.) that changes in time. When there is a combined load, originating multiaxial fatigue, which is the most of the real loads, worst is the situation. Before the component fail, the fatigue phenomenon produces damages to its material and this is a cumulative process that could not be reduced. In the continuum mechanic context, material damage is defined as a parameter that reduces the component resistance and this could cause its fail. The process of damage measuring by changes in electrical resistance is used in this work, and from experimental results of SAE 8620 steel specimens subjected to multiaxial fatigue in corrosive and neutral environment, the remaining specimen time life could be determined. Each specimen has its initial electrical resistance measured and after a certain number of fatigue cycles stopping points, its electrical resistance was measured again. In order to study multiaxial fatigue in specimens, a machine that induces simultaneously bending and torsional loads in the specimen was developed. Air at the temperature range of 18 deg C and 20 deg C was considered neutral environment. The corrosive environment was a NaCl solution with a concentration of 3,5% in weigh. The experimental results showed that the measuring fatigue damage using the changes in electrical resistance is efficient and that is possible to estimate the effect of a corrosive environment in the fatigue damage. (author)
Directory of Open Access Journals (Sweden)
Subramani Sockalingam
2017-02-01
Full Text Available High-velocity transverse impact of ballistic fabrics and yarns by projectiles subject individual fibers to multi-axial dynamic loading. Single-fiber transverse impact experiments with the current state-of-the-art experimental capabilities are challenging due to the associated micron length-scale. Kevlar® KM2 fibers exhibit a nonlinear inelastic behavior in transverse compression with an elastic limit less than 1.5% strain. The effect of this transverse behavior on a single KM2 fiber subjected to a cylindrical and a fragment-simulating projectile (FSP transverse impact is studied with a 3D finite element model. The inelastic behavior results in a significant reduction of fiber bounce velocity and projectile-fiber contact forces up to 38% compared to an elastic impact response. The multiaxial stress states during impact including transverse compression, axial tension, axial compression and interlaminar shear are presented at the location of failure. In addition, the models show a strain concentration over a small length in the fiber under the projectile-fiber contact. A failure criterion, based on maximum axial tensile strain accounting for the gage length, strain rate and multiaxial loading degradation effects are applied to predict the single-fiber breaking speed. Results are compared to the elastic response to assess the importance of inelastic material behavior on failure during a transverse impact.
International Nuclear Information System (INIS)
Miguel, V.; Catalayud, A.; Ferrer, C.
2007-01-01
In this work a methodology to investigate deep drawing quality steel sheets deformation tendency under multiaxial deep drawing stresses has been proposed. the method consists in assaying a sheet in a wedge die in order to order to introduce a pure shear estate in the material 0 degree centigree, 45 degree centigree and 90 degree centigree rolling directions are selected in the assays, and transversal strain is the variable considered in them. a strain coefficient 0/% has been defined in order to evaluate thickness variations in the test. almost no changes in thickness have been registered and this indicates that strain carried out in the test is similar to that taking place in deep drawing. The stress necessary for practice a certain plastic deformation is obtained too and a potential function between them is formulated. Indicators presented in this work are compared to anisotropy and strength coefficients obtained in normalized tensile tests. these results allow us to justify the steel behaviour in the cup deep drawing processes related to ear forming. (Author) 11 refs
Multi-axial load application and DIC measurement of advanced composite beam deformation behavior
Directory of Open Access Journals (Sweden)
Berggreen C.
2010-06-01
Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during
Directory of Open Access Journals (Sweden)
Gunzburg Robert
2006-04-01
Full Text Available Abstract Background Spinal manipulation has been found to create demonstrable segmental and intersegmental spinal motions thought to be biomechanically related to its mechanisms. In the case of impulsive-type instrument device comparisons, significant differences in the force-time characteristics and concomitant motion responses of spinal manipulative instruments have been reported, but studies investigating the response to multiple thrusts (multiple impulse trains have not been conducted. The purpose of this study was to determine multi-axial segmental and intersegmental motion responses of ovine lumbar vertebrae to single impulse and multiple impulse spinal manipulative thrusts (SMTs. Methods Fifteen adolescent Merino sheep were examined. Tri-axial accelerometers were attached to intraosseous pins rigidly fixed to the L1 and L2 lumbar spinous processes under fluoroscopic guidance while the animals were anesthetized. A hand-held electromechanical chiropractic adjusting instrument (Impulse was used to apply single and repeated force impulses (13 total over a 2.5 second time interval at three different force settings (low, medium, and high along the posteroanterior axis of the T12 spinous process. Axial (AX, posteroanterior (PA, and medial-lateral (ML acceleration responses in adjacent segments (L1, L2 were recorded at a rate of 5000 samples per second. Peak-peak segmental accelerations (L1, L2 and intersegmental acceleration transfer (L1–L2 for each axis and each force setting were computed from the acceleration-time recordings. The initial acceleration response for a single thrust and the maximum acceleration response observed during the 12 multiple impulse trains were compared using a paired observations t-test (POTT, alpha = .05. Results Segmental and intersegmental acceleration responses mirrored the peak force magnitude produced by the Impulse Adjusting Instrument. Accelerations were greatest for AX and PA measurement axes. Compared to
Particle dynamics in a wave with variable amplitude
International Nuclear Information System (INIS)
Cary, J.R.
1992-01-01
Our past research efforts led to the derivation of the adiabatic invariant in spatially varying accelerator structures, to the calculation of the loss of the invariant due to trapping, and to a method for determining transverse invariants using a nonperturbative approach to the Hamilton-Jacobi equation. These research efforts resulted in the training of two graduate students who are now working in the area of accelerator physics
Amplitude modulation reflectometer for FTU
International Nuclear Information System (INIS)
Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.
1995-06-01
Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed
Superstring amplitudes and contact interactions
International Nuclear Information System (INIS)
Greensite, J.
1987-08-01
We show that scattering amplitudes computed from light-cone superstring field theory are divergent at tree level. The divergences can be eliminated, and supersymmetry restored, by the addition of certain counter terms to the light-cone Hamiltonian. These counter terms have the form of local contact interactions, whose existence we had previously deduced on grounds of vacuum stability, and closure of the super-Poincare algebra. The quartic contact interactions required in Type I and Type IIB superstring theories are constructed in detail. (orig.)
Forward amplitude in pion deuteron
International Nuclear Information System (INIS)
Ferreira, E.M.; Munguia, G.A.P.; Rosa, L.P.; Thome, Z.D.
1979-06-01
The data on total cross section for πd scattering is analysed in terms of a single scattering calculation with Fermi motion dependence, in order to obtain a criterion to fix the value of the energy entering the two body meson nucleon amplitude. It is found that the prescription derived from the non-relativistic three body kinematics gives reasonable results. The introduction of a shift in the energy value, possibly representing nuclear binding effects, leads to a very good fitting of the data. The results are compared with those obtained in direct calculations of Faddeev equations and with the Brueckner model of fixed scatterers. (Author) [pt
Polynomial structures in one-loop amplitudes
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Yang Gang
2008-01-01
A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.
External and internal limitations in amplitude-modulation processing
DEFF Research Database (Denmark)
Ewert, Stephan; Dau, Torsten
2004-01-01
Three experiments are presented to explore the relative role of "external" signal variability and "internal" resolution limitations of the auditory system in the detection and discrimination of amplitude modulations (AM). In the first experiment, AM-depth discrimination performance was determined......-filterbank models. The predictions revealed that AM-depth discrimination and AM detection are limited by a combination of the external signal variability and an internal "Weber-fraction" noise process....
Measurement of multiaxial ply strength by an off-axis flexure test
Crews, John H., Jr.; Naik, Rajiv A.
1992-01-01
An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.
International Nuclear Information System (INIS)
Poncelet, M.; Hild, F.; Doudard, C.; Calloch, S.; Weber, B.
2010-01-01
Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)
Energy Technology Data Exchange (ETDEWEB)
Poncelet, M.; Hild, F. [Univ Paris 11, PRES, Univ Paris 06, LMT Cachan, ENS Cachan, CNRS, F-94235 Cachan (France); Doudard, C.; Calloch, S. [Univ Brest, ENIB, ENSIETA, LBMS EA 4325, F-29806 Brest, (France); Weber, B. [ArcelorMittal Maizieres Res Voie Romaine, F-57283 Maizieres Les Metz (France)
2010-07-01
Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)
Energy Technology Data Exchange (ETDEWEB)
Fuloria, Devasri; Nageswararao, P. [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Jha, S. [Nuclear Fuel Complex Limited, Hyderabad 501301 (India); Srivastava, D. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 40085 (India)
2016-04-15
In the present work, the mechanical behavior of Zircaloy-4 subjected to various deformation strains by multiaxial forging (MAF) at cryogenic temperature (CT) was investigated. The alloy was strained up to different number of cycles, viz., 6 cycles, 9 cycles, and 12 cycles at cumulative strains of 2.96, 4.44, and 5.91, respectively. The mechanical properties of the alloy were investigated by performing the universal tensile test and the Vickers hardness test. Both the test showed improvement in the ultimate tensile strength and hardness value by 51% and 26%, respectively, at the highest cumulative strain of 5.91. The electron backscattered diffraction (EBSD) measurement and transmission electron microscopy (TEM) were used for analyzing the deformed microstructure. The microstructures of the alloy underwent deformation at various cumulative strains/cycles showed grain refinement with the evolution of shear and twin bands that were highest for the alloy deformed at the highest number of cycles. The effective grain refinement was due to twins formation and their intersection, which led to the improvement in mechanical properties of the MAFed alloy, as observed in the present work. - Highlights: • Zircaloy-4 was subjected to MAF at cryogenic temperature. • Microstructural evolution was studied through EBSD and TEM. • Deformed microstructure was marked with various types of twinning and shear banding. • Twins formations are responsible for effective grain refinement and enhanced mechanical properties.
Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame
Sadeghian, Vahid; Kwon, Oh-Sung; Vecchio, Frank
2017-10-01
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shearcritical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.
Assessment of an improved multiaxial strength theory based on creep-rupture data for Inconel 600
International Nuclear Information System (INIS)
Huddleston, R.L.
1993-01-01
A new multiaxial strength theory incorporating three independent stress parameters was developed and reported by the author in 1984. It was formally incorporated into ASME Code Case N47-29 in 1990. The new theory provided significantly more accurate stress-rupture life predictions than obtained using the classical theories of von Mises, Tresca, and Rankins (maximum principal stress), for Types 304 and 316 stainless steel tested at 593 and 600 degrees C respectively under different biaxial stress states. Additional results for Inconel 600 specimens tested at 816 degrees C under tension-tension and tension-compression stress states are presented in this paper and show a factor of approximately 2.4 reduction in the scatter of predicted versus observed lives as compared to the classical theories of von Mises and Tresca and a factor of about 5 as compared to the Rankins theory. A key feature of the theory, which incorporates the maximum deviatoric stress, the first invariant of the stress tensor, and the second invariant of the deviatoric stress tensor, is its ability to distinguish between life under tensile versus compressive stress states
Development of a Very High Cycle Fatigue (VHCF multiaxial testing device
Directory of Open Access Journals (Sweden)
M. Vieira
2016-07-01
Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.
Directory of Open Access Journals (Sweden)
Christopher C. Ihueze
2015-07-01
Full Text Available This paper focuses on the design of natural fiber composites and analysis of multiaxial stresses in relation to yield limit stresses of composites loaded off the fibers axis. ASTM D638-10 standard for tensile test was used to design and compose composites of plantain fiber reinforced polyester (PFRP. While the rule of mixtures was used in the evaluation of properties of composites in the fiber direction the evaluation of properties perpendicular or transverse to the fiber direction was done based on the value of the orthogonal stresses evaluated using ANSYS finite element software, the application of the Brintrup equation and Halpin–Tai equation. The yield strength for the plantain empty fruit bunch fiber reinforced polyester resin (PEFBFRP was estimated as 33.69 MPa while the yield strength of plantain pseudo stem fiber reinforced polyester resin (PPSFRP was estimated as 29.24 MPa. Above all, the PEFBFRP with average light absorbance peak of 45.47 was found to have better mechanical properties than the PPSFRP with average light absorbance peak of 45.77.
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-02-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks
Zaal, Peter M. T.; Sweet, Barbara T.
2012-01-01
Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.
International Nuclear Information System (INIS)
Luyckx, G; Voet, E; De Waele, W; Degrieck, J
2010-01-01
Embedded optical fibre sensors are considered in numerous applications for structural health monitoring purposes. However, since the optical fibre and the host material in which it is embedded, will have different material properties, strain in both materials will not be equal when load is applied. Therefore, the multi-axial strain transfer from the host material to the embedded sensor (optical fibre) has to be considered in detail. In the first part of this paper the strain transfer will be determined using finite element modelling of a circular isotropic glass fibre embedded first in an isotropic host and second in an anisotropic composite material. The strain transfer or relation depends on the mechanical properties of the host material and the sensor (Young's modulus and Poisson's ratio), on the lay-up of the composite material (uni-directional lay-up/cross-ply lay-up) and the position of the sensor in a certain layer. In the second part of the paper the developed strain transfer model will be evaluated for one specific lay-up and sensor type
Tests on creep and influence of creep on strength of concrete under multiaxial stresses
International Nuclear Information System (INIS)
Lanig, N.; Stoeckl, S.; Kupfer, H.
1988-12-01
Long-time tests of three-axially loaded, sealed cylindrical specimens d = 15 cm, h = 40 cm, were carried out. The 20-cm-cube strength of the concrete was app. 45 N/mm 2 . The creep stresses were chosen in the following ranges: 0,3 ≤ σ c /β c ≤ 2,1; 0 ≤ σ r /σ l ≤ 1,0. The creep coefficients obtained were clearly depending on the multi-axial stress conditions. The creep coefficients for a t = 2 years loading were reaching app. 1 for σ l /β c = 0,3 and app. 3 for σ l /β c = 2,1, when the test evaluation was based on the initial deformations meausred after 1 minute. For σ l /β c = 2,1 the creep coefficients obtained were about 4 times as large, proceeding form calculated elastic deformations. Further evaluations concerned the Young's modulus E, Poisson's ratio μ, the bulk modulus K and the shear modulus G. The preceding permanent load leads to an increase in the Young's modulus of the concrete in longitudinal direction of the specimen up to about 4 times the value of not preloaded comparative specimens. (orig.) [de
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-03-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
International Nuclear Information System (INIS)
Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.
2014-01-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel ® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes
Energy Technology Data Exchange (ETDEWEB)
Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)
2014-10-01
A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.
Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring
International Nuclear Information System (INIS)
Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Fedder, Gary K; Miller, Mark
2009-01-01
The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa
Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos
2017-06-05
Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
Covariant amplitudes in Polyakov string theory
International Nuclear Information System (INIS)
Aoyama, H.; Dhar, A.; Namazie, M.A.
1986-01-01
A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Determination of backward pion nucleon scattering amplitudes
International Nuclear Information System (INIS)
Pietarinen, E.
1978-04-01
Backward C(sup(+-))πN amplitudes are determined from πN→Nπ and NantiN→2π differential cross sections in such a way that they are consistent with the analyticity properties and information of the unphysical ππ→NantiN amplitudes. Combining the result with forward C(sup(+-)) amplitudes positive and negative parity resonances are extracted. An error analysis of the amplitudes is performed. (author)
Numerical construction of 'optimal' nonoscillating amplitude and phase functions
International Nuclear Information System (INIS)
Matzkin, A.; Lombardi, M.
2002-01-01
A numerical recipe for the construction of nonoscillating amplitude and phase functions for potentials with a single minimum is given. We give different examples illustrating the recipe, showing the usefulness of the procedure for the construction of basis functions in bound-state scattering processes, such as those described by quantum defect theory. The resulting amplitude and accumulated phase functions are coined as 'optimal' nonoscillating (as a function of the space and energy variables) because they are the counterpart for the quantum problem of the classical action for the analog semiclassical problem
On tree amplitudes of supersymmetric Einstein-Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim; Casali, Eduardo; Roehrig, Kai A.; Skinner, David [Department of Applied Mathematics & Theoretical Physics, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA United Kingdom (United Kingdom)
2015-12-29
We present a new formula for all single trace tree amplitudes in four dimensional super Yang-Mills coupled to Einstein supergravity. Like the Cachazo-He-Yuan formula, our expression is supported on solutions of the scattering equations, but with momenta written in terms of spinor helicity variables. Supersymmetry and parity are both manifest. In the pure gravity and pure Yang-Mills sectors, it reduces to the known twistor-string formulae. We show that the formula behaves correctly under factorization and sketch how these amplitudes may be obtained from a four-dimensional (ambi)twistor string.
Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing
International Nuclear Information System (INIS)
Bowyer, William H.
2006-05-01
The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage
Multiaxial stress analysis taking account of penetration depth of x-rays, 3
International Nuclear Information System (INIS)
Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.
1985-01-01
In the past X-ray stress analysis in which the effect of stress gradients was taken into account within the penetration depth of X-rays, three assumptions have been made; 1) the stress gradient is linear in respect to the depth from the specimen surface, 2) the penetration depth of X-ray is a function of Sin 2 PSI and 3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. A problem, however, still remains on the assumption of the X-ray penetration depth. We sometimes observed noticiable errors in the stage of the numerical simulation and these errors depend on the combination of stress components in a stress tensor. In the present paper, we proposed a new X-ray multiaxial stress analysis without using the assumption of the X-ray penetration depth. This analysis is also applicable to both the iso-inclination method ( OHM -goniometer) and the side inclination method (PSI-goniometer). The weighted average strain by X-rays, 1 >(phi), is expressed as a 4th degree function of cosPSI for iso-inclination method and 3rd degree for side inclination method. By rearranging this function as a sum of average strain, ( 1 >(0 0 )+ 1 >(90 0 )), and difference of average strain, ( 1 >(0 0 )- 1 >(90 0 )), we can solve the stress components with sufficient accuracy by a least squares method. The validity of this method was proved through numerical simulations and experiments. (author)
Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing
Energy Technology Data Exchange (ETDEWEB)
Bowyer, William H. [Meadow End Farm, Farnham (United Kingdom)
2006-05-15
The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage.
Model-based framework for multi-axial real-time hybrid simulation testing
Fermandois, Gaston A.; Spencer, Billie F.
2017-10-01
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six
Multi-axial correction system in the treatment of radial club hand.
Bhat, Suneel B; Kamath, Atul F; Sehgal, Kriti; Horn, B David; Hosalkar, Harish S
2009-12-01
Radial club hand is a well-recognized congenital malformation characterized by hypoplasia of bone and soft tissue on the radial aspect of the forearm and hand. The modalities of treatment have traditionally varied from stretching casts with soft-tissue procedures to the use of multiple corrective osteotomies. These osteotomies can be stabilized by a variety of methods, including external fixators that allow the possibility of gradual distraction with neohistiogenesis. This current study outlines the usage of one such device (multi-axial correction system [MAC]) in the management of deformity associated with severe radial club hand. Three consecutive cases of unilateral or bilateral severe (Bayne type IV) congenital radial club hand were corrected using MAC fixation in the last 5 years. This is a retrospective review of all three cases. Data parameters included: patient demographics, presentation findings, degree of deformity, amount of correction/lengthening, length of procedure, length of treatment, and associated complications. The surgical technique is described in detail for the benefit of the readership. The three patients with severe congenital radial club hand had a total of four limb involvements that underwent correction using osteotomies and usage of the MAC device for external fixation. All three patients underwent successful correction of deformity with the restoration of alignment, lengthening of forearm for improvement of function, and stabilization of the wrist (mean duration, mean lengthening, mean time to consolidation). The MAC system was well tolerated in all patients and associated complications were limited. The MAC fixator seems to be a good alternative modality of stabilization and correction for severe congenital radial club hand deformities. Its usage is fairly simple and it provides the ease of application of a mono-lateral fixator with far superior three-dimensional control, like the circular external fixator. We recommend that
Amplitude growth due to random, correlated kicks
International Nuclear Information System (INIS)
Michelotti, L.; Mills, F.
1989-03-01
Historically, stochastic processes, such as gas scattering or stochastic cooling, have been treated by the Fokker-Planck equation. In this approach, usually considered for one dimension only, the equation can be considered as a continuity equation for a variable which would be a constant of the motion in the absence of the stochastic process, for example, the action variable, I = ε/2π for betatron oscillations, where ε is the area of the Courant-Snyder ellipse, or energy in the case of unbunched beams, or the action variable for phase oscillations in case the beam is bunched. A flux, /Phi/, including diffusive terms can be defined, usually to second order. /Phi/ = M 1 F(I) + M 2 ∂F/∂I + /hor ellipsis/. M 1 and M 2 are the expectation values of δI and (δI) 2 due to the individual stochastic kicks over some period of time, long enough that the variance of these quantities is sufficiently small. Then the Fokker-Planck equation is just ∂F/∂I + ∂/Phi//∂I = 0. In many cases those where the beam distribution has already achieved its final shape, it is sufficient to find the rate of increase of by taking simple averages over the Fokker-Planck equation. At the time this work was begun, there was good knowledge of the second moment for general stochastic processes due to stochastic cooling theory, but the form of the first moment was known only for extremely wideband processes. The purposes of this note are to derive an expression relating the expected single particle amplitude growth to the noise autocorrelation function and to obtain, thereby, the form of M 1 for narrow band processes. 4 refs
International Nuclear Information System (INIS)
Cullinan, Michael A; Panas, Robert M; Culpepper, Martin L
2012-01-01
This paper presents the design and fabrication of a multi-axis microelectromechanical system (MEMS) force sensor with integrated carbon nanotube (CNT)-based piezoresistive sensors. Through the use of proper CNT selection and sensor fabrication techniques, the performance of the CNT-based MEMS force sensor was increased by approximately two orders of magnitude as compared to current CNT-based sensor systems. The range and resolution of the force sensor were determined as 84 μN and 5.6 nN, respectively. The accuracy of the force sensor was measured to be better than 1% over the device’s full range. (paper)
Energy Technology Data Exchange (ETDEWEB)
Fesich, Thomas M.; Herter, Karl-Heinz; Schuler, Xaver
2012-12-15
Objective of the project was the experimental assurance of investigations on the theoretical basis of multiaxial fatigue loading. The review of the applicability of existing hypotheses, as well as the extension of the corresponding data base was carried out by experimental studies in fatigue tests under complex multiaxial loading for a ferritic and austenitic material. To investigate the influence of complex multiaxial stress conditions on the fatigue behavior, in this project notched cylindrical specimens were examined under alternating tensile/pressure loading and alternating torsional loading. Through the notch in the notched section inhomogeneous, multiaxial stress states are generated. By uniaxial alternating tests on unnotched specimens and a further series of tests on unnotched specimens under alternating torsional loading an evaluation of the impact and influence of the notch of stress on fatigue behavior was possible. A series of experiments with superimposition of alternating torsional and alternating tensile/pressure loading permits verification of the effect of phase-shifted stress and rotating principal coordinate system. All experiments were performed at room temperature. As part of the research project, the experimental results with the ferritic and austenitic materials were evaluated in terms of material behavior (hardening or softening) under cyclic loading. These were to uniaxial alternating tensile/pressure tests, alternating torsional tests (unnotched cylindrical specimens), alternating tensile/pressure tests on notched cylindrical specimens, alternating torsional tests on notched cylindrical specimens, alternating tensiontorsion tests with complex proportional stresses on unnotched cylindrical specimens (superimposition of normal and shear stress components), as well as alternating tension-torsion tests with complex non-proportional strain on unnotched cylindrical specimens (superimposition of normal and shear stress components with 90 phase
Energy Technology Data Exchange (ETDEWEB)
Raimbault, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1961-07-01
In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [French] Pour etudier les fluctuations d'amplitude d'un photomultiplicateur a reponse rapide, on introduit deux variables aleatoires independantes qui determinent la forme de l'impulsion anodique. L'energie de chaque impulsion, directement fonction du gain et de sa variance, est la premiere variable; les fluctuations d'amplitude, fonctions de la premiere variable, dependent egalement de la largeur de l'impulsion qui, elle, constitue la deuxieme variable. Les resultats obtenus sur les variations de l'amplitude maximale, a l'aide d'un circuit elargisseur d'impulsions a front raide, et les resultats des variations statistiques du gain sont compares pour mettre en evidence le fait que la variance relative a l'amplitude maximale du signal est plus grande que celle du gain. Dans la mesure de ces fluctuations, sont mises en evidence la contribution du coefficient d'emission secondaire de la premiere dynode et celle du coefficient d'emission secondaire moyen du multiplicateur. (auteur)
On the singularities of massive superstring amplitudes
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)
On the singularities of massive superstring amplitudes
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-06-04
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.
New relations for graviton-matter amplitudes
CERN. Geneva
2018-01-01
I report on recent progress in finding compact expressions for scattering amplitudes involving gravitons and gluons as well as massive scalar and fermionic matter particles. At tree level the single graviton emission amplitudes may be expressed as linear combination of purely non-gravitational ones. At the one-loop level recent results on all four point Einstein-Yang-Mills amplitudes with at most one opposite helicity state using unitarity methods are reported.
Analytical properties of multiple production amplitudes
Energy Technology Data Exchange (ETDEWEB)
Medvedev, B V; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki; AN SSSR, Moscow. Matematicheskij Inst.)
1984-05-01
Local analytical properties of amplitudes 2..-->..3 and 2..-->..4 are studied. The amplitudes are shown to be analytical functions of total and partial energies at fixed momentum transfers in the neighbourhood of any physical point on the energy shell 14 (for the 2..-->..3 case) and 242 (for the 2..-->..4 case) boundary values are expressed through the amplitudes of real processes.
Multiaxial fatigue criterion for 2-1/4 Cr-1 Mo steel for use in high-temperature structural design
International Nuclear Information System (INIS)
Blass, J.J.
1990-01-01
An improved multiaxial fatigue failure criterion is described that is based on a definition of equivalent inelastic strain range incorporating the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained by the method of least squares from the results of combined axial-torsional strain cycling test of 2--1/4 Cr-1 Mo steel conducted at 538 degrees C (1000 degrees F). The ability of this criterion to correlate the test results was compared with that of the Mises equivalent inelastic strain range criterion and was found to be superior. A procedure is described for calculating the required shear and normal components of strain range under general multiaxial strain cycling conditions. An improved definition of equivalent total strain range based on these considerations is directly applicable to the method of estimating fatigue damage in ASME Code Case N-47. 17 refs., 5 figs., 1 tab
International Nuclear Information System (INIS)
Lenk, P.; Proft, D.; Kussmaul, A.; Fischer, R.
2000-01-01
The influence of multiaxial stress on creep pore formation in the steels 14MoV6-3 10CrMo9-10 and X10CrMoVNb9-1 was investigated on the basis of internal pressure experiments on smooth and notched hollow cylinders. In some cases, additional axial forces were applied in order to reproduce component-relevant multiaxial stresses. Local elongation during loading was investigated and analyzed using applied HT-DMS. When different strain levels had been reached, the samples were removed, analyzed, and characterized with regard to different damage parameters. It was found that no interdependence between the surface damage pattern and the deep damage pattern can be derived across the wall thickness if no information on the load state is available. Parallel to the experiments, inelastic FEA were carried out using the ABAQUS program system. The creep law of Graham and Walles was used for calculating flow and creep via a user-defined subroutine CREEP. The parameters of the creep law could be identified by adaptation to monoaxial creep tests [de
Directory of Open Access Journals (Sweden)
J. Toribio
2015-07-01
Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.
Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A
2013-11-01
A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Xu Qiang
2005-01-01
A generic validation methodology for a set of multi-axial creep damage constitutive equations is proposed and its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel which is featured as brittle or intergranular rupture. The objective of this research is to develop a methodology to guide systematically assess the quality of a set of multi-axial creep damage constitutive equations in order to ensure its general applicability. This work adopted a total quality assurance approach and expanded as a Four Stages procedure (Theories and Fundamentals, Parameter Identification, Proportional Load, and Non-proportional load). Its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel and this material is chosen due to its industry importance, the popular use of KRH type of constitutive equations, and the available qualitative experimental data including damage distribution from notched bar test. The validation exercise clearly revealed the deficiencies existed in the KRH formulation (in terms of mathematics and physics of damage mechanics) and its incapability to predict creep deformation accurately. Consequently, its use should be warned, which is particularly important due to its wide use as indicated in literature. This work contributes to understand the rational for formulation and the quality assurance of a set of constitutive equations in creep damage mechanics as well as in general damage mechanics. (authors)
DVCS amplitude with kinematical twist-3 terms
International Nuclear Information System (INIS)
Radyushkin, A.V.; Weiss, C.
2000-01-01
The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term
Amplitude structure of off-shell processes
International Nuclear Information System (INIS)
Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.
1984-01-01
The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process
An amplitude modulated radio frequency plasma generator
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
Effective anisotropy through traveltime and amplitude matching
Wang, Hui
2014-08-05
Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.
DETERMINISTIC COMPONENTS IN THE LIGHT CURVE AMPLITUDE OF Y OPH
International Nuclear Information System (INIS)
Pop, Alexandru; Turcu, Vlad; Vamos, Calin
2010-01-01
About two decades after the discovery of the amplitude decline of the light curve of the classical Cepheid Y Oph, its study is resumed using an increased amount of homogenized data and an extended time base. In our approach, the investigation of different time series concerning the light curve amplitude of Y Oph is not only the reason for the present study, but also a stimulus for developing a coherent methodology for studying long- and short-term variability phenomena in variable stars, taking into account the details of concrete observing conditions: amount of data, data sampling, time base, and individual errors of observational data. The statistical significance of this decreasing trend was estimated by assuming its linearity. We approached the decision-making process by formulating adequate null and alternative hypotheses, and testing the value of the regression line slope for different data sets via Monte Carlo simulations. A variability analysis, through various methods, of the original data and of the residuals obtained after removing the linear trend was performed. We also proposed a new statistical test, based on amplitude spectrum analysis and Monte Carlo simulations, intended to evaluate how detectible is a given (linear) trend in well-defined observing conditions: the trend detection probability. The main conclusion of our study on Y Oph is that, even if the false alarm probability is low enough to consider the decreasing trend to be statistically significant, the available data do not allow us to obtain a reasonably powerful test. We are able to confirm the light curve amplitude decline, and the order of magnitude of its slope with a better statistical substantiation. According to the obtained values of the trend detection probability, it seems that the trend we are dealing with is marked by a low detectibility. Our attempt to find signs of possible variability phenomena at shorter timescales ended by emphasizing the relative constancy of our data
Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state
International Nuclear Information System (INIS)
Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin
2009-10-01
Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given
Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg
Directory of Open Access Journals (Sweden)
Ivan Demšar, Jože Duhovnik, Blaž Lešnik, Matej Supej
2015-12-01
Full Text Available The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW, various skiing regimes were simulated. Change of Flexion Angle (CoFA and Range of Motion (RoM in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1° was significantly lower compared to an intact leg (5.9 ± 1.8° and the control group (6.5 ± 2.3°. In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2° was significantly larger than that of the intact leg (34.7 ± 4.4°. The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing.
Friedel, M. J.; Asch, T. H.; Oden, C.
2012-08-01
The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot-Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the
Friedel, M.J.; Asch, T.H.; Oden, C.
2012-01-01
The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot–Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the
True amplitude wave equation migration arising from true amplitude one-way wave equations
Zhang, Yu; Zhang, Guanquan; Bleistein, Norman
2003-10-01
One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition
Kim, Jeong Ho; Dennerlein, Jack T; Johnson, Peter W
2018-04-01
Whole body vibration (WBV) exposures are often predominant in the fore-aft (x) or lateral (y) axis among off-road agricultural vehicles. However, as the current industry standard seats are designed to reduce mainly vertical (z) axis WBV exposures, they may be less effective in reducing drivers' exposure to multi-axial WBV. Therefore, this laboratory-based study aimed to determine the differences between a single-axial (vertical) and multi-axial (vertical + lateral) suspension seat in reducing WBV exposures, head acceleration, self-reported discomfort, and muscle activity (electromyography) of the major muscle of the low back, neck and shoulders. The results showed that the multi-axial suspension seat had significantly lower WBV exposures compared to the single-axial suspension seats (p' suspension seat had lower head acceleration and muscle activity of the neck, shoulder, and low back compared to the single-axial suspension seat; some but not all of the differences were statistically significant. These results indicate that the multi-axial suspension seat may reduce the lateral WBV exposures and associated muscular loading in the neck and low back in agricultural vehicle operators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automation of loop amplitudes in numerical approach
International Nuclear Information System (INIS)
Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Nakazawa, N.; Kaneko, T.
1997-01-01
An automatic calculating system GRACE-L1 of one-loop Feynman amplitude is reviewed. This system can be applied to 2 to 2-body one-loop processes. A sample calculation of 2 to 3-body one-loop amplitudes is also presented. (orig.)
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...
Full amplitude models of 15 day Cepheids
International Nuclear Information System (INIS)
Cogan, B.C.; Cox, A.N.; King, D.S.
1980-01-01
Numerical models of Cepheids have been computed with a range of effective temperatures and compositions. The amplitudes increase if the helium abundance increases or if the effective temperature decreases. The latter effect is contrary to observational data. The models also exhibit velocity amplitudes which are much lower than those observed
Helicity amplitudes for matter-coupled gravity
International Nuclear Information System (INIS)
Aldrovandi, R.; Novaes, S.F.; Spehler, D.
1992-07-01
The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)
New relations for gauge-theory amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Carrasco, J. J. M.; Johansson, H.
2008-01-01
We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using this we find new relations between color-ordered partial amplitudes. We discuss applications to multiloop calculations via the unitarity method. In particular, we illustrate the relations between different contributions to a two-loop four-point QCD amplitude. We also use this identity to reorganize gravity tree amplitudes diagram by diagram, offering new insight into the structure of the Kawai-Lewellen-Tye (KLT) relations between gauge and gravity tree amplitudes. This insight leads to similar but novel relations. We expect this to be helpful in higher-loop studies of the ultraviolet properties of gravity theories.
Amplitude Variations in Pulsating Red Giants. II. Some Systematics
Percy, J. R.; Laing, J.
2017-12-01
In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.
Effects of strength training on mechanomyographic amplitude
International Nuclear Information System (INIS)
DeFreitas, Jason M; Beck, Travis W; Stock, Matt S
2012-01-01
The aim of the present study was to determine if the patterns of mechanomyographic (MMG) amplitude across force would change with strength training. Twenty-two healthy men completed an 8-week strength training program. During three separate testing visits (pre-test, week 4, and week 8), the MMG signal was detected from the vastus lateralis as the subjects performed isometric step muscle actions of the leg extensors from 10–100% of maximal voluntary contraction (MVC). During pre-testing, the MMG amplitude increased linearly with force to 66% MVC and then plateaued. Conversely, weeks 4 and 8 demonstrated an increase in MMG amplitude up to ∼85% of the subject's original MVC before plateauing. Furthermore, seven of the ten force levels (30–60% and 80–100%) showed a significant decrease in mean MMG amplitude values after training, which consequently led to a decrease in the slope of the MMG amplitude/force relationship. The decreases in MMG amplitude at lower force levels are indicative of hypertrophy, since fewer motor units would be required to produce the same absolute force if the motor units increased in size. However, despite the clear changes in the mean values, analyses of individual subjects revealed that only 55% of the subjects demonstrated a significant decrease in the slope of the MMG amplitude/force relationship. (paper)
Holographic corrections to meson scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk
2017-06-15
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Amplitude-Mode Dynamics of Polariton Condensates
International Nuclear Information System (INIS)
Brierley, R. T.; Littlewood, P. B.; Eastham, P. R.
2011-01-01
We study the stability of collective amplitude excitations in nonequilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wave vectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg
Demšar, Ivan; Duhovnik, Jože; Lešnik, Blaž; Supej, Matej
2015-01-01
The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key points The RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects. The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects. The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the
Flynn, P M; McCann, J T; Fairbank, J A
1995-05-01
Substance abuse treatment clients often present other severe mental health problems that affect treatment outcomes. Hence, screening and assessment for psychological distress and personality disorder are an important part of effective treatment, discharge, and aftercare planning. The Millon Clinical Multiaxial Inventory-II (MCMI-II) frequently is used for this purpose. In this paper, several issues of concern to MCMI-II users are addressed. These include the extent to which MCMI-II scales correspond to DSM-III-R disorders; overdiagnosis of disorders using the MCMI-II; accuracy of MCMI-II diagnostic cut-off scores; and the clinical utility of MCMI-II diagnostic algorithms. Approaches to addressing these issues are offered.
Hess, R. A.
1977-01-01
A brief review of some of the more pertinent applications of analytical pilot models to the prediction of aircraft handling qualities is undertaken. The relative ease with which multiloop piloting tasks can be modeled via the optimal control formulation makes the use of optimal pilot models particularly attractive for handling qualities research. To this end, a rating hypothesis is introduced which relates the numerical pilot opinion rating assigned to a particular vehicle and task to the numerical value of the index of performance resulting from an optimal pilot modeling procedure as applied to that vehicle and task. This hypothesis is tested using data from piloted simulations and is shown to be reasonable. An example concerning a helicopter landing approach is introduced to outline the predictive capability of the rating hypothesis in multiaxis piloting tasks.
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Bitsche, Robert; Blasques, José Pedro Albergaria Amaral
2017-01-01
This paper presents a methodology for structural reliability analysis of wind turbine blades. The study introduces several novel elements by taking into account loading direction using a multiaxial probabilistic load model, considering random material strength, spatial correlation between material...... properties, progressive material failure, and system reliability effects. An example analysis of reliability against material failure is demonstrated for a blade cross section. Based on the study we discuss the implications of using a system reliability approach, the effect of spatial correlation length......, type of material degradation algorithm, and reliability methods on the system failure probability, as well as the main factors that have an influence on the reliability. (C) 2017 Elsevier Ltd. All rights reserved....
Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion
Directory of Open Access Journals (Sweden)
Kaminsky A. V.
2010-04-01
Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the amplitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes ("fluctuation amplitudes" of the spectra of stochastic processes upon rotation of the Earth.
Choi, Jongsoo; Wang, Thomas; Oldham, Kenn
2018-01-01
The high performance and small size of MEMS based scanners has allowed various optical imaging techniques to be realized in a small form factor. Many such devices are resonant scanners, and thus their linear and nonlinear dynamic behaviors have been studied in the past. Thin-film piezoelectric materials, in contrast, provide sufficient energy density to achieve both large static displacements and high-frequency resonance, but large deformation can in turn influence dynamic scanner behavior. This paper reports on the influence of very large stroke translation of a piezoelectric vertical actuator on its resonant behavior, which may not be otherwise explained fully by common causes of resonance shift such as beam stiffening or nonlinear forcing. To examine the change of structural compliance over the course of scanner motion, a model has been developed that includes internal forces from residual stress and the resultant additional multi-axis coupling among actuator leg structures. Like some preceding vertical scanning micro-actuators, the scanner of this work has four legs, with each leg featuring four serially connected thin-film PZT unimorphs that allow the scanner to generate larger than 400 µm of vertical displacement at 14 V DC. Using an excitation near one or more resonances, the input voltage can be lowered, and complementary multi-axis rotations can be also generated, but change of the resonant frequencies with scanner height needs to be understood to maximize scanner performance. The presented model well predicts the experimental observation of the decrease of the resonant frequencies of the scanner with the increase of a dc bias voltage. Also, the effects of the magnitude and uniformity of residual stress across the scanner structure on the natural frequencies have been studied.
On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades
Noever Castelos, Pablo; Balzani, Claudio
2016-09-01
For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization
Analytic continuation of dual Feynman amplitudes
International Nuclear Information System (INIS)
Bleher, P.M.
1981-01-01
A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)
Amplitude-Integrated EEG in the Newborn
Directory of Open Access Journals (Sweden)
J Gordon Millichap
2008-11-01
Full Text Available Th value of amplitude-integrated electroencephalography (aEEG in the newborn is explored by researchers at Washington University, St Louis; Wilhelmina Children’s Hospital, Utrecht, Netherlands; and Uppsala University Hospital, Sweden.
Effective string theory and QCD scattering amplitudes
International Nuclear Information System (INIS)
Makeenko, Yuri
2011-01-01
QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Effective gluon interactions from superstring disk amplitudes
Energy Technology Data Exchange (ETDEWEB)
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Effective gluon interactions from superstring disk amplitudes
International Nuclear Information System (INIS)
Oprisa, D.
2006-05-01
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Employing helicity amplitudes for resummation in SCET
International Nuclear Information System (INIS)
Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam
2016-05-01
Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.
The amplitude of quantum field theory
International Nuclear Information System (INIS)
Medvedev, B.V.; Pavlov, V.P.; Polivanov, M.K.; Sukhanov, A.D.
1989-01-01
General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number
The Cepheid bump progression and amplitude equations
International Nuclear Information System (INIS)
Kovacs, G.; Buchler, J.R.
1989-01-01
It is shown that the characteristic and systematic behavior of the low-order Fourier amplitudes and phases of hydrodynamically generated radial velocity and light curves of Cepheid model sequences is very well captured not only qualitatively but also quantitatively by the amplitude equation formalism. The 2:1 resonance between the fundamental and the second overtone plays an essential role in the behavior of the models 8 refs
Scattering amplitudes in open superstring theory
Energy Technology Data Exchange (ETDEWEB)
Schlotterer, Oliver
2011-07-15
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Scattering amplitudes in open superstring theory
International Nuclear Information System (INIS)
Schlotterer, Oliver
2011-01-01
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Direct amplitude detuning measurement with ac dipole
Directory of Open Access Journals (Sweden)
S. White
2013-07-01
Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.
Color-Kinematics Duality for QCD Amplitudes
Johansson, Henrik
2016-01-01
We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and (n-2k) gluons, are taken in the (n-2)!/k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluo...
Practical calculation of amplitudes for electron-impact ionization
International Nuclear Information System (INIS)
McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.
2001-01-01
An integral expression that is formally valid only for short-range potentials is applied to the problem of calculating the amplitude for electron-impact ionization. It is found that this expression provides a practical and accurate path to the calculation of singly differential cross sections for electron-impact ionization. Calculations are presented for the Temkin-Poet and collinear models for ionization of hydrogen by electron impact. An extension of the finite-element approach using the discrete-variable representation, appropriate for potentials with discontinuous derivatives like the Temkin-Poet interaction, is also presented
Iterative structure within the five-particle two-loop amplitude
International Nuclear Information System (INIS)
Cachazo, Freddy; Spradlin, Marcus; Volovich, Anastasia
2006-01-01
We find an unexpected iterative structure within the two-loop five-gluon amplitude in N=4 supersymmetric Yang-Mills theory. Specifically, we show that a subset of diagrams contributing to the full amplitude, including a two-loop pentagon-box integral with nontrivial dependence on five kinematical variables, satisfies an iterative relation in terms of one-loop scalar box diagrams. The implications of this result for the possible iterative structure of the full two-loop amplitude are discussed
High energy hadron spin-flip amplitude
International Nuclear Information System (INIS)
Selyugin, O.V.
2016-01-01
The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru
Scaling of saturation amplitudes in baroclinic instability
International Nuclear Information System (INIS)
Shepherd, T.G.
1994-01-01
By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates
Analytic representations of Yang–Mills amplitudes
Energy Technology Data Exchange (ETDEWEB)
Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Bourjaily, Jacob L., E-mail: bourjaily@nbi.ku.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Damgaard, Poul H. [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou City, 310027 (China)
2016-12-15
Scattering amplitudes in Yang–Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space—fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang–Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
Nonlinear (super)symmetries and amplitudes
Energy Technology Data Exchange (ETDEWEB)
Kallosh, Renata [Physics Department, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)
2017-03-07
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E{sub 7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N≥5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Relativistic amplitudes in terms of wave functions
International Nuclear Information System (INIS)
Karmanov, V.A.
1978-01-01
In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum
Multiphoton amplitude in a constant background field
Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian
2018-01-01
In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.
Energy Technology Data Exchange (ETDEWEB)
Logunov, A A; Medvedev, B V; Mestvirishvili, M A; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij
1977-11-01
Investigation of analytical structure of the three-particle forward scattering amplitude with respect to energy variable of one of particles is performed. The results obtained make it possible to draw the conclusions on crossing properties of the amplitude and to derive the generalized optical theorem relating the discontinuity of the amplitude to the distribution function of an inclusive process. For a special case when two of three particles are of zero mass, a dispersion relation is proved.
Amplitude-modulated fiber-ring laser
DEFF Research Database (Denmark)
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Amplitude Models for Discrimination and Yield Estimation
Energy Technology Data Exchange (ETDEWEB)
Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Amplitude modulation detection with concurrent frequency modulation.
Nagaraj, Naveen K
2016-09-01
Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.
Gluon amplitudes as 2 d conformal correlators
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
Precise generator of stability amplitude pulses
International Nuclear Information System (INIS)
Zhuk, N.A.; Zdesenko, Yu.G.; Kuts, V.N.
1989-01-01
A generator of stability amplitude pulses, designed for stabilization of a low-noise semiconducting spectrometer, used in investigations of 76 Ge2β-decay, is described. The generator contains a permanent-voltage source, a storage element and a switch based on a Hg relay. A thermostatic source provides a relative voltage instability less than ±5x10 -6 per 80h (standard deviation). The Hg relay is placed into a separate thermostat. The relative instability of output generator pulse amplitude does not exceed ±1.5x10 -5 per 24h
High energy multi-gluon exchange amplitudes
International Nuclear Information System (INIS)
Jaroszewicz, T.
1980-11-01
We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)
Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B
2017-11-01
Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Amplitude ratios in ρ0 leptoproductions and GPDs
Directory of Open Access Journals (Sweden)
Goloskokov S.V.
2017-01-01
Using the model results we calculate the ratio of different helicity amplitudes for a transversely polarized proton target to the leading twist longitudinal amplitude. Our results are close to the amplitude ratios measured by HERMES.
Stora's fine notion of divergent amplitudes
Directory of Open Access Journals (Sweden)
Joseph C. Várilly
2016-11-01
Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Connected formulas for amplitudes in standard model
Energy Technology Data Exchange (ETDEWEB)
He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)
2017-03-17
Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
Fatigue Reliability under Multiple-Amplitude Loads
DEFF Research Database (Denmark)
Talreja, R.
1979-01-01
for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...
Ward identities for amplitudes with reggeized gluons
International Nuclear Information System (INIS)
Bartles, J.; Vacca, G.P.
2012-05-01
Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.
Scattering amplitudes in super-renormalizable gravity
International Nuclear Information System (INIS)
Donà, Pietro; Giaccari, Stefano; Modesto, Leonardo; Rachwał, Lesław; Zhu, Yiwei
2015-01-01
We explicitly compute the tree-level on-shell four-graviton amplitudes in four, five and six dimensions for local and weakly nonlocal gravitational theories that are quadratic in both, the Ricci and scalar curvature with form factors of the d’Alembertian operator inserted between. More specifically we are interested in renormalizable, super-renormalizable or finite theories. The scattering amplitudes for these theories turn out to be the same as the ones of Einstein gravity regardless of the explicit form of the form factors. As a special case the four-graviton scattering amplitudes in Weyl conformal gravity are identically zero. Using a field redefinition, we prove that the outcome is correct for any number of external gravitons (on-shell n−point functions) and in any dimension for a large class of theories. However, when an operator quadratic in the Riemann tensor is added in any dimension (with the exception of the Gauss-Bonnet term in four dimensions) the result is completely altered, and the scattering amplitudes depend on all the form factors introduced in the action.
Particle Distribution Modification by Low Amplitude Modes
International Nuclear Information System (INIS)
White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.
2009-01-01
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Kaon decay amplitudes using staggered fermions
International Nuclear Information System (INIS)
Sharpe, S.R.
1986-12-01
A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model
Constraints on low energy Compton scattering amplitudes
International Nuclear Information System (INIS)
Raszillier, I.
1979-04-01
We derive the constraints and correlations of fairly general type for Compton scattering amplitudes at energies below photoproduction threshold and fixed momentum transfer, following from (an upper bound on) the corresponding differential cross section above photoproduction threshold. The derivation involves the solution of an extremal problem in a certain space of vector - valued analytic functions. (author)
Analytic properties of many-particle amplitudes
Energy Technology Data Exchange (ETDEWEB)
Medvedev, B V; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki; AN SSSR, Moscow. Matematicheskij Inst.)
1982-08-01
In the framework of N. N. Bogolyubov axiomatic approach the complete proof of the existence of an analytic function the boundary values of which are the amplitudes of any channel of n-particle process is given. The one-particle structure of this function is described.
Winnard, A; Debuse, D; Wilkinson, M; Samson, L; Weber, T; Caplan, Nick
2017-08-01
Lumbar multifidus (LM) and transversus abdominis (TrA) show altered motor control, and LM is atrophied, in people with low-back pain (LBP). The Functional Re-adaptive Exercise Device (FRED) involves cyclical lower-limb movement against minimal resistance in an upright posture. It has been shown to recruit LM and TrA automatically, and may have potential as an intervention for non-specific LBP. However, no studies have yet investigated the effects of changes in FRED movement amplitude on the activity of these muscles. This study aimed to assess the effects of different FRED movement amplitudes on LM and TrA muscle thickness and movement variability, to inform an evidence-based exercise prescription. Lumbar multifidus and TrA thickness of eight healthy male volunteers were examined using ultrasound imaging during FRED exercise, normalised to rest at four different movement amplitudes. Movement variability was also measured. Magnitude-based inferences were used to compare each amplitude. Exercise at all amplitudes recruited LM and TrA more than rest, with thickness increases of approximately 5 and 1 mm, respectively. Larger amplitudes also caused increased TrA thickness, LM and TrA muscle thickness variability and movement variability. The data suggests that all amplitudes are useful for recruiting LM and TrA. A progressive training protocol should start in the smallest amplitude, increasing the setting once participants can maintain a consistent movement speed, to continue to challenge the motor control system.
Directory of Open Access Journals (Sweden)
Lihang Feng
Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu
2018-05-01
Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.
Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong
2015-01-01
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
International Nuclear Information System (INIS)
Rautenberg, M.; Poquillon, D.; Pilvin, P.; Grosjean, C.; Cloué, J.M.; Feaugas, X.
2014-01-01
Zirconium alloys are widely used in the nuclear industry. Several components, such as cladding or guide tubes, undergo strong mechanical loading during and after their use inside the pressurized water reactors. The current requirements on higher fuel performances lead to the developing on new Zr based alloys exhibiting better mechanical properties. In this framework, creep behaviors of recrystallized Zircaloy-4 and M5™, have been investigated and then compared. In order to give a better understanding of the thermal creep anisotropy of Zr-based alloys, multi-axial creep tests have been carried out at 673 K. Using a specific device, creep conditions have been set using different values of β = σ zz /σ θθ , σ zz and σ θθ being respectively the axial and hoop creep stresses. Both axial and hoop strains are measured during each test which is carried out until stationary creep is stabilized. The steady-state strain rates are then used to build isocreep curves. Considering the isocreep curves, the M5™ alloy shows a largely improved creep resistance compared to the recrystallized Zircaloy-4, especially for tubes under high hoop loadings (0 < β < 1). The isocreep curves are then compared with simulations performed using two different mechanical models. Model 1 uses a von Mises yield criterion, the model 2 is based on a Hill yield criterion. For both models, a coefficient derived from Norton law is used to assess the stress dependence
International Nuclear Information System (INIS)
Whitelock, P.A.
1990-01-01
The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs
Cascaded Amplitude Modulations in Sound Texture Perception
DEFF Research Database (Denmark)
McWalter, Richard Ian; Dau, Torsten
2017-01-01
. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture...... model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures....... In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model...
Source amplitudes for active exterior cloaking
International Nuclear Information System (INIS)
Norris, Andrew N; Amirkulova, Feruza A; Parnell, William J
2012-01-01
The active cloak comprises a discrete set of multipole sources that destructively interfere with an incident time harmonic scalar wave to produce zero total field over a finite spatial region. For a given number of sources and their positions in two dimensions it is shown that the multipole amplitudes can be expressed as infinite sums of the coefficients of the incident wave decomposed into regular Bessel functions. The field generated by the active sources vanishes in the infinite region exterior to a set of circles defined by the relative positions of the sources. The results provide a direct solution to the inverse problem of determining the source amplitudes. They also define a broad class of non-radiating discrete sources. (paper)
Constructing QCD one-loop amplitudes
International Nuclear Information System (INIS)
Forde, D
2008-01-01
In the context of constructing one-loop amplitudes using a unitarity bootstrap approach we discuss a general systematic procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted after examining the behavior of the cut integrand as the unconstrained parameters of a specifically chosen parameterization of the cut loop momentum approach infinity. Measurements of new physics at the forthcoming experimental program at CERN's Large Hadron Collider (LHC) will require a precise understanding of processes at next-to-leading order (NLO). This places increased demands for the computation of new one-loop amplitudes. This in turn has spurred recent developments towards improved calculational techniques. Direct calculations using Feynman diagrams are in general inefficient. Developments of more efficient techniques have usually centered around unitarity techniques [1], where tree amplitudes are effectively 'glued' together to form loops. The most straightforward application of this method, in which the cut loop momentum is in D = 4, allows for the computation of 'cut-constructible' terms only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain, in addition to such terms, rational pieces which cannot be derived using such cuts. These 'missing' rational parts can be extracted using cut loop momenta in D = 4-2 (var e psilon). The greater difficulty of such calculations has restricted the application of this approach, although recent developments [3, 4] have provided new promise for this technique. Recently the application of on-shell recursion relations [5] to obtaining the 'missing' rational parts of one-loop processes [6] has provided an alternative very promising solution to this problem. In combination with unitarity methods an 'on-shell bootstrap' approach provides an efficient technique for computing complete one-loop QCD amplitudes [7]. Additionally
Differential equations, associators, and recurrences for amplitudes
Directory of Open Access Journals (Sweden)
Georg Puhlfürst
2016-01-01
Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.
Unitarity and amplitudes for high energies
International Nuclear Information System (INIS)
Efimov, G.V.
1997-01-01
It is shown that in the quantum field theory of scalar particles with mass m the following inequalities for the upper bound for the amplitude of elastic scattering Μ(s,t) |Μ(s,t)| 0 )s, (|t|≥|t 0 |>0) and for the total cross section of scalar particles σ tot (s)≤C|d/dt ln Im Μ(s,t)| t=0 , (s → ∞) are valid. This result is based on the unitarity of the S-matrix on the mass shell and on a natural assumption that the imaginary part of the elastic scattering Im Μ(s,t) is a differentiable and convex down function in some vicinity of t=0. The locality of the theory and the analyticity of the elastic amplitude in the Martin-Lehmann ellipse are not used in proving these inequalities
Large amplitude waves and fields in plasmas
International Nuclear Information System (INIS)
Angelis, U. de; Naples Univ.
1990-02-01
In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)
Integrable spin chains and scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)
2011-04-15
In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)
International Nuclear Information System (INIS)
Urabe, Yoshio
2017-01-01
The R and D of fatigue strength at multiaxial stress intensity is recognized to become extremely important in the future in terms of the elaboration of low-cycle fatigue evaluation of various structures including piping systems and reflection on those standards. This paper focuses on the evaluation method developed by the author, namely cumulative damage rule in consideration of multiaxial stress intensity, and explains the concept and the results of verification and evaluation. It also discusses the engineering problems of the current low cycle fatigue assessment technology that were clarified in the process of developing low-cycle fatigue assessment method based on multiaxial stress intensity. The conservative lifespan and somewhat more conservative actual lifetime of elbow piping can be estimated by the conventional 'revised universal slope method' and 'advanced revised universal slope method.' However, these are empirical rules, and the theoretical basis is not clear. From 'cumulative damage rule in consideration of multiaxial stress intensity,' the author calculated furthermore 'low cycle fatigue evaluation formula based on cumulative damage rule in consideration of multi-axial stress intensity,' and examined it. As a result, an evaluation formula that can reasonably assume the equivalent thermoplastic strain range could be obtained at half of the repeat count as targeted. Furthermore, at the stage where future high precision FEM analysis can be used, direct low-cycle fatigue life curve can be established. (A.O.)
Understanding the amplitudes of noise correlation measurements
Tsai, Victor C.
2011-01-01
Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.
On the infinities of closed superstring amplitudes
International Nuclear Information System (INIS)
Restuccia, A.; Taylor, J.G.
1988-01-01
The authors present an analysis of possible infinities that may be present in uncompactified multi-loop heterotic and type II superstring amplitudes constructed, without use of the short-string limit, in the light-cone gauge, and with use of a closed [10]-SUSY field theory algebra. Various types of degenerations of the integrand are discussed on the string worldsheet. No infinities are found, modulo (for type II) a particular identity for Green's functions
Deep Inelastic Scattering at the Amplitude Level
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2005-01-01
The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances
Multichannel conformal blocks for scattering amplitudes
Belitsky, A. V.
2018-05-01
By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.
How to calculate the Coulomb scattering amplitude
International Nuclear Information System (INIS)
Grosse, H.; Narnhofer, H.; Thirring, W.
1974-01-01
The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)
Accommodative Amplitude in School-Age Children
Directory of Open Access Journals (Sweden)
Ikaunieks Gatis
2017-10-01
Full Text Available In children, intensive near-work affects the accommodation system of the eye. Younger children, due to anatomical parameters, read at smaller distance than older children and we can expect that the accommodation system of younger can be affected more than that of older children. We wanted to test this hypothesis. Some authors showed that the norms of amplitude of accommodation (AA developed by Hofstetter (1950 not always could be applied for children. We also wanted to verify these results. A total of 106 (age 7-15 children participated in the study. Distance visual acuity was measured for all children and only data of children with good visual acuity 1.0 or more (dec. units were analysed (73 children. Accommodative amplitude was measured before and after lessons using subjective push-up technique (with RAF Near Point Ruler. The results showed that the amplitude of accommodation reduced significantly (p < 0.05 during the day and decrease of AA was similar in different age groups (about ~0.70 D. Additional measurements are needed to verify that the observed changes in AA were associated with fatigue effect. The results showed lower accommodation values compared to average values calculated according to the Hofstetter equation (p < 0.05.
Scattering amplitudes from multivariate polynomial division
Energy Technology Data Exchange (ETDEWEB)
Mastrolia, Pierpaolo, E-mail: pierpaolo.mastrolia@cern.ch [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Mirabella, Edoardo, E-mail: mirabell@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Ossola, Giovanni, E-mail: GOssola@citytech.cuny.edu [New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Peraro, Tiziano, E-mail: peraro@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)
2012-11-15
We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Groebner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.
Cascaded Amplitude Modulations in Sound Texture Perception
Directory of Open Access Journals (Sweden)
Richard McWalter
2017-09-01
Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.
Transversity Amplitudes in Hypercharge Exchange Processes
International Nuclear Information System (INIS)
Aguilar Benitez de Lugo, M.
1979-01-01
' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from K p and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs
Investigating the amplitude of interactive footstep sounds and soundscape reproduction
DEFF Research Database (Denmark)
Turchet, Luca; Serafin, Stefania
2013-01-01
In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which...... of soundscapes does not significantly affect the selected amplitude of footstep sounds. Similarly, the perception of the soundscapes amplitude is not significantly affected by the selected amplitude of footstep sounds....
One-loop triple collinear splitting amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Badger, Simon; Buciuni, Francesco; Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)
2015-09-28
We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.
Understanding Brown Dwarf Variability
Marley, Mark S.
2013-01-01
Surveys of brown dwarf variability continue to find that roughly half of all brown dwarfs are variable. While variability is observed amongst all types of brown dwarfs, amplitudes are typically greatest for L-T transition objects. In my talk I will discuss the possible physical mechanisms that are responsible for the observed variability. I will particularly focus on comparing and contrasting the effects of changes in atmospheric thermal profile and cloud opacity. The two different mechanisms will produce different variability signatures and I will discuss the extent to which the current datasets constrain both mechanisms. By combining constraints from studies of variability with existing spectral and photometric datasets we can begin to construct and test self-consistent models of brown dwarf atmospheres. These models not only aid in the interpretation of existing objects but also inform studies of directly imaged giant planets.
Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H
2015-01-01
Electroconvulsive therapy (ECT) at conventional current amplitudes (800–900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112–174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST. PMID:25920013
Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2004-01-01
A ten-dimensional super-Poincare covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincare covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and to construct a suitable b ghost. A super-Poincare covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N 4 terms in the effective action receive no perturbative contributions above one loop. (author)
Trend Extraction in Functional Data of Amplitudes of R and T Waves in Exercise Electrocardiogram
Cammarota, Camillo; Curione, Mario
The amplitudes of R and T waves of the electrocardiogram (ECG) recorded during the exercise test show both large inter- and intra-individual variability in response to stress. We analyze a dataset of 65 normal subjects undergoing ambulatory test. We model the dataset of R and T series in the framework of functional data, assuming that the individual series are realizations of a non-stationary process, centered at the population trend. We test the time variability of this trend computing a simultaneous confidence band and the zero crossing of its derivative. The analysis shows that the amplitudes of the R and T waves have opposite responses to stress, consisting respectively in a bump and a dip at the early recovery stage. Our findings support the existence of a relationship between R and T wave amplitudes and respectively diastolic and systolic ventricular volumes.
Reduction in plasmaspheric hiss wave amplitudes during a substorm
Li, H.; Yuan, Z.; Yu, X.; Deng, X.; Tang, R.; Chen, Z.; Zhou, M.; Huang, S.
2017-12-01
Plasmaspheric hiss is an important plasma wave in controlling the overall structure and dynamics of radiation belt electrons, so the distribution and generation mechanism of plasmaspheric hiss waves is worthy of study. Previous studies have found that the amplitude of plasmaspheric hiss waves tends to increase as substorm activity increases. In this study, through analysis of a hiss event observed by the Van Allen Radiation Belt Storm Probes (RBSP), it is found that the intensity of plasmaspheric hiss waves at magnetic local time (MLT) > 1300 (L≈5) is reduced or even disappears during a substorm. After calculating energetic electron trajectories, we suggest that this is because electrons are prevented from entering the plasmasphere at MLT > 1300 (L≈5) by the stronger convection electric field during the substorm. The calculations are consistent with direct observations from the RBSP satellites. The results highlight the significant and complex variability of plasmaspheric hiss waves. The amplitude of these waves on the dayside is not necessarily positively correlated with substorm activity, as negative correlations may be observed on the afternoon side during a substorm.
Obliquely propagating large amplitude solitary waves in charge neutral plasmas
Directory of Open Access Journals (Sweden)
F. Verheest
2007-01-01
Full Text Available This paper deals in a consistent way with the implications, for the existence of large amplitude stationary structures in general plasmas, of assuming strict charge neutrality between electrons and ions. With the limit of pair plasmas in mind, electron inertia is retained. Combining in a fluid dynamic treatment the conservation of mass, momentum and energy with strict charge neutrality has indicated that nonlinear solitary waves (as e.g. oscillitons cannot exist in electron-ion plasmas, at no angle of propagation with respect to the static magnetic field. Specifically for oblique propagation, the proof has turned out to be more involved than for parallel or perpendicular modes. The only exception is pair plasmas that are able to support large charge neutral solitons, owing to the high degree of symmetry naturally inherent in such plasmas. The nonexistence, in particular, of oscillitons is attributed to the breakdown of the plasma approximation in dealing with Poisson's law, rather than to relativistic effects. It is hoped that future space observations will allow to discriminate between oscillitons and large wave packets, by focusing on the time variability (or not of the phase, since the amplitude or envelope graphs look very similar.
Ethnic differences in electrocardiographic amplitude measurements
International Nuclear Information System (INIS)
Mansi, Ishak A.; Nash, Ira S.
2004-01-01
There is a controversy regarding ethnic differences in electrocardiographic (ECG) patterns because of the potentially confounding socioeconomic, nutritional, environmental and occupational factors. We reviewed the first 1000 medical files of a multiethnic community, where all individuals shared similar living conditions. Only healthy adults age 15 to 60 years were included. Wave amplitudes were measured manually from the standard 12lead ECG. Minnesota coding was used. ECG from 597 subjects were included in the study: 350 Saudi Arabians, 95 Indians, 17 Sri-Lankans, 39 Filipinos, and 57 Caucasians; 349 were men. the mean +-SD of Sokolow-Lyon voltage (SLV) in men was signifcantly different among ethnic groups (2.9+-0.86, 2.64+-0.79, 2.73+-0.72, 3.23+-0.61, 2.94+-0.6, 2.58+-0.79 mV, P=0.0006, for Saudi's, Indians, Jordanians, Filipinos, Sri-Lankans, and Caucasians, respectively). SLV was similar among ethnic groups in women. The prevalence of early transition pattern was also different among ethnic groups in men but not women (15.8%, 34.6%, 17.9%, 21.7%, 35.3%, 26.8% in Suadi, Indian, Jordanian, Filipino, Sri-Lankan, and Caucasian, respectively, P=0.037). T wave amplitude was significantly different among ethnic groups in selected lead. ECG wave amplitude differs with ethnic region even when other factors are similar. Using SLV of 3.5 mV as a criterion may overestimate the incidence of left ventricular hypertrophy in some ethnic groups. The pattern of high R wave in lead V1is common in healthy adults in certain ethnic groups. T wave height differs with ethnic origin and sex. (author)
Loop amplitudes in an extended gravity theory
Dunbar, David C.; Godwin, John H.; Jehu, Guy R.; Perkins, Warren B.
2018-05-01
We extend the S-matrix of gravity by the addition of the minimal three-point amplitude or equivalently adding R3 terms to the Lagrangian. We demonstrate how Unitarity can be used to simply examine the renormalisability of this theory and determine the R4 counter-terms that arise at one-loop. We find that the combination of R4 terms that arise in the extended theory is complementary to the R4 counter-term associated with supersymmetric Lagrangians.
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
Speech production in amplitude-modulated noise
DEFF Research Database (Denmark)
Macdonald, Ewen N; Raufer, Stefan
2013-01-01
The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... of noisy environments and will alter their speech accordingly....
Optical twists in phase and amplitude
DEFF Research Database (Denmark)
Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper
2011-01-01
where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...... beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps...
First order correction to quasiclassical scattering amplitude
International Nuclear Information System (INIS)
Kuz'menko, A.V.
1978-01-01
First order (with respect to h) correction to quasiclassical with the aid of scattering amplitude in nonrelativistic quantum mechanics is considered. This correction is represented by two-loop diagrams and includes the double integrals. With the aid of classical equations of motion, the sum of the contributions of the two-loop diagrams is transformed into the expression which includes one-dimensional integrals only. The specific property of the expression obtained is that the integrand does not possess any singularities in the focal points of the classical trajectory. The general formula takes much simpler form in the case of one-dimensional systems
Tomography for amplitudes of hard exclusive processes
International Nuclear Information System (INIS)
Polyakov, M.V.
2008-01-01
We discuss which part of information about hadron structure encoded in the Generalized Parton Distributions (GPDs) [part of total GPD image] can be restored from the known amplitude of a hard exclusive process. The physics content of this partial image is analyzed. Among other things, we show that this partial image contains direct information about how the target hadron responses to the (string) quark-antiquark operator of arbitrary spin J. Explicit equations relating physics content of the partial image of GPDs directly to the data are derived. Also some new results concerning the dual parametrization of GPDs are presented
Inverse amplitude method and Adler zeros
International Nuclear Information System (INIS)
Gomez Nicola, A.; Pelaez, J. R.; Rios, G.
2008-01-01
The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.
Survey of vibration amplitudes throughout the linac
International Nuclear Information System (INIS)
Werner, K.L.
1984-01-01
The magnitude of vibrations of the Linac structure due to on site disturbances, such as cooling towers, pumps, generators, Highway 280 overpass traffic, is of interest. CN-263, for example, discusses tolerances of random (i.e., uncorrelated) quad jitter and suggests that amplitudes should not exceed 0.7 microns rms. This note describes the results of a series of measurements carried out in the summer of 1983. In general, the tolerance is not exceeded, but there appears not to be a good safety factor at low frequencies
SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE
Directory of Open Access Journals (Sweden)
F.N. HASOON
2006-12-01
Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.
Clasificación multiaxial de agresores de pareja en centros penitenciarios
Directory of Open Access Journals (Sweden)
Ismael Loinaz
2011-01-01
Full Text Available En el presente estudio ex post facto se describe la evaluación y clasificación llevada a cabo en un centro penitenciario con 48 agresores de pareja y se comparan los resultados con un estudio desarrollado anteriormente con la misma metodología en otro centro. Se analiza, a través del MCMI-III, la posible influencia de la personalidad junto a los síndromes clínicos en la conducta violenta contra la pareja. Se han evaluado las distintas variables de interés mediante una entrevista estructurada, el STAXI-2, IPDMV y CTS-2. Los resultados obtenidos permiten avalar la aproximación tipológica indicando que es posible la clasificación de los agresores en, al menos, dos grupos que se diferencian según las variables descritas internacionalmente. El grupo denominado normalizado representa el 43,75% de la muestra y se caracteriza por menor psicopatología, menor distorsión cognitiva y mayor control de su ira. El grupo denominado antisocial supone el 56,25% de la muestra, son los sujetos con mayor psicopatología (tanto en personalidad como en síndromes clínicos, presentan mayor distorsión cognitiva y su violencia es más compleja.
Energy Technology Data Exchange (ETDEWEB)
Montazeri-Pour, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Jafarian, H.R. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Taieban, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)
2015-07-15
Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process.
Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy
Directory of Open Access Journals (Sweden)
P. Wang
2006-01-01
Full Text Available During the second FORMAT (FORMaldehyde as A Tracer of oxidation in the troposphere campaign in 2003 the airborne multi-axis DOAS instrument (AMAXDOAS performed scattered-light spectroscopic measurements of SO2 over the city of Mantova and the power plant Porto Tolle, both situated in the Po-valley, Northern Italy. The SO2 vertical columns and emission flux were derived from two days of measurements, 26 and 27 September 2003. The SO2 emission flux from the power plant Porto Tolle was calculated to 1.93×1025 molec s-1 on 26 September and in good agreement with official emission data, which quote 2.25×1025 molec s-1. On 27 September the measured flux was much lower (3.77×1024 molec s-1 if ECMWF wind data are used, but of comparable magnitude (2.4×1025 molec s-1 if the aircraft on-board wind measurements are utilised. Official emission data was 2.07×1025 molec s-1 indicating only a small change from the previous day. Over the city of Mantova, the observed SO2 vertical columns were 1.1×1016 molec cm-2 and 1.9×1016 molec cm-2 on 26 and 27 September, respectively. This is in good agreement with ground-based measurements of 5.9 ppbv and 10.0 ppbv which correspond to 1.2×1016 molec cm-2 and 2.2×1016 molec cm-2 if a well mixed boundary layer of 500m altitude is assumed.
International Nuclear Information System (INIS)
Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.
1984-01-01
A new polynomial approximation method was proposed for the X-ray multiaxial stress analysis, in which the effect of stress gradient along the penetration depth of X-rays was taken into account. Three basic assumptions were made; (1) the stress gradient is linear in respect to the depth from the specimen surface, (2) the ponetration depth of X-rays is a function of Sin 2 phi and (3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near the surface was expressed by making use of three surface stresses and six stress gradients in the present method. The average strains by X-rays were approximated by the third order polynomial equations of sin 2 phi using a least square method at several phi angles on the coordinate system of specimen. Since the coefficients of these polynomials include these nine stress components mentioned above, it is possible to solve them as simultaneous equations. The calculating process of this method is simpler than that of the integral method. An X-ray plane stress problem was analyzed as an application of the present method, and the residual stress distribution on a shot-peened steel plate was actually measured by use of Cr-Kα X-rays to verify the analysis. The result showed that the compressive residual stress near the surface determined by the present method was smaller than the weighted average stress by the Sin 2 phi method because of the steep stress gradient. The present method is useful to obtain a reasonable value of stress for such a specimen with steep stress gradients near the surface. (author)
International Nuclear Information System (INIS)
Montazeri-Pour, M.; Parsa, M.H.; Jafarian, H.R.; Taieban, S.
2015-01-01
Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process
Radar transponder operation with compensation for distortion due to amplitude modulation
Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.
2011-01-04
In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.
Energy Technology Data Exchange (ETDEWEB)
Exel, Nora; Wiebesiek, Jens; Sonsino, Cetin Morris [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit (LBF), Darmstadt (Germany); Hanselka, Holger [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit (LBF), Darmstadt (Germany); Technische Univ. Darmstadt (Germany). Fachgebiet ' ' Systemzuverlaessigkeit und Maschinenakustik' '
2013-07-01
The present paper compares the wrought light-metal alloys AlMg3.5Mn and MgAl3Zn1 based on the fatigue behaviour of laserbeam-welded overlapped tubular joints. The experiments were carried out under pure axial, pure torsional and combined proportional as well as nonproportional loading. The test results were assessed by applying the notch stress concept with a reference radius of r{sub ref} = 0,05 mm and compared with allowable stresses taken from a standard. Finally, two stress based multiaxial hypothesis are compared to each other based on the test results. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)
2014-10-30
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched
International Nuclear Information System (INIS)
Leroux, A.
2012-01-01
The objective of this research thesis is to develop the most precise possible numeric modelling of reinforced concrete behaviour with application to the design of structures of protection of nuclear plants against violent dynamic loadings (explosions, impacts). After a discussion of existing models, of their benefits and weaknesses, a multi-axial model of anisotropic damage is proposed and implemented with the finite element method. A new procedure of failure management is also proposed which allows the induced anisotropic damage to be taken into account. Impact tests on concrete beams and concrete cubes with longitudinal steel have been performed in order to validate the model [fr
International Nuclear Information System (INIS)
Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya
2014-01-01
The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the
Multichannel amplitude analyser for nuclear spectrometry
International Nuclear Information System (INIS)
Jankovic, S.; Milovanovic, B.
2003-01-01
A multichannel amplitude analyser with 4096 channels was designed. It is based on a fast 12-bit analog-to-digital converter. The intended purpose of the instrument is recording nuclear spectra by means of scintillation detectors. The computer link is established through an opto-isolated serial connection cable, thus reducing instrument sensitivity to disturbances originating from digital circuitry. Refreshing of the data displayed on the screen occurs on every 2.5 seconds. The impulse peak detection is implemented through the differentiation of the amplified input signal, while the synchronization with the data coming from the converter output is established by taking advantage of the internal 'pipeline' structure of the converter itself. The mode of operation of the built-in microcontroller provides that there are no missed impulses, and the simple logic network prevents the initiation of the amplitude reading sequence for the next impulse in case it appears shortly after its precedent. The solution proposed here demonstrated a good performance at a comparatively low manufacturing cost, and is thus suitable for educational purposes (author)
Getting superstring amplitudes by degenerating Riemann surfaces
International Nuclear Information System (INIS)
Matone, Marco; Volpato, Roberto
2010-01-01
We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.
The Construction of Spin Foam Vertex Amplitudes
Directory of Open Access Journals (Sweden)
Eugenio Bianchi
2013-01-01
Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
Directory of Open Access Journals (Sweden)
Anja S Euser
Full Text Available BACKGROUND: Although P300 amplitude reductions constitute a persistent finding in children of addicted parents, relatively little is known about the specificity of this finding. The major aim of this study was to investigate the association between parental rearing, adverse life events, stress-reactivity, substance use and psychopathology on the one hand, and P300 amplitude in response to both target and novel distracter stimuli on the other hand. Moreover, we assessed whether risk group status (i.e., having a parental history of Substance Use Disorders [SUD] uniquely contributed to P300 amplitude variation above and beyond these other variables. METHODS: Event-related potentials were recorded in high-risk adolescents with a parental history of SUD (HR;n=80 and normal-risk controls (NR;n=100 while performing a visual Novelty Oddball paradigm. Stress-evoked cortisol levels were assessed and parenting, life adversities, substance use and psychopathology were examined by using self-reports. RESULTS: HR adolescents displayed smaller P300 amplitudes in response to novel- and to target stimuli than NR controls, while the latter only approached significance. Interestingly, the effect of having a parental history of SUD on target-P300 disappeared when all other variables were taken into account. Externalizing problem behavior was a powerful predictor of target-P300. In contrast, risk group status uniquely predicted novelty-P300 amplitude reductions above and beyond all other factors. CONCLUSION: Overall, the present findings suggest that the P300 amplitude reduction to novel stimuli might be a more specific endophenotype for SUD than the target-P300 amplitude. This pattern of results underscores the importance of conducting multifactorial assessments when examining important cognitive processes in at-risk adolescents.
Thrombelastography Early Amplitudes in bleeding and coagulopathic trauma patients
DEFF Research Database (Denmark)
Laursen, Thomas Holst; Meyer, Martin A S; Meyer, Anna Sina P
2018-01-01
BACKGROUND: Early amplitudes in the viscoelastic hemostatic assays Thrombelastography (TEG) and Rotation Thromboelastometry (ROTEM) provide fast results, which is critical in resuscitation of bleeding patients. This study investigated associations between TEG early amplitudes and standard TEG var...
Variational principles for the projected breakup amplitude
International Nuclear Information System (INIS)
Hahn, Y.
1976-01-01
Two alternate forms of variational principles for the breakup amplitude describing the two- to three-cluster transition are derived such that all the integrals involved in the intermediate stages are well defined. The first form contains a trial Green's function with which both the initial and final state trial wave functions are constructed. The earlier form of the Kohn-type variational principle derived by Lieber, Rosenberg, and Spruch is recovered, however, when this connection between the trial functions is removed. The second form of the variational principle is derived by projecting out from the trial functions all the open channel components which correspond to the two-cluster structures including the rearrangement channels. The remaining part of the wave functions describes the channels with three-cluster structures, and the integrals involving this part are then mathematically well defined
Single isospin decay amplitude and CP violation
Energy Technology Data Exchange (ETDEWEB)
Deshpande, N.G. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science; He, Xiaogang [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Pakvasa, S. [Hawaii Univ., Honolulu, HI (United States). Dept. of Physics and Astronomy
1996-06-01
While for K meson or hyperon decays, the partial rate asymmetries are always zero if the final states are single isospin states, in B decays the situation is dramatically different and partial rate asymmetries can be non-zero if the final states are single isospin states. Partial rate asymmetries were calculated for several B decays with single isospin amplitude in the finale states using factorization approximation. It was found that more intermediate on-shell states with different Cabbibbo-Kobayashi-Maskawa factors are allowed in B decay and CP violating partial rate asymmetries need not to be zero even if the final state contains only a single isospin state. 17 refs., 4 figs.
Large amplitude parallel propagating electromagnetic oscillitons
International Nuclear Information System (INIS)
Cattaert, Tom; Verheest, Frank
2005-01-01
Earlier systematic nonlinear treatments of parallel propagating electromagnetic waves have been given within a fluid dynamic approach, in a frame where the nonlinear structures are stationary and various constraining first integrals can be obtained. This has lead to the concept of oscillitons that has found application in various space plasmas. The present paper differs in three main aspects from the previous studies: first, the invariants are derived in the plasma frame, as customary in the Sagdeev method, thus retaining in Maxwell's equations all possible effects. Second, a single differential equation is obtained for the parallel fluid velocity, in a form reminiscent of the Sagdeev integrals, hence allowing a fully nonlinear discussion of the oscilliton properties, at such amplitudes as the underlying Mach number restrictions allow. Third, the transition to weakly nonlinear whistler oscillitons is done in an analytical rather than a numerical fashion
Amplitude and phase modulation with waveguide optics
International Nuclear Information System (INIS)
Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.
1996-01-01
We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz
Topological amplitudes in heterotic superstring theory
International Nuclear Information System (INIS)
Antoniadis, I.; Taylor, T.R.
1996-06-01
We show that certain heterotic string amplitudes are given in terms of correlators of the twisted topological (2,0) SCFT, corresponding to the internal sector of the N = 1 spacetime supersymmetric background. The genus g topological partition function F g corresponds to a term in the effective action of the form W 2g , where W is the gauge or gravitational superfield. We study also recursion relations related to holomorphic anomalies, showing that, contrary to the type II case, they involve correlators of anti-chiral superfields. The corresponding terms in the effective action are of the form W 2g II n , where II is a chiral superfield obtained by chiral projection of a general superfield. We observe that the structure of the recursion relations is that of N = 1 spacetime supersymmetry Ward identity. We give also a solution of the tree level recursion relations and discuss orbifold examples. (author). 23 refs, 2 figs
Amplitude correlations for inelastic proton scattering from 48Ti
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1981-01-01
The magnitudes and relative signs of inelastic proton channel amplitudes were determined for three decay channels for 45 5/2 + resonances in 49 V. The reduced widths in each channel follow a Porter-Thomas distribution, but extremely large amplitude correlations are observed - for one pair of channel amplitudes the relative sign is positive for 43 of 45 resonances. These results provide the first direct test of the Krieger-Porter reduced width amplitude distribution. (orig.)
Tree-level gluon amplitudes on the celestial sphere
Schreiber, Anders Ø.; Volovich, Anastasia; Zlotnikov, Michael
2018-06-01
Pasterski, Shao and Strominger have recently proposed that massless scattering amplitudes can be mapped to correlators on the celestial sphere at infinity via a Mellin transform. We apply this prescription to arbitrary n-point tree-level gluon amplitudes. The Mellin transforms of MHV amplitudes are given by generalized hypergeometric functions on the Grassmannian Gr (4 , n), while generic non-MHV amplitudes are given by more complicated Gelfand A-hypergeometric functions.
Correlations for reduced-width amplitudes in 49V
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1980-01-01
Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2 + resonances in 49 V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution
Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns
Energy Technology Data Exchange (ETDEWEB)
Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States); Wang, Qun [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)
2014-06-15
We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.
On the amplitude/Wilson loop duality in N=2 SCQCD
Directory of Open Access Journals (Sweden)
Marta Leoni
2015-07-01
Full Text Available We compute the four-point amplitude with external adjoint particles in N=2 SCQCD at two loops using N=1 superspace Feynman diagrams, extending the results of arXiv:1406.7283. We consider the diagrammatic difference with the corresponding process of N=4 SYM finding a non-vanishing result, which is a non-trivial function of the kinematic variables. This demonstrates that in N=2 SCQCD, even in the sector with external particles in the vector multiplet, the amplitude/Wilson loop duality is inevitably broken at two loops.
Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich
2017-04-01
An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.
Corrections to the box diagram amplitude due to kaon mass
International Nuclear Information System (INIS)
Datta, A.; Kumbhakar, D.
1985-08-01
The K 0 -anti-K 0 mixing amplitude is calculated without using the standard zero external momentum approximation. The resulting corrections are numerically significant for the real part of the amplitude. In the imaginary part of the amplitude the effects of similar corrections are less important. Implications for Δmsub(k) and epsilon are discussed. (author)
MHV Vertices And Tree Amplitudes In Gauge Theory
International Nuclear Information System (INIS)
Cachazo, Freddy; Svrcek, Peter; Witten, Edward
2004-01-01
As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)
The Analytic Structure of Scattering Amplitudes in N = 4 Super-Yang-Mills Theory
Litsey, Sean Christopher
We begin the dissertation in Chapter 1 with a discussion of tree-level amplitudes in Yang-. Mills theories. The DDM and BCJ decompositions of the amplitudes are described and. related to one another by the introduction of a transformation matrix. This is related to the. Kleiss-Kuijf and BCJ amplitude identities, and we conjecture a connection to the existence. of a BCJ representation via a condition on the generalized inverse of that matrix. Under. two widely-believed assumptions, this relationship is proved. Switching gears somewhat, we introduce the RSVW formulation of the amplitude, and the extension of BCJ-like features to residues of the RSVW integrand is proposed. Using the previously proven connection of BCJ representations to the generalized inverse condition, this extension is validated, including a version of gravitational double copy. The remainder of the dissertation involves an analysis of the analytic properties of loop. amplitudes in N = 4 super-Yang-Mills theory. Chapter 2 contains a review of the planar case, including an exposition of dual variables and momentum twistors, dual conformal symmetry, and their implications for the amplitude. After defining the integrand and on-shell diagrams, we explain the crucial properties that the amplitude has no poles at infinite momentum and that its leading singularities are dual-conformally-invariant cross ratios, and can therefore be normalized to unity. We define the concept of a dlog form, and show that it is a feature of the planar integrand as well. This leads to the definition of a pure integrand basis. The proceeding setup is connected to the amplituhedron formulation, and we put forward the hypothesis that the amplitude is determined by zero conditions. Chapter 3 contains the primary computations of the dissertation. This chapter treats. amplitudes in fully nonplanar N = 4 super-Yang-Mills, analyzing the conjecture that they. follow the pattern of having no poles at infinity, can be written in dlog
Non-supersymmetric loop amplitudes and MHV vertices
International Nuclear Information System (INIS)
Bedford, James; Brandhuber, Andreas; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how the MHV diagram description of Yang-Mills theories can be used to study non-supersymmetric loop amplitudes. In particular, we derive a compact expression for the cut-constructible part of the general one-loop MHV multi-gluon scattering amplitude in pure Yang-Mills theory. We show that in special cases this expression reduces to known amplitudes-the amplitude with adjacent negative-helicity gluons, and the five gluon non-adjacent amplitude. Finally, we briefly discuss the twistor space interpretation of our result
Phase and amplitude detection system for the Stanford Linear Accelerator
International Nuclear Information System (INIS)
Fox, J.D.; Schwarz, H.D.
1983-01-01
A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system
Leading Wave Amplitude of a Tsunami
Kanoglu, U.
2015-12-01
Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk
Topological open string amplitudes on local toric del Pezzo surfaces via remodeling the B-model
International Nuclear Information System (INIS)
Manabe, Masahide
2009-01-01
We study topological strings on local toric del Pezzo surfaces by a method called remodeling the B-model which was recently proposed by Bouchard, Klemm, Marino and Pasquetti. For a large class of local toric del Pezzo surfaces we prove a functional formula of the Bergman kernel which is the basic constituent of the topological string amplitudes by the topological recursion relation of Eynard and Orantin. Because this formula is written as a functional of the period, we can obtain the topological string amplitudes at any point of the moduli space by a simple change of variables of the Picard-Fuchs equations for the period. By this formula and mirror symmetry we compute the A-model amplitudes on K F 2 , and predict the open orbifold Gromov-Witten invariants of C 3 /Z 4 .
Effects of amplitude modulation on perception of wind turbine noise
Energy Technology Data Exchange (ETDEWEB)
Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seong, Yeol Wan [Ammunition Engineering Team, Defense Agency for Technology and Quality, Daejeon (Korea, Republic of); Lee, Seung Hoon [Aerodynamics Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Hong, Ji Young [Transportation Environmental Research Team, Green Transport and Logistics Institute, Korea Railroad Research Institute, Uiwang (Korea, Republic of)
2016-10-15
Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation.
Effects of amplitude modulation on perception of wind turbine noise
International Nuclear Information System (INIS)
Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young; Seong, Yeol Wan; Lee, Seung Hoon; Hong, Ji Young
2016-01-01
Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation
The pulsed amplitude unit for the SLC
International Nuclear Information System (INIS)
Rolfe, J.; Browne, M.J.; Jobe, R.K.
1987-02-01
There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed
Gearbox Vibration Signal Amplitude and Frequency Modulation
Directory of Open Access Journals (Sweden)
Fakher Chaari
2012-01-01
Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.
Electroweak amplitudes in chiral quark models
International Nuclear Information System (INIS)
Fiolhais, Manuel
2004-01-01
After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes
Nonlinear amplitude dynamics in flagellar beating.
Oriola, David; Gadêlha, Hermes; Casademunt, Jaume
2017-03-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.
Open string topological amplitudes and gaugino masses
International Nuclear Information System (INIS)
Antoniadis, I.; Narain, K.S.; Taylor, T.R.
2005-09-01
We discuss the moduli-dependent couplings of the higher derivative F-terms (TrW 2 ) h-1 , where W is the gauge N =1 chiral superfield. They are determined by the genus zero topological partition function F (0,h) , on a world-sheet with h boundaries. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal N =(2,0) superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form Π n (TrW 2 ) h-2 , where Π's represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for h ≥ 3. As a result, once supersymmetry is broken by D-term expectation values, (TrW 2 ) 2 generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as m 1/2 ∼ m 0 4 in string units. Similarly, ΠTrW 2 generates Dirac masses for non-chiral brane fermions, of the same order of magnitude. This mechanism can be used for instance to obtain fermion masses at the TeV scale for scalar masses as high as m 0 ∼ O (10 13 ) GeV. We present explicit examples in toroidal string compactifications with intersecting D-branes. (author)
Casimir amplitudes in topological quantum phase transitions.
Griffith, M A; Continentino, M A
2018-01-01
Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.
The pulsed amplitude unit for the SLC
International Nuclear Information System (INIS)
Rolfe, J.; Browne, M.J.; Jobe, R.K.
1987-01-01
There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU at is as part of the system that controls the output of Klystorns in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed
Interhemispheric Asymmetries in Visual Evoked Potential Amplitude
1980-06-12
Layne, 1965) and of patients with Korsakoff’s syndrome (Malerstein and Callaway, 1969) . In the schizophrenics, the high variability is related to poor...communication. Malerstein, A. J., Callaway, E. Two-tone average evoked response in Korsakoff patients. J. Psychiatr. Res. 6: 253-260, 1969. Marsh, G
Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference
Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun
2018-06-01
Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.
Energy Technology Data Exchange (ETDEWEB)
Aguilar Benitez de Lugo, M.
1979-07-01
In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.
International Nuclear Information System (INIS)
McAdory, R.T. Jr.
1988-01-01
A theory is presented for the nonequilibrium voltage states of an irradiated Josephson junction shunted by an external resistor but with no external current or voltage biasing. This device, referred to as a free-running Josephson junction, is modeled in a small--radiation-amplitude, deterministic regime extending the previous work of Shenoy and Agarwal. The time-averaged induced voltage is treated as a dynamical variable, the external radiation is modeled as a current source, and the induced junction-radiation vector potential, with and without a mode structure, is treated to first order in the driving currents. A dynamical equation for the time-averaged induced voltage yields a (nonequilibrium) steady-state relation between the time-averaged induced voltage and the incident radiation amplitude valid for a wide range of voltages, including zero. Regions of bistability occur in the voltage--versus--incident-amplitude curves, some of which are dependent on the external resistor. The zero-voltage state breaks down, as the external radiation amplitude is increased, at a critical value of the incident-radiation amplitude inversely proportional to the external resistance
Scattering amplitudes in four- and six-dimensional gauge theories
International Nuclear Information System (INIS)
Schuster, Theodor
2014-01-01
We study scattering amplitudes in quantum chromodynamics (QCD), N=4 super Yang-Mills (SYM) theory and the six-dimensional N=(1,1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N=4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N=4 SYM theory, which in turn can be obtained from N=(1,1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N=(1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N=4 SYM theory. Finally we study an alternative to dimensional regularization of N=4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.
Energy Technology Data Exchange (ETDEWEB)
Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-10-22
Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.
Eikonal representation of N-body Coulomb scattering amplitudes
International Nuclear Information System (INIS)
Fried, H.M.; Kang, K.; McKellar, B.H.J.
1983-01-01
A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands
Expansion of all multitrace tree level EYM amplitudes
Du, Yi-Jian; Feng, Bo; Teng, Fei
2017-12-01
In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.
Tensor exchange amplitudes in K +- N charge exchange reactions
International Nuclear Information System (INIS)
Svec, M.
1979-01-01
Tensor (A 2 ) exchange amplitudes in K +- N charge exchange (CEX) are constructed from the K +- N CEX data supplemented by information on the vector (rho) exchange amplitudes from πN sca tering. We observed new features in the t-structure of A 2 exchange amplitudes which contradict the t-de pendence anticipated by most of the Regge models. The results also provide evidence for violation of weak exchange degeneracy
Loop Amplitudes in Pure Yang-Mills from Generalised Unitarity
Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how generalised unitarity cuts in D = 4 - 2 epsilon dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.
Loop amplitudes in pure Yang-Mills from generalised unitarity
International Nuclear Information System (INIS)
Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how generalised unitarity cuts in D = 4-2ε dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions
Loop amplitudes in pure Yang-Mills from generalised unitarity
Energy Technology Data Exchange (ETDEWEB)
Brandhuber, Andreas [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); McNamara, Simon [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Spence, Bill [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Travaglini, Gabriele [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom)
2005-10-15
We show how generalised unitarity cuts in D = 4-2{epsilon} dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.
Calculation and modular properties of multiloop superstring amplitudes
International Nuclear Information System (INIS)
Danilov, G. S.
2013-01-01
Multiloop superstring amplitudes are calculated within an extensively used gauge where the two-dimensional gravitino field carries Grassmann moduli. In general, the amplitudes possess, instead of modular symmetry, symmetry with respect to modular transformation supplemented with appropriate transformations of two-dimensional local supersymmetry. If the number of loops is larger than three, the integrationmeasures are notmodular forms, while the expression for the amplitude contains integrals along the boundary of the fundamental region of the modular group.
Efficient analytic computation of higher-order QCD amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.
1995-01-01
The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints
Improved pion pion scattering amplitude from dispersion relation formalism
International Nuclear Information System (INIS)
Cavalcante, I.P.; Coutinho, Y.A.; Borges, J. Sa
2005-01-01
Pion-pion scattering amplitude is obtained from Chiral Perturbation Theory at one- and two-loop approximations. Dispersion relation formalism provides a more economic method, which was proved to reproduce the analytical structure of that amplitude at both approximation levels. This work extends the use of the formalism in order to compute further unitarity corrections to partial waves, including the D-wave amplitude. (author)
Ambitwistor strings and reggeon amplitudes in N=4 SYM
Directory of Open Access Journals (Sweden)
L.V. Bork
2017-11-01
Full Text Available We consider the description of reggeon amplitudes (Wilson lines form factors in N=4 SYM within the framework of four dimensional ambitwistor string theory. The latter is used to derive scattering equations representation for reggeon amplitudes with multiple reggeized gluons present. It is shown, that corresponding tree-level string correlation function correctly reproduces previously obtained Grassmannian integral representation of reggeon amplitudes in N=4 SYM.
The five-gluon amplitude and one-loop integrals
International Nuclear Information System (INIS)
Bern, Z.; Dixon, L.; Kosower, D.A.
1992-12-01
We review the conventional field theory description of the string motivated technique. This technique is applied to the one-loop five-gluon amplitude. To evaluate the amplitude a general method for computing dimensionally regulated one-loop integrals is outlined including results for one-loop integrals required for the pentagon diagram and beyond. Finally, two five-gluon helicity amplitudes are given
Renormalization in the complete Mellin representation of Feynman amplitudes
International Nuclear Information System (INIS)
Calan, C. de; David, F.; Rivasseau, V.
1981-01-01
The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hassan, Tasnim [North Carolina State Univ., Raleigh, NC (United States); Lissenden, Cliff [Penn State Univ., University Park, PA (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.
International Nuclear Information System (INIS)
Coret, M.
2001-01-01
This work deals with the aniso-thermal multiphase behaviour of the French vessel steel and more specially about the transformation plasticity in the cases of multiaxial non-proportional loadings paths. The first part of this report is devoted to the presentation of a high temperature tension-torsion experimental device enable of obtaining a large range of cooling rate. This experimental set-up is used to explore the transformation plasticity under proportional or non-proportional loading paths, during austenitic, bainitic and martensitic transformations. The results of the tests are compared to the Leblond's model. In the last part, we propose a two-scale behaviour model in which the type of each phase behaviour can be different. This meso-model is finally used to simulate two real tests on structures. (author) [fr
International Nuclear Information System (INIS)
Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura
2015-01-01
The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.
Algebraic evaluation of rational polynomials in one-loop amplitudes
International Nuclear Information System (INIS)
Binoth, Thomas; Guillet, Jean-Philippe; Heinrich, Gudrun
2007-01-01
One-loop amplitudes are to a large extent determined by their unitarity cuts in four dimensions. We show that the remaining rational terms can be obtained from the ultraviolet behaviour of the amplitude, and determine universal form factors for these rational parts by applying reduction techniques to the Feynman diagrammatic representation of the amplitude. The method is valid for massless and massive internal particles. We illustrate this method by evaluating the rational terms of the one-loop amplitudes for gg→H, γγ→γγ, gg→gg,γγ→ggg and γγ→γγγγ
Phase and amplitude control system for Stanford Linear Accelerator
International Nuclear Information System (INIS)
Yoo, S.J.
1983-01-01
The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system
New rigorous asymptotic theorems for inverse scattering amplitudes
International Nuclear Information System (INIS)
Lomsadze, Sh.Yu.; Lomsadze, Yu.M.
1984-01-01
The rigorous asymptotic theorems both of integral and local types obtained earlier and establishing logarithmic and in some cases even power correlations aetdeen the real and imaginary parts of scattering amplitudes Fsub(+-) are extended to the inverse amplitudes 1/Fsub(+-). One also succeeds in establishing power correlations of a new type between the real and imaginary parts, both for the amplitudes themselves and for the inverse ones. All the obtained assertions are convenient to be tested in high energy experiments when the amplitudes show asymptotic behaviour
Proof of the fundamental BCJ relations for QCD amplitudes
International Nuclear Information System (INIS)
Cruz, Leonardo de la; Kniss, Alexander; Weinzierl, Stefan
2015-01-01
The fundamental BCJ-relation is a linear relation between primitive tree amplitudes with different cyclic orderings. The cyclic orderings differ by the insertion place of one gluon. The coefficients of the fundamental BCJ-relation are linear in the Lorentz invariants 2p_ip_j. The BCJ-relations are well established for pure gluonic amplitudes as well as for amplitudes in N=4 super-Yang-Mills theory. Recently, it has been conjectured that the BCJ-relations hold also for QCD amplitudes. In this paper we give a proof of this conjecture. The proof is valid for massless and massive quarks.
Amplitude dependent damping in single crystalline high purity molybdenum
International Nuclear Information System (INIS)
Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N
2004-01-01
Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)
Generalized unitarity for N=4 super-amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J.M.; Henn, J. [LAPTH, Université de Savoie, CNRS B.P. 110, F-74941 Annecy-le-Vieux Cedex (France); Korchemsky, G.P., E-mail: Gregory.Korchemsky@cea.fr [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Sokatchev, E. [LAPTH, Université de Savoie, CNRS B.P. 110, F-74941 Annecy-le-Vieux Cedex (France)
2013-04-21
We develop a manifestly supersymmetric version of the generalized unitarity cut method for calculating scattering amplitudes in N=4 SYM theory. We illustrate the power of this method by computing the one-loop n-point NMHV super-amplitudes. The result confirms two conjectures which we made in Drummond, et al., [1]. Firstly, we derive the compact, manifestly dual superconformally covariant form of the NMHV tree amplitudes for arbitrary number and types of external particles. Secondly, we show that the ratio of the one-loop NMHV to the MHV amplitude is dual conformal invariant.
Tree-level amplitudes and dual superconformal symmetry
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.fr [PH-TH Division, CERN, CH-1211, Geneva 23 (Switzerland); LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux Cedex (France)
2011-11-11
We review the structure of gauge theory scattering amplitudes at tree level and describe how a compact expression can be found which encodes all the tree-level amplitudes in the maximally supersymmetric N=4 theory. The expressions for the amplitudes reveal a dual superconformal symmetry. We describe how these ideas can be extended to leading singularities and the loop integrand in the planar theory and discuss the appearance of dual conformal symmetry in higher-dimensional gauge theories. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to 'Scattering amplitudes in gauge theories'. (review)
New relations for Einstein–Yang–Mills amplitudes
International Nuclear Information System (INIS)
Stieberger, Stephan; Taylor, Tomasz R.
2016-01-01
We obtain new relations between Einstein–Yang–Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang–Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a “spectator” group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss–Kuijf relations for Yang–Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of monodromy relations is derived for mixed open–closed amplitudes with one closed string inserted on the disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations for EYM amplitudes.
Scattering amplitudes over finite fields and multivariate functional reconstruction
International Nuclear Information System (INIS)
Peraro, Tiziano
2016-01-01
Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.
Scattering amplitudes over finite fields and multivariate functional reconstruction
Energy Technology Data Exchange (ETDEWEB)
Peraro, Tiziano [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)
2016-12-07
Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.
Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus
Directory of Open Access Journals (Sweden)
Oliver Zobay
2015-01-01
Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.
Pulse timing for cataclysmic variables
International Nuclear Information System (INIS)
Chester, T.J.
1979-01-01
It is shown that present pulse timing measurements of cataclysmic variables can be explained by models of accretion disks in these systems, and thus such measurements can constrain disk models. The model for DQ Her correctly predicts the amplitude variation of the continuum pulsation and can also perhaps explain the asymmetric amplitude of the pulsed lambda4686 emission line. Several other predictions can be made from the model. In particular, if pulse timing measurements that resolve emission lines both in wavelength and in binary phase can be made, the projected orbital radius of the white dwarf could be deduced
Double logarithmic asymptotics of quark amplitudes with flavour exchange
International Nuclear Information System (INIS)
Kirschner, R.
1982-01-01
Results on the quark scattering and annihilation amplitudes in the Regge region are presented. The perturbative contribution to those amplitudes in the double logarithmic approximation are calculated. In the calculations a method based on dispersion relations and gauge invariance is used. (M.F.W.)
Multi-loop string amplitudes and Riemann surfaces
International Nuclear Information System (INIS)
Taylor, J.G.
1986-01-01
The paper was presented at the workshop on 'Supersymmetry and its applications', Cambridge, United Kingdom, 1985. Super-string theory is discussed under the following topic headings: the functional approach to the string amplitude, Rieman surfaces, the determinants Δsub(epsilon)(1) and Δsub(epsilon)(2), Green's functions, total amplitude, and divergence analysis. (U.K.)
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
DEFF Research Database (Denmark)
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...
Singularities of elastic scattering amplitude by long-range potentials
International Nuclear Information System (INIS)
Kvitsinsky, A.A.; Komarov, I.V.; Merkuriev, S.P.
1982-01-01
The angular peculiarities and the zero energy singularities of the elastic scattering amplitude by a long-range potential are described. The singularities of the elastic (2 → 2) scattering amplitude for a system of three Coulomb particles are considered [ru
Properties of the scattering amplitude for electron-atom collisions
International Nuclear Information System (INIS)
Combes, J.M.; Tip, A.
1983-02-01
For the scattering of an electron by an atom finiteness of the amplitude at non threshold energies is proved in the framework of the N-body Schroedinger equation. It is also shown that both the direct and exchange amplitudes have analytic continuations for complex values of incident momentum, with pole or cut singularities on the imaginary axis
Miracles in Scattering Amplitudes: from QCD to Gravity
Energy Technology Data Exchange (ETDEWEB)
Volovich, Anastasia [Brown Univ., Providence, RI (United States)
2016-10-09
The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.
Weak decay amplitudes in large N/sub c/ QCD
International Nuclear Information System (INIS)
Bardeen, W.A.
1988-10-01
A systematic analysis of nonleptonic decay amplitudes is presented using the large N/sub c/ expansion of quantum chromodynamics. In the K-meson system, this analysis is applied to the calculation of the weak decay amplitudes, weak mixing and CP violation. 10 refs., 5 figs., 2 tabs
Abnormal Selective Attention Normalizes P3 Amplitudes in PDD
Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman
2006-01-01
This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…
Multiphoton states and amplitude k-th power squeezing
International Nuclear Information System (INIS)
Buzek, V.; Jex, I.
1991-01-01
On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed
Automated force controller for amplitude modulation atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)
2016-05-15
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.
Numerical evaluation of one-loop QCD amplitudes
DEFF Research Database (Denmark)
Badger, Simon David; Biedermann, Benedikt; Uwer, Peter
2012-01-01
We present the publicly available program NGluon allowing the numerical evaluation of primitive amplitudes at one-loop order in massless QCD. The program allows the computation of one-loop amplitudes for an arbitrary number of gluons. The focus of the present article is the extension to one-loop ...
Conformal higher spin scattering amplitudes from twistor space
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim [Blackett Laboratory, Imperial College, London, SW7 2AZ (United Kingdom); Hähnel, Philipp; McLoughlin, Tristan [School of Mathematics, Trinity College Dublin, College Green, Dublin 2 (Ireland)
2017-04-04
We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.
Simplicity in the structure of QED and gravity amplitudes
Energy Technology Data Exchange (ETDEWEB)
Badger, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bjerrum-Bohr, N.E.J. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Vanhove, Pierre [Institut des Hautes Etudes Scientifiques IHES, Bures sur Yvette (France); CEA, IPhT, CNRS, URA, Gif-sur-Yvette, (France). Inst. de Physique Theorique
2008-11-15
We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)
Simplicity in the structure of QED and gravity amplitudes
International Nuclear Information System (INIS)
Badger, Simon; Bjerrum-Bohr, N.E.J.; Vanhove, Pierre; CEA, IPhT, CNRS, URA, Gif-sur-Yvette,
2008-11-01
We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)
High Frequency Amplitude Detector for GMI Magnetic Sensors
Directory of Open Access Journals (Sweden)
Aktham Asfour
2014-12-01
Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.
Conformal higher spin scattering amplitudes from twistor space
International Nuclear Information System (INIS)
Adamo, Tim; Hähnel, Philipp; McLoughlin, Tristan
2017-01-01
We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.
Ray, Richard D.
2003-01-01
This paper reviews the mechanisms by which oceanic tides and decadal variability in the oceans are connected. We distinguish between variability caused by tides and variability observed in the tides themselves. Both effects have been detected at some level. The most obvious connection with decadal timescales is through the 18.6-year precession of the moon's orbit plane. This precession gives rise to a small tide of the same period and to 18.6-year modulations in the phase and amplitudes of short-period tides. The 18.6-year "node tide" is very small, no more than 2 cm anywhere, and in sea level data it is dominated by the ocean's natural Variability. Some authors have naively attributed climate variations with periods near 19 years directly to the node tide, but the amplitude of the tide is too small for this mechanism to be operative. The more likely explanation (Loder and Garrett, JGR, 83, 1967-70, 1978) is that the 18.6-y modulations in short-period tides, especially h e principal tide M2, cause variations in ocean mixing, which is then observed in temperature and other climatic indicators. Tidally forced variability has also been proposed by some authors, either in response to occasional (and highly predictable) tidal extremes or as a nonlinear low-frequency oscillation caused by interactions between short-period tides. The former mechanism can produce only short-duration events hardly more significant than normal tidal ranges, but the latter mechanism can in principle induce low-frequency oscillations. The most recent proposal of this type is by Keeling and Whorf, who highlight the 1800-year spectral peak discovered by Bond et al. (1997). But the proposal appears contrived and should be considered, in the words of Munk et al. (2002), "as the most likely among unlikely candidates."
Motivation modulates the P300 amplitude during brain-computer interface use.
Kleih, S C; Nijboer, F; Halder, S; Kübler, A
2010-07-01
This study examined the effect of motivation as a possible psychological influencing variable on P300 amplitude and performance in a brain-computer interface (BCI) controlled by event-related potentials (ERP). Participants were instructed to copy spell a sentence by attending to cells of a randomly flashing 7*7 matrix. Motivation was manipulated by monetary reward. In two experimental groups participants received 25 (N=11) or 50 (N=11) Euro cent for each correctly selected character; the control group (N=11) was not rewarded. BCI performance was defined as the overall percentage of correctly selected characters (correct response rate=CRR). Participants performed at an average of 99%. At electrode location Cz the P300 amplitude was positively correlated to self-rated motivation. The P300 amplitude of the most motivated participants was significantly higher than that of the least motivated participants. Highly motivated participants were able to communicate correctly faster with the ERP-BCI than less motivated participants. Motivation modulates the P300 amplitude in an ERP-BCI. Motivation may contribute to variance in BCI performance and should be monitored in BCI settings. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Suarez Antola, R.
2008-11-01
The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively
International Nuclear Information System (INIS)
Blass, J.J.
1982-01-01
An improved multiaxial fatigue failure criterion was developed based on the results of combined axial-torsional strain cycling tests of AISI 304 and 2-1/4 Cr-1 Mo steel conducted at 538 0 C (1000 0 F). The formulation of this criterion involves the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained for each material by the method of least squares. The ability of this criterion to correlate the test results was compared with that of the usual (Mises) equivalent inelastic strain range criterion. An improved definition of equivalent inelastic strain range resulting from these considerations was used to generalize the theory of Strain Range Partitioning to multiaxial stress-strain conditions and was also applied to the linear summation of creep and fatigue damage
Large amplitude ion-acoustic solitons in dusty plasmas
International Nuclear Information System (INIS)
Tiwari, R. S.; Jain, S. L.; Mishra, M. K.
2011-01-01
Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail
Fringe image analysis based on the amplitude modulation method.
Gai, Shaoyan; Da, Feipeng
2010-05-10
A novel phase-analysis method is proposed. To get the fringe order of a fringe image, the amplitude-modulation fringe pattern is carried out, which is combined with the phase-shift method. The primary phase value is obtained by a phase-shift algorithm, and the fringe-order information is encoded in the amplitude-modulation fringe pattern. Different from other methods, the amplitude-modulation fringe identifies the fringe order by the amplitude of the fringe pattern. In an amplitude-modulation fringe pattern, each fringe has its own amplitude; thus, the order information is integrated in one fringe pattern, and the absolute fringe phase can be calculated correctly and quickly with the amplitude-modulation fringe image. The detailed algorithm is given, and the error analysis of this method is also discussed. Experimental results are presented by a full-field shape measurement system where the data has been processed using the proposed algorithm. (c) 2010 Optical Society of America.
Broadband metasurface holograms: toward complete phase and amplitude engineering.
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-09-12
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.
DEFF Research Database (Denmark)
Melo, Jean
. Although many researchers suggest that preprocessor-based variability amplifies maintenance problems, there is little to no hard evidence on how actually variability affects programs and programmers. Specifically, how does variability affect programmers during maintenance tasks (bug finding in particular......)? How much harder is it to debug a program as variability increases? How do developers debug programs with variability? In what ways does variability affect bugs? In this Ph.D. thesis, I set off to address such issues through different perspectives using empirical research (based on controlled...... experiments) in order to understand quantitatively and qualitatively the impact of variability on programmers at bug finding and on buggy programs. From the program (and bug) perspective, the results show that variability is ubiquitous. There appears to be no specific nature of variability bugs that could...
A possible explanation for the divergent projection of ENSO amplitude change under global warming
Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.
2017-12-01
The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.
A universal gyroscope driving circuit with 70dB amplitude control range
Abdelghany, Mohamed A.
2010-08-01
A CMOS variable gain driving circuit with output signal amplitude control for gyroscopes with wide range of quality factors is presented. The driving circuit can be used for gyroscopes with Q values higher than 500. The circuit uses a current-commutating switching mixer to control the gyroscope driving signal level. Conventional driving circuits use automatic gain control (AGC) which suffers from limited linear range and the need for an off-chip capacitor for the peak detector and loop filter. Two stage variable gain amplifier is used in the proposed design to ensure enough gain for oscillation for such a wide range of quality factors. Analog and digital amplitude control methods are used to cover wide range of driving signal amplitude with enough accuracy to hit the maximum driving signal level without sacrificing gyroscope linearity. Due to the high DC gain of the amplifier chain, DC offset resulting from mismatches might saturate the amplifier output. DC offset correction is employed using a secondary negative feedback loop. The proposed driving circuit is being fabricated in 0.6μm CMOS technology. © 2010 IEEE.
Jump phenomena. [large amplitude responses of nonlinear systems
Reiss, E. L.
1980-01-01
The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.
Elementary amplitudes from full QCD and the stochastic vacuum model
International Nuclear Information System (INIS)
Martini, A.F.; Menon, M.J.
2002-01-01
In a previous work, making use of the gluon gauge-invariant two-point correlation function determined from lattice QCD in the quenched approximation and the stochastic vacuum model, we determined the elementary (parton-parton) scattering amplitude in the momentum transfer space. In this communication we compute the elementary amplitude from new lattice QCD calculations that include the effects of dynamical fermions (full QCD). The main conclusion is that the inclusion of dynamical fermions leads to a normalized elementary amplitude that decreases more quickly with the momentum transfer than that in the quenched approximation. (author)
Renormalization Scale-Fixing for Complex Scattering Amplitudes
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J.; /Madrid U.
2005-12-21
We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.
Calculation and modular properties of multi-loop superstring amplitudes
International Nuclear Information System (INIS)
Danilov, G S
2012-01-01
Multi-loop superstring amplitude is calculated in the conventional gauge where Grassmann moduli are carried by the 2D gravitino field. Generally, instead of the modular symmetry, the amplitudes hold the symmetry under modular transformations added by relevant transformations of the 2D local supersymmetry. If a number of loops are larger than 3, the integration measures are not modular forms. In this case the expression for the amplitude contains an integral over the bound of the fundamental region of the modular group. (paper)
Amplitude Modulation in the δ Sct star KIC 7106205
Directory of Open Access Journals (Sweden)
Bowman Dominic. M.
2015-01-01
Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.
Corrections to the large-angle scattering amplitude
International Nuclear Information System (INIS)
Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.
1979-01-01
High-energy behaviour of scattering amplitudes is considered within the frames of Logunov-Tavchelidze quasipotential approach. The representation of scattering amplitude of two scalar particles, convenient for the study of its asymptotic properties is given. Obtained are corrections of the main value of scattering amplitude of the first and the second orders in 1/p, where p is the pulse of colliding particles in the system of the inertia centre. An example of the obtained formulas use for a concrete quasipotential is given
Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis
Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.
Amplitude-to-frequency converter of radioisotope instruments
International Nuclear Information System (INIS)
Demchenkov, V.P.; Korobkov, I.N.
1988-01-01
An amplitude-to-frequency converter designed for signal processing of radioisotope relay devices is descibed. The basic elements of the converter are a scaling amplifier, an analog-to-digital converter, a code-to-frequency converter, a null-organ, a delay unit and a clock-pulse generator. The designed amplitude-to-frequency converter takes into account a prior information about the signal shape of the energy spectrum. The converter processes input pulses of 0.10 V amplitude and duration more than 2μs. The energy channel number is 64
Gluon cascades and amplitudes in light-front perturbation theory
International Nuclear Information System (INIS)
Cruz-Santiago, C.A.; Staśto, A.M.
2013-01-01
We construct the gluon wave functions, fragmentation functions and scattering amplitudes within the light-front perturbation theory. Recursion relations on the light-front are constructed for the wave functions and fragmentation functions, which in the latter case are the light-front analogs of the Berends–Giele recursion relations. Using general relations between wave functions and scattering amplitudes it is demonstrated how to obtain the maximally-helicity violating amplitudes, and explicit verification of the results is based on simple examples.
Crack Propagation Test Results for Variable Amplitude Spectrum Loading in Surface Flawed D6ac Steel
National Research Council Canada - National Science Library
Wood, H
1971-01-01
.... All spectra used in the program represented the critical wing pivot locations for the F-lll aircraft and were applied in a randomized block sequence containing 58 layers representing 200 flight hours...
Energy Technology Data Exchange (ETDEWEB)
Miguel, V.; Coello, J.; Martinez, A.; Calatayud, A.
2013-09-01
In this paper, a methodology has been developed for evaluating the spring back of AISI 304 DDQ stainless steel sheet based on a bending under tension test. The main difference of the methodology herein carried out is that tests are made under the multiaxial stresses state that take place in deep drawing processes. This affects to the level of stress value in the test and to the hardening state of the sheet. Springback evaluation has been done in two different areas. Bending area has been evaluated from elastic recovery ratio defined as the ratio between the bending radius after and before bending. Bending and unbending extreme has been studied from the measured curvature radius in this area and taking into account the geometric equivalence of the test with the drawing cups process. Results found allow to state that drawing ratio or deformation ratio have a negligible influence on the springback into the range of values experimented here. Bending radius has hardly influence as well while bending angle is the most significant variable. The results obtained are compared to those measured in deep-drawn cups, finding a great agreement. (Author)
Structure of the amplitude equation of the climate; Struktur der Amplitudengleichung des Klimas
Energy Technology Data Exchange (ETDEWEB)
Hauschild, A. [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie
1999-04-01
The structure of the `amplitude equation`, a new dynamic equation on the seasonal time scale is derived, in which the weather scales may be treated statistically. The elsewhere-introduced climate-specific seasonally smoothed amplitudes and phases of the Fourier spectral representation are used as new prognostic variables. For the vorticity it is shown, that the still unsolved problem of the parameterisation of subscale transports may be solved in the `amplitude equation`. The approach could be successful because of the empirically derived statistical properties of the amplitudes (Poisson distribution and ergodicity) and of the phases (equipartition) of sub-planetary waves could be used. They allow a scale separation of weather and climate and lead to a tremendous reduction of the number of the horizontal degree of freedom of the amplitude equation to be between 10{sup 3} and 10{sup 4}. (orig.) [Deutsch] Es wird die Struktur der `Amplitudengleichung`, einer neuen dynamischen Gleichung auf der saisonalen Zeitskala abgeleitet. Anhand analysierter Daten des EZMW wird gezeigt, dass in der `Amplitudengleichung` die explizite Dynamik des Wetters tatsaechlich statistisch behandelt werden kann. Als prognostische Variablen der Gleichung werden die woanders neu eingefuehrten, klimaspezifischen, saisonal geglaetteten Amplituden und Phasen der Fourier-Spektraldarstellung verwendet. Am Beispiel der Vorticity wird gezeigt, dass das bisher ungeloeste Problem der Behandlung der subskaligen Transporte in der `Amplitudengleichung` grundsaetzlich geloest werden kann. Dies gelingt durch Ausnutzung der ebenfalls empirisch abgeleiteten besonderen statistischen Eigenschaften der Amplituden (Poissonverteilung und Ergodizitaet) und Phasen (Gleichverteilung) der subplanetaren Wellen, die eine Skalentrennung von Wetter und Klima ermoeglichen. Dies fuehrt zur erheblichen Reduktion der Zahl der horizontalen Freiheitsgrade der Amplitudengleichung auf 10{sup 3} bis 10{sup 4}. Die Ableitung
Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude
Nielsen, H. B.; Ninomiya, M.
2018-02-01
We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.
Heritability of Tpeak-Tend Interval and T-wave Amplitude: A Twin Study
DEFF Research Database (Denmark)
Haarmark, Christian; Kyvik, Kirsten O; Vedel-Larsen, Esben
2011-01-01
BACKGROUND: -Tpeak-Tend interval (TpTe) and T-wave amplitude (Tamp) carry diagnostic and prognostic information regarding cardiac morbidity and mortality. Heart rate and QT interval are known to be heritable traits. The heritability of T-wave morphology parameters such as TpTe and Tamp is unknown...... interval, QTpeak and QTend interval) were measured and averaged over three consecutive beats in lead V5. TpTe was calculated as the QTend and QTpeak interval difference. Heritability was assessed using structural equation models adjusting for age, gender and BMI. All models were reducible to a model...... of additive genetics and unique environment. All variables had considerable genetic components. Adjusted heritability estimates were: TpTe 46%, Tamp lead V1 34%, Tamp lead V5 47%, RR interval 55%, QT interval 67% and QTcB 42%. CONCLUSIONS: -RR interval, QT-interval, T-wave amplitude and Tpeak-Tend interval...
Does twitter song amplitude signal male arousal in redwings (Turdus iliacus)?
DEFF Research Database (Denmark)
Lampe, H.M.; Balsby, T.J.S.; Espmark, Y.O.
2010-01-01
Bird songs may vary in amplitude for several reasons. Variations due to differences in environmental conditions are well known but whether signal information varies with song amplitude is less well known. In some species quiet songs are heard as a soft twitter. These twitter songs are common...... in Turdus species and may be used during escalated close range encounters when a quiet song will attract less attention from others. Male redwings (T. iliacus) sing a terminating twitter part that is quieter and highly variable both between and within males compared with the introductory motif part....... The twitter song of redwings, however, is often louder than the twitter in other Turdus species, especially during escalated song encounters. The seasonal variation in twitter duration also suggests that the twitter may signal increased aggression. We tested how male redwings responded to an assumed...
A pulse amplitude discriminator with very low-power consuming
International Nuclear Information System (INIS)
Deng Changming; Liu Zhengshan; Zhang Zhiyong; Cheng Chang
2000-01-01
A low-power pulse amplitude discriminator is described. The discriminator circuit is mainly composed of an integrated voltage comparator, MAX921, and owns the characters of very low-power and low operating voltage
Some tree-level string amplitudes in the NSR formalism
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie; Melnikov, Ilarion V.; Robbins, Daniel; Royston, Andrew B.
2015-01-01
We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric F 4 effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.
Amplitude chimeras and chimera death in dynamical networks
International Nuclear Information System (INIS)
Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard
2016-01-01
We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions. (paper)
Stora's fine notion of divergent amplitudes
International Nuclear Information System (INIS)
Várilly, Joseph C.; Gracia-Bondía, José M.
2016-01-01
Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
International Nuclear Information System (INIS)
Carbonell, J.; Frederico, T.; Karmanov, V.A.
2017-01-01
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Laser beam complex amplitude measurement by phase diversity.
Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph
2014-02-24
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.
Mimicking an amplitude damping channel for Laguerre Gaussian Modes
CSIR Research Space (South Africa)
Dudley, Angela L
2010-10-01
Full Text Available An amplitude damping channel for Laguerre-Gaussian (LG) modes is presented. Experimentally the action of the channel on LG modes is in good agreement with that predicted theoretically....
Singularities in four-body final-state amplitudes
International Nuclear Information System (INIS)
Adhikari, S.K.
1978-01-01
Like three-body amplitudes, four-body amplitudes have subenergy threshold singularities over and above total-energy singularities. In the four-body problem we encounter a new type of subenergy singularity besides the usual two- and three-body subenergy threshold singularities. This singularity will be referred to as ''independent-pair threshold singularity'' and involves pair-subenergy threshold singularities in each of the two independent pair subenergies in four-body final states. We also study the particularly interesting case of resonant two- and three-body interactions in the four-body isobar model and the rapid (singular) dependence of the isobar amplitudes they generate in the four-body phase space. All these singularities are analyzed in the multiple-scattering formalism and it is shown that they arise from the ''next-to-last'' rescattering and hence may be represented correctly by an approximate amplitude which has that rescattering
Bessel–Gauss resonator with internal amplitude filter
CSIR Research Space (South Africa)
Litvin, IA
2008-05-01
Full Text Available The authors investigate a conventional resonator configuration, using only spherical curvature optical elements, for the generation of Bessel–Gauss beams. This is achieved through the deployment of a suitable amplitude filter at a Fourier plane...
Analytic computations of massive one-loop amplitudes
International Nuclear Information System (INIS)
Badger, Simon; Yundin, Valery; Sattler, Ralf
2010-06-01
We show some new applications of on-shell methods to calculate compact helicity amplitudes for t anti t production through gluon fusion. The rational and mass renormalisation contributions are extracted from two independent Feynman diagram based approaches. (orig.)
Nonlinear Saturation Amplitude in Classical Planar Richtmyer–Meshkov Instability
International Nuclear Information System (INIS)
Liu Wan-Hai; Jiang Hong-Bin; Ma Wen-Fang; Wang Xiang
2016-01-01
The classical planar Richtmyer–Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh–Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. (paper)
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)
2017-01-15
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
The zerology of kaon-nucleon forward scattering amplitudes
International Nuclear Information System (INIS)
Dumbrajs, O.
1981-01-01
It has been realized for a long time that zeros of the forward kaon-nucleon scattering amplitudes are useful in correlating different low and high-energy scattering parameters and in providing a consistency test of available data. The simplest possibility of exploring zeros is to evaluate the ordinary dispersion relations in the complex energy plane. The more natural way of bringing zeros of amplitudes into play is to consider either one of the more sophisticated forms of dispersion relations: i) phase dispersion relations, ii) inverse-amplitude dispersion relations, iii) logarithmic dispersion relations, or to apply the maximum modulus theorem and a factorization theorem. The author concentrates on the use of logarithmic dispersion relations because this approach seems to be the most convenient one for future extensions to nonforward scattering data analyses based on the zeros of the amplitude. (Auth.)
Low-Frequency Temporal Variability in Mira and Semiregular Variables
Templeton, Matthew R.; Karovska, M.; Waagen, E. O.
2012-01-01
We investigate low-frequency variability in a large sample of Mira and semiregular variables with long-term visual light curves from the AAVSO International Database. Our aim is to determine whether we can detect and measure long-timescale variable phenomena in these stars, for example photometric variations that might be associated with supergranular convection. We analyzed the long-term light curves of 522 variable stars of the Mira and SRa, b, c, and d classes. We calculated their low-frequency time-series spectra to characterize rednoise with the power density spectrum index, and then correlate this index with other observable characteristics such as spectral type and primary pulsation period. In our initial analysis of the sample, we see that the semiregular variables have a much broader range of spectral index than the Mira types, with the SRb subtype having the broadest range. Among Mira variables we see that the M- and S-type Miras have similarly wide ranges of index, while the C-types have the narrowest with generally shallower slopes. There is also a trend of steeper slope with larger amplitude, but at a given amplitude, a wide range of slopes are seen. The ultimate goal of the project is to identify stars with strong intrinsic red noise components as possible targets for resolved surface imaging with interferometry.
The method of contour rotations and the three particle amplitudes
International Nuclear Information System (INIS)
Brinati, J.R.
1980-01-01
The application of the method of contour rotations to the solution of the Faddeev-Lovelace equations and the calculation of the break-up and stripping amplitudes in a system of three distinct particles is reviewed. A relationship between the masses of the particles is obtained, which permits the break-up amplitude to be calculated from a single iteration of the final integral equation. (Author) [pt
Cosmological constraints on the amplitude of relic gravitational waves
International Nuclear Information System (INIS)
Novosyadlij, B.; Apunevich, S.
2005-01-01
The evolution of the amplitude of relic gravitational waves (RGW) generated in early Universe has been analyzed. The analytical approximation is presented for angular power spectrum of cosmic microwave background anisotropies caused by gravitational waves through Sachs-Wolfe effect. The estimate of the most probable value for this amplitude was obtained on the basis of observation data on cosmic microwave background anisotropies from COBE, WMAP and BOOMERanG experiments along with large-scale structure observations
Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding
DEFF Research Database (Denmark)
Christensen, M. G.; Jacobson, A.; Andersen, S. V.
2006-01-01
In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....