WorldWideScience

Sample records for multiaxial tensile-compressive strengths

  1. Influence of multiaxial preloading on the strength of concrete

    International Nuclear Information System (INIS)

    Linse, D.

    1975-01-01

    In a preliminary study about the influence of the loading direction discs of 20/20/5 cm were loaded at different stress-rates in one direction, then unloaded and loaded up to failure again. Two series of each about 15 specimens were tested: the first series was reloaded in the same direction as it was loaded before. If the preloading was not greater than about 90% of the original short-term uniaxial strength βsub(p), one could achieve in the second loading a higher strength than the strength βsub(p). The second series was reloaded normal to the direction of preloading. By an other series of about 50 specimens the influence of triaxial preloading on the uniaxial strength of concrete was tested. Cubes of 10cm were loaded by brush bearing platens up to a stress which was maximally three times higher than the uniaxial short-term strength βsub(p), then unloaded and tested again under uniaxial compression. The achieved ultimate strength of the cubes at the second loading was obviously dependent upon the stress-state and the stress-rate of the preloading. Multiaxial preloading which is far below the ultimate multiaxial strength can considerably defect the remaining strength of concrete. The decrease in strength was defined by the reduction of the uniaxial strength. It can be assumed that the remaining multiaxial strength is reduced at least to the same rate. Further tests are planned

  2. Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials

    Science.gov (United States)

    Nemeth, Noel, N.

    2013-01-01

    Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.

  3. Measurement of multiaxial ply strength by an off-axis flexure test

    Science.gov (United States)

    Crews, John H., Jr.; Naik, Rajiv A.

    1992-01-01

    An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.

  4. Assessment of an improved multiaxial strength theory based on creep-rupture data for Inconel 600

    International Nuclear Information System (INIS)

    Huddleston, R.L.

    1993-01-01

    A new multiaxial strength theory incorporating three independent stress parameters was developed and reported by the author in 1984. It was formally incorporated into ASME Code Case N47-29 in 1990. The new theory provided significantly more accurate stress-rupture life predictions than obtained using the classical theories of von Mises, Tresca, and Rankins (maximum principal stress), for Types 304 and 316 stainless steel tested at 593 and 600 degrees C respectively under different biaxial stress states. Additional results for Inconel 600 specimens tested at 816 degrees C under tension-tension and tension-compression stress states are presented in this paper and show a factor of approximately 2.4 reduction in the scatter of predicted versus observed lives as compared to the classical theories of von Mises and Tresca and a factor of about 5 as compared to the Rankins theory. A key feature of the theory, which incorporates the maximum deviatoric stress, the first invariant of the stress tensor, and the second invariant of the deviatoric stress tensor, is its ability to distinguish between life under tensile versus compressive stress states

  5. Tests on creep and influence of creep on strength of concrete under multiaxial stresses

    International Nuclear Information System (INIS)

    Lanig, N.; Stoeckl, S.; Kupfer, H.

    1988-12-01

    Long-time tests of three-axially loaded, sealed cylindrical specimens d = 15 cm, h = 40 cm, were carried out. The 20-cm-cube strength of the concrete was app. 45 N/mm 2 . The creep stresses were chosen in the following ranges: 0,3 ≤ σ c /β c ≤ 2,1; 0 ≤ σ r /σ l ≤ 1,0. The creep coefficients obtained were clearly depending on the multi-axial stress conditions. The creep coefficients for a t = 2 years loading were reaching app. 1 for σ l /β c = 0,3 and app. 3 for σ l /β c = 2,1, when the test evaluation was based on the initial deformations meausred after 1 minute. For σ l /β c = 2,1 the creep coefficients obtained were about 4 times as large, proceeding form calculated elastic deformations. Further evaluations concerned the Young's modulus E, Poisson's ratio μ, the bulk modulus K and the shear modulus G. The preceding permanent load leads to an increase in the Young's modulus of the concrete in longitudinal direction of the specimen up to about 4 times the value of not preloaded comparative specimens. (orig.) [de

  6. First industrial strength multi-axial Robotic testing campaign for composite material characterization

    Science.gov (United States)

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos

    2012-01-01

    In this paper we are reporting on the first successful campaign of systematic, automated and massive multiaxial tests for composite material constitutive characterization. The 6 degrees of freedom system developed at the Naval Research Laboratory (NRL) called NRL66.3, was used for this task. This was the inaugural run that served as the validation of the...

  7. Multiaxial fatigue strength of type 316 stainless steel under push–pull, reversed torsion, cyclic inner and outer pressure loading

    International Nuclear Information System (INIS)

    Morishita, Takahiro; Itoh, Takamoto; Bao, Zhenlong

    2016-01-01

    Multiaxial fatigue tests under non-proportional loading in which principal directions of stress and strain are changed in a cycle were carried out using a developed multiaxial fatigue testing machine which can load a push–pull and reversed torsion loading with cyclic inner and outer pressure. This paper presents the developed testing machine and experimental results under several multiaxial loading conditions including non-proportional loading. In strain control tests, the failure life is reduced in accordance with increasing inner pressure at each strain path. The failure life can be correlated by von Mises' equivalent stress amplitude relatively well independent of not only inner pressure but also loading path. In load control tests, the failure life is reduced largely by non-proportional loading but the influence of inner and outer pressure on the failure life is relative small.

  8. Strength of SiCf-SiCm composite tube under uniaxial and multiaxial loading

    Science.gov (United States)

    Shapovalov, Kirill; Jacobsen, George M.; Alva, Luis; Truesdale, Nathaniel; Deck, Christian P.; Huang, Xinyu

    2018-03-01

    The authors report mechanical strength of nuclear grade silicon carbide fiber reinforced silicon carbide matrix composite (SiCf-SiCm) tubing under several different stress states. The composite tubing was fabricated via a Chemical Vapor Infiltration (CVI) process, and is being evaluated for accident tolerant nuclear fuel cladding. Several experimental techniques were applied including uniaxial tension, elastomer insert burst test, open and closed end hydraulic bladder burst test, and torsion test. These tests provided critical stress and strain values at proportional limit and at ultimate failure points. Full field strain measurements using digital image correlation (DIC) were obtained in order to acquire quantitative information on localized deformation during application of stress. Based on the test results, a failure map was constructed for the SiCf-SiCm composites.

  9. Current state of low-cycle fatigue research based on multiaxial stress intensity and its challenges. Part 1. Focusing on low-cycle fatigue strength evaluation method of elbow piping subjected to in-plane cyclic bending displacement load

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2017-01-01

    The R and D of fatigue strength at multiaxial stress intensity is recognized to become extremely important in the future in terms of the elaboration of low-cycle fatigue evaluation of various structures including piping systems and reflection on those standards. This paper focuses on the evaluation method developed by the author, namely cumulative damage rule in consideration of multiaxial stress intensity, and explains the concept and the results of verification and evaluation. It also discusses the engineering problems of the current low cycle fatigue assessment technology that were clarified in the process of developing low-cycle fatigue assessment method based on multiaxial stress intensity. The conservative lifespan and somewhat more conservative actual lifetime of elbow piping can be estimated by the conventional 'revised universal slope method' and 'advanced revised universal slope method.' However, these are empirical rules, and the theoretical basis is not clear. From 'cumulative damage rule in consideration of multiaxial stress intensity,' the author calculated furthermore 'low cycle fatigue evaluation formula based on cumulative damage rule in consideration of multi-axial stress intensity,' and examined it. As a result, an evaluation formula that can reasonably assume the equivalent thermoplastic strain range could be obtained at half of the repeat count as targeted. Furthermore, at the stage where future high precision FEM analysis can be used, direct low-cycle fatigue life curve can be established. (A.O.)

  10. Research on differences and correlation between tensile, compression and flexural moduli of cement stabilized macadam

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-07-01

    Full Text Available In order to reveal the differences and conversion relations between the tensile, compressive and flexural moduli of cement stabilized macadam, in this paper, we develop a new test method for measuring three moduli simultaneously. By using the materials testing system, we test three moduli of the cement stabilized macadam under different loading rates, propose a flexural modulus calculation formula which considers the shearing effect, reveal the change rules of the tensile, compression and flexural moduli with the loading rate and establish the conversion relationships between the three moduli. The results indicate that: three moduli become larger with the increase of the loading rate, showing a power function pattern; with the shear effect considered, the flexural modulus is increased by 47% approximately over that in the current test method; the tensile and compression moduli of cement stabilized macadam are significantly different. Therefore, if only the compression modulus is used as the structural design parameter of asphalt pavement, there will be a great deviation in the analysis of the load response. In order to achieve scientific design and calculation, the appropriate design parameters should be chosen based on the actual stress state at each point inside the pavement structure.

  11. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  12. Multi-axial response of idealized cermets

    International Nuclear Information System (INIS)

    Pickering, E.G.; Bele, E.; Deshpande, V.S.

    2016-01-01

    The yield response of two idealized cermets comprising mono and bi-disperse steel spheres in a Sn/Pb solder matrix has been investigated for a range of axisymmetric stress states. Proportional stress path experiments are reported, from which are extracted the initial yield surfaces and their evolution with increasing plastic strain. The initial yield strength is nearly independent of the hydrostatic pressure but the strain hardening rate increases with stress triaxiality up to a critical value. For higher triaxialities, the responses are independent of hydrostatic pressure. Multi-axial measurements along with X-ray tomography were used to demonstrate that the deformation of these idealized cermets occurs by two competing mechanisms: (i) a granular flow mechanism that operates at low levels of triaxiality, where volumetric dilation occurs under compressive stress states, and (ii) a plastically incompressible mechanism that operates at high stress triaxialities. A phenomenological viscoplastic constitutive model that incorporates both deformation mechanisms is presented. While such multi-axial measurements are difficult for commercial cermets with yield strengths on the order of a few GPa, the form of their constitutive relation is expected to be similar to that of the idealized cermets presented here.

  13. A review of creep analysis and design under multi-axial stress states

    International Nuclear Information System (INIS)

    Yao, H.-T.; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2007-01-01

    The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented

  14. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  15. Multiaxis, Lightweight, Computer-Controlled Exercise System

    Science.gov (United States)

    Haynes, Leonard; Bachrach, Benjamin; Harvey, William

    2006-01-01

    The multipurpose, multiaxial, isokinetic dynamometer (MMID) is a computer-controlled system of exercise machinery that can serve as a means for quantitatively assessing a subject s muscle coordination, range of motion, strength, and overall physical condition with respect to a wide variety of forces, motions, and exercise regimens. The MMID is easily reconfigurable and compactly stowable and, in comparison with prior computer-controlled exercise systems, it weighs less, costs less, and offers more capabilities. Whereas a typical prior isokinetic exercise machine is limited to operation in only one plane, the MMID can operate along any path. In addition, the MMID is not limited to the isokinetic (constant-speed) mode of operation. The MMID provides for control and/or measurement of position, force, and/or speed of exertion in as many as six degrees of freedom simultaneously; hence, it can accommodate more complex, more nearly natural combinations of motions and, in so doing, offers greater capabilities for physical conditioning and evaluation. The MMID (see figure) includes as many as eight active modules, each of which can be anchored to a floor, wall, ceiling, or other fixed object. A cable is payed out from a reel in each module to a bar or other suitable object that is gripped and manipulated by the subject. The reel is driven by a DC brushless motor or other suitable electric motor via a gear reduction unit. The motor can be made to function as either a driver or an electromagnetic brake, depending on the required nature of the interaction with the subject. The module includes a force and a displacement sensor for real-time monitoring of the tension in and displacement of the cable, respectively. In response to commands from a control computer, the motor can be operated to generate a required tension in the cable, to displace the cable a required distance, or to reel the cable in or out at a required speed. The computer can be programmed, either locally or via

  16. Fracture criteria of reactor graphite under multiaxial stresses

    International Nuclear Information System (INIS)

    Sato, S.; Kawamata, K.; Kurumada, A.; Oku, T.

    1987-01-01

    New fracture criteria for graphite under multiaxial stresses are presented for designing core and support materials of a high temperature gas cooled reactor. Different kinds of fracture strength tests are carried out for a near isotropic graphite IG-11. Results show that, under the stress state in which tensile stresses are predominant, the maximum principal stress theory is seen as applicable for brittle fracture. Under the stress state in which compressive stresses are predominant there may be two fracture modes for brittle fracture, namely, slipping fracture and mode II fracture. For the former fracture mode the maximum shear stress criterion is suitable, but for the latter fracture mode a new mode II fracture criterion including a restraint effect for cracks is verified to be applicable. Also a statistical correction for brittle fracture criteria under multiaxial stresses is discussed. By considering the allowable stress values for safe design, the specified minimum ultimate strengths corresponding to a survival probability of 99% at the 95% confidence level are presented. (orig./HP)

  17. Multiaxial fatigue of aluminium friction stir welded joints: preliminary results

    Directory of Open Access Journals (Sweden)

    D. G. Hattingh

    2015-07-01

    Full Text Available The aim of the present research is to check the accuracy of the Modified Wöhler Curve Method (MWCM in estimating the fatigue strength of friction stir (FS welded tubular joints of Al 6082-T6 subjected to in-phase and out-of-phase multiaxial fatigue loading. The welded samples being investigated were manufactured by equipping an MTS I-STIR process development system with a retracting tool that was specifically designed and optimised for this purpose. These specimens were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out by using the generated experimental results allowed us to prove that the MWCM (applied in terms of nominal stresses is highly accurate in predicting the fatigue strength of the tested FS welded joints, its usage resulting in estimates falling with the uniaxial and torsional calibration scatter bands.

  18. Evaluation and visualization of multiaxial fatigue behavior under random non-proportional loading condition

    Directory of Open Access Journals (Sweden)

    Takahiro Morishita

    2017-07-01

    Full Text Available In cyclic multiaxial stress/strain condition under nonproportional loading in which principal direction of stress/strain are changed in a cycle, it becomes difficult to analyze stress/strain ranges because of complexity of multiaxial stress/strain states depending on time in cycles. In order to evaluate stress/strain simply and suitably under non-proportional loading, Itoh and Sakane have proposed a method called as IS-method and a strain parameter for life evaluation under non-proportional loading NP. In the method, 6-components of stress/strain are converted to an equivalent stress/strain indicating the amplitude and the direction of principal stress/strain as a function of time as well as an intensity of loading nonproportionality fNP. Based on IS-method, the authors also have developed a tool which enables to analyze multiaxial stress/strain condition with the nonproportionality of loading history and evaluate failure life under nonproportional multiaxial loading. The tool indicates the analyzed results on monitor and users can understand visually not only variation of the stress/strain conditions but also non-proportionality during the cycle, which helps the design of material strength.

  19. Designing aluminium friction stir welded joints against multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    L. Susmel

    2016-07-01

    Full Text Available The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM in estimating multiaxial fatigue strength of aluminium friction stir (FS welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.

  20. Random accumulated damage evaluation under multiaxial fatigue loading conditions

    Directory of Open Access Journals (Sweden)

    V. Anes

    2015-07-01

    Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.

  1. Creep-fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-02-01

    ASME Code rules for design against creep-fatigue damage for Class 1 nuclear components operating at elevated temperatures are currently being studied by ASME working groups and task forces with a view toward major modification. In addition, the design rules being developed for Class 2 and Class 3 components would be affected by any major modifications of Class 1 Rules. The report represents an attempt to evaluate the differences between two competing procedures--linear damage summation and strainrange partitioning--for multiaxial stress conditions. A modified version of strainrange partitioning is also developed to alleviate some limitations on nonproportional loading

  2. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich

    the thickness location. Another modelling approach shows a modelling strategy, where shell and solid elements where combined with the purpose to estimate the strain energy release rate of transversely orientated crack in the trailing edge for different loading conditions. Furthermore, state-of-the-art failure...

  3. Microstructural study of multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Masao Sakane

    2015-07-01

    Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.

  4. Uniaxial and Multiaxial Creep Testing of Copper

    International Nuclear Information System (INIS)

    Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi

    2003-12-01

    Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density ( 2 ) and a typical maximum dimension of less than about 1 μm near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also recommended that longer

  5. Multiaxial low cycle fatigue life under non-proportional loading

    International Nuclear Information System (INIS)

    Itoh, Takamoto; Sakane, Masao; Ohsuga, Kazuki

    2013-01-01

    A simple and clear method of evaluating stress and strain ranges under non-proportional multiaxial loading where principal directions of stress and strain are changed during a cycle is needed for assessing multiaxial fatigue. This paper proposes a simple method of determining the principal stress and strain ranges and the severity of non-proportional loading with defining the rotation angles of the maximum principal stress and strain in a three dimensional stress and strain space. This study also discusses properties of multiaxial low cycle fatigue lives for various materials fatigued under non-proportional loadings and shows an applicability of a parameter proposed by author for multiaxial low cycle fatigue life evaluation

  6. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    Science.gov (United States)

    2012-01-05

    Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride

  7. Dual Numbers Approach in Multiaxis Machines Error Modeling

    Directory of Open Access Journals (Sweden)

    Jaroslav Hrdina

    2014-01-01

    Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.

  8. Ability of multiaxial fatigue criteria accounting for stress gradient effect for surface defective material

    Directory of Open Access Journals (Sweden)

    Niamchaona Wichian

    2018-01-01

    Full Text Available New high strength steels are widely used nowadays in many industrial areas as in automotive industry. These steels are more resistant and provide higher fatigue limits than latter ones but they are also more sensible to small defects. Natural defects that outcome from metallurgy (as shrinkage, inclusion, void are not considered in this study. We focus on small manufacturing defects such as cutting edge defects generated by punching or other surface defects due to stamping. These defects are harmful on the material fatigue behaviour due to high stress concentration at defects root. They also generate stress gradient that is beneficial from the fatigue strength point of view. This study focusses on the stress gradient (it does not account for the size effect from cylindrical defect on specimen edge. Practically a normal stress gradient is added in multiaxial fatigue criteria formulation. Both critical plane approach and integral approach are involved in the present study. This gradient is calculated from stress states at defects root by using FEM. Criteria fatigue function at N cycles is used to assess the material fatigue strength. Obviously multiaxial fatigue criteria accounting for stress gradient give more precise fatigue functions than criteria that do not consider the gradient influence.

  9. Creating a Multi-axis Machining Postprocessor

    Directory of Open Access Journals (Sweden)

    Petr Vavruška

    2012-01-01

    Full Text Available This paper focuses on the postprocessor creation process. When using standard commercially available postprocessors it is often very difficult to modify its internal source code, and it is a very complex process, in many cases even impossible, to implement the newly-developed functions. It is therefore very important to have a method for creating a postprocessor for any CAM system, which allows CL data (Cutter Location data to be generated to a separate text file. The goal of our work is to verify the proposed method for creating a postprocessor. Postprocessor functions for multi-axis machiningare dealt with in this work. A file with CL data must be translated by the postprocessor into an NC program that has been customized for a specific production machine and its control system. The postprocessor is therefore verified by applications for machining free-form surfaces of complex parts, and by executing the NC programs that are generated on real machine tools. This is also presented here.

  10. Assessment of Creep Deformation, Damage, and Rupture Life of 304HCu Austenitic Stainless Steel Under Multiaxial State of Stress

    Science.gov (United States)

    Sahoo, K. C.; Goyal, Sunil; Parameswaran, P.; Ravi, S.; Laha, K.

    2018-03-01

    The role of the multiaxial state of stress on creep deformation and rupture behavior of 304HCu austenitic stainless steel was assessed by performing creep rupture tests on both smooth and notched specimens of the steel. The multiaxial state of stress was introduced by incorporating circumferential U-notches of different root radii ranging from 0.25 to 5.00 mm on the smooth specimens of the steel. Creep tests were carried out at 973 K over the stress range of 140 to 220 MPa. In the presence of notch, the creep rupture strength of the steel was found to increase with the associated decrease in rupture ductility. Over the investigated stress range and notch sharpness, the strengthening was found to increase drastically with notch sharpness and tended toward saturation. The fractographic studies revealed the mixed mode of failure consisting of transgranular dimples and intergranular creep cavitation for shallow notches, whereas the failure was predominantly intergranular for relatively sharper notches. Detailed finite element analysis of stress distribution across the notch throat plane on creep exposure was carried out to assess the creep failure of the material in the presence of notch. The reduction in von-Mises stress across the notch throat plane, which was greater for sharper notches, increased the creep rupture strength of the material. The variation in fracture behavior of the material in the presence of notch was elucidated based on the von-Mises, maximum principal, and hydrostatic stresses. Electron backscatter diffraction analysis of creep strain distribution across the notch revealed localized creep straining at the notch root for sharper notches. A master curve for predicting creep rupture life under the multiaxial state of stress was generated considering the representative stress having contributions from both the von-Mises and principal stress components of the stress field in the notch throat plane. Rupture ductility was also predicted based on the

  11. Multiaxial creep-fatigue life analysis using strainrange partitioning

    International Nuclear Information System (INIS)

    Manson, S.S.; Halford, G.R.

    1976-01-01

    Strain-Range Partitioning is a recently developed method for treating creep-fatigue interaction at elevated temperature. Most of the work to date has been on uniaxially loaded specimens, whereas practical applications often involve load multiaxiality. This paper shows how the method can be extended to treat multiaxiality through a set of rules for combining the strain components in the three principal directions. Closed hysteresis loops, as well as plastic and creep strain ratcheting, are included. An application to hold-time tests in torsion is used to illustrate the approach

  12. Evaluation of electromagnetic shielding effectiveness of multi-axial ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... ... Lecture Workshops · Refresher Courses · Symposia. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Evaluation of electromagnetic shielding effectiveness of multi-axial fabrics and their reinforced PES composites. RAMAZAN ERDEM. Volume 39 Issue 4 August 2016 pp 963-970 ...

  13. Evaluation of electromagnetic shielding effectiveness of multi-axial ...

    Indian Academy of Sciences (India)

    The usage of electrical and electronic equipments has been increasing in daily life, which has a potential hazardous impact on humans and other living organisms. In this paper, multi-axial fabrics containing steel yarns and carbon filaments, and their polyester (PES) resin-reinforced composites have been prepared for ...

  14. Concurrent Validity of the Millon Clinical Multiaxial Inventory Depression Scales.

    Science.gov (United States)

    Goldberg, Joel O.; And Others

    1987-01-01

    Compared two new measures of depression (Millon Multiaxial Inventory Dysthymia and Major Depression subscales) with two established instruments: Beck Depression Inventory, a self-report measure which emphasizes the cognitive-affective aspects of depression, and Hamilton Rating Scale for Depression, an interview measure that emphasizes somatic…

  15. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  16. The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    International Nuclear Information System (INIS)

    Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.

    1983-01-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate

  17. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.

    Science.gov (United States)

    Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A

    2013-12-01

    Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Multiaxial elastoplastic cyclic loading of austenitic 316L steel

    Czech Academy of Sciences Publication Activity Database

    Mazánová, Veronika; Polák, Jaroslav; Škorík, Viktor; Kruml, Tomáš

    2017-01-01

    Roč. 11, č. 40 (2017), s. 162-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA13-23652S; GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic stress-strain curve * Multiaxial cyclic loading Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  19. Fatigue life assessment under multiaxial variable amplitude loading

    International Nuclear Information System (INIS)

    Morilhat, P.; Kenmeugne, B.; Vidal-Salle, E.; Robert, J.L.

    1996-06-01

    A variable amplitude multiaxial fatigue life prediction method is presented in this paper. It is based on a stress as input data are the stress tensor histories which may be calculated by FEM analysis or measured directly on the structure during the service loading. The different steps of he method are first presented then its experimental validation is realized for log and finite fatigue lives through biaxial variable amplitude loading tests using cruciform steel samples. (authors). 9 refs., 7 figs

  20. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)

    2016-05-15

    Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.

  1. Multiaxial Stress-Strain Modeling and Effect of Additional Hardening due to Nonproportional Loading

    International Nuclear Information System (INIS)

    Rashed, G.; Ghajar, R.; Farrahi, G.

    2007-01-01

    Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with the other researchers' experimental data published in the literature, which are in a reasonable agreement with the experimental data. The relationship presented here is convenient for the engineering applications

  2. Classification of Headache Disorders: Extending to a Multiaxial System.

    Science.gov (United States)

    Martin, Paul R

    2016-11-01

    This article argues for extending the International Classification of Headache Disorders to include information that goes beyond diagnosis. The obvious model is a multiaxial system as has been developed for other taxonomies. An axis for recording disability and impact on functioning, and an axis for recording the triggers of headache/migraine, are perhaps the strongest contenders for adding to the system, but there are other possibilities such as lifestyle factors relevant to headache. Extensions such as these would contribute to headache management, provide clear targets for change, and encourage adoption of a biopsychosocial perspective. © 2016 American Headache Society.

  3. Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state

    Directory of Open Access Journals (Sweden)

    Christopher C. Ihueze

    2015-07-01

    Full Text Available This paper focuses on the design of natural fiber composites and analysis of multiaxial stresses in relation to yield limit stresses of composites loaded off the fibers axis. ASTM D638-10 standard for tensile test was used to design and compose composites of plantain fiber reinforced polyester (PFRP. While the rule of mixtures was used in the evaluation of properties of composites in the fiber direction the evaluation of properties perpendicular or transverse to the fiber direction was done based on the value of the orthogonal stresses evaluated using ANSYS finite element software, the application of the Brintrup equation and Halpin–Tai equation. The yield strength for the plantain empty fruit bunch fiber reinforced polyester resin (PEFBFRP was estimated as 33.69 MPa while the yield strength of plantain pseudo stem fiber reinforced polyester resin (PPSFRP was estimated as 29.24 MPa. Above all, the PEFBFRP with average light absorbance peak of 45.47 was found to have better mechanical properties than the PPSFRP with average light absorbance peak of 45.77.

  4. Development of a method of lifetime assessment of power plant components under complex multi-axial vibration loads

    International Nuclear Information System (INIS)

    Fesich, Thomas M.

    2012-01-01

    In general, technical components are loaded and stressed by forces and moments both constant and variable over time. Multi-axial stress conditions can arise as a function of the load on, and/or the geometry of, a component. Assessing the impact on stability of multi-axial stress conditions is a problem for which no generally valid solution has as yet been found, especially when loads and stresses vary over time. This is also due to the fact that the development over time of stresses can give rise to very complex stress conditions. Assessing the lifetime of power plant components subjected to complex vibration loads and stresses often is not reliable if performed by means of conventional codes and approaches, or is associated with high degrees of conservatism. The MPA AIM-Life concept developed at the Stuttgart MPA/IMWF, which is an advanced and verified strength hypothesis based on energy considerations, allows such assessments to be made more reliably, numerically efficient, and avoiding excessive conservatism. (orig.)

  5. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    Science.gov (United States)

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  6. An investigation of deformed microstructure and mechanical properties of Zircaloy-4 processed through multiaxial forging

    Energy Technology Data Exchange (ETDEWEB)

    Fuloria, Devasri; Nageswararao, P. [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Jha, S. [Nuclear Fuel Complex Limited, Hyderabad 501301 (India); Srivastava, D. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 40085 (India)

    2016-04-15

    In the present work, the mechanical behavior of Zircaloy-4 subjected to various deformation strains by multiaxial forging (MAF) at cryogenic temperature (CT) was investigated. The alloy was strained up to different number of cycles, viz., 6 cycles, 9 cycles, and 12 cycles at cumulative strains of 2.96, 4.44, and 5.91, respectively. The mechanical properties of the alloy were investigated by performing the universal tensile test and the Vickers hardness test. Both the test showed improvement in the ultimate tensile strength and hardness value by 51% and 26%, respectively, at the highest cumulative strain of 5.91. The electron backscattered diffraction (EBSD) measurement and transmission electron microscopy (TEM) were used for analyzing the deformed microstructure. The microstructures of the alloy underwent deformation at various cumulative strains/cycles showed grain refinement with the evolution of shear and twin bands that were highest for the alloy deformed at the highest number of cycles. The effective grain refinement was due to twins formation and their intersection, which led to the improvement in mechanical properties of the MAFed alloy, as observed in the present work. - Highlights: • Zircaloy-4 was subjected to MAF at cryogenic temperature. • Microstructural evolution was studied through EBSD and TEM. • Deformed microstructure was marked with various types of twinning and shear banding. • Twins formations are responsible for effective grain refinement and enhanced mechanical properties.

  7. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    International Nuclear Information System (INIS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Fedder, Gary K; Miller, Mark

    2009-01-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa

  8. Spatial reliability analysis of a wind turbine blade cross section subjected to multi-axial extreme loading

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Bitsche, Robert; Blasques, José Pedro Albergaria Amaral

    2017-01-01

    This paper presents a methodology for structural reliability analysis of wind turbine blades. The study introduces several novel elements by taking into account loading direction using a multiaxial probabilistic load model, considering random material strength, spatial correlation between material...... properties, progressive material failure, and system reliability effects. An example analysis of reliability against material failure is demonstrated for a blade cross section. Based on the study we discuss the implications of using a system reliability approach, the effect of spatial correlation length......, type of material degradation algorithm, and reliability methods on the system failure probability, as well as the main factors that have an influence on the reliability. (C) 2017 Elsevier Ltd. All rights reserved....

  9. Phenomenological model for coupled multi-axial piezoelectricity

    Science.gov (United States)

    Wei, Yuchen; Pellegrino, Sergio

    2018-03-01

    A quantitative calibration of an existing phenomenological model for polycrystalline ferroelectric ceramics is presented. The model relies on remnant strain and polarization as independent variables. Innovative experimental and numerical model identification procedures are developed for the characterization of the coupled electro-mechanical, multi-axial nonlinear constitutive law. Experiments were conducted on thin PZT-5A4E plates subjected to cross-thickness electric field. Unimorph structures with different thickness ratios between PZT-5A4E plate and substrate were tested, to subject the piezo plates to coupled electro-mechanical fields. Material state histories in electric field-strain-polarization space and stress-strain-polarization space were recorded. An optimization procedure is employed for the determination of the model parameters, and the calibrated constitutive law predicts both the uncoupled and coupled experimental observations accurately.

  10. Evaluation of new multiaxial damage parameters on low carbon steel

    Directory of Open Access Journals (Sweden)

    A. S. Cruces

    2017-07-01

    Full Text Available Most mechanical components are subjected to the complex fatigue loading conditions, where both amplitude and direction of loading cycles change over the time. The estimation of damage caused by these complex loading scenarios are often done by simplified uniaxial fatigue theories, which ultimately leads to higher factor of safety during the final design considerations. Critical plane-based fatigue theories have been considered more accurate for computing the fatigue damage for multiaxial loading conditions in comparison to energy-based and equivalent stress-based theories. Two recently developed fatigue theories have been evaluated in this work for the available test data. Test data includes significant amount of biaxial load paths.

  11. Comparison of two multiaxial fatigue models applied to dental implants

    Directory of Open Access Journals (Sweden)

    JM. Ayllon

    2015-07-01

    Full Text Available This paper presents two multiaxial fatigue life prediction models applied to a commercial dental implant. One model is called Variable Initiation Length Model and takes into account both the crack initiation and propagation phases. The second model combines the Theory of Critical Distance with a critical plane damage model to characterise the initiation and initial propagation of micro/meso cracks in the material. This paper discusses which material properties are necessary for the implementation of these models and how to obtain them in the laboratory from simple test specimens. It also describes the FE models developed for the stress/strain and stress intensity factor characterisation in the implant. The results of applying both life prediction models are compared with experimental results arising from the application of ISO-14801 standard to a commercial dental implant.

  12. A study on multi-axial fatigue model based on structural stress

    International Nuclear Information System (INIS)

    Kim, Cheol; Kim, Jong Sung; Jin, Tae Eun; Dong, P.

    2004-01-01

    In nuclear components, cyclic loadings that cause complex states of stress are common. Through a reference review, four sources of the multi-axial fatigue data were collected from LBF, University of Illinois, EPRI, and TWI. All these tests were conducted using tube to flange specimens with a circumferential fillet welds. The loading conditions were mostly bending/ torsion combinations, except that TWI used tension/ torsion combinations. None of fatigue correlation parameters have been demonstrated to be satisfactory in correlating the multi-axial fatigue data outside of their own. In this paper, we proposed the characterizing multi-axial fatigue behavior in terms of the structural stress methods by using some of the well-known multi-axial fatigue data available in the references

  13. Microcrack propagation under multiaxial loading - experiment and simulation

    International Nuclear Information System (INIS)

    Poetter, K.; Suhartono, A.; Yousefi, F.; Zenner, H.; Duewel, V.; Schram, A.

    2000-01-01

    The accuracy of lifetime prediction for technical components subjected to cyclic loading is still not satisfying. One essential reason for the deviation between the results of the lifetime calculation and experimental results is that it is not yet possible to generate a model capable to describe the microstructural damage process which occurs in the tested material and to integrate this model in the calculation. All of the present research results recognize that the growth of microcracks is significantly influenced by the microstructure of the material. In order to take into account the influence of the microstructure on the damage process a simulation model is suggested in this paper which considers the local stress state in addition to the random nature of the material structure in the form of grain boundaries and slip systems. The results generated by means of the simulation model are compared and verified with those experiences obtained from multiaxial fatigue testing of the investigated aluminum material. For this purpose the surfaces of the tested specimens are carefully observed to discover and analyze microcracks which are classified according to their number, length, and orientation. Moreover the mechanisms of crack initiation and propagation are major points of interest for the comparison of theoretical and experimental results. The developed computer software is suitable to simulate the microcrack initiation, the propagation and coalescence of microcracks as well as the transition of stage I cracks to stage II cracks for uniaxial and multiaxial loading. Results obtained from the simulation model could be verified with the experiment. The future aim to be emphasized is the utilization of the parameter investigations carried out with the computer simulation model in order to improve the lifetime prediction. (orig.)

  14. Coverage of multiaxial fatigue criteria in fatigue limit region

    Directory of Open Access Journals (Sweden)

    Papuga J.

    2007-11-01

    Full Text Available There is a power of methods aimed at calculation of equivalent fatigue limit for arbitrary multiaxial loading. Although there are so many ways of computation, their thorough mutual comparison in a larger scale is missing. The database project presented in this paper comprise of several databases crowned with the FatLim database, which comprise of a huge number of experimental results and of 18 computational method working in the category mentioned before. The great block of data was acquired using in-house fatigue software PragTic, which is offered as a freeware application. The FatLim database follows its philosophy of a simple and non-paid accessibility. Its query tool written in MySQL and PhP allows to users to evaluate a practical usability of tested methods on load cases, which the users define. All the issues covered within this paper are available on the website www.pragtic.com, structure of which is described here.

  15. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  16. Characterization of a multi-axis ion chamber array.

    Science.gov (United States)

    Simon, Thomas A; Kozelka, Jakub; Simon, William E; Kahler, Darren; Li, Jonathan; Liu, Chihray

    2010-11-01

    The aim of this work was to characterize a multi-axis ion chamber array (IC PROFILER; Sun Nuclear Corporation, Melbourne, FL, USA) that has the potential to simplify the acquisition of LINAC beam data. The IC PROFILER (or panel) measurement response was characterized with respect to radiation beam properties, including dose, dose per pulse, pulse rate frequency (PRF), and energy. Panel properties were also studied, including detector-calibration stability, power-on time, backscatter dependence, and the panel's agreement with water tank measurements [profiles, fractional depth dose (FDD), and output factors]. The panel's relative deviation was typically within (+/-) 1% of an independent (or nominal) response for all properties that were tested. Notable results were (a) a detectable relative field shape change of approximately 1% with linear accelerator PRF changes; (b) a large range in backscatter thickness had a minimal effect on the measured dose distribution (typically less than 1%); (c) the error spread in profile comparison between the panel and scanning water tank (Blue Phantom, CC13; IBA Schwarzenbruck, DE) was approximately (+/-) 0.75%. The ability of the panel to accurately reproduce water tank profiles, FDDs, and output factors is an indication of its abilities as a dosimetry system. The benefits of using the panel versus a scanning water tank are less setup time and less error susceptibility. The same measurements (including device setup and breakdown) for both systems took 180 min with the water tank versus 30 min with the panel. The time-savings increase as the measurement load is increased.

  17. Efficient lifetime estimation techniques for general multiaxial loading

    Science.gov (United States)

    Papuga, Jan; Halama, Radim; Fusek, Martin; Rojíček, Jaroslav; Fojtík, František; Horák, David; Pecha, Marek; Tomčala, Jiří; Čermák, Martin; Hapla, Václav; Sojka, Radim; Kružík, Jakub

    2017-07-01

    In this paper, we discuss and present our progress toward a project, which is focused on fatigue life prediction under multiaxial loading in the domain of low-cycle fatigue, i.e. cases, where the plasticity cannot be neglected. First, the elastic-plastic solution in the finite element analysis is enhanced and verified on own experiments. Second, the method by Jiang describing the instantaneous damage increase by analyses of load time by time, is in implementation phase. In addition, simplified routines for conversion of elastic stresses-strains to elastic-plastic ones as proposed by Firat and Ye et.al. are evaluated on the basis of data gathered from external sources. In order to produce high quality complex analyses, which could be feasible in an acceptable time, and allow the period for next analyses of results to be expanded; the core of PragTic fatigue solver used for all fatigue computations are being re-implemented to get the fully parallelized scalable solution.

  18. Multiaxial fatigue assessment of welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters

    2016-01-01

    This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria, including equivalent stress-, interaction equation- and critical...... plane approaches. The investigation is carried out by testing the criteria on a large amount of fatigue test results collected from the literature (351 specimens total). Subsequently, the probability of achieving a non-conservative fatigue assessment is calculated in order to evaluate the different...

  19. Multiaxial brittle failure of a 3D carbon-carbon composite

    International Nuclear Information System (INIS)

    Davy, Catherine

    2001-01-01

    Several industrial equipments, for example in aeronautics, civil or military nuclear applications, imply multi-axially loaded brittle materials for which reliable failure models are needed. In that context, our study focuses on a 3D carbon-carbon composite submitted in service to a triaxial strain state along its orthotropy axes. A failure criterion based on a bibliographical analysis is identified thanks to uniaxial tensile tests, and validated through an original multiaxial experiment. The scatter on its failure characteristics is also identified. (author) [fr

  20. Thermoelastic/plastic analysis of waste-container sleeve: III. Influence of salt strength on sleeve loading. Technical memorandum report (RSI-0018)

    International Nuclear Information System (INIS)

    Pariseau, W.G.

    1975-01-01

    Three combinations of salt tensile, compressive and shear strength in linear and nonlinear yield conditions used in the axially symmetric, large displacement thermoelastic/plastic waste-container/sleeve loading estimates show no influence on the analysis. The salt remains elastic throughout the excavation and subsequent 10 year heating period. Tensile stresses are not observed, tensile strength is thus not important to the analysis even at 10 percent of the compressive strength value. Although strictly applicable only to the conditions of the analyses reported here, the capability for incorporating arbitrary strength combinations in linear or non-linear yield conditions is demonstrated. Computer plots of principal stresses and displacement fields at various stages of the excavation and heating simulation aid in the visualization of repository concept mechanics and show the possible need for additional mesh refinement for more precise stress information

  1. Multiaxial probabilistic elastic-plastic constitutive simulations of soils

    Science.gov (United States)

    Sadrinezhad, Arezoo

    Fokker-Planck-Kolmogorov (FPK) equation approach has recently been developed to simulate elastic-plastic constitutive behaviors of materials with uncertain material properties. The FPK equation approach transforms the stochastic constitutive rate equation, which is a stochastic, nonlinear, ordinary differential equation (ODE) in the stress-pseudo time space into a second-order accurate, deterministic, linear FPK partial differential equation (PDE) in the probability density of stress-pseudo time space. This approach does not suffer from the drawbacks of the traditional approaches such as the Monte Carlo approach and the perturbation approach for solving nonlinear ODEs with random coefficients. In this study, the existing one dimensional FPK framework for probabilistic constitutive modeling of soils is extended to multi--dimension. However, the multivariate FPK PDEs cannot be solved using the traditional mathematical techniques such as finite difference techniques due to their high computational cost. Therefore, computationally efficient algorithms based on the Fourier spectral approach are developed for solving a class of FPK PDEs that arises in probabilistic elasto-plasticity. This class includes linear FPK PDEs in (stress) space and (pseudo) time - having space-independent but time-dependent, and both space- and time-dependent coefficients - with impulse initial conditions and reflecting boundary conditions. The solution algorithms, rely on first mapping the stress space of the governing PDE between 0 and 2pi using the change of coordinates rule, followed by approximating the solution of the PDE in the 2pi-periodic domain by a finite Fourier series in the stress space and unknown time-dependent solution coefficients. Finally, the time-dependent solution coefficients are obtained from the initial condition. The accuracy and efficiency of the developed algorithms are tested. The developed algorithms are used to simulate uniaxial and multiaxial, monotonic and cyclic

  2. Multiaxial fatigue criterion based on parameters from torsion and axial S-N curve

    Directory of Open Access Journals (Sweden)

    M. Margetin

    2016-07-01

    Full Text Available Multiaxial high cycle fatigue is a topic that concerns nearly all industrial domains. In recent years, a great deal of recommendations how to address problems with multiaxial fatigue life time estimation have been made and a huge progress in the field has been achieved. Until now, however, no universal criterion for multiaxial fatigue has been proposed. Addressing this situation, this paper offers a design of a new multiaxial criterion for high cycle fatigue. This criterion is based on critical plane search. Damage parameter consists of a combination of normal and shear stresses on a critical plane (which is a plane with maximal shear stress amplitude. Material parameters used in proposed criterion are obtained from torsion and axial S-N curves. Proposed criterion correctly calculates life time for boundary loading condition (pure torsion and pure axial loading. Application of proposed model is demonstrated on biaxial loading and the results are verified with testing program using specimens made from S355 steel. Fatigue material parameters for proposed criterion and multiple sets of data for different combination of axial and torsional loading have been obtained during the experiment.

  3. Review of Response and Damage of Linear and Nonlinear Systems under Multiaxial Vibration

    Directory of Open Access Journals (Sweden)

    Ed Habtour

    2014-01-01

    Full Text Available A review of past and recent developments in multiaxial excitation of linear and nonlinear structures is presented. The objective is to review some of the basic approaches used in the analytical and experimental methods for kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. In addition, comparison between uniaxial and multiaxial excitations and their impact on a structure’s life-cycles is provided. The importance of understanding failure mechanisms in complex structures has led to the development of a vast range of theoretical, numerical, and experimental techniques to address complex dynamical effects. Therefore, it is imperative to identify the failure mechanisms of structures through experimental and virtual failure assessment based on correctly identified dynamic loads. For that reason, techniques for mapping the dynamic loads to fatigue were provided. Future research areas in structural dynamics due to multiaxial excitation are identified as (i effect of dynamic couplings, (ii modal interaction, (iii modal identification and experimental methods for flexible structures, and (iv computational models for large deformation in response to multiaxial excitation.

  4. Crack mode and life of Ti-6Al-4V under multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Takamoto Itoh

    2015-10-01

    Full Text Available This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of λ=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. λ is a principal stress ratio and is defined as λ=II/I, where I and II are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at λ=0 is a uniaxial loading test and that at λ=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing λ induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.

  5. Effects of multiaxial cyclic loading conditions on the evolution of porous defects

    Directory of Open Access Journals (Sweden)

    Mbiakop Armel

    2014-06-01

    Full Text Available Multiaxial loading conditions are one of the important parameters in estimating the lifetime of structure both in high and low cycle fatigue ([1 3]. In order to understand the coupling between the macroscopic multiaxial loading and the microscopic defects, we propose to investigate the evolution of an elasto-plastic porous material up to failure under low cycle fatigue conditions. The analysis is performed numerically, using finite elements, on a periodic 3D unit-cell under the assumption of finite strains and subjected to various stress triaxialities, translated as ratios between deviatoric, hydrostatic stress and Lode angles. The present discussion introduces several novel factors in the analysis: (i 3D geometry in cyclic loading (ii finite strains (iii free evolving void shape (iiii different hardening laws. That one of the important factors is the void shape and that its evolution during cyclic loading depends on its multiaxiality. Moreover, these factors will equally influence the apparent macroscopic hardening or softening of the material and the initiation of localized shear zones at the microscopic level. The Lode angle has a significant impact on the evolution of the aspect ratios and the ellipsoidicity of the pores, but has only a weak influence on the evolution of macroscopic variables such as the stress or the porosity. As a consequence, the results show that multiaxiality of the loading have an important on the evolution and growth of defects, pores in the present case problem, but are less important in the definition of the yield surface.

  6. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    Science.gov (United States)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  7. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    Science.gov (United States)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  8. Multiaxial Cycle Deformation and Low-Cycle Fatigue Behavior of Mild Carbon Steel and Related Welded-Metal Specimen

    Directory of Open Access Journals (Sweden)

    Weilian Qu

    2017-01-01

    Full Text Available The low-cycle fatigue experiments of mild carbon Q235B steel and its related welded-metal specimens are performed under uniaxial, in-phase, and 90° out-of-phase loading conditions. Significant additional cyclic hardening for 90° out-of-phase loading conditions is observed for both base metal and its related weldment. Besides, welding process produces extra additional hardening under the same loading conditions compared with the base metal. Multiaxial low-cycle fatigue strength under 90° out-of-phase loading conditions is significantly reduced for both base-metal and welded-metal specimens. The weldment has lower fatigue life than the base metal under the given loading conditions, and the fatigue life reduction of weldment increases with the increasing strain amplitude. The KBM, FS, and MKBM critical plane parameters are evaluated for the fatigue data obtained. The FS and MKBM parameters are found to show better correlation with fatigue lives for both base-metal and welded-metal specimens.

  9. The reliability of child psychiatric diagnosis. A comparison among Danish child psychiatrists of traditional diagnoses and a multiaxial diagnostic system

    DEFF Research Database (Denmark)

    Skovgaard, A M; Isager, T; Jørgensen, O S

    1988-01-01

    The study was conducted to compare an experimental multiaxial diagnostic system (MAS) with traditional multicategorical diagnoses in child psychiatric work. Sixteen written case histories were circulated to 21 child psychiatrists, who made diagnoses independently of one another, using two different...

  10. Fast assessment of the critical principal stress direction for multiple separated multiaxial loadings

    Directory of Open Access Journals (Sweden)

    M. Cova

    2015-07-01

    Full Text Available The critical plane calculation for multiaxial damage assessment is often a demanding task, particularly for large FEM models of real components. Anyway, in actual engineering requests, sometime, it is possible to take advantage of the specific properties of the investigated case. This paper deals with the problem of a mechanical component loaded by multiple, but “time-separated”, multiaxial external loads. The specific material damage is dependent from the max principal stress variation with a significant mean stress sensitivity too. A specifically fitted procedure was developed for a fast computation, at each node of a large FEM model, of the direction undergoing the maximum fatigue damage; the procedure is defined according to an effective stress definition based on the max principal stress amplitude and mean value. The procedure is presented in a general form, applicable to the similar cases.

  11. Optimization of inverse model identification for multi-axial test rig control

    Directory of Open Access Journals (Sweden)

    Müller Tino

    2016-01-01

    Full Text Available Laboratory testing of multi-axial fatigue situations improves repeatability and allows a time condensing of tests which can be carried out until component failure, compared to field testing. To achieve realistic and convincing durability results, precise load data reconstruction is necessary. Cross-talk and a high number of degrees of freedom negatively affect the control accuracy. Therefore a multiple input/multiple output (MIMO model of the system, capturing all inherent cross-couplings is identified. In a first step the model order is estimated based on the physical fundamentals of a one channel hydraulic-servo system. Subsequently, the structure of the MIMO model is optimized using correlation of the outputs, to increase control stability and reduce complexity of the parameter optimization. The identification process is successfully applied to the iterative control of a multi-axial suspension rig. The results show accurate control, with increased stability compared to control without structure optimization.

  12. Multiaxial loading of large-diameter, thin-walled tube rock specimens

    International Nuclear Information System (INIS)

    Hecker, S.S.; Petrovic, J.J.

    1981-01-01

    A large-scale mechanical testing facility permits previously impossible thin-walled tube multiaxial loading experiments on rock materials. Constraints are removed regarding tube wall thickness in relation to rock microstructural features and tube diameter as well as test machine load capacity. Thin-walled tube studies clarify the influence of intermediate principal stress sigma 2 on rock fracture and help define a realistic rock fracture criterion for all multiaxial stressing situations. By comparing results of thin-walled and thick-walled tube fracture investigations, effects of stress gradients can be established. Finally, influence of stress path on rock fracture, an area largely ignored in current rock failure criteria, can be examined in detail using controlled loading changes as well as specimen prestrains

  13. Stress factors for the deformation systems of zirconium under multiaxial stress

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1976-01-01

    Calculation of the resolved shear stresses (rss) that act on various deformation systems in metals and, in particular, the determination of those systems subjected to the highest rss by a given set of multiaxial stresses is of importance in the study of texture development, yielding and plastic flow. This study examines the geometrical influences of any stress state on the deformation modes of zirconium. One slip mode and three twinning modes, comprising twenty-one deformation systems, are considered. Stress factors computed for these systems are shown on a coordinate system that allows specimen orientation, most highly stressed deformation system, and stress factor to be shown without ambiguity. The information in this report allows the determination of the rss that results from any multiaxial stress state; this information also allows the prediction of the deformation modes that might operate for any specimen orientation in that strss state

  14. Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri-Pour, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Jafarian, H.R. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Taieban, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2015-07-15

    Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process.

  15. Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing

    International Nuclear Information System (INIS)

    Montazeri-Pour, M.; Parsa, M.H.; Jafarian, H.R.; Taieban, S.

    2015-01-01

    Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process

  16. Validation of a new multiaxial criteria for creep-fatigue damage evaluation

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Martin, P.

    1989-01-01

    For many years, design codes evaluated creep damage using the Von Mises criterion to take account of multiaxiality of stresses. However, recent studies have confirmed that the Von Mises criterion is overconservative for nonuniaxial stress state. Various criteria have been put forward to take account of the real stress state. This paper describes a criterion which was introduced in 1987 and the various studies which led to its adoption

  17. Determination of the critical plane and durability estimation for a multiaxial cyclic loading

    Science.gov (United States)

    Burago, N. G.; Nikitin, A. D.; Nikitin, I. S.; Yakushev, V. L.

    2018-03-01

    An analytical procedure is proposed to determine the critical plane orientation according to the Findley criterion for the multiaxial cyclic loading. The cases of in-phase and anti-phase cyclic loading are considered. Calculations of the stress state are carried out for the system of the gas turbine engine compressor disk and blades for flight loading cycles. The formulas obtained are used for estimations of the fatigue durability of this essential element of structure.

  18. The effect of multi-axiality on damage with alternating stress

    International Nuclear Information System (INIS)

    Hug, J.; Zenner, H.; Schram, A.

    1992-01-01

    The aim of this project is a better understanding of the development of damage with multi-axial alternating stress. Hollow samples of the materials X6 CrNiTi 18 0 and Ck 15 are submitted to equal phase, phase displaced and consecutively alternating normal and thrust stresses. The amplitude ratio τ/σ is 1/2. Apart from the service life, the cyclic alternating deformation behaviour and the initiation and prapagation of microcracks are examined. (orig./MM) [de

  19. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Yu

    2017-05-01

    Full Text Available As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB and Fatemi-Socie (FS models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  20. Practical application of fracture mechanics with consideration of multiaxiality of stress state to degraded nuclear piping

    International Nuclear Information System (INIS)

    Kussmaul, K.; Blind, D.; Herter, K.H.; Eisele, U.; Schuler, X.

    1995-01-01

    Within the scope of a research project nuclear piping components (T-branches and elbows) with dimensions like the primary coolant lines of PWR plants were investigated. In addition to the experimental full scale tests, extensive numerical calculations by means of the finite element method (FEM) as well as fracture mechanics analyses were performed. The applicability of these methods was verified by comparison with the experimental results. The calculation of fracture mechanics parameters as well as the calculated component stress enabled a statement on crack initiation. The failure behavior could be evaluated by means of the multiaxiality of stress state in the ligament (gradient of the quotient of the multiaxiality of stress state q). With respect to practical application on other pressurized components it is shown how to use the procedure (e.g. in a LBB analysis). A quantitative assessment with regard to crack initiation is possible by comparison of the effective crack initiation value J ieff with the calculated component stress. If the multiaxiality of stress state and the q gradient in the ligament of the fracture ligament of the fracture mechanics specimen and the pressurized component to be evaluated is comparable a quantitative assessment is possible as for crack extension and maximum load. If there is no comparability of the gradients a qualitative assessment is possible for the failure behavior

  1. Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling

    International Nuclear Information System (INIS)

    Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo

    2017-01-01

    Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)

  2. Fatigue Behavior of 2A12 Aluminum Alloy Under Multiaxial Loading

    Directory of Open Access Journals (Sweden)

    CHEN Ya-jun

    2017-08-01

    Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under multiple variables, and the failure mechanism was investigated by scanning electron microscopy (SEM. The results show that under the loading condition of equivalent stress, the fatigue life decreases with the increase of phase angle. For the phase angle 0°, some special features can be observed in the crack initial zone, such as the tire pattern,fishbone pattern and stalactite pattern. There are secondary cracks and vague fatigue striations in the crack propagation zone; the multiaxial fatigue life decreases with the change of mean stress for tension or torsion. Some white flocculent oxides can be found in the crack initiation zone, and secondary crack as well as shear-type elongated dimples in the instantaneous fracture zone; facing different loading waveforms, the multiaxial life of sine wave is the longest, triangle wave in the second place, and the square wave is the shortest, under the loading condition of equivalent stress, square wave leads to the maximum structural energy dissipation. Under the low and high two step loading, 2A12 shows training effect.

  3. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  4. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  5. Micro-vision servo control of a multi-axis alignment system for optical fiber assembly

    International Nuclear Information System (INIS)

    Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin

    2017-01-01

    This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately. (paper)

  6. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  7. Multiaxial creep of tubes from Incoloy 800 H and Inconel 617 under static and cyclic loading conditions

    International Nuclear Information System (INIS)

    Penkalla, H.J.; Nickel, H.; Schubert, F.

    1989-01-01

    At temperatures above 800 0 C the material behaviour under mechanical load is determined by creep. The service of heat exchanging components leads to multiaxial loading conditions. For design and inelastic analysis of the component behaviour time dependent design values and suitable constitutive equations are necessary. The present report gives a survey of the approaches to describing creep under multiaxial loading. Norton's law and v. Mises' theory are applied. The load combinations of internal pressure, tensile and torsional stress are studied more closely, cyclic stress superposition in the tensile-pulsating range is discussed and cases of partial relaxation are examined. Experimental results are presented for the loading conditions discussed, and satisfactory agreement between theory and experiment has been found up to now for these results. Regarding lifetime determination under multiaxial creep load, a more precise analysis of creep damage is presented suggesting a suitable deviatoric stress for evaluation in the long-time range. (orig.)

  8. A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials

    Science.gov (United States)

    Wei, Haoyang

    A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.

  9. Multiaxial creep of tubes of Alloy 800 and Alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Penkalla, H.J.; Schubert, F.; Nickel, H.

    1989-01-01

    The deformation behaviour under multiaxial loading at temperature higher than 800 deg. C is strongly controlled by creep. For dimensioning and inelastic analysis the use of v. Mises theory and Norton's creep law for stationary creep are demonstrated for different combination of internal pressure and axial or torsional stress or strains. The experimental results are in satisfactory agreement with the theoretical predicted deformation behaviour if values for the coefficient k and n in Norton's creep law are used, which are close to the real creep resistance in the component. (author). 11 refs, 12 figs, 2 tabs

  10. Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel

    Czech Academy of Sciences Publication Activity Database

    Mazánová, Veronika; Škorík, Viktor; Kruml, Tomáš; Polák, Jaroslav

    2017-01-01

    Roč. 100, JUL (2017), s. 466-476 ISSN 0142-1123 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic plasticity * Damage mechanism * Multiaxial straining Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016

  11. Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass

    International Nuclear Information System (INIS)

    Blanchard, W.K.; Heldt, L.A.; Koss, D.

    1984-01-01

    A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension

  12. Fatigue of weld ends under combined in- and out-of-phase multiaxial loading

    Directory of Open Access Journals (Sweden)

    E. Shams

    2016-10-01

    Full Text Available Weld start and end points are fatigue failure sensitive locations. Their fatigue behaviour especially in thin sheet structures under multiaxial load conditions is not sufficiently explored so far. Therefore, a research project was initiated to increase the knowledge concerning this topic, which is of special interest in the automotive industry. In the present study, fatigue tests on welded joints were conducted. In the numerical part of the study, notch stresses were calculated with an idealised weld end model. A numerical method which combines the geometrical and statistical size effect to an integrated approach was used, in order to consider the size effects

  13. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    Science.gov (United States)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  14. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati

    2014-04-01

    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  15. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  16. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  17. Slicing algorithms for multi-axis 3-D metal printing of overhangs

    International Nuclear Information System (INIS)

    Lee, Kyu Bok; Jee, Hae Seong

    2015-01-01

    A group of 3D metal printing or Additive metal manufacturing (AMM) processes, officially categorized as 'directed energy deposition (DED)' according to American Society for Testing and Materials (ASTM) classification, has enabled the building of full dense metallic tools and parts using metal powders precisely delivered and controlled with no powder bed. Mold making and metalworking are being taken in an entirely new direction. The overhang/undercut problem in DED processes, as much as other Additive manufacturing (AM) processes, has long remained unsolved, and the ones equipped with more than 3-axis tool mechanism turn out to be capable of depositing overhang/undercut features onto the part to be made. Multi-axis machines introduced for resolving the problem, however, require advanced preprocess software support for the process management that controls multi-axis tool paths. This study proposes slicing algorithms, sophisticatedly designed for the control of the tool paths on a 5-axis base table, to build overhang/undercut features. A methodical approach, using an auto-partitioning algorithm for generating three-dimensional layer (3DL) information, is proposed in this study, and various overhang features, as case studies, have been investigated and implemented by using the proposed method.

  18. ELESTRES: performance of nuclear fuel, circumferential ridging, and multiaxial elastic-plastic stresses in sheaths

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-10-01

    The finite element code ELESTRES models the two-dimensional axisymmetric behaviour of a CANDU fuel element during normal operation. The main focus of the code is to estimate temperatures, fission gas release, and axial variations of deformation/stresses in the pellet and in the sheath. Thus the code is able to predict details like stresses/strains at circumferential ridges. This paper describes the current version of ELESTRES. The emphasis is on a recent addition: multiaxial stresses in the sheath near circumferential ridges. For accuracy in the critical region, a fine mesh is used near the ridge. To keep computing costs low, a coarse mesh is used near the midplane of the pellet. Predictions of ELESTRES show good agreement with abouth 80 measurements of fission-gas-release. In this paper, we also present ELESTRES predictions of hoop strains in sheaths, for two irradiations: element ABS and bundle GB. For both irradiations, predictions, compare favourably with measurements. An illustrative example shows that near circumferential ridges, bending contributes to multiaxial stresses in the sheath. This can have a significant effect on sheath integrity, such as during stress-corrosion-cracking due to power-increases, or during corrosion-assisted-fatigue due to power cycling

  19. Cycle counting procedure for fatigue failure preditions for complicated multi-axial stress histories

    International Nuclear Information System (INIS)

    Jones, D.P.; Friedrich, C.M.; Hoppe, R.G.

    1977-12-01

    A procedure has been developed to determine the cumulative fatigue damage in structures experiencing complicated multi-axial stress histories. The procedure is a generalization of the rainflow method developed by Matsuishi and Endo for one-dimensional situations. It provides a consistent treatment of three-dimensional stress states that is especially suited to computer programming applications for the post-processing of finite element stress data. The procedure includes a unique method to account for the rotation of principal stresses with time during the stress history and for the cumulative fatigue damage resulting from partial stress reversals within a stress cycle. The general procedure and necessary equations for programming are presented. Comparisons are made with life predictions using Section III of the ASME Boiler and Pressure Vessel Code for two hypothetical multi-axial stress histories for which the principal stresses are rotating with time. These comparisons show that the cycle counting method provides a consistent unambiguous interpretation of the fatigue design procedure in the ASME Code for these cases. Finally, the fatigue life of a perforated plate, as analyzed by finite elements, is computed for the combination of several hypothetical stress histories. This example demonstrates the utility of the proposed method when used in conjunction with finite element programs

  20. Slicing algorithms for multi-axis 3-D metal printing of overhangs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Bok; Jee, Hae Seong [Hongik University, Seoul (Korea, Republic of)

    2015-11-15

    A group of 3D metal printing or Additive metal manufacturing (AMM) processes, officially categorized as 'directed energy deposition (DED)' according to American Society for Testing and Materials (ASTM) classification, has enabled the building of full dense metallic tools and parts using metal powders precisely delivered and controlled with no powder bed. Mold making and metalworking are being taken in an entirely new direction. The overhang/undercut problem in DED processes, as much as other Additive manufacturing (AM) processes, has long remained unsolved, and the ones equipped with more than 3-axis tool mechanism turn out to be capable of depositing overhang/undercut features onto the part to be made. Multi-axis machines introduced for resolving the problem, however, require advanced preprocess software support for the process management that controls multi-axis tool paths. This study proposes slicing algorithms, sophisticatedly designed for the control of the tool paths on a 5-axis base table, to build overhang/undercut features. A methodical approach, using an auto-partitioning algorithm for generating three-dimensional layer (3DL) information, is proposed in this study, and various overhang features, as case studies, have been investigated and implemented by using the proposed method.

  1. Experimental study on the Kaiser effect of AE under multiaxial loading in granite

    International Nuclear Information System (INIS)

    Watanabe, Hidehiko; Hiroi, Takehiro

    2012-01-01

    Knowledge of the in-situ stresses is essential for underground excavation design, particularly in evaluating stability of excavation. Acoustic Emission method, which utilizes the Kaiser effect, is one of the simple methods for measuring in-situ stresses. Experiments on the Kaiser effect has been carried out under uniaxial compression and triaxial compression (σ 1 > σ 2 = σ 3 ), but has not been carried out under the three different principal stresses (σ 1 > σ 2 > σ 3 ). In this study, we performed two experiments on the Kaiser effect under multiaxial loading, using a hollow cylindrical granite specimen. The rapidly increasing point of cumulative AE event count was determined as the peak point of AE event count rate increment (AERI). The main results are summarized as follows. (1) In the case of the cyclic incremental σ 1 loading under σ 2 ≠σ 3 , the large peak point of AERI appeared just before the pre-stress level. And as more stresses prior to just before the peak point were estimated, the estimated error showed a tendency to increase. (2) In the case of re-loading under the lower σ 2 and σ 3 more than pre-loading, the estimated stresses using the three peak points of AERI corresponded to the pre-differential stresses (σ 1 -σ 2 ), (σ 1 -σ 3 ) and pre-axial stress σ 1 . The magnitudes of the three principal stresses were estimated under multiaxial loading from the Kaiser effect, using only one specimen. (author)

  2. Multiaxial stress analysis taking account of the penetration depth of x-rays, (1)

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Yoshioka, Yasuo; Kuramoto, Makoto.

    1983-01-01

    The new theory of X-ray multiaxial stress measurement is proposed. This method takes accounts of the influence concerning to the stress gradient and to the dependence of the penetration depth of X-rays upon the incidence angle. As a basic assumption, it's assumed that (1) stress gradient is linear in respect to the depth from the specimen surface, (2) the penetration depth of X-rays shows linear dependence upon sin 2 PSI, and (3) the lattice strain determined by X-rays corresponds to the weighted averaging strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near to the surface is expressed by making use of three surface stresses and six stress gradients in this theory. It was proved that these nine stress elements were able to be solved through X-ray method by applying ''the integral method'' proposed by Lode and Peiter in 1976. The verification of the validity on this method was carried out through the numerical simulation and residual stress measurement of a ground S55C. As a result, it was found that this method could get a satisfactory accuracy. This method can estimate the multiaxial stress distribution within the surface layer nondestructively. (author)

  3. Multiaxial Fatigue Properties of 2A12 Aluminum Alloy Under Different Stress Amplitude Ratio Loadings

    Directory of Open Access Journals (Sweden)

    CHEN Ya-jun

    2017-09-01

    Full Text Available The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under different stress amplitude ratios, the fracture morphology and the fatigue loading curve were observed to study the failure mechanism. The results show that, under the one stage loading condition, the fatigue life prolongs with the stress amplitude ratio increasing. Under pure torsion loading, smooth and even area exists in the fracture surface. As the stress amplitude ratio increases, the number of scratch reduces, the fatigue striation and some special morphology such as the fishbone pattern, scale pattern and honeycomb pattern can be observed; under cumulative paths of different stress amplitude ratios, the variation of multiaxial fatigue life changes with first stage loading cycles; under cumulative paths of high-low stress amplitude ratio, the cycle hardening occurs obviously in the axial direction for the first stage high stress amplitude ratio loading and 2A12 alloy shows training effect.

  4. Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes

    DEFF Research Database (Denmark)

    Quaresimin, M.; Carraro, P.A.; Mikkelsen, Lars Pilgaard

    2014-01-01

    In this work an experimental investigation on damage initiation and evolution in laminates under cyclic loading is presented. The stacking sequence [0/θ2/0/-θ2]s has been adopted in order to investigate the influence of the local multiaxial stress state in the off-axis plies and the possible effect...

  5. Metallographic examinations of Type 304 stainless steel (heat 9T2796) tested in high-temperature uniaxial and multiaxial experiments

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Houck, C.W.

    1984-03-01

    The results obtained from a number of metallographic examinations of Type 304 stainless steel specimens were compiled. Samples were obtained from uniaxial and multiaxial tests covering a very broad span of temperatures and times. Special emphasis was on the identification of failure modes, cracking patterns, grain distortion, and grain-boundary microstructures. Uniaxial specimens exhibited the following sequence of failure modes with increasing temperature and time: ductile plastic tearing, ductile plastic shear, wedge cracking, and microvoid cracking. Over most of the temperature range examined (482 to 871/sup 0/C), M/sub 23/C/sub 6/ precipitated on grain boundaries at long times. Sigma phase and possibly ferrite were often present in the stressed areas at temperatures as low as 482/sup 0/C (900/sup 0/F). These metallurgical features promoted a severe loss in creep ductility at long times and low temperatures. Most multiaxial tests were performed under conditions that promoted wedge cracking. Stress gradients also favored surface crack initiation rather than bulk damage. Testing times for multiaxial tests were less than 10,000 h; hence, there was insufficient time for the development of embrittling features such as microvoids, sigma, and ferrite. Long-time multiaxial tests to failure are recommended.

  6. Simultaneous improvement of strength, ductility and corrosion resistance of Al2024 alloy processed by cryoforging followed by ageing

    International Nuclear Information System (INIS)

    Kumar Singh, Amit; Ghosh, Sumit; Mula, Suhrit

    2016-01-01

    The aim of the present study is to simultaneous improvement of strength and ductility as well as corrosion resistance of ultrafine grained 2024 Al-alloy processed by multiaxial cryoforging (MAF) and cryorolling followed by ageing. The evolution of ultrafine grained microstructure during MAF followed by ageing is investigated using optical and transmission electron microscopy. Both multiaxially forged (MAFed) and cryorolled (CRed) samples showed an improvement in yield strength (YS) with a corresponding decrease in the ductility. Aging treatment not only improved the YS, but also its ductility. Improvement in the ductility after ageing is confirmed by the fractography analysis. Corrosion resistance of the MAFed+aged samples found to be higher compared to that of the MAFed and coarse grained counterpart. The corrosion behavior has been analyzed in the light of open circuit potential (OCP), solutionizing, grain size and precipitation strengthening mechanisms. SEM images of the corroded samples also corroborated the corrosion test results.

  7. Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates; TOPICAL

    International Nuclear Information System (INIS)

    WAHL, NEIL K.; MANDELL, JOHN F.; SAMBORSKY, DANIEL D.

    2002-01-01

    This report addresses the effects of spectrum loading on lifetime and residual strength of a typical fiberglass laminate configuration used in wind turbine blade construction. Over 1100 tests have been run on laboratory specimens under a variety of load sequences. Repeated block loading at two or more load levels, either tensile-tensile, compressive-compressive, or reversing, as well as more random standard spectra have been studied. Data have been obtained for residual strength at various stages of the lifetime. Several lifetime prediction theories have been applied to the results. The repeated block loading data show lifetimes that are usually shorter than predicted by the most widely used linear damage accumulation theory, Miner's sum. Actual lifetimes are in the range of 10 to 20 percent of predicted lifetime in many cases. Linear and nonlinear residual strength models tend to fit the data better than Miner's sum, with the nonlinear providing a better fit of the two. Direct tests of residual strength at various fractions of the lifetime are consistent with the residual strength models. Load sequencing effects are found to be insignificant. The more a spectrum deviates from constant amplitude, the more sensitive predictions are to the damage law used. The nonlinear model provided improved correlation with test data for a modified standard wind turbine spectrum. When a single, relatively high load cycle was removed, all models provided similar, though somewhat non-conservative correlation with the experimental results. Predictions for the full spectrum, including tensile and compressive loads were slightly non-conservative relative to the experimental data, and accurately captured the trend with varying maximum load. The nonlinear residual strength based prediction with a power law S-N curve extrapolation provided the best fit to the data in most cases. The selection of the constant amplitude fatigue regression model becomes important at the lower stress, higher

  8. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    Energy Technology Data Exchange (ETDEWEB)

    Hakoyama, Tomoyuki [Department of Mechanical Systems Engineering, Graduate school of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan); Kuwabara, Toshihiko [Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo, 184-8588 (Japan)

    2013-12-16

    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczyński type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated.

  9. Crack initiation life in notched Ti-6Al-4V titanium bars under uniaxial and multiaxial fatigue: synthesis based on the averaged strain energy density approach

    Directory of Open Access Journals (Sweden)

    Giovanni Meneghetti

    2017-07-01

    Full Text Available The fatigue behaviour of circumferentially notched specimens made of titanium alloy, Ti-6Al-4V, has been analysed. To investigate the notch effect on the fatigue strength, pure bending, pure torsion and multiaxial bending-torsion fatigue tests have been carried out on specimens characterized by two different root radii, namely 0.1 and 4 mm. Crack nucleation and subsequent propagation have been accurately monitored by using the direct current potential drop (DCPD technique. Based on the results obtained from the potential drop technique, the crack initiation life has been defined in correspondence of a relative potential drop increase V/V0 equal to 1%, and it has been used as failure criterion. Doing so, the effect of extrinsic mechanisms operating during crack propagation phase, such as sliding contact, friction and meshing between fracture surfaces, is expected to be reduced. The experimental fatigue test results have been re-analysed by using the local strain energy density (SED averaged over a structural volume having radius R0 and surrounding the notch tip. Finally, the use of the local strain energy density parameter allowed us to properly correlate the crack initiation life of Ti-6Al-4V notched specimens, despite the different notch geometries and loading conditions involved in the tests

  10. A methodology to obtain strain indicators under deep drawing multiaxial stresses. Application to DC-05 electro galvanized steel (UNE in ISO 10130)

    International Nuclear Information System (INIS)

    Miguel, V.; Catalayud, A.; Ferrer, C.

    2007-01-01

    In this work a methodology to investigate deep drawing quality steel sheets deformation tendency under multiaxial deep drawing stresses has been proposed. the method consists in assaying a sheet in a wedge die in order to order to introduce a pure shear estate in the material 0 degree centigree, 45 degree centigree and 90 degree centigree rolling directions are selected in the assays, and transversal strain is the variable considered in them. a strain coefficient 0/% has been defined in order to evaluate thickness variations in the test. almost no changes in thickness have been registered and this indicates that strain carried out in the test is similar to that taking place in deep drawing. The stress necessary for practice a certain plastic deformation is obtained too and a potential function between them is formulated. Indicators presented in this work are compared to anisotropy and strength coefficients obtained in normalized tensile tests. these results allow us to justify the steel behaviour in the cup deep drawing processes related to ear forming. (Author) 11 refs

  11. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  12. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  13. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan

    2015-06-11

    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  14. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    Science.gov (United States)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  15. Fatigue damage assessment under multi-axial non-proportional cyclic loading

    International Nuclear Information System (INIS)

    Mohta, Keshav; Gupta, Suneel K.; Jadhav, P.A.; Bhasin, V.; Vijayan, P.K.

    2016-01-01

    Detailed fatigue analysis is carried out for class I Nuclear Power Plant (NPP) components to rule out the fatigue failure during their design lifetime. ASME Boiler and Pressure Vessel code Section III NB, has provided two schemes for fatigue assessment, one for fixed principal directions (proportional) loading and the other for varying principal directions (non-proportional) loading conditions. Recent literature on multi-axial fatigue tests has revealed lower fatigue lives under nonproportional loading conditions. In an attempt to understand the loading parameter lowering the fatigue life, a finite element based study has been carried out. Here, fatigue damage in a tube has been correlated with the applied axial to shear strain ratio and phase difference between them. The FE analysis has used Chaboche nonlinear kinematic hardening rule to model material's realistic cyclic plastic deformation behavior. The ASME alternating stress intensity (based on linear elastic FEA) and the plastic strain energy dissipation (based on elastic-plastic FEA) have been considered to assess the per cycle fatigue damage. The study has revealed that ASME criteria predicts lower alternating stress intensity (fatigue damage parameter S alt ) for some cases of non-proportional loading than that predicted for corresponding proportional loading case. However, the actual fatigue damage is higher in non-proportional loading than that in corresponding proportional loading case. Further the fatigue damage of an NPP component under realistic multi-axial cyclic loading conditions has been assessed using some popular critical plane based models vis-à-vis ASME Sec. III criteria. (author)

  16. Effect of fibre arrangement on the multiaxial fatigue of fibrous composites: a micromechanical computational model

    Directory of Open Access Journals (Sweden)

    Roberto Brighenti

    2015-10-01

    Full Text Available Structural components made of fibre-reinforced materials are frequently used in engineering applications. Fibre-reinforced composites are multiphase materials, and complex mechanical phenomena take place at limit conditions but also during normal service situations, especially under fatigue loading, causing a progressive deterioration and damage. Under repeated loading, the degradation mainly occurs in the matrix material and at the fibre-matrix interface, and such a degradation has to be quantified for design structural assessment purposes. To this end, damage mechanics and fracture mechanics theories can be suitably applied to examine such a problem. Damage concepts can be applied to the matrix mechanical characteristics and, by adopting a 3-D mixed mode fracture description of the fibre-matrix detachment, fatigue fracture mechanics concepts can be used to determine the progressive fibre debonding responsible for the loss of load bearing capacity of the reinforcing phase. In the present paper, a micromechanical model is used to evaluate the unixial or multiaxial fatigue behaviour of structures with equi-oriented or randomly distributed fibres. The spatial fibre arrangement is taken into account through a statistical description of their orientation angles for which a Gaussian-like distribution is assumed, whereas the mechanical effect of the fibres on the composite is accounted for by a homogenization approach aimed at obtaining the macroscopic elastic constants of the material. The composite material behaves as an isotropic one for randomly distributed fibres, while it is transversally isotropic for unidirectional fibres. The fibre arrangement in the structural component influences the fatigue life with respect to the biaxiality ratio for multiaxial constant amplitude fatigue loading. One representative parametric example is discussed.

  17. Application du concept de maillon faible à un critère d'endurance multiaxial

    Science.gov (United States)

    Flacelière, L.; Morel, F.; Palin-Luc, T.

    2002-12-01

    En fatigue à grand nombre de cycle, il est aujourd'hui admis que la distribution des contraintes, ainsi que la taille des composants, sont responsables de variations de la limite de fatigue. Sous chargement uniaxial ou multiaxial, on peut montrer qu'une approche statistique dite du maillon le plus faible, combiné à un critère multiaxial d'endurance basé sur une analyse micro plastique, permet de prédire la limite de fatigue de plusieurs matériaux métalliques. Quatre types de chargement sont analysés (traction-compression, torsion, flexion rotative et flexion plane), puis comparées aux résultats expérimentaux, pour une fonte et deux aciers haute résistance. L'approche statistique proposée permet d'intégrer un certain nombre d'aspects: la dispersion des données pour tous types de chargement, l'effet de gradient et l'influence de la présence de défauts matériaux. Enfin, ce modèle rend également compte de la diminution de la limite de fatigue avec l'augmentation du volume contraint. Les prédictions des probabilités de rupture sont raisonnables bien que seules des limites de fatigue relatives à des probabilités de rupture de 50% soient utilisées pour l'identification des paramètres du modèle.

  18. Mechanical impedance of the sitting human body in single-axis compared to multi-axis whole-body vibration exposure.

    Science.gov (United States)

    Holmlund, P; Lundström, R

    2001-01-01

    The study was aimed to investigate the mechanical impedance of the sitting human body and to compare data obtained in laboratory single-axis investigations with multi-axis data from in vehicle measurements. The experiments were performed in a laboratory for single-axis measurements. The multi-axis exposure was generated with an eight-seat minibus where the rear seats had been replaced with a rigid one. The subjects in the multi-axis experiment all participated in the single-axis experiments. There are quite a few investigations in the literature describing the human response to single-axis exposure. The response from the human body can be expected to be affected by multi-axis input in a different way than from a single-axis exposure. The present knowledge of the effect of multiple axis exposure is very limited. The measurements were performed using a specially designed force and accelerometer plate. This plate was placed between the subject and the hard seat. Outcome shows a clear difference between mechanical impedance for multi-axis exposure compared to single-axis. This is especially clear in the x-direction where the difference is very large. The conclusion is that it seems unlikely that single-axis mechanical impedance data can be directly transferred to a multi-axis environment. This is due to the force cross-talk between different directions.

  19. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    Science.gov (United States)

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  20. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  1. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-12

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  2. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    Science.gov (United States)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  3. Joined application of a multiaxial critical plane criterion and a strain energy density criterion in low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    Andrea Carpinteri

    2017-07-01

    Full Text Available In the present paper, the multiaxial fatigue life assessment of notched structural components is performed by employing a strain-based multiaxial fatigue criterion. Such a criterion, depending on the critical plane concept, is extended by implementing the control volume concept reated to the Strain Energy Density (SED approach: a material point located at a certain distance from the notch tip is assumed to be the verification point where to perform the above assessment. Such a distance, measured along the notch bisector, is a function of both the biaxiality ratio (defined as the ratio between the applied shear stress amplitude and the normal stress amplitude and the control volume radii under Mode I and Mode III. Once the position of the verification point is determined, the fatigue lifetime is assessed through an equivalent strain amplitude, acting on the critical plane, together with a unique material reference curve (i.e. the Manson-Coffin curve. Some uniaxial and multiaxial fatigue data related to V-notched round bars made of titanium grade 5 alloy (Ti-6Al-4V are examined to validate the present criterion.

  4. Reduced softening of EUROFER 97 under thermo-mechanical and multiaxial fatigue loading and its impact on the design rules

    International Nuclear Information System (INIS)

    Aktaa, J.; Weick, M.; Petersen, C.

    2007-01-01

    Full text of publication follows: Toward test blanket module (TBM) in ITER and DEMO fusion power plants design rules for components built from EUROFER 97 get more and more in the midpoint of interest. One of the specific characteristic of EUROFER 97 as a ferritic-martensitic steel is its cyclic softening yielding to lower stresses under strain controlled fatigue loading and thus longer lifetimes. However our thermo-mechanical and multiaxial fatigue tests showed lifetimes remarkably lower than those expected on the base of isothermal uniaxial fatigue tests. Reduced cyclic softening observed in these experiments is believed as one of the reasons of the shorter fatigue lifetimes. When applying the design rules, derived for EUROFER 97 on the base of isothermal uniaxial data considering the recommendations in the ASME and RCC-MR code, to our thermo-mechanical and multiaxial fatigue tests for verification strong loss in their conservatism has been found. The lifetimes observed in a part of the multiaxial experiments are even lower than the design lifetimes supposed to be sufficiently conservative. To overcome this problem new design rules are proposed among others on the base of damage and lifetime prediction model developed lately for EUROFER 97. In this paper the experimental findings as well as the new design approaches will be presented and discussed. (authors)

  5. Fatigue life determination by damage measuring in SAE 8620 specimens steel subjected to multiaxial experiments in neutral and corrosive environment

    International Nuclear Information System (INIS)

    Silva, Luiz L. da; Filho, Nelson do N.A.; Gomes, Paulo de T.V.; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    Fatigue is the fail phenomenon of a material subjected to cyclic loads. This phenomenon affects any component under loads (forces, temperatures, etc.) that changes in time. When there is a combined load, originating multiaxial fatigue, which is the most of the real loads, worst is the situation. Before the component fail, the fatigue phenomenon produces damages to its material and this is a cumulative process that could not be reduced. In the continuum mechanic context, material damage is defined as a parameter that reduces the component resistance and this could cause its fail. The process of damage measuring by changes in electrical resistance is used in this work, and from experimental results of SAE 8620 steel specimens subjected to multiaxial fatigue in corrosive and neutral environment, the remaining specimen time life could be determined. Each specimen has its initial electrical resistance measured and after a certain number of fatigue cycles stopping points, its electrical resistance was measured again. In order to study multiaxial fatigue in specimens, a machine that induces simultaneously bending and torsional loads in the specimen was developed. Air at the temperature range of 18 deg C and 20 deg C was considered neutral environment. The corrosive environment was a NaCl solution with a concentration of 3,5% in weigh. The experimental results showed that the measuring fatigue damage using the changes in electrical resistance is efficient and that is possible to estimate the effect of a corrosive environment in the fatigue damage. (author)

  6. Role of Inelastic Transverse Compressive Behavior and Multiaxial Loading on the Transverse Impact of Kevlar KM2 Single Fiber

    Directory of Open Access Journals (Sweden)

    Subramani Sockalingam

    2017-02-01

    Full Text Available High-velocity transverse impact of ballistic fabrics and yarns by projectiles subject individual fibers to multi-axial dynamic loading. Single-fiber transverse impact experiments with the current state-of-the-art experimental capabilities are challenging due to the associated micron length-scale. Kevlar® KM2 fibers exhibit a nonlinear inelastic behavior in transverse compression with an elastic limit less than 1.5% strain. The effect of this transverse behavior on a single KM2 fiber subjected to a cylindrical and a fragment-simulating projectile (FSP transverse impact is studied with a 3D finite element model. The inelastic behavior results in a significant reduction of fiber bounce velocity and projectile-fiber contact forces up to 38% compared to an elastic impact response. The multiaxial stress states during impact including transverse compression, axial tension, axial compression and interlaminar shear are presented at the location of failure. In addition, the models show a strain concentration over a small length in the fiber under the projectile-fiber contact. A failure criterion, based on maximum axial tensile strain accounting for the gage length, strain rate and multiaxial loading degradation effects are applied to predict the single-fiber breaking speed. Results are compared to the elastic response to assess the importance of inelastic material behavior on failure during a transverse impact.

  7. Unified strength theory and its applications

    CERN Document Server

    Yu, Mao-Hong

    2004-01-01

    This is a completely new theory dealing with the yield and failure of materials under multi-axial stresses. It provides a system of yield and failure criteria adopted for most materials, from metallic materials to rocks, concretes, soils, polymers etc. The Unified Strength Theory has been applied successfully to analyse the elastic limit, plastic limit capacities, the dynamic response behavior for some structures under static and moderate impulsive load, and may be implemented in some elasto-plastic finite element computer codes. The Unified Strength Theory is described in detail and by using this theory a series of results can be obtained. The Unified Strength Theory can improve the conservative Mohr-Coulomb Theory, and since intermediate principal stress is not taken into account in the Mohr-Coulomb theory and most experimental data is not pertainable to the Mohr-Coulomb Theory, a considerable economic benefit may be obtained. The book can also increase the effect of most commercial finite element computer ...

  8. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  9. Increased multiaxial lumbar motion responses during multiple-impulse mechanical force manually assisted spinal manipulation

    Directory of Open Access Journals (Sweden)

    Gunzburg Robert

    2006-04-01

    Full Text Available Abstract Background Spinal manipulation has been found to create demonstrable segmental and intersegmental spinal motions thought to be biomechanically related to its mechanisms. In the case of impulsive-type instrument device comparisons, significant differences in the force-time characteristics and concomitant motion responses of spinal manipulative instruments have been reported, but studies investigating the response to multiple thrusts (multiple impulse trains have not been conducted. The purpose of this study was to determine multi-axial segmental and intersegmental motion responses of ovine lumbar vertebrae to single impulse and multiple impulse spinal manipulative thrusts (SMTs. Methods Fifteen adolescent Merino sheep were examined. Tri-axial accelerometers were attached to intraosseous pins rigidly fixed to the L1 and L2 lumbar spinous processes under fluoroscopic guidance while the animals were anesthetized. A hand-held electromechanical chiropractic adjusting instrument (Impulse was used to apply single and repeated force impulses (13 total over a 2.5 second time interval at three different force settings (low, medium, and high along the posteroanterior axis of the T12 spinous process. Axial (AX, posteroanterior (PA, and medial-lateral (ML acceleration responses in adjacent segments (L1, L2 were recorded at a rate of 5000 samples per second. Peak-peak segmental accelerations (L1, L2 and intersegmental acceleration transfer (L1–L2 for each axis and each force setting were computed from the acceleration-time recordings. The initial acceleration response for a single thrust and the maximum acceleration response observed during the 12 multiple impulse trains were compared using a paired observations t-test (POTT, alpha = .05. Results Segmental and intersegmental acceleration responses mirrored the peak force magnitude produced by the Impulse Adjusting Instrument. Accelerations were greatest for AX and PA measurement axes. Compared to

  10. Study of failure criterion applicable to elastic-plastic finite element analyses of wall-thinned pipes subjected to multi-axial loading. Case for groove type flaw under combined internal pressure and bending loading

    International Nuclear Information System (INIS)

    Mori, Kosuke; Meshii, Toshiyuki

    2015-01-01

    In this paper, a failure criterion applicable to large-strain finite element analysis (FEA) results was studied to predict the limit bending load M_c of the groove shaped wall-thinned pipes, under combined internal pressure and bending load, that experienced cracking. In our previous studies, Meshii and Ito (2012) considered cracking of pipes with groove shaped flaw (small axial length δ_z in Fig. 1) was due to the plastic instability at the wall-thinned section and proposed the Domain Collapse Criterion (DCC). The DCC could predict M_c of cracking for small δ_z by comparing the von Mises stress σ_M_i_s_e_s with the true tensile strength σ_B. Because the discrepancy in prediction of the M_c in the case of cracking was within 15%, it was considered that the predictability was could be improved further. Thus, in this work, attempt was made to improve the accuracy of M_c prediction with a perspective that multi-axial stress state might affect this plastic instability at the wall-thinned section. As a result of examination of the various failure criteria based on multi-axial stress, it was confirmed that the limit bending load of the groove flawed pipe that experienced cracking in experiment (Hereafter, it was expressed 'flawed pipe that experienced cracking') could be predicted within 5% accuracy by applying Hill's plastic instability onset criterion (Hill, 1952) to the outer surface of the crack penetration section. The accuracy of the predicted limit bending load was improved from DCC's within 15% to within 5%. (author)

  11. Probabilistic multi-scale models and measurements of self-heating under multiaxial high cycle fatigue

    International Nuclear Information System (INIS)

    Poncelet, M.; Hild, F.; Doudard, C.; Calloch, S.; Weber, B.

    2010-01-01

    Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)

  12. Probabilistic multi-scale models and measurements of self-heating under multiaxial high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Poncelet, M.; Hild, F. [Univ Paris 11, PRES, Univ Paris 06, LMT Cachan, ENS Cachan, CNRS, F-94235 Cachan (France); Doudard, C.; Calloch, S. [Univ Brest, ENIB, ENSIETA, LBMS EA 4325, F-29806 Brest, (France); Weber, B. [ArcelorMittal Maizieres Res Voie Romaine, F-57283 Maizieres Les Metz (France)

    2010-07-01

    Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)

  13. Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame

    Science.gov (United States)

    Sadeghian, Vahid; Kwon, Oh-Sung; Vecchio, Frank

    2017-10-01

    This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shearcritical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.

  14. Development of a Very High Cycle Fatigue (VHCF multiaxial testing device

    Directory of Open Access Journals (Sweden)

    M. Vieira

    2016-07-01

    Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.

  15. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  16. Identification of Time-Varying Pilot Control Behavior in Multi-Axis Control Tasks

    Science.gov (United States)

    Zaal, Peter M. T.; Sweet, Barbara T.

    2012-01-01

    Recent developments in fly-by-wire control architectures for rotorcraft have introduced new interest in the identification of time-varying pilot control behavior in multi-axis control tasks. In this paper a maximum likelihood estimation method is used to estimate the parameters of a pilot model with time-dependent sigmoid functions to characterize time-varying human control behavior. An experiment was performed by 9 general aviation pilots who had to perform a simultaneous roll and pitch control task with time-varying aircraft dynamics. In 8 different conditions, the axis containing the time-varying dynamics and the growth factor of the dynamics were varied, allowing for an analysis of the performance of the estimation method when estimating time-dependent parameter functions. In addition, a detailed analysis of pilots adaptation to the time-varying aircraft dynamics in both the roll and pitch axes could be performed. Pilot control behavior in both axes was significantly affected by the time-varying aircraft dynamics in roll and pitch, and by the growth factor. The main effect was found in the axis that contained the time-varying dynamics. However, pilot control behavior also changed over time in the axis not containing the time-varying aircraft dynamics. This indicates that some cross coupling exists in the perception and control processes between the roll and pitch axes.

  17. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study

    International Nuclear Information System (INIS)

    Luyckx, G; Voet, E; De Waele, W; Degrieck, J

    2010-01-01

    Embedded optical fibre sensors are considered in numerous applications for structural health monitoring purposes. However, since the optical fibre and the host material in which it is embedded, will have different material properties, strain in both materials will not be equal when load is applied. Therefore, the multi-axial strain transfer from the host material to the embedded sensor (optical fibre) has to be considered in detail. In the first part of this paper the strain transfer will be determined using finite element modelling of a circular isotropic glass fibre embedded first in an isotropic host and second in an anisotropic composite material. The strain transfer or relation depends on the mechanical properties of the host material and the sensor (Young's modulus and Poisson's ratio), on the lay-up of the composite material (uni-directional lay-up/cross-ply lay-up) and the position of the sensor in a certain layer. In the second part of the paper the developed strain transfer model will be evaluated for one specific lay-up and sensor type

  18. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  19. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    International Nuclear Information System (INIS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-01-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel ® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes

  20. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup ®} 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  1. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.

    Science.gov (United States)

    Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos

    2017-06-05

    Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.

  2. Developing Parametric Models for the Assembly of Machine Fixtures for Virtual Multiaxial CNC Machining Centers

    Science.gov (United States)

    Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.

    2018-01-01

    This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.

  3. A Tri-modal 2024 Al -B4C composites with super-high strength and ductility: Effect of coarse-grained aluminum fraction on mechanical behavior

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2014-12-01

    Full Text Available In this study, ultrafine grained 2024 Al alloy based B4C particles reinforced composite was produced by mechanical milling and hot extrusion. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50h. A similar process was used to produce Al2024-5%wt. B4C composite powder. To produce trimodal composites, milled powders were combined with coarse grained aluminum in 30 and 50 wt% and then were exposed to hot extrusion at 570°C. The microstructure of hot extruded samples were studied by optical microscope, Transmission electron microscope (TEM and scanning electron microscope (SEM equipped with EDS spectroscopy. The mechanical properties of samples were compared by using tensile, compression and hardness tests. The results showed that the strength, after 50 h milling and addition of 5wt% B4C, increased from 340 to 582 MPa and the hardness increased from 87 HBN to 173 HBN, but the elongation decreased from 14 to 0.5%. By adding the coarse-grained aluminum powder, the strength and hardness decreased slightly, but the increases in return. Ductility increase is the result of increase in dislocation movements and strength increase is the result of restriction in plastic deformation by nanostructured regions. Furthermore, the strength and hardness of trimodal composites were higher, but their ductility was lower.

  4. Multiaxial creep of fine grained 0.5Cr-0.5Mo-0.25V and coarse grained 1Cr-0.5Mo steels

    International Nuclear Information System (INIS)

    Browne, R.J.; Flewitt, P.E.J.; Lonsdale, D.

    1991-01-01

    To explore the multiaxial creep response of materials used for electrical power generating plant, two steels, a fine grained 0.5Cr-0.5Mo-0.25V steel in a normalised and tempered condition with high creep ductility and a coarse grained 1Cr-0.5Mo steel in a quenched and tempered condition with low uniaxial creep ductility, have been selected. A range of multiaxial stress testing techniques which span the stress states that would allow identification of any technique dependent variables has been used. The deformation and failure of the normalised and tempered 0.5Cr-0.5Mo-0.25V steel for a range of multiaxial test techniques and, therefore, stress states may be described by an equivalent stress criterion. The results from the multiaxial tests carried out on the fully bainitic 1Cr-0.5Mo steel show that the multiaxial stress rupture criterion (MSRC) varies with stress state; at high triaxiality (notch), it is controlled by the maximum principal stress, whereas at low triaxiality (shear) it is dependent on both maximum principal stress and equivalent stress. Furthermore, a simple description of stress state based on maximum principal and equivalent stress does not define this uniquely, since the MSRC derived from uniaxial and torsion testing does not describe the failure of notch, tube, or double shear tests. (author)

  5. Topology optimization of reinforced concrete structures considering control of shrinkage and strength failure

    DEFF Research Database (Denmark)

    Luo, Yangjun; Wang, Michael Yu; Zhou, Mingdong

    2015-01-01

    To take into account the shrinkage effect in the early stage of Reinforced Concrete (RC) design, an effective continuum topology optimization method is presented in this paper. Based on the power-law interpolation, shrinkage of concrete is numerically simulated by introducing an additional design......-dependent force. Under multi-axial stress conditions, the concrete failure surface is well fitted by two Drucker-Prager yield functions. The optimization problem aims at minimizing the cost function under yield strength constraints on concrete elements and a structural shrinkage volume constraint. In conjunction...... to ensure the structural safety under the combined action of external loads and shrinkage....

  6. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu

    2015-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  7. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna

    2016-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  8. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2006-05-01

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage

  9. Multiaxial stress analysis taking account of penetration depth of x-rays, 3

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.

    1985-01-01

    In the past X-ray stress analysis in which the effect of stress gradients was taken into account within the penetration depth of X-rays, three assumptions have been made; 1) the stress gradient is linear in respect to the depth from the specimen surface, 2) the penetration depth of X-ray is a function of Sin 2 PSI and 3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. A problem, however, still remains on the assumption of the X-ray penetration depth. We sometimes observed noticiable errors in the stage of the numerical simulation and these errors depend on the combination of stress components in a stress tensor. In the present paper, we proposed a new X-ray multiaxial stress analysis without using the assumption of the X-ray penetration depth. This analysis is also applicable to both the iso-inclination method ( OHM -goniometer) and the side inclination method (PSI-goniometer). The weighted average strain by X-rays, 1 >(phi), is expressed as a 4th degree function of cosPSI for iso-inclination method and 3rd degree for side inclination method. By rearranging this function as a sum of average strain, ( 1 >(0 0 )+ 1 >(90 0 )), and difference of average strain, ( 1 >(0 0 )- 1 >(90 0 )), we can solve the stress components with sufficient accuracy by a least squares method. The validity of this method was proved through numerical simulations and experiments. (author)

  10. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, William H. [Meadow End Farm, Farnham (United Kingdom)

    2006-05-15

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage.

  11. Model-based framework for multi-axial real-time hybrid simulation testing

    Science.gov (United States)

    Fermandois, Gaston A.; Spencer, Billie F.

    2017-10-01

    Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six

  12. Multi-axial correction system in the treatment of radial club hand.

    Science.gov (United States)

    Bhat, Suneel B; Kamath, Atul F; Sehgal, Kriti; Horn, B David; Hosalkar, Harish S

    2009-12-01

    Radial club hand is a well-recognized congenital malformation characterized by hypoplasia of bone and soft tissue on the radial aspect of the forearm and hand. The modalities of treatment have traditionally varied from stretching casts with soft-tissue procedures to the use of multiple corrective osteotomies. These osteotomies can be stabilized by a variety of methods, including external fixators that allow the possibility of gradual distraction with neohistiogenesis. This current study outlines the usage of one such device (multi-axial correction system [MAC]) in the management of deformity associated with severe radial club hand. Three consecutive cases of unilateral or bilateral severe (Bayne type IV) congenital radial club hand were corrected using MAC fixation in the last 5 years. This is a retrospective review of all three cases. Data parameters included: patient demographics, presentation findings, degree of deformity, amount of correction/lengthening, length of procedure, length of treatment, and associated complications. The surgical technique is described in detail for the benefit of the readership. The three patients with severe congenital radial club hand had a total of four limb involvements that underwent correction using osteotomies and usage of the MAC device for external fixation. All three patients underwent successful correction of deformity with the restoration of alignment, lengthening of forearm for improvement of function, and stabilization of the wrist (mean duration, mean lengthening, mean time to consolidation). The MAC system was well tolerated in all patients and associated complications were limited. The MAC fixator seems to be a good alternative modality of stabilization and correction for severe congenital radial club hand deformities. Its usage is fairly simple and it provides the ease of application of a mono-lateral fixator with far superior three-dimensional control, like the circular external fixator. We recommend that

  13. A multi-axis MEMS sensor with integrated carbon nanotube-based piezoresistors for nanonewton level force metrology

    International Nuclear Information System (INIS)

    Cullinan, Michael A; Panas, Robert M; Culpepper, Martin L

    2012-01-01

    This paper presents the design and fabrication of a multi-axis microelectromechanical system (MEMS) force sensor with integrated carbon nanotube (CNT)-based piezoresistive sensors. Through the use of proper CNT selection and sensor fabrication techniques, the performance of the CNT-based MEMS force sensor was increased by approximately two orders of magnitude as compared to current CNT-based sensor systems. The range and resolution of the force sensor were determined as 84 μN and 5.6 nN, respectively. The accuracy of the force sensor was measured to be better than 1% over the device’s full range. (paper)

  14. Safety assessment of reactor components under complex multiaxial cyclic loading. Final report; Sicherheitsbewertung kerntechnischer Komponenten bei komplexer, mehrachsiger Schwingbeanspruchung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fesich, Thomas M.; Herter, Karl-Heinz; Schuler, Xaver

    2012-12-15

    Objective of the project was the experimental assurance of investigations on the theoretical basis of multiaxial fatigue loading. The review of the applicability of existing hypotheses, as well as the extension of the corresponding data base was carried out by experimental studies in fatigue tests under complex multiaxial loading for a ferritic and austenitic material. To investigate the influence of complex multiaxial stress conditions on the fatigue behavior, in this project notched cylindrical specimens were examined under alternating tensile/pressure loading and alternating torsional loading. Through the notch in the notched section inhomogeneous, multiaxial stress states are generated. By uniaxial alternating tests on unnotched specimens and a further series of tests on unnotched specimens under alternating torsional loading an evaluation of the impact and influence of the notch of stress on fatigue behavior was possible. A series of experiments with superimposition of alternating torsional and alternating tensile/pressure loading permits verification of the effect of phase-shifted stress and rotating principal coordinate system. All experiments were performed at room temperature. As part of the research project, the experimental results with the ferritic and austenitic materials were evaluated in terms of material behavior (hardening or softening) under cyclic loading. These were to uniaxial alternating tensile/pressure tests, alternating torsional tests (unnotched cylindrical specimens), alternating tensile/pressure tests on notched cylindrical specimens, alternating torsional tests on notched cylindrical specimens, alternating tensiontorsion tests with complex proportional stresses on unnotched cylindrical specimens (superimposition of normal and shear stress components), as well as alternating tension-torsion tests with complex non-proportional strain on unnotched cylindrical specimens (superimposition of normal and shear stress components with 90 phase

  15. Multiaxial fatigue criterion for 2-1/4 Cr-1 Mo steel for use in high-temperature structural design

    International Nuclear Information System (INIS)

    Blass, J.J.

    1990-01-01

    An improved multiaxial fatigue failure criterion is described that is based on a definition of equivalent inelastic strain range incorporating the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained by the method of least squares from the results of combined axial-torsional strain cycling test of 2--1/4 Cr-1 Mo steel conducted at 538 degrees C (1000 degrees F). The ability of this criterion to correlate the test results was compared with that of the Mises equivalent inelastic strain range criterion and was found to be superior. A procedure is described for calculating the required shear and normal components of strain range under general multiaxial strain cycling conditions. An improved definition of equivalent total strain range based on these considerations is directly applicable to the method of estimating fatigue damage in ASME Code Case N-47. 17 refs., 5 figs., 1 tab

  16. Damage development - effects of multiaxial loads on creep pore formation and fatigue damage in typical power plant steels. Final report

    International Nuclear Information System (INIS)

    Lenk, P.; Proft, D.; Kussmaul, A.; Fischer, R.

    2000-01-01

    The influence of multiaxial stress on creep pore formation in the steels 14MoV6-3 10CrMo9-10 and X10CrMoVNb9-1 was investigated on the basis of internal pressure experiments on smooth and notched hollow cylinders. In some cases, additional axial forces were applied in order to reproduce component-relevant multiaxial stresses. Local elongation during loading was investigated and analyzed using applied HT-DMS. When different strain levels had been reached, the samples were removed, analyzed, and characterized with regard to different damage parameters. It was found that no interdependence between the surface damage pattern and the deep damage pattern can be derived across the wall thickness if no information on the load state is available. Parallel to the experiments, inelastic FEA were carried out using the ABAQUS program system. The creep law of Graham and Walles was used for calculating flow and creep via a user-defined subroutine CREEP. The parameters of the creep law could be identified by adaptation to monoaxial creep tests [de

  17. Role of multiaxial stress state in the hydrogen-assisted rolling-contact fatigue in bearings for wind turbines

    Directory of Open Access Journals (Sweden)

    J. Toribio

    2015-07-01

    Full Text Available Offshore wind turbines often involve important engineering challenges such as the improvement of hydrogen embrittlement resistance of the turbine bearings. These elements frequently suffer the so-called phenomenon of hydrogen-assisted rolling-contact fatigue (HA-RCF as a consequence of the synergic action of the surrounding harsh environment (the lubricant supplying hydrogen to the material and the cyclic multiaxial stress state caused by in-service mechanical loading. Thus the complex phenomenon could be classified as hydrogen-assisted rolling-contact multiaxial fatigue (HA-RC-MF. This paper analyses, from the mechanical and the chemical points of view, the so-called ball-on-rod test, widely used to evaluate the hydrogen embrittlement susceptibility of turbine bearings. Both the stress-strain states and the steady-state hydrogen concentration distribution are studied, so that a better elucidation can be obtained of the potential fracture places where the hydrogen could be more harmful and, consequently, where the turbine bearings could fail during their life in service.

  18. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery.

    Science.gov (United States)

    Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A

    2013-11-01

    A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. A generic validation methodology and its application to a set of multi-axial creep damage constitutive equations

    International Nuclear Information System (INIS)

    Xu Qiang

    2005-01-01

    A generic validation methodology for a set of multi-axial creep damage constitutive equations is proposed and its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel which is featured as brittle or intergranular rupture. The objective of this research is to develop a methodology to guide systematically assess the quality of a set of multi-axial creep damage constitutive equations in order to ensure its general applicability. This work adopted a total quality assurance approach and expanded as a Four Stages procedure (Theories and Fundamentals, Parameter Identification, Proportional Load, and Non-proportional load). Its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel and this material is chosen due to its industry importance, the popular use of KRH type of constitutive equations, and the available qualitative experimental data including damage distribution from notched bar test. The validation exercise clearly revealed the deficiencies existed in the KRH formulation (in terms of mathematics and physics of damage mechanics) and its incapability to predict creep deformation accurately. Consequently, its use should be warned, which is particularly important due to its wide use as indicated in literature. This work contributes to understand the rational for formulation and the quality assurance of a set of constitutive equations in creep damage mechanics as well as in general damage mechanics. (authors)

  20. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-01

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  1. Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg

    Directory of Open Access Journals (Sweden)

    Ivan Demšar, Jože Duhovnik, Blaž Lešnik, Matej Supej

    2015-12-01

    Full Text Available The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW, various skiing regimes were simulated. Change of Flexion Angle (CoFA and Range of Motion (RoM in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1° was significantly lower compared to an intact leg (5.9 ± 1.8° and the control group (6.5 ± 2.3°. In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2° was significantly larger than that of the intact leg (34.7 ± 4.4°. The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing.

  2. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    Science.gov (United States)

    Friedel, M. J.; Asch, T. H.; Oden, C.

    2012-08-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot-Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the

  3. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    Science.gov (United States)

    Friedel, M.J.; Asch, T.H.; Oden, C.

    2012-01-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot–Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the

  4. Novel systems for the application of isolated tensile, compressive, and shearing stimulation of distraction callus tissue.

    Directory of Open Access Journals (Sweden)

    Nicholaus Meyers

    Full Text Available Distraction osteogenesis is a procedure widely used for the correction of large bone defects. However, a high complication rate persists, likely due to insufficient stability during maturation. Numerical fracture healing models predict bone regeneration under different mechanical conditions allowing fixation stiffness optimization. However, most models apply a linear elastic material law inappropriate for the transient stresses/strains present during limb lengthening or segment transport. They are also often validated using in vivo osteotomy models lacking precise mechanical regulation due to the unavoidable stimulation of secondary interfragmentary motion during ambulation under finitely stiff fixation. Therefore, in order to create a robust numerical model of distraction osteogenesis, it is necessary to both characterize the new tissue's viscoelasticity during distraction and determine the influence of strictly isolated stimulation in each loading mode (tension, compression, and shear to account for potential differences in mechanical and histological response.Two electromechanical fixators with integrated load cells were designed to precisely perform and monitor in vivo lateral distraction and isolated stimulation in sheep tibiae using a mobile, hydroxyapatite-coated titanium plate. The novel surgical procedure circumvents osteotomy, eliminating the undesirable and unquantifiable mechanical stimulation during ambulation.After a 10-day post-surgery latency period, two 0.275 mm distraction steps were performed daily for 10 days. The load cell collected data before, during, and after each distraction step and was terminated after no less than one minute from the time of distraction. A 7-day consolidation period separated the distraction phase and 18-day stimulation phase. Stimulation was carried out in isolated tension, compression, or shear while recording force/time data. Each stimulation session consisted of 120 cycles with a magnitude of either 0.1 mm or 0.6 mm in the tension and compression groups and 1.0 mm in the shear group. The animals were euthanized after a 3-day holding period following stimulation.Our initial results show that the tissue progressively stiffens and maintains an increasingly large residual traction. The force curves during compressive stimulation show a progressive drift from compression toward tension. We hypothesize that this behavior may be due to the preferential flow of fluid outward from the tissue and a greater resistance to reabsorption during the plate's return to the starting position.

  5. Concrete for PCRVs: strength of concrete under triaxial loading and creep at elevated temperatures

    International Nuclear Information System (INIS)

    Linse, D.; Aschl, H.; Stoeckl, S.

    1975-01-01

    To provide detailed information for the calculation of prestressed concrete reactor vessels, investigations of the behaviour of concrete under multiaxial loading and on creep at elevated temperatures were made at the Institut fuer Massivbau of the Technical University of Munich. The strength of concrete under triaxial compression is dependent on the stress ratio. The less the stresses differ from hydrostatic compression the more strength increases. Triaxial compression increases very much the deformability of concrete. Plastic deformations of +-10% and more (all stresses compression, but not equal, strains compression or tension) are possible without large cracks. The creep deformations are considerably dependent on the temperature. Creep at 80 0 C is about three to four times higher than at 20 0 C. The Poisson's ratio of creep at elevated temperature seems to be bigger than at normal temperatures at a rate of loading of 35% and 50% of the ultimate strength. (Auth.)

  6. The effect of a multi-axis suspension on whole body vibration exposures and physical stress in the neck and low back in agricultural tractor applications.

    Science.gov (United States)

    Kim, Jeong Ho; Dennerlein, Jack T; Johnson, Peter W

    2018-04-01

    Whole body vibration (WBV) exposures are often predominant in the fore-aft (x) or lateral (y) axis among off-road agricultural vehicles. However, as the current industry standard seats are designed to reduce mainly vertical (z) axis WBV exposures, they may be less effective in reducing drivers' exposure to multi-axial WBV. Therefore, this laboratory-based study aimed to determine the differences between a single-axial (vertical) and multi-axial (vertical + lateral) suspension seat in reducing WBV exposures, head acceleration, self-reported discomfort, and muscle activity (electromyography) of the major muscle of the low back, neck and shoulders. The results showed that the multi-axial suspension seat had significantly lower WBV exposures compared to the single-axial suspension seats (p' suspension seat had lower head acceleration and muscle activity of the neck, shoulder, and low back compared to the single-axial suspension seat; some but not all of the differences were statistically significant. These results indicate that the multi-axial suspension seat may reduce the lateral WBV exposures and associated muscular loading in the neck and low back in agricultural vehicle operators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Attitude Strength.

    Science.gov (United States)

    Howe, Lauren C; Krosnick, Jon A

    2017-01-03

    Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.

  8. Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg

    Science.gov (United States)

    Demšar, Ivan; Duhovnik, Jože; Lešnik, Blaž; Supej, Matej

    2015-01-01

    The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key points The RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects. The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects. The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the

  9. Issues in the assessment of personality disorder and substance abuse using the Millon Clinical Multiaxial Inventory (MCMI-II).

    Science.gov (United States)

    Flynn, P M; McCann, J T; Fairbank, J A

    1995-05-01

    Substance abuse treatment clients often present other severe mental health problems that affect treatment outcomes. Hence, screening and assessment for psychological distress and personality disorder are an important part of effective treatment, discharge, and aftercare planning. The Millon Clinical Multiaxial Inventory-II (MCMI-II) frequently is used for this purpose. In this paper, several issues of concern to MCMI-II users are addressed. These include the extent to which MCMI-II scales correspond to DSM-III-R disorders; overdiagnosis of disorders using the MCMI-II; accuracy of MCMI-II diagnostic cut-off scores; and the clinical utility of MCMI-II diagnostic algorithms. Approaches to addressing these issues are offered.

  10. Prediction of pilot opinion ratings using an optimal pilot model. [of aircraft handling qualities in multiaxis tasks

    Science.gov (United States)

    Hess, R. A.

    1977-01-01

    A brief review of some of the more pertinent applications of analytical pilot models to the prediction of aircraft handling qualities is undertaken. The relative ease with which multiloop piloting tasks can be modeled via the optimal control formulation makes the use of optimal pilot models particularly attractive for handling qualities research. To this end, a rating hypothesis is introduced which relates the numerical pilot opinion rating assigned to a particular vehicle and task to the numerical value of the index of performance resulting from an optimal pilot modeling procedure as applied to that vehicle and task. This hypothesis is tested using data from piloted simulations and is shown to be reasonable. An example concerning a helicopter landing approach is introduced to outline the predictive capability of the rating hypothesis in multiaxis piloting tasks.

  11. Dynamics of thin-film piezoelectric microactuators with large vertical stroke subject to multi-axis coupling and fabrication asymmetries

    Science.gov (United States)

    Choi, Jongsoo; Wang, Thomas; Oldham, Kenn

    2018-01-01

    The high performance and small size of MEMS based scanners has allowed various optical imaging techniques to be realized in a small form factor. Many such devices are resonant scanners, and thus their linear and nonlinear dynamic behaviors have been studied in the past. Thin-film piezoelectric materials, in contrast, provide sufficient energy density to achieve both large static displacements and high-frequency resonance, but large deformation can in turn influence dynamic scanner behavior. This paper reports on the influence of very large stroke translation of a piezoelectric vertical actuator on its resonant behavior, which may not be otherwise explained fully by common causes of resonance shift such as beam stiffening or nonlinear forcing. To examine the change of structural compliance over the course of scanner motion, a model has been developed that includes internal forces from residual stress and the resultant additional multi-axis coupling among actuator leg structures. Like some preceding vertical scanning micro-actuators, the scanner of this work has four legs, with each leg featuring four serially connected thin-film PZT unimorphs that allow the scanner to generate larger than 400 µm of vertical displacement at 14 V DC. Using an excitation near one or more resonances, the input voltage can be lowered, and complementary multi-axis rotations can be also generated, but change of the resonant frequencies with scanner height needs to be understood to maximize scanner performance. The presented model well predicts the experimental observation of the decrease of the resonant frequencies of the scanner with the increase of a dc bias voltage. Also, the effects of the magnitude and uniformity of residual stress across the scanner structure on the natural frequencies have been studied.

  12. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    Science.gov (United States)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  13. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  14. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  15. Constitutive Relations of Randomly Oriented Steel Fiber Reinforced Concrete under Multiaxial Compressive Loadings,

    Science.gov (United States)

    1981-12-01

    xe yz Tzy + ay* Tzx Txz + Oz y 1; ryxIL 335 Pa = atmospheric pressure (positive) in the same (5.46) units as the stresses (Compression Positiv e...straight * "Fibercon" fibers. Quantitative values of the strengths with percentage improvements over the same plain concrete mix properties are given

  16. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  17. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling.

    Science.gov (United States)

    Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B

    2017-11-01

    Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Directory of Open Access Journals (Sweden)

    Lihang Feng

    Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  19. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    Science.gov (United States)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  20. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    Science.gov (United States)

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  1. Thermal isocreep curves obtained during multi-axial creep tests on recrystallized Zircaloy-4 and M5™ alloy

    International Nuclear Information System (INIS)

    Rautenberg, M.; Poquillon, D.; Pilvin, P.; Grosjean, C.; Cloué, J.M.; Feaugas, X.

    2014-01-01

    Zirconium alloys are widely used in the nuclear industry. Several components, such as cladding or guide tubes, undergo strong mechanical loading during and after their use inside the pressurized water reactors. The current requirements on higher fuel performances lead to the developing on new Zr based alloys exhibiting better mechanical properties. In this framework, creep behaviors of recrystallized Zircaloy-4 and M5™, have been investigated and then compared. In order to give a better understanding of the thermal creep anisotropy of Zr-based alloys, multi-axial creep tests have been carried out at 673 K. Using a specific device, creep conditions have been set using different values of β = σ zz /σ θθ , σ zz and σ θθ being respectively the axial and hoop creep stresses. Both axial and hoop strains are measured during each test which is carried out until stationary creep is stabilized. The steady-state strain rates are then used to build isocreep curves. Considering the isocreep curves, the M5™ alloy shows a largely improved creep resistance compared to the recrystallized Zircaloy-4, especially for tubes under high hoop loadings (0 < β < 1). The isocreep curves are then compared with simulations performed using two different mechanical models. Model 1 uses a von Mises yield criterion, the model 2 is based on a Hill yield criterion. For both models, a coefficient derived from Norton law is used to assess the stress dependence

  2. The Strength Compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...

  3. Time-dependent deformation of concrete under multiaxial stress conditions. Final report

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1975-10-01

    An investigation was made on the time-dependent deformation behavior of concrete in the presence of temperature, moisture, and loading conditions similar to those encountered in a prestressed concrete reactor vessel (PCRV). This investigation encompassed one concrete strength (6000 psi at 28 days), three aggregate types (chert, limestone, and graywacke), one cement (Type II), two types of specimens (as-cast and air-dried), two levels of temperature during test (73 and 150 0 F), and four types of loading (uniaxial, hydrostatic, biaxial, and triaxial). This effort was intended primarily as a data report; the experimental procedures and results are presented in detail. A comprehensive evaluation of the effects of various parameters and their interactions on the behavior of concrete is not included. However, a number of general comparisons were made concerning the effect of the various test conditions on concrete behavior. Based on this limited evaluation of the data, general conclusions and recommendations for additional work were formulated

  4. The effects of a multi-axis balance board intervention program in an elderly population.

    Science.gov (United States)

    Dougherty, John; Kancel, Anne; Ramar, Cassandra; Meacham, Crystal; Derrington, Stephen

    2011-01-01

    Balance is a major issue facing the geriatric population. Nine participants from a local community center for seniors completed a five-week study to assess improvement in balance. Measures of balance, performance times, and scores on the Berg Balance Scale (BBS) and the Wii Fit Age (WFA) were recorded before and after the entire intervention. An analysis of variance (ANOVA) with repeated measures was used to assess change in BBS and WFA scores. An analysis of covariance with repeated measures was used to asses the impact of possible contributing factors of age, gender, BMI and total balance board training time over the five-week period. The analysis indicated that use of the Indo Balance Board three times a week for ten minutes can significantly improve balance and potentially decrease the risk of falls, as measured by the BBS. Age was the only factor that significantly influenced balance (p = .006). These improvements are postulated to be due to an increase in subjects' core and lower extremity muscle strength and improved proprioception; a result of balance board usage.

  5. The strength compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...

  6. Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy

    Directory of Open Access Journals (Sweden)

    P. Wang

    2006-01-01

    Full Text Available During the second FORMAT (FORMaldehyde as A Tracer of oxidation in the troposphere campaign in 2003 the airborne multi-axis DOAS instrument (AMAXDOAS performed scattered-light spectroscopic measurements of SO2 over the city of Mantova and the power plant Porto Tolle, both situated in the Po-valley, Northern Italy. The SO2 vertical columns and emission flux were derived from two days of measurements, 26 and 27 September 2003. The SO2 emission flux from the power plant Porto Tolle was calculated to 1.93×1025 molec s-1 on 26 September and in good agreement with official emission data, which quote 2.25×1025 molec s-1. On 27 September the measured flux was much lower (3.77×1024 molec s-1 if ECMWF wind data are used, but of comparable magnitude (2.4×1025 molec s-1 if the aircraft on-board wind measurements are utilised. Official emission data was 2.07×1025 molec s-1 indicating only a small change from the previous day. Over the city of Mantova, the observed SO2 vertical columns were 1.1×1016 molec cm-2 and 1.9×1016 molec cm-2 on 26 and 27 September, respectively. This is in good agreement with ground-based measurements of 5.9 ppbv and 10.0 ppbv which correspond to 1.2×1016 molec cm-2 and 2.2×1016 molec cm-2 if a well mixed boundary layer of 500m altitude is assumed.

  7. X-ray multiaxial stress analysis by means of polynomial approximation and an application to plane stress problem

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.

    1984-01-01

    A new polynomial approximation method was proposed for the X-ray multiaxial stress analysis, in which the effect of stress gradient along the penetration depth of X-rays was taken into account. Three basic assumptions were made; (1) the stress gradient is linear in respect to the depth from the specimen surface, (2) the ponetration depth of X-rays is a function of Sin 2 phi and (3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near the surface was expressed by making use of three surface stresses and six stress gradients in the present method. The average strains by X-rays were approximated by the third order polynomial equations of sin 2 phi using a least square method at several phi angles on the coordinate system of specimen. Since the coefficients of these polynomials include these nine stress components mentioned above, it is possible to solve them as simultaneous equations. The calculating process of this method is simpler than that of the integral method. An X-ray plane stress problem was analyzed as an application of the present method, and the residual stress distribution on a shot-peened steel plate was actually measured by use of Cr-Kα X-rays to verify the analysis. The result showed that the compressive residual stress near the surface determined by the present method was smaller than the weighted average stress by the Sin 2 phi method because of the steep stress gradient. The present method is useful to obtain a reasonable value of stress for such a specimen with steep stress gradients near the surface. (author)

  8. Assessment of laserbeam-welded tubular overlap joints made of magnesium and aluminium under multiaxial loading; Bemessung laserstrahlgeschweisster Ueberlappverbindungen aus Magnesium und Aluminium unter mehrachsiger Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Exel, Nora; Wiebesiek, Jens; Sonsino, Cetin Morris [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit (LBF), Darmstadt (Germany); Hanselka, Holger [Fraunhofer-Institut fuer Betriebsfestigkeit und Systemzuverlaessigkeit (LBF), Darmstadt (Germany); Technische Univ. Darmstadt (Germany). Fachgebiet ' ' Systemzuverlaessigkeit und Maschinenakustik' '

    2013-07-01

    The present paper compares the wrought light-metal alloys AlMg3.5Mn and MgAl3Zn1 based on the fatigue behaviour of laserbeam-welded overlapped tubular joints. The experiments were carried out under pure axial, pure torsional and combined proportional as well as nonproportional loading. The test results were assessed by applying the notch stress concept with a reference radius of r{sub ref} = 0,05 mm and compared with allowable stresses taken from a standard. Finally, two stress based multiaxial hypothesis are compared to each other based on the test results. (orig.)

  9. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  10. Multi-axial model of anisotropic damage: numerical management of failure and application to the ruin of reinforced concrete structures under impact

    International Nuclear Information System (INIS)

    Leroux, A.

    2012-01-01

    The objective of this research thesis is to develop the most precise possible numeric modelling of reinforced concrete behaviour with application to the design of structures of protection of nuclear plants against violent dynamic loadings (explosions, impacts). After a discussion of existing models, of their benefits and weaknesses, a multi-axial model of anisotropic damage is proposed and implemented with the finite element method. A new procedure of failure management is also proposed which allows the induced anisotropic damage to be taken into account. Impact tests on concrete beams and concrete cubes with longitudinal steel have been performed in order to validate the model [fr

  11. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-01-01

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  12. Retrieval of Vertical Aerosol and Trace Gas Distributions from Polarization Sensitive Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    Science.gov (United States)

    Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich

    2017-04-01

    An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.

  13. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    -being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...

  14. Give Me Strength.

    Institute of Scientific and Technical Information of China (English)

    维拉

    1996-01-01

    Mort had an absolutely terrible day at the office.Everythingthat could go wrong did go wrong.As he walked home he could beheard muttering strange words to himself:“Oh,give me strength,give me strength.”Mort isn’t asking for the kind of strength thatbuilds strong muscles:he’s asking for the courage or ability to

  15. Cyclic deformation behaviour of quenched and tempered AISI 4140 at two-step tensile-compressive-loading

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, V.; Lang, K.-H.; Voehringer, O.; Macherauch, E. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Werkstoffkunde 1

    1997-08-30

    The cyclic deformation behaviour in stress-controlled two-step experiments with one or more changes between two blocks of certain lengths and amplitudes was investigated at the technically important steel AISI 4140 (German grade 42 CrMo 4). In all two-step experiments cyclic worksoftening behaviour is found. The degree of work softening is discussed in comparison to single-step experiments. In several cases effects of static strain-ageing can be found. (orig.) 10 refs.

  16. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  17. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  18. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  19. Interviewing to Understand Strengths

    Science.gov (United States)

    Hass, Michael R.

    2018-01-01

    Interviewing clients about their strengths is an important part of developing a complete understanding of their lives and has several advantages over simply focusing on problems and pathology. Prerequisites for skillfully interviewing for strengths include the communication skills that emerge from a stance of not knowing, developing a vocabulary…

  20. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Tasnim [North Carolina State Univ., Raleigh, NC (United States); Lissenden, Cliff [Penn State Univ., University Park, PA (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  1. Experimental study and simulation of transformation induced plasticity, and multiphase behaviour of the 16MND5 vessel steel under aniso-thermal multiaxial loading

    International Nuclear Information System (INIS)

    Coret, M.

    2001-01-01

    This work deals with the aniso-thermal multiphase behaviour of the French vessel steel and more specially about the transformation plasticity in the cases of multiaxial non-proportional loadings paths. The first part of this report is devoted to the presentation of a high temperature tension-torsion experimental device enable of obtaining a large range of cooling rate. This experimental set-up is used to explore the transformation plasticity under proportional or non-proportional loading paths, during austenitic, bainitic and martensitic transformations. The results of the tests are compared to the Leblond's model. In the last part, we propose a two-scale behaviour model in which the type of each phase behaviour can be different. This meso-model is finally used to simulate two real tests on structures. (author) [fr

  2. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    2015-01-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  3. Potential fatigue strength improvement of AA 5083-H111 notched parts by wire brush hammering: Experimental analysis and numerical simulation

    International Nuclear Information System (INIS)

    Sidhom, Naziha; Moussa, Naoufel Ben; Janeb, Sameh; Braham, Chedly; Sidhom, Habib

    2014-01-01

    Highlights: • Wire brush hammering increases by 20% the AA 5083-H111 notched parts fatigue limit. • Improvement of fatigue strength is related to the fatigue cracks nucleation. • Fatigue strength prediction accounts for wire brush hammering effects. - Abstract: The effects of milling as machining process and a post-machining treatment by wire-brush hammering, on the near surface layer characteristics of AA 5083-H111 were investigated. Surface texture, work-hardening and residual stress profiles were determined by roughness measurement, scanning electron microscope (SEM) examinations, microhardness and X-ray diffraction (XRD) measurements. The effects of surface preparation on the fatigue strength were assessed by bending fatigue tests performed on notched samples for two loading stress ratios R 0.1 and R 0.5 . It is found that the bending fatigue limit at R 0.1 and 10 7 cycles is 20% increased, with respect to the machined surface, by wire-brush hammering. This improvement was discussed on the basis of the role of surface topography, stabilized residual stress and work-hardening on the fatigue-crack network nucleation and growth. The effects biaxial residual stress field and surface work-hardening were taken into account in the finite element model. A multi-axial fatigue criterion was proposed to predict the fatigue strength of aluminum alloy notched parts for both machined and treated states

  4. Multiaxial fatigue criteria for AISI 304 and 2-1/4 Cr-1 Mo steel at 5380C with applications to strain-range partitioning and linear summation of creep and fatigue damage

    International Nuclear Information System (INIS)

    Blass, J.J.

    1982-01-01

    An improved multiaxial fatigue failure criterion was developed based on the results of combined axial-torsional strain cycling tests of AISI 304 and 2-1/4 Cr-1 Mo steel conducted at 538 0 C (1000 0 F). The formulation of this criterion involves the shear and normal components of inelastic strain range on the planes of maximum inelastic shear strain range. Optimum values of certain parameters contained in the formulation were obtained for each material by the method of least squares. The ability of this criterion to correlate the test results was compared with that of the usual (Mises) equivalent inelastic strain range criterion. An improved definition of equivalent inelastic strain range resulting from these considerations was used to generalize the theory of Strain Range Partitioning to multiaxial stress-strain conditions and was also applied to the linear summation of creep and fatigue damage

  5. Strength of Fibrous Composites

    CERN Document Server

    Huang, Zheng-Ming

    2012-01-01

    "Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.

  6. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  7. Hand grip strength

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian

    2002-01-01

    in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...

  8. Fulltext PDF

    Indian Academy of Sciences (India)

    Admin

    and methods of replication therefore offer a promising opportu- nity. It opens up a .... Mantle surface is in direct contact with the organism and mantle. Shell growth ... tensile, compressive, flexural strength and stiffness as compared to other ...

  9. Probe tests microweld strength

    Science.gov (United States)

    1965-01-01

    Probe is developed to test strength of soldered, brazed or microwelded joints. It consists of a spring which may be adjusted to the desired test pressure by means of a threaded probe head, and an indicator lamp. Device may be used for electronic equipment testing.

  10. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  11. A Study on Structural, Corrosion, and Sensitization Behavior of Ultrafine and Coarse Grain 316 Stainless Steel Processed by Multiaxial Forging and Heat Treatment

    Science.gov (United States)

    Kiahosseini, Seyed Rahim; Mohammadi Baygi, Seyyed Javad; Khalaj, Gholamreza; Khoshakhlagh, Ali; Samadipour, Razieh

    2018-01-01

    Cubic specimens from AISI 316 stainless steel were multiaxially forged to 15 passes and annealed at 1200 °C for 1, 2, and 3 h and finally sensitized at 700 °C for 24 h. Examination of samples indicated that the hardness of the annealed samples was reduced from 153 to 110, 81, and 74 HV for as-received sample and under 1, 2, and 3 h of annealing, and increased from 245 to 288 HV for samples forged at 3 and 7 passes. However, no significant changes were observed in a large number of passes and at about 300 HV. Degree of sensitization of samples was increased to approximately 27.3% at 3-h annealing but reduced to 1.23% by 15 passes of MF. The potentiodynamic polarization test shows that the breakdown potentials decreased with annealing time from 0.6 to - 102 (mV/SCE) for as-received and 3-h annealed specimen. These potentials increased to approximately - 16.5 mV with the increase in MF passes to 15. These observations indicated that the chromium carbide deposition affects Cr-depleted zone, which can subsequently affect the degree of sensitization and pitting corrosion resistance of AISI 316 austenitic stainless steel.

  12. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  13. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  14. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  15. Corium crust strength measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: lomperski@anl.gov; Farmer, M.T. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4840 (United States)], E-mail: farmer@anl.gov

    2009-11-15

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  16. Strength capability while kneeling.

    Science.gov (United States)

    Haslegrave, C M; Tracy, M F; Corlett, E N

    1997-12-01

    Work sometimes has to be carried out kneeling, particularly where jobs are performed in confined spaces as is common for miners, aircraft baggage handlers and maintenance workers. In order to assess the risks in performing forceful tasks under such conditions, data is needed on strength capabilities of kneeling subjects. A study was undertaken to measure isometric strength in single-handed exertions for male subjects and to investigate the effects on this of task layout factors (direction of force exertion, reach distance, height of the workpiece and orientation relative to the subject's sagittal plane). The data has been tabulated to show the degree to which strength may be reduced in different situations and analysis of the task factors showed their influence to be complex with direction of exertion and reach distance having the greatest effect. The results also suggest that exertions are weaker when subjects are kneeling on two knees than when kneeling on one knee, although this needs to be confirmed by direct experimental comparison.

  17. Strengths only or strengths and relative weaknesses? A preliminary study.

    Science.gov (United States)

    Rust, Teri; Diessner, Rhett; Reade, Lindsay

    2009-10-01

    Does working on developing character strengths and relative character weaknesses cause lower life satisfaction than working on developing character strengths only? The present study provides a preliminary answer. After 76 college students completed the Values in Action Inventory of Strengths (C. Peterson & M. E. P. Seligman, 2004), the authors randomly assigned them to work on 2 character strengths or on 1 character strength and 1 relative weakness. Combined, these groups showed significant gains on the Satisfaction With Life Scale (E. Diener, R. A. Emmons, R. J. Larsen, & S. Griffin, 1985), compared with a 32-student no-treatment group. However, there was no significant difference in gain scores between the 2-strengths group and the 1-character-strength-and-1-relative-character-weakness group. The authors discuss how focusing on relative character weaknesses (along with strengths) does not diminish-and may assist in increasing-life satisfaction.

  18. Strength Training: For Overall Fitness

    Science.gov (United States)

    Healthy Lifestyle Fitness Strength training is an important part of an overall fitness program. Here's what strength training can do for ... is a key component of overall health and fitness for everyone. Lean muscle mass naturally diminishes with ...

  19. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  20. Experimental strength evaluation of cylinders with a flat head subjected to internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, Mitsuru; Makino, Yutaka

    1978-01-01

    The experiments using component test models such as a cylinder with a flat head and F.E.M. elastic analyses to investigate the secondary stress, peak stress and creep-fatigue interaction effect are described. The comparison of uniaxial stress with multiaxial stress about deformation and strength at elevated temperatures are also described here. The results of experiments and analysis are summarized as follows: (1) The maximum stress as the equivalent stress is the most suitable for the prediction of the creep failure life of cylinders subjected to internal pressure using the uniaxial creep test results. And the Mises's equivalent stress is the suitable for this prediction using the data of the onset of the uniaxial tertiary creep. (2) In the creep characteristics of the cylinder there, is no tertiary creep stage, and the rupture elongation of the cylinder accords with the elongation of the onset of the uniaxial tertiary creep. (3) It was recognized that the secondary stress occurred at the corner of the cylinder with a flat head has a little effect on creep and creep-fatigue life. (4) The life reduction effect due to the creep-fatigue interaction around the corner was recognized by the linear damage rule and compared with the value of Code Case 1592. (5) A difference of failure modes by imposed conditions for vessel with the size-discontinuity section was recognized by the cyclic internal pressure tests with hold time. (author)

  1. Thermo-mechanical fatigue behaviour of the near-{gamma}-titanium aluminide alloy TNB-V5 under uniaxial and multiaxial loading

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, Stephen Peter

    2009-12-19

    With increasing environmental awareness and the general need to economise on the use of fossil fuels, there is growing pressure for industry to produce lighter, more efficient, gas turbine engines. One such material that will help to achieve these improvements is the intermetallic gamma titanium aluminide ({gamma}-TiAl) alloy. At only half the density of current nickel-based superalloys its weight saving capability is highly desirable, however, its mechanical properties have not yet been fully explored especially, when it is to be considered for structural components in aeronautical gas turbine engines. Critical components in these engines typically experience large variations in temperatures and multiaxial states of stress under non-isothermal conditions. These stress states are known as tri-axial thermo-mechanical fatigue (TMF). The work presented here investigates the effects these multi-axial stresses, have on a {gamma}-TiAl, (Ti-45Al-5Nb-0.2B-0.2C) alloy under TMF conditions. The uniaxial, torsional and axialtorsional TMF behaviour of this {gamma}-TiAl alloy have been examined at 400 - 800 C with strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted at both thermomechanical in-phase (IP) and out-of-phase (OP). Selected tests additionally contained a 180 seconds hold period. Fatigue lifetimes are strongly influenced by the strain amplitude, a small increase in amplitude reduces the lifetime considerably. The uniaxial IP tests showed significantly longer fatigue lifetimes than of all the tests performed. Torsional loading although have shorter fatigue lifetimes than the uniaxial IP loading they have longer fatigue lifetimes than the uniaxial OP loading. The non-proportional axial-torsional 90 degree OP test is most damaging which resulted in a shorter lifetime than the uniaxial OP test with the same Mises equivalent mechanical strain amplitude. A hold period at maximum temperatures reduced the lifetime for all tests regardless of the temperature

  2. Material laws for room temperature and high temperature, automatic adaptation to experimental data sets and applications to components under multiaxial stress; Stoffgesetze fuer Raum- und Hochtemperatur, automatisierte Anpassung an experimentelle Datensaetze und Anwendungen auf mehrachsig belastete Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Mohrmann, R.

    1998-12-01

    Models of materials mechanics were applied and improved, and a universal method for adapting the model parameters was developed. Measurements of several steels were processed by this method. The efficiency of the models and method was established by a comparison with measurements of components under multiaxial stress and components with FEA predictions. [German] Im Rahmen dieser Arbeit wurden werkstoffmechanische Modelle angewendet und weiterentwickelt. Fuer diese Modelle wurde eine universelle Methode zur Anpassung der Modellparameter entwickelt. Es wurden Messergebnisse verschiedener Stahlwerkstoffe mit dieser Methode bearbeitet. Die Leistungsfaehigkeit der untersuchten Modelle bzw. der entwickelten Methode wurde durch den Vergleich von Messergebnissen mehrachsig belasteter Komponenten bzw. Bauteilen mit Finite-Element Vorhersagen nachgewiesen. (orig.)

  3. Gaussian discriminating strength

    Science.gov (United States)

    Rigovacca, L.; Farace, A.; De Pasquale, A.; Giovannetti, V.

    2015-10-01

    We present a quantifier of nonclassical correlations for bipartite, multimode Gaussian states. It is derived from the Discriminating Strength measure, introduced for finite dimensional systems in Farace et al., [New J. Phys. 16, 073010 (2014), 10.1088/1367-2630/16/7/073010]. As the latter the new measure exploits the quantum Chernoff bound to gauge the susceptibility of the composite system with respect to local perturbations induced by unitary gates extracted from a suitable set of allowed transformations (the latter being identified by posing some general requirements). Closed expressions are provided for the case of two-mode Gaussian states obtained by squeezing or by linearly mixing via a beam splitter a factorized two-mode thermal state. For these density matrices, we study how nonclassical correlations are related with the entanglement present in the system and with its total photon number.

  4. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  5. Institutional Strength in Depth

    International Nuclear Information System (INIS)

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  6. Loading Conditions and Longitudinal Strength

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1995-01-01

    Methods for the calculation of the lightweight of the ship.Loading conditions satisfying draught, trim and intact stability requirements and analysis of the corresponding stillwater longitudinal strength.......Methods for the calculation of the lightweight of the ship.Loading conditions satisfying draught, trim and intact stability requirements and analysis of the corresponding stillwater longitudinal strength....

  7. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  8. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  9. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  10. Strength Training and Your Child

    Science.gov (United States)

    ... in organized sports or activities such as baseball, soccer, or gymnastics usually can safely to start strength ... as biking and running, adequate hydration, and healthy nutrition. Reviewed by: Mary L. Gavin, MD Date reviewed: ...

  11. Characteristics of structural loess strength and preliminary framework for joint strength formula

    OpenAIRE

    Rong-jian Li; Jun-ding Liu; Rui Yan; Wen Zheng; Sheng-jun Shao

    2014-01-01

    The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress (Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural lo...

  12. Higher efficiency by direct driven spindles with sensorless controlled engine speed in multi-axial machine tools for the timber industry; Verbesserte Energieeffizienz durch direktangetriebene winkelgeberlose drehzahlgeregelte Spindeln bei Mehrachsbohrkoepfen fuer die holzverarbeitende Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Teisch, Arthur; Obernolte, Urs; Borcherding, Holger [Hochschule Ostwestfalen Lippe, Lemgo (Germany)

    2009-07-01

    The multi-axial machine tools work mainly with spindles, who are powered by a central motor with a gearbox. These drives have a relative little power efficiency. Due to the progress of the magnetic material it was possible to change the central motor with gear box by small direct driven spindles. Cause of the very high efficiency of the permanentmagnet synchronous machine (PMSM), it is the best option for the new application. With the option of the sensorless control of the rotor speed the costs for an encoder are saved too. With the good efficiency of the PMSM the overall degree of efficiency could be raised by about 70%. Because of the reduced investment, service and energy costs the new systems are more economical to operate. (orig.)

  13. Multiaxial fatigue of cast aluminium EN AC-42000 T6 (G-AlSi7Mg0.3 T6 for automotive safety components under constant and variable amplitude loading

    Directory of Open Access Journals (Sweden)

    C.M. Sonsino

    2016-07-01

    Full Text Available Regarding the fatigue behaviour of EN AC-42000 T6 (A 356 T6, which is the most frequently used cast aluminium alloy for automotive safety components, especially under non-proportional constant and variable normal and shear stress amplitudes with changing principal stress directions, a poor level of knowledge was available. The reported investigations show that, under non-proportional normal and shear stresses, fatigue life is increased in contrast to ductile steels where life is reduced due to changing principal stress directions. This behaviour caused by the low ductility of this alloy (e < 10% compared to quenched and tempered steels suggests the application of the Normal (Principal Stress Hypothesis (NSH. For all of the investigated stress states under multiaxial constant and variable (Gaussian spectrum amplitudes without and with mean stresses, the NSH was able to depict the life increase by the non-proportionality and delivered, for most cases, conservative but non-exaggerated results.

  14. Reactive Strength Index: A Poor Indicator of Reactive Strength?

    Science.gov (United States)

    Healy, Robin; Kenny, Ian; Harrison, Drew

    2017-11-28

    The primary aim was to assess the relationships between reactive strength measures and associated kinematic and kinetic performance variables achieved during drop jumps. A secondary aim was to highlight issues with the use of reactive strength measures as performance indicators. Twenty eight national and international level sprinters, consisting of fourteen men and women, participated in this cross-sectional analysis. Athletes performed drop jumps from a 0.3 m box onto a force platform with dependent variables contact time (CT), landing time (TLand), push-off time (TPush), flight time (FT), jump height (JH), reactive strength index (RSI, calculated as JH / CT), reactive strength ratio (RSR, calculated as FT / CT) and vertical leg spring stiffness (Kvert) recorded. Pearson's correlation test found very high to near perfect relationships between RSI and RSR (r = 0.91 to 0.97), with mixed relationships found between RSI, RSR and the key performance variables, (Men: r = -0.86 to -0.71 between RSI/RSR and CT, r = 0.80 to 0.92 between RSI/RSR and JH; Women: r = -0.85 to -0.56 between RSR and CT, r = 0.71 between RSI and JH). This study demonstrates that the method of assessing reactive strength (RSI versus RSR) may be influenced by the performance strategies adopted i.e. whether an athlete achieves their best reactive strength scores via low CTs, high JHs or a combination. Coaches are advised to limit the variability in performance strategies by implementing upper and / or lower CT thresholds to accurately compare performances between individuals.

  15. Lifting strength in two-person teamwork.

    Science.gov (United States)

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  16. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  17. Development of experimental concepts for investigating the strength behavior of fine-grained cohesive soil in the Spacelab/space shuttle zero-g environment

    Science.gov (United States)

    Bonaparte, R.; Mitchell, J. K.

    1981-01-01

    Three different sets of tests are proposed for the NASA Spacelab experimental program. The first of tests, designed to measure the true cohesion of several different soils, would be carried out in space through use of a specially prepared direct shear apparatus. As part of this first series of tests, it is recommended that a set of drained unconfined compression tests be performed terrestrially on the same soils as tested in space. A form of the direct tension test is planned to measure the true tensile strength of the same types of soils used in the first series of tests. The direct tension tests could be performed terrestrially. The combined results of the direct shear tests, direct tension tests, and unconfined compression tests can be used to construct approximate failure envelopes for the soils tested in the region of the stress origin. Relationships between true cohesion and true tensile strength can also be investigated. In addition, the role of physio-chemical variables should be studied. The third set of tests involves using a multiaxial cubical or true triaxial test apparatus to investigate the influence of gravity induced fabric anisotropy and stress nonhomogeneities on the stress strain behavior of cohesive soils at low effective stress levels. These tests would involve both in space and terrestrial laboratory testing.

  18. Strength and life under creeping

    International Nuclear Information System (INIS)

    Pospishil, B.

    1982-01-01

    Certain examples of the application of the Lepin modified creep model, which are of interest from technical viewpoint, are presented. Mathematical solution of the dependence of strength limit at elevated temperatures on creep characteristics is obtained. Tensile test at elevated temperatures is a particular case of creep or relaxation and both strength limit and conventional yield strength at elevated temperatures are completely determined by parameters of state equations during creep. The equation of fracture summing during creep is confirmed not only by the experiment data when stresses change sporadically, but also by good reflection of durability curve using the system of equations. The system presented on the basis of parameters of the equations obtained on any part of durability curve, permits to forecast the following parameters of creep: strain, strain rate, life time, strain in the process of fracture. Tensile test at elevated temperature is advisable as an addition when determining creep curves (time-strain curves) [ru

  19. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Directory of Open Access Journals (Sweden)

    Ivo Stachiv

    2015-11-01

    Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  20. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo; Fang, T.-H.; Chen, T.-H.

    2015-01-01

    Roč. 5, č. 11 (2015), s. 1-14, č. článku 117140. ISSN 2158-3226 R&D Projects: GA ČR GC15-13174J Institutional support: RVO:68378271 Keywords : nanomechanical resonators * carbon nanotubes * tensile force * real-time * frequency * spectrometry * liquid Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.444, year: 2015

  1. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  2. Strength Properties of Aalborg Clay

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Nielsen, Benjaminn Nordahl; Augustesen, Anders Hust

    glacial time are characterised by the absence of this mussel. These deposits are named Aalborg Clay and Aalborg Sand. In the city of Aalborg, a fill layer superposes Aalborg Clay. This layer is at some places found to be 6m thick. This fill layer does not provide sufficient bearing capacity, which has...... resulted in many damaged buildings in Aalborg. To provide sufficient bearing capacity it is therefore necessary either to remove the fill or to construct the building on piles. Both methods imply that the strength of Aalborg Clay is important for the construction. This paper evaluates the strength...

  3. Topological strength of magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Ramos, J.G.G.S.; Rodrigues, E.I.B.

    2017-02-01

    This work deals with magnetic structures that attain integer and half-integer skyrmion numbers. We model and solve the problem analytically, and show how the solutions appear in materials that engender distinct, very specific physical properties, and use them to describe their topological features. In particular, we found a way to model skyrmion with a large transition region correlated with the presence of a two-peak skyrmion number density. Moreover, we run into the issue concerning the topological strength of a vortex-like structure and suggest an experimental realization, important to decide how to modify and measure the topological strength of the magnetic structure.

  4. Strengths, Weaknesses, Opportunities and Threats

    NARCIS (Netherlands)

    Bull, J.W.; Jobstvogt, N.; Böhnke-Henrichs, A.; Mascarenhas, A.; Sitas, N.; Baulcomb, C.; Lambini, C.K.; Rawlins, M.; Baral, H.; Zähringer, J.; Carter-Silk, E.; Balzan, M.V.; Kenter, J.O.; Häyhä, T.; Petz, K.; Koss, R.

    2016-01-01

    The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an

  5. Polynomial expansions and transition strengths

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1980-01-01

    The subject is statistical spectroscopy applied to determining strengths and strength sums of excitation processes in nuclei. The focus will be on a ds-shell isoscalar E2 study with detailed shell-model results providing the standard for comparison; similar results are available for isovector E2 and M1 and E4 transitions as well as for single-particle transfer and ν +- decay. The present study is intended to serve as a tutorial for applications where shell-model calculations are not feasible. The problem is posed and a schematic theory for strengths and sums is presented. The theory is extended to include the effect of correlations between H, the system Hamiltonian, and theta, the excitation operator. Associated with correlation measures is a geometry that can be used to anticipate the goodness of a symmetry. This is illustrated for pseudo SU(3) in the fp-shell. Some conclusions about fluctuations and collectivity that one can deduce from the statistical results for strengths are presented

  6. On strength of porous material

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1999-01-01

    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...

  7. Strengths, weaknesses, opportunities and threats

    DEFF Research Database (Denmark)

    Bull, Joseph William; Jobstvogt, N.; Böhnke-Henrichs, A.

    2016-01-01

    The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an assess...

  8. Comparing strengths of beliefs explicitly

    NARCIS (Netherlands)

    Ghosh, S.; de Jongh, D.

    2013-01-01

    Inspired by a similar use in provability logic, formulas p > B q and p ≥ B q are introduced in the existing logical framework for discussing beliefs to express that the strength of belief in p is greater than (or equal to) that in q. Besides its usefulness in studying the properties of the concept

  9. Strength training for the warfighter.

    Science.gov (United States)

    Kraemer, William J; Szivak, Tunde K

    2012-07-01

    Optimizing strength training for the warfighter is challenged by past training philosophies that no longer serve the modern warfighter facing the "anaerobic battlefield." Training approaches for integration of strength with other needed physical capabilities have been shown to require a periodization model that has the flexibility for changes and is able to adapt to ever-changing circumstances affecting the quality of workouts. Additionally, sequencing of workouts to limit over-reaching and development of overtraining syndromes that end in loss of duty time and injury are paramount to long-term success. Allowing adequate time for rest and recovery and recognizing the negative influences of extreme exercise programs and excessive endurance training will be vital in moving physical training programs into a more modern perspective as used by elite strength-power anaerobic athletes in sports today. Because the warfighter is an elite athlete, it is time that training approaches that are scientifically based are updated within the military to match the functional demands of modern warfare and are given greater credence and value at the command levels. A needs analysis, development of periodized training modules, and individualization of programs are needed to optimize the strength of the modern warfighter. We now have the knowledge, professional coaches and nonprofit organization certifications with continuing education units, and modern training technology to allow this to happen. Ultimately, it only takes command decisions and implementation to make this possible.

  10. Modeling of Sylgard Adhesive Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-03

    Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.

  11. Muscle Strength and Poststroke Hemiplegia

    DEFF Research Database (Denmark)

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik

    2017-01-01

    undergone peer review; and (4) were available in English or Danish. DATA EXTRACTION: The psychometric properties of isokinetic dynamometry were reviewed with respect to reliability, validity, and responsiveness. Furthermore, comparisons of strength between paretic, nonparetic, and comparable healthy muscles...... isokinetic dynamometry. DATA SOURCES: A systematic literature search of 7 databases was performed. STUDY SELECTION: Included studies (1) enrolled participants with definite poststroke hemiplegia according to defined criteria; (2) assessed muscle strength or power by criterion isokinetic dynamometry; (3) had...... were reviewed. DATA SYNTHESIS: Twenty studies covering 316 PPSH were included. High intraclass correlation coefficient (ICC) inter- and intrasession reliability was reported for isokinetic dynamometry, which was independent of the tested muscle group, contraction mode, and contraction velocity...

  12. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  13. Line strengths in WN stars

    International Nuclear Information System (INIS)

    Leep, E.M.

    1982-01-01

    The author has analyzed high-dispersion spectra of over 100 WN stars in the Galaxy and the Large Magellenic Cloud (LMC). Most of the spectra were obtained through 4-m telescopes (Conti, Leep, and Perry 1981). The measured strengths of the WN classification lines N III lambdalambda4634-41, N IV lambda4057, N V lambda4604 (Smith 1968) for stars on WN subtypes 2.5-8 are shown. The assignments of WN subtypes are based on visual estimates of ratios of line strengths according to the scheme of Smith (1968), except that stars appearing to be earlier than WN3 are classified as WN2 or WN2.5 as explained by van der Hucht et al. (1981) and by Conti, Leep and Perry (1981). (Auth.)

  14. Soil strength and forest operations

    OpenAIRE

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed. The study is largely restricted to sandy and loamy soils because of their importance for Dutch forestry.

    Soil strength, defined as the resistance of soil structure against the impa...

  15. Electronic Correlation Strength of Pu

    DEFF Research Database (Denmark)

    Svane, A.; C. Albers, R.; E. Christensen, N.

    2013-01-01

    A new electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases of elemental Pu. Within the GW approximation we have surprisingly...... found a "universal" scaling relationship, where the f-electron bandwidth reduction due to correlation effects is shown to depend only upon the local density approximation (LDA) bandwidth and is otherwise independent of crystal structure and lattice constant....

  16. Strength and Microstructure of Ceramics

    Science.gov (United States)

    1989-11-01

    Forex - one particular alumina ceramic, I our own detailed crack ample, the relatively large values of r, and c* for the VI observations, and those of...particularly toughness indices, 1i71", indicating that there is sonic the c° , T parameters. However, the indentation mcth- kind of trade -o1Tbetwecn...macroscopic and microsnpic odology takes us closer to the strengths of specimens toughness levels, and that this trade -off is cont’olled by with natural

  17. Long range supergravity coupling strengths

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1991-01-01

    A limit of 2x10 -13 has recently been deduced for the fractional difference between the gravitational masses of the K 0 and anti K 0 mesons. This limit is applied here to put stringent limits on the strengths of the long range vector-scalar gravitational couplings envisaged in supergravity theories. A weaker limit is inferred from the general relativistic fit to the precession of the orbit of the pulsar PSR1913+16. (orig.)

  18. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  19. Strength of mortar containing rubber tire particle

    Science.gov (United States)

    Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.

    2018-04-01

    The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.

  20. optimizing compressive strength characteristics of hollow building

    African Journals Online (AJOL)

    eobe

    Keywords: hollow building Blocks, granite dust, sand, partial replacement, compressive strength. 1. INTRODUCTION ... exposed to extreme climate. The physical ... Sridharan et al [13] conducted shear strength studies on soil-quarry dust.

  1. Elastic buckling strength of corroded steel plates

    Indian Academy of Sciences (India)

    structural safety assessment of corroded structures, residual strength should be ... Rahbar-Ranji (2001) has proposed a spectrum for random simulation of ... The main aim of the present work is to investigate the buckling strength of simply ...

  2. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  3. Determination of giant resonance strengths

    International Nuclear Information System (INIS)

    Serr, F.E.

    1983-01-01

    Using theoretical strength functions to describe the different giant resonances expected at excitation energies of the order of (60-85)/Asup(1/3) MeV, we calculate the double differential cross sections d 2 sigma/dΩ dE associated with the reactions 208 Pb(α, α') and 90 Zr(α, α') (Esub(α) = 152 MeV). The angular distributions for the giant quadrupole and giant monopole resonances obtained from fits to these spectra, making simple, commonly used assumptions for the peak shapes and background, are compared to the original angular distributions. The differences between them are an indication of some of the uncertainties affecting the giant resonance strengths extracted from hadron inelastic scattering data. Fits to limited angular regions lead to errors of up to 50% in the value of the energy-weighted sum rule, depending on the angles examined. While it seems possible to extract the correct EWSR for the GMR by carrying out the analyses at 0 0 , no single privileged angle seems to exist in the case of the GQR. (orig.)

  4. Strengths and Satisfaction across the Adult Lifespan

    Science.gov (United States)

    Isaacowitz, Derek M.; Vaillant, George E.; Seligman, Martin E. P.

    2003-01-01

    Positive psychology has recently developed a classification of human strengths (Peterson & Seligman, in press). We aimed to evaluate these strengths by investigating the strengths and life satisfaction in three adult samples recruited from the community (young adult, middle-aged, and older adult), as well as in the surviving men of the Grant study…

  5. Relationship between the edgewise compression strength of ...

    African Journals Online (AJOL)

    The results of this study were used to determine the linear regression constants in the Maltenfort model by correlating the measured board edgewise compression strength (ECT) with the predicted strength, using the paper components' compression strengths, measured with the short-span compression test (SCT) and the ...

  6. Strength of Ship Plates under Combined Loading

    DEFF Research Database (Denmark)

    Cui, W.; Wang, Y.; Pedersen, Preben Terndrup

    2002-01-01

    Strength of ship plates plays a significant role in the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified analytical methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates subjec...

  7. Strength of ship plates under combined loading

    DEFF Research Database (Denmark)

    Cui, Weiching; Wang, Yongjun; Pedersen, Preben Terndrup

    2000-01-01

    Strength of ship plates plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of unstiffened plates. The majority of these investigations deal with plates subjected to lon...

  8. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  9. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  10. Swimbladder on Fish Target Strength

    Directory of Open Access Journals (Sweden)

    Sunardi

    2008-08-01

    Full Text Available This paper discusses of target strength (TS for the Selar boops (Oxeye scad and Megalaspis cordyla (Torpedo scad, the most commercially fish in Malaysia. TS can be determined from in situ measurements and acoustic calculation of fish model. TS value, depth, and position (x-y-z of targeted fish can be viewed from echogram using FQ-80 Analyzer by in situ measurement. X-ray imaged can be deployed to develop the acoustic fish model. The percentage of length and upper surface area for swimbladder to body fish of Selar boops more than Megalaspis cordyla can be measured after X-ray process. The percentage of width and volume of swimbladders to its each body are no significantly difference for both fish. These data of swimbladder physic support the result of in situ measurement which TS of Megalaspis cordyla stronger Selar boops.

  11. Preparation, mechanical strengths, and thermal

    Science.gov (United States)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-05-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni75Si8B17 and Ni78P12B10 alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin A12O3 film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (Ni0.75Si0.08B0.17 99Al1) wire and 2170 MPa and 2.4 pct for (Ni0.78P0.12B0.1)99Al1 wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a Ni-Si-B-Al wire, which is higher by 0.15 pct than that of a Fe75Si10B15 amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance.

  12. Association Between Maximal Bench Press Strength and Isometric Handgrip Strength Among Breast Cancer Survivors.

    Science.gov (United States)

    Rogers, Benjamin H; Brown, Justin C; Gater, David R; Schmitz, Kathryn H

    2017-02-01

    To characterize the relationship between 1-repetition maximum (1-RM) bench press strength and isometric handgrip strength among breast cancer survivors. Cross-sectional study. Laboratory. Community-dwelling breast cancer survivors (N=295). Not applicable. 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer, with 3 maximal contractions of the left and right hands. All measures were conducted by staff with training in clinical exercise testing. Among 295 breast cancer survivors, 1-RM bench press strength was 18.2±6.1kg (range, 2.2-43.0kg), and isometric handgrip strength was 23.5±5.8kg (range, 9.0-43.0kg). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=.399; Pisometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7kg (95% limits of agreement, -8.2 to 17.6kg). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=.31; Pstrength (R 2 =.23). Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among breast cancer survivors. 1-RM bench press strength and isometric handgrip strength quantify distinct components of muscular strength. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Reference Values of Grip Strength, Prevalence of Low Grip Strength, and Factors Affecting Grip Strength Values in Chinese Adults.

    Science.gov (United States)

    Yu, Ruby; Ong, Sherlin; Cheung, Osbert; Leung, Jason; Woo, Jean

    2017-06-01

    The objectives of this study were to update the reference values of grip strength, to estimate the prevalence of low grip strength, and to examine the impact of different aspects of measurement protocol on grip strength values in Chinese adults. A cross-sectional survey of Chinese men (n = 714) and women (n = 4014) aged 18-102 years was undertaken in different community settings in Hong Kong. Grip strength was measured with a digital dynamometer (TKK 5401 Grip-D; Takei, Niigata, Japan). Low grip strength was defined as grip strength 2 standard deviations or more below the mean for young adults. The effects of measurement protocol on grip strength values were examined in a subsample of 45 men and women with repeated measures of grip strength taken with a hydraulic dynamometer (Baseline; Fabrication Enterprises Inc, Irvington, NY), using pair t-tests, intraclass correlation coefficient, and Bland and Altman plots. Grip strength was greater among men than among women (P values than the Baseline hydraulic dynamometer (P values were also observed when the measurement was performed with the elbow extended in a standing position, compared with that with the elbow flexed at 90° in a sitting position, using the same dynamometer (P values of grip strength and estimated the prevalence of low grip strength among Chinese adults spanning a wide age range. These findings might be useful for risk estimation and evaluation of interventions. However, grip strength measurements should be interpreted with caution, as grip strength values can be affected by type of dynamometer used, assessment posture, and elbow position. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  14. The Importance of Muscular Strength: Training Considerations.

    Science.gov (United States)

    Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H

    2018-04-01

    This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should

  15. Traditional versus functional strength training: Effects on muscle strength and power in the elderly

    OpenAIRE

    Seiler, Hilde Lohne; Torstveit, Monica Klungland; Anderssen, Sigmund A.

    2013-01-01

    Published versiom of an article in the journal:Journal of Aging and Physical Activity. Also available from Human Kinetics: http://http://journals.humankinetics.com/japa-back-issues/japa-volume-21-issue-1-january/traditional-versus-functional-strength-training-effects-on-muscle-strength-and-power-in-the-elderly The aim was to determine whether strength training with machines vs. functional strength training at 80% of one-repetition maximum improves muscle strength and power among the elderl...

  16. Isometric shoulder strength in young swimmers.

    Science.gov (United States)

    McLaine, Sally J; Ginn, Karen A; Fell, James W; Bird, Marie-Louise

    2018-01-01

    The prevalence of shoulder pain in young swimmers is high. Shoulder rotation strength and the ratio of internal to external rotation strength have been reported as potential modifiable risk factors associated with shoulder pain. However, relative strength measures in elevated positions, which include flexion and extension, have not been established for the young swimmer. The aim of this study was to establish clinically useful, normative shoulder strength measures and ratios for swimmers (14-20 years) without shoulder pain. Cross-sectional, observational study. Swimmers (N=85) without a recent history of shoulder pain underwent strength testing of shoulder flexion and extension (in 140° abduction); and internal and external rotation (in 90° abduction). Strength tests were performed in supine using a hand-held dynamometer and values normalised to body weight. Descriptive statistics were calculated for strength and strength ratios (flexion:extension and internal:external rotation). Differences between groups (based on gender, history of pain, test and arm dominance) were explored using independent and paired t tests. Normative shoulder strength values and ratios were established for young swimmers. There was a significant difference (pdifferences in strength ratios. Relative strength of the dominant and non-dominant shoulders (except for extension); and for swimmers with and without a history of shoulder pain was not significantly different. A normal shoulder strength profile for the young swimmer has been established which provides a valuable reference for the clinician assessing shoulder strength in this population. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. The Association between Maximal Bench Press Strength and Isometric Handgrip Strength among Breast Cancer Survivors

    Science.gov (United States)

    Rogers, Benjamin H.; Brown, Justin C.; Gater, David R.; Schmitz, Kathryn H.

    2016-01-01

    Objective One-repetition maximum (1-RM) bench press strength is considered the gold standard to quantify upper-body muscular strength. Isometric handgrip strength is frequently used as a surrogate for 1-RM bench press strength among breast cancer (BrCa) survivors. The relationship between 1-RM bench press strength and isometric handgrip strength, however, has not been characterized among BrCa survivors. Design Cross-sectional study. Setting Laboratory. Participants Community-dwelling BrCa survivors. Interventions Not applicable. Main Outcome Measure 1-RM bench press strength was measured with a barbell and exercise bench. Isometric handgrip strength was measured using an isometric dynamometer with three maximal contractions of left and right hands. All measures were conducted by staff with training in clinical exercise testing. Results Among 295 BrCa survivors, 1-RM bench press strength was 18.2±6.1 kg (range: 2.2-43.0) and isometric handgrip strength was 23.5±5.8 kg (range: 9.0-43.0). The strongest correlate of 1-RM bench press strength was the average isometric handgrip strength of both hands (r=0.399; Pisometric handgrip strength of both hands overestimated 1-RM bench press strength by 4.7 kg (95% limits of agreement: −8.2 to 17.6). In a multivariable linear regression model, the average isometric handgrip strength of both hands (β=0.31; Pstrength (R2=0.23). Conclusions Isometric handgrip strength is a poor surrogate for 1-RM bench press strength among BrCa survivors. 1-RM bench press and isometric handgrip strength quantify distinct components of muscular strength. PMID:27543047

  18. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  19. Elastic stability and the limit of strength

    International Nuclear Information System (INIS)

    Morris Jr., J.W.; Krenn, C.R.; Roundy, D.; Cohen, Marvin L.

    2002-01-01

    The upper limit of strength (the ''theoretical strength'') has been an active subject of research and speculation for the better part of a century. The subject has recently become important, for two reasons. First, given recent advances in ab initio techniques and computing machines, the limits of strength can be calculated with considerable accuracy, making this one of the very few problems in mechanical behavior that can actually be solved. Second, given recent advances in materials engineering, the limits of strength are being approached in some systems, such as hardened or defect-free films, and their relevance is becoming recognized in others. The present paper discusses some interesting results from recent research on the limits of strength, with an intermixture of speculations based on those results. Topics include the inherent nature of {100} cleavage and ''pencil slip'' in bcc metals, the inherent ductility of fcc metals, the anomalous properties of Al, and the possibility of measuring ideal strength with nanoindentation

  20. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  1. Experimental knee pain reduces muscle strength

    DEFF Research Database (Denmark)

    Henriksen, Marius; Mortensen, Sara Rosager; Aaboe, Jens

    2011-01-01

    Pain is the principal symptom in knee pathologies and reduced muscle strength is a common observation among knee patients. However, the relationship between knee joint pain and muscle strength remains to be clarified. This study aimed at investigating the changes in knee muscle strength following...... experimental knee pain in healthy volunteers, and if these changes were associated with the pain intensities. In a crossover study, 18 healthy subjects were tested on 2 different days. Using an isokinetic dynamometer, maximal muscle strength in knee extension and flexion was measured at angular velocities 0....... Knee pain reduced the muscle strength by 5 to 15% compared to the control conditions (P knee extension and flexion at all angular velocities. The reduction in muscle strength was positively correlated to the pain intensity. Experimental knee pain significantly reduced knee extension...

  2. The reliabilty of isokinetic strength measurement

    OpenAIRE

    Kadlec, Miroslav

    2011-01-01

    Title: Reliability of isometric and isokinetic strength testing in the knee flexion and extension Objectives: To compare the reliability of isometric and isokinetic testing of the knee strength in flexion and extension Methods: I used intraclass correlation coefficient and Pearson's correlation coefficient. Results: I have discovered that the reliability measured on isokinetic and isometric dynamometer is high. Furthermore the reliability of the maximum strength measurement was higher with-us...

  3. Strength and failure modes of ceramic multilayers

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Toftegaard, Helmuth Langmaack; Linderoth, Søren

    2012-01-01

    A model was developed for the prediction of the tensile strength of thin, symmetric 3-layer sandwich specimens. The model predictions rationalize the effect of heat-treatment temperature on the strength of sandwich specimens consisting of an YSZ (Yttria-Stabilized Zirconia) substrate coated with ...... and propagating into the substrate. These predictions are consistent with microstructural observations of the fracture surfaces. A good agreement was found between the measured strength values and model predictions. © 2012 Elsevier Ltd. All rights reserved....

  4. Accounting for the Strengths of MNC Subsidiaries

    DEFF Research Database (Denmark)

    Forsgren, Mats; Pedersen, Torben; Foss, Nicolai Juul

    1999-01-01

    that organizational strength can to some extent be proxied by strength in the market place. Based on analysis of data on foreign-owned production firms in Denmark, we test three hypotheses: 1) that internal factors (capabilities, patents....) are positively related to the organizational strengths of MNC subsidiaries......This paper links up with recent work on the role of subsidiaries in multinational corporations as well as with recent work in the strategy and business network literature. We discuss the sources of organizational strengths of subsidiaries in the larger multinational corporation, and argue...

  5. Accelerated Strength Testing of Thermoplastic Composites

    Science.gov (United States)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  6. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  7. Maximal Strength Testing in Healthy Children.

    Science.gov (United States)

    Faigenbaum, Avery D.; Milliken, Laurie A.; Westcott, Wayne L.

    2003-01-01

    Evaluated the safety and efficacy of 1 repetition maximum (1RM) strength testing in healthy children age 6-12 years. Data were collected on 96 children who performed a 1RM test on one upper body and one lower body exercise using child-sized weight machines. Findings indicated that children could safely perform 1RM strength tests provided…

  8. Impact of Hydrodynamics on Oral Biofilm Strength

    NARCIS (Netherlands)

    Paramonova, E.; Kalmykowa, O. J.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K.

    2009-01-01

    Mechanical removal of oral biofilms is ubiquitously accepted as the best way to prevent caries and periodontal diseases. Removal effectiveness strongly depends on biofilm strength. To investigate the influence of hydrodynamics on oral biofilm strength, we grew single- and multi-species biofilms of

  9. Crushing strength of HTGR fuel particles

    International Nuclear Information System (INIS)

    Lackey, W.J.; Stinton, D.P.; Davis, L.E.; Beatty, R.L.

    1976-01-01

    The whole-particle crushing strengths of High-Temperature Gas-Cooled Reactor fertile and fissile coated particles were measured and correlated with fabrication procedures. The crushing strength of Biso-coated fertile particles was increased by the following factors: (1) increasing the outer coating thickness by 10 μm increased strengths by 0.3 lb (1.3 N) for annealed particles and by 0.5 lb (2.2 N) for unannealed particles. (2) An 1800 0 C postcoating anneal increased strengths by 1 lb (4.4 N) for particles with thick outer coatings and by 2 lb (8.9 N) for particles having thin coatings. (3) Increasing the inner coating density by 0.1 g/cm 3 increased strength by 0.6 lb (2.7 N). The crushing strength of Triso-coated fissile particles was proportional to the thickness of the SiC coatings, and strength decreased on annealing by about 0.2 lb (0.9 N) when a porous plate was used to distribute the coating gas and by about 1.5 lb (6.7 N) when a conical gas distributor was used. The strengths of fertile and fissile coated particles as well as uncoated kernels appear adequate to allow fuel fabrication without excessive particle damage

  10. Tools for Building on Youth Strengths

    Science.gov (United States)

    Cox, Kathy

    2008-01-01

    While rhetoric about strength-based approaches abounds, this perspective has not penetrated the front lines of practice. Many programs serving troubled youngsters are still mired in a deficit and deviance orientation. This article provides practical strategies for assessing the strengths of children and developing interventions to tap their assets…

  11. Restorative Justice as Strength-Based Accountability

    Science.gov (United States)

    Ball, Robert

    2003-01-01

    This article compares strength-based and restorative justice philosophies for young people and their families. Restorative justice provides ways to respond to crime and harm that establish accountability while seeking to reconcile members of a community. Restorative approaches are an important subset of strength-based interventions.

  12. Asymmetry of Muscle Strength in Elite Athletes

    Science.gov (United States)

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  13. Gluebond strength of laser cut wood

    Science.gov (United States)

    Charles W. McMillin; Henry A. Huber

    1985-01-01

    The degree of strength loss when gluing laser cut wood as compared to conventionally sawn wood and the amount of additional surface treatment needed to improve bond quality were assessed under normal furniture plant operating conditions. The strength of laser cut oak glued with polyvinyl acetate adhesive was reduced to 75 percent of sawn joints and gum was reduced 43...

  14. Enhancing paper strength by optimizing defect configuration

    Science.gov (United States)

    J.M. Considine; W. Skye; W. Chen; D. Matthys; David W. Vahey; K. Turner; R. Rowlands

    2009-01-01

    Poor formation in paper, as denoted by large local variation of mass, tends to reduce maximum tensile strength but has not been well characterized. The effect of grammage variation on tensile strength was studied by introducing carefully placed holes in tensile specimens made of three different paper materials. Previous researchers demonstrated that the point-stress...

  15. Strength optimized designs of thermoelastic structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2010-01-01

    For thermoelastic structures the same optimal design does not simultaneously lead to minimum compliance and maximum strength. Compliance may be a questionable objective and focus for the present paper is on the important aspect of strength, quantified as minimization of the maximum von Mises stre...... loads are appended....

  16. Nuclear threshold effects and neutron strength function

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia

    2003-01-01

    One proves that a Nuclear Threshold Effect is dependent, via Neutron Strength Function, on Spectroscopy of Ancestral Neutron Threshold State. The magnitude of the Nuclear Threshold Effect is proportional to the Neutron Strength Function. Evidence for relation of Nuclear Threshold Effects to Neutron Strength Functions is obtained from Isotopic Threshold Effect and Deuteron Stripping Threshold Anomaly. The empirical and computational analysis of the Isotopic Threshold Effect and of the Deuteron Stripping Threshold Anomaly demonstrate their close relationship to Neutron Strength Functions. It was established that the Nuclear Threshold Effects depend, in addition to genuine Nuclear Reaction Mechanisms, on Spectroscopy of (Ancestral) Neutron Threshold State. The magnitude of the effect is proportional to the Neutron Strength Function, in their dependence on mass number. This result constitutes also a proof that the origins of these threshold effects are Neutron Single Particle States at zero energy. (author)

  17. Imaging Shear Strength Along Subduction Faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-11-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  18. Testosterone Replacement, Muscle Strength, and Physical Function

    Directory of Open Access Journals (Sweden)

    You-Seon Nam

    2018-05-01

    Full Text Available Muscle strength and physical function decrease in older men, as do testosterone levels. Nonetheless, the effects of testosterone replacement therapy on muscle strength and physical function remain inconclusive and equivocal. We conducted a rapid systematic review, the results of which showed that testosterone replacement does not affect muscle strength (measured by hand grip strength and leg muscle strength, although it may increase physical function (measured by the 6-minute walk test, Physical Activity Scale for the Elderly score, and other physical performance tests. However, most of the studies were conducted in the United States or Europe and did not include participants from Asian or other ethnic backgrounds; therefore, further studies are needed to evaluate the effects of testosterone replacement in a broader population.

  19. REPETITIVE STRENGTH AMONG STUDENTS OF AGE 14

    Directory of Open Access Journals (Sweden)

    Besim Halilaj

    2014-06-01

    Full Text Available The study involved 82 male students of the primary school “Qamil Ilazi” in Kaçanik-Kosovo.Four movement tests, which test the repetitive strength, were conducted: 1. Pull-up, 2. Sit-Up, 3. Back extension, 4. Push-up.The main goal of this study was to verify the actual motor status, respectively the component of the repetitive strength among students of age 14 of masculine gender. In addition to verifying the actual motor status, another objective was to verify the relationship between the variables employed.Basic statistical parameters show a distribution which is not significantly different from the normal distribution, yielded highly correlative values among the repetitive strength tests. Space factorization resulted in extracting two latent squares defined as repetitive strength of arms factor, and repetitive strength of body factor.

  20. Imaging shear strength along subduction faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  1. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects

    DEFF Research Database (Denmark)

    Sørensen, T J; Langberg, Henning; Hodges, P W

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function...... and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals....

  2. Percentage Level of Tannin fur Rabbit for Leather Concerning Stitch Tearing Strength, Tearing Strength and Flexibility

    OpenAIRE

    Mustakim Mustakim; Aris Sri Widati; Lisa Purnaningtyas

    2012-01-01

    The purpose of this study was to find out the appropriate of tannin level for rabbit fur leather concerning stitch tearing strength, tearing strength, and flexibility. The result were expected to contribute good information for the society, leather craftsman, and further researchers about fur leather tanning especially rabbit fur leather with tannin concerning stitch tearing strength, tearing strength and flexibility. The material that used were 12 pieces of four months of rabbit skin. The re...

  3. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  4. Detection of rock strength at Branisko massif

    Directory of Open Access Journals (Sweden)

    Lazarová Edita

    2000-09-01

    Full Text Available When monitoring and optimizing the driving proces of the exploratory gallery by a computer system, conditions for verification of the interaction between desintegrating head of driving machine and rock massif were created. One of the output values of this mathematical model is the model strength at a simple pressure ótlH, which is defined as a pressure at the discus and the massif contact during the desintigration (a near limit of massif strength. By geological and geological engineering exploration, the section of length 2340 m was divided into fourty-two geological sections and five quasi-homogeneous massif enviroments. In the article, results of scleroscopic strength óCI , the strength in a simple pressure determined from the point load test and the strength at simple pressure ótlH are confronted . The main advance of the electronic geomechanical monitoring is the density of gained information. The two-seconds sample period of input and output data during the driving process makes it possible to describe driving circumstances in an almost continual way for each millimeter of the built tunnel. Then the information about changes of disintegrated rock properties, have the same density (frequency. By comparing a quantity of data gained by examining the index of point strength, scleroscopic strength and the model strength in a simple pressure from the monitoring process of driving process it is obvious that during the driving of exploratory gallery of motorway tunnel Branisko, a proportion of data number from the three “type examinations” of strength was reached and it was approximately 1:7:5000. Approximately in the same proportion, there were determined values for the 42 geologic sections (I. – XLII., which were defined in detail by the geologic, engineering geologic, hydrogeologic and geotechnic research.. The presented quantity values of presented rock mass strength for each geologic section are presented by their arithmetic average

  5. The Character Strengths of Class Clowns

    Directory of Open Access Journals (Sweden)

    Willibald F. Ruch

    2014-09-01

    Full Text Available Class clowns traditionally were studied as a type concept and identified via sociometric procedures. In the present study a variable-centered approach was favored and class clown behaviors were studied in the context of character strengths, orientations to happiness and satisfaction with life. A sample of 672 Swiss children and adolescents filled in an 18 item self-report instrument depicting class clown behaviors. A hierarchical model of class clown behaviors was developed distinguishing a general factor and the four positively correlated dimensions of identified as a class clown, comic talent, disruptive rule-breaker, and subversive joker. Analysis of the general factor showed that class clowns were primarily male, and tended to be seen as class clowns by the teacher. Analyses of the 24 character strengths of the VIA-Youth (Park & Peterson, 2006 showed that class clowns were high in humor and leadership, and low in strengths like prudence, self-regulation, modesty, honesty, fairness, perseverance, and love of learning. An inspection of signature strengths revealed that 75% of class clowns had humor as a signature strength. Furthermore, generally class clown behaviors were shown by students indulging in a life of pleasure, but low life of engagement. The four dimensions yielded different character strengths profiles. While all dimensions of class clowns behaviors were low in temperance strengths, the factors identified as the class clown and comic talent were correlated with leadership strengths and the two negative factors (disruptive rule-breaker, subversive joker were low in other directed strengths. The disruptive rule breaking class clown was additionally low in intellectual strengths. While humor predicted life satisfaction, class clowning tended to go along with diminished satisfaction with life. It is concluded that different types of class clowns need to be kept apart and need different attention by teachers.

  6. The character strengths of class clowns.

    Science.gov (United States)

    Ruch, Willibald; Platt, Tracey; Hofmann, Jennifer

    2014-01-01

    Class clowns traditionally were studied as a type concept and identified via sociometric procedures. In the present study a variable-centered approach was favored and class clown behaviors were studied in the context of character strengths, orientations to happiness and satisfaction with life. A sample of 672 Swiss children and adolescents filled in an 18 item self-report instrument depicting class clown behaviors. A hierarchical model of class clown behaviors was developed distinguishing a general factor and the four positively correlated dimensions of "identified as a class clown," "comic talent," "disruptive rule-breaker," and "subversive joker." Analysis of the general factor showed that class clowns were primarily male, and tended to be seen as class clowns by the teacher. Analyses of the 24 character strengths of the VIA-Youth (Park and Peterson, 2006) showed that class clowns were high in humor and leadership, and low in strengths like prudence, self-regulation, modesty, honesty, fairness, perseverance, and love of learning. An inspection of signature strengths revealed that 75% of class clowns had humor as a signature strength. Furthermore, class clown behaviors were generally shown by students indulging in a life of pleasure, but low life of engagement. The four dimensions yielded different character strengths profiles. While all dimensions of class clowns behaviors were low in temperance strengths, the factors "identified as the class clown" and "comic talent" were correlated with leadership strengths and the two negative factors ("disruptive rule-breaker," "subversive joker") were low in other directed strengths. The disruptive rule breaking class clown was additionally low in intellectual strengths. While humor predicted life satisfaction, class clowning tended to go along with diminished satisfaction with life. It is concluded that different types of class clowns need to be kept apart and need different attention by teachers.

  7. The Strengths Assessment Inventory: Reliability of a New Measure of Psychosocial Strengths for Youth

    Science.gov (United States)

    Brazeau, James N.; Teatero, Missy L.; Rawana, Edward P.; Brownlee, Keith; Blanchette, Loretta R.

    2012-01-01

    A new measure, the Strengths Assessment Inventory-Youth self-report (SAI-Y), was recently developed to assess the strengths of children and adolescents between the ages of 10 and 18 years. The SAI-Y differs from similar measures in that it provides a comprehensive assessment of strengths that are intrinsic to the individual as well as strengths…

  8. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults?

    NARCIS (Netherlands)

    Wind, Anne E.; Takken, Tim; Helders, Paul J. M.; Engelbert, Raoul H. H.

    2010-01-01

    The primary purpose of this study was to examine whether grip strength is related to total muscle strength in children, adolescents, and young adults. The second purpose was to provide reference charts for grip strength, which could be used in the clinical and research setting. This cross-sectional

  9. A study of high-strength bolts after dephosphoring

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2016-03-01

    Full Text Available A wide variety of fasteners are produced, including those for the automobile industry, household electrical appliances industry, architectural engineering, and even the aviation industry. The effects of the high-tensile bolt dephosphoring process on the entire fastener manufacturing process and its organizational characteristics and mechanical properties are analyzed and discussed in this study. Our experimental results reveal that the bolt dephosphoring process must be completed before heat treatment, which can be confirmed with a dephosphoring reagent or metallographic observation. Once bolt heat treatment is completed, bolts without dephosphoring appear to be coated with δ ferrite (delta ferrite composed of a phosphate coating and a phosphatizing coating, which are not easily removed. Heat treatment with phosphorus results in grain boundary segregation, causing embrittlement and a reduction in lattice bonding forces and resulting in a high risk of fracturing when bolts are used in high-temperature environments or undergo multiaxial stresses.

  10. Measuring Relative Coupling Strength in Circadian Systems.

    Science.gov (United States)

    Schmal, Christoph; Herzog, Erik D; Herzel, Hanspeter

    2018-02-01

    Modern imaging techniques allow the monitoring of circadian rhythms of single cells. Coupling between these single cellular circadian oscillators can generate coherent periodic signals on the tissue level that subsequently orchestrate physiological outputs. The strength of coupling in such systems of oscillators is often unclear. In particular, effects on coupling strength by varying cell densities, by knockouts, and by inhibitor applications are debated. In this study, we suggest to quantify the relative coupling strength via analyzing period, phase, and amplitude distributions in ensembles of individual circadian oscillators. Simulations of different oscillator networks show that period and phase distributions become narrower with increasing coupling strength. Moreover, amplitudes can increase due to resonance effects. Variances of periods and phases decay monotonically with coupling strength, and can serve therefore as measures of relative coupling strength. Our theoretical predictions are confirmed by studying recently published experimental data from PERIOD2 expression in slices of the suprachiasmatic nucleus during and after the application of tetrodotoxin (TTX). On analyzing the corresponding period, phase, and amplitude distributions, we can show that treatment with TTX can be associated with a reduced coupling strength in the system of coupled oscillators. Analysis of an oscillator network derived directly from the data confirms our conclusions. We suggest that our approach is also applicable to quantify coupling in fibroblast cultures and hepatocyte networks, and for social synchronization of circadian rhythmicity in rodents, flies, and bees.

  11. Strength evaluation code STEP for brittle materials

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Futakawa, Masatoshi.

    1997-12-01

    In a structural design using brittle materials such as graphite and/or ceramics it is necessary to evaluate the strength of component under complex stress condition. The strength of ceramic materials is said to be influenced by the stress distribution. However, in the structural design criteria simplified stress limits had been adopted without taking account of the strength change with the stress distribution. It is, therefore, important to evaluate the strength of component on the basis of the fracture model for brittle material. Consequently, the strength evaluation program, STEP, on a brittle fracture of ceramic materials based on the competing risk theory had been developed. Two different brittle fracture modes, a surface layer fracture mode dominated by surface flaws and an internal fracture mode by internal flaws, are treated in the STEP code in order to evaluate the strength of brittle fracture. The STEP code uses stress calculation results including complex shape of structures analyzed by the generalized FEM stress analysis code, ABAQUS, so as to be possible to evaluate the strength of brittle fracture for the structures having complicate shapes. This code is, therefore, useful to evaluate the structural integrity of arbitrary shapes of components such as core graphite components in the HTTR, heat exchanger components made of ceramics materials etc. This paper describes the basic equations applying to the STEP code, code system with a combination of the STEP and the ABAQUS codes and the result of the verification analysis. (author)

  12. Geometry and gravity influences on strength capability

    Science.gov (United States)

    Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.

    1994-01-01

    Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.

  13. Strength training for children and adolescents.

    Science.gov (United States)

    Faigenbaum, A D

    2000-10-01

    The potential benefits of youth strength training extend beyond an increase in muscular strength and may include favorable changes in selected health- and fitness-related measures. If appropriate training guidelines are followed, regular participation in a youth strength-training program has the potential to increase bone mineral density, improve motor performance skills, enhance sports performance, and better prepare our young athletes for the demands of practice and competition. Despite earlier concerns regarding the safety and efficacy of youth strength training, current public health objectives now aim to increase the number of boys and girls age 6 and older who regularly participate in physical activities that enhance and maintain muscular fitness. Parents, teachers, coaches, and healthcare providers should realize that youth strength training is a specialized method of conditioning that can offer enormous benefit but at the same time can result in serious injury if established guidelines are not followed. With qualified instruction, competent supervision, and an appropriate progression of the volume and intensity of training, children and adolescents cannot only learn advanced strength training exercises but can feel good about their performances, and have fun. Additional clinical trails involving children and adolescents are needed to further explore the acute and chronic effects of strength training on a variety of anatomical, physiological, and psychological parameters.

  14. Behaviour and strength assessment of masonry prisms

    Directory of Open Access Journals (Sweden)

    Nassif Nazeer Thaickavil

    2018-06-01

    Full Text Available This is a case study presenting the cracking behavior and assessment of the compressive strength of masonry prisms. The compressive strength of masonry was determined by performing laboratory tests on 192 masonry prism specimens corresponding to 3 specimens each in 64 groups. The variables considered in the experimental program are type of brick, strength of masonry and height-to-thickness (h/t ratio of the prism specimen. Pressed earth bricks and burnt clay bricks were used for the preparation of masonry prisms. A mathematical model is also proposed for the estimation of compressive strength of masonry prisms by performing a statistical multiple regression analysis on 232 data sets, which includes 64 test data from the present study and 168 test data published in the literature. The model was developed based on the regression analysis of test data of prisms made of a variety of masonry units namely clay bricks, pressed earth bricks, concrete blocks, calcium silicate bricks, stone blocks, perforated bricks and soft mud bricks. The proposed model not only accounts for the wide ranges of compressive strengths of masonry unit and mortar, but also accounts for the influence of volume fractions of masonry unit and mortar in addition to the height-to-thickness ratio. The predicted compressive strength of prisms using the proposed model is compared with 14 models available in published literature. The predicted strength was found to be in good agreement with the corresponding experimental data. Keywords: Prism strength, Stack bonded masonry, Running bonded masonry, Masonry unit strength, Cracking

  15. Predicting hand function in older adults: evaluations of grip strength, arm curl strength, and manual dexterity.

    Science.gov (United States)

    Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing

    2017-08-01

    Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p function test. In comparison, older adults with better grip strength (β = .40, p function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.

  16. Are only Emotional Strengths Emotional? Character Strengths and Disposition to Positive Emotions.

    Science.gov (United States)

    Güsewell, Angelika; Ruch, Willibald

    2012-07-01

    This study aimed to examine the relations between character strengths and dispositional positive emotions (i.e. joy, contentment, pride, love, compassion, amusement, and awe). A sample of 574 German-speaking adults filled in the Dispositional Positive Emotion Scales (DPES; Shiota, Keltner, & John, 2006), and the Values in Action Inventory of Strengths (VIA-IS; Peterson, Park, & Seligman, 2005). The factorial structure of the DPES was examined on item level. Joy and contentment could not be clearly separated; the items of the other five emotions loaded on separate factors. A confirmatory factor analysis assuming two latent factors (self-oriented and object/situation specific) was computed on scale level. Results confirmed the existence of these factors, but also indicated that the seven emotions did not split up into two clearly separable families. Correlations between dispositional positive emotions and character strengths were positive and generally low to moderate; a few theoretically meaningful strengths-emotions pairs yielded coefficients>.40. Finally, the link between five character strengths factors (i.e. emotional strengths, interpersonal strengths, strengths of restraint, intellectual strengths, and theological strengths) and the emotional dispositions was examined. Each of the factors displayed a distinctive "emotional pattern"; emotional strengths evidenced the most numerous and strongest links to emotional dispositions. © 2012 The Authors. Applied Psychology: Health and Well-Being © 2012 The International Association of Applied Psychology.

  17. Strength properties of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.; Burrow, R.C.; Debbas, E.B.

    1979-01-01

    A study is presented concerning the compressive strength, modulus of elasticity, and stress-strain relationships of concrete at elevated temperatures. A review of published results provides information for the development of upper and lower bound relationships for compressive strength and the modulus of elasticity and establishes exposure conditions for a lower bound thermal response. The relationships developed from the literature review are confirmed by the results of a verification test program. The strength and elasticity relationships provide a basis for the development of design stress-strain curves for concrete exposed to elevated temperatures

  18. Neutron source strength associated with FTR fuel

    International Nuclear Information System (INIS)

    Boroughs, G.L.; Bunch, W.L.; Johnson, D.L.

    1975-01-01

    The study presented shows the important effect of shelf life on the neutron source strength anticipated from fuel irradiated in the FTR. The neutron source strength will be enhanced appreciably by extended shelf lives. High neutron source strengths will also be associated with reprocessed LWR plutonium, which is expected to contain a greater abundance of the higher isotopes. The branching ratio and cross section of 241 Am is an important parameter that needs to be defined more precisely to establish calculated values with greater precision

  19. Strength of low-carbon rotor steel

    International Nuclear Information System (INIS)

    Voropaev, V.I.; Filimonov, O.V.; Borisov, I.A.

    1988-01-01

    The results of studying the effect of chemical composition and thermal treatment regimes on the structural strength of steels of the 25KhN3MFA type are presented. It is shown that alloying with niobium from 0.01 to 0.08% steels with the increased nickel content (4.2-4.5%) contributes to the increase of structural strength and reduction of semibrittleness temperature. To obtain high values of strength and plastic properties cooling with the rate of 10 3 -10 5 K/hr is recommended

  20. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  1. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  2. INFLUENCE OF STRENGTH TRAINING PROGRAM ON ISOMETRIC MUSCLE STRENGTH IN YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    Dragan Radovanovic

    2007-10-01

    Full Text Available Strength training, or resistance training, is a form of physical conditioning used to increase the ability to resist force. Since muscular strength is required for success in many sports, it is logical to assume that stronger and more powerful young athletes will achieve better results. The aim of the study was to examine the effects of strength training on young athletes. An eight-week strength training program for developing muscle strength was performed in this study. Training protocol was designed specifically for young adolescent’s athletes. The program consisted of exercises for lower and upper body, abdominal and lower back muscles. The programs did not involve the maximal (1-3 repetitions maximum and other very hard intensity exercises that may had negative effect on young athletes. The results showed that strength training program had positive effects on maximal isometric muscle force (Fmax and motor skill. The increase presents the combined influence of strength training and growth.

  3. Strength Tests on Hulls and Floats

    Science.gov (United States)

    Matthaes, K

    1942-01-01

    The present report deals with strength tests on hulls and floats intended in part for the collection of construction data for the design of these components and in part for the stress analysis of the finished hulls and floats.

  4. Magnetic Field Strength Evaluation Yu. S. Yefimov

    Indian Academy of Sciences (India)

    physical task is to evaluate the strength and topology of magnetic field in blazars and related ... polarization, spectral index of radiation, ratio of apparent velocity of the motion of matter along .... A detailed analysis of the evaluation of physical.

  5. Shear strength of clay and silt embankments.

    Science.gov (United States)

    2009-09-01

    Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...

  6. Pilates: Build Strength in Your Core Muscles

    Science.gov (United States)

    Healthy Lifestyle Fitness Pilates may sound intimidating, but it's an accessible way to build strength in your core muscles for better posture, balance and flexibility. By Mayo Clinic Staff Pilates isn't just for fitness fanatics. It's actually ...

  7. Personality Typology in Relation to Muscle Strength

    Science.gov (United States)

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (Epersonality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  8. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  9. Statistical Analysis of Data for Timber Strengths

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hoffmeyer, P.

    Statistical analyses are performed for material strength parameters from approximately 6700 specimens of structural timber. Non-parametric statistical analyses and fits to the following distributions types have been investigated: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...

  10. Collision strengths for transitions in Ni XIX

    Indian Academy of Sciences (India)

    4l configurations of Ni XIX, for which flexible atomic code. (FAC) has been ... atomic data (namely energy levels, radiative rates, collision strengths, excitation rates, etc.) ... Zhang and Sampson, who adopted the Coulomb–Born-exchange.

  11. Influence of processing factors over concrete strength.

    Science.gov (United States)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  12. Nutritional Supplements for Strength Power Athletes

    Science.gov (United States)

    Wilborn, Colin

    Over the last decade research involving nutritional supplementation and sport performance has increased substantially. Strength and power athletes have specific needs to optimize their performance. Nutritional supplementation cannot be viewed as a replacement for a balanced diet but as an important addition to it. However, diet and supplementation are not mutually exclusive, nor does one depend on the other. Strength and power athletes have four general areas of supplementation needs. First, strength athletes need supplements that have a direct effect on performance. The second group of supplements includes those that promote recovery. The third group comprises the supplements that enhance immune function. The last group of supplements includes those that provide energy or have a direct effect on the workout. This chapter reviews the key supplements needed to optimize the performance and training of the strength athlete.

  13. Strength and power of knee extensor muscles

    Directory of Open Access Journals (Sweden)

    Knežević Olivera

    2011-01-01

    Full Text Available In the studies of human neuromuscular function, the function of leg muscles has been most often measured, particularly the function of the knee extensors. Therefore, this review will be focused on knee extensors, methods for assessment of its function, the interdependence of strength and power, relations that describe these two abilities and the influence of various factors on their production (resistance training, stretching, movement tasks, age, etc.. Given that it consists of four separate muscles, the variability of their anatomical characteristics affects their participation in strength and power production, depending on the type of movement and motion that is performed. Since KE is active in a variety of activities it must be able to generate great strength in a large and diverse range of muscle lengths and high shortening velocities, in respect to different patterns of strength production, and thus different generation capacities within the muscle (Blazevich et al., 2006. It has been speculated that KE exerts its Pmax at workloads close to subject's own body weight or lower (Rahmani et al., 2001, which is very close to the maximum dynamic output hypothesis (MDI of Jaric and Markovic (2009. Changes under the influence of resistance training or biological age are variously manifested in muscle's morphological, physiological and neural characteristics, and thus in strength and power. Understanding the issues related to strength and power as abilities of great importance for daily activities, is also important for sports and rehabilitation. Performances improvement in sports in which leg muscles strength and power are crucial, as well as recovery after the injuries, are largely dependent on the research results regarding KE function. Also, the appropriate strength balance between knee flexors and extensors is important for the knee joint stability, so that the presence of imbalance between these two muscle groups might be a risk factor for

  14. Strength and structure of nanocrystalline titanium

    International Nuclear Information System (INIS)

    Noskova, N.I.; Pereturina, I.A.; Elkina, O.A.; Stolyarov, V.V.

    2004-01-01

    Investigation results on strength and plasticity of nanocrystalline titanium VT-1 are presented. Specific features of plastic deformation on tension of this material specimens in an electron microscope column are studied in situ. It is shown that nanocrystalline titanium strength and plasticity at room temperature are dependent on the structure and nanograin size. It is revealed that deformation processes in nanocrystalline titanium are characterized by activation of deformation rotational modes and microtwinning [ru

  15. Percentage Level of Tannin fur Rabbit for Leather Concerning Stitch Tearing Strength, Tearing Strength and Flexibility

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2012-02-01

    Full Text Available The purpose of this study was to find out the appropriate of tannin level for rabbit fur leather concerning stitch tearing strength, tearing strength, and flexibility. The result were expected to contribute good information for the society, leather craftsman, and further researchers about fur leather tanning especially rabbit fur leather with tannin concerning stitch tearing strength, tearing strength and flexibility. The material that used were 12 pieces of four months of rabbit skin. The research method was Completely Randomized Design, consist of three treatments of tannin, they were: M1 (mimosa 15%, M2 (mimosa 20%, and M3 (mimosa 25%. Each of treatment hold on four repetition, the variables which measured were stitch tearing strength, tearing strength, and flexibility of fur leather. Data were  analysed by analysis variance followed by Duncan’s Multiple Range Test. The result of this research indicate that the use level of tannin give significant influence (P<0.05 among stitch tearing strength, tearing strength. It gave a very significant influence (P<0.01 for flexibility of rabbit fur leather. Based on the result, can be concluded that 25 % of tannin (mimosa, produce the best  result on stitch tearing strength and tearing strength. The increase of tannin offer will decrease the flexibility of fur leather but the lowest tannin produced the best flexibility of fur leather (15 percent. The best quality of rabbit fur leather produced by 25 % of tannin.   Keywords : leather, tannin, quality

  16. Upper extremity injuries associated with strength training.

    Science.gov (United States)

    Haupt, H A

    2001-07-01

    Most injuries sustained during strength training are mild strains that resolve with appropriate rest. More severe injuries include traumatic shoulder dislocations, tendon ruptures of the pectoralis major, biceps, and triceps; stress fractures of the distal clavicle, humerus, radius, and ulna; traumatic fractures of the distal radius and ulna in adolescent weightlifters; and compressive and stretch neuropathies. These more severe injuries are usually the result of improperly performing a strength training exercise. Educating athletes regarding proper strength-training techniques serves to reverse established injury patterns and to prevent these injuries in the first place. Recognizing the association of anabolic steroid use to several of the injury patterns further reinforces the need for medical specialists to counsel athletes against their use. With the increasing use of supplements such as creatine, the incidence and nature of strength-training injuries may change further. Greater emphasis on the competitive performance of younger athletes undoubtedly will generate enthusiasm for strength training at earlier ages in both sexes. The importance of proper supervision of these young athletes by knowledgeable persons will increase. As the popularity of strength training grows, there will be ample opportunity to continue to catalog the injury patterns associated with this activity.

  17. Strength Testing in Motor Neuron Diseases.

    Science.gov (United States)

    Shefner, Jeremy M

    2017-01-01

    Loss of muscle strength is a cardinal feature of all motor neuron diseases. Functional loss over time, including respiratory dysfunction, inability to ambulate, loss of ability to perform activities of daily living, and others are due, in large part, to decline in strength. Thus, the accurate measurement of limb muscle strength is essential in therapeutic trials to best understand the impact of therapy on vital function. While qualitative strength measurements show declines over time, the lack of reproducibility and linearity of measurement make qualitative techniques inadequate. A variety of quantitative measures have been developed; all have both positive attributes and limitations. However, with careful training and reliability testing, quantitative measures have proven to be reliable and sensitive indicators of both disease progression and the impact of experimental therapy. Quantitative strength measurements have demonstrated potentially important therapeutic effects in both amyotrophic lateral sclerosis and spinobulbar muscular atrophy, and have been shown feasible in children with spinal muscular atrophy. The spectrum of both qualitative and quantitative strength measurements are reviewed and their utility examined in this review.

  18. Strength functions for fragmented doorway states

    International Nuclear Information System (INIS)

    MacDonald, W.M.

    1980-01-01

    Coupling a strongly excited ''doorway state'' to weak ''hallway states'' distributes its strength into micro-resonances seen in differential cross sections taken with very good energy resolution. The distribution of strength is shown to be revealed by reduced widths of the K-matrix rather than by the imaginary part of poles of the S-matrix. Different strength functions (SF) constructed by averaging the K-matrix widths are then investigated to determine their dependences on energy and on parameters related to averages of microscopic matrix elements. A new sum rule on the integrated strength of these SF is derived and used to show that different averaging procedures actually distribute the strength differently. Finally, it is shown that the discontinuous summed strength defines spreading parameters for the doorway state only in strong coupling, where it approximates the idefinite integral of the continuous SF of MacDonald-Mekjian-Kerman-De Toledo Piza. A new method of ''parametric continuation'' is used to relate a discontinuous sliding box-average, or a finite sum, of discrete terms to a continous function

  19. Strength gradient enhances fatigue resistance of steels

    Science.gov (United States)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  20. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  1. Mapping strengths into virtues: The relation of the 24 VIA-strengths to six ubiquitous virtues

    Directory of Open Access Journals (Sweden)

    Willibald eRuch

    2015-04-01

    Full Text Available The Values-in-Action (VIA-classification distinguishes six core virtues and 24 strengths. As the assignment of the strengths to the virtues was done on theoretical grounds it still needs empirical verification. As an alternative to factor analytic investigations the present study utilizes expert judgments. In a pilot study the conceptual overlap among five sources of knowledge (strength’s name including synonyms, short definitions, brief descriptions, longer theoretical elaborations, and item content about a particular strength was examined. The results show that the five sources converged quite well, with the short definitions and the items being slightly different from the other. All strengths exceeded a cut-off value but the convergence was much better for some strengths (e.g., zest than for others (e.g., perspective. In the main study 70 experts (from psychology, philosophy, theology, etc. and 41 laypersons rated how prototypical the strengths are for each of the six virtues. The results showed that 10 were very good markers for their virtues, 9 were good markers, four were acceptable markers, and only one strength failed to reach the cut-off score for its assigned virtue. However, strengths were often markers for two or even three virtues, and occasionally they marked the other virtue more strongly than the one they were assigned to. The virtue prototypicality ratings were slightly positively correlated with higher coefficients being found for justice and humanity. A factor analysis of the 24 strengths across the ratings yielded the six factors with an only slightly different composition of strengths and double loadings. It is proposed to adjust either the classification (by reassigning strengths and by allowing strengths to be subsumed under more than one virtue or to change the definition of certain strengths so that they only exemplify one virtue. The results are discussed in the context of factor analytic attempts to verify the

  2. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    Science.gov (United States)

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age ( χ̄ = 34.64 years ± 6.91 years), with strength training experience, training age ( χ̄ = 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  3. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain.......An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side...

  4. Evaluation of size dependent design shear strength of reinforced ...

    Indian Academy of Sciences (India)

    to the development of the size dependent models on the shear strength in ... predict the diagonal cracking strength and the ultimate shear strength of RC ... ing strength of normal beams was by Zsutty (1968) based on the data base available without .... The comparison of the calculated shear strength of the beams is shown.

  5. The Effects of Isokinetic Strength Training on Strength at Different Angular Velocities: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Tuğba Kocahan

    2017-09-01

    Conclusion: It was shown that angular velocity is important in isokinetic training, and that training at high angular velocities provides strength increases at lower angular velocities, but would not increase strength at angular velocities above the training level. For this reason, it is thought that in the preparation of an isokinetic strength training protocol, angular velocities need to be taken into account. For any athlete, the force at the angular velocity required in her/his sports branch needs to be considered.

  6. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  7. Strength Training Following Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  8. Atomic size and local order effects on the high temperature strength of binary Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abaspour, Saeideh, E-mail: s.abaspour78@gmail.com [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Zambelli, Victor [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Dargusch, Matthew [Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Cáceres, Carlos H. [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia)

    2016-09-15

    The solid solution strengthening introduced by Ca (0.6 and 0.9 at%) and Sn 0.5–2.5 at%) was studied through tensile, compression and stress relaxation tests at room temperature, 373 K (100 °C) and 453 K (180 °C) on solution heat-treated and quenched specimens and compared with existing data for binary alloys containing Ca, Sn, Y, Gd, Nd, Zn and Al as well as for AZ91 alloy. At room temperature the solution-hardening rate introduced by Ca and Sn was much higher than that of Al, matching those of Y, Gd and Zn. Calcium also reduced the tension/compression asymmetry. At high temperature Ca effectively prevented stress relaxation, nearly matching Y, Gd and Nd. Tin was less effective, but still outperformed Al and AZ91 at low stresses. The effects at room and high temperature introduced by Ca and Sn appeared consistent with the presence of short-range order, in line with those introduced by Y, Nd, Gd and Zn. The larger than Mg atom size of Ca, Nd, Gd and Y can be expected to intensify the local order by strengthening the atomic bonds through its effects on the local electron density, accounting for their greater strengthening at high temperature. For given difference in atomic size, the effects on the local order are expected to be lesser for smaller sized atoms like Sn and Zn, hence their more subdued effects.

  9. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  10. Evaluation of in-place concrete strength by core testing.

    Science.gov (United States)

    2016-11-01

    The overall objective of the work contained in this report is to develop an ALDOT procedure to evaluate core strength results obtained under various conditions. Since there are many factors that influence the apparent strength of cores, strength corr...

  11. Short Communications Strength Properties and Groups of Major ...

    African Journals Online (AJOL)

    Short Communications Strength Properties and Groups of Major Commercial Timbers Grown in Kenya. ... The strength groups developed revealed that most species in Kenya are suitable for heavy engineering works and building construction. ... strength properties, commercial timber, physical and mechanical properties

  12. Fatigue strength of socket welded pipe joint

    International Nuclear Information System (INIS)

    Iida, K.; Matsuda, F.; Sato, M.; Higuchi, M.; Nakagawa, A.

    1994-01-01

    Fully reversed four point bending fatigue tests were carried out of small diameter socket welded joints made of carbon steels. Experimental parameters are pipe diameter, thickness of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint of 50 mm diameter showed relatively low fatigue strength, 46 MPa in stress amplitude at the 10 7 cycles failure life. This value corresponds to about 1/5 of that of the smoothed base metal specimens in axial fatigue. The fatigue strength showed decrease with increasing pipe diameter, and increase with increasing the thickness of pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to the expectation, the fatigue strength of the socket welded joint without slip-on gap is higher than that of the joint with the normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10 7 cycles failure life for the 50 mm diameter socket joint. (orig.)

  13. Microtensile bond strength of enamel after bleaching.

    Science.gov (United States)

    Lago, Andrea Dias Neves; Garone-Netto, Narciso

    2013-01-01

    To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Twenty bovine teeth were randomly distributed into 4 groups (n = 5), 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control); G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm) area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min) 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM). There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2). There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive) failure in all groups. The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  14. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  15. Residual-strength determination in polymetric materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.M.

    1981-10-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data.

  16. Reflector dowel strength test, Fort St. Vrain

    International Nuclear Information System (INIS)

    Doll, D.W.

    1975-01-01

    The strength of the 44.45 mm (1.75 in.) diameter Fort St. Vrain (FSV) reflector dowel for loads directed radially inward toward the center of the element was measured. For a statically applied load, the strength exceeded 5783 N (1300 lb) in direct shear. This strength remained after load cycling 100 times to 4448 N (1000 lb), 10 times to 4893 N (1100 lb), 10 times to 5338 N (1200 lb), and two times to 5783 N (1300 lb). Typically, the deflection to ultimate failure was approximately 1.0 mm (0.04 in.). At about 3316 N (750 lb) and 0.20 mm (0.008 in.) deflection, one of the webs between the dowel and a coolant hole cracked, apparently redistributing the load. No further failure occurred up to the ultimate load of 5783+ N (1300+ lb)

  17. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  18. Hip strength and range of motion

    DEFF Research Database (Denmark)

    Mosler, Andrea B.; Crossley, Kay M.; Thorborg, Kristian

    2017-01-01

    Objectives To determine the normal profiles for hip strength and range of motion (ROM) in a professional football league in Qatar, and examine the effect of leg dominance, age, past history of injury, and ethnicity on these profiles. Design Cross-sectional cohort study. Methods Participants...... values are documented for hip strength and range of motion that can be used as reference profiles in the clinical assessment, screening, and management of professional football players. Leg dominance, recent past injury history and ethnicity do not need to be accounted for when using these profiles...... included 394 asymptomatic, male professional football players, aged 18–40 years. Strength was measured using a hand held dynamometer with an eccentric test in side-lying for hip adduction and abduction, and the squeeze test in supine with 45° hip flexion. Range of motion measures included: hip internal...

  19. Creep Strength of Discontinuous Fibre Composites

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker

    1974-01-01

    relation between stress and strain rate. Expressions for the interface stress, the creep velocity profile adjacent to the fibres and the creep strength of the composite are derived. Previous results for the creep strength, sc = aVfs0 ( \\frac[( Î )\\dot] [( Î )\\dot] 0 )1/nr1 + 1/n c=Vf001n1+1n in which[( Î...... )\\dot] is the composite creep rate,V f is the fibre volume fraction,sgr 0,epsi 0 andn are the constants in the matrix creep law. The creep strength coefficient agr is found to be very weakly dependent onV f and practically independent ofn whenn is greater than about 6....

  20. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira

    2007-01-01

    This study evaluated, in vitro, the loss of tooth substance after cavity preparation for direct and indirect restorations and its relationship with fracture strength of the prepared teeth. Sixty sound human maxillary first premolars were assigned to 6 groups (n=10). MOD direct composite cavities......) or 1/2 (Groups III and VI) of the intercuspal distance. Teeth were weighed (digital balance accurate to 0.001 g) before and after preparation to record tooth substance mass lost during cavity preparation. The prepared teeth were submitted to occlusal loading to determine their fracture strength using...... mass loss (13.91%) than composite resin preparations with the same width (10.02%). 1/2-inlay cavities had 21.34% of mass loss versus 16.19% for the 1/2-composite resin cavities. Fracture strength means (in kgf) were: GI = 187.65; GII = 143.62; GIII = 74.10; GIV = 164.22; GV = 101.92; GVI = 50...

  1. Residual-strength determination in polymetric materials

    International Nuclear Information System (INIS)

    Christensen, R.M.

    1981-01-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data

  2. Argument Strength and the Persuasiveness of Stories

    Science.gov (United States)

    Schreiner, Constanze; Appel, Markus; Isberner, Maj-Britt; Richter, Tobias

    2017-01-01

    ABSTRACT Stories are a powerful means to change people’s attitudes and beliefs. The aim of the current work was to shed light on the role of argument strength (argument quality) in narrative persuasion. The present study examined the influence of strong versus weak arguments on attitudes in a low or high narrative context. Moreover, baseline attitudes, interindividual differences in working memory capacity, and recipients’ transportation were examined. Stories with strong arguments were more persuasive than stories with weak arguments. This main effect was qualified by a two-way interaction with baseline attitude, revealing that argument strength had a greater impact on individuals who initially were particularly doubtful toward the story claim. Furthermore, we identified a three-way interaction showing that argument strength mattered most for recipients who were deeply transported into the story world in stories that followed a typical narrative structure. These findings provide an important specification of narrative persuasion theory. PMID:29805322

  3. Short-term Periodization Models: Effects on Strength and Speed-strength Performance.

    Science.gov (United States)

    Hartmann, Hagen; Wirth, Klaus; Keiner, Michael; Mickel, Christoph; Sander, Andre; Szilvas, Elena

    2015-10-01

    Dividing training objectives into consecutive phases to gain morphological adaptations (hypertrophy phase) and neural adaptations (strength and power phases) is called strength-power periodization (SPP). These phases differ in program variables (volume, intensity, and exercise choice or type) and use stepwise intensity progression and concomitant decreasing volume, converging to peak intensity (peaking phase). Undulating periodization strategies rotate these program variables in a bi-weekly, weekly, or daily fashion. The following review addresses the effects of different short-term periodization models on strength and speed-strength both with subjects of different performance levels and with competitive athletes from different sports who use a particular periodization model during off-season, pre-season, and in-season conditioning. In most periodization studies, it is obvious that the strength endurance sessions are characterized by repetition zones (12-15 repetitions) that induce muscle hypertrophy in persons with a low performance level. Strictly speaking, when examining subjects with a low training level, many periodization studies include mainly hypertrophy sessions interspersed with heavy strength/power sessions. Studies have demonstrated equal or statistically significant higher gains in maximal strength for daily undulating periodization compared with SPP in subjects with a low to moderate performance level. The relatively short intervention period and the lack of concomitant sports conditioning call into question the practical value of these findings for competitive athletes. Possibly owing to differences in mesocycle length, conditioning programs, and program variables, competitive athletes either maintained or improved strength and/or speed-strength performance by integrating daily undulating periodization and SPP during off-season, pre-season and in-season conditioning. In high-performance sports, high-repetition strength training (>15) should be

  4. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  5. Numerical Model of High Strength Concrete

    Science.gov (United States)

    Wang, R. Z.; Wang, C. Y.; Lin, Y. L.

    2018-03-01

    The purpose of this paper is to present a three-dimensional constitutive model based on the concept of equivalent uniaxial strain. closed Menetrey-Willam (CMW) failure surfaces which combined with Menetrey-Willam meridian and the cap model are introduced in this paper. Saenz stress-strain model is applied and adjusted by the ultimate strength parameters from CMW failure surface to reflect the latest stress or strain condition. The high strength concrete (HSC) under tri-axial non-proportional loading is considered and the model in this paper performed a good prediction.

  6. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  7. Structure of β-decay strength functions

    International Nuclear Information System (INIS)

    Naumov, Y.V.; Bykov, A.A.; Izosimov, I.N.

    1983-01-01

    The experimental and theoretical studies on the structure of the Gamow--Teller β-decay strength functions are reviewed. Also considered are processes such as M1 γ decay of analog states, the emission of delayed protons, neutrons, and α particles, delayed fission, and the (p, n) reaction at proton energies 100--200 MeV. The results of measurements of the strength functions by γ-ray total absorption are analyzed. It is shown that the β + decay of nuclei far from the stability band exhibits a new type of collective charge-exchange excitation: Gamow--Teller resonance with μ/sub tau/ = +1

  8. Compressive strength of thick composite panels

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    2011-01-01

    The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used in the structu......The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used...

  9. Lifetime and residual strength of materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    of load amplitude, load average, fractional time under maximum load, and load frequency.The analysis includes prediction of residual strength (re-cycle strength) during the process of load cycling. It is concluded that number of cycles to failure is a very poor design criterion. It is demonstrated how...... the theory developed can be generalized also to consider non-harmonic load variations.Algorithms are presented for design purposes which may be suggested as qualified alternatives to the Palmgren-Miner's methods normally used in fatigue analysis of materials under arbitrary load variations. Prediction...

  10. Optimal estimation of the optomechanical coupling strength

    Science.gov (United States)

    Bernád, József Zsolt; Sanavio, Claudio; Xuereb, André

    2018-06-01

    We apply the formalism of quantum estimation theory to obtain information about the value of the nonlinear optomechanical coupling strength. In particular, we discuss the minimum mean-square error estimator and a quantum Cramér-Rao-type inequality for the estimation of the coupling strength. Our estimation strategy reveals some cases where quantum statistical inference is inconclusive and merely results in the reinforcement of prior expectations. We show that these situations also involve the highest expected information losses. We demonstrate that interaction times on the order of one time period of mechanical oscillations are the most suitable for our estimation scenario, and compare situations involving different photon and phonon excitations.

  11. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  12. Cosmic censorship and the strengths of singularities

    International Nuclear Information System (INIS)

    Newman, R.P.

    1986-01-01

    This paper considers the principal definitions concerning limiting curvature strength on geodesics, and on non-spacelike geodesics in particular. They are formulated in terms of focussing conditions. Two definitions suggest themselves, and these are given in terms of a concept of a generalized Jacobi field. An historical survey is presented on some important developments concerning examples of naked singularities. The historical context is recalled in which these models, and cosmic censorship in general, have arisen. It is the author's opinion that one can expect to obtain theoretical limitations on the strengths of any naked singularities which do occur

  13. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  14. Dataset of the relationship between unconfined compressive strength and tensile strength of rock mass

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Yui, Mikazu

    2002-02-01

    This report summary the dataset of the relationship between unconfined compressive strength and tensile strength of the rock mass described in supporting report 2; repository design and engineering technology of second progress report (H12 report) on research and development for the geological disposal of HLW in Japan. (author)

  15. [Loading and strength of single- and multi-unit fixed dental prostheses 2. Strength

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Meijers, C.C.A.J.; Vergoossen, E.L.; Creugers, N.H.J.

    2014-01-01

    The ultimate strength of a dental prosthesis is defined as the strongest loading force applied to the prosthesis until afracture failure occurs. Important key terms are strength, hardness, toughness and fatigue. Relatively prevalent complications of single- and multi-unit fixed dental prostheses are

  16. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    Science.gov (United States)

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  17. Burst strength of tubing and casing based on twin shear unified strength theory.

    Science.gov (United States)

    Lin, Yuanhua; Deng, Kuanhai; Sun, Yongxing; Zeng, Dezhi; Liu, Wanying; Kong, Xiangwei; Singh, Ambrish

    2014-01-01

    The internal pressure strength of tubing and casing often cannot satisfy the design requirements in high pressure, high temperature and high H2S gas wells. Also, the practical safety coefficient of some wells is lower than the design standard according to the current API 5C3 standard, which brings some perplexity to the design. The ISO 10400: 2007 provides the model which can calculate the burst strength of tubing and casing better than API 5C3 standard, but the calculation accuracy is not desirable because about 50 percent predictive values are remarkably higher than real burst values. So, for the sake of improving strength design of tubing and casing, this paper deduces the plastic limit pressure of tubing and casing under internal pressure by applying the twin shear unified strength theory. According to the research of the influence rule of yield-to-tensile strength ratio and mechanical properties on the burst strength of tubing and casing, the more precise calculation model of tubing-casing's burst strength has been established with material hardening and intermediate principal stress. Numerical and experimental comparisons show that the new burst strength model is much closer to the real burst values than that of other models. The research results provide an important reference to optimize the tubing and casing design of deep and ultra-deep wells.

  18. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  19. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  20. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  1. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  2. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  3. Market for multiaxis laser machine tools

    Science.gov (United States)

    Ream, Stanley L.

    1991-03-01

    While it's true that this is an exciting topic, it niay be more exciting than profitable, but it certainly has captured the attention of a lot of us laser folks, and it keeps growing almost because it wants to. First of all let me comment briefly with a word from our sponsor that GE Fanuc is one of the several ways the Fanuc laser product gets into the United States. We market it, GM Fanuc also markets it, and of course it shows up on Japanese machine tool built products. The information in this little presentation came from discussions with you folks wherever possible. In some cases I was unable to make contact with the horse's mouth as it were, but we got roundabout information so it's not gospel, but it's close. We've also had some updated information at the show here updated rumors maybe that suggest that some of the numbers may be high or low. I think in the aggregate it's not too far off.

  4. Multi-Axis Heterodyne Interferometry (MAHI)

    Science.gov (United States)

    Thorpe, James

    The detection and measurement of gravitational waves represents humanity’s next, and final, opportunity to open an entirely new spectrum with which to view the universe. The first steps of this process will likely take place later this decade when the second-generation ground-based instruments such as Advanced LIGO approach design sensitivity. While these events will be historic, it will take a space-based detector to access the milliHertz gravitational wave frequency band, a band that is rich in both number and variety of sources. The Laser Interferometer Space Antenna (LISA) concept has been developed over the past two decades in the US and Europe to provide access to this band. The European Space Agency recently selected The Gravitational Universe as the science theme for the 3rd Large-class mission in the Cosmic Visions Programme, with the assumption that a LISA-like instrument would be implemented for launch in 2034. NASA has expressed interest in partnering on this effort and the US community has made its own judgment on the scientific potential of a space-based gravitational wave observatory through the selection of LISA as the 3rd flagship mission in the 2010 Decadal Survey. Much of the effort has been in retiring risk for the unique technologies that comprise a gravitational wave detector. A prime focus of this effort is LISA Pathfinder (LPF), a dedicated technology demonstrator mission led by ESA with contributions from NASA and several member states. LPF’s primary objective is to validate drag-free flight as an approach to realizing an inertial reference mass. Along the way, several important technologies will be demonstrated, including picometer-level heterodyne interferometry. However, there are several important differences between the interferometry design for LISA and that for LPF. These mostly result from the fact that LISA interferometry involves multiple lasers on separate spacecraft whereas LPF can use a single laser on a single spacecraft. We propose to develop a laboratory prototype of a LISA-like interferometric metrology system capable of simultaneously making picometer-level position and nanoradian-level attitude measurements of a free-flying target. In the LISA application, this prototype would represent the short-arm interferometer, measuring the displacement and relative attitude between the gravitational test mass and the spacecraft. This measurement is used both to drive the drag-free attitude and control system as well as to extract the gravitational wave science signal. In addition to the LISA application, such a system would have broader applications in future geodesy and formation-flying missions. The prototype free-flying metrology system will consist of the following subcomponents: an optical bench providing stable pathlengths, an optical target mounted on a precision actuator, a low-noise quadrant photoreceiver for generating differential wavefront signals, and a phase measurement system to measure the individual heterodyne signals and convert them into quantities such as position and angle. In addition to the moving target, the optical bench will include a pair of fixed targets to be used as references. Comparing the two reference interferometers will provide an estimate of the noise performance of the measurement system, while comparing a reference interferometer with the free-flying target will allow us to demonstrate measurement over a large dynamic range. In addition to making performance measurements, we will use this prototype system to explore a number of system-level issues related to free-flying interferometry including initial acquisition, beam-walk effects, and jitter couplings.

  5. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  6. Multiaxial creep behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Findley, W.N.; Mark, R.

    1975-07-01

    Tests in combined tension-torsion, pure tension and pure torsion, were conducted at elevated temperature (about 1100 0 F). Most of these tests were repeats of previous experiments where friction in the extensometer caused anomalous creep behavior. The existence of a creep surface at 12.5 ksi effective Mises stress was explored. Work on a compression creep apparatus continued. Creep and recovery data were fitted to the equation epsilon/sub ij/ = epsilon 0 /sub ij/ + e + /sub ij/t/sup n//sub ij/ by means of a least squares method. (5 tables, 10 fig) (auth)

  7. Multi-Axial Simulation Table (MAST)

    Data.gov (United States)

    Federal Laboratory Consortium — The MAST delivers an extensive array of testing applications providing rapid, flexible and reliable analysis for ground vehicle components and subassemblies. Using...

  8. Coordinated control of multi-axis tasks

    International Nuclear Information System (INIS)

    Mc Kinnon, G.M.; King, M.L.; Runnings, D.W.

    1987-01-01

    The use of manipulators and the development of manipulator technology has steadily increased in recent years. Consequently, teleoperation of the remote operation of a machine or piece of equipment has also increased. Typically, teleoperation is employed in situations where the environment is dangerous or too remote for humans to work. In space exploration with the use of dextrous manipulators, teleoperation has become a critical component. This paper describes tests carried out to evaluate three man-machine interfaces with two dextrous manipulators. The three interfaces were a master/slave system with force reflection, a master slave system without force reflection, and two six degree of freedom handcontrollers. Results indicated that task accuracy was superior with the handcontrollers

  9. Material law for concrete under multiaxial stress

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    In this paper a general triaxial set of finite strain-stress relations is derived, which can include a step-by-step way nearly all known factors and curves of material response. The finite constitutive equations representing the behaviour of concrete are related to the main strain-directions. The elastic part, the functions for uniaxial behaviour, those for biaxial response and finally the relation-parts, nonzero only in triaxial stress-state, can be reset separately by suitable functions which have been adjusted to the material response of actual concrete known from special tests. With a new and very short biaxial failure criterion for concrete, which has been stated and compared with test results, the analytic description of the biaxial behaviour of Kupfer's concrete is completed. With some additional assumptions the proposed failure criteria and the strain-stress equations for concrete are extended to the biaxial response of uncracked orthogonally reinforced concrete response. (Auth.)

  10. Creep fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-01-01

    When structural components are subjected to severe cyclic loading conditions with intermittent periods of sustained loading at elevated temperature, the designer must guard against a failure mode caused by the interaction of time-dependent and time-independent deformation. This phenomena is referred to as creep-fatigue interaction. The most elementary form of interaction theory (called linear damage summation) is now embodied in the ASME Boiler and Pressure Vessel Code. In recent years, a competitor for the linear damage summation theory has emerged, called strainrange partitioning. This procedure is based upon the visualization of the cyclic strain in a uniaxial creep-fatigue test as a hysteresis loop, with the inelastic strains in the loop counter-balanced in one of two ways. The two theories are compared and contrasted in terms of ease of use, possible inconsistencies, and component life prediction. Future work to further test the damage theories is recommended

  11. Material law for concrete under multiaxial stress

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    In this paper a general triaxial set of finite strain-stress relations is derived, which can include in a step-by-step way nearly all known factors and curves of material response. The finite constitutive equations representing the behavior of concrete are related to the main strain-directions. The elastic part, the functions for uniaxial behavior, those for biaxial response and finally the relation-parts, nonzero only in triaxial stress-state, can be reset separately by suitable functions which have been adjusted to the material response of actual concrete known from special tests. In nonlinear incremental analysis a potential is usually assumed in incremental material behavior to keep incremental stiffness matrices symmetric. If the proposed generalized set of constitutive equations is restricted to special types of functions, the resulting tangent stiffness is symmetric. Special functions for the various parts are presented, the tangent stiffness of which can easily be derived explicitly by partial differentiation of the related strain-stress relations. Thus the application of the proposed constitutive equations in incremental nonlinear analysis is very effective. The free coefficients of one general set of equations are adjusted step by step to the results of Kupfer's biaxial tests under shorttime loading. With a new and very short bixial failure criterion for concrete, which has been stated and compared with test results, the analytic description of the biaxial behavior of Kupfer's concrete is completed. With some additional assumptions the proposed failure criteria and the strain-stress equations for concrete are extended to the biaxial response of uncracked othogonally reinforced concrete response

  12. Design and analysis of multiaxial creep tests

    International Nuclear Information System (INIS)

    Mallett, R.H.; Dhalla, A.K.; Yocolano, J.T.

    1974-01-01

    A procedure is described for presenting the complete data as obtained from tests of thin-walled tubular creep test specimens. Thereafter, a procedure for processing the data is presented. The processed data is based in part upon results of detailed inelastic finite element analyses performed to determine uniform and constant stress quantities and effective gage lengths. (U.S.)

  13. Multiaxial behavior of foams - Experiments and modeling

    Science.gov (United States)

    Maheo, Laurent; Guérard, Sandra; Rio, Gérard; Donnard, Adrien; Viot, Philippe

    2015-09-01

    Cellular materials are strongly related to pressure level inside the material. It is therefore important to use experiments which can highlight (i) the pressure-volume behavior, (ii) the shear-shape behavior for different pressure level. Authors propose to use hydrostatic compressive, shear and combined pressure-shear tests to determine cellular materials behavior. Finite Element Modeling must take into account these behavior specificities. Authors chose to use a behavior law with a Hyperelastic, a Viscous and a Hysteretic contributions. Specific developments has been performed on the Hyperelastic one by separating the spherical and the deviatoric part to take into account volume change and shape change characteristics of cellular materials.

  14. Acute Effects of Partial-Body Cryotherapy on Isometric Strength: Maximum Handgrip Strength Evaluation.

    Science.gov (United States)

    De Nardi, Massimo; Pizzigalli, Luisa; Benis, Roberto; Caffaro, Federica; Micheletti Cremasco, Margherita

    2017-12-01

    De Nardi, M, Pizzigalli, L, Benis, R, Caffaro, F, and Cremasco, MM. Acute effects of partial-body cryotherapy on isometric strength: maximum handgrip strength evaluation. J Strength Cond Res 31(12): 3497-3502, 2017-The aim of the study was to evaluate the influence of a single partial-body cryotherapy (PBC) session on the maximum handgrip strength (JAMAR Hydraulic Hand dynamometer). Two hundred healthy adults were randomized into a PBC group and a control group (50 men and 50 women in each group). After the initial handgrip strength test (T0), the experimental group performed a 150-second session of PBC (temperature range between -130 and -160° C), whereas the control group stayed in a thermo neutral room (22.0 ± 0.5° C). Immediately after, both groups performed another handgrip strength test (T1). Data underlined that both groups showed an increase in handgrip strength values, especially the experimental group (Control: T0 = 39.48 kg, T1 = 40.01 kg; PBC: T0 = 39.61 kg, T1 = 41.34 kg). The analysis also reported a statistical effect related to gender (F = 491.99, P ≤ 0.05), with women showing lower handgrip strength values compared with men (women = 30.43 kg, men = 52.27 kg). Findings provide the first evidence that a single session of PBC leads to the improvement of muscle strength in healthy people. The results of the study imply that PBC could be performed also before a training session or a sport competition, to increase hand isometric strength.

  15. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  16. Understanding the Strengths of African American Families.

    Science.gov (United States)

    Littlejohn-Blake, Sheila M.; Darling, Carol Anderson

    1993-01-01

    Focuses on strengths of African-American families and how they function, relevant conceptual approaches, and trends and issues in studying African-American families that can facilitate understanding. A shift from studying dysfunctional families to more positive aspects can help African-American families meet societal challenges. (SLD)

  17. Size Effects on the Strength of Metals

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2014-01-01

    The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistanc...

  18. 7 CFR 29.3061 - Strength (tensile).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.3061 Section 29.3061 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Official...

  19. 7 CFR 29.6040 - Strength (tensile).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Definitions §...

  20. Tensile Strength of the Eggshell Membranes

    Czech Academy of Sciences Publication Activity Database

    Strnková, J.; Nedomová, Š.; Kumbár, V.; Trnka, Jan

    2016-01-01

    Roč. 64, č. 1 (2016), s. 159-164 ISSN 1211-8516 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : eggshell membrane * tesile test * loading rate * tensile strength * fracture strain Subject RIV: GM - Food Processing

  1. A note on integral vortex strength

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2010-01-01

    Roč. 58, č. 1 (2010), s. 23-28 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : circulation * unsteady Taylor vortex * vortex intensity * vortex strength * vorticity * vorticity decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  2. 7 CFR 29.2555 - Strength.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength. 29.2555 Section 29.2555 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Official Standard Grades...

  3. 7 CFR 29.2303 - Strength.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength. 29.2303 Section 29.2303 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO INSPECTION Standards Official Standard Grades...

  4. Residual strength evaluation of concrete structural components ...

    Indian Academy of Sciences (India)

    This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension ...

  5. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  6. Causal strength induction from time series data.

    Science.gov (United States)

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Computer Simulation in Problems of Thermal Strength

    Directory of Open Access Journals (Sweden)

    Olga I. Chelyapina

    2012-05-01

    Full Text Available This article discusses informative technology of using graphical programming environment LabVIEW 2009 when calculating and predicting the thermal strength of materials with an inhomogeneous structure. Algorithm for processing the experimental data was developed as part of the problem.

  8. The statistical strength of nonlocality proofs

    NARCIS (Netherlands)

    Dam, van W.; Gill, R.D.; Grünwald, P.D.

    2005-01-01

    There exist numerous proofs of Bell's theorem, stating that quantum mechanics is incompatible with local realistic theories of nature. Here the strength of such nonlocality proofs is defined in terms of the amount of evidence against local realism provided by the corresponding experiments.

  9. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  10. OPTIMISATION OF COMPRESSIVE STRENGTH OF PERIWINKLE ...

    African Journals Online (AJOL)

    In this paper, a regression model is developed to predict and optimise the compressive strength of periwinkle shell aggregate concrete using Scheffe's regression theory. The results obtained from the derived regression model agreed favourably with the experimental data. The model was tested for adequacy using a student ...

  11. Strength Training. A Key to Athletic Training.

    Science.gov (United States)

    Whiteside, Patricia W.

    Characteristics of an effective strength training program are analyzed and descriptions are offered of different kinds of weight training activities. Comparisons are made between concentric, isometric, eccentric, and isokinetic training methods. The fundamentals and techniques of an exemplary training program are outlined and the organization and…

  12. Noticing Young Children's Mathematical Strengths and Agency

    Science.gov (United States)

    Dockett, Sue; Goff, Wendy

    2013-01-01

    This paper promotes the importance of noticing young children's mathematical strengths. It draws on the philosophical positions of children's rights and competence to propose a shift in the ways in which all involved might notice the mathematical engagement, understandings, experiences and practices of young children. Noticing children's…

  13. Strength variability of single flax fibres

    DEFF Research Database (Denmark)

    Aslan, Mustafa; Chinga-Carrasco, G.; Sørensen, Bent F.

    2011-01-01

    (linear and nonlinear) of the fibres are found to be correlated with the amount of defects. The linear stress–strain curves tend to show a higher tensile strength, a higher Young’s modulus, and a lower strain to failure than the nonlinear curves. Finally, the fibres are found to fracture by a complex...

  14. CANFLEX fuel bundle strength tests (test report)

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Chung, C. H.; Kim, B. D.

    1997-08-01

    This document outlines the test results for the strength tests of the CANFLEX fuel bundle. Strength tests are performed to determine and verify the amount of the bundle shape distortion which is against the side-stops when the bundles are refuelling. There are two cases of strength test; one is the double side-stop test which simulates the normal bundle refuelling and the other is the single side-stop test which simulates the abnormal refuelling. the strength test specification requires that the fuel bundle against the side-stop(s) simulators for this test were fabricated and the flow rates were controlled to provide the required conservative hydraulic forces. The test rig conditions of 120 deg C, 11.2 MPa were retained for 15 minutes after the flow rate was controlled during the test in two cases, respectively. The bundle loading angles of number 13- number 15 among the 15 bundles were 67.5 deg CCW and others were loaded randomly. After the tests, the bundle shapes against the side-stops were measured and inspected carefully. The important test procedures and measurements were discussed as follows. (author). 5 refs., 22 tabs., 5 figs

  15. Development of Airblast and Soil Strength Instrumentation.

    Science.gov (United States)

    1980-02-01

    and nushing on a small reservior of mercury. The bar jauge , contained within the probe along its axis, wou! have its sensitive end §orm -no 6 2 of the...Figure 44. Gauge Placement for Single trength (rc 3hocked-Mer ium Experiment:;. :2nd "’, w. grout medium. The acceleration of the soil strength , jauge

  16. Structure and Strength in Causal Induction

    Science.gov (United States)

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  17. The strength of primary care in Europe

    NARCIS (Netherlands)

    Kringos, D.S.|info:eu-repo/dai/nl/352077131

    2012-01-01

    This thesis aimed to get insight into the elements that form (the strength of) primary care (PC) in Europe, their determinants and their impact on health care system outcomes. The results strengthen the evidence-base for policymakers to prioritise PC strengthening on the health policy agenda and

  18. Got LEGO Bricks? Children with Spatial Strengths

    Science.gov (United States)

    Mann, Rebecca

    2013-01-01

    Individuals with spatial strengths have preferences for visual ideation, holistic reasoning, and innovation. With the emphasis on verbal skills, American schools rarely provide opportunities for children to excel in these areas. Standardized assessments used to judge achievement do not value reflective thinking and innovation; therefore, students…

  19. Deformed metals - structure, recrystallisation and strength

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    2011-01-01

    It is shown how new discoveries and advanced experimental techniques in the last 25 years have led to paradigm shifts in the analysis of deformation and annealing structures of metals and in the way the strength of deformed samples is related to structural parameters. This is described in three...

  20. Quasiparticle pole strength in nuclear matter

    International Nuclear Information System (INIS)

    Poggioli, R.S.; Jackson, A.D.

    1975-01-01

    It is argued that single-particle-like behavior in nuclear matter is much less probable than Brueckner theory suggests. In particular, the quasiparticle pole strength is evaluated for nuclear matter and it is shown that, contrary to the spirit of Brueckner theory, low momentum states play a crucial role in determining the magnitude of z/sub k/sub F/. (auth)

  1. Weight Training for Strength and Power.

    Science.gov (United States)

    President's Council on Physical Fitness and Sports, Washington, DC.

    This paper begins by defining the terms "weight training,""weight lifting,""strength,""power," and "muscular endurance.""Weight training" is differentiated from "weight lifting" and defined as a systematic series of resistance exercises designed to promote physical development and conditioning or to rehabilitate persons who have suffered injury or…

  2. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  3. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  4. Osmocapsules for direct measurement of osmotic strength.

    Science.gov (United States)

    Kim, Shin-Hyun; Lee, Tae Yong; Lee, Sang Seok

    2014-03-26

    Monodisperse microcapsules with ultra-thin membranes are microfluidically designed to be highly sensitive to osmotic pressure, thereby providing a tool for the direct measurement of the osmotic strength. To make such osmocapsules, water-in-oil-in-water double-emulsion drops with ultra-thin shells are prepared as templates through emulsification of core-sheath biphasic flow in a capillary microfluidic device. When photocurable monomers are used as the oil phase, the osmocapsules are prepared by in-situ photopolymerization of the monomers, resulting in semipermeable membranes with a relatively large ratio of membrane thickness to capsule radius, approximately 0.02. These osmocapsules are buckled by the outward flux of water when they are subjected to a positive osmotic pressure difference above 125 kPa. By contrast, evaporation-induced consolidation of middle-phase containing polymers enables the production of osmocapsules with a small ratio of membrane thickness to capsule radius of approximately 0.002. Such an ultra-thin membrane with semi-permeability makes the osmocapsules highly sensitive to osmotic pressure; a positive pressure as small as 12.5 kPa induces buckling of the capsules. By employing a set of distinct osmocapsules confining aqueous solutions with different osmotic strengths, the osmotic strength of unknown solutions can be estimated through observation of the capsules that are selectively buckled. This approach provides the efficient measurement of the osmotic strength using only a very small volume of liquid, thereby providing a useful alternative to other measurement methods which use complex setups. In addition, in-vivo measurement of the osmotic strength can be potentially accomplished by implanting these biocompatible osmocapsules into tissue, which is difficult to achieve using conventional methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microtensile bond strength of enamel after bleaching

    Directory of Open Access Journals (Sweden)

    Andréa Dias Neves Lago

    2013-01-01

    Full Text Available Objective: To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Materials and Methods: Twenty bovine teeth were randomly distributed into 4 groups (n = 5, 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control; G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM. Results: There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2. There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive failure in all groups. Conclusion: The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  6. Strength Gain Properties up to five-year age of high-strength mass concrete

    International Nuclear Information System (INIS)

    Mitarai, Y.; Shigenobu, M.; Hiramine, T.; Inoue, K.; Nakane, S.; Ohike, T.

    1991-01-01

    Genkai No.3 plant of Kyushu Electric Power Co., Inc. presently under construction is a PWR type nuclear power plant with 1180 MW power output, and a prestressed concrete containment vessel (PCCV) was adopted for the reactor. The concrete used for the construction of the PCCV is the mass concrete with the wall thickness of 1.3 m in the general parts of the cylinder, and about 2 m at buttresses. It is the high strength concrete of the specified strength 420 kgf/cm 2 . As the preliminary study for the construction using such high strength mass concrete, the examination was carried out on the strength gain property of structural concrete using full scale simulated members. The various problems in the quality control were contemplated based on the results of the examination, and were reflected to actual construction, designating 13 weeks as the age for strength control, in order to build the concrete structures with high reliability. In this report, the outline of the study on the strength gain up to 5 year age carried out in the preliminary study is discussed. The experimental method, the method of evaluating structural strength, the mixing proportion of concrete and the results are reported. (K.I.)

  7. At-home resistance tubing strength training increases shoulder strength in the trained and untrained limb.

    Science.gov (United States)

    Magnus, C R A; Boychuk, K; Kim, S Y; Farthing, J P

    2014-06-01

    The purpose was to determine if an at-home resistance tubing strength training program on one shoulder (that is commonly used in rehabilitation settings) would produce increases in strength in the trained and untrained shoulders via cross-education. Twenty-three participants were randomized to TRAIN (strength-trained one shoulder; n = 13) or CONTROL (no intervention; n = 10). Strength training was completed at home using resistance tubing and consisted of maximal shoulder external rotation, internal rotation, scaption, retraction, and flexion 3 days/week for 4 weeks. Strength was measured via handheld dynamometry and muscle size measured via ultrasound. For external rotation strength, the trained (10.9 ± 10.9%) and untrained (12.7 ± 9.6%) arm of TRAIN was significantly different than CONTROL (1.6 ± 13.2%; -2.7 ± 12.3%; pooled across arm; P tubing training program on one limb can produce increases in strength in both limbs, and has implications for rehabilitation after unilateral shoulder injuries. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The Effect of Tempering on Strength Properties and Seed Coat ...

    African Journals Online (AJOL)

    The effect of tempering on seed coat adhesion strength and mechanical strength of sorghum and millet grain kernels was investigated at different tempering durations. Tempering reduced the kernel breaking strength and had significant effect on seed coat adhesion strength. Tempering the grain for 60 minutes at ambient ...

  9. Promoting positive outcomes through strengths interventions : A literature review

    NARCIS (Netherlands)

    Ghielen, S.T.S.; van Woerkom, M.; Meyers, M.C.

    2018-01-01

    This paper reviews studies of strengths interventions published between 2011 and 2016. Strengths interventions aim to promote well-being or other positive outcomes by facilitating strengths identification, and sometimes also strengths use and/or development. The present review provides an overview

  10. Handgrip Strength: Indications of Paternal Inheritance in Three European Regions

    DEFF Research Database (Denmark)

    Cournil, Amandine; Jeune, Bernard; Skytthe, Axel

    2010-01-01

    BACKGROUND: Handgrip strength is an indicator of overall muscle strength. Poor handgrip strength is a risk factor for disability and mortality. We aimed to investigate the pattern of inheritance of handgrip strength in a sample of parent-offspring pairs from three different European regions...

  11. Interseason variability in isokinetic strength and poor correlation with Nordic hamstring eccentric strength in football players.

    Science.gov (United States)

    van Dyk, N; Witvrouw, E; Bahr, R

    2018-04-25

    In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  13. Hip adduction and abduction strength profiles in elite soccer players

    DEFF Research Database (Denmark)

    Thorborg, Kristian; Serner, Andreas; Petersen, Jesper

    2011-01-01

    An ipsilateral hip adduction/abduction strength ratio of more than 90%, and hip adduction strength equal to that of the contralateral side have been suggested to clinically represent adequate strength recovery of hip adduction strength in athletes after groin injury. However, to what extent side-......-to-side symmetry in isometric hip adduction and abduction strength can be assumed in soccer players remains uncertain....

  14. Self-perceived strengths among people who are homeless

    OpenAIRE

    Tweed, Roger G.; Biswas-Diener, Robert; Lehman, Darrin R.

    2012-01-01

    This study examined self-perceived strengths among 116 people who were homeless. Those who had experienced a longer period of current homelessness tended to report fewer personal strengths (r = −0.23). Nonetheless, in spite of their marginalized position in society, the vast majority of participants (114 out of 116) perceived personal strengths. A prior diagnosis with mental illness was not associated with the number of strengths reported, but self-perception of strengths was associated with ...

  15. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  16. Frictional strength of wet and dry montmorillonite

    Science.gov (United States)

    Morrow, C. A.; Moore, D. E.; Lockner, D. A.

    2017-05-01

    Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a - b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.

  17. Alumina strength degradation in the elastic regime

    International Nuclear Information System (INIS)

    Furnish, Michael D.; Chhabildas, Lalit C.

    1998-01-01

    Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime

  18. Strength measurement of optical fibers by bending

    Science.gov (United States)

    Srubshchik, Leonid S.

    1999-01-01

    A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.

  19. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  20. Spall Strength Measurements in Transparent Epoxy Polymers

    Science.gov (United States)

    Pepper, Jonathan; Rahmat, Meysam; Petel, Oren

    2017-06-01

    Polymer nanocomposites are seeing more frequent use in transparent armour applications. The role of the microstructure on the performance of these materials under dynamic tensile loading conditions is of particular interest. In the present study, a series of plate impact experiments was conducted in order to evaluate the dynamic response of an epoxy (EPON 828) cured with two differed hardeners. The purpose was to compare the role of these hardeners on the dynamic performance of the resulting transparent epoxy. The material response was resolved with a multi-channel photonic Doppler velocimeter. This system was used to determine the shock Hugoniot and dynamic tensile (spall) strength of the materials. The experimental results are presented in reference to spall theory and are evaluated against results predicted by an analytical model of the impacts. While varying the hardener did not change the shock Hugoniot of the epoxy, it did have an effect on the measured spall strengths.

  1. Yield strength of attached copper film

    International Nuclear Information System (INIS)

    Zhang Yan; Zhang Jian-Min

    2011-01-01

    Variation of stress in attached copper film with an applied strain is measured by X-ray diffraction combined with a four-point bending method. A lower slope of the initial elastic segment of the curve of X-ray measured stress versus applied strain results from incomplete elastic strain transferred from the substrate to the film due to insufficiently strong interface cohesion. So the slope of the initial elastic segment of the X-ray stress (or X-ray strain directly) of the film against the substrate applied strain may be used to measure the film-substrate cohesive strength. The yield strength of the attached copper film is much higher than that of the bulk material and varies linearly with the inverse of the film thickness. (condensed matter: structural, mechanical, and thermal properties)

  2. Annotation of selection strengths in viral genomes

    DEFF Research Database (Denmark)

    McCauley, Stephen; de Groot, Saskia; Mailund, Thomas

    2007-01-01

    Motivation: Viral genomes tend to code in overlapping reading frames to maximize information content. This may result in atypical codon bias and particular evolutionary constraints. Due to the fast mutation rate of viruses, there is additional strong evidence for varying selection between intra......- and intergenomic regions. The presence of multiple coding regions complicates the concept of Ka/Ks ratio, and thus begs for an alternative approach when investigating selection strengths. Building on the paper by McCauley & Hein (2006), we develop a method for annotating a viral genome coding in overlapping...... may thus achieve an annotation both of coding regions as well as selection strengths, allowing us to investigate different selection patterns and hypotheses. Results: We illustrate our method by applying it to a multiple alignment of four HIV2 sequences, as well as four Hepatitis B sequences. We...

  3. Precision measurement of relative oscillator strengths

    International Nuclear Information System (INIS)

    Blackwell, D.E.; Ibbetson, P.A.; Petford, A.D.; Shallis, M.J.

    1979-01-01

    The accuracy of the Oxford method of comparing oscillator strengths has been improved by a factor of 10 to 0.5 per cent (0.002 dex) for low excitation lines. The improvements made to the apparatus are briefly described and its new performance discussed. A test for LTE in the furnace is also described. Relative oscillator strengths for 60 lines of Fe I with excitation potentials between 0.00 and 0.12 eV are given. Those with lambda > 320 nm have an accuracy of 0.5 per cent, and those with lambda < 320 nm have an accuracy of 1.0 per cent. Absolute values with an accuracy of 2.5 per cent for all lines are given. (author)

  4. Calculating Outsourcing Strategies and Trials of Strength

    DEFF Research Database (Denmark)

    Christensen, Mark; Skærbæk, Peter; Tryggestad, Kjell

    . The alternative option was an immediate outsourcing strategy with facility services being the object of large cross-functional contracts for all Danish military establishments. By succeeding in presenting ‘internal optimization’ as an outsourcing option (as opposed to the usual ‘make’ option) this case...... outsourcing strategies during a series of trials of strength, 2. develops the concept of ‘trial of strength’ for accounting and organization research by showing how ‘the rules of the game’ for the trials of strength can become challenged and controversial, 3. shows that, in addition to the pervasive role......Public sector outsourcing is a program within a suite of contemporary reforms mobilizing private enterprises in the belief of a more efficient public sector. Danish Armed Forces outsourcing of its facility services and management emerged as an option in 1991. Two strategic options developed: one...

  5. The local strength of microscopic alumina reinforcements

    International Nuclear Information System (INIS)

    Žagar, Goran; Pejchal, Václav; Mueller, Martin G.; Rossoll, Andreas; Cantoni, Marco; Mortensen, Andreas

    2015-01-01

    We measure, using an adaptation of a method designed for ceramic ball bearings, the local strength of a brittle second phase that serves to reinforce a metal. The method uses focused ion beam milling and a nanoindentation device, and is free of artifacts commonly present in micromachined specimens. It is demonstrated on Nextel 610™ nanocrystalline alumina fibers embedded in an aluminum matrix composite. Results reveal a size effect that does not follow, across size scales, usual Weibull statistics: the fiber strength distribution differs between measurements at the microscale and macroscopic tensile testing. This implies that, in micromechanical analysis of multiphase materials, highly localized events such as the propagation of internal damage require input data that must be measured at the same, local, microscale as the event; the present work opens a path to this end.

  6. Strength analysis of copper gas pipeline span

    OpenAIRE

    Ianevski, Philipp

    2016-01-01

    The purpose of the study was to analyze the stresses in a gas pipeline. While analyzing piping systems located inside building were used. Calculation of the strength of a gas pipeline is done by using information of the thickness of pipe walls, by choosing the suitable material, inner and outer diameter for the pipeline. Data for this thesis was collected through various internet sources and different books. From the study and research, the final results were reached and calculations were ...

  7. Distribution of crushing strength of tablets

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2002-01-01

    The distribution of a given set of data is important since most parametric statistical tests are based on the assumption that the studied data are normal distributed. In analysis of fracture mechanics the Weibull distribution is widely used and the derived Weibull modulus is interpreted as a mate...... data from nine model tablet formulations and four commercial tablets are shown to follow the normal distribution. The importance of proper cleaning of the crushing strength apparatus is demonstrated....

  8. Evaluation of concrete mechanical strength through porosity

    Directory of Open Access Journals (Sweden)

    Olivares, M.

    2004-03-01

    Full Text Available The increasing on voids or pores in any material - if the rest of characteristics remains equal -always causes a decrease in their mechanical strength since the ratio volume/resistant mass is lower Following all these fact a well known conclusion rises: there is a relationship between compacity/porosity and mechanical strengths. The purpose of this research is to establish a new possible correlation between both concrete properties with independence of the proportions, type of cement, size of grain, age, use. etc. So it can be concluded that the results of this research allow the engineer or architect in charge of a restoration or reparation to determine the compression strength of a concrete element. A first step is to determine the porosity through a rather short number of tests. Subsequently, compression strength will be obtained applying just a mathematical formula.

    El aumento de huecos o poros de cualquier material, lo mismo que en otras circunstancias, redunda siempre en una merma de sus resistencias mecánicas, al haber menor volumen-masa resistente. En consecuencia, puede deducirse, que hay una relación entre la compacidad/porosidad y las resistencias mecánicas. En el presente trabajo se estudia una posible correlación entre ambas propiedades del hormigón con independencia de su dosificación, tipo de cemento, granulometría, edad, uso, etc. Las conclusiones obtenidas en la presente investigación permiten al técnico, encargado de una restauración o rehabilitación, determinar la resistencia a compresión de un elemento de hormigón, una vez hallada, de una forma sencilla, la porosidad de una muestra no muy voluminosa, mediante la aplicación de una simple fórmula matemática.

  9. Total Analysis System for Ship Structural Strength

    OpenAIRE

    Takuya, Yoneya; Hiroyuki, Kobayashi; Abdul M., Rahim; Yoshimichi, Sasaki; Masaki, Irisawa; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center; Singapore Office; Technical Investigation and Information Department, Research Center; Technical Investigation and Information Department, Research Center

    2001-01-01

    This paper outlines a total analysis system for ship hull structures, which integrates a wide variety of analysis functions to realise practical applications of rational methods for assessing ship structural strength. It is based on direct calculation of wave-induced loads as well as three-dimensional structural analysis of an entire-ship or hold structure. Three major analysis functions of the total system are ship motion and wave load analysis, ship structural analysis and statistical analy...

  10. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  11. ZERODUR: deterministic approach for strength design

    Science.gov (United States)

    Hartmann, Peter

    2012-12-01

    There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two

  12. Civilian End Strength Study. Study Sponsor ODCSLOG.

    Science.gov (United States)

    1985-12-30

    Chief of Staff deferred action on the recommendations and requested a subsequent briefing with the following guidance. (1) Need to do more to take...Term Actions ... ..................... 38-39 ix CIVILIAN END STRENGTH STUDY Abstract This study examined the methodology by which the Army determines...DAPE-MBC) and COA ( DACA -OMP) has facilitated this process; an updated LOI, in draft, will clear up some of the problems identified in the test

  13. Postactivation potentiation biases maximal isometric strength assessment.

    Science.gov (United States)

    Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Oliveira, Thiago Pires; Assumpção, Claudio de Oliveira; Greco, Camila Coelho; Cardozo, Adalgiso Croscato; Denadai, Benedito Sérgio

    2014-01-01

    Postactivation potentiation (PAP) is known to enhance force production. Maximal isometric strength assessment protocols usually consist of two or more maximal voluntary isometric contractions (MVCs). The objective of this study was to determine if PAP would influence isometric strength assessment. Healthy male volunteers (n = 23) performed two five-second MVCs separated by a 180-seconds interval. Changes in isometric peak torque (IPT), time to achieve it (tPTI), contractile impulse (CI), root mean square of the electromyographic signal during PTI (RMS), and rate of torque development (RTD), in different intervals, were measured. Significant increases in IPT (240.6 ± 55.7 N·m versus 248.9 ± 55.1 N·m), RTD (746 ± 152 N·m·s(-1) versus 727 ± 158 N·m·s(-1)), and RMS (59.1 ± 12.2% RMSMAX  versus 54.8 ± 9.4% RMSMAX) were found on the second MVC. tPTI decreased significantly on the second MVC (2373 ± 1200 ms versus 2784 ± 1226 ms). We conclude that a first MVC leads to PAP that elicits significant enhancements in strength-related variables of a second MVC performed 180 seconds later. If disconsidered, this phenomenon might bias maximal isometric strength assessment, overestimating some of these variables.

  14. Managing yourself. Stop overdoing your strengths.

    Science.gov (United States)

    Kaplan, Robert E; Kaiser, Robert B

    2009-02-01

    Although most managers can recognize an off-kilter leader (consider the highly supportive boss who cuts people too much slack), it's quite difficult to see overkill in yourself. Unfortunately, that's where leadership development tools such as 360-degree surveys fail to deliver, say Kaplan and Kaiser. Dividing qualities into "strengths" and "weaknesses" and rating them on a five-point scale will not account for strengths overplayed. The authors suggest several strategies, based on their years of consulting experience and research, for figuring out which attributes you've employed to excess and adjusting your behavior accordingly. Strengths taken too far have two consequences: First, they become weaknesses. For instance, quick-wittedness can turn into impatience with others. Second, you're at risk of becoming extremely lopsided--that is, diminishing your capacity on the opposite pole. A leader who is very good at building consensus, for example, may take too long to move into action. To strike a balance between two key leadership dualities--forceful versus enabling, and strategic versus operational--you need to see your actions and motivations clearly. That's no easy task since most leadership development tools don't spell out that you're overdoing your strengths. But there are other ways to bring that information to light. You can start with a review of the highest ratings on your most recent 360 report. Ask yourself: Is this too much of a good thing? Another technique is to make a list of the traits you most want to have as a leader. Are you going to extremes with any of them? To check for lopsidedness, you can prompt feedback from other people with a list of qualities you've composed or one you've gleaned from other sources. Once you know which attributes you're overdoing, you can recalibrate.

  15. Soft radiative strength in warm nuclei

    International Nuclear Information System (INIS)

    Becker, J A; Bernstein, L A; Garrett, P E; Nelson, R O; Schiller, A; Voinov, A; Agvaanluvsan, U; Algin, E; Belgya, T; Chankova, R; Guttormsen, M; Mitchell, G E; Rekstad, J; Siem, S

    2004-01-01

    Unresolved transitions in the nuclear γ-ray cascade produced in the decay of excited nuclei are best described by statistical concepts: a continuous radiative strength function (RSF) and level density yield mean values of transition matrix elements. Data on the soft (E γ < 3-4 MeV) RSF for transitions between warm states (i.e. states several MeV above the yrast line) have, however, remained elusive

  16. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    International Nuclear Information System (INIS)

    Cerny, M; Pokluda, J

    2009-01-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.

  17. Ultimate Strength of Ship Hulls under Torsion

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Thayamballi, Anil K.; Pedersen, Preben Terndrup

    2001-01-01

    For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength characte......For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength...... characteristics of ships with large hatch openings. The primary aim of the present study is to investigate the ultimate strength characteristics of ship hulls with large hatch openings under torsion. Axial (warping) as well as shear stresses are normally developed for thin-walled beams with open cross sections...... subjected to torsion. A procedure for calculating these stresses is briefly described. As an illustrative example, the distribution and magnitude of warping and shear stresses for a typical container vessel hull cross section under unit torsion is calculated by the procedure. By theoretical and numerical...

  18. High-strength chromium--molybdenum rails

    International Nuclear Information System (INIS)

    Smith, Y.E.; Sawhill, J.M. Jr.; Cias, W.W.; Eldis, G.T.

    1976-01-01

    A laboratory study was conducted with the aim of developing an as-rolled rail of over 100 ksi (689 N/mm 2 ) yield strength. A series of compositions providing both pearlitic and bainitic microstructures was evaluated. A fine pearlitic structure was developed in a 0.73 percent C -- 0.83 percent Mn -- 0.16 percent Si -- 0.75 percent Cr -- 0.21 percent Mo steel by simulating the mill cooling rate of 132-lb/yd (65.5-kg/m) rail. Two 100-ton commercial heats were made of this approximate composition and processed into 132-lb/yd (65.5-kg/m) rail. Samples tested in the laboratory ranged from 109 to 125 ksi (750 to 860 N/mm 2 ) in yield strength. The chromium-molybdenum rails also exhibited excellent fracture toughness and fatigue properties. Sections of the rail were joined by both flash-butt welding and thermite welding. The hardness peaks produced in the flash-butt welds could be reduced by applying either a postweld current or an induction heating cycle. The high-strength chromium-molybdenum rails have been in service for over eight months in curved sections of an ore railway that carries over 55 million gross long tons per year. 7 tables, 18 figs

  19. Theoretical predictions for alpha particle spectroscopic strengths

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1975-01-01

    Multinucleon transfers induced in heavy-ion reactions of the type ( 6 Li,d) furnish a selective probe with which to study the interplay between rotational and clustering phenomena so characteristic of the structure of the light sd-shell nuclei. For these nuclei, theoretical predictions for inter-band as well as intra-band transfer strengths can be made using recently tabulated results for angular momentum dependent SU 3 inclusion R 3 relative spectroscopic strengths and angular momentum independent SU 6 inclusion SU 3 coefficients of fractional parentage. The pure SU 3 (oscillator)-SU 4 (supermultiplet) symmetry limit agrees well with results obtained using available eigenfunctions determined in large shell model calculations. In particular, the scalar nature of a transferred ''alpha''-cluster insures that the effect of spatial symmetry admixtures in the initial and final states of the target and residual nuclei are minimized. Sum rule quantities provide a measure of the probable effects of symmetry breaking. Strength variations within a band are expected; transfers to core excited states are often favored. Results extracted from exact finite range DWBA analyses of ( 6 Li,d) data on 16 , 18 O, 20 , 21 , 22 Ne, 24 , 25 Mg show some anomalies in our understanding of the structure and/or reaction mechanisms. (18 figures) (U.S.)

  20. Electric Monopole Transition Strengths in 62Ni

    Directory of Open Access Journals (Sweden)

    Evitts L. J.

    2016-01-01

    Full Text Available Excited states in 62Ni were populated with a (p, p’ reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0, were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77−34+23 × 10−3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0 value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0 values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0 value for the 22+ to 21+ transition.

  1. Electric Monopole Transition Strengths in 62Ni

    Science.gov (United States)

    Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Moukaddam, M.; Alshahrani, B.; Eriksen, T. K.; Holt, J. D.; Hota, S. S.; Lane, G. J.; Lee, B. Q.; McCormick, B. P.; Palalani, N.; Reed, M. W.; Stroberg, S. R.; Stuchbery, A. E.

    2016-09-01

    Excited states in 62Ni were populated with a (p, p') reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0), were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77-34+23 × 10-3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0) value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0) values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0) value for the 22+ to 21+ transition.

  2. Strength of Gamma Rhythm Depends on Normalization

    Science.gov (United States)

    Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.

    2013-01-01

    Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427

  3. Pinch Strengths in Healthy Iranian Children and Young Adult Population

    Directory of Open Access Journals (Sweden)

    Iman Dianat

    2015-03-01

    Full Text Available Background: Data on the physical strength capabilities are essential for design-ing safe and usable products and are useful in a wide range of clinical settings especially during treatment of disease affecting the function of the hand. The purpose of this study was to determine peak lateral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions in a healthy Iranian children and young adult population.Methods: The study was conducted among 511 participants (242 males and 269 females aged 7-30 years. Measurements were carried out with both dominant and non-dominant hands in standard sitting posture using a B&L pinch gauge. Two repetitions of each strength measurement were recorded for each condition and the average value of the two trials was used in the subsequent analysis.Results: The results showed significant differences in the pinch strength data in terms of the age, gender and hand dominance. The lateral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions by females were 68.4%, 68.8%, 78.8% and 81.8% of those exerted by males, respectively. Strength exertions with the non-dominant hand were 6.4%, 5.2%, 6.6% and 5.1% lower than strength exertions of the dominant hand for the lat-eral pinch strength, key pinch strength, tip-to-tip pinch strength and three-jaw pinch strength exertions, respectively.Conclusion: These findings can be used to fill the gaps in strength data for Iranian population.

  4. Étude expérimentale du comportement cyclique d'un acier du type 316 L sous chargement multiaxial complexe en traction-torsion-pressions interne et externe

    Science.gov (United States)

    Bocher, L.; Delobelle, P.

    1997-09-01

    This paper is concerned with the experimental determination of the behaviour of a 316 L austenitic stainless steel at room temperature and under non proportional cyclic strainings in tension-torsion- internal and external pressures. The two or three sinusoïdal strains were applied both in and out-of-phase and the main investigations deal with the additional hardening due to multiaxiality of the loadings. Typical stabilized hysteresis loops are presented. With respect to the maximum additional hardening the different tests can be classified as follows : in phase tests, out-of-phase internal-external pressures tests, out-of-phase tension-torsion tests and finally tension-torsion-pressure with significant phase angles A device is presented which allows cyclic tests to be performed on tubes for loadings in tension-torsion-internal and external pressures. It is composed of a medium pressure chamber enclosing the gage length of the test specimen, directly fixed on the specimen and connected to two pressure regulators. The specimen is also fastened to the jaws of a hydraulic tensile-torsion machine through two extension rods. The entire device is controlled with the help of strain gauges set directly on the gage zone of the test specimen. Different tests have been performed at ambient temperature on an austenitic stainless steel which has the particularity of presenting a strong supplementary hardening connected to the non-radiality of the loadings. The influence of the phase shift parameters, namely the angles δ and \\varphi (δ: tension-torsion, \\varphi: tension-pressures) for two or three cyclic sinusoïdal components and for a total equivalent strain amplitude level imposed at 0.4% was studied. The ratios of the maximum strain amplitudes were respectively fixed at r_2 = 1 and r_1 = ± 1 (r_2: tension-torsion and r_1: tension-pressures). These tests allowed both the hypotheses made in stress calculations and the whole of the experimental set up to be validated. They

  5. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  6. Tensile strength and fatigue strength of 6061 aluminum alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, H.; Tsujino, R. [Osaka Inst. of Tech., Asahi-ku Osaka (Japan); Sawai, T. [Osaka Sangyo Univ., Daito (Japan); Yamamoto, Y. [Setsunan Univ., Neyagawa (Japan); Ogawa, K. [Osaka Prefecture Univ., Sakai (Japan); Suga, Y. [Keio Univ., Kohoku-ku, Yokohama (Japan)

    2002-07-01

    Friction welding of 6061 aluminum alloy was carried out in order to examine the relationship between deformation heat input in the upset stage and joint performance. The joint performance was evaluated by tensile testing and fatigue testing. Stabilized tensile strength was obtained when the deformation heat input in the upset stage exceeded 200 J/s. Weld condition at the weld interface and the width of softened area affected fatigue strength more than tensile strength. That is, when the weld condition at the weld interface is good and the softened area is wide, fatigue strength increases. On the other hand, when the weld condition at the weld interface is good and the softened area is narrow, and when the weld condition at the weld interface is somewhat poor in spite of the wide softened area, fatigue strength decreases. The fatigue limit obtained by the fatigue testing revealed that, when the deformation heat input in the upset stage exceeded a certain value, sound joints could be produced. (orig.)

  7. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  8. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  9. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  10. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  11. AND EXPLOSIVE STRENGTH OF YOUNG GYMNASTS

    Directory of Open Access Journals (Sweden)

    G. Dallas

    2014-08-01

    Full Text Available The purpose of this study was to examine the acute effect of a single bout of whole body vibration (WBV on flexibility and explosive strength of lower limbs in young artistic gymnasts. Thirty-two young competitive gymnasts volunteered to participate in this study, and were allocated to either the vibration group or traditional body weight training according to the vibration protocol. The vibration intervention consisted of a single bout of eccentric and concentric squatting movements on a vibration platform that was turned on (vibration group: VG n=15, whereas the traditional body weight (no vibration group performed the same training protocol with the WBV device turned off (NVG: n= 17. Flexibility (sit and reach test and explosive strength tests [squat jump (SJ, counter movement jump (CMJ, and single leg squat (right leg (RL and left leg (LL] were performed initially (pre-test, immediately after the intervention (post-test 1, and 15 minutes after the end of the intervention programme (post-test 15. Four 2x3 ANOVAs were used to examine the interaction between group (VG vs NVG and time (pre, post 1, and post 15 with respect to examined variables. The results revealed that a significant interaction between group and time was found with respect to SJ (p 0.05. Further, the percentage improvement of the VG was significantly greater in all examined variables compared to the NVG. This study concluded that WBV training improves flexibility and explosive strength of lower limbs in young trained artistic gymnasts and maintains the initial level of performance for at least 15 minutes after the WBV intervention programme.

  12. Anisotropy effect on strengths of metamorphic rocks

    Directory of Open Access Journals (Sweden)

    Ahmet Özbek

    2018-02-01

    Full Text Available This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern (Çine submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble (calcschist were selected and examined. Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L- and N-type Schmidt hammers were applied in the directions perpendicular (anisotropy angle of 0° and parallel (anisotropy angle of 90° to the foliation on selected blocks of phyllite, schist, gneiss and marble (calcschist. The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble (calcschist have higher rebound values and strengths, and they are classified as strong–very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation, discontinuities, water content, weathering degree and thickness of foliated structure.

  13. Dipole strength distributions from HIGS Experiments

    Science.gov (United States)

    Werner, V.; Cooper, N.; Goddard, P. M.; Humby, P.; Ilieva, R. S.; Rusev, G.; Beller, J.; Bernards, C.; Crider, B. P.; Isaak, J.; Kelley, J. H.; Kwan, E.; Löher, B.; Peters, E. E.; Pietralla, N.; Romig, C.; Savran, D.; Scheck, M.; Tonchev, A. P.; Tornow, W.; Yates, S. W.; Zweidinger, M.

    2015-05-01

    A series of photon scattering experiments has been performed on the double-beta decay partners 76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  14. Primary care in Switzerland gains strength.

    Science.gov (United States)

    Djalali, Sima; Meier, Tatjana; Hasler, Susann; Rosemann, Thomas; Tandjung, Ryan

    2015-06-01

    Although there is widespread agreement on health- and cost-related benefits of strong primary care in health systems, little is known about the development of the primary care status over time in specific countries, especially in countries with a traditionally weak primary care sector such as Switzerland. The aim of our study was to assess the current strength of primary care in the Swiss health care system and to compare it with published results of earlier primary care assessments in Switzerland and other countries. A survey of experts and stakeholders with insights into the Swiss health care system was carried out between February and March 2014. The study was designed as mixed-modes survey with a self-administered questionnaire based on a set of 15 indicators for the assessment of primary care strength. Forty representatives of Swiss primary and secondary care, patient associations, funders, health care authority, policy makers and experts in health services research were addressed. Concordance between the indicators of a strong primary care system and the real situation in Swiss primary care was rated with 0-2 points (low-high concordance). A response rate of 62.5% was achieved. Participants rated concordance with five indicators as 0 (low), with seven indicators as 1 (medium) and with three indicators as 2 (high). In sum, Switzerland achieved 13 of 30 possible points. Low scores were assigned because of the following characteristics of Swiss primary care: inequitable local distribution of medical resources, relatively low earnings of primary care practitioners compared to specialists, low priority of primary care in medical education and training, lack of formal guidelines for information transfer between primary care practitioners and specialists and disregard of clinical routine data in the context of medical service planning. Compared to results of an earlier assessment in Switzerland, an improvement of seven indicators could be stated since 1995. As a

  15. Statistical Analysis of Data for Timber Strengths

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2003-01-01

    Statistical analyses are performed for material strength parameters from a large number of specimens of structural timber. Non-parametric statistical analysis and fits have been investigated for the following distribution types: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...... fits to the data available, especially if tail fits are used whereas the Log Normal distribution generally gives a poor fit and larger coefficients of variation, especially if tail fits are used. The implications on the reliability level of typical structural elements and on partial safety factors...... for timber are investigated....

  16. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  17. Dipole strength distributions from HIGS Experiments

    Directory of Open Access Journals (Sweden)

    Werner V.

    2015-01-01

    76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  18. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  19. Strength versus temperature anomalies in metals

    CERN Document Server

    Fisher, D J

    2015-01-01

    Perhaps the best-known aspect of the behavior of metals, and indeed of most materials, is that they weaken with temperature. This weakening is however a problem in some applications. Only tungsten for instance, with its naturally high melting-point, was suitable for the manufacture of the filaments of incandescent light-bulbs. Even then, it was necessary to add oxide particles having a yethigher melting-point in order to prevent the weakening effect of grain-growth. These are alloys however which can be said to be weakened by heat, but nevertheless 'hang on' to enough strength to perform their

  20. Weld Design, Testing, and Assessment Procedures for High Strength Pipelines

    Science.gov (United States)

    2011-12-20

    Long-distance high-strength pipelines are increasingly being constructed for the efficient transportation of energy products. While the high-strength linepipe steels and high productivity welding processes are being applied, the procedures employed f...

  1. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Ultra high strength concrete; panel; drop weight test; impact analysis;. ABAQUS. 1. Introduction. Ultra high strength concrete ... Knight (2012) investigated the dynamic behaviour of steel fibre reinforced concrete plates under impact loading with ...

  2. mathematical model for the optimization of compressive strength

    African Journals Online (AJOL)

    ES Obe

    cement and sand either wholly or partially without adverse effect on the strength properties of the ... sandcrete block, compressive strength, laterite, scheffe's theory. 1. Introduction ... that for the properties of a q-component mix- ture which ...

  3. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  4. Strength training and albuterol in facioscapulohumeral muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, EL; Vogels, OJM; van Asseldonk, RJGP; Lindeman, E; Hendriks, JCM; Wohlgemuth, M; van der Maarel, SM; Padberg, GW

    2004-01-01

    Background: In animals and healthy volunteers beta2-adrenergic agonists increase muscle strength and mass, in particular when combined with strength training. In patients with facioscapulohumeral muscular dystrophy (FSHD) albuterol may exert anabolic effects. The authors evaluated the effect of

  5. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Nøkkentved, Alexandros; Lundsgaard-Larsen, Christian; Berggreen, Carl Christian

    2005-01-01

    debonds show a considerable strength reduction with increasing debond diameter, with failure mechanisms varying between fast debond propagation and wrinkling-introduced face compression failure for large and small debonds, respectively. Residual strength predictions are based on intact panel testing...

  6. Strength training and aerobic exercise training for muscle disease.

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise

  7. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  8. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  9. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men.

    Science.gov (United States)

    Jenkins, Nathaniel D M; Buckner, Samuel L; Bergstrom, Haley C; Cochrane, Kristen C; Goldsmith, Jacob A; Housh, Terry J; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2014-10-01

    To quantify the reliability of isometric leg extension torque (LEMVC), rate of torque development (LERTD), isometric handgrip force (HGMVC) and RFD (HGRFD), isokinetic leg extension torque and power at 1.05rad·s(-1) and 3.14rad·s(-1); and explore relationships among strength, power, and balance in older men. Sixteen older men completed 3 isometric handgrips, 3 isometric leg extensions, and 3 isokinetic leg extensions at 1.05rad·s(-1) and 3.14rad·s(-1) during two visits. Intraclass correlation coefficients (ICCs), ICC confidence intervals (95% CI), coefficients of variation (CVs), and Pearson correlation coefficients were calculated. LERTD demonstrated no reliability. The CVs for LERTD and HGRFD were ≤23.26%. HGMVC wasn't related to leg extension torque or power, or balance (r=0.14-0.47; p>0.05). However, moderate to strong relationships were found among isokinetic leg extension torque at 1.05rad·s(-1) and 3.14rad·s(-1), leg extension mean power at 1.05rad·s(-1), and functional reach (r=0.51-0.95; p≤0.05). LERTD and HGRFD weren't reliable and shouldn't be used as outcome variables in older men. Handgrip strength may not be an appropriate surrogate for lower body strength, power, or balance. Instead, perhaps handgrip strength should only be used to describe upper body strength or functionality, which may compliment isokinetic assessments of lower body strength, which were reliable and related to balance. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effects of neck strength training on isometric neck strength in rugby union players.

    Science.gov (United States)

    Geary, Kevin; Green, Brian S; Delahunt, Eamonn

    2014-11-01

    To investigate the effectiveness of a neck strengthening program on the isometric neck strength profile of male rugby union players. Controlled laboratory study. Professional rugby union club. Fifteen professional and 10 semiprofessional rugby union players. The 15 professional players undertook a 5-week neck strengthening intervention, which was performed twice per week, whereas the 10 semiprofessional players acted as the control group. Isometric strength of the neck musculature was tested using a hand-held dynamometer, for flexion (F), extension (E), left-side flexion (LSF), and right-side flexion (RSF). Preintervention and postintervention evaluations were undertaken. No significant between-group differences in isometric neck strength were noted preintervention. A significant main effect for time was observed (P isometric neck strength in all planes after the 5-week intervention (F preintervention = 334.45 ± 39.31 N vs F postintervention 396.05 ± 75.55 N; E preintervention = 606.19 ± 97.34 vs E postintervention = 733.88 ± 127.16 N; LSF preintervention = 555.56 ± 88.34 N vs LSF postintervention = 657.14 ± 122.99 N; RSF preintervention = 570.00 ± 106.53 N vs RSF postintervention = 668.00 ± 142.18 N). No significant improvement in neck strength was observed for control group participants. The results of the present study indicate that a 5-week neck strengthening program improves isometric neck strength in rugby union players, which may have implications for injury prevention, screening, and rehabilitation. The strengthening program described in the present study may facilitate rehabilitation specialists in the development of neck injury prevention, screening, and rehabilitation protocols.

  11. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  12. The strengths perspective in client’s social case management

    OpenAIRE

    Valpētere, Laima

    2010-01-01

    The subject diploma paper is „The strengths perspective in client’s social case management.” The aim of the diploma paper is to research the strengths perspective in client’s social case management. Diploma paper consists of five chapters. In the first chapter the case management was theoretically researched. In the second chapter was done description of the strengths perspective in the social work. In the third chapter by describing principles and strategies of strengths perspective, cli...

  13. Effect of Ionic Strength on Settling of Activated Sludge

    OpenAIRE

    M Ahmadi Moghadam, M Soheili, MM Esfahani

    2005-01-01

    Structural properties of activated sludge flocs were found to be sensitive to small changes in ionic strength. This study investigates the effect of ionic strength on settling of activated sludge. Samples were taken from activated sludge process of Ghazvin Sasan soft drink wastewater treatment plant, then treated with different ionic strengths of KCl and CaCl2 solution, after that the turbidity of supernatant was measured. The results indicated that low ionic strength resulted in a steeper sl...

  14. University Student's Physical Strength and Amount of Exercise

    OpenAIRE

    高橋, ひとみ; Hitomi, TAKAHASHI; 桃山学院大学文学部

    1997-01-01

    To determine the importance of developing physical strength in health maintenance by unversity students, I conducted a simple examination of the physical strength and the living conditions of Momoyama Gakuin University students. I examined the relationship between the student's physical condition and the results of their strength test, between the importance of exercise and the student's evaluation of their own physical strength, and between the need for exercise and the test results. The res...

  15. Tests of Hadronic Probes of GT Strength

    CERN Multimedia

    2002-01-01

    There are many important problems where one wishes to know the distribution of Gamow-Teller (GT) strength in circumstances where it cannot be measured directly (for example, because of energy-release limitations). Then one must rely on hadronic probes to infer the GT strength. It is therefore essential to test these probes as extensively as possible. The isospin-analog transitions in $^{37}$Ca $\\beta^{+}$ -decay and $^{37}$Cl$(p, n)$ provide an excellent ground for such a test. Recent $^{37}$Cl$ (p, n) $ studies, while qualitatively in agreement with our previous ISOLDE work on $^{37}$Ca $\\beta^{+} $ -decay, show quantitative discrepancies that appear to grow as the excitation energy in the residual nuclei increases. Because of the bulk of the GT strengh appears at these high excitation energies, it is important to extend the $\\beta$-decay data to even higher excitation energies where, because of rapidly diminishing phase-space, strong GT transitions correspond to very weak $\\beta$ -branches. We propose to do...

  16. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  17. Abstract Spatial Reasoning as an Autistic Strength

    Science.gov (United States)

    Stevenson, Jennifer L.; Gernsbacher, Morton Ann

    2013-01-01

    Autistic individuals typically excel on spatial tests that measure abstract reasoning, such as the Block Design subtest on intelligence test batteries and the Raven’s Progressive Matrices nonverbal test of intelligence. Such well-replicated findings suggest that abstract spatial processing is a relative and perhaps absolute strength of autistic individuals. However, previous studies have not systematically varied reasoning level – concrete vs. abstract – and test domain – spatial vs. numerical vs. verbal, which the current study did. Autistic participants (N = 72) and non-autistic participants (N = 72) completed a battery of 12 tests that varied by reasoning level (concrete vs. abstract) and domain (spatial vs. numerical vs. verbal). Autistic participants outperformed non-autistic participants on abstract spatial tests. Non-autistic participants did not outperform autistic participants on any of the three domains (spatial, numerical, and verbal) or at either of the two reasoning levels (concrete and abstract), suggesting similarity in abilities between autistic and non-autistic individuals, with abstract spatial reasoning as an autistic strength. PMID:23533615

  18. Moderately acurate oscillator strengths from NBS intensities

    International Nuclear Information System (INIS)

    Cowley, C.R.

    1983-01-01

    An earlier paper explored the calibration of NBS Monograph 145 intensity measurements for the purpose of obtaining useful oscillator strengths. In the present work we investigate the question of a single 'temperature' for the copper arc light sources. Statistical arguments support rejection of the null hypothesis of a single temperature. Evidence is found for a mild correction to the intensity scale, but there is no indication that the intensities drift with wave length. We reinforce earlier findings that very useful gf-values can be derived from Monograph 145 intensities for any spectrum in which there are enough accurate measurements for a calibration. For the present, it seems that such calibrations must be made individually for each spectrum, and the predictions should not be extrapolated beyond the calibration domains. A table lists interpolation coefficients for Fe I, Co I, Ni I, Ti I, Zr II, Y II, Nd II and U II. An improved formula is given to transform the Corliss-Tech Fe I oscillator strengths to the Oxford system. (author)

  19. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  20. Effects of strength training on mechanomyographic amplitude

    International Nuclear Information System (INIS)

    DeFreitas, Jason M; Beck, Travis W; Stock, Matt S

    2012-01-01

    The aim of the present study was to determine if the patterns of mechanomyographic (MMG) amplitude across force would change with strength training. Twenty-two healthy men completed an 8-week strength training program. During three separate testing visits (pre-test, week 4, and week 8), the MMG signal was detected from the vastus lateralis as the subjects performed isometric step muscle actions of the leg extensors from 10–100% of maximal voluntary contraction (MVC). During pre-testing, the MMG amplitude increased linearly with force to 66% MVC and then plateaued. Conversely, weeks 4 and 8 demonstrated an increase in MMG amplitude up to ∼85% of the subject's original MVC before plateauing. Furthermore, seven of the ten force levels (30–60% and 80–100%) showed a significant decrease in mean MMG amplitude values after training, which consequently led to a decrease in the slope of the MMG amplitude/force relationship. The decreases in MMG amplitude at lower force levels are indicative of hypertrophy, since fewer motor units would be required to produce the same absolute force if the motor units increased in size. However, despite the clear changes in the mean values, analyses of individual subjects revealed that only 55% of the subjects demonstrated a significant decrease in the slope of the MMG amplitude/force relationship. (paper)