WorldWideScience

Sample records for multi-scale epidemiologic simulation

  1. Simulating Nationwide Pandemics: Applying the Multi-scale Epidemiologic Simulation and Analysis System to Human Infectious Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Dombroski, M; Melius, C; Edmunds, T; Banks, L E; Bates, T; Wheeler, R

    2008-09-24

    This study uses the Multi-scale Epidemiologic Simulation and Analysis (MESA) system developed for foreign animal diseases to assess consequences of nationwide human infectious disease outbreaks. A literature review identified the state of the art in both small-scale regional models and large-scale nationwide models and characterized key aspects of a nationwide epidemiological model. The MESA system offers computational advantages over existing epidemiological models and enables a broader array of stochastic analyses of model runs to be conducted because of those computational advantages. However, it has only been demonstrated on foreign animal diseases. This paper applied the MESA modeling methodology to human epidemiology. The methodology divided 2000 US Census data at the census tract level into school-bound children, work-bound workers, elderly, and stay at home individuals. The model simulated mixing among these groups by incorporating schools, workplaces, households, and long-distance travel via airports. A baseline scenario with fixed input parameters was run for a nationwide influenza outbreak using relatively simple social distancing countermeasures. Analysis from the baseline scenario showed one of three possible results: (1) the outbreak burned itself out before it had a chance to spread regionally, (2) the outbreak spread regionally and lasted a relatively long time, although constrained geography enabled it to eventually be contained without affecting a disproportionately large number of people, or (3) the outbreak spread through air travel and lasted a long time with unconstrained geography, becoming a nationwide pandemic. These results are consistent with empirical influenza outbreak data. The results showed that simply scaling up a regional small-scale model is unlikely to account for all the complex variables and their interactions involved in a nationwide outbreak. There are several limitations of the methodology that should be explored in future

  2. The Adaptive Multi-scale Simulation Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, William R. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  3. Multi-Scale Simulation of High Energy Density Ionic Liquids

    National Research Council Canada - National Science Library

    Voth, Gregory A

    2007-01-01

    The focus of this AFOSR project was the molecular dynamics (MD) simulation of ionic liquid structure, dynamics, and interfacial properties, as well as multi-scale descriptions of these novel liquids (e.g...

  4. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    Science.gov (United States)

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  5. Multi-scale simulation for homogenization of cement media

    International Nuclear Information System (INIS)

    Abballe, T.

    2011-01-01

    To solve diffusion problems on cement media, two scales must be taken into account: a fine scale, which describes the micrometers wide microstructures present in the media, and a work scale, which is usually a few meters long. Direct numerical simulations are almost impossible because of the huge computational resources (memory, CPU time) required to assess both scales at the same time. To overcome this problem, we present in this thesis multi-scale resolution methods using both Finite Volumes and Finite Elements, along with their efficient implementations. More precisely, we developed a multi-scale simulation tool which uses the SALOME platform to mesh domains and post-process data, and the parallel calculation code MPCube to solve problems. This SALOME/MPCube tool can solve automatically and efficiently multi-scale simulations. Parallel structure of computer clusters can be use to dispatch the more time-consuming tasks. We optimized most functions to account for cement media specificities. We presents numerical experiments on various cement media samples, e.g. mortar and cement paste. From these results, we manage to compute a numerical effective diffusivity of our cement media and to reconstruct a fine scale solution. (author) [fr

  6. Integrated multi-scale modelling and simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.

    2015-01-01

    This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)

  7. Probabilistic Simulation of Multi-Scale Composite Behavior

    Science.gov (United States)

    Chamis, Christos C.

    2012-01-01

    A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.

  8. Multi-Scale Initial Conditions For Cosmological Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Oliver; /KIPAC, Menlo Park; Abel, Tom; /KIPAC, Menlo Park /ZAH, Heidelberg /HITS, Heidelberg

    2011-11-04

    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological 'zoom-in' simulations. The method uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). The new algorithm achieves rms relative errors of the order of 10{sup -4} for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space-induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier-space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real-space-based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh-based codes that is consistent with the Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.

  9. Multi-scale imaging and elastic simulation of carbonates

    Science.gov (United States)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.

  10. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  11. Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Directory of Open Access Journals (Sweden)

    Data Iranata

    2010-05-01

    Full Text Available A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis.

  12. Multi-scale simulation of droplet-droplet interactions and coalescence

    CSIR Research Space (South Africa)

    Musehane, Ndivhuwo M

    2016-10-01

    Full Text Available Conference on Computational and Applied Mechanics Potchefstroom 3–5 October 2016 Multi-scale simulation of droplet-droplet interactions and coalescence 1,2Ndivhuwo M. Musehane?, 1Oliver F. Oxtoby and 2Daya B. Reddy 1. Aeronautic Systems, Council... topology changes that result when droplets interact. This work endeavours to eliminate the need to use empirical correlations based on phenomenological models by developing a multi-scale model that predicts the outcome of a collision between droplets from...

  13. Screening wells by multi-scale grids for multi-stage Markov Chain Monte Carlo simulation

    DEFF Research Database (Denmark)

    Akbari, Hani; Engsig-Karup, Allan Peter

    2018-01-01

    /production wells, aiming at accurate breakthrough capturing as well as above mentioned efficiency goals. However this short time simulation needs fine-scale structure of the geological model around wells and running a fine-scale model is not as cheap as necessary for screening steps. On the other hand applying...... it on a coarse-scale model declines important data around wells and causes inaccurate results, particularly accurate breakthrough capturing which is important for prediction applications. Therefore we propose a multi-scale grid which preserves the fine-scale model around wells (as well as high permeable regions...... and fractures) and coarsens rest of the field and keeps efficiency and accuracy for the screening well stage and coarse-scale simulation, as well. A discrete wavelet transform is used as a powerful tool to generate the desired unstructured multi-scale grid efficiently. Finally an accepted proposal on coarse...

  14. Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation

    International Nuclear Information System (INIS)

    Sen, Oishik; Davis, Sean; Jacobs, Gustaaf; Udaykumar, H.S.

    2015-01-01

    The effectiveness of several metamodeling techniques, viz. the Polynomial Stochastic Collocation method, Adaptive Stochastic Collocation method, a Radial Basis Function Neural Network, a Kriging Method and a Dynamic Kriging Method is evaluated. This is done with the express purpose of using metamodels to bridge scales between micro- and macro-scale models in a multi-scale multimaterial simulation. The rate of convergence of the error when used to reconstruct hypersurfaces of known functions is studied. For sufficiently large number of training points, Stochastic Collocation methods generally converge faster than the other metamodeling techniques, while the DKG method converges faster when the number of input points is less than 100 in a two-dimensional parameter space. Because the input points correspond to computationally expensive micro/meso-scale computations, the DKG is favored for bridging scales in a multi-scale solver

  15. Simulation of left atrial function using a multi-scale model of the cardiovascular system.

    Directory of Open Access Journals (Sweden)

    Antoine Pironet

    Full Text Available During a full cardiac cycle, the left atrium successively behaves as a reservoir, a conduit and a pump. This complex behavior makes it unrealistic to apply the time-varying elastance theory to characterize the left atrium, first, because this theory has known limitations, and second, because it is still uncertain whether the load independence hypothesis holds. In this study, we aim to bypass this uncertainty by relying on another kind of mathematical model of the cardiac chambers. In the present work, we describe both the left atrium and the left ventricle with a multi-scale model. The multi-scale property of this model comes from the fact that pressure inside a cardiac chamber is derived from a model of the sarcomere behavior. Macroscopic model parameters are identified from reference dog hemodynamic data. The multi-scale model of the cardiovascular system including the left atrium is then simulated to show that the physiological roles of the left atrium are correctly reproduced. This include a biphasic pressure wave and an eight-shaped pressure-volume loop. We also test the validity of our model in non basal conditions by reproducing a preload reduction experiment by inferior vena cava occlusion with the model. We compute the variation of eight indices before and after this experiment and obtain the same variation as experimentally observed for seven out of the eight indices. In summary, the multi-scale mathematical model presented in this work is able to correctly account for the three roles of the left atrium and also exhibits a realistic left atrial pressure-volume loop. Furthermore, the model has been previously presented and validated for the left ventricle. This makes it a proper alternative to the time-varying elastance theory if the focus is set on precisely representing the left atrial and left ventricular behaviors.

  16. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  17. A Framework for Parallel Numerical Simulations on Multi-Scale Geometries

    KAUST Repository

    Varduhn, Vasco

    2012-06-01

    In this paper, an approach on performing numerical multi-scale simulations on fine detailed geometries is presented. In particular, the focus lies on the generation of sufficient fine mesh representations, whereas a resolution of dozens of millions of voxels is inevitable in order to sufficiently represent the geometry. Furthermore, the propagation of boundary conditions is investigated by using simulation results on the coarser simulation scale as input boundary conditions on the next finer scale. Finally, the applicability of our approach is shown on a two-phase simulation for flooding scenarios in urban structures running from a city wide scale to a fine detailed in-door scale on feature rich building geometries. © 2012 IEEE.

  18. Simulating multi-scale oceanic processes around Taiwan on unstructured grids

    Science.gov (United States)

    Yu, Hao-Cheng; Zhang, Yinglong J.; Yu, Jason C. S.; Terng, C.; Sun, Weiling; Ye, Fei; Wang, Harry V.; Wang, Zhengui; Huang, Hai

    2017-11-01

    We validate a 3D unstructured-grid (UG) model for simulating multi-scale processes as occurred in Northwestern Pacific around Taiwan using recently developed new techniques (Zhang et al., Ocean Modeling, 102, 64-81, 2016) that require no bathymetry smoothing even for this region with prevalent steep bottom slopes and many islands. The focus is on short-term forecast for several months instead of long-term variability. Compared with satellite products, the errors for the simulated Sea-surface Height (SSH) and Sea-surface Temperature (SST) are similar to a reference data-assimilated global model. In the nearshore region, comparison with 34 tide gauges located around Taiwan indicates an average RMSE of 13 cm for the tidal elevation. The average RMSE for SST at 6 coastal buoys is 1.2 °C. The mean transport and eddy kinetic energy compare reasonably with previously published values and the reference model used to provide boundary and initial conditions. The model suggests ∼2-day interruption of Kuroshio east of Taiwan during a typhoon period. The effect of tidal mixing is shown to be significant nearshore. The multi-scale model is easily extendable to target regions of interest due to its UG framework and a flexible vertical gridding system, which is shown to be superior to terrain-following coordinates.

  19. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  20. Toward multi-scale simulation of reconnection phenomena in space plasma

    Science.gov (United States)

    Den, M.; Horiuchi, R.; Usami, S.; Tanaka, T.; Ogawa, T.; Ohtani, H.

    2013-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow. On the other hand configuration of the magnetic field leading to formation of diffusion region is determined in macroscopic scale and topological change after reconnection is also expressed in macroscopic scale. Thus magnetic reconnection is typical multi-scale phenomenon and microscopic and macroscopic physics are strongly coupled. Recently Horiuchi et al. developed an effective resistivity model based on particle-in-cell (PIC) simulation results obtained in study of collisionless driven reconnection and applied to a global magnetohydrodynamics (MHD) simulation of substorm in the Earth's magnetosphere. They showed reproduction of global behavior in substrom such as dipolarization and flux rope formation by global three dimensional MHD simulation. Usami et al. developed multi-hierarchy simulation model, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. Based on the domain decomposition method, this model consists of three parts: a MHD algorithm for macroscopic global dynamics, a PIC algorithm for microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. They verified the interface algorithm by simulation of plasma injection flow. In their latest work, this model was applied to collisionless reconnection in an open system and magnetic reconnection was successfully found. In this paper, we describe our approach to clarify multi-scale phenomena and report the current status. Our recent study about extension of the MHD domain to global system is presented. We

  1. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    Science.gov (United States)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  2. COLLABORATIVE MULTI-SCALE 3D CITY AND INFRASTRUCTURE MODELING AND SIMULATION

    Directory of Open Access Journals (Sweden)

    M. Breunig

    2017-09-01

    Full Text Available Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  3. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  4. Multi-scale approach in numerical reservoir simulation; Uma abordagem multiescala na simulacao numerica de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Solange da Silva

    1998-07-01

    Advances in petroleum reservoir descriptions have provided an amount of data that can not be handled directly during numerical simulations. This detailed geological information must be incorporated into a coarser model during multiphase fluid flow simulations by means of some upscaling technique. the most used approach is the pseudo relative permeabilities and the more widely used is the Kyte and Berry method (1975). In this work, it is proposed a multi-scale computational model for multiphase flow that implicitly treats the upscaling without using pseudo functions. By solving a sequence of local problems on subdomains of the refined scale it is possible to achieve results with a coarser grid without expensive computations of a fine grid model. The main advantage of this new procedure is to treat the upscaling step implicitly in the solution process, overcoming some practical difficulties related the use of traditional pseudo functions. results of bidimensional two phase flow simulations considering homogeneous porous media are presented. Some examples compare the results of this approach and the commercial upscaling program PSEUDO, a module of the reservoir simulation software ECLIPSE. (author)

  5. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  6. Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Sumption, M.D., E-mail: sumption.3@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Bong, H.J. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Lim, H. [Sandia National Laboratories, Albuquerque, NM (United States); Collings, E.W. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States)

    2017-01-02

    This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.

  7. Self-Adaptive Event-Driven Simulation of Multi-Scale Plasma Systems

    Science.gov (United States)

    Omelchenko, Yuri; Karimabadi, Homayoun

    2005-10-01

    Multi-scale plasmas pose a formidable computational challenge. The explicit time-stepping models suffer from the global CFL restriction. Efficient application of adaptive mesh refinement (AMR) to systems with irregular dynamics (e.g. turbulence, diffusion-convection-reaction, particle acceleration etc.) may be problematic. To address these issues, we developed an alternative approach to time stepping: self-adaptive discrete-event simulation (DES). DES has origin in operations research, war games and telecommunications. We combine finite-difference and particle-in-cell techniques with this methodology by assuming two caveats: (1) a local time increment, dt for a discrete quantity f can be expressed in terms of a physically meaningful quantum value, df; (2) f is considered to be modified only when its change exceeds df. Event-driven time integration is self-adaptive as it makes use of causality rules rather than parametric time dependencies. This technique enables asynchronous flux-conservative update of solution in accordance with local temporal scales, removes the curse of the global CFL condition, eliminates unnecessary computation in inactive spatial regions and results in robust and fast parallelizable codes. It can be naturally combined with various mesh refinement techniques. We discuss applications of this novel technology to diffusion-convection-reaction systems and hybrid simulations of magnetosonic shocks.

  8. Development of a multi-scale simulation model of tube hydroforming for superconducting RF cavities

    International Nuclear Information System (INIS)

    Kim, H.S.; Sumption, M.D.; Bong, H.J.; Lim, H.; Collings, E.W.

    2017-01-01

    This work focuses on finite element modeling of the hydroforming process for niobium tubes intended for use in superconducting radio frequency (SRF) cavities. The hydroforming of tubular samples into SRF-relevant shapes involves the complex geometries and loading conditions which develop during the deformation, as well as anisotropic materials properties. Numerical description of the process entails relatively complex numerical simulations. A crystal plasticity (CP) model was constructed that included the evolution of crystallographic orientation during deformation as well as the anisotropy of tubes in all directions and loading conditions. In this work we demonstrate a multi-scale simulation approach which uses both microscopic CP and macroscopic continuum models. In this approach a CP model (developed and implemented into ABAQUS using UMAT) was used for determining the flow stress curve only under bi-axial loading in order to reduce the computing time. The texture of the materials obtained using orientation imaging microscopy (OIM) and tensile test data were inputs for this model. Continuum FE analysis of tube hydroforming using the obtained constitutive equation from the CP modeling was then performed and compared to the results of hydraulic bulge testing. The results show that high quality predictions of the deformation under hydroforming of Nb tubes can be obtained using CP-FEM based on their known texture and the results of tensile tests. The importance of the CP-FEM based approach is that it reduces the need for hydraulic bulge testing, using a relatively simple computational approach.

  9. The Cea multi-scale and multi-physics simulation project for nuclear applications

    International Nuclear Information System (INIS)

    Ledermann, P.; Chauliac, C.; Thomas, J.B.

    2005-01-01

    Full text of publication follows. Today numerical modelling is everywhere recognized as an essential tool of capitalization, integration and share of knowledge. For this reason, it becomes the central tool of research. Until now, the Cea developed a set of scientific software allowing to model, in each situation, the operation of whole or part of a nuclear installation and these codes are largely used in nuclear industry. However, for the future, it is essential to aim for a better accuracy, a better control of uncertainties and better performance in computing times. The objective is to obtain validated models allowing accurate predictive calculations for actual complex nuclear problems such as fuel behaviour in accidental situation. This demands to master a large and interactive set of phenomena ranging from nuclear reaction to heat transfer. To this end, Cea, with industrial partners (EDF, Framatome-ANP, ANDRA) has designed an integrated platform of calculation, devoted to the study of nuclear systems, and intended at the same time for industries and scientists. The development of this platform is under way with the start in 2005 of the integrated project NURESIM, with 18 European partners. Improvement is coming not only through a multi-scale description of all phenomena but also through an innovative design approach requiring deep functional analysis which is upstream from the development of the simulation platform itself. In addition, the studies of future nuclear systems are increasingly multidisciplinary (simultaneous modelling of core physics, thermal-hydraulics and fuel behaviour). These multi-physics and multi-scale aspects make mandatory to pay very careful attention to software architecture issues. A global platform is thus developed integrating dedicated specialized platforms: DESCARTES for core physics, NEPTUNE for thermal-hydraulics, PLEIADES for fuel behaviour, SINERGY for materials behaviour under irradiation, ALLIANCES for the performance

  10. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    International Nuclear Information System (INIS)

    Ashour-Abdalla, Maha

    2011-01-01

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R E to 23 R E in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R E and x = -15 R E . In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x ∼-10 R E ) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  11. Predictive Maturity of Multi-Scale Simulation Models for Fuel Performance

    International Nuclear Information System (INIS)

    Atamturktur, Sez; Unal, Cetin; Hemez, Francois; Williams, Brian; Tome, Carlos

    2015-01-01

    The project proposed to provide a Predictive Maturity Framework with its companion metrics that (1) introduce a formalized, quantitative means to communicate information between interested parties, (2) provide scientifically dependable means to claim completion of Validation and Uncertainty Quantification (VU) activities, and (3) guide the decision makers in the allocation of Nuclear Energy's resources for code development and physical experiments. The project team proposed to develop this framework based on two complimentary criteria: (1) the extent of experimental evidence available for the calibration of simulation models and (2) the sophistication of the physics incorporated in simulation models. The proposed framework is capable of quantifying the interaction between the required number of physical experiments and degree of physics sophistication. The project team has developed this framework and implemented it with a multi-scale model for simulating creep of a core reactor cladding. The multi-scale model is composed of the viscoplastic self-consistent (VPSC) code at the meso-scale, which represents the visco-plastic behavior and changing properties of a highly anisotropic material and a Finite Element (FE) code at the macro-scale to represent the elastic behavior and apply the loading. The framework developed takes advantage of the transparency provided by partitioned analysis, where independent constituent codes are coupled in an iterative manner. This transparency allows model developers to better understand and remedy the source of biases and uncertainties, whether they stem from the constituents or the coupling interface by exploiting separate-effect experiments conducted within the constituent domain and integral-effect experiments conducted within the full-system domain. The project team has implemented this procedure with the multi- scale VPSC-FE model and demonstrated its ability to improve the predictive capability of the model. Within this

  12. Predictive Maturity of Multi-Scale Simulation Models for Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sez [Clemson Univ., SC (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hemez, Francois [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-16

    The project proposed to provide a Predictive Maturity Framework with its companion metrics that (1) introduce a formalized, quantitative means to communicate information between interested parties, (2) provide scientifically dependable means to claim completion of Validation and Uncertainty Quantification (VU) activities, and (3) guide the decision makers in the allocation of Nuclear Energy’s resources for code development and physical experiments. The project team proposed to develop this framework based on two complimentary criteria: (1) the extent of experimental evidence available for the calibration of simulation models and (2) the sophistication of the physics incorporated in simulation models. The proposed framework is capable of quantifying the interaction between the required number of physical experiments and degree of physics sophistication. The project team has developed this framework and implemented it with a multi-scale model for simulating creep of a core reactor cladding. The multi-scale model is composed of the viscoplastic self-consistent (VPSC) code at the meso-scale, which represents the visco-plastic behavior and changing properties of a highly anisotropic material and a Finite Element (FE) code at the macro-scale to represent the elastic behavior and apply the loading. The framework developed takes advantage of the transparency provided by partitioned analysis, where independent constituent codes are coupled in an iterative manner. This transparency allows model developers to better understand and remedy the source of biases and uncertainties, whether they stem from the constituents or the coupling interface by exploiting separate-effect experiments conducted within the constituent domain and integral-effect experiments conducted within the full-system domain. The project team has implemented this procedure with the multi- scale VPSC-FE model and demonstrated its ability to improve the predictive capability of the model. Within this

  13. Multi-scale simulations of field ion microscopy images—Image compression with and without the tip shank

    International Nuclear Information System (INIS)

    NiewieczerzaŁ, Daniel; Oleksy, CzesŁaw; Szczepkowicz, Andrzej

    2012-01-01

    Multi-scale simulations of field ion microscopy images of faceted and hemispherical samples are performed using a 3D model. It is shown that faceted crystals have compressed images even in cases with no shank. The presence of the shank increases the compression of images of faceted crystals quantitatively in the same way as for hemispherical samples. It is hereby proven that the shank does not influence significantly the local, relative variations of the magnification caused by the atomic-scale structure of the sample. -- Highlights: ► Multi-scale simulations of field ion microscopy images. ► Faceted and hemispherical samples with and without shank. ► Shank causes overall compression, but does not influence local magnification effects. ► Image compression linearly increases with the shank angle. ► Shank changes compression of image of faceted tip in the same way as for smooth sample.

  14. From the direct numerical simulation to system codes-perspective for the multi-scale analysis of LWR thermal hydraulics

    International Nuclear Information System (INIS)

    Bestion, D.

    2010-01-01

    A multi-scale analysis of water-cooled reactor thermal hydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermal hydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given

  15. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    International Nuclear Information System (INIS)

    Cruz, Roberto de la; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-01-01

    of front, which cannot be accounted for by the coarse-grained model. Such fluctuations have non-trivial effects on the wave velocity. Beyond the development of a new hybrid method, we thus conclude that birth-rate fluctuations are central to a quantitatively accurate description of invasive phenomena such as tumour growth. - Highlights: • A hybrid method for stochastic multi-scale models of cells populations that extends existing hybrid methods for reaction–diffusion system. • Our analysis unveils non-trivial macroscopic effects triggered by noise at the level of structuring variables. • Our hybrid method hugely speeds up age-structured SSA simulations while preserving stochastic effects.

  16. Towards a physically-based multi-scale ecohydrological simulator for semi-arid regions

    Science.gov (United States)

    Caviedes-Voullième, Daniel; Josefik, Zoltan; Hinz, Christoph

    2017-04-01

    The use of numerical models as tools for describing and understanding complex ecohydrological systems has enabled to test hypothesis and propose fundamental, process-based explanations of the system system behaviour as a whole as well as its internal dynamics. Reaction-diffusion equations have been used to describe and generate organized pattern such as bands, spots, and labyrinths using simple feedback mechanisms and boundary conditions. Alternatively, pattern-matching cellular automaton models have been used to generate vegetation self-organization in arid and semi-arid regions also using simple description of surface hydrological processes. A key question is: How much physical realism is needed in order to adequately capture the pattern formation processes in semi-arid regions while reliably representing the water balance dynamics at the relevant time scales? In fact, redistribution of water by surface runoff at the hillslope scale occurs at temporal resolution of minutes while the vegetation development requires much lower temporal resolution and longer times spans. This generates a fundamental spatio-temporal multi-scale problem to be solved, for which high resolution rainfall and surface topography are required. Accordingly, the objective of this contribution is to provide proof-of-concept that governing processes can be described numerically at those multiple scales. The requirements for a simulating ecohydrological processes and pattern formation with increased physical realism are, amongst others: i. high resolution rainfall that adequately captures the triggers of growth as vegetation dynamics of arid regions respond as pulsed systems. ii. complex, natural topography in order to accurately model drainage patterns, as surface water redistribution is highly sensitive to topographic features. iii. microtopography and hydraulic roughness, as small scale variations do impact on large scale hillslope behaviour iv. moisture dependent infiltration as temporal

  17. Multi-scale high-performance fluid flow: Simulations through porous media

    KAUST Repository

    Perović, Nevena

    2016-08-03

    Computational fluid dynamic (CFD) calculations on geometrically complex domains such as porous media require high geometric discretisation for accurately capturing the tested physical phenomena. Moreover, when considering a large area and analysing local effects, it is necessary to deploy a multi-scale approach that is both memory-intensive and time-consuming. Hence, this type of analysis must be conducted on a high-performance parallel computing infrastructure. In this paper, the coupling of two different scales based on the Navier–Stokes equations and Darcy\\'s law is described followed by the generation of complex geometries, and their discretisation and numerical treatment. Subsequently, the necessary parallelisation techniques and a rather specific tool, which is capable of retrieving data from the supercomputing servers and visualising them during the computation runtime (i.e. in situ) are described. All advantages and possible drawbacks of this approach, together with the preliminary results and sensitivity analyses are discussed in detail.

  18. Multi-scale high-performance fluid flow: Simulations through porous media

    KAUST Repository

    Perović, Nevena; Frisch, Jé rô me; Salama, Amgad; Sun, Shuyu; Rank, Ernst; Mundani, Ralf Peter

    2016-01-01

    Computational fluid dynamic (CFD) calculations on geometrically complex domains such as porous media require high geometric discretisation for accurately capturing the tested physical phenomena. Moreover, when considering a large area and analysing local effects, it is necessary to deploy a multi-scale approach that is both memory-intensive and time-consuming. Hence, this type of analysis must be conducted on a high-performance parallel computing infrastructure. In this paper, the coupling of two different scales based on the Navier–Stokes equations and Darcy's law is described followed by the generation of complex geometries, and their discretisation and numerical treatment. Subsequently, the necessary parallelisation techniques and a rather specific tool, which is capable of retrieving data from the supercomputing servers and visualising them during the computation runtime (i.e. in situ) are described. All advantages and possible drawbacks of this approach, together with the preliminary results and sensitivity analyses are discussed in detail.

  19. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  20. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  1. Multi-resolution and multi-scale simulation of the thermal hydraulics in fast neutron reactor assemblies

    International Nuclear Information System (INIS)

    Angeli, P.-E.

    2011-01-01

    The present work is devoted to a multi-scale numerical simulation of an assembly of fast neutron reactor. In spite of the rapid growth of the computer power, the fine complete CFD of a such system remains out of reach in a context of research and development. After the determination of the thermalhydraulic behaviour of the assembly at the macroscopic scale, we propose to carry out a local reconstruction of the fine scale information. The complete approach will require a much lower CPU time than the CFD of the entire structure. The macro-scale description is obtained using either the volume averaging formalism in porous media, or an alternative modeling historically developed for the study of fast neutron reactor assemblies. It provides some information used as constraint of a down-scaling problem, through a penalization technique of the local conservation equations. This problem lean on the periodic nature of the structure by integrating periodic boundary conditions for the required microscale fields or their spatial deviation. After validating the methodologies on some model applications, we undertake to perform them on 'industrial' configurations which demonstrate the viability of this multi-scale approach. (author) [fr

  2. Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system

    International Nuclear Information System (INIS)

    Kyu Cho, Hyoung; Cho, Yun Je; Yoon, Han Young

    2014-01-01

    Graphical abstract: - Highlights: • PAFS is designed to replace a conventional active auxiliary feedwater system. • Multi-D T/H analysis code, CUPID was coupled with the 1-D system analysis code MARS. • The coupled CUPID and MARS was applied for the multi-scale analysis of the PAFS test facility. • The simulation result showed that the coupled code can reproduce important phenomena in PAFS. - Abstract: For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. In the present study, the CUPID code was coupled with a system analysis code MARS in order to apply it for the multi-scale thermal-hydraulic analysis of the passive auxiliary feedwater system (PAFS). The PAFS is one of the advanced safety features adopted in the Advanced Power Reactor Plus (APR+), which is intended to completely replace the conventional active auxiliary feedwater system. For verification of the coupling and validation of the coupled code, the PASCAL test facility was simulated, which was constructed with an aim of validating the cooling and operational performance of the PAFS. The two-phase flow phenomena of the steam supply system including the condensation inside the heat exchanger tube were calculated by MARS while the natural circulation and the boil-off in the large water pool that contains the heat exchanger tube were simulated by CUPID. This paper presents the description of the PASCAL facility, the coupling method and the simulation results using the coupled code

  3. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States)

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  4. Multi-scale modelling of supercapacitors: From molecular simulations to a transmission line model

    Science.gov (United States)

    Pean, C.; Rotenberg, B.; Simon, P.; Salanne, M.

    2016-09-01

    We perform molecular dynamics simulations of a typical nanoporous-carbon based supercapacitor. The organic electrolyte consists in 1-ethyl-3-methylimidazolium and hexafluorophosphate ions dissolved in acetonitrile. We simulate systems at equilibrium, for various applied voltages. This allows us to determine the relevant thermodynamic (capacitance) and transport (in-pore resistivities) properties. These quantities are then injected in a transmission line model for testing its ability to predict the charging properties of the device. The results from this macroscopic model are in good agreement with non-equilibrium molecular dynamics simulations, which validates its use for interpreting electrochemical impedance experiments.

  5. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    Science.gov (United States)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  6. High Fidelity Multi-Scale Regolith Simulation Tool for ISRU, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has serious unmet needs for simulation tools capable of predicting the behavior of lunar regolith in proposed excavation, transport and handling systems....

  7. Measurement-Based Hybrid Fluid-Flow Models for Fast Multi-Scale Simulation and Control

    National Research Council Canada - National Science Library

    Sohraby, Khosrow

    2004-01-01

    .... We point out that traditional queuing models are intractable or provide poor fit to real-life networks, while discrete-event simulation at the packet level can consume prohibitive amounts of CPU times...

  8. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  9. Mercury and methylmercury stream concentrations in a Coastal Plain watershed: a multi-scale simulation analysis.

    Science.gov (United States)

    Knightes, C D; Golden, H E; Journey, C A; Davis, G M; Conrads, P A; Marvin-DiPasquale, M; Brigham, M E; Bradley, P M

    2014-04-01

    Mercury is a ubiquitous global environmental toxicant responsible for most US fish advisories. Processes governing mercury concentrations in rivers and streams are not well understood, particularly at multiple spatial scales. We investigate how insights gained from reach-scale mercury data and model simulations can be applied at broader watershed scales using a spatially and temporally explicit watershed hydrology and biogeochemical cycling model, VELMA. We simulate fate and transport using reach-scale (0.1 km(2)) study data and evaluate applications to multiple watershed scales. Reach-scale VELMA parameterization was applied to two nested sub-watersheds (28 km(2) and 25 km(2)) and the encompassing watershed (79 km(2)). Results demonstrate that simulated flow and total mercury concentrations compare reasonably to observations at different scales, but simulated methylmercury concentrations are out-of-phase with observations. These findings suggest that intricacies of methylmercury biogeochemical cycling and transport are under-represented in VELMA and underscore the complexity of simulating mercury fate and transport. Published by Elsevier Ltd.

  10. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-01-01

    potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical

  11. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    Science.gov (United States)

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  12. Multi-scale and multi-physics simulations using the multi-fluid plasma model

    Science.gov (United States)

    2017-04-25

    small The simulation uses 512 second-order elements Bz = 1.0, Te = Ti = 0.01, ui = ue = 0 ne = ni = 1.0 + e−10(x−6) 2 Baboolal, Math . and Comp. Sim. 55...DISTRIBUTION Clearance No. 17211 23 / 31 SUMMARY The blended finite element method (BFEM) is presented DG spatial discretization with explicit Runge...Kutta (i+, n) CG spatial discretization with implicit Crank-Nicolson (e−, fileds) DG captures shocks and discontinuities CG is efficient and robust for

  13. Multi-Scale Fusion of Information for Uncertainty Quantification and Management in Large-Scale Simulations

    Science.gov (United States)

    2015-12-02

    of completely new nonlinear Malliavin calculus . This type of calculus is important for the analysis and simulation of stationary and/or “causal...been limited by the fact that it requires the solution of an optimization problem with noisy gradients . When using deterministic optimization schemes...under uncertainty. We tested new developments on nonlinear Malliavin calculus , combining reduced basis methods with ANOVA, model validation, on

  14. Modeling and Simulation of Multi-scale Environmental Systems with Generalized Hybrid Petri Nets

    Directory of Open Access Journals (Sweden)

    Mostafa eHerajy

    2015-07-01

    Full Text Available Predicting and studying the dynamics and properties of environmental systems necessitates the construction and simulation of mathematical models entailing different levels of complexities. Such type of computational experiments often require the combination of discrete and continuous variables as well as processes operating at different time scales. Furthermore, the iterative steps of constructing and analyzing environmental models might involve researchers with different background. Hybrid Petri nets may contribute in overcoming such challenges as they facilitate the implementation of systems integrating discrete and continuous dynamics. Additionally, the visual depiction of model components will inevitably help to bridge the gap between scientists with distinct expertise working on the same problem. Thus, modeling environmental systems with hybrid Petri nets enables the construction of complex processes while keeping the models comprehensible for researchers working on the same project with significantly divergent education path. In this paper we propose the utilization of a special class of hybrid Petri nets, Generalized Hybrid Petri Nets (GHPN, to model and simulate environmental systems exposing processes interacting at different time-scales. GHPN integrate stochastic and deterministic semantics as well as other types of special basic events. Moreover, a case study is presented to illustrate the use of GHPN in constructing and simulating multi-timescale environmental scenarios.

  15. Multi-scale simulations of droplets in generic time-dependent flows

    Science.gov (United States)

    Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.

  16. A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows

    Energy Technology Data Exchange (ETDEWEB)

    James, Sutherland [University of Utah

    2018-04-12

    Abstract In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the curse of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.

  17. Computational approach on PEB process in EUV resist: multi-scale simulation

    Science.gov (United States)

    Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo

    2017-03-01

    For decades, downsizing has been a key issue for high performance and low cost of semiconductor, and extreme ultraviolet lithography is one of the promising candidates to achieve the goal. As a predominant process in extreme ultraviolet lithography on determining resolution and sensitivity, post exposure bake has been mainly studied by experimental groups, but development of its photoresist is at the breaking point because of the lack of unveiled mechanism during the process. Herein, we provide theoretical approach to investigate underlying mechanism on the post exposure bake process in chemically amplified resist, and it covers three important reactions during the process: acid generation by photo-acid generator dissociation, acid diffusion, and deprotection. Density functional theory calculation (quantum mechanical simulation) was conducted to quantitatively predict activation energy and probability of the chemical reactions, and they were applied to molecular dynamics simulation for constructing reliable computational model. Then, overall chemical reactions were simulated in the molecular dynamics unit cell, and final configuration of the photoresist was used to predict the line edge roughness. The presented multiscale model unifies the phenomena of both quantum and atomic scales during the post exposure bake process, and it will be helpful to understand critical factors affecting the performance of the resulting photoresist and design the next-generation material.

  18. Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications

    International Nuclear Information System (INIS)

    Kenjereš, Saša

    2014-01-01

    We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called 'bad' cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is

  19. Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications

    Science.gov (United States)

    Kenjereš, Saša

    2014-08-01

    We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called "bad" cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is obtained

  20. Multi-scale interactions of geological processes during mineralization: cascade dynamics model and multifractal simulation

    Directory of Open Access Journals (Sweden)

    L. Yao

    2011-03-01

    Full Text Available Relations between mineralization and certain geological processes are established mostly by geologist's knowledge of field observations. However, these relations are descriptive and a quantitative model of how certain geological processes strengthen or hinder mineralization is not clear, that is to say, the mechanism of the interactions between mineralization and the geological framework has not been thoroughly studied. The dynamics behind these interactions are key in the understanding of fractal or multifractal formations caused by mineralization, among which singularities arise due to anomalous concentration of metals in narrow space. From a statistical point of view, we think that cascade dynamics play an important role in mineralization and studying them can reveal the nature of the various interactions throughout the process. We have constructed a multiplicative cascade model to simulate these dynamics. The probabilities of mineral deposit occurrences are used to represent direct results of mineralization. Multifractal simulation of probabilities of mineral potential based on our model is exemplified by a case study dealing with hydrothermal gold deposits in southern Nova Scotia, Canada. The extent of the impacts of certain geological processes on gold mineralization is related to the scale of the cascade process, especially to the maximum cascade division number nmax. Our research helps to understand how the singularity occurs during mineralization, which remains unanswered up to now, and the simulation may provide a more accurate distribution of mineral deposit occurrences that can be used to improve the results of the weights of evidence model in mapping mineral potential.

  1. A multi-scale experimental and simulation approach for fractured subsurface systems

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.

    2017-12-01

    Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.

  2. Illuminating the star clusters and satellite galaxies with multi-scale baryonic simulations

    Science.gov (United States)

    Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Marinacci, Federico; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2018-01-01

    Over the past decade, advances in computational architecture have made it possible for the first time to investigate some of the fundamental questions around the formation, evolution and assembly of the building blocks of the universe; star clusters and galaxies. In this talk, I will focus on two major questions: What is the origin of the observed universal lognormal mass function in globular clusters? What is the statistical distribution of the properties of satellite planes in a large sample of satellite systems?Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at 2X105 MSun, although the origin of this peaked distribution is unclear. We investigate the formation of star clusters in interacting galaxies using baryonic simulations and found that massive clusters preferentially form in extremely high pressure gas clouds which reside in highly shocked regions produced by galaxy interactions. These massive clusters have quasi-lognormal initial mass functions with a peak around ~106MSun which may survive dynamical evolution and slowly evolve into the universal lognormal profiles observed today.The classical Milky Way (MW) satellites are observed to be distributed in a highly-flattened plane, called Disk of Satellites (DoS). However the significance, coherence and origin of DoS is highly debated. To understand this, we first analyze all MW satellites and find that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of their angular momentum. Comparing a baryonic simulation of a MW-sized galaxy with its N-body counterpart we find that an anisotropic DoS can originate from baryonic processes. Furthermore, we explore the statistical distribution of DoS properties by analyzing 2591 satellite systems in the cosmological hydrodynamic simulation Illustris. We find that the DoS becomes more isotropic with increasing sample sizes and most (~90%) satellite

  3. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard; Vej-Hansen, Ulrik Grønbjerg; Larsen, Britt Hvolbæk

    2011-01-01

    We investigate how the chemical reactivity of gold nanoparticles depends on the cluster size and shape using a combination of simulation techniques at different length scales, enabling us to model at the atomic level the shapes of clusters in the size range relevant for catalysis. The detailed......-coordinated active sites is found, and their reactivities are extracted from models based on Density Functional Theory calculations. This enables us to determine the chemical activity of clusters in the same range of particle sizes that is accessible experimentally. The variation of reactivity with particle size...... is in excellent agreement with experiments, and we conclude that the experimentally observed trends are mostly explained by the high reactivity of under-coordinated corner atoms on the gold clusters. Other effects, such as the effect of the substrate, may influence the reactivities significantly, but the presence...

  4. Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Lechman, Jeremy B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bolintineanu, Dan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foiles, Stephen M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kay, Jeffrey J [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phinney, Leslie M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Piekos, Edward S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Specht, Paul Elliott [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wixom, Ryan R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Yarrington, Cole [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performance variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling information transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were successfully advanced. As discussed in Chapter 2 a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes success for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in developing and informing the kind of modeling approach originally envisioned (see Chapter 6). In

  5. Modelling concrete behaviour at early-age: multi-scale analysis and simulation of a massive disposal structure

    International Nuclear Information System (INIS)

    Honorio-De-Faria, Tulio

    2015-01-01

    The accurate prediction of the long and short-term behaviour of concrete structures in the nuclear domain is essential to ensure optimal performances (integrity, containment properties) during their service life. In the particular case of massive concrete structures, at early age the heat produced by hydration reactions cannot be evacuated fast enough so that high temperatures may be reached and the resulting gradients of temperature might lead to cracking according to the external and internal restraints to which the structures are subjected. The goals of this study are (1) to perform numerical simulations in order to describe and predict the thermo-chemo-mechanical behaviour at early-age of a massive concrete structure devoted to nuclear waste disposal on surface, and (2) to develop and apply up-scaling tools to estimate rigorously the key properties of concrete needed in an early-age analysis from the composition of the material. Firstly, a chemo-thermal analysis aims at determining the influence of convection, solar radiation, re-radiation and hydration heat on the thermal response of the structure. Practical recommendations regarding concreting temperatures are provided in order to limit the maximum temperature reached within the structure. Then, by means of a mechanical analysis, simplified and more complex (i.e. accounting for coupled creep and damage) modelling strategies are used to assess scenarios involving different boundary conditions defined from the previous chemo-thermal analysis. Secondly, a study accounting for the multi-scale character of concrete is performed. A simplified model of cement hydration kinetics is proposed. The evolution of the different phases at the cement paste level can be estimated. Then, analytical and numerical tools to upscale the ageing properties are presented and applied to estimate the mechanical and thermal properties of cement based materials. Finally, the input data used in the structural analysis are compared with

  6. Development of high-resolution multi-scale modelling system for simulation of coastal-fluvial urban flooding

    Science.gov (United States)

    Comer, Joanne; Indiana Olbert, Agnieszka; Nash, Stephen; Hartnett, Michael

    2017-02-01

    Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2 m. Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.

  7. Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

    International Nuclear Information System (INIS)

    Tognevi, Amen

    2012-01-01

    The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d'Etude du Comportement des Betons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydro-mechanical parameters of the unsaturated micro-cracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. (author) [fr

  8. Unified Modeling Language description of the object-oriented multi-scale adaptive finite element method for Step-and-Flash Imprint Lithography Simulations

    International Nuclear Information System (INIS)

    Paszynski, Maciej; Gurgul, Piotr; Sieniek, Marcin; Pardo, David

    2010-01-01

    In the first part of the paper we present the multi-scale simulation of the Step-and-Flash Imprint Lithography (SFIL), a modern patterning process. The simulation utilizes the hp adaptive Finite Element Method (hp-FEM) coupled with Molecular Statics (MS) model. Thus, we consider the multi-scale problem, with molecular statics applied in the areas of the mesh where the highest accuracy is required, and the continuous linear elasticity with thermal expansion coefficient applied in the remaining part of the domain. The degrees of freedom from macro-scale element's nodes located on the macro-scale side of the interface have been identified with particles from nano-scale elements located on the nano-scale side of the interface. In the second part of the paper we present Unified Modeling Language (UML) description of the resulting multi-scale application (hp-FEM coupled with MS). We investigated classical, procedural codes from the point of view of the object-oriented (O-O) programming paradigm. The discovered hierarchical structure of classes and algorithms makes the UML project as independent on the spatial dimension of the problem as possible. The O-O UML project was defined at an abstract level, independent on the programming language used.

  9. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    Science.gov (United States)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of

  10. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    Science.gov (United States)

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  11. Multi-scale multi-physics computational chemistry simulation based on ultra-accelerated quantum chemical molecular dynamics method for structural materials in boiling water reactor

    International Nuclear Information System (INIS)

    Miyamoto, Akira; Sato, Etsuko; Sato, Ryo; Inaba, Kenji; Hatakeyama, Nozomu

    2014-01-01

    In collaboration with experimental experts we have reported in the present conference (Hatakeyama, N. et al., “Experiment-integrated multi-scale, multi-physics computational chemistry simulation applied to corrosion behaviour of BWR structural materials”) the results of multi-scale multi-physics computational chemistry simulations applied to the corrosion behaviour of BWR structural materials. In macro-scale, a macroscopic simulator of anode polarization curve was developed to solve the spatially one-dimensional electrochemical equations on the material surface in continuum level in order to understand the corrosion behaviour of typical BWR structural material, SUS304. The experimental anode polarization behaviours of each pure metal were reproduced by fitting all the rates of electrochemical reactions and then the anode polarization curve of SUS304 was calculated by using the same parameters and found to reproduce the experimental behaviour successfully. In meso-scale, a kinetic Monte Carlo (KMC) simulator was applied to an actual-time simulation of the morphological corrosion behaviour under the influence of an applied voltage. In micro-scale, an ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) code was applied to various metallic oxide surfaces of Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 modelled as same as water molecules and dissolved metallic ions on the surfaces, then the dissolution and segregation behaviours were successfully simulated dynamically by using UA-QCMD. In this paper we describe details of the multi-scale, multi-physics computational chemistry method especially the UA-QCMD method. This method is approximately 10,000,000 times faster than conventional first-principles molecular dynamics methods based on density-functional theory (DFT), and the accuracy was also validated for various metals and metal oxides compared with DFT results. To assure multi-scale multi-physics computational chemistry simulation based on the UA-QCMD method for

  12. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations.

    Directory of Open Access Journals (Sweden)

    Scott C Sibole

    Full Text Available Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method's generalized nature also allows for substitution of any macro

  13. Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    Science.gov (United States)

    Sibole, Scott C.; Erdemir, Ahmet

    2012-01-01

    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro

  14. Based on a multi-agent system for multi-scale simulation and application of household's LUCC: a case study for Mengcha village, Mizhi county, Shaanxi province.

    Science.gov (United States)

    Chen, Hai; Liang, Xiaoying; Li, Rui

    2013-01-01

    Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the

  15. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Multi-Scale Coupling Between Monte Carlo Molecular Simulation and Darcy-Scale Flow in Porous Media

    KAUST Repository

    Saad, Ahmed Mohamed; Kadoura, Ahmad Salim; Sun, Shuyu

    2016-01-01

    In this work, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell centered finite difference method with non-uniform rectangular mesh were used to discretize the simulation

  17. Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2013-07-01

    Full Text Available Reconciling competing desires to build urban models that can be simple and complicated is something of a grand challenge for urban simulation. It also prompts difficulties in many urban policy situations, such as urban sprawl, where simple, actionable ideas may need to be considered in the context of the messily complex and complicated urban processes and phenomena that work within cities. In this paper, we present a novel architecture for achieving both simple and complicated realizations of urban sprawl in simulation. Fine-scale simulations of sprawl geography are run using geographic automata to represent the geographical drivers of sprawl in intricate detail and over fine resolutions of space and time. We use Equation-Free computing to deploy population as a coarse observable of sprawl, which can be leveraged to run automata-based models as short-burst experiments within a meta-simulation framework.

  18. Multi-Scale Coupling Between Monte Carlo Molecular Simulation and Darcy-Scale Flow in Porous Media

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-06-01

    In this work, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell centered finite difference method with non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational times by MC simulations from hours to seconds. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and the Darcy\\'s one in reservoir simulators. This leads to an accurate description of thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  19. CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

    Directory of Open Access Journals (Sweden)

    Yann Périn

    2017-09-01

    Full Text Available In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

  20. The nonlinear Galerkin method: A multi-scale method applied to the simulation of homogeneous turbulent flows

    Science.gov (United States)

    Debussche, A.; Dubois, T.; Temam, R.

    1993-01-01

    Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.

  1. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    Science.gov (United States)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  2. A EU simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis (NURESIM project)

    International Nuclear Information System (INIS)

    Chauliac, Christian; Bestion, Dominique; Crouzet, Nicolas; Aragones, Jose-Maria; Cacuci, Dan Gabriel; Weiss, Frank-Peter; Zimmermann, Martin A.

    2010-01-01

    The NURESIM project, the numerical simulation platform, is developed in the frame of the NURISP European Collaborative Project (FP7), which includes 22 organizations from 14 European countries. NURESIM intends to be a reference platform providing high quality software tools, physical models, generic functions and assessment results. The NURESIM platform provides an accurate representation of the physical phenomena by promoting and incorporating the latest advances in core physics, two-phase thermal-hydraulics and fuel modelling. It includes multi-scale and multi-physics features, especially for coupling core physics and thermal-hydraulics models for reactor safety. Easy coupling of the different codes and solvers is provided through the use of a common data structure and generic functions (e.g., for interpolation between non-conforming meshes). More generally, the platform includes generic pre-processing, post-processing and supervision functions through the open-source SALOME software, in order to make the codes more user-friendly. The platform also provides the informatics environment for testing and comparing different codes. The contribution summarizes the achievements and ongoing developments of the simulation platform in core physics, thermal-hydraulics, multi-physics, uncertainties and code integration

  3. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model

    Directory of Open Access Journals (Sweden)

    Li Zhen

    2008-05-01

    Full Text Available Abstract Background Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in high-dimensional bioactivity space that predict tissue, organ or whole animal toxicological endpoints. Supervised machine learning is a powerful approach to discover combinatorial relationships in complex in vitro/in vivo datasets. We present a novel model to simulate complex chemical-toxicology data sets and use this model to evaluate the relative performance of different machine learning (ML methods. Results The classification performance of Artificial Neural Networks (ANN, K-Nearest Neighbors (KNN, Linear Discriminant Analysis (LDA, Naïve Bayes (NB, Recursive Partitioning and Regression Trees (RPART, and Support Vector Machines (SVM in the presence and absence of filter-based feature selection was analyzed using K-way cross-validation testing and independent validation on simulated in vitro assay data sets with varying levels of model complexity, number of irrelevant features and measurement noise. While the prediction accuracy of all ML methods decreased as non-causal (irrelevant features were added, some ML methods performed better than others. In the limit of using a large number of features, ANN and SVM were always in the top performing set of methods while RPART and KNN (k = 5 were always in the poorest performing set. The addition of measurement noise and irrelevant features decreased the classification accuracy of all ML methods, with LDA suffering the greatest performance degradation. LDA performance is especially sensitive to the use of feature selection. Filter-based feature selection generally improved performance, most strikingly for LDA. Conclusion We have developed a novel simulation model to evaluate machine learning methods for the

  4. Novel patch modelling method for efficient simulation and prediction uncertainty analysis of multi-scale groundwater flow and transport processes

    Science.gov (United States)

    Sreekanth, J.; Moore, Catherine

    2018-04-01

    The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.

  5. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  6. Mechanisms of recognition and binding of α-TTP to the plasma membrane by multi-scale molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Christos eLamprakis

    2015-07-01

    Full Text Available We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution, to investigate interaction and binding of α-tochoperol transfer protein (α-TTP to phosphatidylinositol phosphate lipids (PIPs. Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP / PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein / ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED phenotypes. Specifically, R221 is main residue responsible for the stabilisation of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.

  7. Simulating cortical development as a self constructing process: a novel multi-scale approach combining molecular and physical aspects.

    Directory of Open Access Journals (Sweden)

    Frederic Zubler

    Full Text Available Current models of embryological development focus on intracellular processes such as gene expression and protein networks, rather than on the complex relationship between subcellular processes and the collective cellular organization these processes support. We have explored this collective behavior in the context of neocortical development, by modeling the expansion of a small number of progenitor cells into a laminated cortex with layer and cell type specific projections. The developmental process is steered by a formal language analogous to genomic instructions, and takes place in a physically realistic three-dimensional environment. A common genome inserted into individual cells control their individual behaviors, and thereby gives rise to collective developmental sequences in a biologically plausible manner. The simulation begins with a single progenitor cell containing the artificial genome. This progenitor then gives rise through a lineage of offspring to distinct populations of neuronal precursors that migrate to form the cortical laminae. The precursors differentiate by extending dendrites and axons, which reproduce the experimentally determined branching patterns of a number of different neuronal cell types observed in the cat visual cortex. This result is the first comprehensive demonstration of the principles of self-construction whereby the cortical architecture develops. In addition, our model makes several testable predictions concerning cell migration and branching mechanisms.

  8. Contribution to the modelling and multi-scale numerical simulation of kinetic electron transport in hot plasma

    International Nuclear Information System (INIS)

    Mallet, J.

    2012-01-01

    This research thesis stands at the crossroad of plasma physics, numerical analysis and applied mathematics. After an introduction presenting the problematic and previous works, the author recalls some basis of classical kinetic models for plasma physics (collisionless kinetic theory and Vlasov equation, collisional kinetic theory with the non-relativistic Maxwell-Fokker-Plansk system) and describes the fundamental properties of the collision operators such as conservation laws, entropy dissipation, and so on. He reports the improvement of a deterministic numerical method to solve the non-relativistic Vlasov-Maxwell system coupled with Fokker-Planck-Landau type operators. The efficiency of each high order scheme is compared. The evolution of the hot spot is studied in the case of thermonuclear reactions in the centre of the pellet in a weakly collisional regime. The author focuses on the simulation of the kinetic electron collisional transport in inertial confinement fusion (ICF) between the laser absorption zone and the ablation front. A new approach is then introduced to reduce the huge computation time obtained with kinetic models. In a last chapter, the kinetic continuous equation in spherical domain is described and a new model is chosen for collisions in order to preserve collision properties

  9. Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Patrick; Zhang, Yang; Wang, Kai; Leung, Ruby; Fan, Jiwen; Zheng, Bo; Zhang, Qiang; He, Kebin

    2017-11-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improve performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32N and 42N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. Results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.

  10. Application of a Multi-Scale form of Terzaghi’s Effective Stress Principle for Unsaturated Expansive Clays to Simulate Hydro-Mechanical Behavior During Hydration

    Directory of Open Access Journals (Sweden)

    Mainka Julia

    2016-01-01

    Full Text Available Our recently developed multi-scale form of Terzaghi’s effective stress principle for unsaturated swelling clays that was rigorously derived by periodic homogenization starting from micro- and nano-mechanical analyses is applied to numerically simulate one-dimensional swelling pressure tests of compacted bentonites during hydration. The total macroscopic stress captures the coupling between disjoining forces at the nanoscopic scale of clay platelets and capillary effects at the microscopic scale of clay aggregates over the entire water content range. The numerical results allow to draw conclusions on the water transfer mechanism between inter- and intra-aggregate pores during hydration and consequently on the evolution of the external swelling pressure resulting from the competition between capillary and disjoining forces. In addition, such application highlights the abilities and the limits of the electrical double-layer theory to compute the disjoining pressure in the nano-pores. For large platelet distances, in the range of osmotic swelling, the nature of the disjoining pressure is electro-chemical and can be computed from Poisson-Boltzmann theory. Conversely, at small distances, in the crystalline swelling, a solvation component has to be added to account for the molecular nature of the solvent. As a first improvement of the nano-scale description the solvent is treated as a hard sphere fluid using Density Functional Theory.

  11. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaokun; Han, Min; Ming, Dengming, E-mail: dming@fudan.edu.cn [Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai (China)

    2015-10-07

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  12. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations.

    Science.gov (United States)

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-07-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310-323. doi: 10.1002/wcms.1220.

  13. Air pollution in the Benelux/Rhine-Ruhr area: Numerical simulations with a multi-scale regional chemistry-transport model

    Science.gov (United States)

    Memmesheimer, M.; Jakobs, H. J.; Wurzler, S.; Friese, E.; Piekorz, G.; Ebel, A.

    2009-04-01

    The Rhine-Ruhr area is a strongly industrialized region with about 10 Million inhabitants. It is one of the regions in Europe, which has the characteristics of a megacity with respect to population density, traffic, industry and environmental issues. The main centre of European steel production and the biggest inland port of the world is located in Duisburg, one of the major cities in the Rhine-Ruhr area. Together with the nearby urban agglomerations in the Benelux area including Brussels, Amsterdam and in particular Rotterdam as one of the most important sea-harbours of the world together with Singapore and Shanghai, it forms one of the regions in Europe heavily loaded with air pollutants as ozone, NO2 and particulate matter. Ammonia emissions outside the urban agglomerations but within the domain are also on a quite high level due to intense agricultural usage in Benelux, North-Rhine-Westphalia and lower Saxony. Therefore this area acts also as an important source region for gaseous precursors contributing to the formation of secondary particles in the atmosphere. The Benelux/Rhine-Ruhr area therefore has been selected within the framework of the recently established FP7 research project CityZen as one hot spot for detailed investigations of the past and current status of air pollution and its future development on different spatial and temporal scales. Some examples from numerical simulations with the regional multi-scale chemistry transport model EURAD for Central Europe and the Rhine-Ruhr area will be presented. The model calculates the transport, chemical transformations and deposition of trace constituents in the troposphere from the surface up to about 16 km using MM5 as meteorological driver, the RACM-MIM gas-phase chemistry and MADE-SORGAM for the treatment of particulate matter. Horizontal grid sizes are in the range of 100 km down to 1 km for heavily polluted urbanized areas within Benelux/Rhine-Ruhr. The planetary boundary layer is resolved by 15

  14. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  15. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  16. Microphysics in Multi-scale Modeling System with Unified Physics

    Science.gov (United States)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  17. MUSIC: MUlti-Scale Initial Conditions

    Science.gov (United States)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  18. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator

    Science.gov (United States)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-01

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  19. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator.

    Science.gov (United States)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-28

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  20. On Recent Progress in Modelling and Simulations of Multi-scale Transfer of Mass, Momentum and Particles in Bio-medical Applications

    NARCIS (Netherlands)

    Kenjeres, S.

    2015-01-01

    We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex

  1. On Recent Progress in Modelling and Simulations of Multi-scale Transfer of Mass, Momentum and Particles in Bio-medical Applications

    NARCIS (Netherlands)

    Kenjeres, S.

    2016-01-01

    We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex

  2. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    International Nuclear Information System (INIS)

    Tome, Carlos N.; Caro, J.A.; Lebensohn, R.A.; Unal, Cetin; Arsenlis, A.; Marian, J.; Pasamehmetoglu, K.

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  3. Multi-scale approximation of Vlasov equation

    International Nuclear Information System (INIS)

    Mouton, A.

    2009-09-01

    One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite

  4. Fragmentation of KrN+ clusters after electron impact ionization. Short-time dynamics simulations and approximate multi-scale treatment

    Czech Academy of Sciences Publication Activity Database

    Janeček, Ivan; Naar, P.; Stachoň, M.; Gadéa, F. X.; Kalus, R.

    2017-01-01

    Roč. 19, č. 4 (2017), s. 2778-2790 ISSN 1463-9076 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : atom ic clusters * molecular physics * computer simulations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlelanding/2017/cp/c6cp07479k#!divAbstract

  5. Fragmentation of KrN+ clusters after electron impact ionization. Short-time dynamics simulations and approximate multi-scale treatment

    Czech Academy of Sciences Publication Activity Database

    Janeček, Ivan; Naar, P.; Stachoň, M.; Gadéa, F. X.; Kalus, R.

    2017-01-01

    Roč. 19, č. 4 (2017), s. 2778-2790 ISSN 1463-9076 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : atomic clusters * molecular physics * computer simulations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlelanding/2017/cp/c6cp07479k#!divAbstract

  6. Effect of Erosion on Productivity in Subtropical Red Soil Hilly Region: A Multi-Scale Spatio-Temporal Study by Simulated Rainfall

    Science.gov (United States)

    Li, Zhongwu; Huang, Jinquan; Zeng, Guangming; Nie, Xiaodong; Ma, Wenming; Yu, Wei; Guo, Wang; Zhang, Jiachao

    2013-01-01

    The effects of water erosion (including long-term historical erosion and single erosion event) on soil properties and productivity in different farming systems were investigated. A typical sloping cropland with homogeneous soil properties was designed in 2009 and then protected from other external disturbances except natural water erosion. In 2012, this cropland was divided in three equally sized blocks. Three treatments were performed on these blocks with different simulated rainfall intensities and farming methods: (1) high rainfall intensity (1.5 - 1.7 mm min−1), no-tillage operation; (2) low rainfall intensity (0.5 - 0.7 mm min−1), no-tillage operation; and (3) low rainfall intensity, tillage operation. All of the blocks were divided in five equally sized subplots along the slope to characterize the three-year effects of historical erosion quantitatively. Redundancy analysis showed that the effects of long-term historical erosion significantly caused most of the variations in soil productivity in no-tillage and low rainfall erosion intensity systems. The intensities of the simulated rainfall did not exhibit significant effects on soil productivity in no-tillage systems. By contrast, different farming operations induced a statistical difference in soil productivity at the same single erosion intensity. Soil organic carbon (SOC) was the major limiting variable that influenced soil productivity. Most explanations of long-term historical erosion for the variation in soil productivity arose from its sharing with SOC. SOC, total nitrogen, and total phosphorus were found as the regressors of soil productivity because of tillage operation. In general, this study provided strong evidence that single erosion event could also impose significant constraints on soil productivity by integrating with tillage operation, although single erosion is not the dominant effect relative to the long-term historical erosion. Our study demonstrated that an effective management of

  7. Improved numerical algorithm and experimental validation of a system thermal-hydraulic/CFD coupling method for multi-scale transient simulations of pool-type reactors

    International Nuclear Information System (INIS)

    Toti, A.; Vierendeels, J.; Belloni, F.

    2017-01-01

    Highlights: • A system thermal-hydraulic/CFD coupling methodology is proposed for high-fidelity transient flow analyses. • The method is based on domain decomposition and implicit numerical scheme. • A novel interface Quasi-Newton algorithm is implemented to improve stability and convergence rate. • Preliminary validation analyses on the TALL-3D experiment. - Abstract: The paper describes the development and validation of a coupling methodology between the best-estimate system thermal-hydraulic code RELAP5-3D and the CFD code FLUENT, conceived for high fidelity plant-scale safety analyses of pool-type reactors. The computational tool is developed to assess the impact of three-dimensional phenomena occurring in accidental transients such as loss of flow (LOF) in the research reactor MYRRHA, currently in the design phase at the Belgian Nuclear Research Centre, SCK• CEN. A partitioned, implicit domain decomposition coupling algorithm is implemented, in which the coupled domains exchange thermal-hydraulics variables at coupling boundary interfaces. Numerical stability and interface convergence rates are improved by a novel interface Quasi-Newton algorithm, which is compared in this paper with previously tested numerical schemes. The developed computational method has been assessed for validation purposes against the experiment performed at the test facility TALL-3D, operated by the Royal Institute of Technology (KTH) in Sweden. This paper details the results of the simulation of a loss of forced convection test, showing the capability of the developed methodology to predict transients influenced by local three-dimensional phenomena.

  8. Molecular basis of calcium-sensitizing and desensitizing mutations of the human cardiac troponin C regulatory domain: a multi-scale simulation study.

    Directory of Open Access Journals (Sweden)

    Peter Michael Kekenes-Huskey

    Full Text Available Troponin C (TnC is implicated in the initiation of myocyte contraction via binding of cytosolic Ca²⁺ and subsequent recognition of the Troponin I switch peptide. Mutations of the cardiac TnC N-terminal regulatory domain have been shown to alter both calcium binding and myofilament force generation. We have performed molecular dynamics simulations of engineered TnC variants that increase or decrease Ca²⁺ sensitivity, in order to understand the structural basis of their impact on TnC function. We will use the distinction for mutants that are associated with increased Ca²⁺ affinity and for those mutants with reduced affinity. Our studies demonstrate that for GOF mutants V44Q and L48Q, the structure of the physiologically-active site II Ca²⁺ binding site in the Ca²⁺-free (apo state closely resembled the Ca²⁺-bound (holo state. In contrast, site II is very labile for LOF mutants E40A and V79Q in the apo form and bears little resemblance with the holo conformation. We hypothesize that these phenomena contribute to the increased association rate, k(on, for the GOF mutants relative to LOF. Furthermore, we observe significant positive and negative positional correlations between helices in the GOF holo mutants that are not found in the LOF mutants. We anticipate these correlations may contribute either directly to Ca²⁺ affinity or indirectly through TnI association. Our observations based on the structure and dynamics of mutant TnC provide rationale for binding trends observed in GOF and LOF mutants and will guide the development of inotropic drugs that target TnC.

  9. Multi Scale Models for Flexure Deformation in Sheet Metal Forming

    Directory of Open Access Journals (Sweden)

    Di Pasquale Edmondo

    2016-01-01

    Full Text Available This paper presents the application of multi scale techniques to the simulation of sheet metal forming using the one-step method. When a blank flows over the die radius, it undergoes a complex cycle of bending and unbending. First, we describe an original model for the prediction of residual plastic deformation and stresses in the blank section. This model, working on a scale about one hundred times smaller than the element size, has been implemented in SIMEX, one-step sheet metal forming simulation code. The utilisation of this multi-scale modeling technique improves greatly the accuracy of the solution. Finally, we discuss the implications of this analysis on the prediction of springback in metal forming.

  10. Multi-scale Regions from Edge Fragments

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Andersen, Hans Jørgen

    2014-01-01

    In this article we introduce a novel method for detecting multi-scale salient regions around edges using a graph based image compression algorithm. Images are recursively decomposed into triangles arranged into a binary tree using linear interpolation. The entropy of any local region of the image......), their performance is comparable to SIFT (Lowe, 2004).We also show that when they are used together with MSERs (Matas et al., 2002), the performance of MSERs is boosted....

  11. Fast Decentralized Averaging via Multi-scale Gossip

    Science.gov (United States)

    Tsianos, Konstantinos I.; Rabbat, Michael G.

    We are interested in the problem of computing the average consensus in a distributed fashion on random geometric graphs. We describe a new algorithm called Multi-scale Gossip which employs a hierarchical decomposition of the graph to partition the computation into tractable sub-problems. Using only pairwise messages of fixed size that travel at most O(n^{1/3}) hops, our algorithm is robust and has communication cost of O(n loglogn logɛ - 1) transmissions, which is order-optimal up to the logarithmic factor in n. Simulated experiments verify the good expected performance on graphs of many thousands of nodes.

  12. Multi-scale modeling of spin transport in organic semiconductors

    Science.gov (United States)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  13. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    Science.gov (United States)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  14. Multi-scale Modelling of Segmentation

    DEFF Research Database (Denmark)

    Hartmann, Martin; Lartillot, Olivier; Toiviainen, Petri

    2016-01-01

    pieces. In a second experiment on non-real-time segmentation, musicians indicated boundaries and their strength for six examples. Kernel density estimation was used to develop multi-scale segmentation models. Contrary to previous research, no relationship was found between boundary strength and boundary......While listening to music, people often unwittingly break down musical pieces into constituent chunks such as verses and choruses. Music segmentation studies have suggested that some consensus regarding boundary perception exists, despite individual differences. However, neither the effects...

  15. A rate-dependent multi-scale crack model for concrete

    NARCIS (Netherlands)

    Karamnejad, A.; Nguyen, V.P.; Sluys, L.J.

    2013-01-01

    A multi-scale numerical approach for modeling cracking in heterogeneous quasi-brittle materials under dynamic loading is presented. In the model, a discontinuous crack model is used at macro-scale to simulate fracture and a gradient-enhanced damage model has been used at meso-scale to simulate

  16. Multi-scale modeling for sustainable chemical production.

    Science.gov (United States)

    Zhuang, Kai; Bakshi, Bhavik R; Herrgård, Markus J

    2013-09-01

    With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    Science.gov (United States)

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  18. Multi-scale modeling of composites

    DEFF Research Database (Denmark)

    Azizi, Reza

    A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale......-Mandel’s energy principle is used to find macroscopic operators based on micro-mechanical analyses using the finite element method under generalized plane strain condition. A phenomenologically macroscopic model for metal matrix composites is developed based on constitutive operators describing the elastic...... to plastic deformation. The macroscopic operators found, can be used to model metal matrix composites on the macroscopic scale using a hierarchical multi-scale approach. Finally, decohesion under tension and shear loading is studied using a cohesive law for the interface between matrix and fiber....

  19. Biointerface dynamics--Multi scale modeling considerations.

    Science.gov (United States)

    Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko

    2015-08-01

    Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A multi scale model for small scale plasticity

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2002-01-01

    Full text.A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, a multi-scale model is developed merging two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems, including dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear band

  1. Multi-scale evaluations of submarine groundwater discharge

    Directory of Open Access Journals (Sweden)

    M. Taniguchi

    2015-03-01

    Full Text Available Multi-scale evaluations of submarine groundwater discharge (SGD have been made in Saijo, Ehime Prefecture, Shikoku Island, Japan, by using seepage meters for point scale, 222Rn tracer for point and coastal scales, and a numerical groundwater model (SEAWAT for coastal and basin scales. Daily basis temporal changes in SGD are evaluated by continuous seepage meter and 222Rn mooring measurements, and depend on sea level changes. Spatial evaluations of SGD were also made by 222Rn along the coast in July 2010 and November 2011. The area with larger 222Rn concentration during both seasons agreed well with the area with larger SGD calculated by 3D groundwater numerical simulations.

  2. What is at stake in multi-scale approaches

    International Nuclear Information System (INIS)

    Jamet, Didier

    2008-01-01

    Full text of publication follows: Multi-scale approaches amount to analyzing physical phenomena at small space and time scales in order to model their effects at larger scales. This approach is very general in physics and engineering; one of the best examples of success of this approach is certainly statistical physics that allows to recover classical thermodynamics and to determine the limits of application of classical thermodynamics. Getting access to small scale information aims at reducing the models' uncertainty but it has a cost: fine scale models may be more complex than larger scale models and their resolution may require the development of specific and possibly expensive methods, numerical simulation techniques and experiments. For instance, in applications related to nuclear engineering, the application of computational fluid dynamics instead of cruder models is a formidable engineering challenge because it requires resorting to high performance computing. Likewise, in two-phase flow modeling, the techniques of direct numerical simulation, where all the interfaces are tracked individually and where all turbulence scales are captured, are getting mature enough to be considered for averaged modeling purposes. However, resolving small scale problems is a necessary step but it is not sufficient in a multi-scale approach. An important modeling challenge is to determine how to treat small scale data in order to get relevant information for larger scale models. For some applications, such as single-phase turbulence or transfers in porous media, this up-scaling approach is known and is now used rather routinely. However, in two-phase flow modeling, the up-scaling approach is not as mature and specific issues must be addressed that raise fundamental questions. This will be discussed and illustrated. (author)

  3. Multi-scale modeling with cellular automata: The complex automata approach

    NARCIS (Netherlands)

    Hoekstra, A.G.; Falcone, J.-L.; Caiazzo, A.; Chopard, B.

    2008-01-01

    Cellular Automata are commonly used to describe complex natural phenomena. In many cases it is required to capture the multi-scale nature of these phenomena. A single Cellular Automata model may not be able to efficiently simulate a wide range of spatial and temporal scales. It is our goal to

  4. Advanced computational workflow for the multi-scale modeling of the bone metabolic processes.

    Science.gov (United States)

    Dao, Tien Tuan

    2017-06-01

    Multi-scale modeling of the musculoskeletal system plays an essential role in the deep understanding of complex mechanisms underlying the biological phenomena and processes such as bone metabolic processes. Current multi-scale models suffer from the isolation of sub-models at each anatomical scale. The objective of this present work was to develop a new fully integrated computational workflow for simulating bone metabolic processes at multi-scale levels. Organ-level model employs multi-body dynamics to estimate body boundary and loading conditions from body kinematics. Tissue-level model uses finite element method to estimate the tissue deformation and mechanical loading under body loading conditions. Finally, cell-level model includes bone remodeling mechanism through an agent-based simulation under tissue loading. A case study on the bone remodeling process located on the human jaw was performed and presented. The developed multi-scale model of the human jaw was validated using the literature-based data at each anatomical level. Simulation outcomes fall within the literature-based ranges of values for estimated muscle force, tissue loading and cell dynamics during bone remodeling process. This study opens perspectives for accurately simulating bone metabolic processes using a fully integrated computational workflow leading to a better understanding of the musculoskeletal system function from multiple length scales as well as to provide new informative data for clinical decision support and industrial applications.

  5. Multi-scale interaction between magnetic islands and microturbulence in magnetized plasmas; Modelisation et simulation de l'interaction multi-echelle entre ilots magnetiques et la microturbulence dans les plasmas de fusion magnetises

    Energy Technology Data Exchange (ETDEWEB)

    Muraglia, M.

    2009-10-15

    In a tokamak, it exists many kinds of instability at the origin of a damage of the confinement and worst of a lost of a confinement. This work presents a study of the dynamics of a magnetic island in presence of turbulence in magnetized plasmas. More precisely, the goal is to understand the multi-scales interaction between turbulence, generated by a pressure gradient and the magnetic field curvature, and a magnetic island formed thanks to a tearing mode. Thanks to the derivation of a 2-dimensional slab model taking into account both tearing and interchange instabilities, theoretical and numerical linear studies show the pressure effect on the magnetic island linear formation and show interchange modes are stabilized in presence of a strong magnetic field. Then, a numerical nonlinear study is presented in order to understand how the interchange mechanism affects the nonlinear dynamics of a magnetic island. It is shown that the pressure gradient and the magnetic field curvature affect strongly the nonlinear evolution of a magnetic island through dynamics bifurcations. The nature of these bifurcations should be characterized in function of the linear situation. Finally, the last part of this work is devoted to the study of the origin of the nonlinear poloidal rotation of the magnetic island. A model giving the different contributions to the rotation is derived. It is shown, thanks to the model and to the numerical studies, that the nonlinear rotation of the island is mainly governed by the ExB poloidal flow and/or by the nonlinear diamagnetic drift. (author)

  6. Magnetospheric MultiScale (MMS) System Manager

    Science.gov (United States)

    Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David

    2014-01-01

    The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.

  7. State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels

    International Nuclear Information System (INIS)

    Bartel, T.J.; Dingreville, R.; Littlewood, D.; Tikare, V.; Bertolus, M.; Blanc, V.; Bouineau, V.; Carlot, G.; Desgranges, C.; Dorado, B.; Dumas, J.C.; Freyss, M.; Garcia, P.; Gatt, J.M.; Gueneau, C.; Julien, J.; Maillard, S.; Martin, G.; Masson, R.; Michel, B.; Piron, J.P.; Sabathier, C.; Skorek, R.; Toffolon, C.; Valot, C.; Van Brutzel, L.; Besmann, Theodore M.; Chernatynskiy, A.; Clarno, K.; Gorti, S.B.; Radhakrishnan, B.; Devanathan, R.; Dumont, M.; Maugis, P.; El-Azab, A.; Iglesias, F.C.; Lewis, B.J.; Krack, M.; Yun, Y.; Kurata, M.; Kurosaki, K.; Largenton, R.; Lebensohn, R.A.; Malerba, L.; Oh, J.Y.; Phillpot, S.R.; Tulenko, J. S.; Rachid, J.; Stan, M.; Sundman, B.; Tonks, M.R.; Williamson, R.; Van Uffelen, P.; Welland, M.J.; Valot, Carole; Stan, Marius; Massara, Simone; Tarsi, Reka

    2015-10-01

    The Nuclear Science Committee (NSC) of the Nuclear Energy Agency (NEA) has undertaken an ambitious programme to document state-of-the-art of modelling for nuclear fuels and structural materials. The project is being performed under the Working Party on Multi-Scale Modelling of Fuels and Structural Material for Nuclear Systems (WPMM), which has been established to assess the scientific and engineering aspects of fuels and structural materials, describing multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation and related topics. It also provides member countries with up-to-date information, shared data, models, and expertise. The goal is also to assess needs for improvement and address them by initiating joint efforts. The WPMM reviews and evaluates multi-scale modelling and simulation techniques currently employed in the selection of materials used in nuclear systems. It serves to provide advice to the nuclear community on the developments needed to meet the requirements of modelling for the design of different nuclear systems. The original WPMM mandate had three components (Figure 1), with the first component currently completed, delivering a report on the state-of-the-art of modelling of structural materials. The work on modelling was performed by three expert groups, one each on Multi-Scale Modelling Methods (M3), Multi-Scale Modelling of Fuels (M2F) and Structural Materials Modelling (SMM). WPMM is now composed of three expert groups and two task forces providing contributions on multi-scale methods, modelling of fuels and modelling of structural materials. This structure will be retained, with the addition of task forces as new topics are developed. The mandate of the Expert Group on Multi-Scale Modelling of

  8. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-27

    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the

  9. Transitions of the Multi-Scale Singularity Trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Kreiborg, Sven

    2005-01-01

    Multi-Scale Singularity Trees(MSSTs) [10] are multi-scale image descriptors aimed at representing the deep structures of images. Changes in images are directly translated to changes in the deep structures; therefore transitions in MSSTs. Because MSSTs can be used to represent the deep structure...

  10. Training Systems Modelers through the Development of a Multi-scale Chagas Disease Risk Model

    Science.gov (United States)

    Hanley, J.; Stevens-Goodnight, S.; Kulkarni, S.; Bustamante, D.; Fytilis, N.; Goff, P.; Monroy, C.; Morrissey, L. A.; Orantes, L.; Stevens, L.; Dorn, P.; Lucero, D.; Rios, J.; Rizzo, D. M.

    2012-12-01

    The goal of our NSF-sponsored Division of Behavioral and Cognitive Sciences grant is to create a multidisciplinary approach to develop spatially explicit models of vector-borne disease risk using Chagas disease as our model. Chagas disease is a parasitic disease endemic to Latin America that afflicts an estimated 10 million people. The causative agent (Trypanosoma cruzi) is most commonly transmitted to humans by blood feeding triatomine insect vectors. Our objectives are: (1) advance knowledge on the multiple interacting factors affecting the transmission of Chagas disease, and (2) provide next generation genomic and spatial analysis tools applicable to the study of other vector-borne diseases worldwide. This funding is a collaborative effort between the RSENR (UVM), the School of Engineering (UVM), the Department of Biology (UVM), the Department of Biological Sciences (Loyola (New Orleans)) and the Laboratory of Applied Entomology and Parasitology (Universidad de San Carlos). Throughout this five-year study, multi-educational groups (i.e., high school, undergraduate, graduate, and postdoctoral) will be trained in systems modeling. This systems approach challenges students to incorporate environmental, social, and economic as well as technical aspects and enables modelers to simulate and visualize topics that would either be too expensive, complex or difficult to study directly (Yasar and Landau 2003). We launch this research by developing a set of multi-scale, epidemiological models of Chagas disease risk using STELLA® software v.9.1.3 (isee systems, inc., Lebanon, NH). We use this particular system dynamics software as a starting point because of its simple graphical user interface (e.g., behavior-over-time graphs, stock/flow diagrams, and causal loops). To date, high school and undergraduate students have created a set of multi-scale (i.e., homestead, village, and regional) disease models. Modeling the system at multiple spatial scales forces recognition that

  11. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  12. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li; He, Ya-Ling [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Kang, Qinjun [Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM (United States); Tao, Wen-Quan, E-mail: wqtao@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.

  13. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    Science.gov (United States)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  14. ESCOMPTE 2001: multi-scale modelling and experimental validation

    Science.gov (United States)

    Cousin, F.; Tulet, P.; Rosset, R.

    2003-04-01

    ESCOMPTE is a European pollution field experiment located in the Marseille / Fos-Berre area in the summer 2001.This Mediterranean area, with frequent pollution peaks, is characterized by a complex topography subject to sea breeze regimes, together with intense localized urban, industrial and biogenic sources. Four POI have been selected, the most significant being POI2a / b, a 6-day pollution episode extensively documented for dynamics, radiation, gas phase and aerosols, with surface measurements (including measurements at sea in the gulf of Genoa, on board instrumented ferries between Marseille and Corsica), 7 aircrafts, lidar, radar and constant-level flight balloon soundings. The two-way mesoscale model MESO-NH-C (MNH-C), with horizontal resolutions of 9 and 3 km and high vertical resolution (up to 40 levels in the first 2 km), embedded in the global CTM Mocage, has been run for all POIs, with a focus here on POI2b (June 24-27,2001), a typical high pollution episode. The multi-scale modelling system MNH-C+MOCAGE allows to simulate local and regional pollution issued from emission sources in the Marseille / Fos-Berre area as well as from remote sources (e.g. the Po Valley and / or western Mediterranean sources) and their associated transboundary pollution fluxes. Detailed dynamical, chemical and aerosol (both modal and sectional spectra with organics and inorganics) simulations generally favorably compare to surface(continental and on ships), lidar and along-flight aircraft measurements.

  15. Multi-Scale Scattering Transform in Music Similarity Measuring

    Science.gov (United States)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  16. Multi-scale salient feature extraction on mesh models

    KAUST Repository

    Yang, Yongliang; Shen, ChaoHui

    2012-01-01

    We present a new method of extracting multi-scale salient features on meshes. It is based on robust estimation of curvature on multiple scales. The coincidence between salient feature and the scale of interest can be established straightforwardly, where detailed feature appears on small scale and feature with more global shape information shows up on large scale. We demonstrate this multi-scale description of features accords with human perception and can be further used for several applications as feature classification and viewpoint selection. Experiments exhibit that our method as a multi-scale analysis tool is very helpful for studying 3D shapes. © 2012 Springer-Verlag.

  17. Multi-scale MHD analysis of heliotron plasma in change of background field

    International Nuclear Information System (INIS)

    Ichiguchi, K.; Sakakibara, S.; Ohdachi, S.; Carreras, B.A.

    2012-11-01

    A partial collapse observed in the Large Helical Device (LHD) experiments shifting the magnetic axis inwardly with a real time control of the background field is analyzed with a magnetohydrodynamics (MHD) numerical simulation. The simulation is carried out with a multi-scale simulation scheme. In the simulation, the equilibrium also evolves including the change of the pressure and the rotational transform due to the perturbation dynamics. The simulation result agrees with the experiments qualitatively, which shows that the mechanism is attributed to the destabilization of an infernal-like mode. The destabilization is caused by the change of the background field through the enhancement of the magnetic hill. (author)

  18. The trend of the multi-scale temporal variability of precipitation in Colorado River Basin

    Science.gov (United States)

    Jiang, P.; Yu, Z.

    2011-12-01

    Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.

  19. Multi-scale modeling strategies in materials science—The ...

    Indian Academy of Sciences (India)

    Unknown

    Multi-scale models; quasicontinuum method; finite elements. 1. Introduction ... boundary with external stresses, and the interaction of a lattice dislocation with a grain ..... mum value of se over the elements that touch node α. The acceleration of ...

  20. Multi-scale Modeling of Arctic Clouds

    Science.gov (United States)

    Hillman, B. R.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    The presence and properties of clouds are critically important to the radiative budget in the Arctic, but clouds are notoriously difficult to represent in global climate models (GCMs). The challenge stems partly from a disconnect in the scales at which these models are formulated and the scale of the physical processes important to the formation of clouds (e.g., convection and turbulence). Because of this, these processes are parameterized in large-scale models. Over the past decades, new approaches have been explored in which a cloud system resolving model (CSRM), or in the extreme a large eddy simulation (LES), is embedded into each gridcell of a traditional GCM to replace the cloud and convective parameterizations to explicitly simulate more of these important processes. This approach is attractive in that it allows for more explicit simulation of small-scale processes while also allowing for interaction between the small and large-scale processes. The goal of this study is to quantify the performance of this framework in simulating Arctic clouds relative to a traditional global model, and to explore the limitations of such a framework using coordinated high-resolution (eddy-resolving) simulations. Simulations from the global model are compared with satellite retrievals of cloud fraction partioned by cloud phase from CALIPSO, and limited-area LES simulations are compared with ground-based and tethered-balloon measurements from the ARM Barrow and Oliktok Point measurement facilities.

  1. Multi-Scale Model of Galactic Cosmic Ray Effects on the Hippocampus

    Science.gov (United States)

    Cucinotta, Francis

    An important concern for risk assessment from galactic cosmic ray (GCR) exposures is impacts to the central nervous systems including changes in cognition, and associations with increased risk of Alzheimer’s disease (AD). AD, which affects about 50 percent of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages, and the small number of epidemiology studies that have considered the possibility have not identified an association with low dose radiation. However, experimental studies in transgenic mice suggest the possibility exits. We discuss modeling approaches to consider mechanisms whereby GCR would accelerate the occurrence of AD to earlier ages. Biomarkers of AD include Amyloid beta plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyper-phosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dendritic spine loss, and neuronal cell loss through apoptosis. GCR may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuro-inflammation. Cell types considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3 beta and neuro-inflammation, and considered approaches to develop computer simulations of GCR induced cell interactions and their relationships to Amyloid beta plaques and NFTs. Comparison of model results to experimental data for the age specific development of plaques in transgenic mice and predictions of space radiation effects will be discussed.

  2. Multi-scale modeling of the CD8 immune response

    Energy Technology Data Exchange (ETDEWEB)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Adimy, Mostafa, E-mail: mostafa.adimy@inria.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France); Crauste, Fabien, E-mail: crauste@math.univ-lyon1.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France)

    2016-06-08

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  3. Multi-scale modelling of uranyl chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thanh-Nghi; Duvail, Magali, E-mail: magali.duvail@icsm.fr; Villard, Arnaud; Dufrêche, Jean-François, E-mail: jean-francois.dufreche@univ-montp2.fr [Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex (France); Molina, John Jairo [Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103 (Japan); Guilbaud, Philippe [CEA/DEN/DRCP/SMCS/LILA, Marcoule, F-30207 Bagnols-sur-Cèze Cedex (France)

    2015-01-14

    Classical molecular dynamics simulations with explicit polarization have been successfully used to determine the structural and thermodynamic properties of binary aqueous solutions of uranyl chloride (UO{sub 2}Cl{sub 2}). Concentrated aqueous solutions of uranyl chloride have been studied to determine the hydration properties and the ion-ion interactions. The bond distances and the coordination number of the hydrated uranyl are in good agreement with available experimental data. Two stable positions of chloride in the second hydration shell of uranyl have been identified. The UO{sub 2}{sup 2+}-Cl{sup −} association constants have also been calculated using a multi-scale approach. First, the ion-ion potential averaged over the solvent configurations at infinite dilution (McMillan-Mayer potential) was calculated to establish the dissociation/association processes of UO{sub 2}{sup 2+}-Cl{sup −} ion pairs in aqueous solution. Then, the association constant was calculated from this potential. The value we obtained for the association constant is in good agreement with the experimental result (K{sub UO{sub 2Cl{sup +}}} = 1.48 l mol{sup −1}), but the resulting activity coefficient appears to be too low at molar concentration.

  4. Multi-scale Modeling of Plasticity in Tantalum.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weinberger, Christopher [Drexel Univ., Philadelphia, PA (United States)

    2015-12-01

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct

  5. Multi-Scale Modelling of the Gamma Radiolysis of Nitrate Solutions

    OpenAIRE

    Horne, Gregory; Donoclift, Thomas; Sims, Howard E.; M. Orr, Robin; Pimblott, Simon

    2016-01-01

    A multi-scale modelling approach has been developed for the extended timescale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages; radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modelling. The first three components model...

  6. 2D deblending using the multi-scale shaping scheme

    Science.gov (United States)

    Li, Qun; Ban, Xingan; Gong, Renbin; Li, Jinnuo; Ge, Qiang; Zu, Shaohuan

    2018-01-01

    Deblending can be posed as an inversion problem, which is ill-posed and requires constraint to obtain unique and stable solution. In blended record, signal is coherent, whereas interference is incoherent in some domains (e.g., common receiver domain and common offset domain). Due to the different sparsity, coefficients of signal and interference locate in different curvelet scale domains and have different amplitudes. Take into account the two differences, we propose a 2D multi-scale shaping scheme to constrain the sparsity to separate the blended record. In the domain where signal concentrates, the multi-scale scheme passes all the coefficients representing signal, while, in the domain where interference focuses, the multi-scale scheme suppresses the coefficients representing interference. Because the interference is suppressed evidently at each iteration, the constraint of multi-scale shaping operator in all scale domains are weak to guarantee the convergence of algorithm. We evaluate the performance of the multi-scale shaping scheme and the traditional global shaping scheme by using two synthetic and one field data examples.

  7. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  8. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  9. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  10. Study on high density multi-scale calculation technique

    International Nuclear Information System (INIS)

    Sekiguchi, S.; Tanaka, Y.; Nakada, H.; Nishikawa, T.; Yamamoto, N.; Yokokawa, M.

    2004-01-01

    To understand degradation of nuclear materials under irradiation, it is essential to know as much about each phenomenon observed from multi-scale points of view; they are micro-scale in atomic-level, macro-level in structural scale and intermediate level. In this study for application to meso-scale materials (100A ∼ 2μm), computer technology approaching from micro- and macro-scales was developed including modeling and computer application using computational science and technology method. And environmental condition of grid technology for multi-scale calculation was prepared. The software and MD (molecular dynamics) stencil for verifying the multi-scale calculation were improved and their movement was confirmed. (A. Hishinuma)

  11. FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization

    Directory of Open Access Journals (Sweden)

    Nguyen Trung Kien

    2017-01-01

    Full Text Available The paper presents a multi-scale modeling of Boundary Value Problem (BVP approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE. It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.

  12. Data fusion of multi-scale representations for structural damage detection

    Science.gov (United States)

    Guo, Tian; Xu, Zili

    2018-01-01

    Despite extensive researches into structural health monitoring (SHM) in the past decades, there are few methods that can detect multiple slight damage in noisy environments. Here, we introduce a new hybrid method that utilizes multi-scale space theory and data fusion approach for multiple damage detection in beams and plates. A cascade filtering approach provides multi-scale space for noisy mode shapes and filters the fluctuations caused by measurement noise. In multi-scale space, a series of amplification and data fusion algorithms are utilized to search the damage features across all possible scales. We verify the effectiveness of the method by numerical simulation using damaged beams and plates with various types of boundary conditions. Monte Carlo simulations are conducted to illustrate the effectiveness and noise immunity of the proposed method. The applicability is further validated via laboratory cases studies focusing on different damage scenarios. Both results demonstrate that the proposed method has a superior noise tolerant ability, as well as damage sensitivity, without knowing material properties or boundary conditions.

  13. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  14. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  15. Multi-scale simulation of reaction-diffusion systems

    NARCIS (Netherlands)

    Vijaykumar, A.

    2017-01-01

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function

  16. Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to

  17. Multi-scale and multi-orientation medical image analysis

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Deserno, T.M.

    2011-01-01

    Inspired by multi-scale and multi-orientation mechanisms recognized in the first stages of our visual system, this chapter gives a tutorial overview of the basic principles. Images are discrete, measured data. The optimal aperture for an observation with as little artefacts as possible, is derived

  18. Multi-Scale Pattern Recognition for Image Classification and Segmentation

    NARCIS (Netherlands)

    Li, Y.

    2013-01-01

    Scale is an important parameter of images. Different objects or image structures (e.g. edges and corners) can appear at different scales and each is meaningful only over a limited range of scales. Multi-scale analysis has been widely used in image processing and computer vision, serving as the basis

  19. Multi-scale computation methods: Their applications in lithium-ion battery research and development

    International Nuclear Information System (INIS)

    Shi Siqi; Zhao Yan; Wu Qu; Gao Jian; Liu Yue; Ju Wangwei; Ouyang Chuying; Xiao Ruijuan

    2016-01-01

    Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. (topical review)

  20. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    Science.gov (United States)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-10-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  1. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    Science.gov (United States)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  2. Multi-scale evolution of a derecho-producing MCS

    Science.gov (United States)

    Bernardet, Ligia Ribeiro

    1997-12-01

    In this dissertation we address one type of severe weather: strong straight-line winds. In particular, we focus on derechos, a type of wind storm caused by a convective system and characterized by its long duration and by the large area it covers. One interesting characteristic of these storms is that they develop at night, on the cold side of a thermal boundary. This region is not characterized by large convective instability. In fact, surface parcels are generally stable with respect to vertical displacements. To gain understanding of the physical processes involved in these storms, we focused on the case of a MCS that developed in eastern Colorado on 12-13 May, 1985. The system formed in the afternoon, was active until early morning, and caused strong winds during the night. A multi-scale full physics simulation of this case was performed using a non-hydrostatic mesoscale model. Four telescopically nested grids covering from the synoptic scale down to cloud scale circulations were used. A Lagrangian model was used to follow trajectories of parcels that took part in the updraft and in the downdraft, and balance of forces were computed along the trajectories. Our results show that the synoptic and mesoscale environment of the storm largely influences convective organization and cloud-scale circulations. During the day, when the boundary layer is well mixed, the source of air for the clouds is located within the boundary layer. At night, when the boundary layer becomes stable, the source of air shifts to the top of the boundary layer. It is composed of warm, moist air that is brought by the nocturnal low-level jet. The downdraft structure also changes from day to night. During the day, parcels acquire negative buoyancy because of cooling due to evaporation and melting. As they sink, they remain colder than the environment, and end up at the surface constituting the cold pool. During the night, downdrafts are stronger, generating the strong surface winds. The most

  3. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  4. Epidemiological impact of a syphilis vaccine: a simulation study.

    Science.gov (United States)

    Champredon, D; Cameron, C E; Smieja, M; Dushoff, J

    2016-11-01

    Despite the availability of inexpensive antimicrobial treatment, syphilis remains prevalent worldwide, affecting millions of individuals. Furthermore, syphilis infection is suspected of increasing both susceptibility to, and tendency to transmit, HIV. Development of a syphilis vaccine would be a potentially promising step towards control, but the value of dedicating resources to vaccine development should be evaluated in the context of the anticipated benefits. Here, we use a detailed mathematical model to explore the potential impact of rolling out a hypothetical syphilis vaccine on morbidity from both syphilis and HIV and compare it to the impact of expanded 'screen and treat' programmes using existing treatments. Our results suggest that an efficacious vaccine has the potential to sharply reduce syphilis prevalence under a wide range of scenarios, while expanded treatment interventions are likely to be substantially less effective. Our modelled interventions in our simulated study populations are expected to have little effect on HIV, and in some scenarios lead to small increases in HIV incidence, suggesting that interventions against syphilis should be accompanied with interventions against other sexually transmitted infections to prevent the possibility that lower morbidity or lower perceived risk from syphilis could lead to increases in other sexually transmitted diseases.

  5. Nonlinear dynamics of the complex multi-scale network

    Science.gov (United States)

    Makarov, Vladimir V.; Kirsanov, Daniil; Goremyko, Mikhail; Andreev, Andrey; Hramov, Alexander E.

    2018-04-01

    In this paper, we study the complex multi-scale network of nonlocally coupled oscillators for the appearance of chimera states. Chimera is a special state in which, in addition to the asynchronous cluster, there are also completely synchronous parts in the system. We show that the increase of nodes in subgroups leads to the destruction of the synchronous interaction within the common ring and to the narrowing of the chimera region.

  6. Multi scale analysis of ITER pre-compression rings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ben, E-mail: ben.park@sener.es [SENER Ingeniería y Sistemas S.A., Barcelona (Spain); Foussat, Arnaud [ITER Organization, St. Paul-Lez-Durance (France); Rajainmaki, Hannu [Fusion for Energy, Barcelona (Spain); Knaster, Juan [IFMIF, Aomori (Japan)

    2013-10-15

    Highlights: • A multi-scale analysis approach employing various scales of ABAQUS FEM models have been used to calculate the response and performance of the rings. • We have studied the effects of various defects on the performance of the rings under the operating temperatures and loading that will be applied to the PCRs. • The multi scale analysis results are presented here. -- Abstract: The Pre-compression Rings of ITER (PCRs) represent one of the largest and most highly stressed composite structures ever designed for long term operation at 4 K. Six rings, each 5 m in diameter and 337 mm × 288 mm in cross-section, will be manufactured from S2 fiber-glass/epoxy composite and installed three at the top and three at the bottom of the eighteen D shaped toroidal field (TF) coils to apply a total centripetal pre-load of 70 MN per TF coil. The composite rings will be fabricated with a high content (65% by volume) of S2 fiber-glass in an epoxy resin matrix. During the manufacture emphasis will be placed on obtaining a structure with a very low void content and minimal presence of critical defects, such as delaminations. This paper presents a unified framework for the multi-scale analysis of the composite structure of the PCRs. A multi-scale analysis approach employing various scales of ABAQUS FEM models and other analysis tools have been used to calculate the response and performance of the rings over the design life of the structure. We have studied the effects of various defects on the performance of the rings under the operating temperatures and loading that will be applied to the PCRs. The results are presented here.

  7. Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.

    Science.gov (United States)

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah

    2009-01-01

    Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

  8. Multi-scale symbolic transfer entropy analysis of EEG

    Science.gov (United States)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  9. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    Energy Technology Data Exchange (ETDEWEB)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish; Gandikota, Imtiaz; Savic, Vesna; Sun, Xin; Choi, Kyoo Sil; Hu, Xiaohua; Pourboghrat, F.; Park, Taejoon; Mapar, Aboozar; Kumar, Shavan; Ghassemi-Armaki, Hassan; Abu-Farha, Fadi

    2015-09-14

    Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.

  10. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  11. Multi-scale path planning for reduced environmental impact of aviation

    Science.gov (United States)

    Campbell, Scot Edward

    A future air traffic management system capable of rerouting aircraft trajectories in real-time in response to transient and evolving events would result in increased aircraft efficiency, better utilization of the airspace, and decreased environmental impact. Mixed-integer linear programming (MILP) is used within a receding horizon framework to form aircraft trajectories which mitigate persistent contrail formation, avoid areas of convective weather, and seek a minimum fuel solution. Areas conducive to persistent contrail formation and areas of convective weather occur at disparate temporal and spatial scales, and thereby require the receding horizon controller to be adaptable to multi-scale events. In response, a novel adaptable receding horizon controller was developed to account for multi-scale disturbances, as well as generate trajectories using both a penalty function approach for obstacle penetration and hard obstacle avoidance constraints. A realistic aircraft fuel burn model based on aircraft data and engine performance simulations is used to form the cost function in the MILP optimization. The performance of the receding horizon algorithm is tested through simulation. A scalability analysis of the algorithm is conducted to ensure the tractability of the path planner. The adaptable receding horizon algorithm is shown to successfully negotiate multi-scale environments with performance exceeding static receding horizon solutions. The path planner is applied to realistic scenarios involving real atmospheric data. A single flight example for persistent contrail mitigation shows that fuel burn increases 1.48% when approximately 50% of persistent contrails are avoided, but 6.19% when 100% of persistent contrails are avoided. Persistent contrail mitigating trajectories are generated for multiple days of data, and the research shows that 58% of persistent contrails are avoided with a 0.48% increase in fuel consumption when averaged over a year.

  12. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  13. Multi-scale structural similarity index for motion detection

    Directory of Open Access Journals (Sweden)

    M. Abdel-Salam Nasr

    2017-07-01

    Full Text Available The most recent approach for measuring the image quality is the structural similarity index (SSI. This paper presents a novel algorithm based on the multi-scale structural similarity index for motion detection (MS-SSIM in videos. The MS-SSIM approach is based on modeling of image luminance, contrast and structure at multiple scales. The MS-SSIM has resulted in much better performance than the single scale SSI approach but at the cost of relatively lower processing speed. The major advantages of the presented algorithm are both: the higher detection accuracy and the quasi real-time processing speed.

  14. Multi-Scale Dissemination of Time Series Data

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan; Su, Li

    2013-01-01

    In this paper, we consider the problem of continuous dissemination of time series data, such as sensor measurements, to a large number of subscribers. These subscribers fall into multiple subscription levels, where each subscription level is specified by the bandwidth constraint of a subscriber......, which is an abstract indicator for both the physical limits and the amount of data that the subscriber would like to handle. To handle this problem, we propose a system framework for multi-scale time series data dissemination that employs a typical tree-based dissemination network and existing time...

  15. Cloud Detection by Fusing Multi-Scale Convolutional Features

    Science.gov (United States)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  16. Multi-scale window specification over streaming trajectories

    Directory of Open Access Journals (Sweden)

    Kostas Patroumpas

    2013-12-01

    Full Text Available Enormous amounts of positional information are collected by monitoring applications in domains such as fleet management, cargo transport, wildlife protection, etc. With the advent of modern location-based services, processing such data mostly focuses on providing real-time response to a variety of user requests in continuous and scalable fashion. An important class of such queries concerns evolving trajectories that continuously trace the streaming locations of moving objects, like GPS-equipped vehicles, commodities with RFID's, people with smartphones etc. In this work, we propose an advanced windowing operator that enables online, incremental examination of recent motion paths at multiple resolutions for numerous point entities. When applied against incoming positions, this window can abstract trajectories at coarser representations towards the past, while retaining progressively finer features closer to the present. We explain the semantics of such multi-scale sliding windows through parameterized functions that reflect the sequential nature of trajectories and can effectively capture their spatiotemporal properties. Such window specification goes beyond its usual role for non-blocking processing of multiple concurrent queries. Actually, it can offer concrete subsequences from each trajectory, thus preserving continuity in time and contiguity in space along the respective segments. Further, we suggest language extensions in order to express characteristic spatiotemporal queries using windows. Finally, we discuss algorithms for nested maintenance of multi-scale windows and evaluate their efficiency against streaming positional data, offering empirical evidence of their benefits to online trajectory processing.

  17. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  18. Multi-scale method for the resolution of the neutronic kinetics equations

    International Nuclear Information System (INIS)

    Chauvet, St.

    2008-10-01

    In this PhD thesis and in order to improve the time/precision ratio of the numerical simulation calculations, we investigate multi-scale techniques for the resolution of the reactor kinetics equations. We choose to focus on the mixed dual diffusion approximation and the quasi-static methods. We introduce a space dependency for the amplitude function which only depends on the time variable in the standard quasi-static context. With this new factorization, we develop two mixed dual problems which can be solved with Cea's solver MINOS. An algorithm is implemented, performing the resolution of these problems defined on different scales (for time and space). We name this approach: the Local Quasi-Static method. We present here this new multi-scale approach and its implementation. The inherent details of amplitude and shape treatments are discussed and justified. Results and performances, compared to MINOS, are studied. They illustrate the improvement on the time/precision ratio for kinetics calculations. Furthermore, we open some new possibilities to parallelize computations with MINOS. For the future, we also introduce some improvement tracks with adaptive scales. (author)

  19. A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    Energy Technology Data Exchange (ETDEWEB)

    Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.

    2012-10-01

    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.

  20. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics

    Science.gov (United States)

    Guo, Tian; Xu, Zili

    2018-03-01

    Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.

  1. Application of multi-scale (cross-) sample entropy for structural health monitoring

    Science.gov (United States)

    Lin, Tzu-Kang; Liang, Jui-Chang

    2015-08-01

    This study proposes an information-theoretic structural health monitoring (SHM) system based on multi-scale entropy (MSE) and multi-scale cross-sample entropy (MSCE). By measuring the ambient vibration signal from a structure, the damage condition can be rapidly evaluated via MSE analysis. The damage location can then be detected by analyzing the signals of different floors under the same damage condition via MSCE analysis. Moreover, a damage index is proposed to efficiently quantify the SHM process. Unlike some existing SHM methods, no experimental database or numerical model is required. Instead, a reference measurement of the current stage can initiate and launch the SHM system. A numerical simulation of a four-story steel structure is used to verify that the damage location and condition can be detected by the proposed SHM algorithm, and the location can be efficiently quantified by the damage index. A seven-story scaled-down benchmark structure is then employed for experimental verification. Based on the results, the damage condition can be correctly assessed, and average accuracy rates of 63.4 and 86.6% for the damage location can be achieved using the MSCE and damage index methods, respectively. As only the ambient vibration signal is required with a set of initial reference measurements, the proposed SHM system can be implemented practically with low cost.

  2. Multi-scale semi-ideal magnetohydrodynamics of a tokamak plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya; Watanabe, Kunihiko.

    1995-09-01

    An analytical model of fast spatial flattening of the toroidal current density and q-profile at the nonlinear stage of (m = 1/n = 1) kink instability of a tokamak plasma is presented. The flattening is shown to be an essentially multi-scale phenomenon which is characterized by, at least, two magnetic Reynolds numbers. The ordinary one, R m , is related with a characteristic radial scale-length, while the other, R m * , corresponds to a characteristic scale-length of plasma inhomogeneity along the magnetic field line. In a highly conducting plasma inside the q = 1 magnetic surface, where q value does not much differ from unity, plasma evolution is governed by a multi-scale non-ideal dynamics characterized by two well-separated magnetic Reynolds numbers, R m and R m * ≡ (1 - q) R m , where R m * - O(1) and R m >> 1. This dynamics consistently explains two seemingly contradictory features recently observed in a numerical simulation [Watanabe et al., 1995]: i) the current profile (q-profile) is flattened in the magnetohydrodynamic time scale within the q = 1 rational surface; ii) the magnetic surface keeps its initial circular shape during this evolution. (author)

  3. Multi-scale semi-ideal magnetohydrodynamics of a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bazdenkov, S.; Sato, Tetsuya; Watanabe, Kunihiko

    1995-09-01

    An analytical model of fast spatial flattening of the toroidal current density and q-profile at the nonlinear stage of (m = 1/n = 1) kink instability of a tokamak plasma is presented. The flattening is shown to be an essentially multi-scale phenomenon which is characterized by, at least, two magnetic Reynolds numbers. The ordinary one, R{sub m}, is related with a characteristic radial scale-length, while the other, R{sub m}{sup *}, corresponds to a characteristic scale-length of plasma inhomogeneity along the magnetic field line. In a highly conducting plasma inside the q = 1 magnetic surface, where q value does not much differ from unity, plasma evolution is governed by a multi-scale non-ideal dynamics characterized by two well-separated magnetic Reynolds numbers, R{sub m} and R{sub m}{sup *} {identical_to} (1 - q) R{sub m}, where R{sub m}{sup *} - O(1) and R{sub m} >> 1. This dynamics consistently explains two seemingly contradictory features recently observed in a numerical simulation [Watanabe et al., 1995]: (i) the current profile (q-profile) is flattened in the magnetohydrodynamic time scale within the q = 1 rational surface; (ii) the magnetic surface keeps its initial circular shape during this evolution. (author).

  4. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    International Nuclear Information System (INIS)

    Pan, Keyao; Deem, Michael W

    2011-01-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment

  5. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    Science.gov (United States)

    Pan, Keyao; Deem, Michael W.

    2011-10-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.

  6. Multi-scale computation methods: Their applications in lithium-ion battery research and development

    Science.gov (United States)

    Siqi, Shi; Jian, Gao; Yue, Liu; Yan, Zhao; Qu, Wu; Wangwei, Ju; Chuying, Ouyang; Ruijuan, Xiao

    2016-01-01

    Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372228 and 11234013), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and Shanghai Pujiang Program, China (Grant No. 14PJ1403900).

  7. Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression

    Directory of Open Access Journals (Sweden)

    Land Walker H

    2011-01-01

    Full Text Available Abstract Background When investigating covariate interactions and group associations with standard regression analyses, the relationship between the response variable and exposure may be difficult to characterize. When the relationship is nonlinear, linear modeling techniques do not capture the nonlinear information content. Statistical learning (SL techniques with kernels are capable of addressing nonlinear problems without making parametric assumptions. However, these techniques do not produce findings relevant for epidemiologic interpretations. A simulated case-control study was used to contrast the information embedding characteristics and separation boundaries produced by a specific SL technique with logistic regression (LR modeling representing a parametric approach. The SL technique was comprised of a kernel mapping in combination with a perceptron neural network. Because the LR model has an important epidemiologic interpretation, the SL method was modified to produce the analogous interpretation and generate odds ratios for comparison. Results The SL approach is capable of generating odds ratios for main effects and risk factor interactions that better capture nonlinear relationships between exposure variables and outcome in comparison with LR. Conclusions The integration of SL methods in epidemiology may improve both the understanding and interpretation of complex exposure/disease relationships.

  8. A multi-scale correlative investigation of ductile fracture

    International Nuclear Information System (INIS)

    Daly, M.; Burnett, T.L.; Pickering, E.J.; Tuck, O.C.G.; Léonard, F.; Kelley, R.; Withers, P.J.; Sherry, A.H.

    2017-01-01

    The use of novel multi-scale correlative methods, which involve the coordinated characterisation of matter across a range of length scales, are becoming of increasing value to materials scientists. Here, we describe for the first time how a multi-scale correlative approach can be used to investigate the nature of ductile fracture in metals. Specimens of a nuclear pressure vessel steel, SA508 Grade 3, are examined following ductile fracture using medium and high-resolution 3D X-ray computed tomography (CT) analyses, and a site-specific analysis using a dual beam plasma focused ion beam scanning electron microscope (PFIB-SEM). The methods are employed sequentially to characterise damage by void nucleation and growth in one volume of interest, allowing for the imaging of voids that ranged in size from less than 100 nm to over 100 μm. This enables the examination of voids initiated at carbide particles to be detected, as well as the large voids initiated at inclusions. We demonstrate that this multi-scale correlative approach is a powerful tool, which not only enhances our understanding of ductile failure through detailed characterisation of microstructure, but also provides quantitative information about the size, volume fractions and spatial distributions of voids that can be used to inform models of failure. It is found that the vast majority of large voids nucleated at MnS inclusions, and that the volume of a void varied according to the volume of its initiating inclusion raised to the power 3/2. The most severe voiding was concentrated within 500 μm of the fracture surface, but measurable damage was found to extend to a depth of at least 3 mm. Microvoids associated with carbides (carbide-initiated voids) were found to be concentrated around larger inclusion-initiated voids at depths of at least 400 μm. Methods for quantifying X-ray CT void data are discussed, and a procedure for using this data to calibrate parameters in the Gurson-Tvergaard Needleman (GTN

  9. Relating system-to-CFD coupled code analyses to theoretical framework of a multi-scale method

    International Nuclear Information System (INIS)

    Cadinu, F.; Kozlowski, T.; Dinh, T.N.

    2007-01-01

    Over past decades, analyses of transient processes and accidents in a nuclear power plant have been performed, to a significant extent and with a great success, by means of so called system codes, e.g. RELAP5, CATHARE, ATHLET codes. These computer codes, based on a multi-fluid model of two-phase flow, provide an effective, one-dimensional description of the coolant thermal-hydraulics in the reactor system. For some components in the system, wherever needed, the effect of multi-dimensional flow is accounted for through approximate models. The later are derived from scaled experiments conducted for selected accident scenarios. Increasingly, however, we have to deal with newer and ever more complex accident scenarios. In some such cases the system codes fail to serve as simulation vehicle, largely due to its deficient treatment of multi-dimensional flow (in e.g. downcomer, lower plenum). A possible way of improvement is to use the techniques of Computational Fluid Dynamics (CFD). Based on solving Navier-Stokes equations, CFD codes have been developed and used, broadly, to perform analysis of multi-dimensional flow, dominantly in non-nuclear industry and for single-phase flow applications. It is clear that CFD simulations can not substitute system codes but just complement them. Given the intrinsic multi-scale nature of this problem, we propose to relate it to the more general field of research on multi-scale simulations. Even though multi-scale methods are developed on case-by-case basis, the need for a unified framework brought to the development of the heterogeneous multi-scale method (HMM)

  10. Simulation of malaria epidemiology and control in the highlands of western Kenya

    Directory of Open Access Journals (Sweden)

    Stuckey Erin M

    2012-10-01

    Full Text Available Abstract Background Models of Plasmodium falciparum malaria epidemiology that provide realistic quantitative predictions of likely epidemiological outcomes of existing vector control strategies have the potential to assist in planning for the control and elimination of malaria. This work investigates the applicability of mathematical modelling of malaria transmission dynamics in Rachuonyo South, a district with low, unstable transmission in the highlands of western Kenya. Methods Individual-based stochastic simulation models of malaria in humans and a deterministic model of malaria in mosquitoes as part of the OpenMalaria platform were parameterized to create a scenario for the study area based on data from ongoing field studies and available literature. The scenario was simulated for a period of two years with a population of 10,000 individuals and validated against malaria survey data from Rachuonyo South. Simulations were repeated with multiple random seeds and an ensemble of 14 model variants to address stochasticity and model uncertainty. A one-dimensional sensitivity analysis was conducted to address parameter uncertainty. Results The scenario was able to reproduce the seasonal pattern of the entomological inoculation rate (EIR and patent infections observed in an all-age cohort of individuals sampled monthly for one year. Using an EIR estimated from serology to parameterize the scenario resulted in a closer fit to parasite prevalence than an EIR estimated using entomological methods. The scenario parameterization was most sensitive to changes in the timing and effectiveness of indoor residual spraying (IRS and the method used to detect P. falciparum in humans. It was less sensitive than expected to changes in vector biting behaviour and climatic patterns. Conclusions The OpenMalaria model of P. falciparum transmission can be used to simulate the impact of different combinations of current and potential control interventions to help plan

  11. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Science.gov (United States)

    Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia

    2016-06-01

    Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  12. An augmented Lagrangian multi-scale dictionary learning algorithm

    Directory of Open Access Journals (Sweden)

    Ye Meng

    2011-01-01

    Full Text Available Abstract Learning overcomplete dictionaries for sparse signal representation has become a hot topic fascinated by many researchers in the recent years, while most of the existing approaches have a serious problem that they always lead to local minima. In this article, we present a novel augmented Lagrangian multi-scale dictionary learning algorithm (ALM-DL, which is achieved by first recasting the constrained dictionary learning problem into an AL scheme, and then updating the dictionary after each inner iteration of the scheme during which majorization-minimization technique is employed for solving the inner subproblem. Refining the dictionary from low scale to high makes the proposed method less dependent on the initial dictionary hence avoiding local optima. Numerical tests for synthetic data and denoising applications on real images demonstrate the superior performance of the proposed approach.

  13. Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

    CERN Document Server

    Vörös, Zoltán; IAFA 2011 - International Astrophysics Forum 2011 : Frontiers in Space Environment Research

    2012-01-01

    Magnetized plasmas in the universe exhibit complex dynamical behavior over a huge range of scales. The fundamental mechanisms of energy transport, redistribution and conversion occur at multiple scales. The driving mechanisms often include energy accumulation, free-energy-excited relaxation processes, dissipation and self-organization. The plasma processes associated with energy conversion, transport and self-organization, such as magnetic reconnection, instabilities, linear and nonlinear waves, wave-particle interactions, dynamo processes, turbulence, heating, diffusion and convection represent fundamental physical effects. They demonstrate similar dynamical behavior in near-Earth space, on the Sun, in the heliosphere and in astrophysical environments. 'Multi-scale Dynamical Processes in Space and Astrophysical Plasmas' presents the proceedings of the International Astrophysics Forum Alpbach 2011. The contributions discuss the latest advances in the exploration of dynamical behavior in space plasmas environm...

  14. Plant trait detection with multi-scale spectrometry

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.

  15. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Directory of Open Access Journals (Sweden)

    H. Yue

    2016-06-01

    Full Text Available Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  16. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  17. Prediction of irradiation damage effects by multi-scale modelling: EURATOM 3 Framework integrated project perfect

    International Nuclear Information System (INIS)

    Massoud, J.P.; Bugat, St.; Marini, B.; Lidbury, D.; Van Dyck, St.; Debarberis, L.

    2008-01-01

    Full text of publication follows. In nuclear PWRs, materials undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities operating these reactors must quantify the aging and the potential degradations of reactor pressure vessels and also of internal structures to ensure safe and reliable plant operation. The EURATOM 6. Framework Integrated Project PERFECT (Prediction of Irradiation Damage Effects in Reactor Components) addresses irradiation damage in RPV materials and components by multi-scale modelling. This state-of-the-art approach offers potential advantages over the conventional empirical methods used in current practice of nuclear plant lifetime management. Launched in January 2004, this 48-month project is focusing on two main components of nuclear power plants which are subject to irradiation damage: the ferritic steel reactor pressure vessel and the austenitic steel internals. This project is also an opportunity to integrate the fragmented research and experience that currently exists within Europe in the field of numerical simulation of radiation damage and creates the links with international organisations involved in similar projects throughout the world. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences make possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. The consequences of irradiation on mechanical and corrosion properties of materials are also tentatively modelled using such multi-scale modelling. But it requires to develop different mechanistic models at different levels of physics and engineering and to extend the state of knowledge in several scientific fields. And the links between these different kinds of models are particularly delicate to deal with and need specific works. Practically the main objective of PERFECT is to build

  18. Toward a global multi-scale heliophysics observatory

    Science.gov (United States)

    Semeter, J. L.

    2017-12-01

    We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.

  19. PSI-BOIL, a building block towards the multi-scale modeling of flow boiling phenomena

    International Nuclear Information System (INIS)

    Niceno, Bojan; Andreani, Michele; Prasser, Horst-Michael

    2008-01-01

    Full text of publication follows: In these work we report the current status of the Swiss project Multi-scale Modeling Analysis (MSMA), jointly financed by PSI and Swissnuclear. The project aims at addressing the multi-scale (down to nano-scale) modelling of convective boiling phenomena, and the development of physically-based closure laws for the physical scales appropriate to the problem considered, to be used within Computational Fluid Dynamics (CFD) codes. The final goal is to construct a new computational tool, called Parallel Simulator of Boiling phenomena (PSI-BOIL) for the direct simulation of processes all the way down to the small-scales of interest and an improved CFD code for the mechanistic prediction of two-phase flow and heat transfer in the fuel rod bundle of a nuclear reactor. An improved understanding of the physics of boiling will be gained from the theoretical work as well as from novel small- and medium scale experiments targeted to assist the development of closure laws. PSI-BOIL is a computer program designed for efficient simulation of turbulent fluid flow and heat transfer phenomena in simple geometries. Turbulence is simulated directly (DNS) and its efficiency plays a vital role in a successful simulation. Having high performance as one of the main prerequisites, PSIBOIL is tailored in such a way to be as efficient a tool as possible, relying on well-established numerical techniques and sacrificing all the features which are not essential for the success of this project and which might slow down the solution procedure. The governing equations are discretized in space with orthogonal staggered finite volume method. Time discretization is performed with projection method, the most obvious a the most widely used choice for DNS. Systems of linearized equation, stemming from the discretization of governing equations, are solved with the Additive Correction Multigrid (ACM). methods. Two distinguished features of PSI-BOIL are the possibility to

  20. Multi-scale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    International Nuclear Information System (INIS)

    Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.; Surdutovich, E.; Yakubovich, A.V.; Solov'yov, A.V.

    2010-01-01

    We present the latest advances of the multi-scale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multi-scale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This quantification allows the studying of how the clusterization of DNA lesions affects the lethality of damage. We discuss the first results of molecular dynamics simulations of ubiquitin in the environment of thermal spikes, predicted to occur in tissue for a short time after an ion's passage in the vicinity of the ions' tracks. (authors)

  1. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    International Nuclear Information System (INIS)

    Samin, Adib J.; Zhang, Jinsuo

    2016-01-01

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlo simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.

  2. A multi-scale study of the adsorption of lanthanum on the (110) surface of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib J.; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201W 19th Avenue, Columbus, Ohio 43210 (United States)

    2016-07-28

    In this study, we utilize a multi-scale approach to studying lanthanum adsorption on the (110) plane of tungsten. The energy of the system is described from density functional theory calculations within the framework of the cluster expansion method. It is found that including two-body figures up to the sixth nearest neighbor yielded a reasonable agreement with density functional theory calculations as evidenced by the reported cross validation score. The results indicate that the interaction between the adsorbate atoms in the adlayer is important and cannot be ignored. The parameterized cluster expansion expression is used in a lattice gas Monte Carlo simulation in the grand canonical ensemble at 773 K and the adsorption isotherm is recorded. Implications of the obtained results for the pyroprocessing application are discussed.

  3. Modelling an industrial anaerobic granular reactor using a multi-scale approach

    DEFF Research Database (Denmark)

    Feldman, Hannah; Flores Alsina, Xavier; Ramin, Pedram

    2017-01-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within...... the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark...... simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally...

  4. Improved anomaly detection using multi-scale PLS and generalized likelihood ratio test

    KAUST Repository

    Madakyaru, Muddu

    2017-02-16

    Process monitoring has a central role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. In this paper, a statistical approach that exploit the advantages of multiscale PLS models (MSPLS) and those of a generalized likelihood ratio (GLR) test to better detect anomalies is proposed. Specifically, to consider the multivariate and multi-scale nature of process dynamics, a MSPLS algorithm combining PLS and wavelet analysis is used as modeling framework. Then, GLR hypothesis testing is applied using the uncorrelated residuals obtained from MSPLS model to improve the anomaly detection abilities of these latent variable based fault detection methods even further. Applications to a simulated distillation column data are used to evaluate the proposed MSPLS-GLR algorithm.

  5. Enhanced inertia from lossy effective fluids using multi-scale sonic crystals

    Directory of Open Access Journals (Sweden)

    Matthew D. Guild

    2014-12-01

    Full Text Available In this work, a recent theoretically predicted phenomenon of enhanced permittivity with electromagnetic waves using lossy materials is investigated for the analogous case of mass density and acoustic waves, which represents inertial enhancement. Starting from fundamental relationships for the homogenized quasi-static effective density of a fluid host with fluid inclusions, theoretical expressions are developed for the conditions on the real and imaginary parts of the constitutive fluids to have inertial enhancement, which are verified with numerical simulations. Realizable structures are designed to demonstrate this phenomenon using multi-scale sonic crystals, which are fabricated using a 3D printer and tested in an acoustic impedance tube, yielding good agreement with the theoretical predictions and demonstrating enhanced inertia.

  6. Improved anomaly detection using multi-scale PLS and generalized likelihood ratio test

    KAUST Repository

    Madakyaru, Muddu; Harrou, Fouzi; Sun, Ying

    2017-01-01

    Process monitoring has a central role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. In this paper, a statistical approach that exploit the advantages of multiscale PLS models (MSPLS) and those of a generalized likelihood ratio (GLR) test to better detect anomalies is proposed. Specifically, to consider the multivariate and multi-scale nature of process dynamics, a MSPLS algorithm combining PLS and wavelet analysis is used as modeling framework. Then, GLR hypothesis testing is applied using the uncorrelated residuals obtained from MSPLS model to improve the anomaly detection abilities of these latent variable based fault detection methods even further. Applications to a simulated distillation column data are used to evaluate the proposed MSPLS-GLR algorithm.

  7. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    Science.gov (United States)

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  8. SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows

    Science.gov (United States)

    Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu

    2017-12-01

    A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.

  9. A physiologically based, multi-scale model of skeletal muscle structure and function

    Directory of Open Access Journals (Sweden)

    Oliver eRöhrle

    2012-09-01

    Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.

  10. OBJECT-ORIENTED CHANGE DETECTION BASED ON MULTI-SCALE APPROACH

    Directory of Open Access Journals (Sweden)

    Y. Jia

    2016-06-01

    Full Text Available The change detection of remote sensing images means analysing the change information quantitatively and recognizing the change types of the surface coverage data in different time phases. With the appearance of high resolution remote sensing image, object-oriented change detection method arises at this historic moment. In this paper, we research multi-scale approach for high resolution images, which includes multi-scale segmentation, multi-scale feature selection and multi-scale classification. Experimental results show that this method has a stronger advantage than the traditional single-scale method of high resolution remote sensing image change detection.

  11. Lexis diagram and illness-death model: simulating populations in chronic disease epidemiology.

    Directory of Open Access Journals (Sweden)

    Ralph Brinks

    Full Text Available Chronic diseases impose a tremendous global health problem of the 21st century. Epidemiological and public health models help to gain insight into the distribution and burden of chronic diseases. Moreover, the models may help to plan appropriate interventions against risk factors. To provide accurate results, models often need to take into account three different time-scales: calendar time, age, and duration since the onset of the disease. Incidence and mortality often change with age and calendar time. In many diseases such as, for example, diabetes and dementia, the mortality of the diseased persons additionally depends on the duration of the disease. The aim of this work is to describe an algorithm and a flexible software framework for the simulation of populations moving in an illness-death model that describes the epidemiology of a chronic disease in the face of the different times-scales. We set up a discrete event simulation in continuous time involving competing risks using the freely available statistical software R. Relevant events are birth, the onset (or diagnosis of the disease and death with or without the disease. The Lexis diagram keeps track of the different time-scales. Input data are birth rates, incidence and mortality rates, which can be given as numerical values on a grid. The algorithm manages the complex interplay between the rates and the different time-scales. As a result, for each subject in the simulated population, the algorithm provides the calendar time of birth, the age of onset of the disease (if the subject contracts the disease and the age at death. By this means, the impact of interventions may be estimated and compared.

  12. Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, Akihiro; Nakajima, Noriyoshi

    2007-01-01

    This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)

  13. High performance multi-scale and multi-physics computation of nuclear power plant subjected to strong earthquake. An Overview

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Kawai, Hiroshi; Sugimoto, Shin'ichiro; Hori, Muneo; Nakajima, Norihiro; Kobayashi, Kei

    2010-01-01

    Recently importance of nuclear energy has been recognized again due to serious concerns of global warming and energy security. In parallel, it is one of critical issues to verify safety capability of ageing nuclear power plants (NPPs) subjected to strong earthquake. Since 2007, we have been developing the multi-scale and multi-physics based numerical simulator for quantitatively predicting actual quake-proof capability of ageing NPPs under operation or just after plant trip subjected to strong earthquake. In this paper, we describe an overview of the simulator with some preliminary results. (author)

  14. Multi codes and multi-scale analysis for void fraction prediction in hot channel for VVER-1000/V392

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Hoang Tan Hung; Nguyen Huu Tiep

    2015-01-01

    Recently, an approach of multi codes and multi-scale analysis is widely applied to study core thermal hydraulic behavior such as void fraction prediction. Better results are achieved by using multi codes or coupling codes such as PARCS and RELAP5. The advantage of multi-scale analysis is zooming of the interested part in the simulated domain for detail investigation. Therefore, in this study, the multi codes between MCNP5, RELAP5, CTF and also the multi-scale analysis based RELAP5 and CTF are applied to investigate void fraction in hot channel of VVER-1000/V392 reactor. Since VVER-1000/V392 reactor is a typical advanced reactor that can be considered as the base to develop later VVER-1200 reactor, then understanding core behavior in transient conditions is necessary in order to investigate VVER technology. It is shown that the item of near wall boiling, Γ w in RELAP5 proposed by Lahey mechanistic method may not give enough accuracy of void fraction prediction as smaller scale code as CTF. (author)

  15. Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence

    Science.gov (United States)

    Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem

    2017-04-01

    Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings

  16. Magnetic Multi-Scale Mapping to Characterize Anthropogenic Targets

    Science.gov (United States)

    Le Maire, P.; Munschy, M.

    2017-12-01

    The discovery of buried anthropic objects on construction sites can cause delays and/or dangers for workers and for the public. Indeed, every year 500 tons of Unexploded-ordnance are discovered in France. Magnetic measurements are useful to localize magnetized objects. Moreover, it is the cheapest geophysical method which does not impact environment and which is relatively fast to perform. Fluxgate magnetometers (three components) are used to measure magnetic properties bellow the ground. These magnetic sensors are not absolute, so they need to be calibrated before the onset of the measurements. The advantage is that they allow magnetic compensation of the equipment attached to the sensor. So the choice of this kind sensor gives the opportunity to install the equipment aboard different magnetized supports: boat, quad bike, unmanned aerial vehicle, aircraft,... Indeed, this methodology permits to perform magnetic mapping with different scale and different elevation above ground level. An old French aerial military plant was chosen to perform this multi-scale approach. The advantage of the site is that it contains a lot of different targets with variable sizes and depth, e.g. buildings, unexploded-ordnances of the two world wars, trenches, pipes,… By comparison between the different magnetic anomaly maps at different elevations some of the geometric parameters of the magnetic sources can be characterized. The comparison between measured maps at different elevations and the prolonged map highlights the maximum distance for the target's detection (figure).

  17. Morphological rational multi-scale algorithm for color contrast enhancement

    Science.gov (United States)

    Peregrina-Barreto, Hayde; Terol-Villalobos, Iván R.

    2010-01-01

    Contrast enhancement main goal consists on improving the image visual appearance but also it is used for providing a transformed image in order to segment it. In mathematical morphology several works have been derived from the framework theory for contrast enhancement proposed by Meyer and Serra. However, when working with images with a wide range of scene brightness, as for example when strong highlights and deep shadows appear in the same image, the proposed morphological methods do not allow the enhancement. In this work, a rational multi-scale method, which uses a class of morphological connected filters called filters by reconstruction, is proposed. Granulometry is used by finding the more accurate scales for filters and with the aim of avoiding the use of other little significant scales. The CIE-u'v'Y' space was used to introduce our results since it takes into account the Weber's Law and by avoiding the creation of new colors it permits to modify the luminance values without affecting the hue. The luminance component ('Y) is enhanced separately using the proposed method, next it is used for enhancing the chromatic components (u', v') by means of the center of gravity law of color mixing.

  18. Emergence of multi-scaling in fluid turbulence

    Science.gov (United States)

    Donzis, Diego; Yakhot, Victor

    2017-11-01

    We present new theoretical and numerical results on the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (or dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that due to multi-scaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different ``Reynolds numbers'' reflecting a multitude of anomalous scaling exponents. We found that anomalous scaling for high order moments emerges at very low Reynolds numbers implying that intense dissipative-range fluctuations are established at even lower Reynolds number than that required for an inertial range. Thus, our results suggest that information about inertial range dynamics can be obtained from dissipative scales even when the former does not exit. We discuss our further prediction that transition to fully anomalous turbulence disappears at Rλ < 3 . Support from NSF is acknowledged.

  19. A multi-scale approach for high cycle anisotropic fatigue resistance: Application to forged components

    International Nuclear Information System (INIS)

    Milesi, M.; Chastel, Y.; Hachem, E.; Bernacki, M.; Loge, R.E.; Bouchard, P.O.

    2010-01-01

    Forged components exhibit good mechanical strength, particularly in terms of high cycle fatigue properties. This is due to the specific microstructure resulting from large plastic deformation as in a forging process. The goal of this study is to account for critical phenomena such as the anisotropy of the fatigue resistance in order to perform high cycle fatigue simulations on industrial forged components. Standard high cycle fatigue criteria usually give good results for isotropic behaviors but are not suitable for components with anisotropic features. The aim is to represent explicitly this anisotropy at a lower scale compared to the process scale and determined local coefficients needed to simulate a real case. We developed a multi-scale approach by considering the statistical morphology and mechanical characteristics of the microstructure to represent explicitly each element. From stochastic experimental data, realistic microstructures were reconstructed in order to perform high cycle fatigue simulations on it with different orientations. The meshing was improved by a local refinement of each interface and simulations were performed on each representative elementary volume. The local mechanical anisotropy is taken into account through the distribution of particles. Fatigue parameters identified at the microscale can then be used at the macroscale on the forged component. The linkage of these data and the process scale is the fiber vector and the deformation state, used to calculate global mechanical anisotropy. Numerical results reveal an expected behavior compared to experimental tendencies. We proved numerically the dependence of the anisotropy direction and the deformation state on the endurance limit evolution.

  20. Multi-scale modeling of the thermo-mechanical behavior of particle-based composites

    International Nuclear Information System (INIS)

    Di Paola, F.

    2010-01-01

    The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45%). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author) [fr

  1. Multi-scale modeling of the thermo-mechanical behavior of particle-based composites

    International Nuclear Information System (INIS)

    Di Paola, F.

    2010-11-01

    The aim of this work was to perform numerical simulations of the thermal and mechanical behavior of a particle-based nuclear fuel. This is a refractory composite material made of UO 2 spherical particles which are coated with two layers of pyrocarbon and embedded in a graphite matrix at a high volume fraction (45 %). The objective was to develop a multi-scale modeling of this composite material which can estimate its mean behavior as well as the heterogeneity of the local mechanical variables. The first part of this work was dedicated to the modeling of the microstructure in 3D. To do this, we developed tools to generate random distributions of spheres, meshes and to characterize the morphology of the microstructure towards the finite element code Cast3M. A hundred of numerical samples of the composite were created. The second part was devoted to the characterization of the thermo-elastic behavior by the finite element modeling of the samples. We studied the influence of different modeling parameters, one of them is the boundary conditions. We proposed a method to vanish the boundary conditions effects from the computed solution by analyzing it on an internal sub-volume of the sample obtained by erosion. Then, we determined the effective properties (elastic moduli, thermal conductivity and thermal expansion) and the stress distribution within the matrix. Finally, in the third part we proposed a multi-scale modeling to determine the mean values and the variance and covariance of the local mechanical variables for any macroscopic load. This statistical approach have been used to estimate the intra-phase distribution of these variables in the composite material. (author)

  2. Response of Moist Convection to Multi-scale Surface Flux Heterogeneity

    Science.gov (United States)

    Kang, S. L.; Ryu, J. H.

    2015-12-01

    We investigate response of moist convection to multi-scale feature of the spatial variation of surface sensible heat fluxes (SHF) in the afternoon evolution of the convective boundary layer (CBL), utilizing a mesoscale-domain large eddy simulation (LES) model. The multi-scale surface heterogeneity feature is analytically created as a function of the spectral slope in the wavelength range from a few tens of km to a few hundreds of m in the spectrum of surface SHF on a log-log scale. The response of moist convection to the κ-3 - slope (where κ is wavenumber) surface SHF field is compared with that to the κ-2 - slope surface, which has a relatively weak mesoscale feature, and the homogeneous κ0 - slope surface. Given the surface energy balance with a spatially uniform available energy, the prescribed SHF has a 180° phase lag with the latent heat flux (LHF) in a horizontal domain of (several tens of km)2. Thus, warmer (cooler) surface is relatively dry (moist). For all the cases, the same observation-based sounding is prescribed for the initial condition. For all the κ-3 - slope surface heterogeneity cases, early non-precipitating shallow clouds further develop into precipitating deep thunderstorms. But for all the κ-2 - slope cases, only shallow clouds develop. We compare the vertical profiles of domain-averaged fluxes and variances, and the contribution of the mesoscale and turbulence contributions to the fluxes and variances, between the κ-3 versus κ-2 slope cases. Also the cross-scale processes are investigated.

  3. Aerosol-cloud interactions in a multi-scale modeling framework

    Science.gov (United States)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  4. Multi-scale AM-FM for lesion phenotyping

    NARCIS (Netherlands)

    Barriga, E.S.; Murray, V.; Agurto, C.; Pattichis, M.S.; Russell, S.; Abramoff, M.D.; Davis, H.; Soliz, P.

    2009-01-01

    Age-related macular degeneration (AMD) is the most common cause of visual loss in the United States and is a growing public health problem. The presence and severity of AMD in current epidemiological studies is detected by the grading of color stereoscopic fundus photographs. The purpose of this

  5. Bridging the PSI Knowledge Gap: A Multi-Scale Approach

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States)

    2015-01-08

    Plasma-surface interactions (PSI) pose an immense scientific hurdle in magnetic confinement fusion and our present understanding of PSI in confinement environments is highly inadequate; indeed, a recent Fusion Energy Sciences Advisory Committee report found that 4 out of the 5 top five fusion knowledge gaps were related to PSI. The time is appropriate to develop a concentrated and synergistic science effort that would expand, exploit and integrate the wealth of laboratory ion-beam and plasma research, as well as exciting new computational tools, towards the goal of bridging the PSI knowledge gap. This effort would broadly advance plasma and material sciences, while providing critical knowledge towards progress in fusion PSI. This project involves the development of a Science Center focused on a new approach to PSI science; an approach that both exploits access to state-of-the-art PSI experiments and modeling, as well as confinement devices. The organizing principle is to develop synergistic experimental and modeling tools that treat the truly coupled multi-scale aspect of the PSI issues in confinement devices. This is motivated by the simple observation that while typical lab experiments and models allow independent manipulation of controlling variables, the confinement PSI environment is essentially self-determined with few outside controls. This means that processes that may be treated independently in laboratory experiments, because they involve vastly different physical and time scales, will now affect one another in the confinement environment. Also, lab experiments cannot simultaneously match all exposure conditions found in confinement devices typically forcing a linear extrapolation of lab results. At the same time programmatic limitations prevent confinement experiments alone from answering many key PSI questions. The resolution to this problem is to usefully exploit access to PSI science in lab devices, while retooling our thinking from a linear and de

  6. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  7. Progression to multi-scale models and the application to food system intervention strategies.

    Science.gov (United States)

    Gröhn, Yrjö T

    2015-02-01

    The aim of this article is to discuss how the systems science approach can be used to optimize intervention strategies in food animal systems. It advocates the idea that the challenges of maintaining a safe food supply are best addressed by integrating modeling and mathematics with biological studies critical to formulation of public policy to address these challenges. Much information on the biology and epidemiology of food animal systems has been characterized through single-discipline methods, but until now this information has not been thoroughly utilized in a fully integrated manner. The examples are drawn from our current research. The first, explained in depth, uses clinical mastitis to introduce the concept of dynamic programming to optimize management decisions in dairy cows (also introducing the curse of dimensionality problem). In the second example, a compartmental epidemic model for Johne's disease with different intervention strategies is optimized. The goal of the optimization strategy depends on whether there is a relationship between Johne's and Crohn's disease. If so, optimization is based on eradication of infection; if not, it is based on the cow's performance only (i.e., economic optimization, similar to the mastitis example). The third example focuses on food safety to introduce risk assessment using Listeria monocytogenes and Salmonella Typhimurium. The last example, practical interventions to effectively manage antibiotic resistance in beef and dairy cattle systems, introduces meta-population modeling that accounts for bacterial growth not only in the host (cow), but also in the cow's feed, drinking water and the housing environment. Each example stresses the need to progress toward multi-scale modeling. The article ends with examples of multi-scale systems, from food supply systems to Johne's disease. Reducing the consequences of foodborne illnesses (i.e., minimizing disease occurrence and associated costs) can only occur through an

  8. Atmospheric Rivers across Multi-scales of the Hydrologic cycle

    Science.gov (United States)

    Hu, H.

    2017-12-01

    Atmospheric Rivers (ARs) are defined as filamentary structures with strong water vapor transport in the atmosphere, moving as much water as is discharged by the Amazon River. As a large-scale phenomenon, ARs are embedded in the planetary-scale Rossby waves and account for the majority of poleward moisture transport in the midlatitudes. On the other hand, AR is the fundamental physical mechanism leading to extreme basin-scale precipitation and flooding over the U.S. West Coast in the winter season. The moisture transported by ARs is forced to rise and generate precipitation when it impinges on the mountainous coastal lands. My goal is to build the connection between the multi-scale features associated with ARs with their impacts on local hydrology, with particular focus on the U.S. West Coast. Moving across the different scales I have: (1) examined the planetary-scale dynamics in the upper-troposphere, and established a robust relationship between the two regimes of Rossby wave breaking and AR-precipitation and streamflow along the West Coast; (2) quantified the contribution from the tropics/subtropics to AR-related precipitation intensity and found a significant modulation from the large-scale thermodynamics; (3) developed a water tracer tool in a land surface model to track the lifecycle of the water collected from AR precipitation over the terrestrial system, so that the role of catchment-scale factors in modulating ARs' hydrological consequences could be examined. Ultimately, the information gather from these studies will indicate how the dynamic and thermodynamic changes as a response to climate change could affect the local flooding and water resource, which would be helpful in decision making.

  9. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    -part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to

  10. Simulated epidemiological and economic effects of measures to reduce piglet supply during a classical swine fever epidemic in the Netherlands

    NARCIS (Netherlands)

    Mangen, M.J.J.; Nielen, M.; Burrell, A.M.

    2003-01-01

    The effects of additional measures adopted during a classical swine fever (CSF) epidemic to reduce piglet supply, namely, an insemination ban, abortion of sows and killing of young piglets, are studied using a stochastic, spatial, dynamic epidemiological simulation model of the pig sector in the

  11. A multi-scale network method for two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-08-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  12. A multi-scale network method for two-phase flow in porous media

    International Nuclear Information System (INIS)

    Khayrat, Karim; Jenny, Patrick

    2017-01-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  13. Simulating the Risk of Liver Fluke Infection using a Mechanistic Hydro-epidemiological Model

    Science.gov (United States)

    Beltrame, Ludovica; Dunne, Toby; Rose, Hannah; Walker, Josephine; Morgan, Eric; Vickerman, Peter; Wagener, Thorsten

    2016-04-01

    Liver Fluke (Fasciola hepatica) is a common parasite found in livestock and responsible for considerable economic losses throughout the world. Risk of infection is strongly influenced by climatic and hydrological conditions, which characterise the host environment for parasite development and transmission. Despite on-going control efforts, increases in fluke outbreaks have been reported in recent years in the UK, and have been often attributed to climate change. Currently used fluke risk models are based on empirical relationships derived between historical climate and incidence data. However, hydro-climate conditions are becoming increasingly non-stationary due to climate change and direct anthropogenic impacts such as land use change, making empirical models unsuitable for simulating future risk. In this study we introduce a mechanistic hydro-epidemiological model for Liver Fluke, which explicitly simulates habitat suitability for disease development in space and time, representing the parasite life cycle in connection with key environmental conditions. The model is used to assess patterns of Liver Fluke risk for two catchments in the UK under current and potential future climate conditions. Comparisons are made with a widely used empirical model employing different datasets, including data from regional veterinary laboratories. Results suggest that mechanistic models can achieve adequate predictive ability and support adaptive fluke control strategies under climate change scenarios.

  14. Multi-scale modelling of the physicochemical-mechanical coupling of fuel behaviour at high temperature in pressurized water reactors

    International Nuclear Information System (INIS)

    Julien, Jerome

    2008-01-01

    Within the frame of the problematic of pellet-sheath interaction in a nuclear fuel rod, a good description of the fuel thermo-mechanical behaviour is required. This research thesis reports the coupling of physics-chemistry (simulation of gas transfers between different cavities) and mechanics (assessment of fuel viscoplastic strains). A new micromechanical model is developed which uses a multi-scale approach to describe the evolution of the double population of cavities (cavities with two different scales) while taking internal pressures as well as the fuel macroscopic viscoplastic behaviour into account. The author finally describes how to couple this micromechanical mode to physics-chemistry models [fr

  15. Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering

    International Nuclear Information System (INIS)

    Molina, J.J.

    2011-01-01

    Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)

  16. Land-Atmosphere Coupling in the Multi-Scale Modelling Framework

    Science.gov (United States)

    Kraus, P. M.; Denning, S.

    2015-12-01

    The Multi-Scale Modeling Framework (MMF), in which cloud-resolving models (CRMs) are embedded within general circulation model (GCM) gridcells to serve as the model's cloud parameterization, has offered a number of benefits to GCM simulations. The coupling of these cloud-resolving models directly to land surface model instances, rather than passing averaged atmospheric variables to a single instance of a land surface model, the logical next step in model development, has recently been accomplished. This new configuration offers conspicuous improvements to estimates of precipitation and canopy through-fall, but overall the model exhibits warm surface temperature biases and low productivity.This work presents modifications to a land-surface model that take advantage of the new multi-scale modeling framework, and accommodate the change in spatial scale from a typical GCM range of ~200 km to the CRM grid-scale of 4 km.A parameterization is introduced to apportion modeled surface radiation into direct-beam and diffuse components. The diffuse component is then distributed among the land-surface model instances within each GCM cell domain. This substantially reduces the number excessively low light values provided to the land-surface model when cloudy conditions are modeled in the CRM, associated with its 1-D radiation scheme. The small spatial scale of the CRM, ~4 km, as compared with the typical ~200 km GCM scale, provides much more realistic estimates of precipitation intensity, this permits the elimination of a model parameterization of canopy through-fall. However, runoff at such scales can no longer be considered as an immediate flow to the ocean. Allowing sub-surface water flow between land-surface instances within the GCM domain affords better realism and also reduces temperature and productivity biases.The MMF affords a number of opportunities to land-surface modelers, providing both the advantages of direct simulation at the 4 km scale and a much reduced

  17. Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map

    Science.gov (United States)

    AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong

    2017-04-01

    The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by

  18. Heat and mass transfer intensification and shape optimization a multi-scale approach

    CERN Document Server

    2013-01-01

    Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies  the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes.   A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...

  19. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    Science.gov (United States)

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  20. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.; Yoo, J.-H.; Grigoropoulos, C. P.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes

  1. Modelling an industrial anaerobic granular reactor using a multi-scale approach.

    Science.gov (United States)

    Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V

    2017-12-01

    The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All

  2. Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models.

    Science.gov (United States)

    Kirschner, Denise E; Hunt, C Anthony; Marino, Simeone; Fallahi-Sichani, Mohammad; Linderman, Jennifer J

    2014-01-01

    The use of multi-scale mathematical and computational models to study complex biological processes is becoming increasingly productive. Multi-scale models span a range of spatial and/or temporal scales and can encompass multi-compartment (e.g., multi-organ) models. Modeling advances are enabling virtual experiments to explore and answer questions that are problematic to address in the wet-lab. Wet-lab experimental technologies now allow scientists to observe, measure, record, and analyze experiments focusing on different system aspects at a variety of biological scales. We need the technical ability to mirror that same flexibility in virtual experiments using multi-scale models. Here we present a new approach, tuneable resolution, which can begin providing that flexibility. Tuneable resolution involves fine- or coarse-graining existing multi-scale models at the user's discretion, allowing adjustment of the level of resolution specific to a question, an experiment, or a scale of interest. Tuneable resolution expands options for revising and validating mechanistic multi-scale models, can extend the longevity of multi-scale models, and may increase computational efficiency. The tuneable resolution approach can be applied to many model types, including differential equation, agent-based, and hybrid models. We demonstrate our tuneable resolution ideas with examples relevant to infectious disease modeling, illustrating key principles at work. © 2014 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  3. EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories

    Science.gov (United States)

    Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo

    2017-04-01

    Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting

  4. Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis

    Directory of Open Access Journals (Sweden)

    C. Franzke

    2009-02-01

    Full Text Available The multi-scale nature and climate noise properties of teleconnection indices are examined by using the Empirical Mode Decomposition (EMD procedure. The EMD procedure allows for the analysis of non-stationary time series to extract physically meaningful intrinsic mode functions (IMF and nonlinear trends. The climatologically relevant monthly mean teleconnection indices of the North Atlantic Oscillation (NAO, the North Pacific index (NP and the Southern Annular Mode (SAM are analyzed.

    The significance of IMFs and trends are tested against the null hypothesis of climate noise. The analysis of surrogate monthly mean time series from a red noise process shows that the EMD procedure is effectively a dyadic filter bank and the IMFs (except the first IMF are nearly Gaussian distributed. The distribution of the variance contained in IMFs of an ensemble of AR(1 simulations is nearly χ2 distributed. To test the statistical significance of the IMFs of the teleconnection indices and their nonlinear trends we utilize an ensemble of corresponding monthly averaged AR(1 processes, which we refer to as climate noise. Our results indicate that most of the interannual and decadal variability of the analysed teleconnection indices cannot be distinguished from climate noise. The NP and SAM indices have significant nonlinear trends, while the NAO has no significant trend when tested against a climate noise hypothesis.

  5. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    Science.gov (United States)

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. © 2013.

  6. Multi-scale approach of plasticity mechanisms in irradiated austenitic steels

    International Nuclear Information System (INIS)

    Nogaret, Th.

    2007-12-01

    The plasticity in irradiated metals is characterized by the localization of the deformation in clear bands, defect free, formed by the dislocation passage. We investigated the clear band formation thanks to a multi-scale approach. Molecular dynamics simulations show that screw dislocations mainly un-fault and absorb the defects as helical turns, are strongly pinned by the helical turns and are remitted in new glide planes when they unpin whereas edge dislocations mainly shear the defects for moderate stresses and can drag the helical turns. The interaction mechanisms were implemented into the discrete dislocation dynamics code in order to study the clear band formation at the micron scale. As dislocations are issued from grain boundaries, we consider a dislocation source located on a box border that emits dislocations when the dislocation nucleation stress is reached. The hardening was seen mainly due to the screw dislocations that are strongly pinned by helical turns. Edge dislocations are less pinned and glide on long distances, letting long screw dislocation segments. As more dislocations are emitted, screw dislocation pile-ups form and this permits the unpinning of screw dislocations. They unpin by activating dislocation segments in new glide planes, which broadens the clear band. When the segments activate, they create edge parts that sweep the screw dislocation lines by dragging away the super-jogs towards the box borders where they accumulate, which clears the band. (author)

  7. Multi-scale Analysis of MEMS Sensors Subject to Drop Impacts

    Directory of Open Access Journals (Sweden)

    Sarah Zerbini

    2007-09-01

    Full Text Available The effect of accidental drops on MEMS sensors are examined within the frame-work of a multi-scale finite element approach. With specific reference to a polysilicon MEMSaccelerometer supported by a naked die, the analysis is decoupled into macro-scale (at dielength-scale and meso-scale (at MEMS length-scale simulations, accounting for the verysmall inertial contribution of the sensor to the overall dynamics of the device. Macro-scaleanalyses are adopted to get insights into the link between shock waves caused by the impactagainst a target surface and propagating inside the die, and the displacement/acceleration his-tories at the MEMS anchor points. Meso-scale analyses are adopted to detect the most stresseddetails of the sensor and to assess whether the impact can lead to possible localized failures.Numerical results show that the acceleration at sensor anchors cannot be considered an ob-jective indicator for drop severity. Instead, accurate analyses at sensor level are necessary toestablish how MEMS can fail because of drops.

  8. A Globally Stable Lyapunov Pointing and Rate Controller for the Magnetospheric MultiScale Mission (MMS)

    Science.gov (United States)

    Shah, Neerav

    2011-01-01

    The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller.

  9. Multi scale modeling of 2450MHz electric field effects on microtubule mechanical properties.

    Science.gov (United States)

    Setayandeh, S S; Lohrasebi, A

    2016-11-01

    Microtubule (MT) rigidity and response to 2450MHz electric fields were investigated, via multi scale modeling approach. For this purpose, six systems were designed and simulated to consider all types of feasible interactions between α and β monomers in MT, by using all atom molecular dynamics method. Subsequently, coarse grain modeling was used to design different lengths of MT. Investigation of effects of external 2450MHz electric field on MT showed MT less rigidity in the presence of such field, which may perturb its functions. Moreover, an additional computational setup was designed to study effects of 2450MHz field on MT response to AFM tip. It was found, more tip velocity led to MT faster transformation and less time was required to change MT elastic response to plastic one, applying constant radius. Moreover it was observed smaller tip caused to increase required time to change MT elastic response to plastic one, considering constant velocity. Furthermore, exposing MT to 2450MHz field led to no significant changes in MT response to AFM tip, but quick change in MT elastic response to plastic one. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Multi scale analysis of thermal-hydraulics of nuclear reactors - the neptune project

    International Nuclear Information System (INIS)

    Bestion, D.

    2004-01-01

    Full text of publication follows:The NEPTUNE project aims at building a new two-phase thermalhydraulic platform for nuclear reactor simulation. It is jointly developed by CEA-DEN and EDF-DRD and also supported by IRSN and FRAMATOME-ANP. NEPTUNE is a new generation multi-scale platform. The system scale models the whole reactor circuit with 0D, 1D and 3D modules and is generally applied with a coarse meshing including about a thousand meshes. The component scale models components like the reactor Core or Steam Generators with a finer nodalization and is generally applied with 10 4 to 10 5 meshes. Since these components contain rod bundles or tube bundles the physical modelling uses a homogenization technique with a porosity. For some specific applications it was found necessary to add a two-phase CFD tool able to zoom on a portion of the circuit where small scale phenomena are of importance for design purpose or safety issues. Here the basic equations are still averaged like in RANS approach for single phase, but the space resolution is finer than in component codes and typical application may require 10 5 to 10 7 meshes. These three scales have to be coupled in order to simulate many reactor transients where both local effects and system effects play a role. In addition, two-phase Direct Numerical Simulation Tools with Interface Tracking Techniques can be used for even smaller scale investigations for a better understanding of basic physical processes and for developing closure relations for averaged models. The main challenges of this project are here presented and some first results are presented. (authors)

  11. Vibration of a rotating shaft on hydrodynamic bearings: multi-scales surface effects

    International Nuclear Information System (INIS)

    Rebufa, Jocelyn

    2016-01-01

    The hydrodynamic bearing provides good damping properties in rotating machineries. However, the performances of rotor-bearings systems are highly impacted by nonlinear effects that are difficult to analyze. The rotor dynamics prediction requires advanced models for the flow in the bearings. The surface of the bearings seems to have a strong impact on the lubricant flow, acting on the static and dynamic properties of the rotating parts. This study aims to enhance the simulation of the bearings' surface state effect on the motion of the rotating shaft. The flexible shaft interacts with textured hydrodynamic bearings. Multi-scales homogenization is used in a multi-physics algorithm in order to describe the fluid-structure interaction. Different models are used to account for the cavitation phenomenon in the bearings. Nonlinear harmonic methods allow efficient parametric studies of periodic solutions as well as their stability. Moreover, a test rig has been designed to compare predictions to real measurements. Several textured shaft samples modified with femto-seconds LASER surface texturing are tested. In most cases the experimental study showed similar results than the simulation. Enhancements of the vibration behaviors of the rotor-bearing system have been revealed for certain texturing patterns. The self-excited vibration, also known as 'oil whirl' phenomenon, is stabilized on a wide rotating frequency range. However, the simulation tool does not predict well the enhancements that are observed. Vortices in surface texturing patterns have been revealed numerically with Navier-Stokes equation resolution. These results are opposed to the classical lubrication hypothesis. It is also a possible explanation of the enhancements that are experimentally measured with textured bearings. (author) [fr

  12. Multi-scale analysis of nuclear reactor thermal-hydraulics-first applications using the NEPTUNE platform

    International Nuclear Information System (INIS)

    Guelfi, A.; Boucker, M.; Mimouni, S.; Bestion, D.; Boudier, P.

    2005-01-01

    The NEPTUNE project aims at building a new two-phase flow thermal-hydraulics platform for nuclear reactor simulation. EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) with the co-sponsorship of IRSN (Institut de Radioprotection et Surete Nucleaire) and FRAMATOME-ANP, are jointly developing the NEPTUNE multi-scale platform that includes new physical models and numerical methods for each of the computing scales. One usually distinguishes three different scales for industrial simulations: the 'system' scale, the 'component' scale (subchannel analysis) and CFD (Computational Fluid Dynamics). In addition DNS (Direct Numerical Simulation) can provide information at a smaller scale that can be useful for the development of the averaged scales. The NEPTUNE project also includes work on software architecture and research on new numerical methods for coupling codes since both are required to improve industrial calculations. All these R and D challenges have been defined in order to meet industrial needs and the underlying stakes (mainly the competitiveness and the safety of Nuclear Power Plants). This paper focuses on three high priority needs: DNB (Departure from Nucleate Boiling) prediction, directly linked to fuel performance; PTS (Pressurized Thermal Shock), a key issue when studying the lifespan of critical components and LBLOCA (Large Break Loss of Coolant Accident), a reference accident for safety studies. For each of these industrial applications, we provide a review of the last developments within the NEPTUNE platform and we present the first results. A particular attention is also given to physical validation and the needs for further experimental data. (authors)

  13. Multi-scale strategies for dealing with moving contact lines

    Science.gov (United States)

    Smith, Edward R.; Theodorakis, Panagiotis; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Molecular dynamics (MD) has great potential to elucidate the dynamics of the moving contact line. As a more fundamental model, it can provide a priori results for fluid-liquid interfaces, surface tension, viscosity, phase change, and near wall stick-slip behaviour which typically show very good agreement to experimental results. However, modelling contact line motion combines all this complexity in a single problem. In this talk, MD simulations of the contact line are compared to the experimental results obtained from studying the dynamics of a sheared liquid bridge. The static contact angles are correctly matched to the experimental data for a range of different electro-wetting results. The moving contact line results are then compared for each of these electro-wetting values. Despite qualitative agreement, there are notable differences between the simulation and experiments. Many MD simulation have studied contact lines, and the sheared liquid bridge, so it is of interest to review the limitations of this setup in light of this discrepancy. A number of factors are discussed, including the inter-molecular interaction model, molecular-scale surface roughness, model of electro-wetting and, perhaps most importantly, the limited system sizes possible using MD simulation. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  14. Multi-scale hydraulic pedotransfer functions for Hungarian soils

    NARCIS (Netherlands)

    Nemes, A.

    2003-01-01

    Water and nutrient balance are among the main concerns about the sustainability of our soils. Numerous computer models have been developed to simulate soil water and solute transport and plant growth. However, use of these models has often been limited by lack of accurate input parameters. Often,

  15. Multi-scale Fatigue Damage Life Assessment of Railroad Wheels

    Science.gov (United States)

    2018-01-01

    This study focused on the presence of a crack in the railway wheels subsurface and how it affects the wheels fatigue life. A 3-D FE-model was constructed to simulate the stress/strain fields that take place under the rolling contact of railway ...

  16. Multi-scale sensitivity analysis of pile installation using DEM

    Science.gov (United States)

    Esposito, Ricardo Gurevitz; Velloso, Raquel Quadros; , Eurípedes do Amaral Vargas, Jr.; Danziger, Bernadete Ragoni

    2017-12-01

    The disturbances experienced by the soil due to the pile installation and dynamic soil-structure interaction still present major challenges to foundation engineers. These phenomena exhibit complex behaviors, difficult to measure in physical tests and to reproduce in numerical models. Due to the simplified approach used by the discrete element method (DEM) to simulate large deformations and nonlinear stress-dilatancy behavior of granular soils, the DEM consists of an excellent tool to investigate these processes. This study presents a sensitivity analysis of the effects of introducing a single pile using the PFC2D software developed by Itasca Co. The different scales investigated in these simulations include point and shaft resistance, alterations in porosity and stress fields and particles displacement. Several simulations were conducted in order to investigate the effects of different numerical approaches showing indications that the method of installation and particle rotation could influence greatly in the conditions around the numerical pile. Minor effects were also noted due to change in penetration velocity and pile-soil friction. The difference in behavior of a moving and a stationary pile shows good qualitative agreement with previous experimental results indicating the necessity of realizing a force equilibrium process prior to any load-test to be simulated.

  17. Multi-Scale Parameter Identification of Lithium-Ion Battery Electric Models Using a PSO-LM Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Jing Shen

    2017-03-01

    Full Text Available This paper proposes a multi-scale parameter identification algorithm for the lithium-ion battery (LIB electric model by using a combination of particle swarm optimization (PSO and Levenberg-Marquardt (LM algorithms. Two-dimensional Poisson equations with unknown parameters are used to describe the potential and current density distribution (PDD of the positive and negative electrodes in the LIB electric model. The model parameters are difficult to determine in the simulation due to the nonlinear complexity of the model. In the proposed identification algorithm, PSO is used for the coarse-scale parameter identification and the LM algorithm is applied for the fine-scale parameter identification. The experiment results show that the multi-scale identification not only improves the convergence rate and effectively escapes from the stagnation of PSO, but also overcomes the local minimum entrapment drawback of the LM algorithm. The terminal voltage curves from the PDD model with the identified parameter values are in good agreement with those from the experiments at different discharge/charge rates.

  18. Multi-scale theory-assisted nano-engineering of plasmonic-organic hybrid electro-optic device performance

    Science.gov (United States)

    Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.

    2018-02-01

    Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.

  19. Modelling of fractured reservoirs. Case of multi-scale media; Modelisation des reservoirs fractures. Cas des milieux multi-echelles

    Energy Technology Data Exchange (ETDEWEB)

    Henn, N.

    2000-12-13

    Some of the most productive oil and gas reservoirs are found in formations crossed by multi-scale fractures/faults. Among them, conductive faults may closely control reservoir performance. However, their modelling encounters numerical and physical difficulties linked with (a) the necessity to keep an explicit representation of faults through small-size grid blocks, (b) the modelling of multiphase flow exchanges between the fault and the neighbouring medium. In this thesis, we propose a physically-representative and numerically efficient modelling approach in order to incorporate sub-vertical conductive faults in single and dual-porosity simulators. To validate our approach and demonstrate its efficiency, simulation results of multiphase displacements in representative field sector models are presented. (author)

  20. Poisson noise removal with pyramidal multi-scale transforms

    Science.gov (United States)

    Woiselle, Arnaud; Starck, Jean-Luc; Fadili, Jalal M.

    2013-09-01

    In this paper, we introduce a method to stabilize the variance of decimated transforms using one or two variance stabilizing transforms (VST). These VSTs are applied to the 3-D Meyer wavelet pyramidal transform which is the core of the first generation 3D curvelets. This allows us to extend these 3-D curvelets to handle Poisson noise, that we apply to the denoising of a simulated cosmological volume.

  1. Non-Invasive Electrical Impedance Tomography for Multi-Scale Detection of Liver Fat Content

    Science.gov (United States)

    Luo, Yuan; Abiri, Parinaz; Zhang, Shell; Chang, Chih-Chiang; Kaboodrangi, Amir H.; Li, Rongsong; Sahib, Ashish K.; Bui, Alex; Kumar, Rajesh; Woo, Mary; Li, Zhaoping; Packard, René R. Sevag; Tai, Yu-Chong; Hsiai, Tzung K.

    2018-01-01

    Introduction: Obesity is associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). While Magnetic Resonance Imaging (MRI) is a non-invasive gold standard to detect fatty liver, we demonstrate a low-cost and portable electrical impedance tomography (EIT) approach with circumferential abdominal electrodes for liver conductivity measurements. Methods and Results: A finite element model (FEM) was established to simulate decremental liver conductivity in response to incremental liver lipid content. To validate the FEM simulation, we performed EIT imaging on an ex vivo porcine liver in a non-conductive tank with 32 circumferentially-embedded electrodes, demonstrating a high-resolution output given a priori information on location and geometry. To further examine EIT capacity in fatty liver detection, we performed EIT measurements in age- and gender-matched New Zealand White rabbits (3 on normal, 3 on high-fat diets). Liver conductivity values were significantly distinct following the high-fat diet (p = 0.003 vs. normal diet, n=3), accompanied by histopathological evidence of hepatic fat accumulation. We further assessed EIT imaging in human subjects with MRI quantification for fat volume fraction based on Dixon procedures, demonstrating average liver conductivity of 0.331 S/m for subjects with low Body-Mass Index (BMI 25 kg/m²). Conclusion: We provide both the theoretical and experimental framework for a multi-scale EIT strategy to detect liver lipid content. Our preliminary studies pave the way to enhance the spatial resolution of EIT as a marker for fatty liver disease and metabolic syndrome. PMID:29556346

  2. Multi-scale modelling of fatigue microcrack initiation

    International Nuclear Information System (INIS)

    Liu, Jia

    2013-01-01

    The thesis aims to improve the understanding and simulation of microcrack initiation induced by thermal fatigue and the induced crack network formation. The polycrystalline simulations allow the prediction of both macroscopic cyclic behavior and mean grain distributions of stress, plastic strain and number of cycles to microcrack initiation. Various aggregate meshes have been used, from the simplest ones using cubic grains up to a real 3D aggregate built thanks to many re-polishing and EBSD measurement sequences (Institut P', Poitiers). Tension-compression, cyclic shear and equi-biaxial loadings, with and without mean strain, have been considered. All the predictions are in qualitative agreement with many experimental observations obtained at various scales. The single crystal simulations allow us to predict the effect of slip localization in thin persistent slip bands (PSBs). Inside PSBs, vacancies are produced and annihilated because of cyclic dislocation interactions and may diffuse towards the surrounding matrix. This induces extrusion growth at the free surface of PSBs. Microcracking is modelled by cohesive zones located along the PSB - matrix interfaces. The predicted extrusion rates and numbers of cycles to microcrack initiation are in fair agreement with numerous experimental data concerning single and polycrystals, copper and 316L(N), under either air or inert environment. (author) [fr

  3. Multi-scale structural analysis of gas diffusion layers

    Science.gov (United States)

    Göbel, Martin; Godehardt, Michael; Schladitz, Katja

    2017-07-01

    The macroscopic properties of materials are strongly determined by their micro structure. Here, transport properties of gas diffusion layers (GDL) for fuel cells are considered. In order to simulate flow and thermal properties, detailed micro structural information is essential. 3D images obtained by high-resolution computed tomography using synchrotron radiation and scanning electron microscopy (SEM) combined with focused ion beam (FIB) serial slicing were used. A recent method for reconstruction of porous structures from FIB-SEM images and sophisticated morphological image transformations were applied to segment the solid structural components. The essential algorithmic steps for segmenting the different components in the tomographic data-sets are described and discussed. In this paper, two types of GDL, based on a non-woven substrate layer and a paper substrate layer were considered, respectively. More than three components are separated within the synchrotron radiation computed tomography data. That is, fiber system, polytetrafluoroethylene (PTFE) binder/impregnation, micro porous layer (MPL), inclusions within the latter, and pore space are segmented. The usage of the thus derived 3D structure data in different simulation applications can be demonstrated. Simulations of macroscopic properties such as thermal conductivity, depending on the flooding state of the GDL are possible.

  4. How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States?

    Science.gov (United States)

    Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo

    2013-02-01

    SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.

  5. Understanding hydraulic fracturing: a multi-scale problem

    Science.gov (United States)

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  6. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    Science.gov (United States)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  7. Multi-scale modeling and analysis of convective boiling: towards the prediction of CHF in rod bundles

    International Nuclear Information System (INIS)

    Niceno, B.; Sato, Y.; Badillo, A.; Andreani, M.

    2010-01-01

    In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso- scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian 2nd order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program

  8. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-05-10

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  9. Deep multi-scale convolutional neural network for hyperspectral image classification

    Science.gov (United States)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  10. Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios

    Science.gov (United States)

    Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui

    2018-01-01

    The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.

  11. Multi-Scale Computational Modeling of Ni-Base Superalloy Brazed Joints for Gas Turbine Applications

    Science.gov (United States)

    Riggs, Bryan

    Brazed joints are commonly used in the manufacture and repair of aerospace components including high temperature gas turbine components made of Ni-base superalloys. For such critical applications, it is becoming increasingly important to account for the mechanical strength and reliability of the brazed joint. However, material properties of brazed joints are not readily available and methods for evaluating joint strength such as those listed in AWS C3.2 have inherent challenges compared with testing bulk materials. In addition, joint strength can be strongly influenced by the degree of interaction between the filler metal (FM) and the base metal (BM), the joint design, and presence of flaws or defects. As a result, there is interest in the development of a multi-scale computational model to predict the overall mechanical behavior and fitness-for-service of brazed joints. Therefore, the aim of this investigation was to generate data and methodology to support such a model for Ni-base superalloy brazed joints with conventional Ni-Cr-B based FMs. Based on a review of the technical literature a multi-scale modeling approach was proposed to predict the overall performance of brazed joints by relating mechanical properties to the brazed joint microstructure. This approach incorporates metallurgical characterization, thermodynamic/kinetic simulations, mechanical testing, fracture mechanics and finite element analysis (FEA) modeling to estimate joint properties based on the initial BM/FM composition and brazing process parameters. Experimental work was carried out in each of these areas to validate the multi-scale approach and develop improved techniques for quantifying brazed joint properties. Two Ni-base superalloys often used in gas turbine applications, Inconel 718 and CMSX-4, were selected for study and vacuum furnace brazed using two common FMs, BNi-2 and BNi-9. Metallurgical characterization of these brazed joints showed two primary microstructural regions; a soft

  12. Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems

    Science.gov (United States)

    Zhao, Lei

    Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that

  13. Development of a hybrid multi-scale phantom for Monte-Carlo based internal dosimetry

    International Nuclear Information System (INIS)

    Marcatili, S.; Villoing, D.; Bardies, M.

    2015-01-01

    Full text of publication follows. Aim: in recent years several phantoms were developed for radiopharmaceutical dosimetry in clinical and preclinical settings. Voxel-based models (Zubal, Max/Fax, ICRP110) were developed to reach a level of realism that could not be achieved by mathematical models. In turn, 'hybrid' models (XCAT, MOBY/ROBY, Mash/Fash) allow a further degree of versatility by offering the possibility to finely tune each model according to various parameters. However, even 'hybrid' models require the generation of a voxel version for Monte-Carlo modeling of radiation transport. Since absorbed dose simulation time is strictly related to geometry spatial sampling, a compromise should be made between phantom realism and simulation speed. This trade-off leads on one side in an overestimation of the size of small radiosensitive structures such as the skin or hollow organs' walls, and on the other hand to unnecessarily detailed voxellization of large, homogeneous structures. The Aim of this work is to develop a hybrid multi-resolution phantom model for Geant4 and Gate, to better characterize energy deposition in small structures while preserving reasonable computation times. Materials and Methods: we have developed a pipeline for the conversion of preexisting phantoms into a multi-scale Geant4 model. Meshes of each organ are created from raw binary images of a phantom and then voxellized to the smallest spatial sampling required by the user. The user can then decide to re-sample the internal part of each organ, while leaving a layer of smallest voxels at the edge of the organ. In this way, the realistic shape of the organ is maintained while reducing the voxel number in the inner part. For hollow organs, the wall is always modeled using the smallest voxel sampling. This approach allows choosing different voxel resolutions for each organ according to a specific application. Results: preliminary results show that it is possible to

  14. Bayesian multi-scale smoothing of photon-limited images with applications to astronomy and medicine

    Science.gov (United States)

    White, John

    Multi-scale models for smoothing Poisson signals or images have gained much attention over the past decade. A new Bayesian model is developed using the concept of the Chinese restaurant process to find structures in two-dimensional images when performing image reconstruction or smoothing. This new model performs very well when compared to other leading methodologies for the same problem. It is developed and evaluated theoretically and empirically throughout Chapter 2. The newly developed Bayesian model is extended to three-dimensional images in Chapter 3. The third dimension has numerous different applications, such as different energy spectra, another spatial index, or possibly a temporal dimension. Empirically, this method shows promise in reducing error with the use of simulation studies. A further development removes background noise in the image. This removal can further reduce the error and is done using a modeling adjustment and post-processing techniques. These details are given in Chapter 4. Applications to real world problems are given throughout. Photon-based images are common in astronomical imaging due to the collection of different types of energy such as X-Rays. Applications to real astronomical images are given, and these consist of X-ray images from the Chandra X-ray observatory satellite. Diagnostic medicine uses many types of imaging such as magnetic resonance imaging and computed tomography that can also benefit from smoothing techniques such as the one developed here. Reducing the amount of radiation a patient takes will make images more noisy, but this can be mitigated through the use of image smoothing techniques. Both types of images represent the potential real world use for these methods.

  15. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    Science.gov (United States)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  16. Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data.

    Science.gov (United States)

    Bishop, Steven M; Ercole, Ari

    2018-01-01

    The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance. Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms. The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text]. The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.

  17. Multi-scale climate modelling over Southern Africa using a variable-resolution global model

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2011-12-01

    Full Text Available -mail: fengelbrecht@csir.co.za Multi-scale climate modelling over Southern Africa using a variable-resolution global model FA Engelbrecht1, 2*, WA Landman1, 3, CJ Engelbrecht4, S Landman5, MM Bopape1, B Roux6, JL McGregor7 and M Thatcher7 1 CSIR Natural... improvement. Keywords: multi-scale climate modelling, variable-resolution atmospheric model Introduction Dynamic climate models have become the primary tools for the projection of future climate change, at both the global and regional scales. Dynamic...

  18. Multi-scale modelling for HEDP experiments on Orion

    Science.gov (United States)

    Sircombe, N. J.; Ramsay, M. G.; Hughes, S. J.; Hoarty, D. J.

    2016-05-01

    The Orion laser at AWE couples high energy long-pulse lasers with high intensity short-pulses, allowing material to be compressed beyond solid density and heated isochorically. This experimental capability has been demonstrated as a platform for conducting High Energy Density Physics material properties experiments. A clear understanding of the physics in experiments at this scale, combined with a robust, flexible and predictive modelling capability, is an important step towards more complex experimental platforms and ICF schemes which rely on high power lasers to achieve ignition. These experiments present a significant modelling challenge, the system is characterised by hydrodynamic effects over nanoseconds, driven by long-pulse lasers or the pre-pulse of the petawatt beams, and fast electron generation, transport, and heating effects over picoseconds, driven by short-pulse high intensity lasers. We describe the approach taken at AWE; to integrate a number of codes which capture the detailed physics for each spatial and temporal scale. Simulations of the heating of buried aluminium microdot targets are discussed and we consider the role such tools can play in understanding the impact of changes to the laser parameters, such as frequency and pre-pulse, as well as understanding effects which are difficult to observe experimentally.

  19. Multi-scale modeling of carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The development and scale up of cost effective carbon capture processes is of paramount importance to enable the widespread deployment of these technologies to significantly reduce greenhouse gas emissions. The U.S. Department of Energy initiated the Carbon Capture Simulation Initiative (CCSI) in 2011 with the goal of developing a computational toolset that would enable industry to more effectively identify, design, scale up, operate, and optimize promising concepts. The first half of the presentation will introduce the CCSI Toolset consisting of basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, and high-resolution filtered computationalfluid- dynamics (CFD) submodels. The second half of the presentation will describe a high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO2 capture. The sorbent model includes a detailed treatment of transport and amine-CO2- H2O interactions based on quantum chemistry calculations. Using a Bayesian approach for uncertainty quantification, we calibrate the sorbent model to Thermogravimetric (TGA) data.

  20. Cloud Feedbacks on Greenhouse Warming in a Multi-Scale Modeling Framework with a Higher-Order Turbulence Closure

    Science.gov (United States)

    Cheng, Anning; Xu, Kuan-Man

    2015-01-01

    Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.

  1. Optimization Approach for Multi-scale Segmentation of Remotely Sensed Imagery under k-means Clustering Guidance

    Directory of Open Access Journals (Sweden)

    WANG Huixian

    2015-05-01

    Full Text Available In order to adapt different scale land cover segmentation, an optimized approach under the guidance of k-means clustering for multi-scale segmentation is proposed. At first, small scale segmentation and k-means clustering are used to process the original images; then the result of k-means clustering is used to guide objects merging procedure, in which Otsu threshold method is used to automatically select the impact factor of k-means clustering; finally we obtain the segmentation results which are applicable to different scale objects. FNEA method is taken for an example and segmentation experiments are done using a simulated image and a real remote sensing image from GeoEye-1 satellite, qualitative and quantitative evaluation demonstrates that the proposed method can obtain high quality segmentation results.

  2. Multi-scale approach of the mechanical behaviour of reinforced concrete structures - Application to nuclear plant containment buildings

    International Nuclear Information System (INIS)

    David, M.

    2012-01-01

    This thesis develops a multi-scale strategy to describe the mechanical behaviour of steel reinforcements and prestressing tendons in a reinforced concrete structure. This strategy is declined in several steps, which allow gradual integration of new physical phenomena. The first asymptotic model represents the effective elastic behaviour of heterogeneities periodically distributed on a surface. It combines an elastic interface behaviour and a membrane behaviour. A second asymptotic model then focuses on the behaviour of rigid fibers distributed on a surface, which may slide with respect to the surrounding volume. These models induce less stress concentrations than the usual truss models. They are implemented in the finite element code Code-Aster, and validated with respect to reference three-dimensional simulations. Their interaction with a macroscopic crack is studied. Finally, this strategy allows the modeling of experimental tests carried out on a portion of a containment building in real scale. (author)

  3. Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics

    Science.gov (United States)

    Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain

    2018-02-01

    Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.

  4. A multi-scale adaptive model of residential energy demand

    International Nuclear Information System (INIS)

    Farzan, Farbod; Jafari, Mohsen A.; Gong, Jie; Farzan, Farnaz; Stryker, Andrew

    2015-01-01

    Highlights: • We extend an energy demand model to investigate changes in behavioral and usage patterns. • The model is capable of analyzing why demand behaves the way it does. • The model empowers decision makers to investigate DSM strategies and effectiveness. • The model provides means to measure the effect of energy prices on daily profile. • The model considers the coupling effects of adopting multiple new technologies. - Abstract: In this paper, we extend a previously developed bottom-up energy demand model such that the model can be used to determine changes in behavioral and energy usage patterns of a community when: (i) new load patterns from Plug-in Electrical Vehicles (PEV) or other devices are introduced; (ii) new technologies and smart devices are used within premises; and (iii) new Demand Side Management (DSM) strategies, such as price responsive demand are implemented. Unlike time series forecasting methods that solely rely on historical data, the model only uses a minimal amount of data at the atomic level for its basic constructs. These basic constructs can be integrated into a household unit or a community model using rules and connectors that are, in principle, flexible and can be altered according to the type of questions that need to be answered. Furthermore, the embedded dynamics of the model works on the basis of: (i) Markovian stochastic model for simulating human activities, (ii) Bayesian and logistic technology adoption models, and (iii) optimization, and rule-based models to respond to price signals without compromising users’ comfort. The proposed model is not intended to replace traditional forecasting models. Instead it provides an analytical framework that can be used at the design stage of new products and communities to evaluate design alternatives. The framework can also be used to answer questions such as why demand behaves the way it does by examining demands at different scales and by playing What-If games. These

  5. Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction.

    Science.gov (United States)

    Yochum, Maxime; Laforêt, Jérémy; Marque, Catherine

    2018-02-01

    Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The

  6. Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme.

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2011-04-01

    Full Text Available Biomolecular function is realized by recognition, and increasing evidence shows that recognition is determined not only by structure but also by flexibility and dynamics. We explored a biomolecular recognition process that involves a major conformational change - protein folding. In particular, we explore the binding-induced folding of IA3, an intrinsically disordered protein that blocks the active site cleft of the yeast aspartic proteinase saccharopepsin (YPrA by folding its own N-terminal residues into an amphipathic alpha helix. We developed a multi-scaled approach that explores the underlying mechanism by combining structure-based molecular dynamics simulations at the residue level with a stochastic path method at the atomic level. Both the free energy profile and the associated kinetic paths reveal a common scheme whereby IA3 binds to its target enzyme prior to folding itself into a helix. This theoretical result is consistent with recent time-resolved experiments. Furthermore, exploration of the detailed trajectories reveals the important roles of non-native interactions in the initial binding that occurs prior to IA3 folding. In contrast to the common view that non-native interactions contribute only to the roughness of landscapes and impede binding, the non-native interactions here facilitate binding by reducing significantly the entropic search space in the landscape. The information gained from multi-scaled simulations of the folding of this intrinsically disordered protein in the presence of its binding target may prove useful in the design of novel inhibitors of aspartic proteinases.

  7. A Multi-Scale Validation Strategy for Albedo Products over Rugged Terrain and Preliminary Application in Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Xingwen Lin

    2018-01-01

    Full Text Available The issue for the validation of land surface remote sensing albedo products over rugged terrain is the scale effects between the reference albedo measurements and coarse scale albedo products, which is caused by the complex topography. This paper illustrates a multi-scale validation strategy specified for coarse scale albedo validation over rugged terrain. A Mountain-Radiation-Transfer-based (MRT-based albedo upscaling model was proposed in the process of multi-scale validation strategy for aggregating fine scale albedo to coarse scale. The simulated data of both the reference coarse scale albedo and fine scale albedo were used to assess the performance and uncertainties of the MRT-based albedo upscaling model. The results showed that the MRT-based model could reflect the albedo scale effects over rugged terrain and provided a robust solution for albedo upscaling from fine scale to coarse scale with different mean slopes and different solar zenith angles. The upscaled coarse scale albedos had the great agreements with the simulated coarse scale albedo with a Root-Mean-Square-Error (RMSE of 0.0029 and 0.0017 for black sky albedo (BSA and white sky albedo (WSA, respectively. Then the MRT-based model was preliminarily applied for the assessment of daily MODerate Resolution Imaging Spectroradiometer (MODIS Albedo Collection V006 products (MCD43A3 C6 over rugged terrain. Results showed that the MRT-based model was effective and suitable for conducting the validation of MODIS albedo products over rugged terrain. In this research area, it was shown that the MCD43A3 C6 products with full inversion algorithm, were generally in agreement with the aggregated coarse scale reference albedos over rugged terrain in the Heihe River Basin, with the BSA RMSE of 0.0305 and WSA RMSE of 0.0321, respectively, which were slightly higher than those over flat terrain.

  8. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    Science.gov (United States)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  9. Multi-scale porous materials: from adsorption and poro-mechanics properties to energy and environmental applications

    International Nuclear Information System (INIS)

    Pellenq, Roland J.M.

    2012-01-01

    Document available in extended abstract form only. 'Multi-scale Porous Materials under the Nano-scope'. Setting up the stage, one can list important engineering problems such as hydrogen storage for transportation applications, electric energy storage in batteries, CO 2 sequestration in used coal mines, earthquake mechanisms, durability of nuclear fuels, stability of soils and sediment and cements and concrete cohesive properties in the context of sustainability. With the exception of health, these are basically the challenging engineering problems of the coming century that address energy, environment and natural hazards. Behind all those problems are complex multi-scale porous materials that have a confined fluid in their pore void: water in the case of clays and cement, an electrolyte in the case of batteries and super-capacitors, weakly interacting molecular fluids in the case of hydrogen storage devices, gas-shale and nuclear fuel bars. So what do we mean by 'under the nano-scope'? The nano-scope does not exist as a single experimental technique able of assessing the 3D texture of complex multi-scale material. Obviously techniques such as TEM are part of the answer but are not the 'nano-scope' in itself. In our idea, the 'nano-scope' is more than a technique producing images. It is rather a concept that links a suite of modeling techniques coupled with experiments (electron and X-rays microscopies, tomography, nano-indentation, nano-scratching...). Fig 1 gives an outline of this strategy for cement. It allows accessing material texture, their chemistry, their mechanical behavior, their adsorption/condensation behavior at all scales starting from the nano-scale upwards. The toolbox of the simulation aspect of the 'nano-scope' is akin to a statistical physics description of material texture and properties including the thermodynamics and dynamics of the fluids confined to their pore voids as a means to linking atomic scale properties to macroscopic properties

  10. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour; Chá con-Rebollo, Tomas

    2015-01-01

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base

  11. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-01

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  12. A multi-scale energy demand model suggests sharing market risks with intelligent energy cooperatives

    NARCIS (Netherlands)

    G. Methenitis (Georgios); M. Kaisers (Michael); J.A. La Poutré (Han)

    2015-01-01

    textabstractIn this paper, we propose a multi-scale model of energy demand that is consistent with observations at a macro scale, in our use-case standard load profiles for (residential) electric loads. We employ the model to study incentives to assume the risk of volatile market prices for

  13. Iterative equalization for OFDM systems over wideband Multi-Scale Multi-Lag channels

    NARCIS (Netherlands)

    Xu, T.; Tang, Z.; Remis, R.; Leus, G.

    2012-01-01

    OFDM suffers from inter-carrier interference (ICI) when the channel is time varying. This article seeks to quantify the amount of interference resulting from wideband OFDM channels, which are assumed to follow the multi-scale multi-lag (MSML) model. The MSML channel model results in full channel

  14. Multi-scale modeling of dispersed gas-liquid two-phase flow

    NARCIS (Netherlands)

    Deen, N.G.; Sint Annaland, van M.; Kuipers, J.A.M.

    2004-01-01

    In this work the concept of multi-scale modeling is demonstrated. The idea of this approach is to use different levels of modeling, each developed to study phenomena at a certain length scale. Information obtained at the level of small length scales can be used to provide closure information at the

  15. Multi-time, multi-scale correlation functions in turbulence and in turbulent models

    NARCIS (Netherlands)

    Biferale, L.; Boffetta, G.; Celani, A.; Toschi, F.

    1999-01-01

    A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dynamical constraints due to the equations of motion is

  16. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

    KAUST Repository

    Ting, Chee-Ming; Ombao, Hernando; Salleh, Sh-Hussain

    2017-01-01

    In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive

  17. Multi-scale habitat selection modeling: A review and outlook

    Science.gov (United States)

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  18. Applying DLM and DCM concepts in a multi-scale data environment

    NARCIS (Netherlands)

    Stoter, Jantien; Meijers, Martijn; van Oosterom, Peter J.M.; Grünreich, Dietmar; Kraak, Menno-Jan

    2010-01-01

    This extended abstract presents work in progress in which we explore the DLM and DCM concepts in a multi-scale topographic data environment. The abstract is prepared as input for the Symposium on Generalisation and Data Integration (GDI), University of Colorado, Boulder, 20-22 June 2010.

  19. 3D deblending of simultaneous source data based on 3D multi-scale shaping operator

    Science.gov (United States)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin

    2018-04-01

    We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.

  20. Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors

    DEFF Research Database (Denmark)

    van der Lijn, F.; de Bruijne, M.; Hoogendam, Y.Y.

    2009-01-01

    We propose a novel cerebellum segmentation method for MRI, based on a combination of statistical models of the structure's expected location in the brain and its local appearance. The appearance model is obtained from a k-nearest-neighbor classifier, which uses a set of multi-scale local image...

  1. Multi-scale graph-cut algorithm for efficient water-fat separation.

    Science.gov (United States)

    Berglund, Johan; Skorpil, Mikael

    2017-09-01

    To improve the accuracy and robustness to noise in water-fat separation by unifying the multiscale and graph cut based approaches to B 0 -correction. A previously proposed water-fat separation algorithm that corrects for B 0 field inhomogeneity in 3D by a single quadratic pseudo-Boolean optimization (QPBO) graph cut was incorporated into a multi-scale framework, where field map solutions are propagated from coarse to fine scales for voxels that are not resolved by the graph cut. The accuracy of the single-scale and multi-scale QPBO algorithms was evaluated against benchmark reference datasets. The robustness to noise was evaluated by adding noise to the input data prior to water-fat separation. Both algorithms achieved the highest accuracy when compared with seven previously published methods, while computation times were acceptable for implementation in clinical routine. The multi-scale algorithm was more robust to noise than the single-scale algorithm, while causing only a small increase (+10%) of the reconstruction time. The proposed 3D multi-scale QPBO algorithm offers accurate water-fat separation, robustness to noise, and fast reconstruction. The software implementation is freely available to the research community. Magn Reson Med 78:941-949, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Multi-scale characterization of surface blistering morphology of helium irradiated W thin films

    International Nuclear Information System (INIS)

    Yang, J.J.; Zhu, H.L.; Wan, Q.; Peng, M.J.; Ran, G.; Tang, J.; Yang, Y.Y.; Liao, J.L.; Liu, N.

    2015-01-01

    Highlights: • Multi-scale blistering morphology of He irradiated W film was studied. • This complex morphology was first characterized by wavelet transform approach. - Abstract: Surface blistering morphologies of W thin films irradiated by 30 keV He ion beam were studied quantitatively. It was found that the blistering morphology strongly depends on He fluence. For lower He fluence, the accumulation and growth of He bubbles induce the intrinsic surface blisters with mono-modal size distribution feature. When the He fluence is higher, the film surface morphology exhibits a multi-scale property, including two kinds of surface blisters with different characteristic sizes. In addition to the intrinsic He blisters, film/substrate interface delamination also induces large-sized surface blisters. A strategy based on wavelet transform approach was proposed to distinguish and extract the multi-scale surface blistering morphologies. Then the density, the lateral size and the height of these different blisters were estimated quantitatively, and the effect of He fluence on these geometrical parameters was investigated. Our method could provide a potential tool to describe the irradiation induced surface damage morphology with a multi-scale property

  3. Multi-Scale Modelling of Fatigue of Wind Turbine Rotor Blade Composites

    NARCIS (Netherlands)

    Qian, C.

    2013-01-01

    In this research, extensive fatigue tests were performed on single glass fibres and composite coupons. Comparison of the test results shows that there is a significant difference between the fibre and composite fatigue behaviour. In order to clarify this difference, a multi-scale micro-mechanical

  4. Addressing the multi-scale lapsus of landscape : multi-scale landscape process modelling to support sustainable land use : a case study for the Lower Guadalhorce valley South Spain

    NARCIS (Netherlands)

    Schoorl, J.M.

    2002-01-01

    "Addressing the Multi-scale Lapsus of Landscape" with the sub-title "Multi-scale landscape process modelling to support sustainable land use: A case study for the Lower Guadalhorce valley South Spain" focuses on the role of

  5. A multi-scale and model approach to estimate future tidal high water statistics in the southern German Bright

    Science.gov (United States)

    Hein, H.; Mai, S.; Mayer, B.; Pohlmann, T.; Barjenbruch, U.

    2012-04-01

    in time and spectral properties. Based on multi-scale analysis', two optimization steps are applied: First, time series can be shifted on multiple scales with time in such manner that they fit optimal in the sense of least squares. Second, based on the uncertainties of this fitting procedure, Monte Carlo Simulations are possible. The resulting method can be interpreted as something like multi-scale bias-correction for uncertain climate model results. To represent statistics results of the simulations are transformed into cumulative distribution functions for recent and future states. Statistics of the multi-scale approach differ from them, which based simply on numeric models. We conclude that climate change unavoidable means changes of spectral characteristics and thus non-linear changes of Thw statistics. Thus, no conclusions from individual historic hazards for an assessment of future hazards can be drawn. Finally, due the procedure described here we are in a better position to determine uncertainties and the determination of future exceedance probabilities of Thw is more traceable. This is one fundamental basis to quantify vulnerabilities of coastal regions and for the design of coastal defense structures.

  6. Multi-scale model of epidemic fade-out: Will local extirpation events inhibit the spread of white-nose syndrome?

    Science.gov (United States)

    O'Reagan, Suzanne M; Magori, Krisztian; Pulliam, J Tomlin; Zokan, Marcus A; Kaul, RajReni B; Barton, Heather D; Drake, John M

    2015-04-01

    White-nose syndrome (WNS) is an emerging infectious disease that has resulted in severe declines of its hibernating bat hosts in North America. The ongoing epidemic of white-nose syndrome is a multi-scale phenomenon becau.se it causes hibernaculum-level extirpations, while simultaneously spreading over larger spatial scales. We investigate a neglected topic in ecological epidemiology: how local pathogen-driven extirpations impact large-scale pathogen spread. Previous studies have identified risk factors for propagation of WNS over hibernaculum and landscape scales but none of these have tested the hypothesis that separation of spatial scales and disease-induced mortality at the hibernaculum level might slow or halt its spread. To test this hypothesis, we developed a mechanistic multi-scale model parameterized using white-nose syndrome.county and site incidence data that connects hibernaculum-level susceptible-infectious-removed (SIR) epidemiology to the county-scale contagion process. Our key result is that hibernaculum-level extirpations will not inhibit county-scale spread of WNS. We show that over 80% of counties of the contiguous USA are likely to become infected before the current epidemic is over and that geometry of habitat connectivity is such that host refuges are exceedingly rare. The macroscale spatiotemporal infection pattern that emerges from local SIR epidemiological processes falls within a narrow spectrum of possible outcomes, suggesting that recolonization, rescue effects, and multi-host complexities at local scales are not important to forward propagation of WNS at large spatial scales. If effective control measures are not implemented, precipitous declines in bat populations are likely, particularly in cave-dense regions that constitute the main geographic corridors of the USA, a serious concern for bat conservation.

  7. A new multi-scale platform for advanced nuclear thermal-hydraulics status and prospects of the Neptune project

    International Nuclear Information System (INIS)

    Bestion, D.; Boudier, P.; Hervieu, E.; Boucker, M.; Peturaud, P.; Guelfi, A.; Fillion, P.; Grandotto, M.; Herard, J.M.

    2005-01-01

    Full text of publication follows: Further to a thorough analysis of the industrial needs and of the limitations of current simulation tools, EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique) launched in 2001 a new long-term joint development program for the next generation of nuclear reactors simulation tools. The NEPTUNE Project, which constitutes the Thermal-Hydraulics part of this comprehensive program, aims at building a new software platform for advanced two-phase flow thermal-hydraulics allowing easy multi-scale and multi-disciplinary calculations meeting the industrial needs. The NEPTUNE activities include software development, research in physical modeling and numerical methods, the development of advanced instrumentation techniques and performance of new experimental programs. The work focuses on the four different simulation scales: DNS (Direct Numerical Simulation), local CFD (Computational Fluid Dynamics), component (subchannel-type analysis) and system scales. New physical models and numerical methods are being developed for each scale as well as for their coupling. This paper gives an overview of the NEPTUNE activities. It presents the main scientific and technical achievements obtained during Phase 1 (2002-2003) and at the beginning of Phase 2 (2004- 2006). Planned work for the future is also presented. (authors)

  8. Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework

    Directory of Open Access Journals (Sweden)

    Shahriyar Keshavarz

    2017-11-01

    Full Text Available This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM of the representative volume element (RVE with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.

  9. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Nan [Department of Bioengineering, Stanford University, Stanford, CA 94305 (United States); Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom); Humphrey, Jay D. [Department of Biomedical Engineering, Yale University, New Haven, CT 06520 (United States); Figueroa, C. Alberto, E-mail: alberto.figueroa@kcl.ac.uk [Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom)

    2013-07-01

    In this article, we present a computational multi-scale model of fully three-dimensional and unsteady hemodynamics within the primary large arteries in the human. Computed tomography image data from two different patients were used to reconstruct a nearly complete network of the major arteries from head to foot. A linearized coupled-momentum method for fluid–structure-interaction was used to describe vessel wall deformability and a multi-domain method for outflow boundary condition specification was used to account for the distal circulation. We demonstrated that physiologically realistic results can be obtained from the model by comparing simulated quantities such as regional blood flow, pressure and flow waveforms, and pulse wave velocities to known values in the literature. We also simulated the impact of age-related arterial stiffening on wave propagation phenomena by progressively increasing the stiffness of the central arteries and found that the predicted effects on pressure amplification and pulse wave velocity are in agreement with findings in the clinical literature. This work demonstrates the feasibility of three-dimensional techniques for simulating hemodynamics in a full-body compliant arterial network.

  10. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework against GPM, TRMM and CloudSat/CALIPSO Products

    Science.gov (United States)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.

    2014-12-01

    Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.

  11. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    Science.gov (United States)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of

  12. Multivariate Multi-Scale Permutation Entropy for Complexity Analysis of Alzheimer’s Disease EEG

    Directory of Open Access Journals (Sweden)

    Isabella Palamara

    2012-07-01

    Full Text Available An original multivariate multi-scale methodology for assessing the complexity of physiological signals is proposed. The technique is able to incorporate the simultaneous analysis of multi-channel data as a unique block within a multi-scale framework. The basic complexity measure is done by using Permutation Entropy, a methodology for time series processing based on ordinal analysis. Permutation Entropy is conceptually simple, structurally robust to noise and artifacts, computationally very fast, which is relevant for designing portable diagnostics. Since time series derived from biological systems show structures on multiple spatial-temporal scales, the proposed technique can be useful for other types of biomedical signal analysis. In this work, the possibility of distinguish among the brain states related to Alzheimer’s disease patients and Mild Cognitive Impaired subjects from normal healthy elderly is checked on a real, although quite limited, experimental database.

  13. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Arneodo, Alain; Vaillant, Cedric; Audit, Benjamin; Argoul, Francoise; D'Aubenton-Carafa, Yves; Thermes, Claude

    2011-01-01

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  14. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes. The short pulse nature of a femtosecond laser on a graphene/copper sheet enables fabrication of high-resolution graphene patterns. Thanks to the scale up, fast, direct writing, multi-scale with high resolution, and reliable process characteristics, it can be an alternative pathway to the multi-step photolithography methods for printing arbitrary graphene patterns on desired substrates. We also demonstrate transparent strain devices without expensive photomasks and multi-step patterning process. © 2012 American Institute of Physics.

  15. 'SEEDY' (Simulation of Evolutionary and Epidemiological Dynamics: An R Package to Follow Accumulation of Within-Host Mutation in Pathogens.

    Directory of Open Access Journals (Sweden)

    Colin J Worby

    Full Text Available Genome sequencing is an increasingly common component of infectious disease outbreak investigations. However, the relationship between pathogen transmission and observed genetic data is complex, and dependent on several uncertain factors. As such, simulation of pathogen dynamics is an important tool for interpreting observed genomic data in an infectious disease outbreak setting, in order to test hypotheses and to explore the range of outcomes consistent with a given set of parameters. We introduce 'seedy', an R package for the simulation of evolutionary and epidemiological dynamics (http://cran.r-project.org/web/packages/seedy/. Our software implements stochastic models for the accumulation of mutations within hosts, as well as individual-level disease transmission. By allowing variables such as the transmission bottleneck size, within-host effective population size and population mixing rates to be specified by the user, our package offers a flexible framework to investigate evolutionary dynamics during disease outbreaks. Furthermore, our software provides theoretical pairwise genetic distance distributions to provide a likelihood of person-to-person transmission based on genomic observations, and using this framework, implements transmission route assessment for genomic data collected during an outbreak. Our open source software provides an accessible platform for users to explore pathogen evolution and outbreak dynamics via simulation, and offers tools to assess observed genomic data in this context.

  16. Low-carbon building assessment and multi-scale input-output analysis

    Science.gov (United States)

    Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.

    2011-01-01

    Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.

  17. Classification of high-resolution remote sensing images based on multi-scale superposition

    Science.gov (United States)

    Wang, Jinliang; Gao, Wenjie; Liu, Guangjie

    2017-07-01

    Landscape structures and process on different scale show different characteristics. In the study of specific target landmarks, the most appropriate scale for images can be attained by scale conversion, which improves the accuracy and efficiency of feature identification and classification. In this paper, the authors carried out experiments on multi-scale classification by taking the Shangri-la area in the north-western Yunnan province as the research area and the images from SPOT5 HRG and GF-1 Satellite as date sources. Firstly, the authors upscaled the two images by cubic convolution, and calculated the optimal scale for different objects on the earth shown in images by variation functions. Then the authors conducted multi-scale superposition classification on it by Maximum Likelyhood, and evaluated the classification accuracy. The results indicates that: (1) for most of the object on the earth, the optimal scale appears in the bigger scale instead of the original one. To be specific, water has the biggest optimal scale, i.e. around 25-30m; farmland, grassland, brushwood, roads, settlement places and woodland follows with 20-24m. The optimal scale for shades and flood land is basically as the same as the original one, i.e. 8m and 10m respectively. (2) Regarding the classification of the multi-scale superposed images, the overall accuracy of the ones from SPOT5 HRG and GF-1 Satellite is 12.84% and 14.76% higher than that of the original multi-spectral images, respectively, and Kappa coefficient is 0.1306 and 0.1419 higher, respectively. Hence, the multi-scale superposition classification which was applied in the research area can enhance the classification accuracy of remote sensing images .

  18. A Multi-Scale Computational Study on the Mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic)

    OpenAIRE

    Ion, Bogdan; Kazim, Erum; Gauld, James

    2014-01-01

    Nicotinamidase (Nic) is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic). In particular, density functional theory (DFT), molecular dynamics (MD) and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods have been employed. The o...

  19. Recognition of facial expressions by cortical multi-scale line and edge coding

    OpenAIRE

    Sousa, R.; Rodrigues, J. M. F.; du Buf, J. M. H.

    2010-01-01

    Face-to-face communications between humans involve emotions, which often are unconsciously conveyed by facial expressions and body gestures. Intelligent human-machine interfaces, for example in cognitive robotics, need to recognize emotions. This paper addresses facial expressions and their neural correlates on the basis of a model of the visual cortex: the multi-scale line and edge coding. The recognition model links the cortical representation with Paul Ekman's Action Units which are relate...

  20. Multi-scale dynamical analysis (MSDA) of sea level records versus PDO, AMO, and NAO indexes

    OpenAIRE

    Scafetta, Nicola

    2013-01-01

    Herein I propose a multi-scale dynamical analysis to facilitate the physical interpretation of tide gauge records. The technique uses graphical diagrams. It is applied to six secular-long tide gauge records representative of the world oceans: Sydney, Pacific coast of Australia; Fremantle, Indian Ocean coast of Australia; New York City, Atlantic coast of USA; Honolulu, U.S. state of Hawaii; San Diego, U.S. state of California; and Venice, Mediterranean Sea, Italy. For comparison, an equivalent...

  1. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    OpenAIRE

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  2. Energy and Environmental Drivers of Stress and Conflict in Multi scale Models of Human Social Behavior

    Science.gov (United States)

    2017-10-31

    resolved by the recognition that cities are first and foremost self- organizing social networks embedded in space and enabled by urban infrastructure and...AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d...Report: Energy and Environmental Drivers of Stress and Conflict in Multi-scale Models of Human Social Behavior The views, opinions and/or findings

  3. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.

  4. “HABITAT MAPPING” GEODATABASE, AN INTEGRATED INTERDISCIPLINARY AND MULTI-SCALE APPROACH FOR DATA MANAGEMENT

    OpenAIRE

    Grande, Valentina; Angeletti, Lorenzo; Campiani, Elisabetta; Conese, Ilaria; Foglini, Federica; Leidi, Elisa; Mercorella, Alessandra; Taviani, Marco

    2016-01-01

    Abstract Historically, a number of different key concepts and methods dealing with marine habitat classifications and mapping have been developed to date. The EU CoCoNET project provides a new attempt in establishing an integrated approach on the definition of habitats. This scheme combines multi-scale geological and biological data, in fact it consists of three levels (Geomorphological level, Substrate level and Biological level) which in turn are divided into several h...

  5. Scrubbing up: multi-scale investigation of woody encroachment in a southern African savannah

    OpenAIRE

    Marston, Christopher G.; Aplin, Paul; Wilkinson, David M.; Field, Richard; O'Regan, Hannah J.

    2017-01-01

    Changes in the extent of woody vegetation represent a major conservation question in many savannah systems around the globe. To address the problem of the current lack of broad-scale cost-effective tools for land cover monitoring in complex savannah environments, we use a multi-scale approach to quantifying vegetation change in Kruger National Park (KNP), South Africa. We test whether medium spatial resolution satellite data (Landsat, existing back to the 1970s), which have pixel sizes larger...

  6. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation.

    Science.gov (United States)

    Xue, Yuan; Xu, Tao; Zhang, Han; Long, L Rodney; Huang, Xiaolei

    2018-05-03

    Inspired by classic Generative Adversarial Networks (GANs), we propose a novel end-to-end adversarial neural network, called SegAN, for the task of medical image segmentation. Since image segmentation requires dense, pixel-level labeling, the single scalar real/fake output of a classic GAN's discriminator may be ineffective in producing stable and sufficient gradient feedback to the networks. Instead, we use a fully convolutional neural network as the segmentor to generate segmentation label maps, and propose a novel adversarial critic network with a multi-scale L 1 loss function to force the critic and segmentor to learn both global and local features that capture long- and short-range spatial relationships between pixels. In our SegAN framework, the segmentor and critic networks are trained in an alternating fashion in a min-max game: The critic is trained by maximizing a multi-scale loss function, while the segmentor is trained with only gradients passed along by the critic, with the aim to minimize the multi-scale loss function. We show that such a SegAN framework is more effective and stable for the segmentation task, and it leads to better performance than the state-of-the-art U-net segmentation method. We tested our SegAN method using datasets from the MICCAI BRATS brain tumor segmentation challenge. Extensive experimental results demonstrate the effectiveness of the proposed SegAN with multi-scale loss: on BRATS 2013 SegAN gives performance comparable to the state-of-the-art for whole tumor and tumor core segmentation while achieves better precision and sensitivity for Gd-enhance tumor core segmentation; on BRATS 2015 SegAN achieves better performance than the state-of-the-art in both dice score and precision.

  7. Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation

    Science.gov (United States)

    Sakamoto, M.; Honda, Y.; Kondo, A.

    2016-06-01

    From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.

  8. Multi-Scale Residual Convolutional Neural Network for Haze Removal of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2018-06-01

    Full Text Available Haze removal is a pre-processing step that operates on at-sensor radiance data prior to the physically based image correction step to enhance hazy imagery visually. Most current haze removal methods focus on point-to-point operations and utilize information in the spectral domain, without taking consideration of the multi-scale spatial information of haze. In this paper, we propose a multi-scale residual convolutional neural network (MRCNN for haze removal of remote sensing images. MRCNN utilizes 3D convolutional kernels to extract spatial–spectral correlation information and abstract features from surrounding neighborhoods for haze transmission estimation. It takes advantage of dilated convolution to aggregate multi-scale contextual information for the purpose of improving its prediction accuracy. Meanwhile, residual learning is utilized to avoid the loss of weak information while deepening the network. Our experiments indicate that MRCNN performs accurately, achieving an extremely low validation error and testing error. The haze removal results of several scenes of Landsat 8 Operational Land Imager (OLI data show that the visibility of the dehazed images is significantly improved, and the color of recovered surface is consistent with the actual scene. Quantitative analysis proves that the dehazed results of MRCNN are superior to the traditional methods and other networks. Additionally, a comparison to haze-free data illustrates the spectral consistency after haze removal and reveals the changes in the vegetation index.

  9. A Method of Vector Map Multi-scale Representation Considering User Interest on Subdivision Gird

    Directory of Open Access Journals (Sweden)

    YU Tong

    2016-12-01

    Full Text Available Compared with the traditional spatial data model and method, global subdivision grid show a great advantage in the organization and expression of massive spatial data. In view of this, a method of vector map multi-scale representation considering user interest on subdivision gird is proposed. First, the spatial interest field is built using a large number POI data to describe the spatial distribution of the user interest in geographic information. Second, spatial factor is classified and graded, and its representation scale range can be determined. Finally, different levels of subdivision surfaces are divided based on GeoSOT subdivision theory, and the corresponding relation of subdivision level and scale is established. According to the user interest of subdivision surfaces, the spatial feature can be expressed in different degree of detail. It can realize multi-scale representation of spatial data based on user interest. The experimental results show that this method can not only satisfy general-to-detail and important-to-secondary space cognitive demands of users, but also achieve better multi-scale representation effect.

  10. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  11. Joint Multi-scale Convolution Neural Network for Scene Classification of High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    ZHENG Zhuo

    2018-05-01

    Full Text Available High resolution remote sensing imagery scene classification is important for automatic complex scene recognition, which is the key technology for military and disaster relief, etc. In this paper, we propose a novel joint multi-scale convolution neural network (JMCNN method using a limited amount of image data for high resolution remote sensing imagery scene classification. Different from traditional convolutional neural network, the proposed JMCNN is an end-to-end training model with joint enhanced high-level feature representation, which includes multi-channel feature extractor, joint multi-scale feature fusion and Softmax classifier. Multi-channel and scale convolutional extractors are used to extract scene middle features, firstly. Then, in order to achieve enhanced high-level feature representation in a limit dataset, joint multi-scale feature fusion is proposed to combine multi-channel and scale features using two feature fusions. Finally, enhanced high-level feature representation can be used for classification by Softmax. Experiments were conducted using two limit public UCM and SIRI datasets. Compared to state-of-the-art methods, the JMCNN achieved improved performance and great robustness with average accuracies of 89.3% and 88.3% on the two datasets.

  12. Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method.

    Science.gov (United States)

    Zhou, Ming; Feng, Chengheng; Wu, Chunxia; Ma, Weiwei; Cai, Lan

    2009-07-01

    The ZnO nanostructures were synthesized on Si(100) substrates by chemical vapor deposition (CVD) method. Different Morphologies of ZnO nanostructures, such as nanoparticle film, micro-pillar and micro-nano multi-structure, were obtained with different conditions. The results of XRD and TEM showed the good quality of ZnO crystal growth. Selected area electron diffraction analysis indicates the individual nano-wire is single crystal. The wettability of ZnO was studied by contact angle admeasuring apparatus. We found that the wettability can be changed from hydrophobic to super-hydrophobic when the structure changed from smooth particle film to single micro-pillar, nano-wire and micro-nano multi-scale structure. Compared with the particle film with contact angle (CA) of 90.7 degrees, the CA of single scale microstructure and sparse micro-nano multi-scale structure is 130-140 degrees, 140-150 degrees respectively. But when the surface is dense micro-nano multi-scale structure such as nano-lawn, the CA can reach to 168.2 degrees . The results indicate that microstructure of surface is very important to the surface wettability. The wettability on the micro-nano multi-structure is better than single-scale structure, and that of dense micro-nano multi-structure is better than sparse multi-structure.

  13. Multi-scale Modeling of Power Plant Plume Emissions and Comparisons with Observations

    Science.gov (United States)

    Costigan, K. R.; Lee, S.; Reisner, J.; Dubey, M. K.; Love, S. P.; Henderson, B. G.; Chylek, P.

    2011-12-01

    The Remote Sensing Verification Project (RSVP) test-bed located in the Four Corners region of Arizona, Utah, Colorado, and New Mexico offers a unique opportunity to develop new approaches for estimating emissions of CO2. Two major power plants located in this area produce very large signals of co-emitted CO2 and NO2 in this rural region. In addition to the Environmental Protection Agency (EPA) maintaining Continuous Emissions Monitoring Systems (CEMS) on each of the power plant stacks, the RSVP program has deployed an array of in-situ and remote sensing instruments, which provide both point and integrated measurements. To aid in the synthesis and interpretation of the measurements, a multi-scale atmospheric modeling approach is implemented, using two atmospheric numerical models: the Weather Research and Forecasting Model with chemistry (WRF-Chem; Grell et al., 2005) and the HIGRAD model (Reisner et al., 2003). The high fidelity HIGRAD model incorporates a multi-phase Lagrangian particle based approach to track individual chemical species of stack plumes at ultra-high resolution, using an adaptive mesh. It is particularly suited to model buoyancy effects and entrainment processes at the edges of the power plant plumes. WRF-Chem is a community model that has been applied to a number of air quality problems and offers several physical and chemical schemes that can be used to model the transport and chemical transformation of the anthropogenic plumes out of the local region. Multiple nested grids employed in this study allow the model to incorporate atmospheric variability ranging from synoptic scales to micro-scales (~200 m), while including locally developed flows influenced by the nearby complex terrain of the San Juan Mountains. The simulated local atmospheric dynamics are provided to force the HIGRAD model, which links mesoscale atmospheric variability to the small-scale simulation of the power plant plumes. We will discuss how these two models are applied and

  14. Multi-scale experimental and numerical study of the structure and the dynamics of water confined in clay minerals

    International Nuclear Information System (INIS)

    Guillaud, Emmanuel Bertrand

    2017-01-01

    Clay are complex minerals with a multi-scale porosity and a remarkable ability to swell under humid atmosphere. These materials have many applications in catalysis, waste management, construction industry... However, the properties of confined water are still not fully understood, due in particular to the complexity of water itself. The aim of this work is, using mainly molecular simulations and vibrational spectroscopy, to understand the structure and the dynamics of water confined in clay minerals. To evaluate the accuracy of numerical models to describe water confined in clay minerals, and to understand the origin of its structural and dynamical properties, a large part of the work was devoted to the building blocks of clays: pure bulk water, water at the surface of a solid, and salt water. To this extent, the viscoelastic properties of water from the deeply supercooled regime to the boiling temperature were investigated using classical molecular dynamics. The evolution of the friction properties of water on a prototypical solid surface was also analyzed, and the accuracy of ab initio approaches and empirical salt models was studied. In a second part, those results were confronted to the properties of water confined in clay minerals at low and room temperature, studied both experimentally and numerically. Experimental work consisted mostly in extensive far- and -mid infrared absorption spectrometry measurements, whereas numerical work mainly consisted in empirical molecular dynamics simulations. Especially, the existence of confinement- or temperature-induced phase transitions of confined water was investigated. (author)

  15. Multi-scale coarse graining and molecular dynamics simulations of vesicle formation

    NARCIS (Netherlands)

    Hoof, van B.

    2013-01-01

    The basic mechanisms of living cells have attracted an increased interest in recent years, triggered perhaps by the prospect of creating life in the laboratory through synthetic biology. This once-futuristic idea has become realistic through scientific progress in the past decade. One of the main

  16. Multi-scale simulation and experimental studies of asphaltene aggregation and deposition in capillary flow

    NARCIS (Netherlands)

    Boek, E.S.; Wilson, A.D.; Padding, J.T.; Headen, T.F.; Crawshaw, J.P.

    2010-01-01

    Asphaltenes are known as the "cholesterol" of crude oil. They form nanoaggregates, precipitate, adhere to surfaces, block rock pores, and may alter the wetting characteristics of mineral surfaces within the reservoir, hindering oil recovery efficiency. Despite a significant research effort, the

  17. Multi-Paradigm Multi-Scale Simulations for Fuel Cell Catalysts and Membranes

    Science.gov (United States)

    2006-01-01

    transfer studies on model systems. . Applying newly developed density functionals QM ( X3LYP ) for estimating the thermodynamics and kinetic energy...Density functional theory methods We have used many QM methods to probe chemical reaction mechanisms and find that the B3LYP and X3LYP [6] flavors of DFT...carried out QM calculations on the surface reactivity of the Pt and PtRu anode catalysts. This QM uses a new ab initio DFT-GGA method ( X3LYP ) [6

  18. ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

    2008-06-30

    The potential to save trillions of BTU’s in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: • While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. • Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. • For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/π, which has additional implications. . • For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack-driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. • From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

  19. Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis

    Science.gov (United States)

    Mercury is a ubiquitous global environmental toxicant responsible for most US fish advisories. Processes governing mercury concentrations in rivers and streams are not well understood, particularly at multiple spatial scales. We investigate how insights gained from reach-scale me...

  20. Impact of electro-magnetic stabilization, small- scale turbulence and multi-scale interactions on heat transport in JET

    Science.gov (United States)

    Mantica, Paola

    2016-10-01

    Heat transport experiments in JET, based on ICRH heat flux scans and temperature modulation, have confirmed the importance of two transport mechanisms that are often neglected in modeling experimental results, but are crucial to reach agreement between theory and experiment and may be significant in ITER. The first mechanism is the stabilizing effect of the total pressure gradient (including fast ions) on ITG driven ion heat transport. Such stabilization is found in non-linear gyro-kinetic electro-magnetic simulations using GENE and GYRO, and is the explanation for the observed loss of ion stiffness in the core of high NBI-power JET plasmas. The effect was recently observed also in JET plasmas with dominant ICRH heating and small rotation, due to ICRH fast ions, which is promising for ITER. Such mechanism dominates over ExB flow shear in the core and needs to be included in quasi-linear models to increase their ability to capture the relevant physics. The second mechanism is the capability of small- scale ETG instabilities to carry a significant fraction of electron heat. A decrease in Te peaking is observed when decreasing Zeff Te/Ti, which cannot be ascribed to TEMs but is in line with ETGs. Non-linear GENE single-scale simulations of ETGs and ITG/TEMs show that the ITG/TEM electron heat flux is not enough to match experiment. TEM stiffness is also much lower than measured. In the ETG single scale simulations the external flow shear is used to saturate the ETG streamers. Multi-scale simulations are ongoing, in which the ion zonal flows are the main saturating mechanism for ETGs. These costly simulations should provide the final answer on the importance of ETG-driven electron heat flux in JET. with JET contributors [F.Romanelli, Proc.25thIAEA FEC]. Supported by EUROfusion Grant 633053.

  1. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  2. Multi-scale modelling of the hydro-mechanical behaviour of argillaceous rocks

    International Nuclear Information System (INIS)

    Van den Eijnden, Bram

    2015-01-01

    theoretical developments of this extension are implemented in the finite element code Lagamine (Liege) as an independent constitutive relation. For the modelling of localization of deformation, which in classical FE methods suffers from the well-known mesh dependency, the double-scale approach of hydro-mechanical coupling is combined with a local second gradient model to control the internal length scale of localized deformation. By accepting the periodic boundary conditions as a regularization of the microscale deformation, the use of the multi-scale model in combination with the local second gradient model can be used for modelling localization phenomena in HM-coupled settings with material softening. The modelling capacities of the approach are demonstrated by means of simulations of odometer tests and biaxial compression tests. The approach is demonstrated to be a powerful way to model anisotropy in the mechanical as well as the hydraulic behaviour of the material both in the initial material state and as an effect of hydro-mechanical alterations. For the application to the modelling of Callovo-Oxfordian clay-stone, microstructural REVs are calibrated to geometrical characteristics of the inclusion that form the microstructure under consideration and to macro-scale experimental results of the mechanical behaviour. The calibrated constitutive relation is used in the simulation of gallery excavation processes. These computations give a proof of concept of the double-scale assessment of the hydro-mechanical behaviour of the excavation damaged zones around galleries in the context of nuclear waste disposal. (author) [fr

  3. Simulating the epidemiological and economic effects of an African swine fever epidemic in industrialized swine populations

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Bøtner, Anette; Mortensen, Sten

    2016-01-01

    to simulate the spread of ASF virus between domestic swine herds exemplified by the Danish swine population. ASF was simulated to spread via animal movement, low- or medium-risk contacts and local spread. Each epidemic was initiated in a randomly selected herd – either in a nucleus herd, a sow herd......African swine fever (ASF) is a notifiable infectious disease with a considerable impact on animal health and is currently one of the most important emerging diseases of domestic pigs. ASF was introduced into Georgia in 2007 and subsequently spread to the Russian Federation and several Eastern...... European countries. Consequently, there is a non-negligible risk of ASF spread towards Western Europe. Therefore it is important to develop tools to improve our understanding of the spread and control of ASF for contingency planning. A stochastic and dynamic spatial spread model (DTU-DADS) was adjusted...

  4. Simulating the Epidemiological and Economic Impact of Paratuberculosis Control Actions in Dairy Cattle

    DEFF Research Database (Denmark)

    Kirkeby, Carsten Thure; Græsbøll, Kaare; Nielsen, Søren Saxmose

    2016-01-01

    We describe a new mechanistic bioeconomic model for simulating the spread of Mycobacterium avium subsp. paratuberculosis (MAP) within a dairy cattle herd. The model includes age-dependent susceptibility for infection; age-dependent sensitivity for detection; environmental MAP build up in five...... control actions from the Danish MAP control program, it was not economically attractive since the expenses for the control actions outweigh the benefits. Furthermore, the three most popular control actions against the spread of MAP on the farm were found to be costly and inefficient in lowering...

  5. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Science.gov (United States)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  6. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    Science.gov (United States)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.

    2017-11-01

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.

  7. Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv; Singh, Abhinav [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Bais, Vaibhav Sushil Singh; Prakash, Balaji [Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Verma, Nishith, E-mail: nishith@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2014-05-01

    In the present study, different proteins, namely, bovine serum albumin (BSA), glucose oxidase (GOx) and the laboratory purified YqeH were immobilized in the phenolic resin precursor-based multi-scale web of activated carbon microfibers (ACFs) and carbon nanofibers (CNFs). These biomolecules are characteristically different from each other, having different structure, number of parent amino acid molecules and isoelectric point. CNF was grown on ACF substrate by chemical vapor deposition, using Ni nanoparticles (Nps) as the catalyst. The ultra-sonication of the CNFs was carried out in acidic medium to remove Ni Nps from the tip of the CNFs to provide additional active sites for adsorption. The prepared material was directly used as an adsorbent for proteins, without requiring any additional treatment. Several analytical techniques were used to characterize the prepared materials, including scanning electron microscopy, Fourier transform infrared spectroscopy, BET surface area, pore-size distribution, and UV–vis spectroscopy. The adsorption capacities of prepared ACFs/CNFs in this study were determined to be approximately 191, 39 and 70 mg/g for BSA, GOx and YqeH, respectively, revealing that the carbon micro-nanofibers forming synthesized multi-scale web are efficient materials for the immobilization of protein molecules. - Highlights: • Ni metal Np-dispersed carbon micro-nanofibers (ACFs/CNFs) are prepared. • ACFs/CNFs are mesoporous. • Significant adsorption of BSA, GOx and YqeH is observed on ACFs/CNFs. • Multi-scale web of ACFs/CNFs is effective for protein immobilization.

  8. Exploring Multi-Scale Spatiotemporal Twitter User Mobility Patterns with a Visual-Analytics Approach

    Directory of Open Access Journals (Sweden)

    Junjun Yin

    2016-10-01

    Full Text Available Understanding human mobility patterns is of great importance for urban planning, traffic management, and even marketing campaign. However, the capability of capturing detailed human movements with fine-grained spatial and temporal granularity is still limited. In this study, we extracted high-resolution mobility data from a collection of over 1.3 billion geo-located Twitter messages. Regarding the concerns of infringement on individual privacy, such as the mobile phone call records with restricted access, the dataset is collected from publicly accessible Twitter data streams. In this paper, we employed a visual-analytics approach to studying multi-scale spatiotemporal Twitter user mobility patterns in the contiguous United States during the year 2014. Our approach included a scalable visual-analytics framework to deliver efficiency and scalability in filtering large volume of geo-located tweets, modeling and extracting Twitter user movements, generating space-time user trajectories, and summarizing multi-scale spatiotemporal user mobility patterns. We performed a set of statistical analysis to understand Twitter user mobility patterns across multi-level spatial scales and temporal ranges. In particular, Twitter user mobility patterns measured by the displacements and radius of gyrations of individuals revealed multi-scale or multi-modal Twitter user mobility patterns. By further studying such mobility patterns in different temporal ranges, we identified both consistency and seasonal fluctuations regarding the distance decay effects in the corresponding mobility patterns. At the same time, our approach provides a geo-visualization unit with an interactive 3D virtual globe web mapping interface for exploratory geo-visual analytics of the multi-level spatiotemporal Twitter user movements.

  9. IMPROVEMENT AND EXTENSION OF SHAPE EVALUATION CRITERIA IN MULTI-SCALE IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    M. Sakamoto

    2016-06-01

    Full Text Available From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region’s shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape’s diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape’s reproducibility.

  10. Multi-scale kinetic description of granular clusters: invariance, balance, and temperature

    Science.gov (United States)

    Capriz, Gianfranco; Mariano, Paolo Maria

    2017-12-01

    We discuss a multi-scale continuum representation of bodies made of several mass particles flowing independently each other. From an invariance procedure and a nonstandard balance of inertial actions, we derive the balance equations introduced in earlier work directly in pointwise form, essentially on the basis of physical plausibility. In this way, we analyze their foundations. Then, we propose a Boltzmann-type equation for the distribution of kinetic energies within control volumes in space and indicate how such a distribution allows us to propose a definition of (granular) temperature along processes far from equilibrium.

  11. High resolution multi-scale air quality modelling for all streets in Denmark

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Becker, Thomas

    2017-01-01

    The annual concentrations of NO2, PM2.5 and PM10 in 2012 have for the first time been modelled for all 2.4 million addresses in Denmark based on a multi-scale air quality modelling approach. All addresses include residential, industrial, institutional, shop, school, restaurant addresses etc...... concentrations of NO2 for the five available street monitoring stations are within −27% to +12%. The model results were also verified with comparisons with previous model results for NO2 at 98 selected streets in Copenhagen and 31 streets in Aalborg. The verification showed good correlation in Copenhagen (r2 = 0...

  12. Evaluating and Improving Cloud Processes in the Multi-Scale Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P. [Univ. of Washington, Seattle, WA (United States)

    2015-03-01

    The research performed under this grant was intended to improve the embedded cloud model in the Multi-scale Modeling Framework (MMF) for convective clouds by using a 2-moment microphysics scheme rather than the single moment scheme used in all the MMF runs to date. The technical report and associated documents describe the results of testing the cloud resolving model with fixed boundary conditions and evaluation of model results with data. The overarching conclusion is that such model evaluations are problematic because errors in the forcing fields control the results so strongly that variations in parameterization values cannot be usefully constrained

  13. Replication of Non-Trivial Directional Motion in Multi-Scales Observed by the Runs Test

    Science.gov (United States)

    Yura, Yoshihiro; Ohnishi, Takaaki; Yamada, Kenta; Takayasu, Hideki; Takayasu, Misako

    Non-trivial autocorrelation in up-down statistics in financial market price fluctuation is revealed by a multi-scale runs test(Wald-Wolfowitz test). We apply two models, a stochastic price model and dealer model to understand this property. In both approaches we successfully reproduce the non-stationary directional price motions consistent with the runs test by tuning parameters in the models. We find that two types of dealers exist in the markets, a short-time-scale trend-follower and an extended-time-scale contrarian who are active in different time periods.

  14. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    Science.gov (United States)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  15. A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

    International Nuclear Information System (INIS)

    Seer, Qiu Han; Nandong, Jobrun

    2016-01-01

    This paper presents a new control strategy which unifies the direct and indirect multi-scale control schemes via a double-loop control structure. This unified control strategy is proposed for controlling a class of highly nonminimum-phase processes having both integrating and unstable modes. This type of systems is often encountered in fed-batch fermentation processes which are very difficult to stabilize via most of the existing well-established control strategies. A systematic design procedure is provided where its applicability is demonstrated via a numerical example. (paper)

  16. Multi-scale image segmentation method with visual saliency constraints and its application

    Science.gov (United States)

    Chen, Yan; Yu, Jie; Sun, Kaimin

    2018-03-01

    Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works

  17. Multi-scale organization of water vapor over low and mid-tropical Africa

    CSIR Research Space (South Africa)

    Botai, OJ

    2009-01-01

    Full Text Available stream_source_info Botai_2009.pdf.txt stream_content_type text/plain stream_size 23192 Content-Encoding UTF-8 stream_name Botai_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 MULTI-SCALE ORGANIZATION OF WATER.... Integrated water vapor field and multiscale variations over China from GPS measurements. J. appl., Meteo., Climatol., 47, pp. 3008-3015 8. Johnsen K. P., 2003. GPS atmosphere sounding project- An innovative approach for the recovery of atmospheric...

  18. Regularization of EIT reconstruction based on multi-scales wavelet transforms

    Directory of Open Access Journals (Sweden)

    Gong Bo

    2016-09-01

    Full Text Available Electrical Impedance Tomography (EIT intends to obtain the conductivity distribution of a domain from the electrical boundary conditions. This is an ill-posed inverse problem usually solved on finite element meshes. Wavelet transforms are widely used for medical image reconstruction. However, because of the irregular form of the finite element meshes, the canonical wavelet transforms is impossible to perform on meshes. In this article, we present a framework that combines multi-scales wavelet transforms and finite element meshes by viewing meshes as undirected graphs and applying spectral graph wavelet transform on the meshes.

  19. Systematic approximation of multi-scale Feynman integrals arXiv

    CERN Document Server

    Borowka, Sophia; Hulme, Daniel

    An algorithm for the systematic analytical approximation of multi-scale Feynman integrals is presented. The algorithm produces algebraic expressions as functions of the kinematical parameters and mass scales appearing in the Feynman integrals, allowing for fast numerical evaluation. The results are valid in all kinematical regions, both above and below thresholds, up to in principle arbitrary orders in the dimensional regulator. The scope of the algorithm is demonstrated by presenting results for selected two-loop three-point and four-point integrals with an internal mass scale that appear in the two-loop amplitudes for Higgs+jet production.

  20. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation

    Directory of Open Access Journals (Sweden)

    An Gary

    2008-05-01

    in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.

  1. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation.

    Science.gov (United States)

    An, Gary

    2008-05-27

    that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.

  2. Toward a Multi-scale Phase Transition Kinetics Methodology: From Non-Equilibrium Statistical Mechanics to Hydrodynamics

    Science.gov (United States)

    Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith

    2013-06-01

    Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  3. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    International Nuclear Information System (INIS)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature

  4. Self-adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows

    International Nuclear Information System (INIS)

    Daude, F.; Mary, I.; Comte, P.

    2014-01-01

    An improvement of the efficiency of implicit schemes based on Newton-like methods for the simulation of turbulent flows by compressible LES or DNS is proposed. It hinges on a zonal Self-Adaptive Newton method (hereafter denoted SAN), capable of taking advantage of Newton convergence rate heterogeneities in multi-scale flow configurations due to a strong spatial variation of the mesh resolution, such as transitional or turbulent flows controlled by small actuators or passive devices. Thanks to a predictor of the local Newton convergence rate, SAN provides computational savings by allocating resources in regions where they are most needed. The consistency with explicit time integration and the efficiency of the method are checked in three test cases: - The standard test-case of 2-D linear advection of a vortex, on three different two-block grids. - Transition to 3-D turbulence on the lee-side of an airfoil at high angle of attack, which features a challenging laminar separation bubble with a turbulent reattachment. - A passively-controlled turbulent transonic cavity flow, for which the CPU time is reduced by a factor of 10 with respect to the baseline algorithm, illustrates the interest of the proposed algorithm. (authors)

  5. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature.

  6. Simulating the Epidemiological and Economic Impact of Paratuberculosis Control Actions in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Carsten Kirkeby

    2016-10-01

    Full Text Available We describe a new mechanistic bio-economic model for simulating the spread of Mycobacterium avium ssp. paratuberculosis (MAP within a dairy cattle herd. The model includes age-dependent susceptibility for infection; age-dependent sensitivity for detection; environmental MAP build-up in five separate areas of the farm; in utero infection; infection via colostrum and waste milk, and it allows for realistic culling (i.e. due to other diseases by including a ranking system. We calibrated the model using a unique dataset from Denmark, including 102 random farms with no control actions against spread of MAP. Likewise, four control actions recommended in the Danish MAP control program were implemented in the model based on reported management strategies in Danish dairy herds in a MAP control scheme. We tested the model parameterization in a sensitivity analysis. We show that a test-and-cull strategy is on average the most cost-effective solution to decrease the prevalence and increase the total net revenue on a farm with low hygiene, but not more profitable than no control strategy on a farm with average hygiene. Although it is possible to eradicate MAP from the farm by implementing all four control actions from the Danish MAP control program, it was not economically attractive since the expenses for the control actions outweigh the benefits. Furthermore, the three most popular control actions against the spread of MAP on the farm were found to be costly and inefficient in lowering the prevalence when used independently.

  7. Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Hänsch, Susann, E-mail: s.haensch@hzdr.de; Lucas, Dirk; Höhne, Thomas; Krepper, Eckhard

    2014-11-15

    Highlights: • A concept for modeling transitions between different gaseous morphologies is presented. • The Eulerian multi-field model includes dispersed and continuous gas phases. • Interfacial transfer models are found considering free surfaces within MUSIG framework. • A new source term for sub-grid waves and instabilities is introduced. - Abstract: New results of a generalized concept developed for the simulation of two-phase flows with multi-scale interfacial structures are presented in this paper. By extending the inhomogeneus Multiple Size Group-model, the concept enables transitions between dispersed and continuous gas morphologies, including the appearance and evanescence of one of these particular gas phases. Adequate interfacial transfer formulations, which are consistent with such an approach, are introduced for interfacial area density and drag. A new drag-formulation considers shear stresses occurring within the free surface area. The application of the concept to a collapsing water column demonstrates the breakup of continuous gas into a polydispersed phase forming different bubble sizes underneath the free surface. Thus, both resolved free surface structures as well as the entrainment of bubbles and their coalescence and breakup underneath the surface can be described in the same time. The simulations have been performed with the CFD-code CFX 14.0 and will be compared with experimental images. The paper will further investigate the possible improvement of such free surface simulations by including sub-grid information about small waves and instabilities at the free surface. A comparison of the results will be used for a discussion of possible new mass transfer models between filtered free surface areas and dispersed bubble size groups as part of the future work.

  8. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    Science.gov (United States)

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  9. Diagnosing Disaster Resilience of Communities as Multi-scale Complex Socio-ecological Systems

    Science.gov (United States)

    Liu, Wei; Mochizuki, Junko; Keating, Adriana; Mechler, Reinhard; Williges, Keith; Hochrainer, Stefan

    2014-05-01

    Global environmental change, growing anthropogenic influence, and increasing globalisation of society have made it clear that disaster vulnerability and resilience of communities cannot be understood without knowledge on the broader social-ecological system in which they are embedded. We propose a framework for diagnosing community resilience to disasters, as a form of disturbance to social-ecological systems, with feedbacks from the local to the global scale. Inspired by iterative multi-scale analysis employed by Resilience Alliance, the related socio-ecological systems framework of Ostrom, and the sustainable livelihood framework, we developed a multi-tier framework for thinking of communities as multi-scale social-ecological systems and analyzing communities' disaster resilience and also general resilience. We highlight the cross-scale influences and feedbacks on communities that exist from lower (e.g., household) to higher (e.g., regional, national) scales. The conceptual framework is then applied to a real-world resilience assessment situation, to illustrate how key components of socio-ecological systems, including natural hazards, natural and man-made environment, and community capacities can be delineated and analyzed.

  10. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.

    Science.gov (United States)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E

    2011-03-01

    The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.

  12. Development of Multi-Scale Finite Element Analysis Codes for High Formability Sheet Metal Generation

    International Nuclear Information System (INIS)

    Nnakamachi, Eiji; Kuramae, Hiroyuki; Ngoc Tam, Nguyen; Nakamura, Yasunori; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    In this study, the dynamic- and static-explicit multi-scale finite element (F.E.) codes are developed by employing the homogenization method, the crystalplasticity constitutive equation and SEM-EBSD measurement based polycrystal model. These can predict the crystal morphological change and the hardening evolution at the micro level, and the macroscopic plastic anisotropy evolution. These codes are applied to analyze the asymmetrical rolling process, which is introduced to control the crystal texture of the sheet metal for generating a high formability sheet metal. These codes can predict the yield surface and the sheet formability by analyzing the strain path dependent yield, the simple sheet forming process, such as the limit dome height test and the cylindrical deep drawing problems. It shows that the shear dominant rolling process, such as the asymmetric rolling, generates ''high formability'' textures and eventually the high formability sheet. The texture evolution and the high formability of the newly generated sheet metal experimentally were confirmed by the SEM-EBSD measurement and LDH test. It is concluded that these explicit type crystallographic homogenized multi-scale F.E. code could be a comprehensive tool to predict the plastic induced texture evolution, anisotropy and formability by the rolling process and the limit dome height test analyses

  13. Flexible feature-space-construction architecture and its VLSI implementation for multi-scale object detection

    Science.gov (United States)

    Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans

    2018-04-01

    Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.

  14. Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.

    Directory of Open Access Journals (Sweden)

    Guangwei Gao

    Full Text Available In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.

  15. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    Energy Technology Data Exchange (ETDEWEB)

    Stander, Nielen [Livermore Software Technology Corporation, CA (United States); Basudhar, Anirban [Livermore Software Technology Corporation, CA (United States); Basu, Ushnish [Livermore Software Technology Corporation, CA (United States); Gandikota, Imtiaz [Livermore Software Technology Corporation, CA (United States); Savic, Vesna [General Motors, Flint, MI (United States); Sun, Xin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, XiaoHua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pourboghrat, Farhang [The Ohio State Univ., Columbus, OH (United States); Park, Taejoon [The Ohio State Univ., Columbus, OH (United States); Mapar, Aboozar [Michigan State Univ., East Lansing, MI (United States); Kumar, Sharvan [Brown Univ., Providence, RI (United States); Ghassemi-Armaki, Hassan [Brown Univ., Providence, RI (United States); Abu-Farha, Fadi [Clemson Univ., SC (United States)

    2015-06-15

    Ever-tightening regulations on fuel economy and carbon emissions demand continual innovation in finding ways for reducing vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials by adding material diversity, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing thickness while retaining sufficient strength and ductility required for durability and safety. Such a project was proposed and is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the Department of Energy. Under this program, new steel alloys (Third Generation Advanced High Strength Steel or 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. In this project the principal phases identified are (i) material identification, (ii) formability optimization and (iii) multi-disciplinary vehicle optimization. This paper serves as an introduction to the LS-OPT methodology and therefore mainly focuses on the first phase, namely an approach to integrate material identification using material models of different length scales. For this purpose, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a Homogenized State Variable (SV) model, is discussed and demonstrated. The paper concludes with proposals for integrating the multi-scale methodology into the overall vehicle design.

  16. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

    KAUST Repository

    Ting, Chee-Ming

    2017-05-18

    In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive spatio-temporal data defined over the complex networks into a finite set of regional clusters. To achieve further dimension reduction, we represent the signals in each cluster by a small number of latent factors. The correlation matrix for all nodes in the network are approximated by lower-dimensional sub-structures derived from the cluster-specific factors. To estimate regional connectivity between numerous nodes (within each cluster), we apply principal components analysis (PCA) to produce factors which are derived as the optimal reconstruction of the observed signals under the squared loss. Then, we estimate global connectivity (between clusters or sub-networks) based on the factors across regions using the RV-coefficient as the cross-dependence measure. This gives a reliable and computationally efficient multi-scale analysis of both regional and global dependencies of the large networks. The proposed novel approach is applied to estimate brain connectivity networks using functional magnetic resonance imaging (fMRI) data. Results on resting-state fMRI reveal interesting modular and hierarchical organization of human brain networks during rest.

  17. Multi Scale Finite Element Analyses By Using SEM-EBSD Crystallographic Modeling and Parallel Computing

    International Nuclear Information System (INIS)

    Nakamachi, Eiji

    2005-01-01

    A crystallographic homogenization procedure is introduced to the conventional static-explicit and dynamic-explicit finite element formulation to develop a multi scale - double scale - analysis code to predict the plastic strain induced texture evolution, yield loci and formability of sheet metal. The double-scale structure consists of a crystal aggregation - micro-structure - and a macroscopic elastic plastic continuum. At first, we measure crystal morphologies by using SEM-EBSD apparatus, and define a unit cell of micro structure, which satisfy the periodicity condition in the real scale of polycrystal. Next, this crystallographic homogenization FE code is applied to 3N pure-iron and 'Benchmark' aluminum A6022 polycrystal sheets. It reveals that the initial crystal orientation distribution - the texture - affects very much to a plastic strain induced texture and anisotropic hardening evolutions and sheet deformation. Since, the multi-scale finite element analysis requires a large computation time, a parallel computing technique by using PC cluster is developed for a quick calculation. In this parallelization scheme, a dynamic workload balancing technique is introduced for quick and efficient calculations

  18. Improved convergence of gradient-based reconstruction using multi-scale models

    International Nuclear Information System (INIS)

    Cunningham, G.S.; Hanson, K.M.; Koyfman, I.

    1996-01-01

    Geometric models have received increasing attention in medical imaging for tasks such as segmentation, reconstruction, restoration, and registration. In order to determine the best configuration of the geometric model in the context of any of these tasks, one needs to perform a difficult global optimization of an energy function that may have many local minima. Explicit models of geometry, also called deformable models, snakes, or active contours, have been used extensively to solve image segmentation problems in a non-Bayesian framework. Researchers have seen empirically that multi-scale analysis is useful for convergence to a configuration that is near the global minimum. In this type of analysis, the image data are convolved with blur functions of increasing resolution, and an optimal configuration of the snake is found for each blurred image. The configuration obtained using the highest resolution blur is used as the solution to the global optimization problem. In this article, the authors use explicit models of geometry for a variety of Bayesian estimation problems, including image segmentation, reconstruction and restoration. The authors introduce a multi-scale approach that blurs the geometric model, rather than the image data, and show that this approach turns a global, highly nonquadratic optimization into a sequence of local, approximately quadratic problems that converge to the global minimum. The result is a deterministic, robust, and efficient optimization strategy applicable to a wide variety of Bayesian estimation problems in which geometric models of images are an important component

  19. The Multi-Scale Model Approach to Thermohydrology at Yucca Mountain

    International Nuclear Information System (INIS)

    Glascoe, L; Buscheck, T A; Gansemer, J; Sun, Y

    2002-01-01

    The Multi-Scale Thermo-Hydrologic (MSTH) process model is a modeling abstraction of them1 hydrology (TH) of the potential Yucca Mountain repository at multiple spatial scales. The MSTH model as described herein was used for the Supplemental Science and Performance Analyses (BSC, 2001) and is documented in detail in CRWMS M and O (2000) and Glascoe et al. (2002). The model has been validated to a nested grid model in Buscheck et al. (In Review). The MSTH approach is necessary for modeling thermal hydrology at Yucca Mountain for two reasons: (1) varying levels of detail are necessary at different spatial scales to capture important TH processes and (2) a fully-coupled TH model of the repository which includes the necessary spatial detail is computationally prohibitive. The MSTH model consists of six ''submodels'' which are combined in a manner to reduce the complexity of modeling where appropriate. The coupling of these models allows for appropriate consideration of mountain-scale thermal hydrology along with the thermal hydrology of drift-scale discrete waste packages of varying heat load. Two stages are involved in the MSTH approach, first, the execution of submodels, and second, the assembly of submodels using the Multi-scale Thermohydrology Abstraction Code (MSTHAC). MSTHAC assembles the submodels in a five-step process culminating in the TH model output of discrete waste packages including a mountain-scale influence

  20. Prediction of Coal Face Gas Concentration by Multi-Scale Selective Ensemble Hybrid Modeling

    Directory of Open Access Journals (Sweden)

    WU Xiang

    2014-06-01

    Full Text Available A selective ensemble hybrid modeling prediction method based on wavelet transformation is proposed to improve the fitting and generalization capability of the existing prediction models of the coal face gas concentration, which has a strong stochastic volatility. Mallat algorithm was employed for the multi-scale decomposition and single-scale reconstruction of the gas concentration time series. Then, it predicted every subsequence by sparsely weighted multi unstable ELM(extreme learning machine predictor within method SERELM(sparse ensemble regressors of ELM. At last, it superimposed the predicted values of these models to obtain the predicted values of the original sequence. The proposed method takes advantage of characteristics of multi scale analysis of wavelet transformation, accuracy and fast characteristics of ELM prediction and the generalization ability of L1 regularized selective ensemble learning method. The results show that the forecast accuracy has large increase by using the proposed method. The average relative error is 0.65%, the maximum relative error is 4.16% and the probability of relative error less than 1% reaches 0.785.

  1. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    Science.gov (United States)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  2. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the μm-Scale.

    Directory of Open Access Journals (Sweden)

    Dirk Zahn

    Full Text Available Fracture mechanisms of an enamel-like hydroxyapatite-collagen composite model are elaborated by means of molecular and coarse-grained dynamics simulation. Using fully atomistic models, we uncover molecular-scale plastic deformation and fracture processes initiated at the organic-inorganic interface. Furthermore, coarse-grained models are developed to investigate fracture patterns at the μm-scale. At the meso-scale, micro-fractures are shown to reduce local stress and thus prevent material failure after loading beyond the elastic limit. On the basis of our multi-scale simulation approach, we provide a molecular scale rationalization of this phenomenon, which seems key to the resilience of hierarchical biominerals, including teeth and bone.

  3. A false-alarm aware methodology to develop robust and efficient multi-scale infrared small target detection algorithm

    Science.gov (United States)

    Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan

    2018-03-01

    False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.

  4. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM

    Science.gov (United States)

    Shi, Wenzhong; Deng, Susu; Xu, Wenbing

    2018-02-01

    For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should

  5. The adaptive value of habitat preferences from a multi-scale spatial perspective: insights from marsh-nesting avian species

    Directory of Open Access Journals (Sweden)

    Jan Jedlikowski

    2017-03-01

    Full Text Available Background Habitat selection and its adaptive outcomes are crucial features for animal life-history strategies. Nevertheless, congruence between habitat preferences and breeding success has been rarely demonstrated, which may result from the single-scale evaluation of animal choices. As habitat selection is a complex multi-scale process in many groups of animal species, investigating adaptiveness of habitat selection in a multi-scale framework is crucial. In this study, we explore whether habitat preferences acting at different spatial scales enhance the fitness of bird species, and check the appropriateness of single vs. multi-scale models. We expected that variables found to be more important for habitat selection at individual scale(s, would coherently play a major role in affecting nest survival at the same scale(s. Methods We considered habitat preferences of two Rallidae species, little crake (Zapornia parva and water rail (Rallus aquaticus, at three spatial scales (landscape, territory, and nest-site and related them to nest survival. Single-scale versus multi-scale models (GLS and glmmPQL were compared to check which model better described adaptiveness of habitat preferences. Consistency between the effect of variables on habitat selection and on nest survival was checked to investigate their adaptive value. Results In both species, multi-scale models for nest survival were more supported than single-scale ones. In little crake, the multi-scale model indicated vegetation density and water depth at the territory scale, as well as vegetation height at nest-site scale, as the most important variables. The first two variables were among the most important for nest survival and habitat selection, and the coherent effects suggested the adaptive value of habitat preferences. In water rail, the multi-scale model of nest survival showed vegetation density at territory scale and extent of emergent vegetation within landscape scale as the most

  6. Toward Improving Predictability of Extreme Hydrometeorological Events: the Use of Multi-scale Climate Modeling in the Northern High Plains

    Science.gov (United States)

    Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.

    2014-12-01

    Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and

  7. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  8. Geo-spatial Cognition on Human's Social Activity Space Based on Multi-scale Grids

    Directory of Open Access Journals (Sweden)

    ZHAI Weixin

    2016-12-01

    Full Text Available Widely applied location aware devices, including mobile phones and GPS receivers, have provided great convenience for collecting large volume individuals' geographical information. The researches on the human's society behavior space has attracts an increasingly number of researchers. In our research, based on location-based Flickr data From 2004 to May, 2014 in China, we choose five levels of spatial grids to form the multi-scale frame for investigate the correlation between the scale and the geo-spatial cognition on human's social activity space. The HT-index is selected as the fractal inspired by Alexander to estimate the maturity of the society activity on different scales. The results indicate that that the scale characteristics are related to the spatial cognition to a certain extent. It is favorable to use the spatial grid as a tool to control scales for geo-spatial cognition on human's social activity space.

  9. Persistent multi-scale fluctuations shift European hydroclimate to its millennial boundaries.

    Science.gov (United States)

    Markonis, Y; Hanel, M; Máca, P; Kyselý, J; Cook, E R

    2018-05-02

    In recent years, there has been growing concern about the effect of global warming on water resources, especially at regional and continental scales. The last IPCC report on extremes states that there is medium confidence about an increase on European drought frequency during twentieth century. Here we use the Old World Drought Atlas palaeoclimatic reconstruction to show that when Europe's hydroclimate is examined under a millennial, multi-scale perspective, a significant decrease in dryness can be observed since 1920 over most of central and northern Europe. On the contrary, in the south, drying conditions have prevailed, creating an intense north-to-south dipole. In both cases, hydroclimatic conditions have shifted to, and in some regions exceeded, their millennial boundaries, remaining at these extreme levels for the longest period of the 1000-year-long record.

  10. Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach

    International Nuclear Information System (INIS)

    Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.

    2010-01-01

    A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)

  11. On the mass-coupling relation of multi-scale quantum integrable models

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltán; Balog, János [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Ito, Katsushi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Satoh, Yuji [Institute of Physics, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Tóth, Gábor Zsolt [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2016-06-13

    We determine exactly the mass-coupling relation for the simplest multi-scale quantum integrable model, the homogenous sine-Gordon model with two independent mass-scales. We first reformulate its perturbed coset CFT description in terms of the perturbation of a projected product of minimal models. This representation enables us to identify conserved tensor currents on the UV side. These UV operators are then mapped via form factor perturbation theory to operators on the IR side, which are characterized by their form factors. The relation between the UV and IR operators is given in terms of the sought-for mass-coupling relation. By generalizing the Θ sum rule Ward identity we are able to derive differential equations for the mass-coupling relation, which we solve in terms of hypergeometric functions. We check these results against the data obtained by numerically solving the thermodynamic Bethe Ansatz equations, and find a complete agreement.

  12. Multi-scale freeform surface texture filtering using a mesh relaxation scheme

    International Nuclear Information System (INIS)

    Jiang, Xiangqian; Abdul-Rahman, Hussein S; Scott, Paul J

    2013-01-01

    Surface filtering algorithms using Fourier, Gaussian, wavelets, etc, are well-established for simple Euclidean geometries. However, these filtration techniques cannot be applied to today's complex freeform surfaces, which have non-Euclidean geometries, without distortion of the results. This paper proposes a new multi-scale filtering algorithm for freeform surfaces that are represented by triangular meshes based on a mesh relaxation scheme. The proposed algorithm is capable of decomposing a freeform surface into different scales and separating surface roughness, waviness and form from each other, as will be demonstrated throughout the paper. Results of applying the proposed algorithm to computer-generated as well as real surfaces are represented and compared with a lifting wavelet filtering algorithm. (paper)

  13. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  14. MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate

    Science.gov (United States)

    Baklanov, A.; Lawrence, M.; Pandis, S.; Mahura, A.; Finardi, S.; Moussiopoulos, N.; Beekmann, M.; Laj, P.; Gomes, L.; Jaffrezo, J.-L.; Borbon, A.; Coll, I.; Gros, V.; Sciare, J.; Kukkonen, J.; Galmarini, S.; Giorgi, F.; Grimmond, S.; Esau, I.; Stohl, A.; Denby, B.; Wagner, T.; Butler, T.; Baltensperger, U.; Builtjes, P.; van den Hout, D.; van der Gon, H. D.; Collins, B.; Schluenzen, H.; Kulmala, M.; Zilitinkevich, S.; Sokhi, R.; Friedrich, R.; Theloke, J.; Kummer, U.; Jalkinen, L.; Halenka, T.; Wiedensholer, A.; Pyle, J.; Rossow, W. B.

    2010-11-01

    The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.

  15. multi scale analysis of a function by neural networks elementary derivatives functions

    International Nuclear Information System (INIS)

    Chikhi, A.; Gougam, A.; Chafa, F.

    2006-01-01

    Recently, the wavelet network has been introduced as a special neural network supported by the wavelet theory . Such networks constitute a tool for function approximation problems as it has been already proved in reference . Our present work deals with this model, treating a multi scale analysis of a function. We have then used a linear expansion of a given function in wavelets, neglecting the usual translation parameters. We investigate two training operations. The first one consists on an optimization of the output synaptic layer, the second one, optimizing the output function with respect to scale parameters. We notice a temporary merging of the scale parameters leading to some interesting results : new elementary derivatives units emerge, representing a new elementary task, which is the derivative of the output task

  16. Multi-scale spatial modeling of human exposure from local sources to global intake

    DEFF Research Database (Denmark)

    Wannaz, Cedric; Fantke, Peter; Jolliet, Olivier

    2018-01-01

    Exposure studies, used in human health risk and impact assessments of chemicals are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea......, an innovative multi-scale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties...... occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ~10,000 emission locations covering France more densely to determine per chemical and exposure route...

  17. Multi-scale Food Energy and Water Dynamics in the Blue Nile Highlands

    Science.gov (United States)

    Zaitchik, B. F.; Simane, B.; Block, P. J.; Foltz, J.; Mueller-Mahn, D.; Gilioli, G.; Sciarretta, A.

    2017-12-01

    The Ethiopian highlands are often called the "water tower of Africa," giving rise to major transboundary rivers. Rapid hydropower development is quickly transforming these highlands into the "power plant of Africa" as well. For local people, however, they are first and foremost a land of small farms, devoted primarily to subsistence agriculture. Under changing climate, rapid national economic growth, and steadily increasing population and land pressures, these mountains and their inhabitants have become the focal point of a multi-scale food-energy-water nexus with significant implications across East Africa. Here we examine coupled natural-human system dynamics that emerge when basin and nation scale resource development strategies are superimposed on a local economy that is largely subsistence based. Sensitivity to local and remote climate shocks are considered, as is the role of Earth Observation in understanding and informing management of food-energy-water resources across scales.

  18. Multi-scale Clustering of Points Synthetically Considering Lines and Polygons Distribution

    Directory of Open Access Journals (Sweden)

    YU Li

    2015-10-01

    Full Text Available Considering the complexity and discontinuity of spatial data distribution, a clustering algorithm of points was proposed. To accurately identify and express the spatial correlation among points,lines and polygons, a Voronoi diagram that is generated by all spatial features is introduced. According to the distribution characteristics of point's position, an area threshold used to control clustering granularity was calculated. Meanwhile, judging scale convergence by constant area threshold, the algorithm classifies spatial features based on multi-scale, with an O(n log n running time.Results indicate that spatial scale converges self-adaptively according with distribution of points.Without the custom parameters, the algorithm capable to discover arbitrary shape clusters which be bound by lines and polygons, and is robust for outliers.

  19. Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.

    Science.gov (United States)

    Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita

    2014-04-01

    Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.

  20. MREG V1.1 : a multi-scale image registration algorithm for SAR applications.

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, Paul H.

    2013-08-01

    MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962 leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.

  1. Complexity Analysis of Carbon Market Using the Modified Multi-Scale Entropy

    Directory of Open Access Journals (Sweden)

    Jiuli Yin

    2018-06-01

    Full Text Available Carbon markets provide a market-based way to reduce climate pollution. Subject to general market regulations, the major existing emission trading markets present complex characteristics. This paper analyzes the complexity of carbon market by using the multi-scale entropy. Pilot carbon markets in China are taken as the example. Moving average is adopted to extract the scales due to the short length of the data set. Results show a low-level complexity inferring that China’s pilot carbon markets are quite immature in lack of market efficiency. However, the complexity varies in different time scales. China’s carbon markets (except for the Chongqing pilot are more complex in the short period than in the long term. Furthermore, complexity level in most pilot markets increases as the markets developed, showing an improvement in market efficiency. All these results demonstrate that an effective carbon market is required for the full function of emission trading.

  2. Multi-scale analysis of the European airspace using network community detection.

    Directory of Open Access Journals (Sweden)

    Gérald Gurtner

    Full Text Available We show that the European airspace can be represented as a multi-scale traffic network whose nodes are airports, sectors, or navigation points and links are defined and weighted according to the traffic of flights between the nodes. By using a unique database of the air traffic in the European airspace, we investigate the architecture of these networks with a special emphasis on their community structure. We propose that unsupervised network community detection algorithms can be used to monitor the current use of the airspace and improve it by guiding the design of new ones. Specifically, we compare the performance of several community detection algorithms, both with fixed and variable resolution, and also by using a null model which takes into account the spatial distance between nodes, and we discuss their ability to find communities that could be used to define new control units of the airspace.

  3. Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces.

    Science.gov (United States)

    Chang, Yafang; Liu, Xuying; Yang, Huige; Zhang, Li; Cui, Zhe; Niu, Mingjun; Liu, Hongzhi; Chen, Jinzhou

    2016-03-14

    The solution-processing fabrication of superhydrophobic surfaces is currently intriguing, owing to high-efficiency, low cost, and energy-consuming. Here, a facile nonsolvent-assisted process was proposed for the fabrication of the multi-scaled surface roughness in polylactide (PLA) films, thereby resulting in a significant transformation in the surface wettability from intrinsic hydrophilicity to superhydrophobicity. Moreover, it was found that the surface topographical structure of PLA films can be manipulated by varying the compositions of the PLA solutions. And the samples showed superhydrophobic surfaces as well as high melting enthalpy and crystallinity. In particular, a high contact angle of 155.8° together with a high adhesive force of 184 μN was yielded with the assistance of a multi-nonsolvent system, which contributed to the co-existence of micro-/nano-scale hierarchical structures.

  4. A multi-scale integrated analysis of the energy use in Romania, Bulgaria, Poland and Hungary

    International Nuclear Information System (INIS)

    Iorgulescu, Raluca I.; Polimeni, John M.

    2009-01-01

    This paper discusses energy use in the case of four countries, Bulgaria, Poland, Hungary, and Romania, which changed the economic system from command economy to open-market. The analysis provided uses the multi-scale integrated analysis of societal metabolism (MSIASM) approach and contrasts it with the use of the traditional indicators approach (GDP growth rates and energy intensity). These traditional indicators have been widely criticized for being inadequate reflections of how energy policies work. Furthermore, the one-size-fits-all policies that result from analyzing these indicators are inaccurate, particularly for transitional economies. The alternative indicators, economic labor productivity, saturation index of human activity, and exosomatic metabolic rates are used to investigate the four case studies considering the complexity of the transition process

  5. A novel fruit shape classification method based on multi-scale analysis

    Science.gov (United States)

    Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin

    2005-11-01

    Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.

  6. Multi-scale analysis to uncover habitat use of red-crowned cranes: Implications for conservation

    Directory of Open Access Journals (Sweden)

    Chunyue LIU, Hongxing JIANG, Shuqing ZHANG, Chunrong LI,Yunqiu HOU, Fawen QIAN

    2013-10-01

    Full Text Available A multi-scale approach is essential to assess the factors that limit avian habitat use. Numerous studies have examined habitat use by the red-crowned crane, but integrated multi-scale habitat use information is lacking. We evaluated the effects of several habitat variables quantified across many spatial scales on crane use and abundance in two periods (2000 and 2009 at Yancheng National Nature Reserve, China. The natural wetlands decreased in area by 30,601 ha (-6.9% from 2000 to 2009, predominantly as a result of conversion to aquaculture ponds and farmland, and the remaining was under degradation due to expansion of the exotic smooth cordgrass. The cranes are focusing in on either larger patches or those that are in close proximity to each other in both years, but occupied patches had smaller size, less proximity and more regular boundaries in 2009. At landscape scales, the area percentage of common seepweed, reed ponds and paddy fields had a greater positive impact on crane presence than the area percentage of aquaculture ponds. The cranes were more abundant in patches that had a greater percent area of common seepweed and reed ponds, while the percent area of paddy fields was inversely related to crane abundance in 2009 due to changing agricultural practices. In 2009, cranes tended to use less fragmented plots in natural wetlands and more fragmented plots in anthropogenic paddy fields, which were largely associated with the huge loss and degradation of natural habitats between the two years. Management should focus on restoration of large patches of natural wetlands, and formation of a relatively stable area of large paddy field and reed pond to mitigate the loss of natural wetlands [Current Zoology 59 (5: 604–617, 2013].

  7. Concussion As a Multi-Scale Complex System: An Interdisciplinary Synthesis of Current Knowledge

    Directory of Open Access Journals (Sweden)

    Erin S. Kenzie

    2017-09-01

    Full Text Available Traumatic brain injury (TBI has been called “the most complicated disease of the most complex organ of the body” and is an increasingly high-profile public health issue. Many patients report long-term impairments following even “mild” injuries, but reliable criteria for diagnosis and prognosis are lacking. Every clinical trial for TBI treatment to date has failed to demonstrate reliable and safe improvement in outcomes, and the existing body of literature is insufficient to support the creation of a new classification system. Concussion, or mild TBI, is a highly heterogeneous phenomenon, and numerous factors interact dynamically to influence an individual’s recovery trajectory. Many of the obstacles faced in research and clinical practice related to TBI and concussion, including observed heterogeneity, arguably stem from the complexity of the condition itself. To improve understanding of this complexity, we review the current state of research through the lens provided by the interdisciplinary field of systems science, which has been increasingly applied to biomedical issues. The review was conducted iteratively, through multiple phases of literature review, expert interviews, and systems diagramming and represents the first phase in an effort to develop systems models of concussion. The primary focus of this work was to examine concepts and ways of thinking about concussion that currently impede research design and block advancements in care of TBI. Results are presented in the form of a multi-scale conceptual framework intended to synthesize knowledge across disciplines, improve research design, and provide a broader, multi-scale model for understanding concussion pathophysiology, classification, and treatment.

  8. Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Vesa J Kiviniemi

    2009-07-01

    Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  9. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    Science.gov (United States)

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  10. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    Science.gov (United States)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  11. Delineation of Urban Active Faults Using Multi-scale Gravity Analysis in Shenzhen, South China

    Science.gov (United States)

    Xu, C.; Liu, X.

    2015-12-01

    In fact, many cities in the world are established on the active faults. As the rapid urban development, thousands of large facilities, such as ultrahigh buildings, supersized bridges, railway, and so on, are built near or on the faults, which may change the balance of faults and induce urban earthquake. Therefore, it is significant to delineate effectively the faults for urban planning construction and social sustainable development. Due to dense buildings in urban area, the ordinary approaches to identify active faults, like geological survey, artificial seismic exploration and electromagnetic exploration, are not convenient to be carried out. Gravity, reflecting the mass distribution of the Earth's interior, provides a more efficient and convenient method to delineate urban faults. The present study is an attempt to propose a novel gravity method, multi-scale gravity analysis, for identifying urban active faults and determining their stability. Firstly, the gravity anomalies are decomposed by wavelet multi-scale analysis. Secondly, based on the decomposed gravity anomalies, the crust is layered and the multilayer horizontal tectonic stress is inverted. Lastly, the decomposed anomalies and the inverted horizontal tectonic stress are used to infer the distribution and stability of main active faults. For validating our method, a case study on active faults in Shenzhen City is processed. The results show that the distribution of decomposed gravity anomalies and multilayer horizontal tectonic stress are controlled significantly by the strike of the main faults and can be used to infer depths of the faults. The main faults in Shenzhen may range from 4km to 20km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  12. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    Directory of Open Access Journals (Sweden)

    Simon J Pittman

    Full Text Available Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT and Maximum Entropy Species Distribution Modelling (MaxEnt. The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9 for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9. In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy than BRT (68% map accuracy. We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support

  13. Profesi Epidemiologi

    Directory of Open Access Journals (Sweden)

    Buchari Lapau

    2011-01-01

    Full Text Available Makalah ini pertama kali menjelaskan perlu adanya profesi kesehatan masyarakat dalam rangka pembangunan kesehatan. Lalu dijelaskan apa profesi itu dan standar keberadaan profesi, atas dasar mana dapat ditetapkan bahwa pelayanan epidemiologi merupakan salah satu profesi. Dalam rangka pembinaan profesi kesehatan masyarakat, IAKMI dan APTKMI telah membentuk Majelis Kolegium Kesehatan Masyarakat Indonesia (MKKMI yang terdiri atas 8 kolegium antara lain Kolegium Epidemiologi, yang telah menyusun Standar Profesi Epidemiologi yang terdiri atas beberapa standar. Masing-masing standar dijelaskan mulai dari kurikulum, standar pelayanan epidmiologi, profil epidemiolog kesehatan, peran epidemiolog kesehatan, fungsi epidemiolog kesehatan, standar kompetensi epidemiologi, dan standar pendidikan profesi epidemiologi.

  14. Determining the multi-scale hedge ratios of stock index futures using the lower partial moments method

    Science.gov (United States)

    Dai, Jun; Zhou, Haigang; Zhao, Shaoquan

    2017-01-01

    This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.

  15. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.

    Science.gov (United States)

    Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang

    2018-06-19

    In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  16. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xuming Pang

    2018-06-01

    Full Text Available In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  17. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features

    Science.gov (United States)

    Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei

    2018-06-01

    Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.

  18. Multi-scale enhancement of climate prediction over land by improving the model sensitivity to vegetation variability

    Science.gov (United States)

    Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.

    2017-12-01

    Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in

  19. A Multi-scale Approach for CO2 Accounting and Risk Analysis in CO2 Enhanced Oil Recovery Sites

    Science.gov (United States)

    Dai, Z.; Viswanathan, H. S.; Middleton, R. S.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S. Y.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2015-12-01

    Using carbon dioxide in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce carbon sequestration costs in the absence of greenhouse gas emissions policies that include incentives for carbon capture and storage. This study develops a multi-scale approach to perform CO2 accounting and risk analysis for understanding CO2 storage potential within an EOR environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and transport in the Marrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2 injection rate, CO2 first breakthrough time, CO2 production rate, cumulative net CO2 storage, cumulative oil and CH4 production, and water injection and production rates. A global sensitivity analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/CH4 recovery rates. The well spacing (the distance between the injection and production wells) and the sequence of alternating CO2 and water injection are the major operational parameters for designing an effective five-spot CO2-EOR pattern. The response surface analysis shows that net CO2 injection rate increases with the increasing reservoir thickness, permeability, and porosity. The oil/CH4 production rates are positively correlated to reservoir permeability, porosity and thickness, but negatively correlated to the initial water saturation. The mean and confidence intervals are estimated for quantifying the uncertainty ranges of the risk metrics. The results from this study provide useful insights for understanding the CO2 storage potential and the corresponding risks of commercial-scale CO2-EOR fields.

  20. A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates.

    Science.gov (United States)

    Lenarda, P; Paggi, M

    A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.

  1. The discharge behavior of lithium-ion batteries using the Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    This paper gives insight into the discharge behavior of lithium-ion batteries based on the investigations, which have been done by the researchers [1– 19]. In this article, the battery's discharge behaviour at various discharge rates is studied and surface monitor, discharge curve, volume monitor...... to analysis the discharge behaviour of lithium-ion batteries. The results show that surface monitor plot of discharge curve at 1 C has a decreasing trend and volume monitor plot of maximum temperature in the domain has slightly increasing pattern over the simulation time. For the curves of discharge...... plot of maximum temperature in the domain and maximum temperature in the area are illustrated. Additionally, an external and internal short-circuit treatment for three cases have been studied. The Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model (BM) was used by ANSYS FLUENT software...

  2. IUTAM Symposium on Innovative Numerical Approaches for Materials and Structures in Multi-Field and Multi-Scale Problems : in Honor of Michael Ortiz's 60th Birthday

    CERN Document Server

    Pandolfi, Anna

    2016-01-01

    This book provides readers with a detailed insight into diverse and exciting recent developments in computational solid mechanics, documenting new perspectives and horizons. The topics addressed cover a wide range of current research, from computational materials modeling, including crystal plasticity, micro-structured materials, and biomaterials, to multi-scale simulations of multi-physics phenomena. Particular emphasis is placed on pioneering discretization methods for the solution of coupled non-linear problems at different length scales. The book, written by leading experts, reflects the remarkable advances that have been made in the field over the past decade and more, largely due to the development of a sound mathematical background and efficient computational strategies. The contents build upon the 2014 IUTAM symposium celebrating the 60th birthday of Professor Michael Ortiz, to whom this book is dedicated. His work has long been recognized as pioneering and is a continuing source of inspiration for ma...

  3. Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds

    Science.gov (United States)

    Lan, Sheeny K.

    undergoes in vivo modifications involving formation of a biological apatite layer within scaffold micropores and possibly co-precipitation of endogenous osteoinductive proteins. To further investigate the effects of scaffold osteoinductivity, BCP scaffolds were implanted in porcine mandibular defects with rhBMP-2, which was partially sequestered in the micropores. Cell migration into osteoinductive scaffold micropores can be enhanced through the delivery of exogenous rhBMP-2 further promoting multi-scale osteointegration. Finally, endothelial colony forming cells (ECFCs) isolated from human umbilical cord blood (UCB) were evaluated in terms of their in vivo vasculogenic potential in the context of bone formation. This work was completed to determine if ECFCs could be utilized in a bone tissue engineering construct to promote neovascularization. ECFCs were combined with a BCP scaffold and rhBMP-2 and implanted subcutaneously on the abdominal wall of NOD/SCID mice. The result was formation of perfused human vessels within BCP scaffold macropores that were present at 4 weeks. The high density and persistence of human vessels at four weeks indicates that human UCB ECFCs exceed their reported in vivo vasculogenic potential when combined with rhBMP-2 and a BCP scaffold. This shows a dual role for BMP-2 in the context of bone regeneration. Collectively, the thesis demonstrates that (1) the design of synthetic bone scaffolds should include controlled multi-scale porosity to promote multi-scale osteointegration, which may significantly improve scaffold mechanical properties and (2) human umbilical cord blood-derived endothelial colony forming cells have potential for promoting neovascularization in a bone defect when combined with rhBMP-2.

  4. Validating Remotely Sensed Land Surface Evapotranspiration Based on Multi-scale Field Measurements

    Science.gov (United States)

    Jia, Z.; Liu, S.; Ziwei, X.; Liang, S.

    2012-12-01

    The land surface evapotranspiration plays an important role in the surface energy balance and the water cycle. There have been significant technical and theoretical advances in our knowledge of evapotranspiration over the past two decades. Acquisition of the temporally and spatially continuous distribution of evapotranspiration using remote sensing technology has attracted the widespread attention of researchers and managers. However, remote sensing technology still has many uncertainties coming from model mechanism, model inputs, parameterization schemes, and scaling issue in the regional estimation. Achieving remotely sensed evapotranspiration (RS_ET) with confident certainty is required but difficult. As a result, it is indispensable to develop the validation methods to quantitatively assess the accuracy and error sources of the regional RS_ET estimations. This study proposes an innovative validation method based on multi-scale evapotranspiration acquired from field measurements, with the validation results including the accuracy assessment, error source analysis, and uncertainty analysis of the validation process. It is a potentially useful approach to evaluate the accuracy and analyze the spatio-temporal properties of RS_ET at both the basin and local scales, and is appropriate to validate RS_ET in diverse resolutions at different time-scales. An independent RS_ET validation using this method was presented over the Hai River Basin, China in 2002-2009 as a case study. Validation at the basin scale showed good agreements between the 1 km annual RS_ET and the validation data such as the water balanced evapotranspiration, MODIS evapotranspiration products, precipitation, and landuse types. Validation at the local scale also had good results for monthly, daily RS_ET at 30 m and 1 km resolutions, comparing to the multi-scale evapotranspiration measurements from the EC and LAS, respectively, with the footprint model over three typical landscapes. Although some

  5. Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis

    International Nuclear Information System (INIS)

    Liang, Zhengtang; Liang, Jun; Zhang, Li; Wang, Chengfu; Yun, Zhihao; Zhang, Xu

    2015-01-01

    Highlights: • A scale division method of wind power based on HHT and Hurst analysis is proposed. • The time–frequency components of wind power show different fractal structures. • These components are superposed and reconstructed into three scale subsequences. • Each subsequence has a chaotic characteristic and shows its own properties. • The EMD-LSSVM + ELM method improves the short-term wind power forecasting accuracy. - Abstract: The causes of uncertainty in wind farm power generation are not yet fully understood. A method for the scale division of wind power based on the Hilbert–Huang transform (HHT) and Hurst analysis is proposed in this paper, which allows the various multi-scale chaotic characteristics of wind power to be investigated to reveal further information about the dynamic behavior of wind power. First, the time–frequency characteristics of wind power are analyzed using the HHT, and then Hurst analysis is applied to analyze the stochastic/persistent characteristics of the different time–frequency components. Second, based on their fractal structures, the components are superposed and reconstructed into three series, which are defined as the Micro-, Meso- and Macro-scale subsequences. Finally, indices related to the statistical and behavioral characteristics of the subsequences are calculated and used to analyze their nonlinear dynamic behavior. The data collected from a wind farm of Hebei Province, China, are selected for case studies. The simulation results reveal that (1) although the time–frequency components can be decomposed, the different fractal structures of the signal are also derived from the original series; (2) the three scale subsequences all present chaotic characteristics and each of them exhibits its own unique properties. The Micro-scale subsequence shows strong randomness and contributes the least to the overall fluctuations; the Macro-scale subsequence is the steadiest and exhibits the most significant tendency

  6. Solving the problem of imaging resolution: stochastic multi-scale image fusion

    Science.gov (United States)

    Karsanina, Marina; Mallants, Dirk; Gilyazetdinova, Dina; Gerke, Kiril

    2016-04-01

    Structural features of porous materials define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, gas exchange between biologically active soil root zone and atmosphere, etc.) and solute transport. To characterize soil and rock microstructure X-ray microtomography is extremely useful. However, as any other imaging technique, this one also has a significant drawback - a trade-off between sample size and resolution. The latter is a significant problem for multi-scale complex structures, especially such as soils and carbonates. Other imaging techniques, for example, SEM/FIB-SEM or X-ray macrotomography can be helpful in obtaining higher resolution or wider field of view. The ultimate goal is to create a single dataset containing information from all scales or to characterize such multi-scale structure. In this contribution we demonstrate a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images representing macro, micro and nanoscale spatial information on porous media structure. Images obtained by X-ray microtomography and scanning electron microscopy were fused into a single image with predefined resolution. The methodology is sufficiently generic for implementation of other stochastic reconstruction techniques, any number of scales, any number of material phases, and any number of images for a given scale. The methodology can be further used to assess effective properties of fused porous media images or to compress voluminous spatial datasets for efficient data storage. Potential practical applications of this method are abundant in soil science, hydrology and petroleum engineering, as well as other geosciences. This work was partially supported by RSF grant 14-17-00658 (X-ray microtomography study of shale

  7. Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregs

    Science.gov (United States)

    Sorba, G.; Binetruy, C.; Syerko, E.; Leygue, A.; Comas-Cardona, S.; Belnoue, J. P.-H.; Nixon-Pearson, O. J.; Ivanov, D. S.; Hallett, S. R.; Advani, S. G.

    2018-05-01

    Consolidation is a crucial step in manufacturing of composite parts with prepregs because its role is to eliminate inter- and intra-ply gaps and porosity. Some thermoset prepreg systems are toughened with thermoplastic particles. Depending on their size, thermoplastic particles can be either located in between plies or distributed within the inter-fibre regions. When subjected to transverse compaction, resin will bleed out of low-viscosity unidirectional prepregs along the fibre direction, whereas one would expect transverse squeeze flow to dominate for higher viscosity prepregs. Recent experimental work showed that the consolidation of uncured toughened prepregs involves complex flow and deformation mechanisms where both bleeding and squeeze flow patterns are observed [1]. Micrographs of compacted and cured samples confirm these features as shown in Fig.1. A phenomenological model was proposed [2] where bleeding flow and squeeze flow are combined. A criterion for the transition from shear flow to resin bleeding was also proposed. However, the micrographs also reveal a resin rich layer between plies which may be contributing to the complex flow mechanisms during the consolidation process. In an effort to provide additional insight into these complex mechanisms, this work focuses on the 3D numerical modelling of the compaction of uncured toughened prepregs in the cross-ply configuration described in [1]. A transversely isotropic fluid model is used to describe the flow behaviour of the plies coupled with interplay resin flow of an isotropic fluid. The multi-scale flow model used is based on [3, 4]. A numerical parametric study is carried out where the resin viscosity, permeability and inter-ply thickness are varied to identify the role of important variables. The squeezing flow and the bleeding flow are compared for a range of process parameters to investigate the coupling and competition between the two flow mechanisms. Figure 4 shows the predicted displacement of

  8. Optimal Multi-scale Demand-side Management for Continuous Power-Intensive Processes

    Science.gov (United States)

    Mitra, Sumit

    With the advent of deregulation in electricity markets and an increasing share of intermittent power generation sources, the profitability of industrial consumers that operate power-intensive processes has become directly linked to the variability in energy prices. Thus, for industrial consumers that are able to adjust to the fluctuations, time-sensitive electricity prices (as part of so-called Demand-Side Management (DSM) in the smart grid) offer potential economical incentives. In this thesis, we introduce optimization models and decomposition strategies for the multi-scale Demand-Side Management of continuous power-intensive processes. On an operational level, we derive a mode formulation for scheduling under time-sensitive electricity prices. The formulation is applied to air separation plants and cement plants to minimize the operating cost. We also describe how a mode formulation can be used for industrial combined heat and power plants that are co-located at integrated chemical sites to increase operating profit by adjusting their steam and electricity production according to their inherent flexibility. Furthermore, a robust optimization formulation is developed to address the uncertainty in electricity prices by accounting for correlations and multiple ranges in the realization of the random variables. On a strategic level, we introduce a multi-scale model that provides an understanding of the value of flexibility of the current plant configuration and the value of additional flexibility in terms of retrofits for Demand-Side Management under product demand uncertainty. The integration of multiple time scales leads to large-scale two-stage stochastic programming problems, for which we need to apply decomposition strategies in order to obtain a good solution within a reasonable amount of time. Hence, we describe two decomposition schemes that can be applied to solve two-stage stochastic programming problems: First, a hybrid bi-level decomposition scheme with

  9. Predicting patient exposure to nickel released from cardiovascular devices using multi-scale modeling.

    Science.gov (United States)

    Saylor, David M; Craven, Brent A; Chandrasekar, Vaishnavi; Simon, David D; Brown, Ronald P; Sussman, Eric M

    2018-04-01

    Many cardiovascular device alloys contain nickel, which if released in sufficient quantities, can lead to adverse health effects. However, in-vivo nickel release from implanted devices and subsequent biodistribution of nickel ions to local tissues and systemic circulation are not well understood. To address this uncertainty, we have developed a multi-scale (material, tissue, and system) biokinetic model. The model links nickel release from an implanted cardiovascular device to concentrations in peri-implant tissue, as well as in serum and urine, which can be readily monitored. The model was parameterized for a specific cardiovascular implant, nitinol septal occluders, using in-vitro nickel release test results, studies of ex-vivo uptake into heart tissue, and in-vivo and clinical measurements from the literature. Our results show that the model accurately predicts nickel concentrations in peri-implant tissue in an animal model and in serum and urine of septal occluder patients. The congruity of the model with these data suggests it may provide useful insight to establish nickel exposure limits and interpret biomonitoring data. Finally, we use the model to predict local and systemic nickel exposure due to passive release from nitinol devices produced using a wide range of manufacturing processes, as well as general relationships between release rate and exposure. These relationships suggest that peri-implant tissue and serum levels of nickel will remain below 5 μg/g and 10 μg/l, respectively, in patients who have received implanted nitinol cardiovascular devices provided the rate of nickel release per device surface area does not exceed 0.074 μg/(cm 2  d) and is less than 32 μg/d in total. The uncertainty in whether in-vitro tests used to evaluate metal ion release from medical products are representative of clinical environments is one of the largest roadblocks to establishing the associated patient risk. We have developed and validated a multi-scale

  10. Scrubbing Up: Multi-Scale Investigation of Woody Encroachment in a Southern African Savannah

    Directory of Open Access Journals (Sweden)

    Christopher G. Marston

    2017-04-01

    Full Text Available Changes in the extent of woody vegetation represent a major conservation question in many savannah systems around the globe. To address the problem of the current lack of broad-scale cost-effective tools for land cover monitoring in complex savannah environments, we use a multi-scale approach to quantifying vegetation change in Kruger National Park (KNP, South Africa. We test whether medium spatial resolution satellite data (Landsat, existing back to the 1970s, which have pixel sizes larger than typical vegetation patches, can nevertheless capture the thematic detail required to detect woody encroachment in savannahs. We quantify vegetation change over a 13-year period in KNP, examine the changes that have occurred, assess the drivers of these changes, and compare appropriate remote sensing data sources for monitoring change. We generate land cover maps for three areas of southern KNP using very high resolution (VHR and medium resolution satellite sensor imagery from February 2001 to 2014. Considerable land cover change has occurred, with large increases in shrubs replacing both trees and grassland. Examination of exclosure areas and potential environmental driver data suggests two mechanisms: elephant herbivory removing trees and at least one separate mechanism responsible for conversion of grassland to shrubs, theorised to be increasing atmospheric CO2. Thus, the combination of these mechanisms causes the novel two-directional shrub encroachment that we observe (tree loss and grassland conversion. Multi-scale comparison of classifications indicates that although spatial detail is lost when using medium resolution rather than VHR imagery for land cover classification (e.g., Landsat imagery cannot readily distinguish between tree and shrub classes, while VHR imagery can, the thematic detail contained within both VHR and medium resolution classifications is remarkably congruent. This suggests that medium resolution imagery contains sufficient

  11. Multi-scale dynamic modeling of atmospheric pollution in urban environment

    International Nuclear Information System (INIS)

    Thouron, Laetitia

    2017-01-01

    Urban air pollution has been identified as an important cause of health impacts, including premature deaths. In particular, ambient concentrations of gaseous pollutants such as nitrogen dioxide (NO 2 ) and particulate matter (PM10 and PM2.5) are regulated, which means that emission reduction strategies must be put in place to reduce these concentrations in places where the corresponding regulations are not respected. Besides, air pollution can contribute to the contamination of other media, for example through the contribution of atmospheric deposition to runoff contamination. The multifactorial and multi-scale aspects of urban make the pollution sources difficult to identify. Indeed, the urban environment is a heterogeneous space characterized by complex architectural structures (old buildings alongside a more modern building, residential, commercial, industrial zones, roads, etc.), non-uniform atmospheric pollutant emissions and therefore the population exposure to pollution is variable in space and time. The modeling of urban air pollution aims to understand the origin of pollutants, their spatial extent and their concentration/deposition levels. Some pollutants have long residence times and can stay several weeks in the atmosphere (PM2.5) and therefore be transported over long distances, while others are more local (NO x in the vicinity of traffic). The spatial distribution of a pollutant will therefore depend on several factors, and in particular on the surfaces encountered. Air quality depends strongly on weather, buildings (canyon-street) and emissions. The aim of this thesis is to address some of these aspects by modeling: (1) urban background pollution with a transport-chemical model (Polyphemus / POLAIR3D), which makes it possible to estimate atmospheric pollutants by type of urban surfaces (roofs, walls and roadways), (2) street-level pollution by explicitly integrating the effects of the building in a three-dimensional way with a multi-scale model of

  12. Tuple image multi-scale optical flow for detailed cardiac motion extraction: Application to left ventricle rotation analysis

    NARCIS (Netherlands)

    Assen, van H.C.; Florack, L.M.J.; Westenberg, J.J.M.; Haar Romenij, ter B.M.; Hamarneh, G.; Abugharbieh, R.

    2008-01-01

    We present a new method for detailed tracking of cardiac motion based on MR-tagging imaging, multi-scale optical flow, and HARP-like image filtering.In earlier work, we showed that the results obtained with our method correlate very well with Phase Contrast MRI. In this paper we combine the

  13. APPLICATION OF THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM TO SOS/NASHVILLE 1999

    Science.gov (United States)

    The Models-3 Community Multi-scale Air Quality (CMAQ) model, first released by the USEPA in 1999 (Byun and Ching. 1999), continues to be developed and evaluated. The principal components of the CMAQ system include a comprehensive emission processor known as the Sparse Matrix O...

  14. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin

    Science.gov (United States)

    Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...

  15. A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall

    Science.gov (United States)

    Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.

    2008-12-01

    Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.

  16. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  17. Dry season biomass estimation as an indicator of rangeland quantity using multi-scale remote sensing data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-10-01

    Full Text Available vegetation is green and photosynthetic active. During dry season, biomass estimation is always not plausible using vegetation indices. The aim of this study is to estimate dry biomass using the multi-scale remote sensing data in the savanna ecosystem. Field...

  18. Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    T. Lahousse

    2011-10-01

    Full Text Available We developed a multi-scale OBIA (object-based image analysis landslide detection technique to map shallow landslides in the Baichi watershed, Taiwan, after the 2004 Typhoon Aere event. Our semi-automated detection method selected multiple scales through landslide size statistics analysis for successive classification rounds. The detection performance achieved a modified success rate (MSR of 86.5% with the training dataset and 86% with the validation dataset. This performance level was due to the multi-scale aspect of our methodology, as the MSR for single scale classification was substantially lower, even after spectral difference segmentation, with a maximum of 74%. Our multi-scale technique was capable of detecting landslides of varying sizes, including very small landslides, up to 95 m2. The method presented certain limitations: the thresholds we established for classification were specific to the study area, to the landslide type in the study area, and to the spectral characteristics of the satellite image. Because updating site-specific and image-specific classification thresholds is easy with OBIA software, our multi-scale technique is expected to be useful for mapping shallow landslides at watershed level.

  19. Beyond harvests in the commons: multi-scale governance and turbulence in indigenous/community conserved areas in Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    David Barton Bray

    2012-08-01

    Full Text Available Some important elements of common property theory include a focus on individual communities or user groups, local level adjudication of conflicts, local autonomy in rule making, physical harvests, and low levels of articulation with markets. We present a case study of multi-scale collective action around indigenous/community conserved areas (ICCAs in Oaxaca, Mexico that suggests a modification of these components of common property theory. A multi-community ICCA in Oaxaca demonstrates the importance of inter-community collective action as key link in multi-scale governance, that conflicts are often negotiated in multiple arenas, that rules emerge at multiple scales, and that management for conservation and environmental services implies no physical harvests. Realizing economic gains from ICCAs for strict conservation may require something very different than traditional natural resource management. It requires intense engagement with extensive networks of government and civil society actors and new forms of community and inter-community collection action, or multi-scale governance. Multi-scale governance is built on trust and social capital at multiple scales and also constitutes collective action at multiple scales. However, processes of multi-scale governance are also necessarily “turbulent” with actors frequently having conflicting values and goals to be negotiated. We present an analytic history of the process of emergence of community and inter-community collective action around strict conservation and examples of internal and external turbulence. We argue that this case study and other literature requires an extensions of the constitutive elements of common property theory.

  20. Multi-scales modeling of reactive transport mechanisms. Impact on petrophysical properties during CO2 storage

    International Nuclear Information System (INIS)

    Varloteaux, C.

    2012-01-01

    The geo-sequestration of carbon dioxide (CO 2 ) is an attractive option to reduce the emission of greenhouse gases. Within carbonate reservoirs, acidification of brine in place can occur during CO 2 injection. This acidification leads to mineral dissolution which can modify the transport properties of a solute in porous media. The aim of this study is to quantify the impact of reactive transport on a solute distribution and on the structural modification induced by the reaction from the pore to the reservoir scale. This study is focused on reactive transport problem in the case of single phase flow in the limit of long time. To do so, we used a multi-scale up-scaling method that takes into account (i) the local scale, where flow, reaction and transport are known; (ii) the pore scale, where the reactive transport is addressed by using averaged formulation of the local equations; (iii) the Darcy scale (also called core scale), where the structure of the rock is taken into account by using a three-dimensions network of pore-bodies connected by pore-throats; and (iv) the reservoir scale, where physical phenomenon, within each cell of the reservoir model, are taken into account by introducing macroscopic coefficients deduced from the study of these phenomenon at the Darcy scale, such as the permeability, the apparent reaction rate, the solute apparent velocity and dispersion. (author)

  1. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  2. Contextual Multi-Scale Region Convolutional 3D Network for Activity Detection

    KAUST Repository

    Bai, Yancheng

    2018-01-28

    Activity detection is a fundamental problem in computer vision. Detecting activities of different temporal scales is particularly challenging. In this paper, we propose the contextual multi-scale region convolutional 3D network (CMS-RC3D) for activity detection. To deal with the inherent temporal scale variability of activity instances, the temporal feature pyramid is used to represent activities of different temporal scales. On each level of the temporal feature pyramid, an activity proposal detector and an activity classifier are learned to detect activities of specific temporal scales. Temporal contextual information is fused into activity classifiers for better recognition. More importantly, the entire model at all levels can be trained end-to-end. Our CMS-RC3D detector can deal with activities at all temporal scale ranges with only a single pass through the backbone network. We test our detector on two public activity detection benchmarks, THUMOS14 and ActivityNet. Extensive experiments show that the proposed CMS-RC3D detector outperforms state-of-the-art methods on THUMOS14 by a substantial margin and achieves comparable results on ActivityNet despite using a shallow feature extractor.

  3. Nest fidelity is driven by multi-scale information in a long-lived seabird.

    Science.gov (United States)

    Robert, Alexandre; Paiva, Vítor H; Bolton, Mark; Jiguet, Frédéric; Bried, Joël

    2014-10-22

    Although the reproductive success of most organisms depends on factors acting at several spatial scales, little is known about how organisms are able to synthesize multi-scale information to optimize reproduction. Using longitudinal data from a long-lived seabird, Monteiro's storm-petrel, we show that average breeding success is strongly related to oceanic conditions at the population level, and we postulate that (i) individuals use proximal information (their own reproduction outcome in year t) to assess the qualities of their mate and nest and to decide to retain them or not in year t + 1; (ii) the intensity of these responses depends on the quality of the oceanic environment in year t, which affects the predictability of reproduction outcome in year t + 1. Our results confirm that mate and nest fidelities are higher following successful reproduction and that the relationship between the success of a given pair and subsequent nest fidelity is stronger in years with unfavourable oceanic conditions, suggesting that individuals rely on distant information to modulate their use of proximal information and adjust their breeding strategy. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

    Directory of Open Access Journals (Sweden)

    Luis L. Fonseca

    2012-02-01

    Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.

  5. An adaptive framework to differentiate receiving water quality impacts on a multi-scale level.

    Science.gov (United States)

    Blumensaat, F; Tränckner, J; Helm, B; Kroll, S; Dirckx, G; Krebs, P

    2013-01-01

    The paradigm shift in recent years towards sustainable and coherent water resources management on a river basin scale has changed the subject of investigations to a multi-scale problem representing a great challenge for all actors participating in the management process. In this regard, planning engineers often face an inherent conflict to provide reliable decision support for complex questions with a minimum of effort. This trend inevitably increases the risk to base decisions upon uncertain and unverified conclusions. This paper proposes an adaptive framework for integral planning that combines several concepts (flow balancing, water quality monitoring, process modelling, multi-objective assessment) to systematically evaluate management strategies for water quality improvement. As key element, an S/P matrix is introduced to structure the differentiation of relevant 'pressures' in affected regions, i.e. 'spatial units', which helps in handling complexity. The framework is applied to a small, but typical, catchment in Flanders, Belgium. The application to the real-life case shows: (1) the proposed approach is adaptive, covers problems of different spatial and temporal scale, efficiently reduces complexity and finally leads to a transparent solution; and (2) water quality and emission-based performance evaluation must be done jointly as an emission-based performance improvement does not necessarily lead to an improved water quality status, and an assessment solely focusing on water quality criteria may mask non-compliance with emission-based standards. Recommendations derived from the theoretical analysis have been put into practice.

  6. A multi-scale computational study on the mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic).

    Science.gov (United States)

    Ion, Bogdan F; Kazim, Erum; Gauld, James W

    2014-09-29

    Nicotinamidase (Nic) is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic). In particular, density functional theory (DFT), molecular dynamics (MD) and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods have been employed. The overall mechanism occurs in two stages: (i) formation of a thioester enzyme-intermediate (IC2) and (ii) hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ·mol-1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103) is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.

  7. Multi-scale ocean and climate drivers of widespread bleaching in the Coral Triangle

    Science.gov (United States)

    Drenkard, E.; Curchitser, E. N.; Kleypas, J. A.; Castruccio, F. S.

    2016-12-01

    The Maritime Continent is home to the Coral Triangle (CT): the global pinnacle of tropical coral biodiversity. Historically, extensive bleaching-induced mortality (caused by thermal stress) among corals in the CT has been associated with extremes in the El Niño Southern Oscillation (ENSO), particularly years when a strong El Niños transitions to a La Niña state (i.e., 1998 and 2010). Similarities in the spatial distribution of satellite-derived indices, and the multi-scale environmental drivers of elevated sea surface temperatures (SSTs) during the 1998 and 2010 bleaching events suggests a potential predictability that has important implications for reef conservation. Using numerical models and ocean and atmosphere reanalysis products, we discuss the roles of ENSO-associated anomalies in both large-scale atmospheric circulation patterns (e.g., South Asian Monsoon) and regional ocean-cooling mechanisms such as coastal upwelling, tropical storm activity, and divergent (i.e., upwelling) circulation patterns (e.g., the Mindanao Eddy) in determining SSTs and, consequently projected patterns of reef ecosystem vulnerability to thermal stress. Conditions associated with the recent and ongoing 2015/2016 coral bleaching and mortality will be compared/contrasted.

  8. A multi-scale modeling framework for individualized, spatiotemporal prediction of drug effects and toxicological risk

    Directory of Open Access Journals (Sweden)

    Juan Guillermo eDiaz Ochoa

    2013-01-01

    Full Text Available In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole-body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.

  9. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    Science.gov (United States)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  10. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    Science.gov (United States)

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    Science.gov (United States)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  12. A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features

    Directory of Open Access Journals (Sweden)

    Chen Li

    2018-03-01

    Full Text Available To increase prediction accuracy of dissolved oxygen (DO in aquaculture, a hybrid model based on multi-scale features using ensemble empirical mode decomposition (EEMD is proposed. Firstly, original DO datasets are decomposed by EEMD and we get several components. Secondly, these components are used to reconstruct four terms including high frequency term, intermediate frequency term, low frequency term and trend term. Thirdly, according to the characteristics of high and intermediate frequency terms, which fluctuate violently, the least squares support vector machine (LSSVR is used to predict the two terms. The fluctuation of low frequency term is gentle and periodic, so it can be modeled by BP neural network with an optimal mind evolutionary computation (MEC-BP. Then, the trend term is predicted using grey model (GM because it is nearly linear. Finally, the prediction values of DO datasets are calculated by the sum of the forecasting values of all terms. The experimental results demonstrate that our hybrid model outperforms EEMD-ELM (extreme learning machine based on EEMD, EEMD-BP and MEC-BP models based on the mean absolute error (MAE, mean absolute percentage error (MAPE, mean square error (MSE and root mean square error (RMSE. Our hybrid model is proven to be an effective approach to predict aquaculture DO.

  13. COMPARISON OF MULTI-SCALE DIGITAL ELEVATION MODELS FOR DEFINING WATERWAYS AND CATCHMENTS OVER LARGE AREAS

    Directory of Open Access Journals (Sweden)

    B. Harris

    2012-07-01

    Full Text Available Digital Elevation Models (DEMs allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas are adequate for the creation of waterways and catchments at a regional scale.

  14. A Multi-Scale Computational Study on the Mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic

    Directory of Open Access Journals (Sweden)

    Bogdan F. Ion

    2014-09-01

    Full Text Available Nicotinamidase (Nic is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic. In particular, density functional theory (DFT, molecular dynamics (MD and ONIOM quantum mechanics/molecular mechanics (QM/MM methods have been employed. The overall mechanism occurs in two stages: (i formation of a thioester enzyme-intermediate (IC2 and (ii hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ•mol−1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103 is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.

  15. Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging

    International Nuclear Information System (INIS)

    Crum, W R; Tanner, C; Hawkes, D J

    2005-01-01

    Registration using models of compressible viscous fluids has not found the general application of some other techniques (e.g., free-form-deformation (FFD)) despite its ability to model large diffeomorphic deformations. We report on a multi-resolution fluid registration algorithm which improves on previous work by (a) directly solving the Navier-Stokes equation at the resolution of the images (b) accommodating image sampling anisotropy using semi-coarsening and implicit smoothing in a full multi-grid (FMG) solver and (c) exploiting the inherent multi-resolution nature of FMG to implement a multi-scale approach. Evaluation is on five magnetic resonance (MR) breast images subject to six biomechanical deformation fields over 11 multi-resolution schemes. Quantitative assessment is by tissue overlaps and target registration errors and by registering using the known correspondences rather than image features to validate the fluid model. Context is given by comparison with a validated FFD algorithm and by application to images of volunteers subjected to large applied deformation. The results show that fluid registration of 3D breast MR images to sub-voxel accuracy is possible in minutes on a 1.6 GHz Linux-based Athlon processor with coarse solutions obtainable in a few tens of seconds. Accuracy and computation time are comparable to FFD techniques validated for this application

  16. Multi-scale modeling of diffusion-controlled reactions in polymers: renormalisation of reactivity parameters.

    Science.gov (United States)

    Everaers, Ralf; Rosa, Angelo

    2012-01-07

    The quantitative description of polymeric systems requires hierarchical modeling schemes, which bridge the gap between the atomic scale, relevant to chemical or biomolecular reactions, and the macromolecular scale, where the longest relaxation modes occur. Here, we use the formalism for diffusion-controlled reactions in polymers developed by Wilemski, Fixman, and Doi to discuss the renormalisation of the reactivity parameters in polymer models with varying spatial resolution. In particular, we show that the adjustments are independent of chain length. As a consequence, it is possible to match reactions times between descriptions with different resolution for relatively short reference chains and to use the coarse-grained model to make quantitative predictions for longer chains. We illustrate our results by a detailed discussion of the classical problem of chain cyclization in the Rouse model, which offers the simplest example of a multi-scale descriptions, if we consider differently discretized Rouse models for the same physical system. Moreover, we are able to explore different combinations of compact and non-compact diffusion in the local and large-scale dynamics by varying the embedding dimension.

  17. Multi-scale-nonlinear interactions among micro-turbulence, double tearing instability and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient

  18. Structural and mechanical multi-scale characterization of white New-Zealand rabbit Achilles tendon.

    Science.gov (United States)

    Kahn, Cyril J F; Dumas, Dominique; Arab-Tehrany, Elmira; Marie, Vanessa; Tran, Nguyen; Wang, Xiong; Cleymand, Franck

    2013-10-01

    Multi-scale characterization of structures and mechanical behavior of biological tissues are of huge importance in order to evaluate the quality of a biological tissue and/or to provide bio-inspired scaffold for functional tissue engineering. Indeed, the more information on main biological tissue structures we get, the more relevant we will be to design new functional prostheses for regenerative medicine or to accurately evaluate tissues. From this perspective, we have investigated the structures and their mechanical properties from nanoscopic to macroscopic scale of fresh ex-vivo white New-Zealand rabbit Achilles tendon using second harmonic generation (SHG) microscopy, atomic force microscopy (AFM) and tensile tests to provide a "simple" model whose parameters are relevant of its micro or nano structure. Thus, collagen fiber's crimping was identified then measured from SHG images as a plane sine wave with 28.4 ± 5.8 μm of amplitude and 141 ± 41 μm of wavelength. Young's moduli of fibrils (3.0 GPa) and amorphous phases (223 MPa) were obtained using TH-AFM. From these investigations, a non-linear Zener model linking a statistical Weibull's distribution of taut fibers under traction to crimp fibers were developed. This model showed that for small strain (tendon observations under static or dynamic solicitations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    Science.gov (United States)

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  20. A multi-scaled approach to evaluating the fish assemblage structure within southern Appalachian streams USA.

    Science.gov (United States)

    Kirsch, Joseph; Peterson, James T.

    2014-01-01

    There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.

  1. Dynamics of Multi-Scale Intra-Provincial Regional Inequality in Zhejiang, China

    Directory of Open Access Journals (Sweden)

    Wenze Yue

    2014-08-01

    Full Text Available This paper investigates regional inequality in a multi-scale framework, using Exploratory Spatial Data Analysis, based on the per capita Gross Domestic Product (GDP of counties and municipalities within the Zhejiang province in China between the years of 1990 and 2010. A Spatial Markov Chain is used to identify the dynamics of regional wealth disparity in Zhejiang. The results show that the regional inequality of Zhejiang is sensitive to the geographic scale of the analysis. In addition, the inter-county inequality shows an inverted-U shape pattern. At the same time, the inter-municipality inequality displays a more consistently upward trend, and the evolution of the interregional inequality is relatively stable over time. The regional inequality is more significant at finer (larger spatial scales. The decomposition of the Theil Index shows that the contribution of the inequalities between Northeast Zhejiang and Southwest Zhejiang increased. The increasingly larger values of the Global Moran’s I show that there is an intensifying spatial aggregation of economic development. The comparison of the traditional Markov transition matrix and the Spatial Markov transition matrix illustrates how the relative wealth or poverty of neighboring counties make a significance difference in wealth in a given county as measured using domestic GDP per capita in Zhejiang province. This space-time analysis is valuable for policy making towards sustainable economic development in China given the soaring spatial inequality.

  2. Synergy of multi-scale toughening and protective mechanisms at hierarchical branch-stem interfaces

    Science.gov (United States)

    Müller, Ulrich; Gindl-Altmutter, Wolfgang; Konnerth, Johannes; Maier, Günther A.; Keckes, Jozef

    2015-09-01

    Biological materials possess a variety of artful interfaces whose size and properties are adapted to their hierarchical levels and functional requirements. Bone, nacre, and wood exhibit an impressive fracture resistance based mainly on small crystallite size, interface organic adhesives and hierarchical microstructure. Currently, little is known about mechanical concepts in macroscopic biological interfaces like the branch-stem junction with estimated 1014 instances on earth and sizes up to few meters. Here we demonstrate that the crack growth in the upper region of the branch-stem interface of conifer trees proceeds along a narrow predefined region of transversally loaded tracheids, denoted as sacrificial tissue, which fail upon critical bending moments on the branch. The specific arrangement of the tracheids allows disconnecting the overloaded branch from the stem in a controlled way by maintaining the stem integrity. The interface microstructure based on the sharply adjusted cell orientation and cell helical angle secures a zig-zag crack propagation path, mechanical interlock closing after the bending moment is removed, crack gap bridging and self-repairing by resin deposition. The multi-scale synergetic concepts allows for a controllable crack growth between stiff stem and flexible branch, as well as mechanical tree integrity, intact physiological functions and recovery after the cracking.

  3. An Efficient Parallel Multi-Scale Segmentation Method for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Haiyan Gu

    2018-04-01

    Full Text Available Remote sensing (RS image segmentation is an essential step in geographic object-based image analysis (GEOBIA to ultimately derive “meaningful objects”. While many segmentation methods exist, most of them are not efficient for large data sets. Thus, the goal of this research is to develop an efficient parallel multi-scale segmentation method for RS imagery by combining graph theory and the fractal net evolution approach (FNEA. Specifically, a minimum spanning tree (MST algorithm in graph theory is proposed to be combined with a minimum heterogeneity rule (MHR algorithm that is used in FNEA. The MST algorithm is used for the initial segmentation while the MHR algorithm is used for object merging. An efficient implementation of the segmentation strategy is presented using data partition and the “reverse searching-forward processing” chain based on message passing interface (MPI parallel technology. Segmentation results of the proposed method using images from multiple sensors (airborne, SPECIM AISA EAGLE II, WorldView-2, RADARSAT-2 and different selected landscapes (residential/industrial, residential/agriculture covering four test sites indicated its efficiency in accuracy and speed. We conclude that the proposed method is applicable and efficient for the segmentation of a variety of RS imagery (airborne optical, satellite optical, SAR, high-spectral, while the accuracy is comparable with that of the FNEA method.

  4. Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated

    International Nuclear Information System (INIS)

    Chen Xiaoguang; Wayne Brodland, G

    2008-01-01

    The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10 239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments

  5. Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated

    Science.gov (United States)

    Chen, Xiaoguang; Brodland, G. Wayne

    2008-03-01

    The novel multi-scale computational approach introduced here makes possible a new means for testing hypotheses about the forces that drive specific morphogenetic movements. A 3D model based on this approach is used to investigate neurulation in the axolotl (Ambystoma mexicanum), a type of amphibian. The model is based on geometric data from 3D surface reconstructions of live embryos and from serial sections. Tissue properties are described by a system of cell-based constitutive equations, and parameters in the equations are determined from physical tests. The model includes the effects of Shroom-activated neural ridge reshaping and lamellipodium-driven convergent extension. A typical whole-embryo model consists of 10 239 elements and to run its 100 incremental time steps requires 2 days. The model shows that a normal phenotype does not result if lamellipodium forces are uniform across the width of the neural plate; but it can result if the lamellipodium forces decrease from a maximum value at the mid-sagittal plane to zero at the plate edge. Even the seemingly simple motions of neurulation are found to contain important features that would remain hidden, they were not studied using an advanced computational model. The present model operates in a setting where data are extremely sparse and an important outcome of the study is a better understanding of the role of computational models in such environments.

  6. Contextual Multi-Scale Region Convolutional 3D Network for Activity Detection

    KAUST Repository

    Bai, Yancheng; Xu, Huijuan; Saenko, Kate; Ghanem, Bernard

    2018-01-01

    Activity detection is a fundamental problem in computer vision. Detecting activities of different temporal scales is particularly challenging. In this paper, we propose the contextual multi-scale region convolutional 3D network (CMS-RC3D) for activity detection. To deal with the inherent temporal scale variability of activity instances, the temporal feature pyramid is used to represent activities of different temporal scales. On each level of the temporal feature pyramid, an activity proposal detector and an activity classifier are learned to detect activities of specific temporal scales. Temporal contextual information is fused into activity classifiers for better recognition. More importantly, the entire model at all levels can be trained end-to-end. Our CMS-RC3D detector can deal with activities at all temporal scale ranges with only a single pass through the backbone network. We test our detector on two public activity detection benchmarks, THUMOS14 and ActivityNet. Extensive experiments show that the proposed CMS-RC3D detector outperforms state-of-the-art methods on THUMOS14 by a substantial margin and achieves comparable results on ActivityNet despite using a shallow feature extractor.

  7. Multi-scale modeling of interaction between vacancies and alloying elements in ferritic alloys

    International Nuclear Information System (INIS)

    Barouh, Caroline

    2015-01-01

    This PhD thesis is devoted to the study of interaction between vacancies and alloying elements in Oxide Dispersion Strengthened (ODS) steels, which are promising candidate materials for future nuclear reactors. This work is based on multi-scale modeling of a simplified system composed by oxygen, yttrium and titanium atoms and vacancies in an α-iron lattice. We particularly focused on the role of vacancies which are created in excess during the fabrication of these steels. The stability and mobility of vacancy-solute clusters have been examined using ab initio calculations for oxygen, on one hand, which has been systematically compared to carbon and nitrogen, interstitial solutes frequently present in iron-based materials, and, on the other hand, for substitutional solutes: titanium and yttrium. The three interstitial solutes show very similar energetic and kinetic behaviors. The impact of small mobile vacancy-solute clusters has been verified using a cluster dynamics model based on our ab initio results. It has been thus demonstrated that with over-saturation of vacancies, diffusion of interstitial solutes may be accelerated, while substitutional solutes do not become necessarily faster. These conclusions are consistent with existing experimental observations. All these results have been then used to complete our understanding of nano-clusters formation mechanisms. It appeared that the relative mobility of yttrium and titanium, as well as the number of potential nuclei to form nanoparticles strongly depend on the total vacancy concentration in the system. (author) [fr

  8. Automatic facial pore analysis system using multi-scale pore detection.

    Science.gov (United States)

    Sun, J Y; Kim, S W; Lee, S H; Choi, J E; Ko, S J

    2017-08-01

    As facial pore widening and its treatments have become common concerns in the beauty care field, the necessity for an objective pore-analyzing system has been increased. Conventional apparatuses lack in usability requiring strong light sources and a cumbersome photographing process, and they often yield unsatisfactory analysis results. This study was conducted to develop an image processing technique for automatic facial pore analysis. The proposed method detects facial pores using multi-scale detection and optimal scale selection scheme and then extracts pore-related features such as total area, average size, depth, and the number of pores. Facial photographs of 50 subjects were graded by two expert dermatologists, and correlation analyses between the features and clinical grading were conducted. We also compared our analysis result with those of conventional pore-analyzing devices. The number of large pores and the average pore size were highly correlated with the severity of pore enlargement. In comparison with the conventional devices, the proposed analysis system achieved better performance showing stronger correlation with the clinical grading. The proposed system is highly accurate and reliable for measuring the severity of skin pore enlargement. It can be suitably used for objective assessment of the pore tightening treatments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Comparison of Multi-Scale Digital Elevation Models for Defining Waterways and Catchments Over Large Areas

    Science.gov (United States)

    Harris, B.; McDougall, K.; Barry, M.

    2012-07-01

    Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.

  10. Multi-scale sampling to evaluate assemblage dynamics in an oceanic marine reserve.

    Science.gov (United States)

    Thompson, Andrew R; Watson, William; McClatchie, Sam; Weber, Edward D

    2012-01-01

    To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002-2004 through ichthyoplankton sampling in a large (10,878 km(2)) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km(2) CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world.

  11. Multi-scale sampling to evaluate assemblage dynamics in an oceanic marine reserve.

    Directory of Open Access Journals (Sweden)

    Andrew R Thompson

    Full Text Available To resolve the capacity of Marine Protected Areas (MPA to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002-2004 through ichthyoplankton sampling in a large (10,878 km(2 Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA that was established in 2001, and the Southern California Bight as a whole (238,000 km(2 CalCOFI sampling domain. The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña and 2003 (El Niño and then increased in 2004 (El Niño, while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world.

  12. Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis

    DEFF Research Database (Denmark)

    Green, Sara; Batterman, Robert

    2017-01-01

    A common reductionist assumption is that macro-scale behaviors can be described "bottom-up" if only sufficient details about lower-scale processes are available. The view that an "ideal" or "fundamental" physics would be sufficient to explain all macro-scale phenomena has been met with criticism ...... modeling in developmental biology. In such contexts, the relation between models at different scales and from different disciplines is neither reductive nor completely autonomous, but interdependent....... from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom......-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the “tyranny of scales” problem present a challenge to reductive explanations in both physics and biology. The problem refers to the scale...

  13. Multi-scale Fully Convolutional Network for Face Detection in the Wild

    KAUST Repository

    Bai, Yancheng

    2017-08-24

    Face detection is a classical problem in computer vision. It is still a difficult task due to many nuisances that naturally occur in the wild. In this paper, we propose a multi-scale fully convolutional network for face detection. To reduce computation, the intermediate convolutional feature maps (conv) are shared by every scale model. We up-sample and down-sample the final conv map to approximate K levels of a feature pyramid, leading to a wide range of face scales that can be detected. At each feature pyramid level, a FCN is trained end-to-end to deal with faces in a small range of scale change. Because of the up-sampling, our method can detect very small faces (10×10 pixels). We test our MS-FCN detector on four public face detection datasets, including FDDB, WIDER FACE, AFW and PASCAL FACE. Extensive experiments show that it outperforms state-of-the-art methods. Also, MS-FCN runs at 23 FPS on a GPU for images of size 640×480 with no assumption on the minimum detectable face size.

  14. Equivalent Electromagnetic Constants for Microwave Application to Composite Materials for the Multi-Scale Problem

    Directory of Open Access Journals (Sweden)

    Keisuke Fujisaki

    2013-11-01

    Full Text Available To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model and the homogeneous model (macro-model. However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity.

  15. Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

    Science.gov (United States)

    Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang

    2015-01-01

    Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

  16. Integrating multi-scale data to create a virtual physiological mouse heart.

    Science.gov (United States)

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  17. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    Science.gov (United States)

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  18. An eye model for computational dosimetry using a multi-scale voxel phantom

    International Nuclear Information System (INIS)

    Caracappa, P.F.; Rhodes, A.; Fiedler, D.

    2013-01-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. When the Lattice Overlay method, the simpler of the two to define, is utilized, the computational penalty in terms of speed is noticeable and the figure of merit for the eye dose tally decreases by as much as a factor of two. When the Voxel Substitution method is applied, the penalty in speed is nearly trivial and the impact on the tally figure of merit is comparatively smaller. The origin of this difference in the code behavior may warrant further investigation

  19. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.

    Science.gov (United States)

    Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa

    2017-11-01

    This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Naveed ur Rehman

    2015-05-01

    Full Text Available A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA, discrete wavelet transform (DWT and non-subsampled contourlet transform (NCT. A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  1. Multi-scale analysis of deformation behavior at SCC crack tip (2). (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2007-03-01

    This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with Japan Nuclear Energy Safety Organization (JNES) that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of stress corrosion cracking (SCC). The research was carried out to evaluate the validity of the SCC growth data acquired in the intergranular SCC (IGSCC) project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary to understand the SCC propagation behavior were acquired and analyzed that are mainly a size of plastic deformation region and a microstructural information in the region, e.g. data of crystallografy, microscopic deformation and dislocations at the inside of grains and grain boundaries. In this year, we analyzed the state of plastic deformation region at the crack tip of IGSCC under various conditions and investigated relationship between crack growth behavior and stress intensity factor. Especially, we investigated in detail about two different hardened specimens used in the SCC growth tests in the IGSCC project. (J.P.N.)

  2. A multi-scale relevance vector regression approach for daily urban water demand forecasting

    Science.gov (United States)

    Bai, Yun; Wang, Pu; Li, Chuan; Xie, Jingjing; Wang, Yin

    2014-09-01

    Water is one of the most important resources for economic and social developments. Daily water demand forecasting is an effective measure for scheduling urban water facilities. This work proposes a multi-scale relevance vector regression (MSRVR) approach to forecast daily urban water demand. The approach uses the stationary wavelet transform to decompose historical time series of daily water supplies into different scales. At each scale, the wavelet coefficients are used to train a machine-learning model using the relevance vector regression (RVR) method. The estimated coefficients of the RVR outputs for all of the scales are employed to reconstruct the forecasting result through the inverse wavelet transform. To better facilitate the MSRVR forecasting, the chaos features of the daily water supply series are analyzed to determine the input variables of the RVR model. In addition, an adaptive chaos particle swarm optimization algorithm is used to find the optimal combination of the RVR model parameters. The MSRVR approach is evaluated using real data collected from two waterworks and is compared with recently reported methods. The results show that the proposed MSRVR method can forecast daily urban water demand much more precisely in terms of the normalized root-mean-square error, correlation coefficient, and mean absolute percentage error criteria.

  3. Multi-Scale Visualization Analysis of Bus Flow Average Travel Speed in Qingdao

    Science.gov (United States)

    Yong, HAN; Man, GAO; Xiao-Lei, ZHANG; Jie, LI; Ge, CHEN

    2016-11-01

    Public transportation is a kind of complex spatiotemporal behaviour. The traffic congestion and environmental pollution caused by the increase in private cars is becoming more and more serious in our city. Spatiotemporal data visualization is an effective tool for studying traffic, transforming non-visual data into recognizable images, which can reveal where/when congestion is formed, developed and disappeared in space and time simultaneously. This paper develops a multi-scale visualization of average travel speed derived from floating bus data, to enable congestion on urban bus networks to be shown and analyzed. The techniques of R language, Echarts, WebGL are used to draw statistical pictures and 3D wall map, which show the congestion in Qingdao from the view of space and time. The results are as follows:(1) There is a more severely delay in Shibei and Shinan areas than Licun and Laoshan areas; (2) The high congestion usually occurs on Hong Kong Middle Road, Shandong Road, Nanjing Road, Liaoyang West Road and Taiping Road;(3) There is a similar law from Monday to Sunday that the congestion is severer in the morning and evening rush hours than other hours; (4) On Monday morning the severity of congestion is higher than on Friday morning, and on Friday evening the severity is higher than on Monday evening. The research results will help to improve the public transportation of Qingdao.

  4. Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gearhart, Jared Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kurtz, Nolan Scot [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance are investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.

  5. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    Science.gov (United States)

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  6. Multi-scale Analysis of High Resolution Topography: Feature Extraction and Identification of Landscape Characteristic Scales

    Science.gov (United States)

    Passalacqua, P.; Sangireddy, H.; Stark, C. P.

    2015-12-01

    With the advent of digital terrain data, detailed information on terrain characteristics and on scale and location of geomorphic features is available over extended areas. Our ability to observe landscapes and quantify topographic patterns has greatly improved, including the estimation of fluxes of mass and energy across landscapes. Challenges still remain in the analysis of high resolution topography data; the presence of features such as roads, for example, challenges classic methods for feature extraction and large data volumes require computationally efficient extraction and analysis methods. Moreover, opportunities exist to define new robust metrics of landscape characterization for landscape comparison and model validation. In this presentation we cover recent research in multi-scale and objective analysis of high resolution topography data. We show how the analysis of the probability density function of topographic attributes such as slope, curvature, and topographic index contains useful information for feature localization and extraction. The analysis of how the distributions change across scales, quantified by the behavior of modal values and interquartile range, allows the identification of landscape characteristic scales, such as terrain roughness. The methods are introduced on synthetic signals in one and two dimensions and then applied to a variety of landscapes of different characteristics. Validation of the methods includes the analysis of modeled landscapes where the noise distribution is known and features of interest easily measured.

  7. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-01-01

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032

  8. A brain MRI bias field correction method created in the Gaussian multi-scale space

    Science.gov (United States)

    Chen, Mingsheng; Qin, Mingxin

    2017-07-01

    A pre-processing step is needed to correct for the bias field signal before submitting corrupted MR images to such image-processing algorithms. This study presents a new bias field correction method. The method creates a Gaussian multi-scale space by the convolution of the inhomogeneous MR image with a two-dimensional Gaussian function. In the multi-Gaussian space, the method retrieves the image details from the differentiation of the original image and convolution image. Then, it obtains an image whose inhomogeneity is eliminated by the weighted sum of image details in each layer in the space. Next, the bias field-corrected MR image is retrieved after the Υ correction, which enhances the contrast and brightness of the inhomogeneity-eliminated MR image. We have tested the approach on T1 MRI and T2 MRI with varying bias field levels and have achieved satisfactory results. Comparison experiments with popular software have demonstrated superior performance of the proposed method in terms of quantitative indices, especially an improvement in subsequent image segmentation.

  9. Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results

    Science.gov (United States)

    Brad C. Timm; Kevin McGarigal; Samuel A. Cushman; Joseph L. Ganey

    2016-01-01

    Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective...

  10. Multi-scale forcing and the formation of subtropical desert and monsoon

    Directory of Open Access Journals (Sweden)

    G. X. Wu

    2009-09-01

    Full Text Available This study investigates three types of atmospheric forcing across the summertime subtropics that are shown to contribute in various ways to the occurrence of dry and wet climates in the subtropics. To explain the formation of desert over the western parts of continents and monsoon over the eastern parts, we propose a new mechanism of positive feedback between diabatic heating and vorticity generation that occurs via meridional advection of planetary vorticity and temperature. Monsoon and desert are demonstrated to coexist as twin features of multi-scale forcing, as follows. First, continent-scale heating over land and cooling over ocean induce the ascent of air over the eastern parts of continents and western parts of oceans, and descent over eastern parts of oceans and western parts of continents. Second, local-scale sea-breeze forcing along coastal regions enhances air descent over eastern parts of oceans and ascent over eastern parts of continents. This leads to the formation of the well-defined summertime subtropical LOSECOD quadruplet-heating pattern across each continent and adjacent oceans, with long-wave radiative cooling (LO over eastern parts of oceans, sensible heating (SE over western parts of continents, condensation heating (CO over eastern parts of continents, and double dominant heating (D: LO+CO over western parts of oceans. Such a quadruplet heating pattern corresponds to a dry climate over the western parts of continents and a wet climate over eastern parts. Third, regional-scale orographic-uplift-heating generates poleward ascending flow to the east of orography and equatorward descending flow to the west. The Tibetan Plateau (TP is located over the eastern Eurasian continent. The TP-forced circulation pattern is in phase with that produced by continental-scale forcing, and the strongest monsoon and largest deserts are formed over the Afro-Eurasian Continent. In contrast, the Rockies and the Andes are located over the western

  11. Multi-scale forcing and the formation of subtropical desert and monsoon

    Directory of Open Access Journals (Sweden)

    G. X. Wu

    2009-09-01

    Full Text Available This study investigates three types of atmospheric forcing across the summertime subtropics that are shown to contribute in various ways to the occurrence of dry and wet climates in the subtropics. To explain the formation of desert over the western parts of continents and monsoon over the eastern parts, we propose a new mechanism of positive feedback between diabatic heating and vorticity generation that occurs via meridional advection of planetary vorticity and temperature. Monsoon and desert are demonstrated to coexist as twin features of multi-scale forcing, as follows.

    First, continent-scale heating over land and cooling over ocean induce the ascent of air over the eastern parts of continents and western parts of oceans, and descent over eastern parts of oceans and western parts of continents. Second, local-scale sea-breeze forcing along coastal regions enhances air descent over eastern parts of oceans and ascent over eastern parts of continents. This leads to the formation of the well-defined summertime subtropical LOSECOD quadruplet-heating pattern across each continent and adjacent oceans, with long-wave radiative cooling (LO over eastern parts of oceans, sensible heating (SE over western parts of continents, condensation heating (CO over eastern parts of continents, and double dominant heating (D: LO+CO over western parts of oceans. Such a quadruplet heating pattern corresponds to a dry climate over the western parts of continents and a wet climate over eastern parts. Third, regional-scale orographic-uplift-heating generates poleward ascending flow to the east of orography and equatorward descending flow to the west.

    The Tibetan Plateau (TP is located over the eastern Eurasian continent. The TP-forced circulation pattern is in phase with that produced by continental-scale forcing, and the strongest monsoon and largest deserts are formed over the Afro-Eurasian Continent. In contrast, the Rockies and the Andes are