WorldWideScience

Sample records for multi-region boundary element

  1. A multi-region boundary element method for multigroup neutron diffusion calculations

    International Nuclear Information System (INIS)

    Ozgener, H.A.; Ozgener, B.

    2001-01-01

    For the analysis of a two-dimensional nuclear system consisting of a number of homogeneous regions (termed cells), first the cell matrices which depend solely on the material composition and geometrical dimension of the cell (hence on the cell type) are constructed using a boundary element formulation based on the multigroup boundary integral equation. For a particular nuclear system, the cell matrices are utilized in the assembly of the global system matrix in block-banded form using the newly introduced concept of virtual side. For criticality calculations, the classical fission source iteration is employed and linear system solutions are by the block Gaussian-elimination algorithm. The numerical applications show the validity of the proposed formulation both through comparison with analytical solutions and assessment of benchmark problem results against alternative methods

  2. Periodic Boundary Conditions in the ALEGRA Finite Element Code

    International Nuclear Information System (INIS)

    Aidun, John B.; Robinson, Allen C.; Weatherby, Joe R.

    1999-01-01

    This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given

  3. Boundary element numerical method for the electric field generated by oblique multi-needle electrodes

    Institute of Scientific and Technical Information of China (English)

    LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun

    2009-01-01

    According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.

  4. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    Science.gov (United States)

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry

  5. International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics

    CERN Document Server

    Partridge, P; Boundary Elements in Fluid Dynamics

    1992-01-01

    This book Boundary Elements in Fluid Dynamics is the second volume of the two volume proceedings of the International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics, held in Southampton, U.K., in April 1992. The Boundary Element Method (BEM) is now fully established as an ac­ curate and successful technique for solving engineering problems in a wide range of fields. The success of the method is due to its advantages in data reduction, as only the boundary of the region is modelled. Thus moving boundaries may be more easily handled, which is not the case if domain methods are used. In addition, the method is easily able to model regions to extending to infinity. Fluid mechanics is traditionally one of the most challenging areas of engi­ neering, the simulation of fluid motion, particularly in three dimensions, is always a serious test for any numerical method, and is an area in which BEM analysis may be used taking full advantage of its special character...

  6. Boundary element methods applied to two-dimensional neutron diffusion problems

    International Nuclear Information System (INIS)

    Itagaki, Masafumi

    1985-01-01

    The Boundary element method (BEM) has been applied to two-dimensional neutron diffusion problems. The boundary integral equation and its discretized form have been derived. Some numerical techniques have been developed, which can be applied to critical and fixed-source problems including multi-region ones. Two types of test programs have been developed according to whether the 'zero-determinant search' or the 'source iteration' technique is adopted for criticality search. Both programs require only the fluxes and currents on boundaries as the unknown variables. The former allows a reduction in computing time and memory in comparison with the finite element method (FEM). The latter is not always efficient in terms of computing time due to the domain integral related to the inhomogeneous source term; however, this domain integral can be replaced by the equivalent boundary integral for a region with a non-multiplying medium or with a uniform source, resulting in a significant reduction in computing time. The BEM, as well as the FEM, is well suited for solving irregular geometrical problems for which the finite difference method (FDM) is unsuited. The BEM also solves problems with infinite domains, which cannot be solved by the ordinary FEM and FDM. Some simple test calculations are made to compare the BEM with the FEM and FDM, and discussions are made concerning the relative merits of the BEM and problems requiring future solution. (author)

  7. Regional boundaries study

    International Nuclear Information System (INIS)

    Zavatsky, S.; Phaneuf, P.; Topaz, D.; Ward, D.

    1978-02-01

    The NRC Office of Inspection and Enforcement (IE) has elected to evaluate the effectiveness and efficiency of its existing regional boundary alignment because of the anticipated future growth of nuclear power generating facilities and corresponding inspection requirements. This report documents a management study designed to identify, analyze, and evaluate alternative regional boundary configurations for the NRC/IE regions. Eight boundary configurations were chosen for evaluation. These configurations offered alternatives ranging from two to ten regions, and some included the concepts of subregional or satellite offices. Each alternative configuration was evaluated according to three major criteria: project workload, cost, and office location. Each major criterion included elements such as management control, program uniformity, disruption, costs, and coordination with other agencies. The conclusion reached was that regional configurations with regions of equal and relatively large workloads, combined with the concepts of subregional or satellite offices, may offer a significant benefit to the Office of Inspection and Enforcement and the Commission and are worthy of further study. A phased implementation plan, which is suitable to some configurations, may help mitigate the disruption created by realignment

  8. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  9. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Shin, Won Ky

    1997-01-01

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available

  10. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  11. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  12. Learning and teaching in the regional learning environment : enabling students and teachers to cross boundaries in multi-stakeholder practices

    NARCIS (Netherlands)

    Oonk, Carla

    2016-01-01

    Finding solutions for complex societal problems requires cross-boundary collaboration between multiple stakeholders who represent various practices, disciplines and perspectives. The authentic, multi-stakeholder Regional Learning Environment (RLE) is expected to develop higher education students’

  13. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    Science.gov (United States)

    Ferraro, N. M.; Jardin, S. C.; Lao, L. L.; Shephard, M. S.; Zhang, F.

    2016-05-01

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  14. Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, N. M., E-mail: nferraro@pppl.gov; Lao, L. L. [General Atomics, La Jolla, California 92186 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Shephard, M. S.; Zhang, F. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-05-15

    Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition on the computational domain boundary and has the advantage of maintaining purely local coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory. Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically realistic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption extend into the current-quench phase, in which the plasma becomes limited by the first wall, and strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

  15. Development of polygon elements based on the scaled boundary finite element method

    International Nuclear Information System (INIS)

    Chiong, Irene; Song Chongmin

    2010-01-01

    We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

  16. Wake Instabilities Behind Discrete Roughness Elements in High Speed Boundary Layers

    Science.gov (United States)

    Choudhari, Meelan; Li, Fei; Chang, Chau-Lyan; Norris, Andrew; Edwards, Jack

    2013-01-01

    Computations are performed to study the flow past an isolated, spanwise symmetric roughness element in zero pressure gradient boundary layers at Mach 3.5 and 5.9, with an emphasis on roughness heights of less than 55 percent of the local boundary layer thickness. The Mach 5.9 cases include flow conditions that are relevant to both ground facility experiments and high altitude flight ("cold wall" case). Regardless of the Mach number, the mean flow distortion due to the roughness element is characterized by long-lived streamwise streaks in the roughness wake, which can support instability modes that did not exist in the absence of the roughness element. The higher Mach number cases reveal a variety of instability mode shapes with velocity fluctuations concentrated in different localized regions of high base flow shear. The high shear regions vary from the top of a mushroom shaped structure characterizing the centerline streak to regions that are concentrated on the sides of the mushroom. Unlike the Mach 3.5 case with nearly same values of scaled roughness height k/delta and roughness height Reynolds number Re(sub kk), the odd wake modes in both Mach 5.9 cases are significantly more unstable than the even modes of instability. Additional computations for a Mach 3.5 boundary layer indicate that the presence of a roughness element can also enhance the amplification of first mode instabilities incident from upstream. Interactions between multiple roughness elements aligned along the flow direction are also explored.

  17. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  18. Mixed Element Formulation for the Finite Element-Boundary Integral Method

    National Research Council Canada - National Science Library

    Meese, J; Kempel, L. C; Schneider, S. W

    2006-01-01

    A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...

  19. A boundary integral equation for boundary element applications in multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Ozgener, B.

    1998-01-01

    A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation

  20. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2015-08-01

    Full Text Available Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  1. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    Science.gov (United States)

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  2. Boundary element method for modelling creep behaviour

    International Nuclear Information System (INIS)

    Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora

    2002-01-01

    A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)

  3. E-coil: an inverse boundary element method for a quasi-static problem

    International Nuclear Information System (INIS)

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez; Power, Henry

    2010-01-01

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  4. E-coil: an inverse boundary element method for a quasi-static problem

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)

    2010-06-07

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  5. Highly accurate potential calculations for cylindrically symmetric geometries using multi-region FDM: A review

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, David, E-mail: dej@kingcon.com [IJL Research Center, Newark, VT 05871 (United States)

    2011-07-21

    This paper is a review of multi-region FDM, a numerical technique for accurately determining electrostatic potentials in cylindrically symmetric geometries. Multi-region FDM can be thought of as the union of various individual elements: a single region FDM process: a method for algorithmic development; a method for auto creating a multi-region structure; the process for the relaxation of multi-region structures. Each element will be briefly described along with its integration into the multi-region relaxation process itself.

  6. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    Science.gov (United States)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced

  7. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    Science.gov (United States)

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  8. Parallel Fast Multipole Boundary Element Method for crustal dynamics

    International Nuclear Information System (INIS)

    Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar

    2010-01-01

    Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.

  9. The complex variable boundary element method: Applications in determining approximative boundaries

    Science.gov (United States)

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  10. Stabilization of time domain acoustic boundary element method for the interior problem with impedance boundary conditions.

    Science.gov (United States)

    Jang, Hae-Won; Ih, Jeong-Guon

    2012-04-01

    The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.

  11. A Novel Mesh Quality Improvement Method for Boundary Elements

    Directory of Open Access Journals (Sweden)

    Hou-lin Liu

    2012-01-01

    Full Text Available In order to improve the boundary mesh quality while maintaining the essential characteristics of discrete surfaces, a new approach combining optimization-based smoothing and topology optimization is developed. The smoothing objective function is modified, in which two functions denoting boundary and interior quality, respectively, and a weight coefficient controlling boundary quality are taken into account. In addition, the existing smoothing algorithm can improve the mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then, topology optimization is employed, and those elements are converted into other types of elements whose quality can be improved by smoothing. The practical application shows that the worst elements can be eliminated and, with the increase of weight coefficient, the average quality of boundary mesh can also be improved. Results obtained with the combined approach are compared with some common approach. It is clearly shown that it performs better than the existing approach.

  12. Using reciprocity in Boundary Element Calculations

    DEFF Research Database (Denmark)

    Juhl, Peter Møller; Cutanda Henriquez, Vicente

    2010-01-01

    The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...... as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution...

  13. Recent advances in boundary element methods

    CERN Document Server

    Manolis, GD

    2009-01-01

    Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

  14. Development of the hierarchical domain decomposition boundary element method for solving the three-dimensional multiregion neutron diffusion equations

    International Nuclear Information System (INIS)

    Chiba, Gou; Tsuji, Masashi; Shimazu, Yoichiro

    2001-01-01

    A hierarchical domain decomposition boundary element method (HDD-BEM) that was developed to solve a two-dimensional neutron diffusion equation has been modified to deal with three-dimensional problems. In the HDD-BEM, the domain is decomposed into homogeneous regions. The boundary conditions on the common inner boundaries between decomposed regions and the neutron multiplication factor are initially assumed. With these assumptions, the neutron diffusion equations defined in decomposed homogeneous regions can be solved respectively by applying the boundary element method. This part corresponds to the 'lower level' calculations. At the 'higher level' calculations, the assumed values, the inner boundary conditions and the neutron multiplication factor, are modified so as to satisfy the continuity conditions for the neutron flux and the neutron currents on the inner boundaries. These procedures of the lower and higher levels are executed alternately and iteratively until the continuity conditions are satisfied within a convergence tolerance. With the hierarchical domain decomposition, it is possible to deal with problems composing a large number of regions, something that has been difficult with the conventional BEM. In this paper, it is showed that a three-dimensional problem even with 722 regions can be solved with a fine accuracy and an acceptable computation time. (author)

  15. Solution of problems with material nonlinearities with a coupled finite element/boundary element scheme using an iterative solver. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1996-01-01

    The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region

  16. Administrative Area Boundaries 2 (State Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 2 (State Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  17. Administrative Area Boundaries 4 (City Boundaries), Region 9, 2010, NAVTEQ

    Data.gov (United States)

    U.S. Environmental Protection Agency — NAVTEQ Administrative Area Boundaries 4 (City Boundaries) for Region 9. There are five Administrative Area Boundaries layers (1, 2, 3, 4, 5). These layers contain...

  18. 8th International Conference on Boundary Element Methods

    CERN Document Server

    Brebbia, C

    1986-01-01

    The International Conference on Boundary Element Methods in Engineering was started in 1978 with the following objectives: i) To act as a focus for BE research at a time when the technique wasjust emerging as a powerful tool for engineering analysis. ii) To attract new as weIl as established researchers on Boundary Elements, in order to maintain its vitality and originality. iii) To try to relate the Boundary Element Method to other engineering techniques in an effort to help unify the field of engineering analysis, rather than to contribute to its fragmentation. These objectives were achieved during the last 7 conferences and this meeting - the eighth - has continued to be as innovative and dynamic as any ofthe previous conferences. Another important aim ofthe conference is to encourage the participation of researchers from as many different countries as possible and in this regard it is a policy of the organizers to hold the conference in different locations. It is easy to forget when working on scientific ...

  19. A boundary element model for investigating the effects of eye tumor on the temperature distribution inside the human eye.

    Science.gov (United States)

    Ooi, E H; Ang, W T; Ng, E Y K

    2009-08-01

    A three-dimensional boundary element model of the human eye is developed to investigate the thermal effects of eye tumor on the ocular temperature distribution. The human eye is modeled as comprising several regions which have different thermal properties. The tumor is one of these regions. The thermal effects of the tumor are simulated by taking it to have a very high metabolic heat generation and blood perfusion rate. Inside the tumor, the steady state temperature is governed by the Pennes bioheat equation. Elsewhere, in normal tissues of the eye, the temperature satisfies the Laplace's equation. To compute the temperature on the corneal surface, the surface boundary of each region is divided into triangular elements.

  20. A 2.5D finite element and boundary element model for the ground vibration from trains in tunnels and validation using measurement data

    Science.gov (United States)

    Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos

    2018-05-01

    A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.

  1. Improved design of special boundary elements for T-shaped reinforced concrete walls

    Science.gov (United States)

    Ji, Xiaodong; Liu, Dan; Qian, Jiaru

    2017-01-01

    This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.

  2. Essential Boundary Conditions with Straight C1 Finite Elements in Curved Domains

    International Nuclear Information System (INIS)

    Ferraro, N.M.; Jardin, S.C.; Luo, X.

    2010-01-01

    The implementation of essential boundary conditions in C1 finite element analysis requires proper treatment of both the boundary conditions on second-order differentials of the solution and the curvature of the domain boundary. A method for the imposition of essential boundary conditions using straight elements (where the elements are not deformed to approximate a curved domain) is described. It is shown that pre-multiplication of the matrix equation by the local rotation matrix at each boundary node is not the optimal transformation. The uniquely optimal transformation is found, which does not take the form of a similarity transformation due to the non-orthogonality of the transformation to curved coordinates.

  3. Boundary conditions for the numerical solution of elliptic equations in exterior regions

    International Nuclear Information System (INIS)

    Bayliss, A.; Gunzburger, M.; Turkel, E.

    1982-01-01

    Elliptic equations in exterior regions frequently require a boundary condition at infinity to ensure the well-posedness of the problem. Examples of practical applications include the Helmholtz equation and Laplace's equation. Computational procedures based on a direct discretization of the elliptic problem require the replacement of the condition at infinity by a boundary condition on a finite artificial surface. Direct imposition of the condition at infinity along the finite boundary results in large errors. A sequence of boundary conditions is developed which provides increasingly accurate approximations to the problem in the infinite domain. Estimates of the error due to the finite boundary are obtained for several cases. Computations are presented which demonstrate the increased accuracy that can be obtained by the use of the higher order boundary conditions. The examples are based on a finite element formulation but finite difference methods can also be used

  4. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, L.J.

    1990-11-09

    Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.

  5. Seismic response of three-dimensional rockfill dams using the Indirect Boundary Element Method

    International Nuclear Information System (INIS)

    Sanchez-Sesma, Francisco J; Arellano-Guzman, Mauricio; Perez-Gavilan, Juan J; Suarez, Martha; Marengo-Mogollon, Humberto; Chaillat, Stephanie; Jaramillo, Juan Diego; Gomez, Juan; Iturraran-Viveros, Ursula; Rodriguez-Castellanos, Alejandro

    2010-01-01

    The Indirect Boundary Element Method (IBEM) is used to compute the seismic response of a three-dimensional rockfill dam model. The IBEM is based on a single layer integral representation of elastic fields in terms of the full-space Green function, or fundamental solution of the equations of dynamic elasticity, and the associated force densities along the boundaries. The method has been applied to simulate the ground motion in several configurations of surface geology. Moreover, the IBEM has been used as benchmark to test other procedures. We compute the seismic response of a three-dimensional rockfill dam model placed within a canyon that constitutes an irregularity on the surface of an elastic half-space. The rockfill is also assumed elastic with hysteretic damping to account for energy dissipation. Various types of incident waves are considered to analyze the physical characteristics of the response: symmetries, amplifications, impulse response and the like. Computations are performed in the frequency domain and lead to time response using Fourier analysis. In the present implementation a symmetrical model is used to test symmetries. The boundaries of each region are discretized into boundary elements whose size depends on the shortest wavelength, typically, six boundary segments per wavelength. Usually, the seismic response of rockfill dams is simulated using either finite elements (FEM) or finite differences (FDM). In most applications, commercial tools that combine features of these methods are used to assess the seismic response of the system for a given motion at the base of model. However, in order to consider realistic excitation of seismic waves with different incidence angles and azimuth we explore the IBEM.

  6. Microlocal methods in the analysis of the boundary element method

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1993-01-01

    The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...

  7. Boundary multi-trace deformations and Opens in AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Petkou, Anastasios C.

    2002-01-01

    We argue that multi-trace deformations of the boundary CFT in AdS/CFT correspondence can arise through the OPE of single-trace operators. We work out the example of a scalar field in AdS 5 with cubic self interaction. By an appropriate reparametrization of the boundary data we are able to deform the boundary CFT by a marginal operator that couples to the conformal anomaly. Our method can be used in the analysis of multi-trace deformations in N=4 SYM where the OPEs of various single-trace operators are known. (author)

  8. Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.

    2010-01-01

    Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.

  9. Multidimensional phase change problems by the dual-reciprocity boundary-element method

    International Nuclear Information System (INIS)

    Jo, J.C.; Shin, W.K.; Choi, C.Y.

    1999-01-01

    Transient heat transfer problems with phase changes (Stefan problems) occur in many engineering situations, including potential core melting and solidification during pressurized-water-reactor severe accidents, ablation of thermal shields, melting and solidification of alloys, and many others. This article addresses the numerical analysis of nonlinear transient heat transfer with melting or solidification. An effective and simple procedure is presented for the simulation of the motion of the boundary and the transient temperature field during the phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual-reciprocity boundary-element method. The dual-reciprocity boundary-element approach provided in this article is much simpler than the usual boundary-element method in applying a reciprocity principle and an available technique for dealing with the domain integral of the boundary element formulation simultaneously. In this article, attention is focused on two-dimensional melting (ablation)/solidification problems for simplicity. The accuracy and effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of some examples of one-phase ablation/solidification problems with their known semianalytical or numerical solutions where available

  10. Finite element analysis of three dimensional crack growth by the use of a boundary element sub model

    DEFF Research Database (Denmark)

    Lucht, Tore

    2009-01-01

    A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...

  11. Simulation of galvanic corrosion using boundary element method

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamaruddin; Nur Ubaidah Saidin; Abdul Aziz Mohamed; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2011-01-01

    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. The use of boundary element analysis system (BEASY) has allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate. This paper was present the analysis of the galvanic corrosion between Aluminium and Carbon Steel in natural sea water. The result of experimental was validated with computer simulation like BEASY program. Finally, it can conclude that the BEASY software is a very helpful tool for future planning before installing any structure, where it gives the possible CP interference on any nearby unprotected metallic structure. (Author)

  12. Accuracy of multi-point boundary crossing time analysis

    Directory of Open Access Journals (Sweden)

    J. Vogt

    2011-12-01

    Full Text Available Recent multi-spacecraft studies of solar wind discontinuity crossings using the timing (boundary plane triangulation method gave boundary parameter estimates that are significantly different from those of the well-established single-spacecraft minimum variance analysis (MVA technique. A large survey of directional discontinuities in Cluster data turned out to be particularly inconsistent in the sense that multi-point timing analyses did not identify any rotational discontinuities (RDs whereas the MVA results of the individual spacecraft suggested that RDs form the majority of events. To make multi-spacecraft studies of discontinuity crossings more conclusive, the present report addresses the accuracy of the timing approach to boundary parameter estimation. Our error analysis is based on the reciprocal vector formalism and takes into account uncertainties both in crossing times and in the spacecraft positions. A rigorous error estimation scheme is presented for the general case of correlated crossing time errors and arbitrary spacecraft configurations. Crossing time error covariances are determined through cross correlation analyses of the residuals. The principal influence of the spacecraft array geometry on the accuracy of the timing method is illustrated using error formulas for the simplified case of mutually uncorrelated and identical errors at different spacecraft. The full error analysis procedure is demonstrated for a solar wind discontinuity as observed by the Cluster FGM instrument.

  13. Chemical elements in the environment: multi-element geochemical datasets from continental to national scale surveys on four continents

    Science.gov (United States)

    Caritat, Patrice de; Reimann, Clemens; Smith, David; Wang, Xueqiu

    2017-01-01

    During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality-controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents.

  14. Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

    CERN Document Server

    Marburg, Steffen

    2008-01-01

    Among numerical methods applied in acoustics, the Finite Element Method (FEM) is normally favored for interior problems whereas the Boundary Element Method (BEM) is quite popular for exterior ones. That is why this valuable reference provides a complete survey of methods for computational acoustics, namely FEM and BEM. It demonstrates that both methods can be effectively used in the complementary cases. The chapters by well-known authors are evenly balanced: 10 chapters on FEM and 10 on BEM. An initial conceptual chapter describes the derivation of the wave equation and supplies a unified approach to FEM and BEM for the harmonic case. A categorization of the remaining chapters and a personal outlook complete this introduction. In what follows, both FEM and BEM are discussed in the context of very different problems. Firstly, this comprises numerical issues, e.g. convergence, multi-frequency solutions and highly efficient methods; and secondly, solutions techniques for the particular difficulties that arise wi...

  15. Boundary element method for internal axisymmetric flow

    Directory of Open Access Journals (Sweden)

    Gokhman Alexander

    1999-01-01

    Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.

  16. Boundary value problems for multi-term fractional differential equations

    Science.gov (United States)

    Daftardar-Gejji, Varsha; Bhalekar, Sachin

    2008-09-01

    Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.

  17. Fast multipole acceleration of the MEG/EEG boundary element method

    International Nuclear Information System (INIS)

    Kybic, Jan; Clerc, Maureen; Faugeras, Olivier; Keriven, Renaud; Papadopoulo, Theo

    2005-01-01

    The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric boundary element method (BEM). It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption

  18. Matrix product solution to multi-species ASEP with open boundaries

    Science.gov (United States)

    Finn, C.; Ragoucy, E.; Vanicat, M.

    2018-04-01

    We study a class of multi-species ASEP with open boundaries. The boundaries are chosen in such a way that all species of particles interact non-trivially with the boundaries, and are present in the stationary state. We give the exact expression of the stationary state in a matrix product form, and compute its normalisation. Densities and currents for the different species are then computed in terms of this normalisation.

  19. Detection of Cavities by Inverse Heat Conduction Boundary Element Method Using Minimal Energy Technique

    International Nuclear Information System (INIS)

    Choi, C. Y.

    1997-01-01

    A geometrical inverse heat conduction problem is solved for the infrared scanning cavity detection by the boundary element method using minimal energy technique. By minimizing the kinetic energy of temperature field, boundary element equations are converted to the quadratic programming problem. A hypothetical inner boundary is defined such that the actual cavity is located interior to the domain. Temperatures at hypothetical inner boundary are determined to meet the constraints of measurement error of surface temperature obtained by infrared scanning, and then boundary element analysis is performed for the position of an unknown boundary (cavity). Cavity detection algorithm is provided, and the effects of minimal energy technique on the inverse solution method are investigated by means of numerical analysis

  20. 9th International Conference on Boundary Elements

    CERN Document Server

    Wendland, W; Kuhn, G

    1987-01-01

    This book contains the edited versions of most of the papers presented at the 9th International Conference on Boundary Elements held at the University of Stuttgart, Germany from August 31st to September 4th, 1987, which was organized in co-operation with the Computational Mechanics Institute and GAMM (Society for Applied Mathematics and Mechanics). This Conference, as the previous ones, aimed to review the latest developments in technique and theory and point out new advanced future trends. The emphasis of the meeting was on the engineering advances versus mathematical formulations, in an effort to consolidate the basis of many new applications. Recently engineers have proposed different techniques to solve non-linear and time dependent problems and many of these formulations needed a better mathematical understanding. Furthermore, new approximate formulations have been proposed for boundary elements which appeared to work in engineering practice, but did not have a proper theoretical background. The Conferen...

  1. A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    Energy Technology Data Exchange (ETDEWEB)

    Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.

    2012-10-01

    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.

  2. Influence of precipitating light elements on stable stratification below the core/mantle boundary

    Science.gov (United States)

    O'Rourke, J. G.; Stevenson, D. J.

    2017-12-01

    Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically

  3. Trace Elements in Apple Fruits of Several Regions in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Boev, Blazho; Lepitkova, Sonja; Paneva-Zajkova, Vesna; Georgiev, Lazar

    2006-01-01

    Determination of macro elements and trace elements in apple fruits was carried out by ICP-AES method. Apples were picked up fresh in December 2005. Seven different types of apples from different parts of the country were selected. Apples were sliced into large pieces, dried, and after grinding were dissolved in nitric acid (HNO 3 ) and hydroperoxide (H 2 O 2 ). After digestion, multi-element analysis was carried out. Data obtained were compared to published values for trace elements in apples in other regions of the world. Data obtained indicated that the concentration of trace elements in apples were within the values and data in other regions of the world. (Author)

  4. Green's function and boundary elements of multifield materials

    CERN Document Server

    Qin, Qing-Hua

    2007-01-01

    Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.

  5. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    Science.gov (United States)

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  6. Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2012-06-01

    Full Text Available We study boundary value problems of nonlinear fractional differential equations and inclusions of order $q in (m-1, m]$, $m ge 2$ with multi-strip boundary conditions. Multi-strip boundary conditions may be regarded as the generalization of multi-point boundary conditions. Our problem is new in the sense that we consider a nonlocal strip condition of the form: $$ x(1=sum_{i=1}^{n-2}alpha_i int^{eta_i}_{zeta_i} x(sds, $$ which can be viewed as an extension of a multi-point nonlocal boundary condition: $$ x(1=sum_{i=1}^{n-2}alpha_i x(eta_i. $$ In fact, the strip condition corresponds to a continuous distribution of the values of the unknown function on arbitrary finite segments $(zeta_i,eta_i$ of the interval $[0,1]$ and the effect of these strips is accumulated at $x=1$. Such problems occur in the applied fields such as wave propagation and geophysics. Some new existence and uniqueness results are obtained by using a variety of fixed point theorems. Some illustrative examples are also discussed.

  7. Persistent multi-scale fluctuations shift European hydroclimate to its millennial boundaries.

    Science.gov (United States)

    Markonis, Y; Hanel, M; Máca, P; Kyselý, J; Cook, E R

    2018-05-02

    In recent years, there has been growing concern about the effect of global warming on water resources, especially at regional and continental scales. The last IPCC report on extremes states that there is medium confidence about an increase on European drought frequency during twentieth century. Here we use the Old World Drought Atlas palaeoclimatic reconstruction to show that when Europe's hydroclimate is examined under a millennial, multi-scale perspective, a significant decrease in dryness can be observed since 1920 over most of central and northern Europe. On the contrary, in the south, drying conditions have prevailed, creating an intense north-to-south dipole. In both cases, hydroclimatic conditions have shifted to, and in some regions exceeded, their millennial boundaries, remaining at these extreme levels for the longest period of the 1000-year-long record.

  8. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  9. Introducing the Boundary Element Method with MATLAB

    Science.gov (United States)

    Ang, Keng-Cheng

    2008-01-01

    The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…

  10. New formulations on the finite element method for boundary value problems with internal/external boundary layers

    International Nuclear Information System (INIS)

    Pereira, Luis Carlos Martins

    1998-06-01

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  11. Computation of multi-region relaxed magnetohydrodynamic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R.; Lazerson, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2012-11-15

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  12. Temperature and stress distribution in pressure vessel by the boundary element method

    International Nuclear Information System (INIS)

    Alujevic, A.; Apostolovic, D.

    1990-01-01

    The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)

  13. Acoustic boundary element method formulation with treatment of nearly singular integrands by element subdivision

    DEFF Research Database (Denmark)

    Cutanda Henríquez, Vicente; Juhl, Peter Møller

    2008-01-01

    It is well known that the Boundary Element Method (BEM) in its standard version cannot readily handle situations where the calculation point is very close to a surface. These problems are found: i) when two boundary surfaces are very close together, such as in narrow gaps and thin bodies, and ii)...

  14. Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element–boundary element approach

    International Nuclear Information System (INIS)

    Ringwelski, S; Gabbert, U

    2010-01-01

    A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element–boundary element model is derived by introducing coupling conditions at the fluid–fluid and fluid–structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural–acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element–boundary element model shows a good agreement

  15. Inverse boundary element calculations based on structural modes

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2007-01-01

    The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...

  16. Wideband multi-element Er-doped fiber amplifier

    International Nuclear Information System (INIS)

    Thipparapu, N K; Jain, S; May-Smith, T C; Sahu, J K

    2014-01-01

    A multi-element Er-doped fiber amplifier (MEEDFA) is demonstrated in which the gain profile is extended into the S and L bands. Each fiber element of the MEEDFA is found to provide a maximum gain of 37 dB and a noise figure of < 4 dB in the C-band. The gain profile of the amplifier is shifted towards longer wavelength by cascading fiber elements. The novel geometry of the multi-element fiber (MEF) could allow for the development of a broadband amplifier in a split-band configuration. The proposed amplifier can operate in the wavelength band of 1520 to 1595 nm (75 nm), with a minimum gain of 20 dB. (letter)

  17. Boundary element analysis of earthquake induced hydrodynamic pressures in a water reservoir

    International Nuclear Information System (INIS)

    Jablonski, A.M.

    1988-11-01

    The seismic analysis of concrete gravity and arch dams is affected by the hydrodynamic pressures in the water reservoir. Boundary element method (BEM) formulations are derived for the hydrodynamic pressures arising in a gravity dam-reservoir-foundation system, treating both 2- and 3-dimensional cases. The formulations are based on the respective mathematical models which are governed by two- and three-dimensional Helmholtz equations with appropriate boundary conditions. For infinite reservoirs, loss of energy due to pressure waves moving away toward infinity strongly influence response. Since it is not possible to discretize an infinite extent, the radiation damping due to outgoing waves is accounted for by incorporating special boundary conditions at the far end, and in a similar manner the loss of energy due to absorption of waves by a flexible bottom of reservoir and banks can be accounted for by a special condition along the boundaries. Numerical results are obtained and compared with available classical solutions and convergence of numerical results with the size and number of boundary elements is studied. It is concluded that the direct boundary element method is an effective tool for the evaluation of the hydrodynamic pressures in finite and infinite dam-reservoir-foundation systems subjected to harmonic-type motion, and can easily be extended to any type of random motion with fast Fourier transform techniques. 82 refs., 65 figs., 25 tabs

  18. Formulation of natural convection around repository for dual reciprocity boundary element solution

    International Nuclear Information System (INIS)

    Vrankar, L.; Sarler, B.

    1998-01-01

    The disposal of high-level radioactive wastes in deep geological formations is of pronounced technological importance for nuclear safety. The understanding of related fluid flow, heat and mass transport in geological systems is of great interest. This article prepares necessary physical, mathematical and numerical fundamentals for computational modeling of related phenomena. The porous media is described by the simple Darcy law and momentum-energy coupling is due to Boussinesq approximation. The Dual Reciprocity of Boundary Element Method (DRBEM) is used for solving coupled mass, momentum and energy equations in two-dimensions for the steady buoyancy induced convection problem in an semi-infinite porous media. It is structured by weighting with the fundamental solution of the Laplace equation. The inverse multi quadrics are used in the DRBEM transformation. The solution is obtained in an iterative way.(author)

  19. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel - IV. Precipitation behaviour and distribution of elements at grain boundaries

    International Nuclear Information System (INIS)

    Karlsson, L.; Norden, H.

    1988-01-01

    The distribution of elements and the precipitation behaviour at grain boundaries have been studied in boron containing AISI 316L and ''Mo-free AISI 316L'' type austenitic stainless steels. A combination of microanalytical techniques was used to study the boundary regions after cooling at 0.29-530 0 C/s from 800, 1075 or 1250 0 C. Tetragonal M/sub 2/B, M/sub 5/B/sub 3/ and M/sub 3/B/sub 2/, all rich in Fe, Cr and Mo, precipitated in the ''high B'' (40 ppm) AISI 316L steel whereas orthorhombic M/sub 2/B, rich in Cr and Fe was found in the ''Mo-free steel'' with 23 ppm B. In the ''high B steel'' a thin (<2nm), continuous layer, containing B, Cr, Mo and Fe and having a stoichiometry of typically M/sub 9/B, formed at boundaries after cooling at intermediate cooling rates. For both types of steels a boundary zone was found, after all heat treatments, with a composition differing significantly from the bulk composition. The differences were most marked after cooling at intermediate cooling rates. In both types of steel boundary depletion of Cr and enrichment of B and C occurred. It was found that non-equilibrium grain boundary segregation of boron can affect the precipitation behaviour by making the boundary composition enter a new phase field ''Non-equilibrium phases'' might also form. The synergistic effect of B and Mo on the boundary composition and precipitation behaviour, and the observed indications of C non-equilibrium segregation are discussed

  20. Near shore seismic movements induced by seaquakes using the boundary element method

    Institute of Scientific and Technical Information of China (English)

    Manuel Carbajal-Romero; Norberto Flores-Guzmán; J.Efraín Rodríguez-Sánchez; Andriy Kryvko

    2017-01-01

    This study quantifies seismic amplifications in near-shore arising from seaquakes.Within the Boundary Element Method,boundary elements are used to irradiate waves and force densities obtained for each element.Huygens Principle is implemented since the diffracted waves are constructed at the boundary from which they are radiated,which is equivalent to Somigliana's theorem.Application of boundary conditions leads to a system of integral equations of the Fredholm type of second kind and zero order.Several numerical configurations are analyzed:The first is used to verify the present formulation with ideal sea floor configurations to estimate seismic amplifications.With the formulation verified,simple slope configurations are studied to estimate spectra of seismic motions.It is found that P-waves can produce seismic amplifications from 1.2 to 3.9 times the amplitude of the incident wave.SV-waves can generate seismic amplifications up to 4.5 times the incident wave.Another relevant finding is that the highest amplifications are at the shore compared to the ones at the sea floor.

  1. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries

    Science.gov (United States)

    Heumann, Holger; Rapetti, Francesca

    2017-04-01

    Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.

  2. Effect of a Roughness Element on the Receptivity of a Hypersonic Boundary Layer over a Blunt Cone Due to Pulse Entropy Disturbance with a Single Frequency

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2018-05-01

    Full Text Available A high-order finite difference method was used to simulate the hypersonic flow field over a blunt cone with different height roughness elements. The unsteady flow field induced by pulse disturbances was analyzed and compared with that under continuous disturbances. The temporal and spatial evolution characteristics of disturbances in the boundary layer were investigated and the propagation of different disturbance modes in the boundary layer was researched through the fast Fourier transform (FFT method. The effect of the roughness element on the receptivity characteristic of the hypersonic boundary layer under pulse entropy disturbances was explored. The results showed that the different mode disturbances near roughness in the boundary layer were enlarged in the upstream half of the roughness element and suppressed in the downstream half. However, the effect of roughness weakened gradually as the disturbance frequency increased in the boundary layer. A phenomenon of mode competition in the downstream region of the roughness element exited. As the disturbances propagated downstream, the fundamental mode gradually became the dominant mode. A certain promotion effect on the mode competition was induced by the roughness element and the effect was enhanced with the increase in the roughness element height.

  3. Application of the dual reciprocity boundary element method for numerical modelling of solidification process

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.

  4. Boundary Region Detection for Continuous Objects in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yaqiang Zhang

    2018-01-01

    Full Text Available Industrial Internet of Things has been widely used to facilitate disaster monitoring applications, such as liquid leakage and toxic gas detection. Since disasters are usually harmful to the environment, detecting accurate boundary regions for continuous objects in an energy-efficient and timely fashion is a long-standing research challenge. This article proposes a novel mechanism for continuous object boundary region detection in a fog computing environment, where sensing holes may exist in the deployed network region. Leveraging sensory data that have been gathered, interpolation algorithms have been applied to estimate sensory data at certain geographical locations, in order to estimate a more accurate boundary line. To examine whether estimated sensory data reflect that fact, mobile sensors are adopted to traverse these locations for gathering their sensory data, and the boundary region is calibrated accordingly. Experimental evaluation shows that this technique can generate a precise object boundary region with certain time constraints, and the network lifetime can be prolonged significantly.

  5. Noise source localization on tyres using an inverse boundary element method

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Saemann, E-U; Hald, J

    1998-01-01

    A dominating part of tyre noise is radiated from a region close to the tyre/road contact patch, where it is very difficult to measure both the tyre vibration and the acoustic near field. The approach taken in the present paper is to model the tyre and road surfaces with a Boundary Element Model...... (BEM), with unknown node vibration data on the tyre surface. The BEM model is used to calculate a set of transfer functions from the node vibrations to the sound pressure at a set of microphone positions around the tyre. By approximate inversion of the matrix of transfer functions, the surface...... from tyre noise measurements will be presented at the conference....

  6. An Atomistic Modeling Study of Alloying Element Impurity Element, and Transmutation Products on the cohesion of A Nickel E5 {001} Twist Grain Boundary

    International Nuclear Information System (INIS)

    Young, G.A. Jr.; Najafabadi, R.; Strohmayer, W.; Baldrey, D.G.; Hamm, B.; Harris, J.; Sticht, J.; Wimmer, E.

    2003-01-01

    Atomistic modeling methods were employed to investigate the effects of impurity elements on the metallurgy, irradiation embrittlement, and environmentally assisted cracking of nickel-base alloys exposed to nuclear environments. Calculations were performed via ab initio atomistic modeling methods to ensure the accuracy and reliability of the results. A Griffith-type fracture criterion was used to quantitatively assess the effect of elements or element pairs on the grain boundary cohesive strength. In order of most embrittling to most strengthening, the elements are ranked as: He, Li, S, H, C, Zr, P, Fe, Mn, Nb, Cr, and B. Helium is strongly embrittling (-2.04 eV/atom lowering of the Griffith energy), phosphorus has little effect on the grain boundary (0.1 eV/atom), and boron offers appreciable strengthening (1.03 eV/atom increase in the Griffith energy). Calculations for pairs of elements (H-Li, H-B, H-C, H-P, and H-S) show little interaction on the grain boundary cohesive energy, so that for the conditions studied, linear superposition of elemental effects is a good approximation. These calculations help explain metallurgical effects (e.g. why boron can strengthen grain boundaries), irradiation embrittlement (e.g. how boron transmutation results in grain boundary embrittlement), as well as how grain boundary impurity elements can affect environmentally assisted cracking (i.e. low temperature crack propagation and stress corrosion cracking) of nickel-base alloys

  7. Boundary element methods for electrical engineers

    CERN Document Server

    POLJAK, D

    2005-01-01

    In the last couple of decades the Boundary Element Method (BEM) has become a well-established technique that is widely used for solving various problems in electrical engineering and electromagnetics. Although there are many excellent research papers published in the relevant literature that describe various BEM applications in electrical engineering and electromagnetics, there has been a lack of suitable textbooks and monographs on the subject. This book presents BEM in a simple fashion in order to help the beginner to understand the very basic principles of the method. It initially derives B

  8. An assessment of the DORT method on simple scatterers using boundary element modelling.

    Science.gov (United States)

    Gélat, P; Ter Haar, G; Saffari, N

    2015-05-07

    The ability to focus through ribs overcomes an important limitation of a high-intensity focused ultrasound (HIFU) system for the treatment of liver tumours. Whilst it is important to generate high enough acoustic pressures at the treatment location for tissue lesioning, it is also paramount to ensure that the resulting ultrasonic dose on the ribs remains below a specified threshold, since ribs both strongly absorb and reflect ultrasound. The DORT (décomposition de l'opérateur de retournement temporel) method has the ability to focus on and through scatterers immersed in an acoustic medium selectively without requiring prior knowledge of their location or geometry. The method requires a multi-element transducer and is implemented via a singular value decomposition of the measured matrix of inter-element transfer functions. The efficacy of a method of focusing through scatterers is often assessed by comparing the specific absorption rate (SAR) at the surface of the scatterer, and at the focal region. The SAR can be obtained from a knowledge of the acoustic pressure magnitude and the acoustic properties of the medium and scatterer. It is well known that measuring acoustic pressures with a calibrated hydrophone at or near a hard surface presents experimental challenges, potentially resulting in increased measurement uncertainties. Hence, the DORT method is usually assessed experimentally by measuring the SAR at locations on the surface of the scatterer after the latter has been removed from the acoustic medium. This is also likely to generate uncertainties in the acoustic pressure measurement. There is therefore a strong case for assessing the efficacy of the DORT method through a validated theoretical model. The boundary element method (BEM) applied to exterior acoustic scattering problems is well-suited for such an assessment. In this study, BEM was used to implement the DORT method theoretically on locally reacting spherical scatterers, and to assess its focusing

  9. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Multi-Pass Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Kim, Ji Hoon; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2016-10-15

    Welding residual stresses are determined by various factors such as heat input, initial temperature of molten bead, heating time, cooling time, cooling conditions, and boundary conditions. In this study, a sensitivity analysis was performed to find the major factors and reasonable assumptions for simulation. Two-dimensional axisymmetric simulation was conducted by using commercial finite element analysis program ABAQUS, for multi-pass Alloy 82 welds in a 304 Stainless Steel and SA-105 Carbon Steel. The major object is to evaluate effects of the heat input methods and weld bead generation methods on the welding residual stress distribution. Totally four kinds of methods were compared. From the previous results, we could make the following conclusions. 1. Although there are non-negligible differences in HAZ depending on heat input method, welding residual stress distributions have roughly similar trends. However, it is needed to perform the more exact analysis to apply heat energy more carefully into the individual bead. 2. Residual stress distribution were similar for the two weld bead generation technique. However, overlapping was happened when element birth technique was applied. Effects of overlapping could not ignore as deformation increases. However, overlapping problem was avoided when quiet element technique was used. 3. Since existence of inactive bead elements, inaccurate weld residual stresses could be occurred in boundaries of previous and next weld elements in case of quiet element technique.

  10. Provenance Establishment of Stingless Bee Honey Using Multi-element Analysis in Combination with Chemometrics Techniques.

    Science.gov (United States)

    Shadan, Aidil Fahmi; Mahat, Naji A; Wan Ibrahim, Wan Aini; Ariffin, Zaiton; Ismail, Dzulkiflee

    2018-01-01

    As consumption of stingless bee honey has been gaining popularity in many countries including Malaysia, ability to identify accurately its geographical origin proves pertinent for investigating fraudulent activities for consumer protection. Because a chemical signature can be location-specific, multi-element distribution patterns may prove useful for provenancing such product. Using the inductively coupled-plasma optical emission spectrometer as well as principal component analysis (PCA) and linear discriminant analysis (LDA), the distributions of multi-elements in stingless bee honey collected at four different geographical locations (North, West, East, and South) in Johor, Malaysia, were investigated. While cross-validation using PCA demonstrated 87.0% correct classification rate, the same was improved (96.2%) with the use of LDA, indicating that discrimination was possible for the different geographical regions. Therefore, utilization of multi-element analysis coupled with chemometrics techniques for assigning the provenance of stingless bee honeys for forensic applications is supported. © 2017 American Academy of Forensic Sciences.

  11. Action research in a regional development setting: students as boundary workers in a learning multi-actor network.

    NARCIS (Netherlands)

    Sol, J.; Beers, P.J.; Oosting, S.J.; Geerling-Eiff, F.A.

    2011-01-01

    The educational experimental project ‘Bridge to the Future’, which took place between 2002 and 2007, aimed primarily at supporting the regional development process by action- oriented student research. The second aim was to develop students’ roles as boundary workers in the co-creation of knowledge

  12. An analog computer method for solving flux distribution problems in multi region nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Radanovic, L; Bingulac, S; Lazarevic, B; Matausek, M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1963-04-15

    The paper describes a method developed for determining criticality conditions and plotting flux distribution curves in multi region nuclear reactors on a standard analog computer. The method, which is based on the one-dimensional two group treatment, avoids iterative procedures normally used for boundary value problems and is practically insensitive to errors in initial conditions. The amount of analog equipment required is reduced to a minimum and is independent of the number of core regions and reflectors. (author)

  13. Three Dimensional Plenoptic PIV Measurements of a Turbulent Boundary Layer Overlying a Hemispherical Roughness Element

    Science.gov (United States)

    Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth

    2016-11-01

    Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.

  14. Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity.

    Science.gov (United States)

    Atroshchenko, Elena; Bordas, Stéphane P A

    2015-07-08

    In this paper, both singular and hypersingular fundamental solutions of plane Cosserat elasticity are derived and given in a ready-to-use form. The hypersingular fundamental solutions allow to formulate the analogue of Somigliana stress identity, which can be used to obtain the stress and couple-stress fields inside the domain from the boundary values of the displacements, microrotation and stress and couple-stress tractions. Using these newly derived fundamental solutions, the boundary integral equations of both types are formulated and solved by the boundary element method. Simultaneous use of both types of equations (approach known as the dual boundary element method (BEM)) allows problems where parts of the boundary are overlapping, such as crack problems, to be treated and to do this for general geometry and loading conditions. The high accuracy of the boundary element method for both types of equations is demonstrated for a number of benchmark problems, including a Griffith crack problem and a plate with an edge crack. The detailed comparison of the BEM results and the analytical solution for a Griffith crack and an edge crack is given, particularly in terms of stress and couple-stress intensity factors, as well as the crack opening displacements and microrotations on the crack faces and the angular distributions of stresses and couple-stresses around the crack tip.

  15. Thermal impact assessment of multi power plant operations on estuaries

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Kim, K.H.; Harris, J.L.

    1977-01-01

    The assessment of the thermal impact of multi power plant operations on large estuaries requires careful consideration of the problems associated with: re-entrainment, re-circulation, thermal interaction, delay in the attainment of thermal equilibrium state, and uncertainty in specifying open boundaries and open boundary conditions of the regions, which are critically important in the analysis of the thermal conditions in receiving water bodies with tidal dominated, periodically reversing flow conditions. The results of an extensive study in the Hudson River at Indian Point, 42 miles upstream of the ocean end at the Battery, concluded that the tidal-transient, multi-dimensional discrete-element (UTA) thermal transport models (ESTONE, FLOTWO, TMPTWO computer codes) and the near-field far-field zone-matching methodology can be employed with a high degree of reliability in the assessment of the thermal impact of multi power plant operations on tidal dominated estuaries

  16. Electrostatic field in inhomogeneous dielectric media. I. Indirect boundary element method

    International Nuclear Information System (INIS)

    Goel, N.S.; Gang, F.; Ko, Z.

    1995-01-01

    A computationally fast method is presented for calculating electrostatic field in arbitrary inhomogeneous dielectric media with open boundary condition. The method involves dividing the whole space into cubical cells and then finding effective dielectric parameters for interfacial cells consisting of several dielectrics. The electrostatic problem is then solved using either the indirect boundary element method described in this paper or the so-called volume element method described in the companion paper. Both methods are tested for accuracy by comparing the numerically calculated electrostatic fields against those analytically obtained for a dielectric sphere and dielectric ellipsoid in a uniform field and for a dielectric sphere in a point charge field

  17. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

    Science.gov (United States)

    Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2016-01-07

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Investigation of E x B transport with a multi-electrode probe in the plasma boundary of TEXTOR

    International Nuclear Information System (INIS)

    Ivanov, R.S.; Moyer, R.A.; Nieuwenhove, R. van; Oost, G. van; Fuchs, G.; Hoethker, K.; Samm, U.

    1991-01-01

    A movable multi-element Langmuir probe was implemented in TEXTOR in order to study properties of the edge and scrape-off plasma. The probe has five graphite electrode pins allowing the simultaneous measurement of main parameters such as plasma densities, electron temperatures, floating potentials, poloidal and radial electric fields. Both time-averaged and fluctuating quantities have been considered in order to evaluate the DC and turbulence-driven cross-field particle fluxes. The spectral analysis of the fluctuating floating potentials at spatially separated probe pins allows to determine the velocity associated with the rotations of the boundary plasma. The investigations have been focused on the variations of plasma boundary properties in plasmas with pure ohmic heating as well as auxiliary heating (ICRH). Special attention has been paid to the change of transport properties with the transition to a detached plasma. In particular, a significant reduction of the poloidal phase velocity at the limited edge has been observed for detached plasmas. Preliminary data on physical effects near the plasma boundary, which occur when the toroidal belt limiter (ALT-II) is biased, are reported. (orig.)

  19. An introductory study of the convergence of the direct boundary element method

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    1997-01-01

    of an axisymmetric boundary element formulation is studied using linear, quadratic or superparametric elements. It is demonstrated that the rate of convergence of these formulations is reduced for calculations involving bodies with edges (geometric singularities). Two methods for improving the rate of convergence...

  20. Micromechanical Study of Interface Stress in a Fiber-Reinforced Composite under Transverse Loading Using Boundary Element Method

    National Research Council Canada - National Science Library

    Eren, Hakan

    2000-01-01

    .... The objective of this study is, by using Boundary Element Method, to examine different shapes of reinforcement elements under unit traction and unit displacement boundary conditions in transversal...

  1. A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer

    Science.gov (United States)

    Baker, A. J.; Zelazny, S. W.

    1972-01-01

    A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.

  2. A combined application of boundary-element and Runge-Kutta methods in three-dimensional elasticity and poroelasticity

    Directory of Open Access Journals (Sweden)

    Igumnov Leonid

    2015-01-01

    Full Text Available The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.

  3. The boundary element method : errors and gridding for problems with hot spots

    NARCIS (Netherlands)

    Kakuba, G.

    2011-01-01

    Adaptive gridding methods are of fundamental importance both for industry and academia. As one of the computing methods, the Boundary Element Method (BEM) is used to simulate problems whose fundamental solutions are available. The method is usually characterised as constant elements BEM or linear

  4. Strength Reduction Method for Stability Analysis of Local Discontinuous Rock Mass with Iterative Method of Partitioned Finite Element and Interface Boundary Element

    Directory of Open Access Journals (Sweden)

    Tongchun Li

    2015-01-01

    element is proposed to solve the safety factor of local discontinuous rock mass. Slope system is divided into several continuous bodies and local discontinuous interface boundaries. Each block is treated as a partition of the system and contacted by discontinuous joints. The displacements of blocks are chosen as basic variables and the rigid displacements in the centroid of blocks are chosen as motion variables. The contact forces on interface boundaries and the rigid displacements to the centroid of each body are chosen as mixed variables and solved iteratively using the interface boundary equations. Flexibility matrix is formed through PFE according to the contact states of nodal pairs and spring flexibility is used to reflect the influence of weak structural plane so that nonlinear iteration is only limited to the possible contact region. With cohesion and friction coefficient reduced gradually, the states of all nodal pairs at the open or slip state for the first time are regarded as failure criterion, which can decrease the effect of subjectivity in determining safety factor. Examples are used to verify the validity of the proposed method.

  5. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  6. Direct displacement-based design of special composite RC shear walls with steel boundary elements

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2016-06-01

    Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.

  7. Multi-Element Composition of Honey as a Suitable Tool for Its Authenticity Analysis

    Directory of Open Access Journals (Sweden)

    Oroian Mircea

    2015-06-01

    Full Text Available The aim of this study was to evaluate the composition of 36 honey samples of 4 different botanical origins (acacia, sun flower, tilia and honeydew from the North East region of Romania. An inductively coupled plasma-mass spectrometry (ICP-MS method was used to determine 27 elements in honey (Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, V and Zn. We would like to achieve the following goal: to demonstrate that the qualitative and quantitative multi-element composition determination of honey can be used as a suitable tool to classify honey according to its botanical origin. The principal component analysis allowed the reduction of the 27 variables to 2 principal components which explained 74% of the total variance. The dominant elements which were strongly associated with the principal component were K, Mg and Ca. Discriminant models obtained for each kind of botanical honey confirmed that the differentiation of honeys according to their botanical origin was mainly based on multi-element composition. A correct classification of all samples was achieved with the exception of 11.1% of honeydew honeys.

  8. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    Science.gov (United States)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  9. The Indirect Boundary Element Method (IBEM) for Seismic Response of Topographical Irregularities in Layered Media

    Science.gov (United States)

    Contreras Zazueta, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Sánchez-Alvaro, E.

    2013-12-01

    The seismic hazard assessment of extended developments, such as a dam, a bridge or a pipeline, needs the strong ground motion simulation taking into account the effects of surface geology. In many cases the incoming wave field can be obtained from attenuation relations or simulations for layered media using Discrete Wave Number (DWN). Sometimes there is a need to include in simulations the seismic source as well. A number of methods to solve these problems have been developed. Among them the Finite Element and Finite Difference Methods (FEM and FDM) are generally preferred because of the facility of use. Nevertheless, the analysis of realistic dynamic loading induced by earthquakes requires a thinner mesh of the entire domain to consider high frequencies. Consequently this may imply a high computational cost. The Indirect Boundary Element Method (IBEM) can also be employed. Here it is used to study the response of a site to historical seismic activity. This method is particularly suited to model wave propagation through wide areas as it requires only the meshing of boundaries. Moreover, it is well suited to represent finely the diffraction that can occur on a fault. However, the IBEM has been applied mainly to simple geometrical configurations. In this communication significant refinements of the formulation are presented. Using IBEM we can simulate wave propagation in complex geometrical configurations such as a stratified medium crossed by thin faults or having a complex topography. Two main developments are here described; one integrates the DWN method inside the IBEM in order to represent the Green's functions of stratified media with relatively low computational cost but assuming unbounded parallel flat layers, and the other is the extension of IBEM to deal with multi-regions in contact which allows more versatility with a higher computational cost compared to the first one but still minor to an equivalent FEM formulation. The two approaches are fully

  10. Diffuse boundary extraction of breast masses on ultrasound by leak plugging

    International Nuclear Information System (INIS)

    Cary, T.W.; Conant, E.F.; Arger, P.H.; Sehgal, C.M.

    2005-01-01

    We propose a semiautomated seeded boundary extraction algorithm that delineates diffuse region boundaries by finding and plugging their leaks. The algorithm not only extracts boundaries that are partially diffuse, but in the process finds and quantifies those parts of the boundary that are diffuse, computing local sharpness measurements for possible use in computer-aided diagnosis. The method treats a manually drawn seed region as a wellspring of pixel 'fluid' that flows from the seed out towards the boundary. At indistinct or porous sections of the boundary, the growing region will leak into surrounding tissue. By changing the size of structuring elements used for growing, the algorithm changes leak properties. Since larger elements cannot leak as far from the seed, they produce compact, less detailed boundary approximations; conversely, growing from smaller elements results in less constrained boundaries with more local detail. This implementation of the leak plugging algorithm decrements the radius of structuring disks and then compares the regions grown from them as they increase in both area and boundary detail. Leaks are identified if the outflows between grown regions are large compared to the areas of the disks. The boundary is plugged by masking out leaked pixels, and the process continues until one-pixel-radius resolution. When tested against manual delineation on scans of 40 benign masses and 40 malignant tumors, the plugged boundaries overlapped and correlated well in area with manual tracings, with mean overlap of 0.69 and area correlation R 2 of 0.86, but the algorithm's results were more reproducible

  11. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    Science.gov (United States)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  12. Three-dimensional wake field analysis by boundary element method

    International Nuclear Information System (INIS)

    Miyata, K.

    1987-01-01

    A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity

  13. Multi-element analysis for environmental characterization and its future trends

    International Nuclear Information System (INIS)

    Sansoni, B.

    1987-04-01

    Before starting to characterize the environment by its elemental composition, it may be useful to ask about the objective of these efforts. This includes questions about the scope of environmental protection, the definition of the environment and the limitations of its characterization by elemental composition alone. In the second part of this lecture, examples are given of the elemental composition of well analysed samples from the atmosphere, hydrosphere, lithosphere and biosphere. The third part introduces the principle of multi-element analysis and the fourth part gives examples. Finally, future aspects of modern chemical analysis are outlined with respect to the multi-element principle. (orig.)

  14. Boundary element inverse analysis for rebar corrosion detection: Study on the 2004 tsunami-affected structure in Aceh

    Directory of Open Access Journals (Sweden)

    S. Fonna

    2018-06-01

    Full Text Available Evaluation of rebar/reinforcing-steel corrosion for the 2004 tsunami-affected reinforced concrete (RC buildings in Aceh was conducted using half-cell potential mapping technique. However, the results only show qualitative meaning as corrosion risk rather than the corrosion itself, such as the size and location of corrosion. In this study, boundary element inverse analysis was proposed to be performed to detect rebar corrosion of the 2004 tsunami-affected structure in Aceh, using several electrical potential measurement data on the concrete surface. One RC structure in Peukan Bada, an area heavily damaged by the tsunami, was selected for the study. In 2004 the structure was submerged more than 5 m by the tsunami. Boundary element inverse analysis was developed by combining the boundary element method (BEM and particle swarm optimization (PSO. The corrosion was detected by evaluating measured and calculated electrical potential data. The measured and calculated electrical potential on the concrete surface was obtained by using a half-cell potential meter and by performing BEM, respectively. The solution candidates were evaluated by employing PSO. Simulation results show that boundary element inverse analysis successfully detected the size and location of corrosion for the case study. Compared with the actual corrosion, the error of simulation result was less than 5%. Hence, it shows that boundary element inverse analysis is very promising for further development to detect rebar corrosion. Keywords: Inverse analysis, Boundary element method, PSO, Corrosion, Reinforced concrete

  15. Prediction of radiation ratio and sound transmission of complex extruded panel using wavenumber domain Unite element and boundary element methods

    International Nuclear Information System (INIS)

    Kim, H; Ryue, J; Thompson, D J; Müller, A D

    2016-01-01

    Recently, complex shaped aluminium panels have been adopted in many structures to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of interest for many years but conventional finite element and boundary element methods are not efficient to predict their performance at higher frequencies. Where the cross-sectional properties of the panels are constant in one direction, wavenumber domain numerical analysis can be applied and this becomes more suitable for panels with complex cross-sectional geometries. In this paper, a coupled wavenumber domain finite element and boundary element method is applied to predict the sound radiation from and sound transmission through a double-layered aluminium extruded panel, having a typical shape used in railway carriages. The predicted results are compared with measured ones carried out on a finite length panel and good agreement is found. (paper)

  16. Hybrid finite difference/finite element immersed boundary method.

    Science.gov (United States)

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  17. Analytic Approximations to the Free Boundary and Multi-dimensional Problems in Financial Derivatives Pricing

    Science.gov (United States)

    Lau, Chun Sing

    This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in

  18. Automatic generation of 2D micromechanical finite element model of silicon–carbide/aluminum metal matrix composites: Effects of the boundary conditions

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    Two-dimensional finite element (FE) simulations of the deformation and damage evolution of Silicon–Carbide (SiC) particle reinforced aluminum alloy composite including interphase are carried out for different microstructures and particle volume fractions of the composites. A program is developed...... for the automatic generation of 2D micromechanical FE-models with randomly distributed SiC particles. In order to simulate the damage process in aluminum alloy matrix and SiC particles, a damage parameter based on the stress triaxial indicator and the maximum principal stress criterion based elastic brittle damage...... model are developed within Abaqus/Standard Subroutine USDFLD, respectively. An Abaqus/Standard Subroutine MPC, which allows defining multi-point constraints, is developed to realize the symmetric boundary condition (SBC) and periodic boundary condition (PBC). A series of computational experiments...

  19. Heat conduction in a plate-type fuel element with time-dependent boundary conditions

    International Nuclear Information System (INIS)

    Faya, A.J.G.; Maiorino, J.R.

    1981-01-01

    A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt

  20. Multi-Task Vehicle Detection with Region-of-Interest Voting.

    Science.gov (United States)

    Chu, Wenqing; Liu, Yao; Shen, Chen; Cai, Deng; Hua, Xian-Sheng

    2017-10-12

    Vehicle detection is a challenging problem in autonomous driving systems, due to its large structural and appearance variations. In this paper, we propose a novel vehicle detection scheme based on multi-task deep convolutional neural networks (CNN) and region-of-interest (RoI) voting. In the design of CNN architecture, we enrich the supervised information with subcategory, region overlap, bounding-box regression and category of each training RoI as a multi-task learning framework. This design allows the CNN model to share visual knowledge among different vehicle attributes simultaneously, thus detection robustness can be effectively improved. In addition, most existing methods consider each RoI independently, ignoring the clues from its neighboring RoIs. In our approach, we utilize the CNN model to predict the offset direction of each RoI boundary towards the corresponding ground truth. Then each RoI can vote those suitable adjacent bounding boxes which are consistent with this additional information. The voting results are combined with the score of each RoI itself to find a more accurate location from a large number of candidates. Experimental results on the real-world computer vision benchmarks KITTI and the PASCAL2007 vehicle dataset show that our approach achieves superior performance in vehicle detection compared with other existing published works.

  1. Achieving strategic renewal: the multi-level influences of top and middle managers’ boundary-spanning

    NARCIS (Netherlands)

    Glaser, L.; Fourne, S.P.L.; Elfring, T.

    2015-01-01

    Drawing on corporate entrepreneurship (CE) and social network research, this study focuses on strategic renewal as a form of CE and examines the impact of boundary-spanning at top and middle management levels on business units’ exploratory innovation. Analyses of multi-source and multi-level data,

  2. RICM, Resonance Absorption in Multi-Region Slab or Square or Hexagonal Lattice

    International Nuclear Information System (INIS)

    Mizuta, H.; Aoyama, K.; Fukai, Y.

    1968-01-01

    1 - Nature of physical problem solved: Calculates the resonance absorption integral of resonant isotope in a multi-region lattice using the first flight collision probability. The lattice configurations considered are a slab lattice, a square or hexagonal lattice and a cylindricalized lattice with isotropic or perfect reflecting boundary condition. Cases for an isolated rod or plate and homogeneous system can also be treated. 2 - Method of solution: Slowing down of neutrons by each isotope in each region is solved by either exact numerical integration of the slowing down equation or narrow - or wide-resonance approximation. Breit-Wigner's single level formula is used for the resonance cross section and Porter-Thomas distribution of neutron width is taken into account in the unresolved region. 3 - Restrictions on the complexity of the problem: Maximum number of regions: 5; Maximum Number of groups: 100

  3. Data structures supporting multi-region adaptive isogeometric analysis

    Science.gov (United States)

    Perduta, Anna; Putanowicz, Roman

    2018-01-01

    Since the first paper published in 2005 Isogeometric Analysis (IGA) has gained strong interest and found applications in many engineering problems. Despite the advancement of the method, there are still far fewer software implementations comparing to Finite Element Method. The paper presents an approach to the development of data structures that can support multi-region IGA with local mesh refinement (patch-based) and possible application in IGA-FEM models. The purpose of this paper is to share original design concepts, that authors have created while developing an IGA package, which other researchers may find beneficial for their own simulation codes.

  4. Multi-element probabilistic collocation method in high dimensions

    International Nuclear Information System (INIS)

    Foo, Jasmine; Karniadakis, George Em

    2010-01-01

    We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element probabilistic collocation method MEPCM and so we refer to the new method as MEPCM-A. We investigate the dependence of the convergence of MEPCM-A on two decomposition parameters, the polynomial order μ and the effective dimension ν, with ν<< N, and N the nominal dimension. Numerical tests for multi-dimensional integration and for stochastic elliptic problems suggest that ν≥μ for monotonic convergence of the method. We also employ MEPCM-A to obtain error bars for the piezometric head at the Hanford nuclear waste site under stochastic hydraulic conductivity conditions. Finally, we compare the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and we find MEPCM-A to be more efficient for up to 600 dimensions for a specific multi-dimensional integration problem involving a discontinuous function.

  5. Multi-scale modeling strategies in materials science—The ...

    Indian Academy of Sciences (India)

    Unknown

    Multi-scale models; quasicontinuum method; finite elements. 1. Introduction ... boundary with external stresses, and the interaction of a lattice dislocation with a grain ..... mum value of se over the elements that touch node α. The acceleration of ...

  6. Integrable multi parametric SU(N) chain

    International Nuclear Information System (INIS)

    Foerster, Angela; Roditi, Itzhak; Rodrigues, Ligia M.C.S.

    1996-03-01

    We analyse integrable models associated to a multi parametric SU(N) R-matrix. We show that the Hamiltonians describe SU(N) chains with twisted boundary conditions and that the underlying algebraic structure is the multi parametric deformation of SU(N) enlarged by the introduction of a central element. (author). 15 refs

  7. Carbon and oxygen stable isotope and trace element studies in speleothems and across the J-K boundary, Central Italy

    International Nuclear Information System (INIS)

    Kudielka, G.

    2001-07-01

    Frasassi Cave have always been lower in d18O and higher in d13C compared to Soreq Cave. This indicates lower temperatures and a higher portion of C4 type vegetation in the Frasassi area compared to Israel. The agreement of the two records demonstrates that calcite deposits in caves are ideal recorders to global climatic changes. Investigation of the Jurassic/Cretaceous Boundary in Central Italy, the Jurassic/Cretaceous (J-K) boundary has not been satisfactory defined yet. Among others, various boundary definitions have been proposed at the Bosso River Gorge in the Marche region of Northern Italy: by calcareous nanofossils (at 329 m), calpionellids (at 334.1 m) and magnetostratigraphy (at 318 m). A large impact structure near Morokweng in South Africa was recently radiometrically dated to 144.7±1.9 Ma, which is indistinguishable from the stratigraphic age of the J-K boundary (144.2±2.6 Ma). A possible link between the impact event and the J-K boundary might be manifested in form of stratigraphic and geochemical features across the boundary, such as sudden stable-isotope shifts and spheroidal element anomalies. A set of 110 samples spanning about 40 m across the boundary was investigated for stable isotope ratios, and trace element content was determined in the corresponding decarbonated samples. d13C and d18O hardly vary but show a significant decrease at 333.5 m, which is close to the boundary-definition based upon calpionellids (at 334.1 m). Trace element abundances of Fe, Co, Ni, and Cr show remarkable enrichments very close to the boundary as defined by calcareous nanofossils (at 329 m). Another minor anomaly is noticeable at 333.5 m for Ir and Cr. Thus, the present data might be interpreted to hint - not to confirm - the presence of an impactoclastic layer at the Bosso River Gorge. (author)

  8. Boundary Element Solution of Geometrical Inverse Heat Conduction Problems for Development of IR CAT Scan

    International Nuclear Information System (INIS)

    Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.

    1995-01-01

    A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis

  9. Integrated Process Design and Control of Multi-element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2016-01-01

    In this work, integrated process design and control of reactive distillation processes involving multi-elements is presented. The reactive distillation column is designed using methods and tools which are similar in concept to non-reactive distillation design methods, such as driving force approach....... The methods employed in this work are based on equivalent element concept. This concept facilitates the representation of a multi-element reactive system as equivalent binary light and heavy key elements. First, the reactive distillation column is designed at the maximum driving force where through steady...

  10. Modeling grain boundaries in polycrystals using cohesive elements: Qualitative and quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    El Shawish, Samir, E-mail: Samir.ElShawish@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Simonovski, Igor [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2013-08-15

    Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses.

  11. Use of the iterative solution method for coupled finite element and boundary element modeling

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1993-07-01

    Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver

  12. EPA Region 1 Coast Guard Jurisdictional Boundary - Polygons

    Science.gov (United States)

    Jurisdictional boundary between EPA and Coast Guard for EPA Region I. Created from 1:100000 USGS DLGs with greater detail drawn from 1:24000 commercial street data for Region I.This layer is used to determine which agency will be reponsible in the event of an oil spill.

  13. EPA Region 1 Coast Guard Jurisdictional Boundary - Arcs

    Science.gov (United States)

    Jurisdictional boundary between EPA and Coast Guard for EPA Region I. Created from 1:100000 USGS DLGs with greater detail drawn from 1:24000 commercial street data for Region I.This layer is used to determine which agency will be reponsible in the event of an oil spill.

  14. Dual reciprocity boundary element analysis for the laminar forced heat convection problem in concentric annulus

    International Nuclear Information System (INIS)

    Choi, Chang Yong

    1999-01-01

    This paper presents a study of the Dual Reciprocity Boundary Element Method (DRBEM) for the laminar heat convection problem in a concentric annulus with constant heat flux boundary condition. DRBEM is one of the most successful technique used to transform the domain integrals arising from the nonhomogeneous term of the poisson equation into equivalent boundary only integrals. This recently developed and highly efficient numerical method is tested for the solution accuracy of the fluid flow and heat transfer study in a concentric annulus. Since their exact solutions are available, DRBEM solutions are verified with different number of boundary element discretization and internal points. The results obtained in this study are discussed with the relative error percentage of velocity and temperature solutions, and potential applicability of the method for the more complicated heat convection problems with arbitrary duct geometries

  15. Stress Wave Propagation in Soils Modelled by the Boundary Element Method

    DEFF Research Database (Denmark)

    Rasmussen, K. M.

    This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical...

  16. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  17. Statistical Analysis of the Spatial Distribution of Multi-Elements in an Island Arc Region: Complicating Factors and Transfer by Water Currents

    Directory of Open Access Journals (Sweden)

    Atsuyuki Ohta

    2017-01-01

    Full Text Available The compositions and transfer processes affecting coastal sea sediments from the Seto Inland Sea and the Pacific Ocean are examined through the construction of comprehensive terrestrial and marine geochemical maps for western Japan. Two-way analysis of variance (ANOVA suggests that the elemental concentrations of marine sediments vary with particle size, and that this has a greater effect than the regional provenance of the terrestrial material. Cluster analysis is employed to reveal similarities and differences in the geochemistry of coastal sea and stream sediments. This analysis suggests that the geochemical features of fine sands and silts in the marine environment reflect those of stream sediments in the adjacent terrestrial areas. However, gravels and coarse sands do not show this direct relationship, which is likely a result of mineral segregation by strong tidal currents and the denudation of old basement rocks. Finally, the transport processes for the fine-grained sediments are discussed, using the spatial distribution patterns of outliers for those elements enriched in silt and clay. Silty and clayey sediments are found to be transported and dispersed widely by a periodic current in the inner sea, and are selectively deposited at the boundary of different water masses in the outer sea.

  18. Multi-element analysis of unidentified fallen objects from Tatale in ...

    African Journals Online (AJOL)

    A multi-element analysis has been carried out on two fallen objects, # 01 and # 02, using instrumental neutron activation analysis technique. A total of 17 elements were identified in object # 01 while 21 elements were found in object # 02. The two major elements in object # 01 were Fe and Mg, which together constitute ...

  19. A time-domain finite element boundary integral approach for elastic wave scattering

    Science.gov (United States)

    Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.

    2018-04-01

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  20. Triple solutions for multi-point boundary-value problem with p-Laplace operator

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    2009-11-01

    Full Text Available Using a fixed point theorem due to Avery and Peterson, this article shows the existence of solutions for multi-point boundary-value problem with p-Laplace operator and parameters. Also, we present an example to illustrate the results obtained.

  1. Sound source reconstruction using inverse boundary element calculations

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo

    2003-01-01

    Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim in this work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form suited ...... it is demonstrated that the L-curve criterion is robust with respect to the errors in a real measurement situation. In particular, it is shown that the L-curve criterion is superior to the more conventional generalized cross-validation (GCV) approach for the present tire noise studies....

  2. Medial/skeletal linking structures for multi-region configurations

    CERN Document Server

    Damon, James

    2018-01-01

    The authors consider a generic configuration of regions, consisting of a collection of distinct compact regions \\{ \\Omega_i\\} in \\mathbb{R}^{n+1} which may be either regions with smooth boundaries disjoint from the others or regions which meet on their piecewise smooth boundaries \\mathcal{B}_i in a generic way. They introduce a skeletal linking structure for the collection of regions which simultaneously captures the regions' individual shapes and geometric properties as well as the "positional geometry" of the collection. The linking structure extends in a minimal way the individual "skeletal structures" on each of the regions. This allows the authors to significantly extend the mathematical methods introduced for single regions to the configuration of regions.

  3. Element stacking method for topology optimization with material-dependent boundary and loading conditions

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.

    2007-01-01

    A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...... independent degrees of freedom. Some test problems are considered to check the effectiveness of the proposed stacking method....

  4. Advances in boundary elements. Vol. 1-3

    International Nuclear Information System (INIS)

    Brebbia, C.A.; Connor, J.J.

    1989-01-01

    This book contains some of the edited papers presented at the 11th Boundary Element Conference, held in Cambridge, Massachusetts, during August 1989. The papers are arranged in three different books comprising the following topics: Vol. 1: Computations and Fundamentals - comprises sections on fundamentals, adaptive techniques, error and convergence, numerical methods and computational aspects. (283 p.). Vol. 2: Field and fluid flow solutions - includes the following topics: potential problems, thermal studies, electrical and electromagnetic problems, wave propagation, acoustics and fluid flow. (484 p.). Vol. 3: Stress analysis - deals with advances in linear problems, nonlinear problems, fracture mechanics, contact mechanics, optimization, geomechanics, plates and shells, vibrations and industrial applications. (450 p). (orig./HP)

  5. A coupled boundary element-finite difference solution of the elliptic modified mild slope equation

    DEFF Research Database (Denmark)

    Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.

    2011-01-01

    The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...

  6. Finite Element Analysis of Dam-Reservoir Interaction Using High-Order Doubly Asymptotic Open Boundary

    Directory of Open Access Journals (Sweden)

    Yichao Gao

    2011-01-01

    Full Text Available The dam-reservoir system is divided into the near field modeled by the finite element method, and the far field modeled by the excellent high-order doubly asymptotic open boundary (DAOB. Direct and partitioned coupled methods are developed for the analysis of dam-reservoir system. In the direct coupled method, a symmetric monolithic governing equation is formulated by incorporating the DAOB with the finite element equation and solved using the standard time-integration methods. In contrast, the near-field finite element equation and the far-field DAOB condition are separately solved in the partitioned coupled methodm, and coupling is achieved by applying the interaction force on the truncated boundary. To improve its numerical stability and accuracy, an iteration strategy is employed to obtain the solution of each step. Both coupled methods are implemented on the open-source finite element code OpenSees. Numerical examples are employed to demonstrate the performance of these two proposed methods.

  7. Application of Boundary Element Method in Galvanic Corrosion Analysis for Metallic Materials used in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamarudin

    2011-01-01

    Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. This paper presents the application of boundary element method for galvanic corrosion analysis between two different metallic materials. Aluminium (Al), and zinc (Zn) alloys were used separately coupled with the Carbon Steel (CS) in natural seawater. The measured conductivity of sea water is 30,800 μS/ cm at ambient temperature. Computer software system based on boundary element likes BEASY and ABAQUS can be used to accurately model and simulate the galvanic corrosion. However, the BEM based BEASY program will be used reasonably for predicting the galvanic current density distribution of coupled Al-CS and Zn-CS in this study. (author)

  8. EPA Region 1 Coast Guard Jurisdictional Boundary - Polygons

    Data.gov (United States)

    U.S. Environmental Protection Agency — Jurisdictional boundary between EPA and Coast Guard for EPA Region I. Created from 1:100000 USGS DLGs with greater detail drawn from 1:24000 commercial street data...

  9. EPA Region 1 Coast Guard Jurisdictional Boundary - Arcs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Jurisdictional boundary between EPA and Coast Guard for EPA Region I. Created from 1:100000 USGS DLGs with greater detail drawn from 1:24000 commercial street data...

  10. A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics

    Science.gov (United States)

    Brovont, Aaron D.

    The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.

  11. Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes

    Energy Technology Data Exchange (ETDEWEB)

    De Corato, M., E-mail: marco.decorato@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Slot, J.J.M., E-mail: j.j.m.slot@tue.nl [Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Hütter, M., E-mail: m.huetter@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); D' Avino, G., E-mail: gadavino@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Maffettone, P.L., E-mail: pierluca.maffettone@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Hulsen, M.A., E-mail: m.a.hulsen@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2016-07-01

    In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.

  12. Second-order wave diffraction by a circular cylinder using scaled boundary finite element method

    International Nuclear Information System (INIS)

    Song, H; Tao, L

    2010-01-01

    The scaled boundary finite element method (SBFEM) has achieved remarkable success in structural mechanics and fluid mechanics, combing the advantage of both FEM and BEM. Most of the previous works focus on linear problems, in which superposition principle is applicable. However, many physical problems in the real world are nonlinear and are described by nonlinear equations, challenging the application of the existing SBFEM model. A popular idea to solve a nonlinear problem is decomposing the nonlinear equation to a number of linear equations, and then solves them individually. In this paper, second-order wave diffraction by a circular cylinder is solved by SBFEM. By splitting the forcing term into two parts, the physical problem is described as two second-order boundary-value problems with different asymptotic behaviour at infinity. Expressing the velocity potentials as a series of depth-eigenfunctions, both of the 3D boundary-value problems are decomposed to a number of 2D boundary-value sub-problems, which are solved semi-analytically by SBFEM. Only the cylinder boundary is discretised with 1D curved finite-elements on the circumference of the cylinder, while the radial differential equation is solved completely analytically. The method can be extended to solve more complex wave-structure interaction problems resulting in direct engineering applications.

  13. Multi-Element Analysis and Geochemical Spatial Trends of Groundwater in Rural Northern New York

    Directory of Open Access Journals (Sweden)

    Michael O’Connor

    2010-05-01

    Full Text Available Samples from private wells (n = 169 throughout St. Lawrence County, NY were analyzed by ICP-MS multi-element techniques. St. Lawrence County spans three diverse bedrock terranes including Precambrian crystalline rocks of the Adirondack Lowlands (mostly paragneisses and Highlands (mostly orthogneisses, as well as Paleozoic sedimentary rocks of the St. Lawrence Valley. An ArcGIS database was constructed and used to generate contour plots for elements across the county. Strontium isotopes and unique geochemical signatures were used to distinguish water from various geologic units. The results were consistent with a large (7,309 km2, sparsely populated (~110,000, rural region with diverse bedrock and glacial cover.

  14. Efficient 3D multi-region prostate MRI segmentation using dual optimization.

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.

  15. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  16. Multi Elemental Study Using Prompt Gamma Technique

    International Nuclear Information System (INIS)

    Normanshah Dahing; Muhamad Samudi Yasir; Normanshah Dahing; Hanafi Ithnin; Mohd Fitri Abdul Rahman; Hearie Hassan

    2016-01-01

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10x10x10 cm 3 and 15x15x15 cm 3 were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with computer simulation, NAA and XRF as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed. (author)

  17. An analytical boundary element integral approach to track the boundary of a moving cavity using electrical impedance tomography

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Kim, Sin; Lee, Bo An; Kim, Kyung Youn

    2012-01-01

    This paper is about locating the boundary of a moving cavity within a homogeneous background from the voltage measurements recorded on the outer boundary. An inverse boundary problem of a moving cavity is formulated by considering a two-phase vapor–liquid flow in a pipe. The conductivity of the flow components (vapor and liquid) is assumed to be constant and known a priori while the location and shape of the inclusion (vapor) are the unknowns to be estimated. The forward problem is solved using the boundary element method (BEM) with the integral equations solved analytically. A special situation is considered such that the cavity changes its location and shape during the time taken to acquire a full set of independent measurement data. The boundary of a cavity is assumed to be elliptic and is parameterized with Fourier series. The inverse problem is treated as a state estimation problem with the Fourier coefficients that represent the center and radii of the cavity as the unknowns to be estimated. An extended Kalman filter (EKF) is used as an inverse algorithm to estimate the time varying Fourier coefficients. Numerical experiments are shown to evaluate the performance of the proposed method. Through the results, it can be noticed that the proposed BEM with EKF method is successful in estimating the boundary of a moving cavity. (paper)

  18. Inference of boundaries in causal sets

    Science.gov (United States)

    Cunningham, William J.

    2018-05-01

    We investigate the extrinsic geometry of causal sets in (1+1) -dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons–Hawking–York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space. We discuss algorithms to differentiate between different types of regions, consider when these distinctions are possible, and then apply the algorithms to several spacetime regions. Numerical results indicate the volumes of timelike boundaries can be measured to within 0.5% accuracy for flat boundaries and within 10% accuracy for highly curved boundaries for medium-sized causal sets with N  =  214 spacetime elements.

  19. International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics

    CERN Document Server

    Tseng, Kadin

    1990-01-01

    The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary­ wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto­ dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas­ sive parallelism. This Symposium was sponsored by United ...

  20. Challenges from variation across regions in cost effectiveness analysis in multi-regional clinical trials

    Directory of Open Access Journals (Sweden)

    Yunbo Chu

    2016-10-01

    Full Text Available Economic evaluation in the form of cost-effectiveness analysis has become a popular means to inform decisions in healthcare. With multi-regional clinical trials in a global development program becoming a new venue for drug efficacy testing in recent decades, questions in methods for cost-effectiveness analysis in the multi-regional clinical trials setting also emerge. This paper addresses some challenges from variation across regions in cost effectiveness analysis in multi-regional clinical trials. Several discussion points are raised for further attention and a multi-regional clinical trial example is presented to illustrate the implications in industrial application. A general message is delivered to call for a depth discussion by all stakeholders to reach an agreement on a good practice in cost-effectiveness analysis in the multi-regional clinical trials. Meanwhile, we recommend an additional consideration of cost-effectiveness analysis results based on the clinical evidence from a certain homogeneous population as sensitivity or scenario analysis upon data availability.

  1. An enriched finite element model with q-refinement for radiative boundary layers in glass cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M. Shadi [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2014-02-01

    Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P{sub 1} approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analysed for glass annealing in two enclosures where the simplified P{sub 1} approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.

  2. Experimental validation of a boundary element solver for exterior acoustic radiation problems

    NARCIS (Netherlands)

    Visser, Rene; Nilsson, A.; Boden, H.

    2003-01-01

    The relation between harmonic structural vibrations and the corresponding acoustic radiation is given by the Helmholtz integral equation (HIE). To solve this integral equation a new solver (BEMSYS) based on the boundary element method (BEM) has been implemented. This numerical tool can be used for

  3. Implementation aspects of the Boundary Element Method including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2014-01-01

    The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids...

  4. CONSTRUCTING A MULTI-REGIONAL SOCIAL ACCOUNTING MATRIX FOR TURKEY

    Directory of Open Access Journals (Sweden)

    Metin Piskin

    2017-12-01

    Full Text Available Regional impacts of public policies in Turkey have led to Regional Development Agencies and related institutions having responsibility for setting and achieving sustainability policies at the regional level. As a result, there is a significant interest in developing empirical models that can deal with the macro, micro and regional impacts of economic policies and interregional spillover effects. Spatial or Multi-Regional Computable General Equilibrium models are the most capable models to handle a wide range of policy relevant regional questions and the effects of policies on a comprehensive set of regional and national economic variables. However, an important ingredient in meeting the Multi-Regional CGE analysis is Multi-Regional Social Accounting Matrices. This study is focusing on the building the first Multi-Regional Social Accounting Matrix for Turkey with 11 regions and 8 sectors. We utilize from the most updated available datasets and implement the most conveninent non-survey methods which fit to data availability in Turkey.

  5. XRF and TXRF techniques for multi-element determination of trace elements in whole blood and human hair samples

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M.Kh.; Bakir, M.A.

    2007-01-01

    XRF and TXRF were established as useful techniques for multi-element analysis of whole blood and human head hair samples. Direct-XRF with different collimation units and different X-ray excitation modes was successfully used for the determination of S, P, K, Ca, Fe, and Br elements in blood samples and K, Ca, Mn, Fe elements in human hair samples. Direct analysis by TXRF was used for the determination of Rb and Sr in digested blood and human hair samples, respectively, while, the co-precipitation method using APDC for TXRF analysis was used for the determination of Ni, Cu, Zn, and Pb elements in both matrices. As a result, the improved XRF and TXRF methods were applied for multi-element determination of elements in whole blood and human hair samples in non-occupational exposed population living in Damascus city. The mean concentrations of analyzed elements in both matrices were on the reported range values for non-occupational population in other countries. (author)

  6. XRF and TXRF techniques for multi-element determination of trace elements in whole blood and human hair samples

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M.Kh.; Bakir, M.A.

    2008-01-01

    XRF and TXRF were established as useful techniques for multi-element analysis of whole blood and human head hair samples. Direct-XRF with different collimation units and different X-ray excitation modes was successfully used for the determination of S, P, K, Ca, Fe, and Br elements in blood samples and K, Ca, Mn, Fe elements in human hair samples. Direct analysis by TXRF was used for the determination of Rb and Sr in digested blood and human hair samples, respectively, while, the co-precipitation method using APDC for TXRF analysis was used for the determination of Ni, Cu, Zn, and Pb elements in both matrices. As a result, the improved XRF and TXRF methods were applied for multi-element determination of elements in whole blood and human hair samples in non-occupational exposed population living in Damascus city. The mean concentrations of analyzed elements in both matrices were on the reported range values for non-occupational population in other countries. (author)

  7. Investigation of the stability of blocks around underground openings by using the boundary element method

    Directory of Open Access Journals (Sweden)

    Murat Ünal

    2002-03-01

    Full Text Available In this study, a two-dimensional software was developed by using the boundary element method, in order to model and solve the rock mechanics problems encountered in surface and underground excavations. Stability of rock wedges formed at the roof of underground excavations were investigated in detail by using this software. The behaviour of the symmetric wedge on different joint stiffnesses was studied using a modified boundary element software. Then the results obtained were discussed and compared with the analytical solution, considering the surface tractions, shear stresses (developed along the discontinuity, wedge displacements and strains (along the wedge height.

  8. Hydrogeological boundary settings in SR 97. Uncertainties in regional boundary settings and transfer of boundary conditions to site-scale models

    International Nuclear Information System (INIS)

    Follin, S.

    1999-06-01

    The SR 97 project presents a performance assessment (PA) of the overall safety of a hypothetical deep repository at three sites in Sweden arbitrarily named Aberg, Beberg and Ceberg. One component of this PA assesses the uncertainties in the hydrogeological modelling. This study focuses on uncertainties in boundary settings (size of model domain and boundary conditions) in the regional and site-scale hydrogeological modelling of the three sites used to simulating the possible transport of radionuclides from the emplacement waste packages through the host rock to the accessible environment. Model uncertainties associated with, for instance, parameter heterogeneity and structural interpretations are addressed in other studies. This study concludes that the regional modelling of the SR 97 project addresses uncertainties in the choice of boundary conditions and size of model domain differently at each site, although the overall handling is acceptable and in accordance with common modelling practice. For example, the treatment of uncertainties with regard to the ongoing post-glacial flushing of the Baltic Shield is creditably addressed although not exhaustive from a modelling point of view. A significant contribution of the performed modelling is the study of nested numerical models, i.e., the numerical interplay between regional and site-scale numerical models. In the site-scale modelling great efforts are made to address problems associated with (i) the telescopic mesh refinement (TMR) technique with regard to the stochastic continuum approach, and (ii) the transfer of boundary conditions between variable-density flow systems and flow systems that are constrained to treat uniform density flow. This study concludes that the efforts made to handle these problems are acceptable with regards to the objectives of the SR 97 project

  9. Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries

    International Nuclear Information System (INIS)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B.

    2014-01-01

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described

  10. Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries

    Science.gov (United States)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B.

    2014-01-01

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.

  11. BPS limit of multi- D- and DF-strings in boundary string field theory

    International Nuclear Information System (INIS)

    Go, Gyungchoon; Ishida, Akira; Kim, Yoonbai

    2007-01-01

    A BPS limit is systematically derived for straight multi- D- and DF-strings from the D3D-bar3 system in the context of boundary superstring field theory. The BPS limit is obtained in the limit of thin D(F)-strings, where the Bogomolny equation supports singular static multi-D(F)-string solutions. For the BPS multi-string configurations with arbitrary separations, BPS sum rule is fulfilled under a Gaussian type tachyon potential and reproduces exactly the descent relation. For the DF-strings ((p,q)-strings), the distribution of fundamental string charge density coincides with its energy density and the Hamiltonian density takes the BPS formula of square-root form

  12. A multi-regional structural path analysis of the energy supply chain in China's construction industry

    International Nuclear Information System (INIS)

    Hong, Jingke; Shen, Qiping; Xue, Fan

    2016-01-01

    The construction industry in China exerts significant environmental impacts and uses considerable resources because of rapid urbanization. This study conducted a structural path analysis (SPA) based on the multi-regional input–output table to quantify environmental impact transmission in the entire supply chain. Results indicated that the direct resource input (the first stage) along with on-site construction (the zeroth stage) consumed the highest amount of energy in the supply chain and accounted for approximately 50% of total energy consumption. Regional analysis showed that energy consumption in the construction industry at the provincial level was self-sufficient. Sectoral analysis demonstrated that the direct inputs from the sectors of “manufacture of non-metallic mineral products” and “smelting and pressing of metals” generated the most important energy flows, whereas the sectors of “production and distribution of electric power and heat power” and “extraction of petroleum and natural gas” significantly but indirectly influenced energy use. Sensitivity analysis exhibited that the system boundary of SPA could be narrowed down into the first two upstream stages that contained nearly 50% of energy flow information or expanded toward the first five upstream stages that represented 80% of total energy consumption. - Highlights: •We designed an optimized algorithm for multi-regional SPA. •We extracted energy-intensive paths throughout the upstream supply chain. •We explored self-sufficiency characteristic for provincial construction industries. •We identified energy-intensive sectors hidden in higher-order supply chain. •We developed an effective strategy for narrowing down the system boundary of SPA.

  13. Coupled Boundary and Finite Element Analysis of Vibration from Railway Tunnels

    DEFF Research Database (Denmark)

    Andersen, Lars; Jones, C.J.C.

    2006-01-01

    The analysis of vibration from railway tunnels is of growing interest as new and higher-speed railways are built under the ground to address the transport problems of growing modern urban areas around cities. Such analysis can be carried out using numerical methods but models and therefore comput...... body vibration (about 4 to 80 Hz). A coupled finite element and boundary element scheme is applied in both two and three dimensions. Two tunnel designs are considered: a cut-and-cover tunnel for a double track and a single-track tunnel dug with the New Austrian Tunnelling Method (NATM)....

  14. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  15. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    Science.gov (United States)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  16. Validation of multi-element isotope dilution ICPMS for the analysis of basalts

    Energy Technology Data Exchange (ETDEWEB)

    Willbold, M.; Jochum, K.P.; Raczek, I.; Amini, M.A.; Stoll, B.; Hofmann, A.W. [Max-Planck-Institut fuer Chemie, Mainz (Germany)

    2003-09-01

    In this study we have validated a newly developed multi-element isotope dilution (ID) ICPMS method for the simultaneous analysis of up to 12 trace elements in geological samples. By evaluating the analytical uncertainty of individual components using certified reference materials we have quantified the overall analytical uncertainty of the multi-element ID ICPMS method at 1-2%. Individual components include sampling/weighing, purity of reagents, purity of spike solutions, calibration of spikes, determination of isotopic ratios, instrumental sources of error, correction of mass discrimination effect, values of constants, and operator bias. We have used the ID-determined trace elements for internal standardization to improve indirectly the analysis of 14 other (mainly mono-isotopic trace elements) by external calibration. The overall analytical uncertainty for those data is about 2-3%. In addition, we have analyzed USGS and MPI-DING geological reference materials (BHVO-1, BHVO-2, KL2-G, ML3B-G) to quantify the overall bias of the measurement procedure. Trace element analysis of geological reference materials yielded results that agree mostly within about 2-3% relative to the reference values. Since these results match the conclusions obtained by the investigation of the overall analytical uncertainty, we take this as a measure for the validity of multi-element ID ICPMS. (orig.)

  17. ABOUT SOLUTION OF MULTIPOINT BOUNDARY PROBLEMS OF TWO-DIMENSIONAL STRUCTURAL ANALYSIS WITH THE USE OF COMBINED APPLICATION OF FINITE ELEMENT METHOD AND DISCRETE-CONTINUAL FINITE ELEMENT METHOD PART 2: SPECIAL ASPECTS OF FINITE ELEMENT APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Akimov

    2017-12-01

    Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.

  18. Free surface simulation of a two-layer fluid by boundary element method

    Directory of Open Access Journals (Sweden)

    Weoncheol Koo

    2010-09-01

    Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

  19. Complementary AES and AEM of grain boundary regions in irradiated γ'-strengthened alloys

    International Nuclear Information System (INIS)

    Farrell, K.; Kishimoto, N.; Clausing, R.E.; Heatherly, L.; Lehman, G.L.

    1986-01-01

    Two microchemical analysis techniques are used to measure solute segregation at grain boundaries in two γ'-strengthened, fcc Fe-Ni-Cr alloys that display radiation-induced intergranular fracture. Scanning Auger electron spectroscopy (AES) of grain boundary fracture surfaces and analytical electron microscopy (AEM) of intact grain boundaries using energy-dispersive x-ray spectroscopy show good agreement on the nature and extent of segregation. The elements Ni, Si, Ti, and Mo are found to accumulate in G, Laves and γ' phases on the grain boundaries. Segregation of P is detected by AES. The complementary features of the two analytical techniques are discussed briefly

  20. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals

    International Nuclear Information System (INIS)

    Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon

    2017-01-01

    In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

  1. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-06-15

    In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

  2. Simple one-dimensional finite element algorithm with multi-dimensional capabilities

    International Nuclear Information System (INIS)

    Pepper, D.W.; Baker, A.J.

    1978-01-01

    The application of the finite element procedure for the solution of partial differential equations is gaining widespread acceptance. The ability of the finite element procedure to solve problems which are arbitrarily shaped as well as the alleviation of boundary condition problems is well known. By using local interpolation functionals over each subdomain, or element, a set of linearized algebraic equations are obtained which can be solved using any direct, iterative, or inverse numerical technique. Subsequent use of an explicit or implicit integration procedure permits closure of the solution over the global domain

  3. Modelling of pressurized water reactor fuel, rod time dependent radial heat flow with boundary element method; Modeliranje spremenljivega radijalnega toplotnega toka tlacnovodne gorivne palice z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Sarler, B [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1987-07-01

    The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)

  4. The multi region molten-salt reactor concept

    International Nuclear Information System (INIS)

    Gyula, Csom; Sandor, Feher; Szieberth, M.; Szabolcs, Czifrus

    2003-01-01

    The molten-salt reactor (MSR) concept is one of the most promising systems for the realisation of transmutation. The objective is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures. The procedure is the multi-step transmutation, in which the transformation is carried out in several consecutive steps of different neutron flux and spectrum. In order to implement this, a multi-region transmutation device, i.e. nuclear reactor or sub-critical system is proposed, in which several separate flow-through irradiation rooms are formed with various neutron spectra and fluxes. The paper presents calculations that were performed for a special 5-region version of the multi-region molten-salt reactor. (author)

  5. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti; Lazarov, Raytcho; Lu, Xiliang; Zhou, Zhi

    2016-01-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  6. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti

    2016-02-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  7. Multi-Element Lean Direct Injection Combustor Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Multi-Element Lean Direct Injection, ME-LDI, Combustion concept with the following innovative features: 1. Independent, mini burning zones...

  8. The Boundary Element Method Applied to the Two Dimensional Stefan Moving Boundary Problem

    Science.gov (United States)

    1991-03-15

    Unc), - ( UGt )t - (UG,,),,] - (UG), If we integrate this equation with respect to r from 0 to t - c and with respect to and ij on the region 11(r...and others. "Moving Boundary Problems in Phase Change Mod- els," SIGNUM Newsletter, 20: 8-12 (1985). 21. Stefan, J. "Ober einige Probleme der Theorie ...ier Wirmelcitung," S.-B. \\Vein. Akad. Mat. Natur., 98: 173-484 (1889). 22.-. "flber (lie Theorie der Eisbildung insbesondere fiber die lisbildung im

  9. Managing SMEs’ Collaboration Across Organizational Boundaries Within a Regional Business Ecosystem

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Bogers, Marcel

    2018-01-01

    ’ perspective on managing and organizing inter-company collaboration within a regional business ecosystem. We explore how purposefully managed mutual knowledge flows across organizational boundaries applied by SMEs contribute to the development of the ecosystem they are immersed in. Our key findings include...... insights into the advantages offered by being embedded within regional ecosystem boundaries, such as low transaction costs and reduced risks of opportunistic behaviors, environmental opportunities for external knowledge sourcing or increase of the sphere of influence. We also highlight accompanied...

  10. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    Science.gov (United States)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the

  11. Multi-scale model analysis of boundary layer ozone over East Asia

    Directory of Open Access Journals (Sweden)

    M. Lin

    2009-05-01

    Full Text Available This study employs the regional Community Multiscale Air Quality (CMAQ model to examine seasonal and diurnal variations of boundary layer ozone (O3 over East Asia. We evaluate the response of model simulations of boundary layer O3 to the choice of chemical mechanisms, meteorological fields, boundary conditions, and model resolutions. Data obtained from surface stations, aircraft measurements, and satellites are used to advance understanding of O3 chemistry and mechanisms over East Asia and evaluate how well the model represents the observed features. Satellite measurements and model simulations of summertime rainfall are used to assess the impact of the Asian monsoon on O3 production. Our results suggest that summertime O3 over Central Eastern China is highly sensitive to cloud cover and monsoonal rainfall over this region. Thus, accurate simulation of the East Asia summer monsoon is critical to model analysis of atmospheric chemistry over China. Examination of hourly summertime O3 mixing ratios from sites in Japan confirms the important role of diurnal boundary layer fluctuations in controlling ground-level O3. By comparing five different model configurations with observations at six sites, the specific mechanisms responsible for model behavior are identified and discussed. In particular, vertical mixing, urban chemistry, and dry deposition depending on boundary layer height strongly affect model ability to capture observed behavior. Central Eastern China appears to be the most sensitive region in our study to the choice of chemical mechanisms. Evaluation with TRACE-P aircraft measurements reveals that neither the CB4 nor the SAPRC99 mechanisms consistently capture observed behavior of key photochemical oxidants in springtime. However, our analysis finds that SAPRC99 performs somewhat better in simulating mixing ratios of H2O2 (hydrogen peroxide

  12. Microstructural analysis of the type-II boundary region in Alloy 152 weld

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The weld metals are more susceptible to SCC growth and that most cracks are blunted by the fusion boundary. However, they also found that some cracking occurs along the fusion boundary, often in an area with high hardness. Nelson et al. investigated a DMW of Monel 409 stainless steel and American Iron and Steel Institute (AISI) 1080 alloy and found a type-II boundary, which exists parallel to the fusion boundary in the dilution zone. They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic δ-γ transformation at the base metal in the elevated austenitic temperature range. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. Type-II boundary is known as a potential crack path from the results of crack growth test at DMW without any heat treatment. So the analysis about type-II boundary with applying heat treatment could be helpful to evaluate the susceptibility to SCC of structural materials. The objective of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. The microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B were analyzed with an energy dispersive x-ray spectroscope attached to a scanning electron microscope (SEM-EDS), electron backscatter diffraction (EBSD), and a nanoindentation test. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type

  13. Microstructural analysis of the type-II boundary region in Alloy 152 weld

    International Nuclear Information System (INIS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun

    2014-01-01

    The weld metals are more susceptible to SCC growth and that most cracks are blunted by the fusion boundary. However, they also found that some cracking occurs along the fusion boundary, often in an area with high hardness. Nelson et al. investigated a DMW of Monel 409 stainless steel and American Iron and Steel Institute (AISI) 1080 alloy and found a type-II boundary, which exists parallel to the fusion boundary in the dilution zone. They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic δ-γ transformation at the base metal in the elevated austenitic temperature range. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. Type-II boundary is known as a potential crack path from the results of crack growth test at DMW without any heat treatment. So the analysis about type-II boundary with applying heat treatment could be helpful to evaluate the susceptibility to SCC of structural materials. The objective of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. The microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B were analyzed with an energy dispersive x-ray spectroscope attached to a scanning electron microscope (SEM-EDS), electron backscatter diffraction (EBSD), and a nanoindentation test. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type

  14. Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method

    International Nuclear Information System (INIS)

    Wolf, J.P.; Darbre, G.R.

    1984-01-01

    The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction. (orig.)

  15. Infinite elements for soil-structure interaction analysis in multi-layered halfspaces

    International Nuclear Information System (INIS)

    Yun, Chung Bang; Kim, Jae Min; Yang, Shin Chu

    1994-01-01

    This paper presents the theoretical aspects of a computer code (KIESSI) for soil-structure interaction analysis in a multi-layered halfspace using infinite elements. The shape functions of the infinite elements are derived from approximate expressions of the analytical solutions. Three different infinite elements are developed. They are the horizontal, the vertical and the comer infinite elements (HIE, VIE and CIE). Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements

  16. Unconditionally stable methods for simulating multi-component two-phase interface models with Peng-Robinson equation of state and various boundary conditions

    KAUST Repository

    Kou, Jisheng

    2015-03-01

    In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.

  17. OpenBEM - An open source Boundary Element Method software in Acoustics

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2010-01-01

    OpenBEM is a collection of open source programs for solving the Helmholtz Equation using the Boundary Element Method. The collection is written in Matlab by the authors and contains codes for dealing with exterior and interior problems in two or three dimensions as well as implementation of axi...... with examples of its use. Previous research results where OpenBEM was employed will be mentioned....

  18. Multi-element isotope dilution analyses using ICP-MS

    International Nuclear Information System (INIS)

    Volpe, A.M.

    1996-01-01

    Presently, 37 elements ranging from light (Li,B) through transition metals, noble, rare earth and heavy elements, to actinides and transuranics (Pu, Am, Cm) are measured by isotope dilution at Lawrence Livermore National Laboratory. Projects range from geological and hydrological to biological. The research goal is to measure accurately many elements present in diverse matrices at trace (ppb) levels using isotope dilution methods. Major advantages of isotope dilution methods are accuracy, elimination of ion intensity calibration, and quantitation for samples that require chemical separation. Accuracy depends on tracer isotope calibration, tracer-sample isotopic equilibration, and appropriate background, isobaric and mass bias corrections. Propagation of isotope ratio error due to improper tracer isotope addition is a major concern with multi-element analyses when abundances vary widely. 11 refs., 3 figs

  19. Understanding the Stability of Forest Reserve Boundaries in the West Mengo Region of Uganda

    Directory of Open Access Journals (Sweden)

    Nathan D. Vogt

    2006-06-01

    Full Text Available Despite heavy pressure and disturbance, state property regimes have stemmed deforestation within protected areas of the West Mengo region of Uganda for over 50 yr. In this manuscript, we reconstruct the process of creation and maintenance of forest reserve boundaries in the West Mengo region of Uganda to identify why these boundaries have largely remained stable over the long term under conditions in which they may be predicted to fail. The dramatic boundary stability in West Mengo we attribute to key aspects of institutional design and enforcement of boundaries.

  20. Investigation of solutions of state-dependent multi-impulsive boundary value problems

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084. xml

  1. Investigation of solutions of state-dependent multi-impulsive boundary value problems

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084.xml

  2. visPIG--a web tool for producing multi-region, multi-track, multi-scale plots of genetic data.

    Directory of Open Access Journals (Sweden)

    Matthew Scales

    Full Text Available We present VISual Plotting Interface for Genetics (visPIG; http://vispig.icr.ac.uk, a web application to produce multi-track, multi-scale, multi-region plots of genetic data. visPIG has been designed to allow users not well versed with mathematical software packages and/or programming languages such as R, Matlab®, Python, etc., to integrate data from multiple sources for interpretation and to easily create publication-ready figures. While web tools such as the UCSC Genome Browser or the WashU Epigenome Browser allow custom data uploads, such tools are primarily designed for data exploration. This is also true for the desktop-run Integrative Genomics Viewer (IGV. Other locally run data visualisation software such as Circos require significant computer skills of the user. The visPIG web application is a menu-based interface that allows users to upload custom data tracks and set track-specific parameters. Figures can be downloaded as PDF or PNG files. For sensitive data, the underlying R code can also be downloaded and run locally. visPIG is multi-track: it can display many different data types (e.g association, functional annotation, intensity, interaction, heat map data,…. It also allows annotation of genes and other custom features in the plotted region(s. Data tracks can be plotted individually or on a single figure. visPIG is multi-region: it supports plotting multiple regions, be they kilo- or megabases apart or even on different chromosomes. Finally, visPIG is multi-scale: a sub-region of particular interest can be 'zoomed' in. We describe the various features of visPIG and illustrate its utility with examples. visPIG is freely available through http://vispig.icr.ac.uk under a GNU General Public License (GPLv3.

  3. Pump radiation distribution in multi-element first cladding laser fibres

    International Nuclear Information System (INIS)

    Mel'kumov, Mikhail A; Bufetov, Igor' A; Bubnov, M M; Shubin, Aleksei V; Semenov, S L; Dianov, Evgenii M

    2005-01-01

    Pump radiation transfer is studied experimentally in multi-element first cladding laser fibres. A model of this process is proposed, which is in good agreement with experimental results. An all-fibre single-mode cw ytterbium laser based on a three-element first cladding fibre with an output power of 100W is fabricated. (lasers)

  4. Existence of positive solutions for a multi-point four-order boundary-value problem

    Directory of Open Access Journals (Sweden)

    Le Xuan Truong

    2011-10-01

    Full Text Available The article shows sufficient conditions for the existence of positive solutions to a multi-point boundary-value problem for a fourth-order differential equation. Our main tools are the Guo-Krasnoselskii fixed point theorem and the monotone iterative technique. We also show that the set of positive solutions is compact.

  5. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.

    Science.gov (United States)

    Korolkov, Victor P; Nasyrov, Ruslan K; Shimansky, Ruslan V

    2006-01-01

    Enhancing the diffraction efficiency of continuous-relief diffractive optical elements fabricated by direct laser writing is discussed. A new method of zone-boundary optimization is proposed to correct exposure data only in narrow areas along the boundaries of diffractive zones. The optimization decreases the loss of diffraction efficiency related to convolution of a desired phase profile with a writing-beam intensity distribution. A simplified stepped transition function that describes optimized exposure data near zone boundaries can be made universal for a wide range of zone periods. The approach permits a similar increase in the diffraction efficiency as an individual-pixel optimization but with fewer computation efforts. Computer simulations demonstrated that the zone-boundary optimization for a 6 microm period grating increases the efficiency by 7% and 14.5% for 0.6 microm and 1.65 microm writing-spot diameters, respectively. The diffraction efficiency of as much as 65%-90% for 4-10 microm zone periods was obtained experimentally with this method.

  6. Achieving strategic renewal: the multi-level influences of top and middle managers’ boundary-spanning

    NARCIS (Netherlands)

    L. Glaser (Lotte); S.P.L. Fourné (Sebastian); T. Elfring (Tom)

    2015-01-01

    textabstractDrawing on corporate entrepreneurship (CE) and social network research, this study focuses on strategic renewal as a form of CE and examines the impact of boundary-spanning at top and middle management levels on business units’ exploratory innovation. Analyses of multi-source and

  7. An improved acoustic Fourier boundary element method formulation using fast Fourier transform integration

    NARCIS (Netherlands)

    Kuijpers, A.H.W.M.; Verbeek, G.; Verheij, J.W.

    1997-01-01

    Effective use of the Fourier series boundary element method (FBEM) for everyday applications is hindered by the significant numerical problems that have to be overcome for its implementation. In the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need to be

  8. [Stress analysis of femoral stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer].

    Science.gov (United States)

    Oomori, H; Imura, S; Gesso, H

    1992-04-01

    To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.

  9. Navier-Stokes calculations on multi-element airfoils using a chimera-based solver

    Science.gov (United States)

    Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.

    1993-01-01

    A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.

  10. Three-dimensional multiple reciprocity boundary element method for one-group neutron diffusion eigenvalue computations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1996-01-01

    The multiple reciprocity method (MRM) in conjunction with the boundary element method has been employed to solve one-group eigenvalue problems described by the three-dimensional (3-D) neutron diffusion equation. The domain integral related to the fission source is transformed into a series of boundary-only integrals, with the aid of the higher order fundamental solutions based on the spherical and the modified spherical Bessel functions. Since each degree of the higher order fundamental solutions in the 3-D cases has a singularity of order (1/r), the above series of boundary integrals requires additional terms which do not appear in the 2-D MRM formulation. The critical eigenvalue itself can be also described using only boundary integrals. Test calculations show that Wielandt's spectral shift technique guarantees rapid and stable convergence of 3-D MRM computations. (author)

  11. GEOINFORMATIONAL ANALYSIS OF CHANGING BOUNDARIES OF FOREST TRACTS OF THE REGION OF CAUCASIAN MINERAL WATERS OF STAVROPOL TERRITORY

    Directory of Open Access Journals (Sweden)

    O. S. Anikeeva

    2017-01-01

    Full Text Available Deterioration of the state of forests and illegal logging are a global problem of our time. The region of the Caucasian Mineral Waters has a small number of forest areas, so the need to introduce new methods for analyzing the state of forests is an important task in the conservation of forests in this area. One such method is geoinformational analysis. For the survey, the geoinformation systems ScanEx Image Processor 4.0, Mapinfo Professional 12, QGIS 2.8 have been used.The species composition of the largest forest tracts of the Caucasian Mineral Waters is considered. The main reasons for changing the boundaries of forest areas have been determined. A geoinformational analysis of the changes in the boundaries of the forest tracts of the region has been carried out using remote sensing data for the period from 1987 to 2014. For the analysis, space images of the Landsat 5 and 8 system were used for the period from 1987 to 2014.A classification of multi-temporal optical images has been made, which allowed obtaining the values of forest areas in different years and to calculate their percentage of forest cover. In 1987, the forest area of the region was 35.2 thousand hectares; in 1998, 41.99 thousand hectares, and by 2014 it was reduced to 33.16 thousand hectares.On the basis of the data obtained, a series of maps characterizing the forests of the Caucasian Mineral Waters in different years has been constructed.The conducted study led to the conclusion that the main changes in the forest boundaries occurred in the Mashuk, Lysoy, Zheleznaya, Beshtau, Verblud and Bik mountains. This is due primarily to the proximity to the most densely populated cities in the region: Pyatigorsk, Zheleznovodsk, Essentuki and the city of Mineralnye Vody.

  12. Imposition of Dirichlet Boundary Conditions in Element Free Galerkin Method through an Object-Oriented Implementation

    Directory of Open Access Journals (Sweden)

    Samira Hosseini

    Full Text Available Abstract One of the main drawbacks of Element Free Galerkin (EFG method is its dependence on moving least square shape functions which don’t satisfy the Kronecker Delta property, so in this method it’s not possible to apply Dirichlet boundary conditions directly. The aim of the present paper is to discuss different aspects of three widely used methods of applying Dirichlet boundary conditions in EFG method, called Lagrange multipliers, penalty method, and coupling with finite element method. Numerical simulations are presented to compare the results of these methods form the perspective of accuracy, convergence and computational expense. These methods have been implemented in an object oriented programing environment, called INSANE, and the results are presented and compared with the analytical solutions.

  13. The boundary layers as the primary transport regions of the earth's magnetotail

    Science.gov (United States)

    Eastman, T. E.; Frank, L. A.; Huang, C. Y.

    1985-01-01

    A comprehensive survey of ISEE and IMP LEPEDEA plasma measurements in the earth's magnetotail reveals that the magnetospheric boundary layer and the plasma sheet boundary layer are the primary transport regions there. These plasma measurements also reveal various components of the plasma sheet, including the central plasma sheet and plasma sheet boundary layer. A significant new result reported here is that of cold- and hot-plasma components that are spatially co-present within the central plasma sheet. Such plasma components cannot be explained merely by temporal variations in spectra involving the entire plasma sheet. Contributions to a low temperature component of the plasma sheet enter directly from the boundary layer located along the magnetotail flanks. Field-aligned flows predominate within the plasma sheet boundary layer which is almost always present and is located near the high- and low-latitude border of the plasma sheet. The plasma sheet boundary layer comprises highly anisotropic ion distributions, including counter-streaming ion beams, that evolve into the hot, isotropic component of the plasma sheet. Tailward acceleration regions generate these ion beams with plasma input from the magnetospheric boundary layer. Antisunward-flowing ion beams, at E/q less than 1 kV and of ionospheric composition, are frequently observed in the plasma sheet boundary layer and in tail lobes. These ion beams are likely accelerated at low altitude over the polar cap and especially along auroral field lines.

  14. Electronic and elemental properties of the Cu{sub 2}ZnSn(S,Se){sub 4} surface and grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B. [IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Hts., New York 10598 (United States)

    2014-01-20

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.

  15. Nonlinear streak computation using boundary region equations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J A; Martel, C, E-mail: juanangel.martin@upm.es, E-mail: carlos.martel@upm.es [Depto. de Fundamentos Matematicos, E.T.S.I Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid (Spain)

    2012-08-01

    The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results. (paper)

  16. The occipital place area represents the local elements of scenes.

    Science.gov (United States)

    Kamps, Frederik S; Julian, Joshua B; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D

    2016-05-15

    Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents is not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found that OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements - both in spatial boundary and scene content representation - while PPA and RSC represent global scene properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. On some examples of pollutant transport problems solved numerically using the boundary element method

    Science.gov (United States)

    Azis, Moh. Ivan; Kasbawati; Haddade, Amiruddin; Astuti Thamrin, Sri

    2018-03-01

    A boundary element method (BEM) is obtained for solving a boundary value problem of homogeneous anisotropic media governed by diffusion-convection equation. The application of the BEM is shown for two particular pollutant transport problems of Tello river and Unhas lake in Makassar Indonesia. For the two particular problems a variety of the coefficients of diffusion and the velocity components are taken. The results show that the solutions vary as the parameters change. And this suggests that one has to be careful in measuring or determining the values of the parameters.

  18. TRITON, 3-D Multi-Region Neutron Diffusion Burnup with Criticality Search

    International Nuclear Information System (INIS)

    1974-01-01

    1 - Nature of physical problem solved: TRITON is a multigroup diffusion depletion program in three dimensions (x,y,z). In addition to the straight K eff calculation, three types of criticality searches are possible - diluted control isotope search, region-wise smeared control isotope search, region-wise smeared control isotope search, region-wise smeared control isotope boundary search (the control isotope can be smeared over one region or over a group of regions called a control bank). The depletion equations are solved region-wise. More than one microscopic cross section library can be used in the various regions of the reactor. The same is true for self-shielding factors. Such sets of data can be changed at pre-determined time steps. 2 - Method of solution: The mathematical model employed for the solution of the finite difference equations, which is derived from a seven-point approximation of diffusion equations, is an on-line Chebyshev semi- iterative method. 3 - Restrictions on the complexity of the problem: Maximum number of: library sets: 1; self-shielding sets: 10; compositions: 100; self-shielding coefficients: 6000; groups: 10; fuel isotopes: 30; fission products: 29; isotopes: 50; burnable isotopes: 40; control banks: 100; mesh points: 15000; regions: 400; time steps: 100; control areas: 100; small time steps: 200; elements in the control list: 400; x planes: 100; y planes: 100; z planes: 100

  19. Finite element time domain modeling of controlled-Source electromagnetic data with a hybrid boundary condition

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin

    2017-01-01

    method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....

  20. Finite element modelling

    International Nuclear Information System (INIS)

    Tonks, M.R.; Williamson, R.; Masson, R.

    2015-01-01

    The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)

  1. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    Science.gov (United States)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  2. Multi-fidelity numerical simulations of shock/turbulent-boundary layer interaction with uncertainty quantification

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Emory, Mike; Bodart, Julien; Palacios, Francisco; Iaccarino, Gianluca; Eaton, John

    2013-11-01

    We study the interaction between an oblique shock wave and the turbulent boundary layers inside a nearly-square duct by combining wall-modeled LES, 2D and 3D RANS simulations, targeting the experiment of Campo, Helmer & Eaton, 2012 (nominal conditions: M = 2 . 05 , Reθ = 6 , 500). A primary objective is to quantify the effect of aleatory and epistemic uncertainties on the STBLI. Aleatory uncertainties considered include the inflow conditions (Mach number of the incoming air stream and thickness of the boundary layers) and perturbations of the duct geometry upstream of the interaction. The epistemic uncertainty under consideration focuses on the RANS turbulence model form by injecting perturbations in the Reynolds stress anisotropy in regions of the flow where the model assumptions (in particular, the Boussinesq eddy-viscosity hypothesis) may be invalid. These perturbations are then propagated through the flow solver into the solution. The uncertainty quantification (UQ) analysis is done through 2D and 3D RANS simulations, assessing the importance of the three-dimensional effects imposed by the nearly-square duct geometry. Wall-modeled LES are used to verify elements of the UQ methodology and to explore the flow features and physics of the STBLI for multiple shock strengths. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  3. Finite element and boundary element applications in quantum mechanics

    International Nuclear Information System (INIS)

    Ueta, Tsuyoshi

    2003-01-01

    Although this book is one of the Oxford Texts in Applied and Engineering Mathematics, we may think of it as a physics book. It explains how to solve the problem of quantum mechanics using the finite element method (FEM) and the boundary element method (BEM). Many examples analysing actual problems are also shown. As for the ratio of the number of pages of FEM and BEM, the former occupies about 80%. This is, however, reasonable reflecting the flexibility of FEM. Although many explanations of FEM and BEM exist, most are written using special mathematical expressions and numerical computation fields. However, this book is written in the 'language of physicists' throughout. I think that it is very readable and easy to understand for physicists. In the derivation of FEM and the argument on calculation accuracy, the action integral and a variation principle are used consistently. In the numerical computation of matrices, such as simultaneous equations and eigen value problems, a description of important points is also fully given. Moreover, the practical problems which become important in the electron device design field and the condensed matter physics field are dealt with as example computations, so that this book is very practical and applicable. It is characteristic and interesting that FEM is applied to solve the Schroedinger and Poisson equations consistently, and to the solution of the Ginzburg--Landau equation in superconductivity. BEM is applied to treat electric field enhancements due to surface plasmon excitations at metallic surfaces. A number of references are cited at the end of all the chapters, and this is very helpful. The description of quantum mechanics is also made appropriately and the actual application of quantum mechanics in condensed matter physics can also be surveyed. In the appendices, the mathematical foundation, such as numerical quadrature formulae and Green's functions, is conveniently described. I recommend this book to those who need to

  4. Inventory Survey of Geodiversity Elements in a Regional Territory: Applied to the Biga Peninsula, Northwestern Turkey

    Science.gov (United States)

    Sedat Çetiner, Ziya; Ertekin, Can; Filiz, Nurdan

    2016-04-01

    Representative geodiversity elements such as minerals, rocks, fossils, landforms, etc are key components in order to obtain data for the pursuit of geo-research. The scientific worth of geodiversity is not only related to how the geosphere works but also is connected with the conservation of earth materials for present and future geo-knowledge and geoscience milieu. Hence, the nonrenewable nature of geodiversity elements in the human time scale is taken into account for the conservation of natural diversity or simply geo-conservation. Geodiversity as an abiotic element ascribes to in situ or ex situ features both of which maintain scientific value and are used by various societies such as in teaching, tourism, etc. Ex situ elements are known as fossils, minerals and rocks found in museum collections on the other hand in situ features are known as geosites for which there are certain sub-categories such as geomorphological (landform), hydrogeological, paleontological, structural, stratigraphic sequence and lithological. Due to the plethora of geological data dispersed among geodiversity elements, the first crucial step is to execute an inventory solid study. The scope of this study is to survey geodiversity features of potential natural sites distributed the entire sectors of the Biga Peninsula of Northwestern Turkey. In the territory, there are 37 natural sites with their own data set. This data describing their boundaries and administrative features were acquired from Directorate General for Preservation of Natural Heritage. Then, site boundaries, regional published geological maps, surface hydrologic and anthropic attributes were overlaid conceiving as a single unit. Before initiating the inventory survey, the criteria scale were established for geoscience value and geo-tourism potential. In these two frames, geodiversity elements were labeled and tabulated by their representativeness, integrity, rarity, scientific knowledge, scenery, interpretative potential and

  5. Kinetic Alfven wave with density variation and loss-cone distribution function of multi-ions in PSBL region

    Science.gov (United States)

    Tamrakar, Radha; Varma, P.; Tiwari, M. S.

    2018-05-01

    Kinetic Alfven wave (KAW) generation due to variation of loss-cone index J and density of multi-ions (H+, He+ and O+) in the plasma sheet boundary layer region (PSBL) is investigated. Kinetic approach is used to derive dispersion relation of wave using Vlasov equation. Variation of frequency with respect to wide range of k⊥ρi (where k⊥ is wave vector across the magnetic field, ρi is gyroradius of ions and i denotes H+, He+ and O+ ions) is analyzed. It is found that each ion gyroradius and number density shows different effect on wave generation with varying width of loss-cone. KAW is generated with multi-ions (H+, He+ and O+) over wide regime for J=1 and shows dissimilar effect for J=2. Frequency is reduced with increasing density of gyrating He+ and O+ ions. Wave frequency is obtained within the reported range which strongly supports generation of kinetic Alfven waves. A sudden drop of frequency is also observed for H+ and He+ ion which may be due to heavy penetration of these ions through the loss-cone. The parameters of PSBL region are used for numerical calculation. The application of these results are in understanding the effect of gyrating multi-ions in transfer of energy and Poynting flux losses from PSBL region towards ionosphere and also describing the generation of aurora.

  6. Indirect boundary element method for three dimensional problems. Analytical solution for contribution to wave field by triangular element; Sanjigen kansetsu kyokai yosoho. Sankakukei yoso no kiyo no kaisekikai

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, T [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria

    1997-05-27

    Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.

  7. Seismic wave propagation in non-homogeneous elastic media by boundary elements

    CERN Document Server

    Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank

    2017-01-01

    This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...

  8. Multi-element trace analysis of solid samples using one-photon two-step RIMS

    International Nuclear Information System (INIS)

    Telle, H. H.; Abraham, C. J.; Jones, O. R.; Krustev, T.

    1998-01-01

    In this study we have investigated the feasibility of multi-element analysis using a simple 1+1 photo-excitation/photo-ionization scheme. Although such schemes are usually far from ideal for optimum resonance ionization, they are the approach of choice if one wishes to maintain a simple, easy-to-operate laser set-up which is potentially suitable for routine analysis. In addition, we only made use of the second-harmonic tuning range of a single dye. While this limits the range of elements which are accessible in the 1+1 RIS scheme it further adds to the simplicity and allows for automation of sequential multi-element analysis

  9. Neutron activation analysis and the geochemistry of common and trace elements at extinction boundaries in the geological record

    International Nuclear Information System (INIS)

    Attrep, M. Jr.; Orth, C.J.; Quintana, L.R.

    1994-01-01

    The discovery of the iridium anomaly at the 65-Ma Cretaceous-Tertiary (K-T) extinction boundary initiated numerous investigations, including the search for the coupling of these extinctions with other astronomical events. One hypothesis is that these periodic extinctions are coupled to terrestrial impacts from cyclic swarms of comets or asteroids. The studies have focused on elucidating the conditions and causes of extinction of life at these geological boundaries using elemental abundance patterns. The authors use instrumental neutron activation methods to determine whole-rock abundances for about 40 trace and common elements in thousands of samples. The platinum group elements (iridium, gold, platinum, and osmium) and nickel are measured by radiochemical activation analysis. The authors can measure iridium at levels down to 1 picogram/gram level

  10. Empirical reconstruction and long-duration tracking of the magnetospheric boundary in single- and multi-spacecraft contexts

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2005-06-01

    Full Text Available The magnetospheric boundary is always moving, making it difficult to establish its structure. This paper presents a novel method for tracking the motion of the boundary, based on in-situ observations of the plasma velocity and of one or more additional observables. This method allows the moving boundary to be followed for extended periods of time (up to several hours and aptly deals with limitations on the time resolution of the data, with measurement errors, and with occasional data gaps; it can exploit data from any number of spacecraft and any type of instrument. At the same time the method is an empirical reconstruction technique that determines the one-dimensional spatial structure of the boundary. The method is illustrated with single- and multi-spacecraft applications using data from Ampte/Irm and Cluster.

  11. Seismic response of three-dimensional topographies using a time-domain boundary element method

    Science.gov (United States)

    Janod, François; Coutant, Olivier

    2000-08-01

    We present a time-domain implementation for a boundary element method (BEM) to compute the diffraction of seismic waves by 3-D topographies overlying a homogeneous half-space. This implementation is chosen to overcome the memory limitations arising when solving the boundary conditions with a frequency-domain approach. This formulation is flexible because it allows one to make an adaptive use of the Green's function time translation properties: the boundary conditions solving scheme can be chosen as a trade-off between memory and cpu requirements. We explore here an explicit method of solution that requires little memory but a high cpu cost in order to run on a workstation computer. We obtain good results with four points per minimum wavelength discretization for various topographies and plane wave excitations. This implementation can be used for two different aims: the time-domain approach allows an easier implementation of the BEM in hybrid methods (e.g. coupling with finite differences), and it also allows one to run simple BEM models with reasonable computer requirements. In order to keep reasonable computation times, we do not introduce any interface and we only consider homogeneous models. Results are shown for different configurations: an explosion near a flat free surface, a plane wave vertically incident on a Gaussian hill and on a hemispherical cavity, and an explosion point below the surface of a Gaussian hill. Comparison is made with other numerical methods, such as finite difference methods (FDMs) and spectral elements.

  12. Determination of multi-element in marine sediment samples collected in Angola by the k0-NAA technique

    International Nuclear Information System (INIS)

    Teixeira, M.C.P.; Ho Manh Dung; Cao Dong Vu; Nguyen Thi Sy; Nguyen Thanh Binh; Vuong Huu Tan

    2006-01-01

    The marine sediment samples were designed to collect in Angola for marine environmental pollution study. The k 0 -standardization method of neutron activation analysis (k 0 -NAA) on Dalat research reactor has been developed to determine of multi-element in the Angola marine sediment samples. The samples were irradiated in cell 7-1 for short- and middle-lived nuclides and rotary specimen rack for long-lived nuclides. The irradiation facilities were characterized for neutron spectrum parameters and post-activated samples were measured on the calibrated gamma-ray spectrometers using HPGe detectors. The analytical results for 9 marine sediment samples with 27 elements: Al, As, Br, Ca, Ce,Cl, Co, Cs, Dy, Fe, Hf, I, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Sm, Th, Ti, U, V and Zn in term of mean concentration, standard deviation and their content range are shown in the report. The analytical quality assurance was done by analysis of a Japan's certified reference material namely marine sediment NMIJ-CRM-7302a. These preliminary results revealed that the k 0 -NAA technique on the Dalat research reactor is a good analytical technique for determination of multi-element in the marine sediment samples. Some heavy metals and trace elements determined in this work possibly connected to the human activities at the sampling region. (author)

  13. Grain boundary segregation and intergranular failure

    International Nuclear Information System (INIS)

    White, C.L.

    1980-01-01

    Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10 3 to 10 5 times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented

  14. Statistical Methods in Assembly Quality Management of Multi-Element Products on Automatic Rotor Lines

    Science.gov (United States)

    Pries, V. V.; Proskuriakov, N. E.

    2018-04-01

    To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.

  15. Boundary layers as the primary transport regions of the earth's magnetotail

    International Nuclear Information System (INIS)

    Eastman, T.E.; Frank, L.A.; Huang, C.Y.

    1985-01-01

    A comprehensive survey of ISEE and IMP LEPEDEA plasma measurements in the earth's magnetotail reveals that the magnetospheric boundary layer and the plasma sheet boundary layer are the primary transport regions there. These plasma measurements also distinguish various components of the plasma sheet, including the central plasma sheet and plasma sheet boundary layer. A significant new result reported here is the existence of cold-and hot-plasma components that are spatially copresent within the central plasma sheet. Such plasma components cannot be explained merely by temporal variations in spectra involving the entire plasma sheet. Contributions to a low-temperature component of the plasma sheet enter directly from the boundary layer located along the magnetotail flanks. Field-aligned flows predominate within the plasma sheet boundary layer, which is almost always present and is located near the northern and southern border of the plasma sheet. The plasma sheet boundary layer comprises highly anisotropic ion distributions, including counteracting ion beams, that evolve into the hot, isotropic component of the plasma sheet

  16. Measurements of environmental gamma-ray spectra using a multi-element TL dosemeter

    International Nuclear Information System (INIS)

    Furuta, Sadaaki; Boetter-Jensen, L.; Nielsen, S.P.

    1986-12-01

    A method to estimate the energy distribution and dose of environmental gamma radiation was developed using a multielement TL dosemeter. Experimentally obtained energy responses from a multi-element TL dosemeter with different kinds of filters were used to calculate the energy distribution and related dose by the SAND-II computer code. The code was originally developed to estimate the neutron flux using a multiple foil activation method. Measurements were made at several locations with the multi-element TL dosemeter and comparisons were made with results from a NaI(Tl) scintillation detector and a high-pressure ionization chamber. (author)

  17. Analysis of heat transfer on extended surfaces of fuel elements in cooling channels by boundary elements method; Analiza prenosa toplote na orebrenjih gorivnih elementov hladilnih kanalov z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Namestnik, B; Skerget, L; Beadar, D [tehniska fakulteta, Maribor (Yugoslavia)

    1989-07-01

    The paper presents numerical method for evaluating heat transfer on two-dimensional ribbed surfaces. Governing elliptic partial differential equation is transformed to boundary integral equation, and solved by the boundary element method. Efficiency of fins is calculated from boundary heat flux balance. Several test cases have shown usefulness of the presented method. (author)

  18. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Korobkin, Oleg; Pazos, Enrique [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Aksoylu, Burak [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States); Holst, Michael [Department of Mathematics, University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0112 (United States); Tiglio, Manuel [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2009-07-21

    In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor psi. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

  19. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

    International Nuclear Information System (INIS)

    Korobkin, Oleg; Pazos, Enrique; Aksoylu, Burak; Holst, Michael; Tiglio, Manuel

    2009-01-01

    In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor ψ. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

  20. Interpretation of horizontal well performance in complicated systems by the boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jongkittinarukorn, K.; Tiab, D. [Oklahoma Univ., School of Petroleum and Geological Engineering (United States); Escobar, F. H. [Surcolombiana Univ., Dept. of Petroleum Engineering (Colombia)

    1998-12-31

    A solution obtained by using the boundary element method to simulate pressure behaviour of horizontal wells in complicated reservoir-wellbore configurations is presented. Three different types of well bore and reservoir models were studied, i.e. a snake-shaped horizontal wellbore intersecting a two-layer reservoir with cross flow, a horizontal well in a three-layer reservoir with cross flow, and a vertical well intersecting a two-layer reservoir without cross flow. In each case, special attention was paid to the influence of wellbore inclination angle, the distance from the wellbore to the different boundaries and the permeability ratio. Performance of each of these types of wells are discussed. 9 refs., 18 figs.

  1. 3-dimensional earthquake response analysis of embedded reactor building using hybrid model of boundary elements and finite elements

    International Nuclear Information System (INIS)

    Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.

    1985-01-01

    In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)

  2. MULTI ELEMENT SI SENSOR WITH READOUT ASIC FOR EXAFS SPECTROSCOPY.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; O CONNOR,P.; BEUTTENMULLER,R.H.; LI,Z.; KUCZEWSKI,A.J.; SIDDONS,D.P.

    2002-09-09

    Extended X-ray Absorption Fine Structure (EXAFS) experiments impose stringent requirements on a detection system, due to the need for processing ionizing events at a high rate, typically above of 10Mcps/cm{sup 2}, and with a high resolution, typically better than 300eV. The detection system here presented is being developed targeting these stringent requirements. It is the result of a cooperation between the Instrumentation Division and the National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL). The system is composed of a multi-element Si sensor with dedicated per pixel electronics. The combination of high rate, high resolution and moderate complexity makes this system attractive when compared to other multi-element solutions. In sections 2, 3 and 4 the sensor, the interconnect and the electronics are briefly described. Section 5 reports on the first experimental results.

  3. Boundary element and speckle photography method for solving elasto-plastic problems

    International Nuclear Information System (INIS)

    Hadjikov, L.; Kavardjikov, V.; Valeva, V.

    1985-01-01

    The stress-strain state of metal specimens in the vicinity of a stress concentrator (circular hole) is investigated in case of a quasistatic loading. The displacements are evaluated numerically by the Boundary Element Method (BEM) and they are estimated experimentally by speckle photography. The experimentally and theoretically obtained results are compared and considered. A unified method for a simultaneous employment of both techniques is suggested. The experimental and theoretical techniques complement each other which results in an enhanced capability of the method proposed. (orig.)

  4. Cost-benefit analysis of multi-regional nuclear energy systems deployment

    International Nuclear Information System (INIS)

    Van Den Durpel, L.G.G.; Wade, D.C.; Yacout, A.M.

    2007-01-01

    The paper describes the preliminary results of a cost/benefit-analysis of multi-regional nuclear energy system approaches with a focus on how multi-regional approaches may benefit a growing nuclear energy system in various world regions also being able to limit, or even reduce, the costs associated with the nuclear fuel cycle and facilitating the introduction of nuclear energy in various regions in the world. The paper highlights the trade-off one might envisage in deploying such multi-regional approaches but also the pay backs possible and concludes on the economical benefits one may associate to regional fuel cycle centres serving a world-fleet of STAR (small fast reactors of long refueling interval) where these STARs may be competitive compared to the LWRs (Light Water Reactors) as a base-case nuclear reactor option. (authors)

  5. Census Bureau Regional Office Boundaries : New Structure as of January 2013

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The Census Bureau has six regional offices to facilitate data collection, data dissemination and geographic operations within their boundary. The surveys these...

  6. Studies of the source complex behaviour and of the ultrasound radiation of contact flexible multi-element transducers; Etudes du comportement complexe de source et du rayonnement ultrasonore des traducteurs multi-elements flexibles au contact

    Energy Technology Data Exchange (ETDEWEB)

    Amory, V

    2007-12-15

    This work deals with the ultrasonic nondestructive testing of parts with complex geometries using soft multi-element sensors. The different types of contact control configurations are presented first. Then, the difficulties encountered with conventional contact transducers are explained and the multi-element piezoelectric transducers technology, developed to meet these difficulties, is presented. The second chapter presents the results of finite-element calculations showing the complexity of a transducer in a condition of testing utilization. In a same configuration, the radiated far field calculated by finite-elements is compared to the measurement in order to validate the way the source behaviour is calculated. However, despite the efficiency of the finite-elements simulation, this tool is numerically too costly and cannot be used to optimize a full multi-element transducer. Therefore, a realistic source model is built and implemented in a radiation code based on high-frequency asymptotic approximations where only L and T volume waves are calculated. The incapacity of this model to reproduce the behaviour of T waves in some directions of propagation has led to give a particular attention to the fore-waves, neglected in the radiation calculation. Chapter 3 treats of the building of an exact radiation model taking into consideration the fore-waves contribution emitted by a contact transducer exerting a random space-time distribution constraint at the surface of the considered medium. A radiation model, based on the calculation of exact Green functions of the Lamb problem is proposed. The exact model is particularly interesting in the case of sensor geometries with a long length with respect to other dimensions (2D case). Field calculation results are shown for an element of the matrix network (3D case) and for a linear element (2D case). A study of different existing approached models is carried out as well. The last chapter presents some results of the field

  7. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  8. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The

  9. A new epidemic modeling approach: Multi-regions discrete-time model with travel-blocking vicinity optimal control strategy.

    Science.gov (United States)

    Zakary, Omar; Rachik, Mostafa; Elmouki, Ilias

    2017-08-01

    First, we devise in this paper, a multi-regions discrete-time model which describes the spatial-temporal spread of an epidemic which starts from one region and enters to regions which are connected with their neighbors by any kind of anthropological movement. We suppose homogeneous Susceptible-Infected-Removed (SIR) populations, and we consider in our simulations, a grid of colored cells, which represents the whole domain affected by the epidemic while each cell can represent a sub-domain or region. Second, in order to minimize the number of infected individuals in one region, we propose an optimal control approach based on a travel-blocking vicinity strategy which aims to control only one cell by restricting movements of infected people coming from all neighboring cells. Thus, we show the influence of the optimal control approach on the controlled cell. We should also note that the cellular modeling approach we propose here, can also describes infection dynamics of regions which are not necessarily attached one to an other, even if no empty space can be viewed between cells. The theoretical method we follow for the characterization of the travel-locking optimal controls, is based on a discrete version of Pontryagin's maximum principle while the numerical approach applied to the multi-points boundary value problems we obtain here, is based on discrete progressive-regressive iterative schemes. We illustrate our modeling and control approaches by giving an example of 100 regions.

  10. An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging

    International Nuclear Information System (INIS)

    Akalin-Acar, Zeynep; Gencer, Nevzat G

    2004-01-01

    The forward problem of electromagnetic source imaging has two components: a numerical model to solve the related integral equations and a model of the head geometry. This study is on the boundary element method (BEM) implementation for numerical solutions and realistic head modelling. The use of second-order (quadratic) isoparametric elements and the recursive integration technique increase the accuracy in the solutions. Two new formulations are developed for the calculation of the transfer matrices to obtain the potential and magnetic field patterns using realistic head models. The formulations incorporate the use of the isolated problem approach for increased accuracy in solutions. If a personal computer is used for computations, each transfer matrix is calculated in 2.2 h. After this pre-computation period, solutions for arbitrary source configurations can be obtained in milliseconds for a realistic head model. A hybrid algorithm that uses snakes, morphological operations, region growing and thresholding is used for segmentation. The scalp, skull, grey matter, white matter and eyes are segmented from the multimodal magnetic resonance images and meshes for the corresponding surfaces are created. A mesh generation algorithm is developed for modelling the intersecting tissue compartments, such as eyes. To obtain more accurate results quadratic elements are used in the realistic meshes. The resultant BEM implementation provides more accurate forward problem solutions and more efficient calculations. Thus it can be the firm basis of the future inverse problem solutions

  11. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    Science.gov (United States)

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  12. Boundaries of magnetic anomaly sources in the Tyrrhenian region

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    1998-06-01

    Full Text Available Analysis of the analytic signal of the aeromagnetic field in the Tyrrhenian region allowed the systematic location of the boundaries of magnetic shallow sources. This method was chosen because of its independence from the magnetization and inducing field direction, and the results were similar to those of the boundary analysis of the horizontal gradient of the pseudogravity transformed field. The analytic signal was computed by a stable algorithm based on the second order horizontal derivatives of the field and Laplace equation. The complexity of the investigated area is well reflected in the aeromagnetic field and an objective and systematic study, such as boundary analysis, provided a rather complete description of the main regional structures. Significant trends indicated the existence of structures, whose nature was still unknown or uncertain. These included structures located between the Vavilov and De Marchi seamounts, NW of Stromboli Island, south of Ponza Island, a buried horst immediately south of the Cilento coastline, a body located northwest of the Cassinis seamount and other small magnetized structures located south of the Tuscanian archipelago. In many cases, a better definition of several structures previously recognized was obtained as in the case of some tectonic alignments (e.g., the Elba ridge, the Romolo and Selli lines, etc., a large number of igneous seamounts (e.g., Magnaghi, Marsili, Vavilov, Anchise, Quirra, Enarete, Eolo and Sisifo seamounts and several crystalline outcrops (e.g., Ichnusa, Vercelli, M. della Rondine, Tiberino, Cassinis, Traiano, Glauco and Augusto seamounts.

  13. A framework for developing finite element codes for multi-disciplinary applications.

    OpenAIRE

    Dadvand, Pooyan

    2007-01-01

    The world of computing simulation has experienced great progresses in recent years and requires more exigent multidisciplinary challenges to satisfy the new upcoming demands. Increasing the importance of solving multi-disciplinary problems makes developers put more attention to these problems and deal with difficulties involved in developing software in this area. Conventional finite element codes have several difficulties in dealing with multi-disciplinary problems. Many of these codes are d...

  14. Matrix-type multiple reciprocity boundary element method for solving three-dimensional two-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1997-01-01

    The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)

  15. Process recognition in multi-element soil and stream-sediment geochemical data

    Science.gov (United States)

    Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.

    2009-01-01

    Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on

  16. Multi-element neutron activation analysis and solution of classification problems using multidimensional statistics

    International Nuclear Information System (INIS)

    Vaganov, P.A.; Kol'tsov, A.A.; Kulikov, V.D.; Mejer, V.A.

    1983-01-01

    The multi-element instrumental neutron activation analysis of samples of mountain rocks (sandstones, aleurolites and shales of one of gold deposits) is performed. The spectra of irradiated samples are measured by Ge(Li) detector of the volume of 35 mm 3 . The content of 22 chemical elements is determined in each sample. The results of analysis serve as reliable basis for multi-dimensional statistic information processing, they constitute the basis for the generalized characteristics of rocks which brings about the solution of classification problem for rocks of different deposits

  17. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  18. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  19. On efficiently computing multigroup multi-layer neutron reflection and transmission conditions

    International Nuclear Information System (INIS)

    Abreu, Marcos P. de

    2007-01-01

    In this article, we present an algorithm for efficient computation of multigroup discrete ordinates neutron reflection and transmission conditions, which replace a multi-layered boundary region in neutron multiplication eigenvalue computations with no spatial truncation error. In contrast to the independent layer-by-layer algorithm considered thus far in our computations, the algorithm here is based on an inductive approach developed by the present author for deriving neutron reflection and transmission conditions for a nonactive boundary region with an arbitrary number of arbitrarily thick layers. With this new algorithm, we were able to increase significantly the computational efficiency of our spectral diamond-spectral Green's function method for solving multigroup neutron multiplication eigenvalue problems with multi-layered boundary regions. We provide comparative results for a two-group reactor core model to illustrate the increased efficiency of our spectral method, and we conclude this article with a number of general remarks. (author)

  20. A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice.

    Science.gov (United States)

    White, Michael A; Ikeda, Akihiro; Payseur, Bret A

    2012-08-01

    The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.

  1. Multi-model Ensemble Regional Climate Projection of the Maritime Continent using the MIT Regional Climate Model

    Science.gov (United States)

    Kang, S.; IM, E. S.; Eltahir, E. A. B.

    2016-12-01

    In this study, the future change in precipitation due to global warming is investigated over the Maritime Continent using the MIT Regional Climate Model (MRCM). A total of nine 30-year projections under multi-GCMs (CCSM, MPI, ACCESS) and multi-scenarios of emissions (Control, RCP4.5, RCP8.5) are dynamically downscaled using the MRCM with 12km horizontal resolution. Since downscaled results tend to systematically overestimate the precipitation regardless of GCM used as lateral boundary conditions, the Parametric Quantile Mapping (PQM) is applied to reduce this wet bias. The cross validation for the control simulation shows that the PQM method seems to retain the spatial pattern and temporal variability of raw simulation, however it effectively reduce the wet bias. Based on ensemble projections produced by dynamical downscaling and statistical bias correction, a reduction of future precipitation is discernible, in particular during dry season (June-July-August). For example, intense precipitation in Singapore is expected to be reduced in RCP8.5 projection compared to control simulation. However, the geographical patterns and magnitude of changes still remain uncertain, suffering from statistical insignificance and a lack of model agreement. Acknowledgements This research is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise programme. The Center for Environmental Sensing and Modeling is an interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology

  2. Multi element analysis by X-ray fluorescence. A powerful tool of ivory identification from various origins

    International Nuclear Information System (INIS)

    Kautenburger, R.; Mueller, P.; Wannemacher, J.

    2004-01-01

    The 11th CITES Conference in 2000 decided to maintain a total worldwide ban on trade of elephant ivory. The 12th Conference in 2002 decided to allow a conditional trade in stockpiled ivory in 2004. Reopening of the ivory trade would require methods to identify the origin of the ivory so that legal ivory can be distinguished from the black-market ones. X-ray fluorescence multi-element analysis of ivory samples from various regions of Africa and Southeast-Asia to characterize ivory of the various elephant populations is described. (author)

  3. Studies on absorption coefficient near edge of multi elements

    International Nuclear Information System (INIS)

    Eisa, M.H.; Shen, H.; Yao, H.Y.; Mi, Y.; Zhou, Z.Y.; Hu, T.D.; Xie, Y.N.

    2005-01-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained

  4. Studies on absorption coefficient near edge of multi elements

    Science.gov (United States)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  5. County Boundaries clipped to shoreline from Teleatlas, NA for Regions 1, 2 and 3 in EPA Region 2 Oracle/Spatial/SDE Database [TANA.COUNTY

    Data.gov (United States)

    U.S. Environmental Protection Agency — R2GIS Combined county boundary data from TANA, Navteq and Census: TANA county boundaries.(static.R2GIS.TANA_BOUNDARY_COUNTY) for all of Region 2 except the Virgin...

  6. A study on the bonding residual thermal stress analysis of dissimilar materials using boundary element method

    International Nuclear Information System (INIS)

    Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho

    1995-01-01

    It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.

  7. Solution of free-boundary problems using finite-element/Newton methods and locally refined grids - Application to analysis of solidification microstructure

    Science.gov (United States)

    Tsiveriotis, K.; Brown, R. A.

    1993-01-01

    A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.

  8. Multi-scale Regions from Edge Fragments

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Andersen, Hans Jørgen

    2014-01-01

    In this article we introduce a novel method for detecting multi-scale salient regions around edges using a graph based image compression algorithm. Images are recursively decomposed into triangles arranged into a binary tree using linear interpolation. The entropy of any local region of the image......), their performance is comparable to SIFT (Lowe, 2004).We also show that when they are used together with MSERs (Matas et al., 2002), the performance of MSERs is boosted....

  9. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  10. Interaction of a Boundary Layer with a Turbulent Wake

    Science.gov (United States)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low

  11. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  12. Boundary Element Analysis of the Steady-state Response of an Elastic Half-Space to a Moving Force on its Surface

    DEFF Research Database (Denmark)

    Andersen, Lars; Nielsen, Søren R. K.

    2003-01-01

    The paper deals with the boundary element method formulation of the steady-state wave propagation through elastic media due to a source moving with constant velocity. The Greens' function for the three-dimensional full-space is formulated in a local frame of reference following the source...... is approximated, but the error which is introduced in this way is insignificant. Numerical examples are given for a moving rectangular load on an elastic half-space. The result from a boundary element code based on the derived Green's function are compared with a semi-analytic solution....

  13. Influence of grain boundary connectivity on the trapped magnetic flux of multi-seeded bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.com [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Hara, S.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-09-15

    Four different performance multi-seeded YBCO bulks as representatives. A coupling ratio to reflect the coupling quality of GBs inside multi-seeded bulks. An averaged trapped magnetic flux density parameter was introduced. The top-seeded melt-growth process with multi-seeding technique provides a promising way to fabricate large-sized bulk superconductors in an economical way. To understand the essential characteristics of the multi-seeded bulks, the paper reports the influence of the grain boundary (GB) coupling or connectivity on the total trapped magnetic flux. The coupling ratio, the lowest trapped flux density in the GB area to the averaged top value of the two neighboring peak trapped fields, is introduced to reflect the coupling quality of GBs inside a multi-seeded bulk. By the trapped flux density measurement of four different performance multi-seeded YBCO bulk samples as representatives, it was found that the GB coupling plays an important role for the improvement of the total trapped magnetic flux; moreover, somewhat more significant than the widely used parameter of the peak trapped fields to evaluate the physical performance of bulk samples. This characteristic is different with the case of the well-grown single-grain bulks.

  14. Influence of grain boundary connectivity on the trapped magnetic flux of multi-seeded bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Hara, S.; Uetake, T.; Izumi, M.

    2011-09-01

    The top-seeded melt-growth process with multi-seeding technique provides a promising way to fabricate large-sized bulk superconductors in an economical way. To understand the essential characteristics of the multi-seeded bulks, the paper reports the influence of the grain boundary (GB) coupling or connectivity on the total trapped magnetic flux. The coupling ratio, the lowest trapped flux density in the GB area to the averaged top value of the two neighboring peak trapped fields, is introduced to reflect the coupling quality of GBs inside a multi-seeded bulk. By the trapped flux density measurement of four different performance multi-seeded YBCO bulk samples as representatives, it was found that the GB coupling plays an important role for the improvement of the total trapped magnetic flux; moreover, somewhat more significant than the widely used parameter of the peak trapped fields to evaluate the physical performance of bulk samples. This characteristic is different with the case of the well-grown single-grain bulks.

  15. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2014-01-01

    The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume

  16. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2013-01-01

    This paper presents a new approach to gridding for problems with localised regions of high activity. The technique of local defect correction has been studied for other methods as ¿nite difference methods and ¿nite volume methods. In this paper we develop the technique for the boundary element

  17. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wang, X.W.; Rifkin, J.; Li, D.X.

    2001-12-01

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  18. Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); McIlree, A.R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistribution as a result of such a plastic deformation was discussed.

  19. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    Science.gov (United States)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  20. Boundary layer polarization and voltage in the 14 MLT region

    Science.gov (United States)

    Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.

    1995-05-01

    Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.

  1. Effects of Al2O3 and/or CaO on properties of yttria stabilized zirconia electrolyte doped with multi-elements

    International Nuclear Information System (INIS)

    Lv Zhengang; Guo Ruisong; Yao Pei; Dai Fengying

    2007-01-01

    Yttria stabilized zirconia (YSZ) has a high oxide ion conductivity at high temperatures. Some rare earth elements (e.g., Yb, Sc, Dy) with similar cation radii to Zr 4+ can dissolve into ZrO 2 , increasing its vacancy concentration and crystal lattice distortion, and therefore enhancing its conductivity and lowering the activation energy. It is expected this material could be used as intermediate temperature electrolyte. In the present work, YSZ electrolyte materials doped by multi-elements (Sc 2 O 3 or Dy 2 O 3 and Yb 2 O 3 ) were prepared by high temperature solid-state method. The high temperature conductivity was improved obviously, reaching 0.18 S/cm at 1000 deg. C, but the density and mechanical properties of sintered materials were not sufficiently high. It is found that sinterability and mechanical properties could be improved by inclusion of a small amount of Al 2 O 3 and/or CaO into the multi-elements doped YSZ materials and our results proved it. The results showed density and bending strength of sintered bodies were enhanced by Al 2 O 3 addition by 4.6% and 30%, respectively, while the conductivity did not degrade remarkably. But the degradation in bending strength and conductivity resulting from the CaO addition happened due to the second phase formed at the grain boundary. XRD patterns showed that all samples had cubic fluorite structure and crystalline lattice parameter was increased. SEM photographs obviously revealed the grain growth for the samples with CaO inclusion

  2. A comparison of inverse boundary element method and near-field acoustical holography

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.

    1999-01-01

    An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface........ In order to verify the reconstruction process, part of the measurement data is used together with Near-Field Acoustical Holography (NAH). Estimated distributions of sound pressure and particle velocity over a plane surface obtained from the two methods are compared....

  3. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    Science.gov (United States)

    Gélat, Pierre; ter Haar, Gail; Saffari, Nader

    2011-09-01

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  4. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs

    Energy Technology Data Exchange (ETDEWEB)

    Gelat, Pierre [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Ter Haar, Gail [Therapeutic Ultrasound Group, Physics Department, Institute of Cancer Research, Sutton SM2 5NG (United Kingdom); Saffari, Nader, E-mail: Pierre.Gelat@npl.co.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2011-09-07

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  5. Hydraulic modeling of riverbank filtration systems with curved boundaries using analytic elements and series solutions

    Science.gov (United States)

    Bakker, Mark

    2010-08-01

    A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.

  6. Boundary-Layer Characteristics of Persistent Regional Haze Events and Heavy Haze Days in Eastern China

    Directory of Open Access Journals (Sweden)

    Peng Huaqing

    2016-01-01

    Full Text Available This paper analyzed the surface conditions and boundary-layer climate of regional haze events and heavy haze in southern Jiangsu Province in China. There are 5 types with the surface conditions which are equalized pressure (EQP, the advancing edge of a cold front (ACF, the base of high pressure (BOH, the backside of high pressure (BAH, the inverted trough of low pressure (INT, and saddle pressure (SAP with the haze days. At that time, 4 types are divided with the regional haze events and each of which has a different boundary-layer structure. During heavy haze, the surface mainly experiences EQP, ACF, BOH, BAH, and INT which also have different boundary-layer structures.

  7. Automatic classification of singular elements for the electrostatic analysis of microelectromechanical systems

    Science.gov (United States)

    Su, Y.; Ong, E. T.; Lee, K. H.

    2002-05-01

    The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).

  8. Conforming discretizations of boundary element solutions to the electroencephalography forward problem

    Science.gov (United States)

    Rahmouni, Lyes; Adrian, Simon B.; Cools, Kristof; Andriulli, Francesco P.

    2018-01-01

    In this paper, we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages, in several real case scenarios, in terms of numerical stability and effectiveness when compared with other differential equation based techniques. Unfortunately, however, it is widely reported in literature that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required, for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly and classically discretized EEG forward problem operators, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several standardly used discretizations of these formulations are consistent only with an L2-framework, requiring the expansion term to be a square integrable function (i.e., in a Petrov-Galerkin scheme with expansion and testing functions). Instead, those techniques are not consistent when a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. Such a mapping allows the expansion function term to be a less regular function, thus sensibly reducing the need for mesh refinements and low-precisions handling strategies that are currently required. These more favorable mappings, however, require a different and conforming discretization, which must be suitably adapted to them. In order to appropriately fulfill this requirement, we adopt a mixed

  9. Simultaneous multi-element analysis of some edible pulses using neutron activation analysis

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Metwally, E.; Abdel-Khalik, H.

    2007-01-01

    This paper comprises the application of instrumental neutron activation analysis (INAA) for multi-element determination in some edible pulse samples. These edible pulses are usually daily used in the Egyptian kitchen. These were: anise, cumin, coriander, caraway, black cumin, white kidney bean, lupine, lentil, chickpea, broad bean, peanut, almond, and fenugreek. The pulses have been analyzed as dehulled pulses, in the case of legume and oil pulses with simultaneous analysis of their respective skins. The determined elements were: Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sb, Sc, Sr, Th and Zn. The element content in the dehulled pulses and their respective skins has been compared. Some elements were major or minor elements where others were trace elements. Standard reference materials were used to assure quality control, accuracy and precision of the technique. (author)

  10. Multi-element determination in environmental samples by mass spectrometric isotope dilution analysis using thermal ionization. Pt. 2

    International Nuclear Information System (INIS)

    Hilpert, K.; Waidmann, E.

    1988-01-01

    An analytical procedure for the multi-element analysis of the elements Fe, Ni, Cu, Zn, Ga, Rb, Sr, Cd, Ba, Tl, and Pb in pine needles by mass spectrometric isotope dilution analysis using thermal ionization has been reported in Part I of this paper. This procedure is now transferred to the non-vegetable material 'Oyster Tissue' (Standard Reference Material 1566, National Bureau of Standards, USA). By a modification of the analytical procedure, it was possible to determine Cr in this material in addition to the aforementioned elements. No concentrations are certified for the elements Ga, Ba and Tl analyzed in this work. The concentrations of the remaining elements obtained by the multi-element analysis agree well with those certified. (orig.)

  11. Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the zeta-factor method

    CERN Document Server

    Watanabe, M

    2003-01-01

    Elemental segregation to two types of boundaries in a low-alloy steel were studied by X-ray mapping using scanning transmission electron microscopy (STEM). To quantify the acquired X-ray maps, the zeta-factor method was applied, and then the compositional maps and the thickness map were obtained. Based on these quantified maps, further information about the analytical sensitivity of solute-element detection and the spatial resolution of segregation analysis were extracted. Furthermore, maps of the number of excess atoms on the boundary were also calculated from the compositional and thickness maps. It was concluded that Cr, Ni and Mo are co-segregated on the prior-austenite grain boundary and only Ni was segregated on the lath boundary. (orig.)

  12. Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation

    Science.gov (United States)

    Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.

    2012-03-01

    Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.

  13. Application of PCA-LDA method to determine the geographical origin of tea based on determination of stable isotopes and multi-elements

    International Nuclear Information System (INIS)

    Yuan Yuwei; Zhang Yongzhi; Yang Guiling; Zhang Zhiheng; Fu Haiyan; Han Wenyan; Li Shufang

    2013-01-01

    The ratio of stable isotope and concentration of multi-element in tea was determinated with isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition techniques with principal component analysis (PCA) and linear discriminant analysis (LDA) were used to classify the geographical origins of tea from Fujian, Shandong and Zhejiang province, and Yuyao, Jinhua and Xihu region of Zhejiang. The results showed the values of δ"1"5N, δ"1"3C, δD, δ"1"8O and the ratios of "2"0"6Pb/"2"0"7Pb, "2"0"8Pb/"2"0"6Pb and "8"7Sr/"8"6Sr in tea samples were different from different origins. There was also large variable for the concentrations of 27 mineral elements, such as Li, Be, Na and so on, with a specific character of origin. The method of PCA could be used to classify the geographical origin of tea from different origins but with a cross in the scatter plot. However, PCA combining with LDA could gave correct assignation percentages of 99% for the tea samples among Fujian, Shandong and Zhejiang provinces, and 87% for the tea samples among Yuyao, Jinhua and Xihu region of Zhejiang. These results revealed that it was possible and feasible to classify the geographical origin of tea by the method of PCA-LDA based on the determination of isotopes and multi-elements. (authors)

  14. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

    KAUST Repository

    Liu, Shaolin

    2017-09-28

    The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.

  15. Boundary elements; Proceedings of the Fifth International Conference, Hiroshima, Japan, November 8-11, 1983

    Science.gov (United States)

    Brebbia, C. A.; Futagami, T.; Tanaka, M.

    The boundary-element method (BEM) in computational fluid and solid mechanics is examined in reviews and reports of theoretical studies and practical applications. Topics presented include the fundamental mathematical principles of BEMs, potential problems, EM-field problems, heat transfer, potential-wave problems, fluid flow, elasticity problems, fracture mechanics, plates and shells, inelastic problems, geomechanics, dynamics, industrial applications of BEMs, optimization methods based on the BEM, numerical techniques, and coupling.

  16. Complex variable boundary elements for fluid flow; Robni elementi kompleksne spremenljivke za pretok fluidov

    Energy Technology Data Exchange (ETDEWEB)

    Bizjak, D; Alujevic, A [Institut ' Jozef Stefan' , Ljubljana (Yugoslavia)

    1988-07-01

    The Complex Variable Boundary Element Method is a numerical method for solving two-dimensional problems of Laplace or Poisson type. It is based on the theory of analytic functions. This paper resumes the basic facts about the method. Application of the method to the stationary incompressible irrotational flow is carried out after that. At the end, a sample problem of flow through an abrupt area change channel is shown. (author)

  17. Optimal acid digestion for multi-element analysis of different waste matrices

    DEFF Research Database (Denmark)

    Götze, Ramona; Astrup, Thomas Fruergaard

    of the distinct waste materials and recyclables. The purpose of this study is to evaluate the performance of different standardized microwave assisted acid digestion methods on waste samples and subsequent multi-element analysis. Six acid digestion methods were applied on a Paper & Cardboard and Composite waste...

  18. New formulations on the finite element method for boundary value problems with internal/external boundary layers; Novas formulacoes de elementos finitos para problemas de valor de contorno com camadas limite interna/externa

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luis Carlos Martins

    1998-06-15

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  19. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    Science.gov (United States)

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  20. Appendix F : finite element analysis of end region.

    Science.gov (United States)

    2013-03-01

    FE (finite element) modeling was conducted to 1) provide a better understanding of the : elastic behavior of the end region prior to cracking and 2) to evaluate the effects of bearing pad : stiffness and width on end region elastic stresses. The FEA ...

  1. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    Science.gov (United States)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  2. A geometric buckling expression for regular polygons: II. Analyses based on the multiple reciprocity boundary element method

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Miyoshi, Yoshinori; Hirose, Hideyuki

    1993-01-01

    A procedure is presented for the determination of geometric buckling for regular polygons. A new computation technique, the multiple reciprocity boundary element method (MRBEM), has been applied to solve the one-group neutron diffusion equation. The main difficulty in applying the ordinary boundary element method (BEM) to neutron diffusion problems has been the need to compute a domain integral, resulting from the fission source. The MRBEM has been developed for transforming this type of domain integral into an equivalent boundary integral. The basic idea of the MRBEM is to apply repeatedly the reciprocity theorem (Green's second formula) using a sequence of higher order fundamental solutions. The MRBEM requires discretization of the boundary only rather than of the domain. This advantage is useful for extensive survey analyses of buckling for complex geometries. The results of survey analyses have indicated that the general form of geometric buckling is B g 2 = (a n /R c ) 2 , where R c represents the radius of the circumscribed circle of the regular polygon under consideration. The geometric constant A n depends on the type of regular polygon and takes the value of π for a square and 2.405 for a circle, an extreme case that has an infinite number of sides. Values of a n for a triangle, pentagon, hexagon, and octagon have been calculated as 4.190, 2.281, 2.675, and 2.547, respectively

  3. Multi-element proportional counter for radiation protection measurements

    International Nuclear Information System (INIS)

    Kliauga, P.; Rossi, H.H.; Johnson, G.

    1988-01-01

    This article discusses design modifications of a multi-element proportional counter. The original counter exhibited poor resolution, as measured by the width of the event-size spectrum for low-energy photons. It was also suspected that the field inside each volume was not sufficiently symmetric. Results of the modifications showed that a dramatic improvement in resolution could be obtained in the chamber with tissue-equivalent septa if their potentials were adjusted to obtain optimal resolution. The full width at half maximum then approached, although it did not equal, that of a standard spherical counter

  4. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  5. Studies of the source complex behaviour and of the ultrasound radiation of contact flexible multi-element transducers

    International Nuclear Information System (INIS)

    Amory, V.

    2007-12-01

    This work deals with the ultrasonic nondestructive testing of parts with complex geometries using soft multi-element sensors. The different types of contact control configurations are presented first. Then, the difficulties encountered with conventional contact transducers are explained and the multi-element piezoelectric transducers technology, developed to meet these difficulties, is presented. The second chapter presents the results of finite-element calculations showing the complexity of a transducer in a condition of testing utilization. In a same configuration, the radiated far field calculated by finite-elements is compared to the measurement in order to validate the way the source behaviour is calculated. However, despite the efficiency of the finite-elements simulation, this tool is numerically too costly and cannot be used to optimize a full multi-element transducer. Therefore, a realistic source model is built and implemented in a radiation code based on high-frequency asymptotic approximations where only L and T volume waves are calculated. The incapacity of this model to reproduce the behaviour of T waves in some directions of propagation has led to give a particular attention to the fore-waves, neglected in the radiation calculation. Chapter 3 treats of the building of an exact radiation model taking into consideration the fore-waves contribution emitted by a contact transducer exerting a random space-time distribution constraint at the surface of the considered medium. A radiation model, based on the calculation of exact Green functions of the Lamb problem is proposed. The exact model is particularly interesting in the case of sensor geometries with a long length with respect to other dimensions (2D case). Field calculation results are shown for an element of the matrix network (3D case) and for a linear element (2D case). A study of different existing approached models is carried out as well. The last chapter presents some results of the field

  6. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.

    Directory of Open Access Journals (Sweden)

    Zhiheng Wang

    Full Text Available The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database.The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

  7. Soil properties, strontium isotopic signatures and multi-element profiles to authenticate the origin of vegetables from small-scale regions: illustration with early potatoes from southern Italy.

    Science.gov (United States)

    Zampella, Mariavittoria; Quétel, Christophe R; Paredes, Eduardo; Goitom Asfaha, Daniel; Vingiani, Simona; Adamo, Paola

    2011-10-15

    We propose a method for the authentication of the origin of vegetables grown under similar weather conditions, in sites less than 10 km distance from the sea and distributed over a rather small scale area (58651 km(2)). We studied how the strontium (Sr) isotopic signature and selected elemental concentrations ([Mn], [Cu], [Zn], [Rb], [Sr] and [Cd]) in early potatoes from three neighbouring administrative regions in the south of Italy were related to the geological substrate (alluvial sediments, volcanic substrates and carbonate rocks) and to selected soil chemical properties influencing the bioavailability of elements in soils (pH, cation exchange capacity and total carbonate content). Through multiple-step multivariate statistics (PLS-DA) we could assign 26 potatoes (including two already commercialised samples) to their respective eight sites of production, corresponding to the first two types of geological substrates. The other 12 potatoes from four sites of production had similar characteristics in terms of the geological substrate (third type) and these soil properties could be grouped together. In this case, more discriminative parameters would be required to allow the differentiation between sites. The validation of our models included external prediction tests with data of potatoes harvested the year before and a study on the robustness of the uncertainties of the measurement results. Annual variations between multi-elemental and Sr isotopic fingerprints were observed in potatoes harvested from soils overlying carbonate rocks, stressing the importance of testing long term variations in authentication studies. Copyright © 2011 John Wiley & Sons, Ltd. and European Union [2011].

  8. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    International Nuclear Information System (INIS)

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-01-01

    Fe-Cr-Ni, Ni-Al and Ni-Si alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in Fe-Cr-Ni and Ni-Si alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-Al, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in Fe-Cr-Ni alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in Ni-Si and Ni-Al alloys, in which Si and Al solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration. (orig.)

  9. Precision and Accuracy of k0-NAA Method for Analysis of Multi Elements in Reference Samples

    International Nuclear Information System (INIS)

    Sri-Wardani

    2004-01-01

    Accuracy and precision of k 0 -NAA method could determine in the analysis of multi elements contained in reference samples. The analyzed results of multi elements in SRM 1633b sample were obtained with optimum results in bias of 20% but it is in a good accuracy and precision. The analyzed results of As, Cd and Zn in CCQM-P29 rice flour sample were obtained with very good result in bias of 0.5 - 5.6%. (author)

  10. Natural convection in a composite fluid-porous cavity by the boundary element method

    International Nuclear Information System (INIS)

    Jecl, R.; Skerget, L.

    2005-01-01

    The main purpose of this work is to present the use of the boundary element method (BEM) for analyzing the convective fluid flow and heat transfer in composite fluid-porous media domain when the fluid is compressible. In our case the flow is modeled by utilizing the Brinkman extended Darcy momentum equation (Brinkman model) which is commonly used when it is important to satisfy the no-slip boundary condition and when one wishes to compare flows in porous medium with those in pure fluids. The Brinkman equation reduce to the classical Navier Stokes equation for clear fluid when the permeability tends to infinity (porosity is equal to unity), i.e. when the solid matrix in the porous medium disappears and, when the permeability is finite the equation is valid for porous medium. Therefore it is possible to handle porous medium free fluid interface problems by changing the properties of the medium in the computational domain appropriately. Our goal is to widen the applicability of the computational model based on the boundary domain integral method (BDIM) which is an extension of the classical BEM. The governing equations are transformed by using the velocity-vorticity variables formulation and therefore the computation scheme is partitioned into kinematic and kinetic part. (authors)

  11. A multi-element cosmological model with a complex space-time topology

    Science.gov (United States)

    Kardashev, N. S.; Lipatova, L. N.; Novikov, I. D.; Shatskiy, A. A.

    2015-02-01

    Wormhole models with a complex topology having one entrance and two exits into the same space-time of another universe are considered, as well as models with two entrances from the same space-time and one exit to another universe. These models are used to build a model of a multi-sheeted universe (a multi-element model of the "Multiverse") with a complex topology. Spherical symmetry is assumed in all the models. A Reissner-Norström black-hole model having no singularity beyond the horizon is constructed. The strength of the central singularity of the black hole is analyzed.

  12. Imaging a Time-variant Earthquake Focal Region along an Interplate Boundary

    Science.gov (United States)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Fujii, N.

    2010-12-01

    We show a preliminary result of a trial for detecting a time-variant earthquake focal region along an interplate boundary by means of a new imaging method through a numerical simulation. Remarkable seismic reflections from the interplate boundaries of a subducting oceanic plate have been observed in Japan Trench (Mochizuki et al, 2005) and in Nankai Trough (Iidaka et al., 2003). Those strong seismic reflection existing in the current aseismic zones suggest the existence of fluid along the subduction boundary, and it is considered that they closely relate to a future huge earthquake. Seismic ACROSS has a potential to monitor some changes of transfer function along the propagating ray paths, by using an accurately-controlled transmission and receiving of the steady continuous signals repeatedly (Kumazawa et al., 2000). If the physical state in a focal region along the interplate would be changed enough in the time and space, for instance, by increasing or decreasing of fluid flow, we could detect some differences of the amplitude and/or travel-time of the particular reflection phases from the time-variant target region. In this study, we first investigated the seismic characteristics of seismograms and their differences before and after the change of a target region through a numerical simulation. Then, as one of the trials, we attempted to make an image of such time-variant target region by applying a finite-difference back-propagation technique in the time and space to the differences of waveforms (after Kasahara et al., 2010). We here used a 2-D seismic velocity model in the central Japan (Tsuruga et al., 2005), assuming a time-variant target region with a 200-m thickness along a subducting Philippine Sea plate at 30 km in depth. Seismograms were calculated at a 500-m interval for 260 km long by using FDM software (Larsen, 2000), in the case that P- and S-wave velocities (Vp amd Vs) in the target region decreased about 30 % before to after the change (e.g., Vp=3

  13. Platinum group element enrichments and possible chondritic Ru:Ir across the Frasnian-Famennian boundary, western New York State.

    Science.gov (United States)

    Over, D J; Conaway, C A; Katz, D J; Goodfellow, W D; Gregoire, D C

    1997-08-01

    The Frasnian-Famennian boundary is recognized as the culmination of a global mass extinction in the Late Devonian. In western New York State the boundary is a distinct horizon within a pyritic black shale bed of the upper Hanover Shale defined by the first occurrence of Palmatolepis triangularis in the absence of Frasnian conodonts. The boundary is characterized by a minor disconformity marked by a lag concentration of conodonts. Iridium at the boundary is 0.11-0.24 ng/g, two to five times background levels of <0.05 ng/g; other Ir enrichments of 0.38 ng/g and 0.49 ng/g occur within 50 cm of the conodont-constrained boundary. Numerous Ir enrichments in the boundary interval suggest extraterrestrial accretion and platinum group element (PGE) concentration at disconformities, or mobilization and concentration in organic-rich/pyritic-rich laminations from cosmic or terrestrial sources. PGE ratios of Pt/Pd and Ku/Ir at the boundary horizon approximate chondritic ratios and are suggestive of an unaltered extraterrestrial source. These values do not conclusively establish a single extraterrestrial impact as the ultimate cause of the Frasnian-Famennian mass extinction, especially given the presence of similar Ir enrichments elsewhere in the section and the absence at the boundary of microtektites and shocked mineral grains.

  14. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    Science.gov (United States)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  15. An inverse model for locating skin tumours in 3D using the genetic algorithm with the Dual Reciprocity Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Fabrício Ribeiro Bueno

    Full Text Available Here, the Dual Reciprocity Boundary Element Method is used to solve the 3D Pennes Bioheat Equation, which together with a Genetic Algorithm, produces an inverse model capable of obtaining the location and the size of a tumour, having as data input the temperature distribution measured on the skin surface. Given that the objective function, which is solved inversely, involves the DRBEM (Dual Reciprocity Boundary Element Method the Genetic Algorithm in its usual form becomes slower, in such a way that it was necessary to develop functions based the solution history in order that the process becomes quicker and more accurate. Results for 8 examples are presented including cases with convection and radiation boundary conditions. Cases involving noise in the readings of the equipment are also considered. This technique is intended to assist health workers in the diagnosis of tumours.

  16. Formulation of electromagnetic-wave analysis by boundary element method and its application to the analysis of RF cavities

    International Nuclear Information System (INIS)

    Washizu, Masao; Tanabe, Yoshio.

    1986-01-01

    In a system handling the electromagnetic waves of large power such as the cavity resonator for a high energy accelerator and the high frequency heater for a nuclear fusion apparatus, the margin in the thermal and mechanical design of a wave guide system cannot be taken large, accordingly, the detailed analysis of electromagnetic waves is required. When the analysis in a general form is carried out, boundary element method may be a useful method of solution. This time, the authors carried out the formulation of steady electromagnetic wave problems by boundary element method, and it was shown that the formulation was able to be carried out under the physically clear boundary condition also in this case, and especially in the case of a perfect conductor system, a very simple form was obtained. In this paper, first, the techniques of formulation in a general case, and next, as a special case, the formulation for a perfect conductor system are described. Taking the analysis of the cavity resonators of cylindrical and rectangular parallelepiped forms as examples, the comparison with the analytical solution was carried out. (Kako, I.)

  17. A non-reflecting boundary for use in a finite element beam model of a railway track

    Science.gov (United States)

    Yang, Jiannan; Thompson, David J.

    2015-02-01

    Some beam-like structures such as a railway track are effectively infinite in nature. Analytical solutions exist for simple structures but numerical methods like the finite element (FE) method are often employed to study more complicated problems. However, when the FE method is used for structures of infinite extent it is essential to introduce artificial boundaries to limit the area of computation. Here, a non-reflecting boundary is developed using a damped tapered tip for application in a finite element model representing an infinite supported beam. The FE model of the tapered tip is validated against an analytical model based on Bessel functions. The reflection characteristics of the FE tapered tip are quantified using a wave/FE superposition method. It is shown that the damped tapered tip is much more effective than its constant counterpart and achieves reduction of the model size. The damped tapered tip is applied to a simple FE railway track model and good agreement is found when its point mobility is compared with an analytical infinite track model.

  18. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    Science.gov (United States)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons

  19. TRANSFER-FUNCTIONS OF A LINEARIZED MULTI-REGION REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Thomas J.

    1963-09-15

    The development of the transfer functions for a linearized multi-region reactor is studied, and an illustration is made of application of the corresponding theory by a numerical illustrative example. (auth)

  20. MicroCT parameters for multi material elements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, Olga M.O. de; Machado, Alessandra S.; Santos, Thaís M.P. dos; Ferreira, Cintia G.; Lopes, Ricardo T., E-mail: olgaufrjlin@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Bastos, Jaqueline Silva [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), São Paulo, SP (Brazil)

    2017-07-01

    Microtomography is a non-destructive testing technique for quantitative and qualitative analysis. The investigation of multi material elements with great difference of density can result in artifacts that degrade image quality depending on combination of additional filter. The aim of this study is the selection of parameters most appropriate for analysis of bone tissue with metallic implant. The results show the simulation with MCNPX code for the distribution of energy without additional filter, with use of aluminum, copper and brass filters and their respective reconstructed images showing the importance of the choice of these parameters in image acquisition process on computed microtomography. (author)

  1. Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method

    Science.gov (United States)

    Zhenying, Xu; Jiandong, Zhu; Qi, Zhang; Yamba, Philip

    2018-06-01

    Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.

  2. New implementation method for essential boundary condition to extended element-free Galerkin method. Application to nonlinear problem

    International Nuclear Information System (INIS)

    Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki

    2011-01-01

    A new method has been proposed for implementing essential boundary conditions to the Element-Free Galerkin Method (EFGM) without using the Lagrange multiplier. Furthermore, the performance of the proposed method has been investigated for a nonlinear Poisson problem. The results of computations show that, as interpolation functions become closer to delta functions, the accuracy of the solution is improved on the boundary. In addition, the accuracy of the proposed method is higher than that of the conventional EFGM. Therefore, it might be concluded that the proposed method is useful for solving the nonlinear Poisson problem. (author)

  3. Population as an element of regionalization of Serbia

    Directory of Open Access Journals (Sweden)

    Vojković Gordana M.

    2003-01-01

    Full Text Available Regionalization is an exceptionally complex and contradictory matter, and at the same time becoming very challenging in the last few years in conditions of accelerated changes in the world. It is believed that regionalization today is an unavoidable strategic action of directing development processes on a territory. One of the aims of regionalization is to bring economic, demographic and social development processes into accord. Discordance of demographic transition courses with economic development caused prominent changes and complex development problems on the territory of Serbia, which indicate that appropriate attention should be devoted to demographic occurrences and processes in the approach to its regionalization. Proceeding from this fact, the goal of this paper was to identify the problems of regional differentiation of geoterritory and determine the place and role of demographic regionalization in the procedure of scientific knowledge, territory differentiation and organization of geoterritory; to set the general definition of regionalism from the demographic aspect, in the sense of theoretical concept based on empirical research, so as to obtain a scientific framework for research and functional approach to recognizing contemporary problems of development and organizing population; to decide on principles and elements, and point out to the content, purpose and goals of identifying demo geographic regions, in a way which would be adequate for planning regional development and organizing geoterritories. Such a set research goal required that the total problem of demo geographic regionalization is set on a wider theoretical, but analytical context, which is defined by mutual dependence of demo geographic with other regional systems, as well as with global questions of regionalism and integration ways. Demo geographic regionalization is carried out on the basis of numerous research findings and corresponding empirical results, with an

  4. An engineering inviscid-boundary layer method for calculation of aerodynamic heating in the leeward region

    International Nuclear Information System (INIS)

    Dirin, M.M.; Karimian, S.M.H.; Maerefat, M.

    2003-01-01

    An engineering method has been modified for the prediction of aerodynamic heating of the hypersonic bodies in the leeward region. This is achieved using our proposed new method for determining streamlines in the leeward region. The modified form of Maslen's second order relation, which calculates pressure in the shock layer explicitly, is employed. The inviscid outer flow within the shock layer is first solved. The calculated solution, then, is used to determine the flow properties at the boundary layer edge and the orientation of the surface streamlines. Boundary layer equations, written in the streamline coordinates, are integrated along the surface to obtain the rate of heat transferred to the body surface. The present method is an inverse method in which the body shape is obtained according to the shape of the shock. In general, inviscid-boundary layer engineering methods calculate accurately the orientation of streamlines in the windward side only, and therefore they are not usually applicable in the leeward region. In the present study, a new method is proposed to determine the orientation of the surface streamlines in the leeward region. Using the present method, three-dimensional hypersonic flow is solved fast and easy all around a cone. The obtained results show that the corrections presented in this study extend excellently the application of the method to the leeward region. (author)

  5. Reproducing multi-model ensemble average with Ensemble-averaged Reconstructed Forcings (ERF) in regional climate modeling

    Science.gov (United States)

    Erfanian, A.; Fomenko, L.; Wang, G.

    2016-12-01

    Multi-model ensemble (MME) average is considered the most reliable for simulating both present-day and future climates. It has been a primary reference for making conclusions in major coordinated studies i.e. IPCC Assessment Reports and CORDEX. The biases of individual models cancel out each other in MME average, enabling the ensemble mean to outperform individual members in simulating the mean climate. This enhancement however comes with tremendous computational cost, which is especially inhibiting for regional climate modeling as model uncertainties can originate from both RCMs and the driving GCMs. Here we propose the Ensemble-based Reconstructed Forcings (ERF) approach to regional climate modeling that achieves a similar level of bias reduction at a fraction of cost compared with the conventional MME approach. The new method constructs a single set of initial and boundary conditions (IBCs) by averaging the IBCs of multiple GCMs, and drives the RCM with this ensemble average of IBCs to conduct a single run. Using a regional climate model (RegCM4.3.4-CLM4.5), we tested the method over West Africa for multiple combination of (up to six) GCMs. Our results indicate that the performance of the ERF method is comparable to that of the MME average in simulating the mean climate. The bias reduction seen in ERF simulations is achieved by using more realistic IBCs in solving the system of equations underlying the RCM physics and dynamics. This endows the new method with a theoretical advantage in addition to reducing computational cost. The ERF output is an unaltered solution of the RCM as opposed to a climate state that might not be physically plausible due to the averaging of multiple solutions with the conventional MME approach. The ERF approach should be considered for use in major international efforts such as CORDEX. Key words: Multi-model ensemble, ensemble analysis, ERF, regional climate modeling

  6. A Regional Multi-permit Market for Ecosystem Services

    Science.gov (United States)

    Bernknopf, R.; Amos, P.; Zhang, E.

    2014-12-01

    Regional cap and trade programs have been in operation since the 1970's to reduce environmental externalities (NOx and SOx emissions) and have been shown to be beneficial. Air quality and water quality limits are enforced through numerous Federal and State laws and regulations while local communities are seeking ways to protect regional green infrastructure and their ecosystems services. Why not combine them in a market approach to reduce many environmental externalities simultaneously? In a multi-permit market program reforestation (land offsets) as part of a nutrient or carbon sequestration trading program would provide a means to reduce agrochemical discharges into streams, rivers, and groundwater. Land conversions also improve the quality and quantity of other environmental externalities such as air pollution. Collocated nonmarket ecosystem services have societal benefits that can expand the crediting system into a multi-permit trading program. At a regional scale it is possible to combine regulation of water quality, air emissions and quality, and habitat conservation and restoration into one program. This research is about the economic feasibility of a Philadelphia regional multi-permit (cap and trade) program for ecosystem services. Instead of establishing individual markets for ecosystem services, the assumption of the spatial portfolio approach is that it is based on the interdependence of ecosystem functions so that market credits encompasses a range of ecosystem services. Using an existing example the components of the approach are described in terms of scenarios of land portfolios and the calculation of expected return on investment and risk. An experiment in the Schuylkill Watershed will be described for ecosystem services such as nutrients in water and populations of bird species along with Green House Gases. The Philadelphia regional market includes the urban - nonurban economic and environmental interactions and impacts.

  7. Regularization of EIT reconstruction based on multi-scales wavelet transforms

    Directory of Open Access Journals (Sweden)

    Gong Bo

    2016-09-01

    Full Text Available Electrical Impedance Tomography (EIT intends to obtain the conductivity distribution of a domain from the electrical boundary conditions. This is an ill-posed inverse problem usually solved on finite element meshes. Wavelet transforms are widely used for medical image reconstruction. However, because of the irregular form of the finite element meshes, the canonical wavelet transforms is impossible to perform on meshes. In this article, we present a framework that combines multi-scales wavelet transforms and finite element meshes by viewing meshes as undirected graphs and applying spectral graph wavelet transform on the meshes.

  8. HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition

    Science.gov (United States)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2014-04-01

    High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an

  9. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  10. MEGHNAD – A multi element detector array for heavy ion collision ...

    Indian Academy of Sciences (India)

    When heavy ion beam available from such machines fall on a target and undergo collision, very rich and often pristine fields of research open up. In order to carry on such activities, we have taken up a project to build a multi element gamma, heavy ion and neutron array of detectors (MEGHNAD) to detect and study the ...

  11. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.

    2016-06-02

    In this paper we present a multi-criteria optimization of element partition trees and resulting orderings for multi-frontal solver algorithms executed for two dimensional h adaptive finite element method. In particular, the problem of optimal ordering of elimination of rows in the sparse matrices resulting from adaptive finite element method computations is reduced to the problem of finding of optimal element partition trees. Given a two dimensional h refined mesh, we find all optimal element partition trees by using the dynamic programming approach. An element partition tree defines a prescribed order of elimination of degrees of freedom over the mesh. We utilize three different metrics to estimate the quality of the element partition tree. As the first criterion we consider the number of floating point operations(FLOPs) performed by the multi-frontal solver. As the second criterion we consider the number of memory transfers (MEMOPS) performed by the multi-frontal solver algorithm. As the third criterion we consider memory usage (NONZEROS) of the multi-frontal direct solver. We show the optimization results for FLOPs vs MEMOPS as well as for the execution time estimated as FLOPs+100MEMOPS vs NONZEROS. We obtain Pareto fronts with multiple optimal trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one with local singularity. We compute Schur complements over the sub-grids using the optimal trees from the library, and we submit the sequence of Schur complements into the iterative solver ILUPCG.

  12. Initial-boundary value problems for multi-term time-fractional diffusion equations with x-dependent coefficients

    OpenAIRE

    Li, Zhiyuan; Huang, Xinchi; Yamamoto, Masahiro

    2018-01-01

    In this paper, we discuss an initial-boundary value problem (IBVP) for the multi-term time-fractional diffusion equation with x-dependent coefficients. By means of the Mittag-Leffler functions and the eigenfunction expansion, we reduce the IBVP to an equivalent integral equation to show the unique existence and the analyticity of the solution for the equation. Especially, in the case where all the coefficients of the time-fractional derivatives are non-negative, by the Laplace and inversion L...

  13. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.

    Science.gov (United States)

    Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram

    2018-03-12

    Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.

  14. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  15. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Science.gov (United States)

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  16. Stiffness and Mass Matrices of FEM-Applicable Dynamic Infinite Element with Unified Shape Basis

    International Nuclear Information System (INIS)

    Kazakov, Konstantin

    2009-01-01

    This paper is devoted to the construction and evaluation of mass and stiffness matrices of elastodynamic four and five node infinite elements with unified shape functions (EIEUSF), recently proposed by the author. Such elements can be treated as a family of elastodynamic infinite elements appropriate for multi-wave soil-structure interaction problems. The common characteristic of the proposed infinite elements is the so-called unified shape function, based on finite number of wave shape functions. The idea and the construction of the unified shape basis are described in brief. This element belongs to the decay class of infinite elements. It is shown that by appropriate mapping functions the formulation of such an element can be easily transformed to a mapped form. The results obtained using the proposed infinite elements are in a good agreement with the superposed results obtained by a series of standard computational models. The continuity along the finite/infinite element line (artificial boundary) in two-dimensional substructure models is also discussed in brief. In this type of computational models such a line marks the artificial boundary between the near and the far field of the model.

  17. Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription.

    Science.gov (United States)

    Jiang, Nan; Emberly, Eldon; Cuvier, Olivier; Hart, Craig M

    2009-07-01

    Insulator elements play a role in gene regulation that is potentially linked to nuclear organization. Boundary element-associated factors (BEAFs) 32A and 32B associate with hundreds of sites on Drosophila polytene chromosomes. We hybridized DNA isolated by chromatin immunoprecipitation to genome tiling microarrays to construct a genome-wide map of BEAF binding locations. A distinct difference in the association of 32A and 32B with chromatin was noted. We identified 1,820 BEAF peaks and found that more than 85% were less than 300 bp from transcription start sites. Half are between head-to-head gene pairs. BEAF-associated genes are transcriptionally active as judged by the presence of RNA polymerase II, dimethylated histone H3 K4, and the alternative histone H3.3. Forty percent of these genes are also associated with the polymerase negative elongation factor NELF. Like NELF-associated genes, most BEAF-associated genes are highly expressed. Using quantitative reverse transcription-PCR, we found that the expression levels of most BEAF-associated genes decrease in embryos and cultured cells lacking BEAF. These results provide an unexpected link between BEAF and transcription, suggesting that BEAF plays a role in maintaining most associated promoter regions in an environment that facilitates high transcription levels.

  18. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.

  19. 75 FR 33613 - Notice of Interviews, Teleconferences, Regional Workshops and Multi-Stakeholder Technical...

    Science.gov (United States)

    2010-06-14

    ..., Regional Workshops and Multi-Stakeholder Technical Conference on the Integrated Licensing Process June 7... conducting interviews and teleconferences with a cross-section of stakeholders, four regional workshops, and a multi- stakeholder effectiveness technical conference in Washington, DC. To facilitate this review...

  20. A Hybrid Lumped Parameters/Finite Element/Boundary Element Model to Predict the Vibroacoustic Characteristics of an Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Shaogan Ye

    2017-01-01

    Full Text Available Low noise axial piston pumps become the rapid increasing demand in modern hydraulic fluid power systems. This paper proposes a systematic approach to simulate the vibroacoustic characteristics of an axial piston pump using a hybrid lumped parameters/finite element/boundary element (LP/FE/BE model, and large amount of experimental work was performed to validate the model. The LP model was developed to calculate the excitation forces and was validated by a comparison of outlet flow ripples. The FE model was developed to calculate the vibration of the pump, in which the modeling of main friction pairs using different spring elements was presented in detail, and the FE model was validated using experimental modal analysis and measured vibrations. The BE model was used to calculate the noise emitted from the pump, and a measurement of sound pressure level at representative field points in a hemianechoic chamber was conducted to validate the BE model. Comparisons between the simulated and measured results show that the developed LP/FE/BE model is effective in capturing the vibroacoustic characteristics of the pump. The presented approach can be extended to other types of fluid power components and contributes to the development of quieter fluid power systems.

  1. Analytical and numerical analyses for a penny-shaped crack embedded in an infinite transversely isotropic multi-ferroic composite medium: semi-permeable electro-magnetic boundary condition

    Science.gov (United States)

    Zheng, R.-F.; Wu, T.-H.; Li, X.-Y.; Chen, W.-Q.

    2018-06-01

    The problem of a penny-shaped crack embedded in an infinite space of transversely isotropic multi-ferroic composite medium is investigated. The crack is assumed to be subjected to uniformly distributed mechanical, electric and magnetic loads applied symmetrically on the upper and lower crack surfaces. The semi-permeable (limited-permeable) electro-magnetic boundary condition is adopted. By virtue of the generalized method of potential theory and the general solutions, the boundary integro-differential equations governing the mode I crack problem, which are of nonlinear nature, are established and solved analytically. Exact and complete coupling magneto-electro-elastic field is obtained in terms of elementary functions. Important parameters in fracture mechanics on the crack plane, e.g., the generalized crack surface displacements, the distributions of generalized stresses at the crack tip, the generalized stress intensity factors and the energy release rate, are explicitly presented. To validate the present solutions, a numerical code by virtue of finite element method is established for 3D crack problems in the framework of magneto-electro-elasticity. To evaluate conveniently the effect of the medium inside the crack, several empirical formulae are developed, based on the numerical results.

  2. Numerical Simulations of Hypersonic Boundary Layer Transition

    Science.gov (United States)

    Bartkowicz, Matthew David

    Numerical schemes for supersonic flows tend to use large amounts of artificial viscosity for stability. This tends to damp out the small scale structures in the flow. Recently some low-dissipation methods have been proposed which selectively eliminate the artificial viscosity in regions which do not require it. This work builds upon the low-dissipation method of Subbareddy and Candler which uses the flux vector splitting method of Steger and Warming but identifies the dissipation portion to eliminate it. Computing accurate fluxes typically relies on large grid stencils or coupled linear systems that become computationally expensive to solve. Unstructured grids allow for CFD solutions to be obtained on complex geometries, unfortunately, it then becomes difficult to create a large stencil or the coupled linear system. Accurate solutions require grids that quickly become too large to be feasible. In this thesis a method is proposed to obtain more accurate solutions using relatively local data, making it suitable for unstructured grids composed of hexahedral elements. Fluxes are reconstructed using local gradients to extend the range of data used. The method is then validated on several test problems. Simulations of boundary layer transition are then performed. An elliptic cone at Mach 8 is simulated based on an experiment at the Princeton Gasdynamics Laboratory. A simulated acoustic noise boundary condition is imposed to model the noisy conditions of the wind tunnel and the transitioning boundary layer observed. A computation of an isolated roughness element is done based on an experiment in Purdue's Mach 6 quiet wind tunnel. The mechanism for transition is identified as an instability in the upstream separation region and a comparison is made to experimental data. In the CFD a fully turbulent boundary layer is observed downstream.

  3. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element

    Science.gov (United States)

    Tang, Zhanqi; Jiang, Nan

    2018-05-01

    This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.

  4. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    Science.gov (United States)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  5. Multi-region unstructured volume segmentation using tetrahedron filling

    Energy Technology Data Exchange (ETDEWEB)

    Willliams, Sean Jamerson [Los Alamos National Laboratory; Dillard, Scott E [Los Alamos National Laboratory; Thoma, Dan J [MDI, INSTITUTES; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS

    2010-01-01

    Segmentation is one of the most common operations in image processing, and while there are several solutions already present in the literature, they each have their own benefits and drawbacks that make them well-suited for some types of data and not for others. We focus on the problem of breaking an image into multiple regions in a single segmentation pass, while supporting both voxel and scattered point data. To solve this problem, we begin with a set of potential boundary points and use a Delaunay triangulation to complete the boundaries. We use heuristic- and interaction-driven Voronoi clustering to find reasonable groupings of tetrahedra. Apart from the computation of the Delaunay triangulation, our algorithm has linear time complexity with respect to the number of tetrahedra.

  6. Sound Radiation from a Loudspeaker Cabinet using the Boundary Element Method

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    had been reported, based on subjective testing. This study aims to detect the reported problem. The radiation from the cabinet is calculated using the Boundary Element Method. The analysis examines both the frequency domain and the time domain characteristics (in other words, the steady state response......, in some cases becoming clearly audible. The aim of this study is to provide a tool that can evaluate the contribution from the cabinet to the overall sound radiated by a loudspeaker. The specific case of a B&O Beolab 9 early prototype has been investigated. An influence by the cabinet of this prototype...... and the impulse response) of the loudspeaker and the cabinet. A significant influence of the cabinet has been detected, which becomes especially apparent in the time domain, during the sound decay process....

  7. Boundary layer theory approach to the concentration layer adjacent to the ceiling wall of a hydrogen leakage: Axisymmetric impinging and far regions

    Energy Technology Data Exchange (ETDEWEB)

    El-Amin, M.F.; Kanayama, H. [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    As hydrogen leaks into a partially open space with a ceiling wall, a boundary layer of hydrogen can be constructed under that wall due to the impingement on the wall and the buoyancy force. The resulting boundary layer can be divided into two regions, namely the stagnation-point region and the far region. When the geometry of the source of the hydrogen leak is circular, such as a pinhole or an o-ring, the behavior of leakage flow will be axisymmetric due to the resulting radial jet. In contrast, when the geometry of the source of the hydrogen leak is planar, such as a crack, the behavior of leakage flow will be planar due to the resulting planar jet. Previously, we studied the planar case in the context of both the stagnation-point flow region [El-Amin MF, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall at impinging region of a hydrogen leakage. Int J Hydrogen Energy 2008; 33(21): 6393-00] and the far region [El-Amin MF, Inoue M, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: far region. Int J Hydrogen Energy 2008; 33(24):7642-7]. This paper is concerned with both the stagnation-point flow region and the far region of the axisymmetric concentration boundary layer adjacent to a ceiling wall. Flow in the stagnation-point region is treated as Hiemenz flow, while it is treated as Blasius flow in the far region. The current results are compared with the planar cases [El-Amin MF, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall at impinging region of a hydrogen leakage. Int J Hydrogen Energy 2008; 33(21): 6393-00; El-Amin MF, Inoue M, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: far region. Int J Hydrogen Energy 2008; 33(24):7642-7] for both stagnation-point flow and far regions. Both momentum and concentration boundary layer

  8. KIN SP: A boundary element method based code for single pile kinematic bending in layered soil

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2018-02-01

    Full Text Available In high seismicity areas, it is important to consider kinematic effects to properly design pile foundations. Kinematic effects are due to the interaction between pile and soil deformations induced by seismic waves. One of the effect is the arise of significant strains in weak soils that induce bending moments on piles. These moments can be significant in presence of a high stiffness contrast in a soil deposit. The single pile kinematic interaction problem is generally solved with beam on dynamic Winkler foundation approaches (BDWF or using continuous models. In this work, a new boundary element method (BEM based computer code (KIN SP is presented where the kinematic analysis is preceded by a free-field response analysis. The analysis results of this method, in terms of bending moments at the pile-head and at the interface of a two-layered soil, are influenced by many factors including the soil–pile interface discretization. A parametric study is presented with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a BEM solution, for typical pile–soil relative stiffness values as a function of the pile diameter, the location of the interface of a two-layered soil and of the stiffness contrast. KIN SP results have been compared with simplified solutions in literature and with those obtained using a quasi-three-dimensional (3D finite element code.

  9. PARALLEL ALGORITHM FOR THREE-DIMENSIONAL STOKES FLOW SIMULATION USING BOUNDARY ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    D. G. Pribytok

    2016-01-01

    Full Text Available Parallel computing technique for modeling three-dimensional viscous flow (Stokes flow using direct boundary element method is presented. The problem is solved in three phases: sampling and construction of system of linear algebraic equations (SLAE, its decision and finding the velocity of liquid at predetermined points. For construction of the system and finding the velocity, the parallel algorithms using graphics CUDA cards programming technology have been developed and implemented. To solve the system of linear algebraic equations the implemented software libraries are used. A comparison of time consumption for three main algorithms on the example of calculation of viscous fluid motion in three-dimensional cavity is performed.

  10. Contrasting Boundary Scavenging in two Eastern Boundary Current Regimes

    Science.gov (United States)

    Anderson, R. F.; Fleisher, M. Q.; Pavia, F. J.; Vivancos, S. M.; Lu, Y.; Zhang, P.; Cheng, H.; Edwards, R. L.

    2016-02-01

    We use data from two US GEOTRACES expeditions to compare boundary scavenging intensity in two eastern boundary current systems: the Canary Current off Mauritania and the Humboldt Current off Peru. Boundary scavenging refers to the enhanced removal of trace elements from the ocean by sorption to sinking particles in regions of greater than average particle abundance. Both regimes experience high rates of biological productivity and generation of biogenic particles, with rates of productivity potentially a little greater off Peru, whereas dust fluxes are an order of magnitude greater off NW Africa (see presentation by Vivancos et al., this meeting). Despite greater productivity off Peru, we find greater intensity of scavenging off NW Africa as measured by the residence time of dissolved 230Th integrated from the surface to a depth of 2500 m (10-11 years off NW Africa vs. 15-17 years off Peru). Dissolved 231Pa/230Th ratios off NW Africa (Hayes et al., Deep Sea Res.-II 116 (2015) 29-41) are nearly twice the values observed off Peru. We attribute this difference to the well-known tendency for lithogenic phases (dust) to strongly fractionate in favor of Th uptake during scavenging and removal, leaving the dissolved phase enriched in Pa. This behavior needs to be considered when interpreting sedimentary 231Pa/230Th ratios as a paleo proxy.

  11. Regional landslide susceptibility assessment using multi-stage remote sensing data along the coastal range highway in northeastern Taiwan

    Science.gov (United States)

    Lee, Ching-Fang; Huang, Wei-Kai; Chang, Yu-Lin; Chi, Shu-Yeong; Liao, Wu-Chang

    2018-01-01

    Typhoons Megi (2010) and Saola (2012) brought torrential rainfall which triggered regional landslides and flooding hazards along Provincial Highway No. 9 in northeastern Taiwan. To reduce property loss and saving lives, this study combines multi-hazard susceptibility assessment with environmental geology map a rock mass rating system (RMR), remote sensing analysis, and micro-topography interpretation to develop an integrated landslide hazard assessment approach and reflect the intrinsic state of slopeland from the past toward the future. First, the degree of hazard as indicated by historical landslides was used to determine many landslide regions in the past. Secondly, geo-mechanical classification of rock outcroppings was performed by in-situ investigation along the vulnerable road sections. Finally, a high-resolution digital elevation model was extracted from airborne LiDAR and multi-temporal remote sensing images which was analyzed to discover possible catastrophic landslide hotspot shortly. The results of the analysis showed that 37% of the road sections in the study area were highly susceptible to landslide hazards. The spatial distribution of the road sections revealed that those characterized by high susceptibility were located near the boundaries of fault zones and in areas of lithologic dissimilarity. Headward erosion of gullies and concave-shaped topographic features had an adverse effect and was the dominant factor triggering landslides. Regional landslide reactivation on this coastal highway are almost related to the past landslide region based on hazard statistics. The final results of field validation demonstrated that an accuracy of 91% could be achieved for forecasting geohazard followed by intense rainfall events and typhoons.

  12. Multi-region relaxed magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  13. Rayleigh's, Stoneley's, and Scholte's Interface Waves in Elastic Models Using a Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Esteban Flores-Mendez

    2012-01-01

    Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.

  14. Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2015-03-01

    Full Text Available For the interconnected power system with large-scale wind power, the problem of the small signal stability has become the bottleneck of restricting the sending-out of wind power as well as the security and stability of the whole power system. Around this issue, this paper establishes a small signal stability region boundary model of the interconnected power system with large-scale wind power based on catastrophe theory, providing a new method for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and the mathematic model of the interconnected power system with wind power and pointed out that conventional methods can’t directly identify the topological properties of small signal stability region boundaries. For this problem, adopting catastrophe theory, we established a small signal stability region boundary model of the interconnected power system with large-scale wind power in two-dimensional power injection space and extended it to multiple dimensions to obtain the boundary model in multidimensional power injection space. Thirdly, we analyzed qualitatively the topological property’s changes of the small signal stability region boundary caused by large-scale wind power integration. Finally, we built simulation models by DIgSILENT/PowerFactory software and the final simulation results verified the correctness and effectiveness of the proposed model.

  15. Iridium, sulfur isotopes and rare earth elements in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark

    Science.gov (United States)

    Schmitz, Birger; Andersson, Per; Dahl, Jeremy

    1988-01-01

    Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: 1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish Clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. 2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a δ 34S value of -32%.. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.

  16. GLOBAL AND REGIONAL GEOCHEMICAL INDEXES OF PRODUCTION OF CHEMICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2014-01-01

    Full Text Available This paper presents a geochemical assessment of the primary involvement of chemical elements in technogenesis in the world and individual countries. In order to compare the intensity of production of various chemical elements in different countries, the authors have introduced a number of new terms and parameters. The new term is “abstract rock” (AR - an elemental equivalent, whose average composition corresponds to the average chemical composition of the upper continental crust. The new parameters are: “conditional technophility of an element” (TY, “specific technophility” (TYN “regional conditional technophility” (TYR, “specific regional technophility” (TN, and “density of regional conditional technophility” (TS. TY equals to the tons of AR per year necessary for the production of the current level of the element. TY of different elements has been estimated for 2008-2010. The highest TY values are associated with C, S, N, Ra, and Au. TY of many micro- and ultramicroelements is of the order of n•1011t. TYN reflects the volume of AR per the world’s capita. TYN changes from the 1960s to 2010 indicates that the Earth’s population is growing much faster than its demand for many chemical elements. TYR, TN, and TS were used for the integrated assessment of technogenesis at the regional scale; they reflect the intensity of the technogenesis process at the level of individual countries and allow comparing countries with different levels of elements production, population, and areas. The TN and TS levels of the leaders in extraction of natural resources are below these values in other countries due to the large territories (Russia, USA, Canada, Australia, Saudi Arabia, Kazakhstan, Argentina, Bolivia, Venezuela, Colombia, Zambia, Mali, Libya, Mongolia, and Sudan, to the large population (Indonesia, Vietnam, the Philippines, Bangladesh, Nigeria, or to both high spatial and demographic dimensions (India, Brazil, France, Egypt

  17. Study of lattice strain evolution during biaxial deformation of stainless steel using a finite element and fast Fourier transform based multi-scale approach

    International Nuclear Information System (INIS)

    Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.

    2016-01-01

    A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.

  18. Resistive wall impedance of the LHC beam screen without slots calculated by boundary element method

    CERN Document Server

    Tsutsui, H

    2002-01-01

    In order to calculate the resistive wall impedance of the LHC beam screen without slots, the Boundary Element Method (BEM) is used. The result at 1 GHz is Re(ZL/L) = 6.689×10−3 Ω/m, Re(Zx/L) = 1.251 Ω/m2, Re(Zy/L) = 1.776 Ω/m2, andRe(2Z0,2 cos/kL) = −0.525 Ω/m2, assuming σ = 5.8 × 109 /Ωm.

  19. Multi-element analysis of emeralds and associated rocks by k0 neutron activation analysis

    International Nuclear Information System (INIS)

    Acharya, R.N.; Mondal, R.K.; Burte, P.P.; Nair, A.G.C.; Reddy, N.B.Y.; Reddy, L.K.; Reddy, A.V.R.; Manohar, S.B.

    2000-01-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k 0 method (k 0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method

  20. Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model

    Directory of Open Access Journals (Sweden)

    Qinghua Lin

    2016-04-01

    Full Text Available Railgun launcher design relies on appropriate models. A multi-field coupled model of railgun launcher was presented in this paper. The 3D transient multi-field was composed of electromagnetic field, thermal field and structural field. The magnetic diffusion equations were solved by a finite-element boundary-element coupling method. The thermal diffusion equations and structural equations were solved by a finite element method. A coupled calculation was achieved by the transfer data from the electromagnetic field to the thermal and structural fields. Some characteristics of railgun shot, such as velocity skin effect, melt-wave erosion and magnetic sawing, which are generated under the condition of large-current and high-speed sliding electrical contact, were demonstrated by numerical simulation.

  1. Parameter Optimization of Multi-Element Synthetic Aperture Imaging Systems

    Directory of Open Access Journals (Sweden)

    Vera Behar

    2007-03-01

    Full Text Available In conventional ultrasound imaging systems with phased arrays, the further improvement of lateral resolution requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost and acquisition time. In a MSAF system considered in the paper, a group of elements transmit and receive signals simultaneously, and the transmit beam is defocused to emulate a single element response. The echo received at each element of a receive sub-aperture is recorded in the computer memory. The process of transmission/reception is repeated for all positions of a transmit sub-aperture. All the data recordings associated with each corresponding pair "transmit-receive sub-aperture" are then focused synthetically producing a low-resolution image. The final high-resolution image is formed by summing of the all low-resolution images associated with transmit/receive sub-apertures. A problem of parameter optimization of a MSAF system is considered in this paper. The quality of imaging (lateral resolution and contrast is expressed in terms of the beam characteristics - beam width and side lobe level. The comparison between the MSAF system described in the paper and an equivalent conventional phased array system shows that the MSAF system acquires images of equivalent quality much faster using only a small part of the power per image.

  2. Detailed finite element method modeling of evaporating multi-component droplets

    Energy Technology Data Exchange (ETDEWEB)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    2017-07-01

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet. Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.

  3. Extended depth of field integral imaging using multi-focus fusion

    Science.gov (United States)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  4. Operational trials of single- and multi-element CR-39 dosemeters for the DIDO and PLUTO reactors at the Harwell Laboratory

    International Nuclear Information System (INIS)

    Gallacher, G.G.; Perks, C.A.

    1993-01-01

    Single- and multi-element CR-39 dosemeters, developed at the Harwell Laboratory, and a commercially available multi-element CR-39 dosemeter (obtained from Track Analysis Systems Ltd), were evaluated for their potential as neutron dosemeters for personnel working at Harwell Laboratory's research reactors. Owing to the angular dependence of the CR-39 (processed using electrochemical etching), the single-element dosemeter was found to be impractical. Consequently, a multi-element dosemeter was developed, which consisted of a cube of side 36 mm with CR-39 elements (also processed using electrochemical etching) attached to each of the sides. Although this dosemeter was technically suitable for this type of dosimetry, it was considered to be unacceptably bulky in personnel trials. The commercially available CR-39 dosemeter tested was much smaller (the CR-39 was only chemically etched) and this was considered to be acceptable as a personnel dosemeter. In addition, trials with personnel working at active handling glove boxes indicated that single-element dosemeters might be adequate, but further work would be needed to verify this. (author)

  5. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  6. Magnetic field computations of the magnetic circuits with permanent magnets by infinite element method

    International Nuclear Information System (INIS)

    Hahn, Song Yop

    1985-01-01

    A method employing infinite elements is described for the magnetic field computations of the magnetic circuits with permanent magnet. The system stiffness matrix is derived by a variational approach, while the interfacial boundary conditions between the finite element regions and the infinite element regions are dealt with using collocation method. The proposed method is applied to a simple linear problems, and the numerical results are compared with those of the standard finite element method and the analytic solutions. It is observed that the proposed method gives more accurate results than those of the standard finite element method under the same computing efforts. (Author)

  7. About solution of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method and discrete-continual finite element method. part 1: formulation of the problem and general principles of approximation

    Directory of Open Access Journals (Sweden)

    Lyakhovich Leonid

    2017-01-01

    Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.

  8. An Assessment of the Icing Blade and the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    Science.gov (United States)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith Foss

    2017-01-01

    The Icing Research Tunnel at NASA Glenn has recently switched to from using the Icing Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration of cloud liquid water content. In order to perform this transition, tests were completed to compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water content, airspeed, and drop size. The two instruments were found to compare well for the majority of Appendix C conditions. However, it was discovered that the Icing Blade under-measures when the conditions approach the Ludlam Limit. This paper also describes data processing procedures for the Multi-Element Sensor in the IRT, including collection efficiency corrections, mounting underneath a splitter plate, and correcting for a jump in the compensation wire power. Further data is presented to describe the repeatability of the IRT with the Multi-Element sensor, health-monitoring checks for the instrument, and a sensing-element configuration comparison.

  9. Numerically efficient simulation of multi-vaporator air conditioners in highly dynamic boundary conditions; Numerisch effiziente Simulation von Mehrverdampfer-Klimaanlagen unter hochdynamischen Randbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Christian; Kaiser, Christian [TLK-Thermo GmbH, Braunschweig (Germany); Tegethoff, Wilhelm; Koehler, Juergen [TU Braunschweig (Germany). Inst. fuer Thermodynamik

    2011-07-01

    In the development of physically based models for dynamic simulations of cycle processes, a good equilibrium must be chosen between the degree of detailing and the speed of calculation. Dynamic modelling of mult-evaporator air conditioners is a special challenge as the interaction of several heat transfer fluides at one pressure level may result in numerically challenging effects like reflux. The contribution goes into the simulation of the heat transfer fluids in such systems in highly dynamic boundary conditions, e.g. after shutoff of the compressor. There are different modelling methods, e.g. finite volume, moving boundary, or finite element analysis. The methods are presented and evaluated. For the 1-D finite volume method, various established simplification strategies are presented that may enhance numerical efficiency. It is also shown that the equation system will not always be solvable with these strategies, and an approach to ensure solvability is presented. The new approach is illustrated by the example of a multi-evaporator bus air conditioner. [German] Bei der Erstellung von physikalisch basierten Modellen fuer die dynamische Simulation von Kreisprozessen muss ein gutes Gleichgewicht zwischen Detaillierungsgrad und Rechengeschwindigkeit gewaehlt werden: Das Modell muss die Realitaet hinreichend genau abbilden, im Gegenzug jedoch auch innerhalb eines angemessenen Zeitraums Ergebnisse liefern sowie in allen Betriebszustaenden loesbar sein. Die dynamische Modellierung von Mehrverdampfer-Klimaanlagen stellt im Vergleich zu einfachen Kreisprozessen eine besondere Herausforderung dar, da in diesen Systemen die Interaktion mehrerer Waermeuebertrager auf einem Druckniveau zu numerisch herausfordernden Effekten wie z. B. Rueckstroemung fuehren kann. Dieser Beitrag beschaeftigt sich mit der Simulation der Waermeuebertrager in diesen Systemen unter hochdynamischen Randbedingungen wie z. B. einer Abschaltung des Verdichters. Zur Modellierung der Waermeuebertrager

  10. Human polyomavirus JCV late leader peptide region contains important regulatory elements

    International Nuclear Information System (INIS)

    Akan, Ilhan; Sariyer, Ilker Kudret; Biffi, Renato; Palermo, Victoria; Woolridge, Stefanie; White, Martyn K.; Amini, Shohreh; Khalili, Kamel; Safak, Mahmut

    2006-01-01

    Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader

  11. Solvability of fractional multi-point boundary-value problems with p-Laplacian operator at resonance

    Directory of Open Access Journals (Sweden)

    Tengfei Shen

    2014-02-01

    Full Text Available In this article, we consider the multi-point boundary-value problem for nonlinear fractional differential equations with $p$-Laplacian operator: $$\\displaylines{ D_{0^+}^\\beta \\varphi_p (D_{0^+}^\\alpha u(t = f(t,u(t,D_{0^+}^{\\alpha - 2} u(t,D_{0^+}^{\\alpha - 1} u(t, D_{0^+}^\\alpha u(t,\\quad t \\in (0,1, \\cr u(0 = u'(0=D_{0^+}^\\alpha u(0 = 0,\\quad D_{0^+}^{\\alpha - 1} u(1 = \\sum_{i = 1}^m {\\sigma_i D_{0^+}^{\\alpha - 1} u(\\eta_i } , }$$ where $2 < \\alpha \\le 3$, $0 < \\beta \\le 1$, $3 < \\alpha + \\beta \\le 4$, $\\sum_{i = 1}^m {\\sigma_i } = 1$, $D_{0^+}^\\alpha$ is the standard Riemann-Liouville fractional derivative. $\\varphi_{p}(s=|s|^{p-2}s$ is p-Laplacians operator. The existence of solutions for above fractional boundary value problem is obtained by using the extension of Mawhin's continuation theorem due to Ge, which enrich konwn results. An example is given to illustrate the main result.

  12. Age and gender estimation using Region-SIFT and multi-layered SVM

    Science.gov (United States)

    Kim, Hyunduk; Lee, Sang-Heon; Sohn, Myoung-Kyu; Hwang, Byunghun

    2018-04-01

    In this paper, we propose an age and gender estimation framework using the region-SIFT feature and multi-layered SVM classifier. The suggested framework entails three processes. The first step is landmark based face alignment. The second step is the feature extraction step. In this step, we introduce the region-SIFT feature extraction method based on facial landmarks. First, we define sub-regions of the face. We then extract SIFT features from each sub-region. In order to reduce the dimensions of features we employ a Principal Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). Finally, we classify age and gender using a multi-layered Support Vector Machines (SVM) for efficient classification. Rather than performing gender estimation and age estimation independently, the use of the multi-layered SVM can improve the classification rate by constructing a classifier that estimate the age according to gender. Moreover, we collect a dataset of face images, called by DGIST_C, from the internet. A performance evaluation of proposed method was performed with the FERET database, CACD database, and DGIST_C database. The experimental results demonstrate that the proposed approach classifies age and performs gender estimation very efficiently and accurately.

  13. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Li, Xingru; Sun, Ying; Li, Yi; Wentworth, Gregory R; Wang, Yuesi

    2015-12-15

    Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere. Copyright © 2015 Elsevier B

  14. The role of lateral boundary conditions in simulations of mineral aerosols by a regional climate model of Southwest Asia

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Marc Pace [Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Eltahir, Elfatih A.B. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2012-01-15

    The importance of specifying realistic lateral boundary conditions in the regional modeling of mineral aerosols has not been examined previously. This study examines the impact of assigning values for mineral aerosol (dust) concentrations at the lateral boundaries of Regional Climate Model version 3 (RegCM3) and its aerosol model over Southwest Asia. Currently, the dust emission module of RegCM3 operates over the interior of the domain, allowing dust to be transported to the boundaries, but neglecting any dust emitted at these points or from outside the domain. To account for possible dust occurring at, or entering from the boundaries, mixing ratios of dust concentrations from a larger domain RegCM3 simulation are specified at the boundaries of a smaller domain over Southwest Asia. The lateral boundary conditions are monthly averaged concentration values ({mu}g of dust per kg of dry air) resolved in the vertical for all four dust bin sizes within RegCM3's aerosol model. RegCM3 simulations with the aerosol/dust model including lateral boundary conditions for dust are performed for a five year period and compared to model simulations without prescribed dust concentrations at the boundaries. Results indicate that specifying boundary conditions has a significant impact on dust loading across the entire domain over Southwest Asia. More specifically, a nearly 30% increase in aerosol optical depth occurs during the summer months from specifying realistic dust boundary conditions, bringing model results closer to observations such as MISR. In addition, smaller dust particles at the boundaries have a more important impact than large particles in affecting the dust loading within the interior of this domain. Moreover, increases in aerosol optical depth and dust concentrations within the interior domain are not entirely caused by inflow from the boundaries; results indicate that an increase in the gradient of concentration at the boundaries causes an increase of

  15. Deletion of an X-inactivation boundary disrupts adjacent gene silencing.

    Directory of Open Access Journals (Sweden)

    Lindsay M Horvath

    2013-11-01

    Full Text Available In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI, although some "escape" XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI.

  16. AC power flow importance measures considering multi-element failures

    International Nuclear Information System (INIS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling

    2017-01-01

    Quantifying the criticality of individual components of power systems is essential for overall reliability and management. This paper proposes an AC-based power flow element importance measure, while considering multi-element failures. The measure relies on a proposed AC-based cascading failure model, which captures branch overflow, bus load shedding, and branch failures, via AC power flow and optimal power flow analyses. Taking the IEEE 30, 57 and 118-bus power systems as case studies, we find that N-3 analyses are sufficient to measure the importance of a bus or branch. It is observed that for a substation bus, its importance is statistically proportional to its power demand, but this trend is not observed for power plant buses. While comparing with other reliability, functionality, and topology-based importance measures popular today, we find that a DC power flow model, although better correlated with the benchmark AC model as a whole, still fails to locate some critical elements. This is due to the focus of DC-based models on real power that ignores reactive power. The proposed importance measure is aimed to inform decision makers about key components in complex systems, while improving cascading failure prevention, system backup setting, and overall resilience. - Highlights: • We propose a novel importance measure based on joint failures and AC power flow. • A cascading failure model considers both AC power flow and optimal power flow. • We find that N-3 analyses are sufficient to measure the importance of an element. • Power demand impacts the importance of substations but less so that of generators. • DC models fail to identify some key elements, despite correlating with AC models.

  17. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    Science.gov (United States)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  18. Large Scale Skill in Regional Climate Modeling and the Lateral Boundary Condition Scheme

    Science.gov (United States)

    Veljović, K.; Rajković, B.; Mesinger, F.

    2009-04-01

    Several points are made concerning the somewhat controversial issue of regional climate modeling: should a regional climate model (RCM) be expected to maintain the large scale skill of the driver global model that is supplying its lateral boundary condition (LBC)? Given that this is normally desired, is it able to do so without help via the fairly popular large scale nudging? Specifically, without such nudging, will the RCM kinetic energy necessarily decrease with time compared to that of the driver model or analysis data as suggested by a study using the Regional Atmospheric Modeling System (RAMS)? Finally, can the lateral boundary condition scheme make a difference: is the almost universally used but somewhat costly relaxation scheme necessary for a desirable RCM performance? Experiments are made to explore these questions running the Eta model in two versions differing in the lateral boundary scheme used. One of these schemes is the traditional relaxation scheme, and the other the Eta model scheme in which information is used at the outermost boundary only, and not all variables are prescribed at the outflow boundary. Forecast lateral boundary conditions are used, and results are verified against the analyses. Thus, skill of the two RCM forecasts can be and is compared not only against each other but also against that of the driver global forecast. A novel verification method is used in the manner of customary precipitation verification in that forecast spatial wind speed distribution is verified against analyses by calculating bias adjusted equitable threat scores and bias scores for wind speeds greater than chosen wind speed thresholds. In this way, focusing on a high wind speed value in the upper troposphere, verification of large scale features we suggest can be done in a manner that may be more physically meaningful than verifications via spectral decomposition that are a standard RCM verification method. The results we have at this point are somewhat

  19. US Participation in the Solar Orbiter Multi Element Telescope for Imaging and Spectroscopy (METIS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi Element Telescope for Imaging and Spectroscopy, METIS, investigation has been conceived to perform off-limb and near-Sun coronagraphy and is motivated by...

  20. Spatial Collaboration Model among Local Governments in Ratubangnegoro Region in the Boundary Area of Central Java and East Java Provinces, Indonesia

    Science.gov (United States)

    Wahyono, H.; Wahdah, L.

    2018-02-01

    In Indonesia, according to Law No. 23/2014 on Local Government, a local government can conduct cooperation with other local governments that are based on considerations of efficiency and effectiveness of public services and mutual benefit, in order to improve people's welfare. Such cooperation can be categorized into mandatory and voluntary cooperation. Cooperation shall be developed jointly between the adjacent areas for the implementation of government affairs which have cross-local government externalities; and the provision of public services more efficient if managed together. One of the parts of the area that is directly related to the implementation of the policy liabilities of inter-local government cooperation which is mandated is the he province boundary areas. The public management of the provincial boundary areas is different from the central province area. While the central province area considers only their own interests, the management of boundary development must consider the neighboring regions. On one hand, the area is influenced only by its own province policy, while on the other influenced by neighboring regions. Meanwhile, a local government tends to resist the influence and intervention of neighboring regions. Likewise, neighboring local governments also tend to resist the influence and intervention of other local governments. Therefore, when interacting on the boundary, inter-local government interaction is not only the potential for cooperation, but also conflict-prone regions. One of the boundary area provinces attempt to implement the collaborative planning approach is the boundary area of Central Java Province and East Java Province, which is known as Ratubangnegoro Region. Ratubangnegoro region is one of the strategic areas of both provinces. In order to the interaction between the region could take place, there are regencies in the region have formed and joined the Inter-Local Government Cooperation Agency (BKAD-Badan Kerjasama Antar

  1. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities

    Science.gov (United States)

    Bakker, Mark

    2004-05-01

    Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.

  2. A framework for delineating the regional boundaries of PM2.5 pollution: A case study of China.

    Science.gov (United States)

    Liu, Jianzheng; Li, Weifeng; Wu, Jiansheng

    2018-04-01

    Fine particulate matter (PM 2.5 ) pollution has been a major issue in many countries. Considerable studies have demonstrated that PM 2.5 pollution is a regional issue, but little research has been done to investigate the regional extent of PM 2.5 pollution or to define areas in which PM 2.5 pollutants interact. To allow for a better understanding of the regional nature and spatial patterns of PM 2.5 pollution, This study proposes a novel framework for delineating regional boundaries of PM 2.5 pollution. The framework consists of four steps, including cross-correlation analysis, time-series clustering, generation of Voronoi polygons, and polygon smoothing using polynomial approximation with exponential kernel method. Using the framework, the regional PM 2.5 boundaries for China are produced and the boundaries define areas where the monthly PM 2.5 time series of any two cities show, on average, more than 50% similarity with each other. These areas demonstrate straightforwardly that PM 2.5 pollution is not limited to a single city or a single province. We also found that the PM 2.5 areas in China tend to be larger in cold months, but more fragmented in warm months, suggesting that, in cold months, the interactions between PM 2.5 concentrations in adjacent cities are stronger than in warmer months. The proposed framework provides a tool to delineate PM 2.5 boundaries and identify areas where PM 2.5 pollutants interact. It can help define air pollution management zones and assess impacts related to PM 2.5 pollution. It can also be used in analyses of other air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hierarchical clustering into groups of human brain regions according to elemental composition

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1998-01-01

    Thirteen brain regions were dissected from both hemispheres of fifteen 'normal' ageing subjects (8 females, 7 males) of mean age 79±7 years. Elemental compositions were determined by simultaneous application of particle induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses using a 2 MeV, 4 nA proton beam scanned over 4 mm 2 of the sample surface. Elemental concentrations were found to be dependent upon the brain region and hemisphere studied. Hierarchical cluster analysis was applied to group the brain regions according to the sample concentrations of eight elements. The resulting dendrogram is presented and its clusters related to the sample compositions of grey and white matter. (author)

  4. The use of Fourier eigen transform to the boundary element method for transient elastodynamic problems

    International Nuclear Information System (INIS)

    Ji, X.; Chen, Y.M.

    1989-01-01

    The boundary element method (BEM) is developed from the boundary integral equation method and the discretization techniques. Compared with other numerical method, BEM has been shown to be a versatile and efficient method for a wide variety of engineering problems, including the wave propagation in elastic media. The first formulation and solution of the transient elastodynamic problem by combining BEM and Laplace transform is due to Cruse. Further improvement was achieved by introducing Durbin's method instead of Papoulis method of numerical Laplace inverse transform. However, a great deal of computer time is still needed for the inverse transformation. The alternative integral transform approach is BEM combining with Fourier transform. The numerical Fourier inverse transformation is also computer time consuming, even if the fast Fourier transform is used. In the present paper, the authors use BEM combining with Fourier transform and Fourier eigen transform (FET). The new approach is very attractive in saving on computer time. This paper illustrates the application of FET to BEM of 2-dimensional transient elastodynamic problem. The example of a half plane subjected to a discontinuous boundary load is solved on ELXSI 6400 computer. The CPU time is less than one minute. If Laplace or Fourier transform is adopted, the CPU time will be more than 10 minutes

  5. Chemical elements contamination of snow cover in region of coal production 'Karazhyra'

    International Nuclear Information System (INIS)

    Evlampieva, E.P.; Panin, M.S.

    2008-01-01

    Peculiarities of space distribution of chemical elements in hardphase and water-soluble falls of snow cover in region of coal deposit 'Karazhyra' are investigated. The maximal, minimal and background areas of elements accumulation in the snow of this region and distribution of their cumulative rates are determined. The main pollutants of snow cover unto background level are revealed.

  6. The evaluation of multi-element personal dosemeters using the linear programming method

    International Nuclear Information System (INIS)

    Kragh, P.; Ambrosi, P.; Boehm, J.; Hilgers, G.

    1996-01-01

    Multi-element dosemeters are frequently used in individual monitoring. Each element can be regarded as an individual dosemeter with its own individual dose measurement value. In general, the individual dose values of one dosemeter vary according to the exposure conditions, i. e. the energy and angle of incidence of the radiation. The (final) dose measurement value of the personal dosemeter is calculated from the individual dose values by means of an evaluation algorithm. The best possible dose value, i.e. that of the smallest systematic (type B) uncertainty if the exposure conditions are changed in the dosemeter's rated range of use, is obtained by the method of linear programming. (author)

  7. INGEN: a general-purpose mesh generator for finite element codes

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-05-01

    INGEN is a general-purpose mesh generator for two- and three-dimensional finite element codes. The basic parts of the code are surface and three-dimensional region generators that use linear-blending interpolation formulas. These generators are based on an i, j, k index scheme that is used to number nodal points, construct elements, and develop displacement and traction boundary conditions. This code can generate truss elements (2 modal points); plane stress, plane strain, and axisymmetry two-dimensional continuum elements (4 to 8 nodal points); plate elements (4 to 8 nodal points); and three-dimensional continuum elements (8 to 21 nodal points). The traction loads generated are consistent with the element generated. The expansion--contraction option is of special interest. This option makes it possible to change an existing mesh such that some regions are refined and others are made coarser than the original mesh. 9 figures

  8. Knowledge co-production and boundary work to promote implementation of conservation plans.

    Science.gov (United States)

    Nel, Jeanne L; Roux, Dirk J; Driver, Amanda; Hill, Liesl; Maherry, Ashton C; Snaddon, Kate; Petersen, Chantel R; Smith-Adao, Lindie B; Van Deventer, Heidi; Reyers, Belinda

    2016-02-01

    Knowledge co-production and boundary work offer planners a new frame for critically designing a social process that fosters collaborative implementation of resulting plans. Knowledge co-production involves stakeholders from diverse knowledge systems working iteratively toward common vision and action. Boundary work is a means of creating permeable knowledge boundaries that satisfy the needs of multiple social groups while guarding the functional integrity of contributing knowledge systems. Resulting products are boundary objects of mutual interest that maintain coherence across all knowledge boundaries. We examined how knowledge co-production and boundary work can bridge the gap between planning and implementation and promote cross-sectoral cooperation. We applied these concepts to well-established stages in regional conservation planning within a national scale conservation planning project aimed at identifying areas for conserving rivers and wetlands of South Africa and developing an institutional environment for promoting their conservation. Knowledge co-production occurred iteratively over 4 years in interactive stake-holder workshops that included co-development of national freshwater conservation goals and spatial data on freshwater biodiversity and local conservation feasibility; translation of goals into quantitative inputs that were used in Marxan to select draft priority conservation areas; review of draft priority areas; and packaging of resulting map products into an atlas and implementation manual to promote application of the priority area maps in 37 different decision-making contexts. Knowledge co-production stimulated dialogue and negotiation and built capacity for multi-scale implementation beyond the project. The resulting maps and information integrated diverse knowledge types of over 450 stakeholders and represented >1000 years of collective experience. The maps provided a consistent national source of information on priority conservation areas

  9. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Moncayo, S.; Trichard, F.; Busser, B.; Sabatier-Vincent, M.; Pelascini, F.; Pinel, N.; Templier, I.; Charles, J.; Sancey, L.; Motto-Ros, V.

    2017-07-01

    Chemical elements play central roles for physiological homeostasis in human cells, and their dysregulation might lead to a certain number of pathologies. Novel imaging techniques that improve the work of pathologists for tissue analysis and diagnostics are continuously sought. We report the use of Laser-Induced Breakdown Spectroscopy (LIBS) to perform multi-elemental images of human paraffin-embedded skin samples on the entire biopsy scale in a complementary and compatible way with microscope histopathological examination. A specific instrumental configuration is proposed in order to detect most of the elements of medical interest (i.e. P, Al, Mg, Na, Zn, Si, Fe, and Cu). As an example of medical application, we selected and analysed skin biopsies, including healthy skin tissue, cutaneous metastasis of melanoma, Merkel-cell carcinoma and squamous cell carcinoma. Clear distinctions in the distribution of chemical elements are observed from the different samples investigated. This study demonstrates the high complementarity of LIBS elemental imaging with conventional histopathology, opening new opportunities for any medical application involving metals.

  10. Multi-Electrode Impedance Method for Detection of Regional Ventilation

    International Nuclear Information System (INIS)

    Furuya, Norio; Sakamoto, Katsuyuki

    2013-01-01

    By means of computer simulation and experiment, we investigated the feasibility of simultaneously measuring the transfer impedance changes in the right apex, left apex, right base and left base of the lungs using the multi-electrode impedance method. To obtain the transfer impedance in each region, while suppressing the effects of other regions, changing the amplitude and polarity of the applied current must localize the high sensitivity areas in the interest region. Twelve current and eight voltage electrodes were equidistantly arranged on the anterior and posterior chest walls. The amplitudes and polarities of the currents that were simultaneously applied to the current electrodes, and which provided the appropriate sensitivity distribution, were theoretically obtained. The effects of the localized sensitivity distribution were verified by comparing the simulation results of the investigated method with the results of the conventional four-electrode method. From the results of the computer simulation, we developed a multi-electrode impedance pneumography and applied it to healthy adult volunteers who were both in sitting position and in left decubitus. We found that the measurement results were physiologically reasonable.

  11. High-latitude Pc 1 bursts arising in the dayside boundary layer region

    International Nuclear Information System (INIS)

    Hansen, H.J.; Fraser, B.J.; Menk, F.W.; Hu, Y.D.; Newell, P.T.; Meng, C.I.; Morris, R.J.

    1992-01-01

    Dayside Pc 1 geomagnetic pulsation bursts have been studied using a three-station array of induction magnetometers located at high latitudes. Associated magnetic variations in the form of solitary pulses often lead the Pc 1 bursts by 1 to 2 min. These pulses are typically associated with riometer absorption events and consequently the precipitation of fluxes of keV electrons. The Pc 1 bursts are interpreted as resulting from ion cyclotron waves which have propagated to the ionosphere from the equatorial boundary layer region. The associated boundary layer ions, identified by the low-altitude DMSP F7 satellite, range between 1 and 5 keV in energy. These particles are considered to be the most likely free energy source for the ion cyclotron waves. It is considered that such resonant ions enter the magnetosphere via the cleft and cusp because this enables a prenoon time of occurrence of most of the observations to be explained. Measured time delays of 40 to 120 s between the associated riometer absorption and Pc 2 bursts are consistent with an ion cyclotron wave generations region located in the equatorial magnetosphere

  12. Novel TMS coils designed using an inverse boundary element method

    Science.gov (United States)

    Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David

    2017-01-01

    In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.

  13. Multi-element analysis of emeralds and associated rocks by k{sub 0} neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, R.N.; Mondal, R.K.; Burte, P.P.; Nair, A.G.C.; Reddy, N.B.Y.; Reddy, L.K.; Reddy, A.V.R.; Manohar, S.B

    2000-12-15

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k{sub 0} method (k{sub 0} INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  14. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer

    Science.gov (United States)

    Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik

    2018-05-01

    Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.

  15. Three dimensional grain boundary modeling in polycrystalline plasticity

    Science.gov (United States)

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  16. The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation

    OpenAIRE

    Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi

    2014-01-01

    We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...

  17. Characterisation of synthetic multi-element standards (SMELS) used for the validation of k(o)-NAA

    Czech Academy of Sciences Publication Activity Database

    Vermaercke, P.; Robouch, P.; Eguskiza, M.; De Corte, F.; Kennedy, G.; Smodiš, B.; Jaćimović, R.; Yonezawa, C.; Matsue, H.; Lin, X.; Blaauw, M.; Kučera, Jan

    2006-01-01

    Roč. 564, č. 2 (2006), s. 675-682 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron activation analysis * ko-standardization * multi-element standard Subject RIV: CB - Analytical Chemistry, Separation

  18. Multi-region relaxed magnetohydrodynamics with anisotropy and flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-07-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.

  19. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn; Liu, Meilin; Bagci, Hakan

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing

  20. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  1. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Directory of Open Access Journals (Sweden)

    Husted Søren

    2009-09-01

    Full Text Available Abstract Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight. A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds, the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at

  2. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  3. Fracture-mechanical investigations on the propagation of heat-tension-cracks, in boittle multi-component media

    International Nuclear Information System (INIS)

    Grebner, H.

    1983-01-01

    The quasistatic dissipation of thermically induced cracks in brittle multi-components material with plane boundary areas is studied. The distribution of Eigentension, which is causing the dissipation of cracks, is produced by cooling the composite material from the production temperature to room temperature. Tension distributions, respectively of the fracture-mechanical coefficients were determined by solving of the boundary value problems of the theory of plane thermoelasticity, a based on existence of a plane distortion state, respectively of a plane state of tension. Because of the complicated shape of the free surface one adopted a numerical solution, the finite-element method, to solve the corresponding mixed boundary value problems. (orig.) [de

  4. Design and Wind Tunnel Testing of a Thick, Multi-Element High-Lift Airfoil

    DEFF Research Database (Denmark)

    Zahle, Frederik; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    In this work a 2D CFD solver has been used to optimize the shape of a leading edge slat with a chord length of 30% of the main airfoil which was 40% thick. The airfoil configuration was subsequently tested in a wind tunnel and compared to numerical predictions. The multi-element airfoil was predi...

  5. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy

    Science.gov (United States)

    Rost, S.; Earle, P.S.

    2010-01-01

    We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.

  6. Managing SMEs’ Collaboration Across Organizational Boundaries Within a Regional Business Ecosystem

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Bogers, Marcel

    2018-01-01

    autonomy and control over the partners and indicate shared issues and responsibilities crucial for further ecosystem development. As a conclusion, we offer a set of recommendations both for managers and policymakers concerning general organizational requirements and governing structures.......’ perspective on managing and organizing inter-company collaboration within a regional business. We explore how purposefully managed mutual knowledge flows across organizational boundaries applied by SMEs contribute to the development of the ecosystem they are immersed in. Our key findings include insights...

  7. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    Science.gov (United States)

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  8. Application of laser ablation-ICP-MS to determine high-resolution elemental profiles across the Cretaceous/Paleogene boundary at Agost (Spain)

    NARCIS (Netherlands)

    Sosa-Montes de Oca, Claudia; de Lange, Gert J.|info:eu-repo/dai/nl/073930962; Martínez-Ruiz, Francisca; Rodríguez-Tovar, Francisco J.

    2018-01-01

    A high-resolution analysis of the distribution of major and trace elements across a Cretaceous/Paleogene boundary (KPgB) was done using Laser Ablation-Inductivity Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and was compared with traditional distinct sampling and analysis. At the Agost site (SE

  9. An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

    Science.gov (United States)

    Simpson, R. N.; Liu, Z.; Vázquez, R.; Evans, J. A.

    2018-06-01

    We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.

  10. A simple boundary element formulation for shape optimization of 2D continuous structures

    International Nuclear Information System (INIS)

    Luciano Mendes Bezerra; Jarbas de Carvalho Santos Junior; Arlindo Pires Lopes; Andre Luiz; Souza, A.C.

    2005-01-01

    For the design of nuclear equipment like pressure vessels, steam generators, and pipelines, among others, it is very important to optimize the shape of the structural systems to withstand prescribed loads such as internal pressures and prescribed or limiting referential values such as stress or strain. In the literature, shape optimization of frame structural systems is commonly found but the same is not true for continuous structural systems. In this work, the Boundary Element Method (BEM) is applied to simple problems of shape optimization of 2D continuous structural systems. The proposed formulation is based on the BEM and on deterministic optimization methods of zero and first order such as Powell's, Conjugate Gradient, and BFGS methods. Optimal characterization for the geometric configuration of 2D structure is obtained with the minimization of an objective function. Such function is written in terms of referential values (such as loads, stresses, strains or deformations) prescribed at few points inside or at the boundary of the structure. The use of the BEM for shape optimization of continuous structures is attractive compared to other methods that discretized the whole continuous. Several numerical examples of the application of the proposed formulation to simple engineering problems are presented. (authors)

  11. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.

    Science.gov (United States)

    Yang, Wei; Ai, Tinghua; Lu, Wei

    2018-04-19

    Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  12. A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-04-01

    Full Text Available Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT. First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.

  13. A novel network of chaotic elements and its application in multi-valued associative memory

    International Nuclear Information System (INIS)

    Xiu Chunbo; Liu Xiangdong; Tang Yunyu; Zhang Yuhe

    2004-01-01

    We give a novel chaotic element model whose activation function composed of Gauss and Sigmoid function. It is shown that the model may exhibit a complex dynamic behavior. The most significant bifurcation processes, leading to chaos, are investigated through the computation of the Lyapunov exponents. Based on this model, we propose a novel network of chaotic elements, which can be applied in associative memory, and then investigate its dynamic behavior. It is worth noting that multi-valued associative memory can also be realized by this network

  14. Numerical Simulation of Complex Multi-Fluid Flows using a Combined Immersed Boundary and Volume of Fluid Approach

    NARCIS (Netherlands)

    Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces.

  15. Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method

    NARCIS (Netherlands)

    Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2009-01-01

    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of complex multi-fluid flows in which simultaneously (moving) deformable (drops or bubbles) and non-deformable (moving) elements (particles) are present, possibly with the additional presence of free surfaces.

  16. MUSIC: MUlti-Scale Initial Conditions

    Science.gov (United States)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  17. Multi-elemental profile of some Brazilian make-up products by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dalmazio, Ilza; Menezes, Maria Angela de B.C., E-mail: id@cdtn.b, E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Lab. de Ativacao Neutronica

    2011-07-01

    Recent works have shown that analysis in cosmetics and beauty products from the European and Asian markets indicate the presence of U, Th and rare earths besides other trace elements. Considering these previous findings and health issues, it would be valuable to obtain information on elements in cosmetics available in the Brazilian market. The purpose of this study was to acquire a multi-elemental profile of some Brazilian make-up products of diverse brands. Samples of eye shadow, liquid base, facial concealer, lipstick, and compact face powder were analyzed applying neutron activation analysis, k{sub 0}-standardization method at CDTN/CNEN, using the TRIGA Mark I IPR-R1 research reactor. Concentrations of more than 30 elements in samples are presented and it was found elements included in Brazilian National Health Surveillance Agency prohibitive list, rare earths, Th and U in a minimum of two cosmetic samples. (author)

  18. Multi-elemental profile of some Brazilian make-up products by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Dalmazio, Ilza; Menezes, Maria Angela de B.C.

    2011-01-01

    Recent works have shown that analysis in cosmetics and beauty products from the European and Asian markets indicate the presence of U, Th and rare earths besides other trace elements. Considering these previous findings and health issues, it would be valuable to obtain information on elements in cosmetics available in the Brazilian market. The purpose of this study was to acquire a multi-elemental profile of some Brazilian make-up products of diverse brands. Samples of eye shadow, liquid base, facial concealer, lipstick, and compact face powder were analyzed applying neutron activation analysis, k 0 -standardization method at CDTN/CNEN, using the TRIGA Mark I IPR-R1 research reactor. Concentrations of more than 30 elements in samples are presented and it was found elements included in Brazilian National Health Surveillance Agency prohibitive list, rare earths, Th and U in a minimum of two cosmetic samples. (author)

  19. Multiscale Spatio-Temporal Dynamics of Economic Development in an Interprovincial Boundary Region: Junction Area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin, Southwestern China Case

    Directory of Open Access Journals (Sweden)

    Jifei Zhang

    2016-02-01

    Full Text Available An interprovincial boundary region is a new subject of economic disparity study in China. This study explored the multi-scale spatio-temporal dynamics of economic development from 1995 to 2010 in the interprovincial boundary region of Sichuan-Yunnan-Guizhou, a mountain area and also the junction area of Tibetan Plateau, Hengduan Mountain, Yungui Plateau and Sichuan Basin in southwestern China. A quantitative study on county GDP per capita for different scales of administrative regions was conducted using the Theil index, Markov chains, a geographic information system and exploratory spatial data analysis. Results indicated that the economic disparity was closely related with geographical unit scale in the study area: the smaller the unit, the bigger the disparity, and the regional inequality gradually weakened over time. Moreover, significant positive spatial autocorrelation and clustering of economic development were also found. The spatial pattern of economic development presented approximate circle structure with two cores in the southwest and northeast. The Panxi region in the southwest core and a part of Hilly Sichuan Basin in the northeast core were considered to be hot spots of economic development. Most areas in the east and central region were persistently trapped in the low level of a balanced development state, with a poverty trap being formed in the central and south part. Geographical conditions and location, administrative barriers and the lack of effective growth poles may be the main reasons for the entire low level of balanced development. Our findings suggest that in order to achieve a high level of balanced development, attention should be paid beyond developing transportation and other infrastructure. Breaking down the rigid shackles of administrative districts that hinder trans-provincial cooperation and promoting new regional poles in the Yunnan-Guizhou region may have great significance for the study area.

  20. Monitoring the Dead Sea Region by Multi-Parameter Stations

    Science.gov (United States)

    Mohsen, A.; Weber, M. H.; Kottmeier, C.; Asch, G.

    2015-12-01

    The Dead Sea Region is an exceptional ecosystem whose seismic activity has influenced all facets of the development, from ground water availability to human evolution. Israelis, Palestinians and Jordanians living in the Dead Sea region are exposed to severe earthquake hazard. Repeatedly large earthquakes (e.g. 1927, magnitude 6.0; (Ambraseys, 2009)) shook the whole Dead Sea region proving that earthquake hazard knows no borders and damaging seismic events can strike anytime. Combined with the high vulnerability of cities in the region and with the enormous concentration of historical values this natural hazard results in an extreme earthquake risk. Thus, an integration of earthquake parameters at all scales (size and time) and their combination with data of infrastructure are needed with the specific aim of providing a state-of-the-art seismic hazard assessment for the Dead Sea region as well as a first quantitative estimate of vulnerability and risk. A strong motivation for our research is the lack of reliable multi-parameter ground-based geophysical information on earthquakes in the Dead Sea region. The proposed set up of a number of observatories with on-line data access will enable to derive the present-day seismicity and deformation pattern in the Dead Sea region. The first multi-parameter stations were installed in Jordan, Israel and Palestine for long-time monitoring. All partners will jointly use these locations. All stations will have an open data policy, with the Deutsches GeoForschungsZentrum (GFZ, Potsdam, Germany) providing the hard and software for real-time data transmission via satellite to Germany, where all partners can access the data via standard data protocols.

  1. Finite element approach to study the behavior of fluid distribution in the dermal regions of human body due to thermal stress

    Directory of Open Access Journals (Sweden)

    M.A. Khanday

    2015-10-01

    Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.

  2. Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China

    International Nuclear Information System (INIS)

    Zhang, Yan; Zheng, Hongmei; Yang, Zhifeng; Su, Meirong; Liu, Gengyuan; Li, Yanxian

    2015-01-01

    Chinese regions frequently exchange materials, but regional differences in economic development create unbalanced flows of these resources. In this study, we examined energy by assessing embodied energy consumption to describe the energy-flow structure in China's seven regions. Based on multi-regional monetary input–output tables and energy statistical yearbooks for Chinese provinces in 2002 and 2007, we accounted for both direct and indirect energy consumption, respectively, and the integral input and output of the provinces. Most integral inputs of energy flowed from north to south or from east to west, whereas integral output flows were mainly from northeast to southwest. This differed from the direct flows, which were predominantly from north to south and west to east. This demonstrates the importance of calculating both direct and indirect energy flows. Analysis of the distance and direction traveled by the energy consumption centers of gravity showed that the centers for embodied energy consumption and inputs moved southeast because of the movements of the centers of the Eastern region. However, the center for outputs moved northeast because the movement of the Central region. These analyses provide a basis for identifying how regional economic development policies influence the embodied energy consumption and its flows among regions. - Highlights: • We integrated multi-regional input–output analysis with ecological network analysis. • We accounted for both direct and indirect energy consumption. • The centers of gravity for embodied energy flows moved southeast from 2002 to 2007. • The results support planning of energy consumption and energy flows among regions.

  3. Multi-Regge limit of the n-gluon bubble ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schomerus, V.; Sprenger, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-07-15

    We investigate n-gluon scattering amplitudes in the multi-Regge region of N=4 supersymmetric Yang-Mills theory at strong coupling. Through a careful analysis of the thermodynamic bubble ansatz (TBA) for surfaces in AdS{sub 5} with n-g(lu)on boundary conditions we demonstrate that the multi-Regge limit probes the large volume regime of the TBA. In reaching the multi-Regge regime we encounter wall-crossing in the TBA for all n>6. Our results imply that there exists an auxiliary system of algebraic Bethe ansatz equations which encode valuable information on the analytical structure of amplitudes at strong coupling.

  4. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J. T.; Martens, P. C. H.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2013-03-10

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for days and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.

  5. Multi-modal trip planning system : Northeastern Illinois Regional Transportation Authority.

    Science.gov (United States)

    2013-01-01

    This report evaluates the Multi-Modal Trip Planner System (MMTPS) implemented by the Northeastern Illinois Regional Transportation Authority (RTA) against the specific functional objectives enumerated by the Federal Transit Administration (FTA) in it...

  6. Prospective national and regional environmental performance: Boundary estimations using a combined data envelopment - stochastic frontier analysis approach

    International Nuclear Information System (INIS)

    Vaninsky, Alexander

    2010-01-01

    The environmental performance of regions and largest economies of the world - actually, the efficiency of their energy sectors - is estimated for the period 2010-2030 by using forecasted values of main economic indicators. Two essentially different methodologies, data envelopment analysis and stochastic frontier analysis, are used to obtain upper and lower boundaries of the environmental efficiency index. Greenhouse gas emission per unit of area is used as a resulting indicator, with GDP, energy consumption, and population forming a background of comparable estimations. The dynamics of the upper and lower boundaries and their average is analyzed. Regions and national economies having low level or negative dynamics of environmental efficiency are determined.

  7. Managing SMEs’ Collaboration Across Organizational Boundaries Within a Regional Business Ecosystem

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Bogers, Marcel

    2017-01-01

    ’ perspective on managing and organizing inter-company collaboration within a regional business ecosystem. We explore how purposefully managed mutual knowledge flows across organizational boundaries applied by SMEs contribute to the development of the ecosystem they are immersed in. Our key findings include...... challenges, such as low autonomy and control over the partners and indicate shared issues and responsibilities crucial for further ecosystem development. As a conclusion, we offer a set of recommendations both for managers and policymakers concerning general organizational requirements and governing...... structures....

  8. Occurrence and persistence of magnetic elements in the quiet Sun

    Science.gov (United States)

    Giannattasio, F.; Berrilli, F.; Consolini, G.; Del Moro, D.; Gošić, M.; Bellot Rubio, L.

    2018-03-01

    Context. Turbulent convection efficiently transports energy up to the solar photosphere, but its multi-scale nature and dynamic properties are still not fully understood. Several works in the literature have investigated the emergence of patterns of convective and magnetic nature in the quiet Sun at spatial and temporal scales from granular to global. Aims: To shed light on the scales of organisation at which turbulent convection operates, and its relationship with the magnetic flux therein, we studied characteristic spatial and temporal scales of magnetic features in the quiet Sun. Methods: Thanks to an unprecedented data set entirely enclosing a supergranule, occurrence and persistence analysis of magnetogram time series were used to detect spatial and long-lived temporal correlations in the quiet Sun and to investigate their nature. Results: A relation between occurrence and persistence representative for the quiet Sun was found. In particular, highly recurrent and persistent patterns were detected especially in the boundary of the supergranular cell. These are due to moving magnetic elements undergoing motion that behaves like a random walk together with longer decorrelations ( 2 h) with respect to regions inside the supergranule. In the vertices of the supegranular cell the maximum observed occurrence is not associated with the maximum persistence, suggesting that there are different dynamic regimes affecting the magnetic elements.

  9. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    Science.gov (United States)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  10. Schools, "Ferals", Stigma and Boundary Work: Parents Managing Education and Uncertainty in Regional Australia

    Science.gov (United States)

    Butler, Rose

    2015-01-01

    This paper examines forms of boundary work undertaken by parents in a regional Australian city to negotiate social processes around the school market amidst rising economic insecurity. It outlines structural changes, which have increased economic inequality in Australia and impacted on educational reform, and the specific challenges faced by…

  11. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  12. Multi-element analysis of crude-oil samples by 14.6 MeV neutron activation

    International Nuclear Information System (INIS)

    Cam, N.F.; Cigeroglu, F.; Erduran, M.N.

    1997-01-01

    The instrumental neutron activation technique, using the SAMEST T-400 neutron generator with 14.6 MeV neutrons produced from 3 H(d,n) 4 He reaction, is demonstrated for multi-element analysis of Saudi-Arabian crude-oil samples. The system parameters for the absolute method (e.g., the counting solid-angle, intrinsic efficiency of the γ-ray detector, effective neutron flux, activation cross sections, etc.)were determined and the results of elemental concentrations were presented with the corrections for all possible interferences having been carefully considered. (author)

  13. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Science.gov (United States)

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  14. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    Directory of Open Access Journals (Sweden)

    Lorenzo Massimi

    2018-02-01

    Full Text Available Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  15. An Assessment of the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    Science.gov (United States)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.

    2015-01-01

    The NASA Glenn Icing Research tunnel has been using an Icing Blade technique to measure cloud liquid water content (LWC) since 1980. The IRT conducted tests with SEA Multi-Element sensors from 2009 to 2011 to assess their performance in measuring LWC. These tests revealed that the Multi-Element sensors showed some significant advantages over the Icing Blade, particularly at higher water contents, higher impingement rates, and large drop sizes. Results of these and other tests are presented here.

  16. Progress in multi-element silicon detectors for synchrotron XRF applications

    International Nuclear Information System (INIS)

    Ludewigt, B.; Rossington, C.; Kipnis, I.; Krieger, B.

    1995-10-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon and high purity germanium detectors for high count rate, low noise synchrotron x-ray fluorescence applications. We have been developing these types of detectors specifically for low noise synchrotron applications, such as extended x-ray absorption fine structure spectroscopy, microprobe x-ray fluorescence and total reflection x-ray fluorescence. The current version of the 192-element detector and integrated circuit preamplifier, cooled to -25 degrees C with a single-stage thermoelectric cooler, achieves an energy resolution of <200 eV full width of half maximum (FWHM) per channel (at 5.9 keV, 2 μs peaking time), and each detector element is designed to handle ∼20 kHz count rate. The detector system will soon be completed to 64 channels using new application specific integrated circuit (ASIC) amplifier chips, new CAMAC (Computer Automated Measurement and Control standard) analog-to-digital converters recently developed at Lawrence Berkeley National Laboratory (LBNL), CAMAC histogramming modules, and Macintosh-based data acquisition software. We report on the characteristics of this detector system, and the work in progress towards the next generation system

  17. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    Science.gov (United States)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  18. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    KAUST Repository

    Trippanera, Daniele

    2017-12-04

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  19. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.

    Science.gov (United States)

    N'djin, William Apoutou; Burtnyk, Mathieu; Bronskill, Michael; Chopra, Rajiv

    2012-01-01

    Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.

  20. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  1. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  2. SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems

    International Nuclear Information System (INIS)

    Hecht, K.T.; Zahn, W.

    1978-01-01

    In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references

  3. Multi-element, multi-compound isotope profiling as a means to distinguish the geographical and varietal origin of fermented cocoa (Theobroma cacao L.) beans.

    Science.gov (United States)

    Diomande, Didier; Antheaume, Ingrid; Leroux, Maël; Lalande, Julie; Balayssac, Stéphane; Remaud, Gérald S; Tea, Illa

    2015-12-01

    Multi-element stable isotope ratios have been assessed as a means to distinguish between fermented cocoa beans from different geographical and varietal origins. Isotope ratios and percentage composition for C and N were measured in different tissues (cotyledons, shells) and extracts (pure theobromine, defatted cocoa solids, protein, lipids) obtained from fermented cocoa bean samples. Sixty-one samples from 24 different geographical origins covering all four continental areas producing cocoa were analyzed. Treatment of the data with unsupervised (Principal Component Analysis) and supervised (Partial Least Squares Discriminant Analysis) multiparametric statistical methods allowed the cocoa beans from different origins to be distinguished. The most discriminant variables identified as responsible for geographical and varietal differences were the δ(15)N and δ(13)C values of cocoa beans and some extracts and tissues. It can be shown that the isotope ratios are correlated with the altitude and precipitation conditions found in the different cocoa-growing regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Logic-type Schmitt circuit using multi-valued gates

    Science.gov (United States)

    Wakui, M.; Tanaka, M.

    Logic-type Schmitt circuits (LTSCs) proposed in this paper by author's proposal are a new detector for a multi-valued multi-threshold logic circuit, and it realizes the high resolution with a little hysteresis or the high noise margin. The detector consists of the combinations of the multi-valued gates (MVGs) and a positive reaction device (PRD), and each circuit can be realized by the conventional elements. This paper shows their practical circuits, and describes the regions and the conditions for their operation.

  5. IMPROVEMENT OF ACCURACY OF RADIATIVE HEAT TRANSFER DIFFERENTIAL APPROXIMATION METHOD FOR MULTI DIMENSIONAL SYSTEMS BY MEANS OF AUTO-ADAPTABLE BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2015-01-01

    Full Text Available Differential approximation is derived from radiation transfer equation by averaging over the solid angle. It is one of the more effective methods for engineering calculations of radia- tive heat transfer in complex three-dimensional thermal power systems with selective and scattering media. The new method for improvement of accuracy of the differential approximation based on using of auto-adaptable boundary conditions is introduced in the paper. The  efficiency  of  the  named  method  is  proved  for  the  test  2D-systems.  Self-consistent auto-adaptable boundary conditions taking into consideration the nonorthogonal component of the incident to the boundary radiation flux are formulated. It is demonstrated that taking in- to consideration of the non- orthogonal incident flux in multi-dimensional systems, such as furnaces, boilers, combustion chambers improves the accuracy of the radiant flux simulations and to more extend in the zones adjacent to the edges of the chamber.Test simulations utilizing the differential approximation method with traditional boundary conditions, new self-consistent boundary conditions and “precise” discrete ordinates method were performed. The mean square errors of the resulting radiative fluxes calculated along the boundary of rectangular and triangular test areas were decreased 1.5–2 times by using auto- adaptable boundary conditions. Radiation flux gaps in the corner points of non-symmetric sys- tems are revealed by using auto-adaptable boundary conditions which can not be obtained by using the conventional boundary conditions.

  6. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  7. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    Science.gov (United States)

    Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.

    2009-08-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  8. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    International Nuclear Information System (INIS)

    Wang, P; Becker, A A; Jones, I A; Glover, A T; Benford, S D; Vloeberghs, M

    2009-01-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  9. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Alex [University of California, Los Angeles, CA (United States). Joint Institute for Regional Earth System Science and Engineering

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while

  10. Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis

    KAUST Repository

    Calo, Victor M.; Collier, Nathan; Pardo, David; Paszyński, Maciej R.

    2011-01-01

    The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides computational complexity and memory usage estimates for the application of the multi-frontal direct solver algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used in isogeometric meshes simplifies the analysis.

  11. Computational complexity and memory usage for multi-frontal direct solvers used in p finite element analysis

    KAUST Repository

    Calo, Victor M.

    2011-05-14

    The multi-frontal direct solver is the state of the art for the direct solution of linear systems. This paper provides computational complexity and memory usage estimates for the application of the multi-frontal direct solver algorithm on linear systems resulting from p finite elements. Specifically we provide the estimates for systems resulting from C0 polynomial spaces spanned by B-splines. The structured grid and uniform polynomial order used in isogeometric meshes simplifies the analysis.

  12. Boundary Layer Effect on Behavior of Discrete Models.

    Science.gov (United States)

    Eliáš, Jan

    2017-02-10

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  13. Multi-jet correlations and colour coherence phenomena

    Directory of Open Access Journals (Sweden)

    Lee Jason S.H.

    2017-01-01

    Full Text Available In multi-jet events, colour coherence was shown to play a important role in the topology of these events. In modern Monte Carlo generators, the colour coherence effect has become an inherent feature, such that the colour coherence effect can no longer be disentangled in a simple manner. This study looks at the multi-jet correlations by comparing Monte Carlo generators in Parton Shower dominant and Matrix Element dominant regions.

  14. DYNAMIC SURFACE BOUNDARY-CONDITIONS - A SIMPLE BOUNDARY MODEL FOR MOLECULAR-DYNAMICS SIMULATIONS

    NARCIS (Netherlands)

    JUFFER, AH; BERENDSEN, HJC

    1993-01-01

    A simple model for the treatment of boundaries in molecular dynamics simulations is presented. The method involves the positioning of boundary atoms on a surface that surrounds a system of interest. The boundary atoms interact with the inner region and represent the effect of atoms outside the

  15. Multi-element neutron activation analysis of biological tissues: contribution to the study of trace element accumulation as a function of aging

    International Nuclear Information System (INIS)

    Gaudry, Andre.

    1975-01-01

    The accumulation of trace elements in various organs as a function of age was studied in rats, in connection with tissue aging phenomena. Part one reviews the various methods available to develop a programme of simultaneous multi-element analysis in biological matrices. Part two studies the precision and accuracy offered by neutron activation analysis. Special attention is paid to the problem of sample contamination by the silica glass irradiation supports. The possible causes of this effect are mentioned and a procedure limiting its harmful influence is proposed. Part three defines the restrictions introduced by the use of a method to separate the activable matrix. The fourth and last chapter describes the development of a multielement chemical separation system, designed to work semi-automatically for the simultaneous treatment of three samples and a standard in a shielded cell of small dimensions. The principles of a multi-comparator calibration where a knowledge of certain conventional but imprecise nuclear data is unnecessary owing to an experimental expedient are outlined briefly. Finally the separation method is tried out on various biological samples, including a reference (bovine liver SRM1577-NBS), and some results are given [fr

  16. Multi Scale Finite Element Analyses By Using SEM-EBSD Crystallographic Modeling and Parallel Computing

    International Nuclear Information System (INIS)

    Nakamachi, Eiji

    2005-01-01

    A crystallographic homogenization procedure is introduced to the conventional static-explicit and dynamic-explicit finite element formulation to develop a multi scale - double scale - analysis code to predict the plastic strain induced texture evolution, yield loci and formability of sheet metal. The double-scale structure consists of a crystal aggregation - micro-structure - and a macroscopic elastic plastic continuum. At first, we measure crystal morphologies by using SEM-EBSD apparatus, and define a unit cell of micro structure, which satisfy the periodicity condition in the real scale of polycrystal. Next, this crystallographic homogenization FE code is applied to 3N pure-iron and 'Benchmark' aluminum A6022 polycrystal sheets. It reveals that the initial crystal orientation distribution - the texture - affects very much to a plastic strain induced texture and anisotropic hardening evolutions and sheet deformation. Since, the multi-scale finite element analysis requires a large computation time, a parallel computing technique by using PC cluster is developed for a quick calculation. In this parallelization scheme, a dynamic workload balancing technique is introduced for quick and efficient calculations

  17. Clustering of samples and elements based on multi-variable chemical data

    International Nuclear Information System (INIS)

    Op de Beeck, J.

    1984-01-01

    Clustering and classification are defined in the context of multivariable chemical analysis data. Classical multi-variate techniques, commonly used to interpret such data, are shown to be based on probabilistic and geometrical principles which are not justified for analytical data, since in that case one assumes or expects a system of more or less systematically related objects (samples) as defined by measurements on more or less systematically interdependent variables (elements). For the specific analytical problem of data set concerning a large number of trace elements determined in a large number of samples, a deterministic cluster analysis can be used to develop the underlying classification structure. Three main steps can be distinguished: diagnostic evaluation and preprocessing of the raw input data; computation of a symmetric matrix with pairwise standardized dissimilarity values between all possible pairs of samples and/or elements; and ultrametric clustering strategy to produce the final classification as a dendrogram. The software packages designed to perform these tasks are discussed and final results are given. Conclusions are formulated concerning the dangers of using multivariate, clustering and classification software packages as a black-box

  18. Limitless Analytic Elements

    Science.gov (United States)

    Strack, O. D. L.

    2018-02-01

    We present equations for new limitless analytic line elements. These elements possess a virtually unlimited number of degrees of freedom. We apply these new limitless analytic elements to head-specified boundaries and to problems with inhomogeneities in hydraulic conductivity. Applications of these new analytic elements to practical problems involving head-specified boundaries require the solution of a very large number of equations. To make the new elements useful in practice, an efficient iterative scheme is required. We present an improved version of the scheme presented by Bandilla et al. (2007), based on the application of Cauchy integrals. The limitless analytic elements are useful when modeling strings of elements, rivers for example, where local conditions are difficult to model, e.g., when a well is close to a river. The solution of such problems is facilitated by increasing the order of the elements to obtain a good solution. This makes it unnecessary to resort to dividing the element in question into many smaller elements to obtain a satisfactory solution.

  19. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    International Nuclear Information System (INIS)

    Witteveen, Jeroen A.S.; Bijl, Hester

    2009-01-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  20. Theoretical background and implementation of the finite element method for multi-dimensional Fokker-Planck equation analysis

    Czech Academy of Sciences Publication Activity Database

    Král, Radomil; Náprstek, Jiří

    2017-01-01

    Roč. 113, November (2017), s. 54-75 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * simplex element * multi-dimensional problem * non-symmetric operator Subject RIV: JM - Building Engineering OBOR OECD: Mechanical engineering Impact factor: 3.000, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0965997817301904

  1. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  2. Combination tones along the basilar membrane in a 3D finite element model of the cochlea with acoustic boundary layer attenuation

    Science.gov (United States)

    Böhnke, Frank; Scheunemann, Christian; Semmelbauer, Sebastian

    2018-05-01

    The propagation of traveling waves along the basilar membrane is studied in a 3D finite element model of the cochlea using single and two-tone stimulation. The advantage over former approaches is the consideration of viscous-thermal boundary layer damping which makes the usual but physically unjustified assumption of Rayleigh damping obsolete. The energy loss by viscous boundary layer damping is 70 dB lower than the actually assumed power generation by outer hair cells. The space-time course with two-tone stimulation shows the traveling waves and the periodicity of the beat frequency f2 - f1.

  3. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer

    International Nuclear Information System (INIS)

    Jian, Han; Nan, Jiang

    2008-01-01

    Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel. Mean and fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction. At hypersonic speeds, the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode. Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the frequency range of the second mode. Nonlinear interactions both of the second mode disturbance and the first mode disturbance are demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow. (fundamental areas of phenomenology (including applications))

  4. Modelling innovation performance of European regions using multi-output neural networks.

    Science.gov (United States)

    Hajek, Petr; Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  5. Modelling innovation performance of European regions using multi-output neural networks.

    Directory of Open Access Journals (Sweden)

    Petr Hajek

    Full Text Available Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  6. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    Science.gov (United States)

    Yu, Li-Li; Shou, Wen-De; Hui, Chun

    2012-02-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov—Zabolotskaya—Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field.

  7. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    Science.gov (United States)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  8. Effects of boundary conditions on thermomechanical calculations: Spent fuel test - climax

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1982-10-01

    The effects of varying certain boundary conditions on the results of finite-element calculations were studied in relation to the Spent Fuel Test - Climax. The study employed a thermomechanical model with the ADINA structural analysis. Nodal temperature histories were generated with the compatible ADINAT heat flow codes. The boundary conditions studied included: (1) The effect of boundary loading on three progressively larger meshes. (2) Plane strain vs plane stress conditions. (3) The effect of isothermal boundaries on a small mesh and on a significantly larger mesh. The results showed that different mesh sizes had an insignificant effect on isothermal boundaries up to 5 y, while on the smallest and largest mesh, the maximum temperature difference in the mesh was 0 C. In the corresponding ADINA calculation, these different mesh sizes produce insignificant changes in the stress field and displacements in the region of interest near the heat sources and excavations. On the other hand, plane stress produces horizontal and vertical stress differences approx. 9% higher than does plane strain

  9. A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice

    OpenAIRE

    White, Michael A.; Ikeda, Akihiro; Payseur, Bret A.

    2012-01-01

    The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located jus...

  10. African boundary politics: a case of Ethiopian-Eritrean boundary ...

    African Journals Online (AJOL)

    This paper examined the boundary discord between Ethiopia and Eritrea over the region around Badme which started as a result of artificial boundaries created by the Italian imperialists. The study depicts the evolution of Italian colonialism in Ethiopia between 1936 and 1941. It exposes the differentials existing between the ...

  11. Revamped half-lives of super heavy elements (SHE) in trans-actinide region

    International Nuclear Information System (INIS)

    Carmel Vigila Bai, G.M.; Umai Parvathiy, J.

    2015-01-01

    Analyzation of alpha decay properties and identification of Island of Stability has illuminated the theories of nuclear physics. This fundamental scientific research is the current ongoing work in the field of super heavy elements. In order to study the decay properties of super heavy elements a realistic model called as Cubic plus Yukawa plus Exponential (CYE) model is used here. This model uses a cubic potential in the pre-scission region connected by Coulomb plus Yukawa plus Exponential potential in the post scission region

  12. Automated coronal hole identification via multi-thermal intensity segmentation

    Science.gov (United States)

    Garton, Tadhg M.; Gallagher, Peter T.; Murray, Sophie A.

    2018-01-01

    Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.

  13. International boundary experiences by the United Nations

    Science.gov (United States)

    Kagawa, A.

    2013-12-01

    Over the last few decades, the United Nations (UN) has been approached by Security Council and Member States on international boundary issues. The United Nations regards the adequate delimitation and demarcation of international boundaries as a very important element for the maintenance of peace and security in fragile post-conflict situations, establishment of friendly relationships and cross-border cooperation between States. This paper will present the main principles and framework the United Nations applies to support the process of international boundary delimitation and demarcation activities. The United Nations is involved in international boundary issues following the principle of impartiality and neutrality and its role as mediator. Since international boundary issues are multi-faceted, a range of expertise is required and the United Nations Secretariat is in a good position to provide diverse expertise within the multiple departments. Expertise in different departments ranging from legal, political, technical, administrative and logistical are mobilised in different ways to provide support to Member States depending on their specific needs. This presentation aims to highlight some of the international boundary projects that the United Nations Cartographic Section has been involved in order to provide the technical support to different boundary requirements as each international boundary issue requires specific focus and attention whether it be in preparation, delimitation, demarcation or management. Increasingly, the United Nations is leveraging geospatial technology to facilitate boundary delimitation and demarcation process between Member States. Through the presentation of the various case studies ranging from Iraq - Kuwait, Israel - Lebanon (Blue Line), Eritrea - Ethiopia, Cyprus (Green Line), Cameroon - Nigeria, Sudan - South Sudan, it will illustrate how geospatial technology is increasingly used to carry out the support. In having applied a range

  14. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  15. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  16. FEMWATER: a finite-element model of water flow through saturated-unsaturated porous media

    International Nuclear Information System (INIS)

    Yeh, G.T.; Ward, D.S.

    1980-10-01

    Upon examining the Water Movement Through Saturated-Unsaturated Porous Media: A Finite-Element Galerkin Model, it was felt that the model should be modified and expanded. The modification is made in calculating the flow field in a manner consistent with the finite element approach, in evaluating the moisture-content increasing rate within the region of interest, and in numerically computing the nonlinear terms. With these modifications, the flow field is continuous everywhere in the flow regime, including element boundaries and nodal points, and the mass loss through boundaries is much reduced. Expansion is made to include four additional numerical schemes which would be more appropriate for many situations. Also, to save computer storage, all arrays pertaining to the boundary condition information are compressed to smaller dimension, and to ease the treatment of different problems, all arrays are variably dimensioned in all subroutines. This report is intended to document these efforts. In addition, in the derivation of finite-element equations, matrix component representation is used, which is believed more readable than the matrix representation in its entirety. Two identical sample problems are simulated to show the difference between the original and revised models

  17. The atmospheric boundary layer over land and sea: Focus on the off-shore Southern Baltic and Southern North Sea region

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    Lecture notes for a short course on the ideal atmospheric boundary layer and its characteristics for different types of real boundary layers, aiming at a discussion of the coastal conditions at the Southern Baltic and North Sea region. The notes are aimed at young scientists (e.g. PhD students......) that study the physics of the atmospheric boundary layer with the purpose of applying this knowledge for remote sensing techniques within offshore wind energy....

  18. Segmentation of Multi-Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of Interest

    Science.gov (United States)

    Poczatek, J. Collin; Turck, Christoph W.; Lechene, Claude

    2012-01-01

    Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1], [2], [3]. In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of interests. Using the SVM, high-quality ROIs (as compared to an expert's manual delineation) were obtained for 2 types of images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis of MIMS images. This approach has been integrated into “Open MIMS,” an ImageJ-plugin for comprehensive analysis of MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php. PMID:22347386

  19. Multi-Model Validation in the Chesapeake Bay Region in June 2010

    Science.gov (United States)

    2013-05-31

    ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 7030_4 X no ---~~~~~~~~~~~~~~~-~-~~-~------------ thor...US Navy at global , regional and coastal scales (Rowley 2008, 2010). The NCOM model in the Chesapeake Bay region for this exercise is configured in...derived from the NRL DBDB2 global bathymetry database. Boundary forcing and initial conditions were extracted from the East Coast NCOM which has a 3-km

  20. A new XRF probe for in-situ determining concentration of multi-elements in ocean sediments

    International Nuclear Information System (INIS)

    Ge Liangquan; Lai Wanchang; Zhou Sichun; Lin Ling; Lin Yanchang; Ren Jiafu

    2001-01-01

    The author introduces a new X-ray fluorescence probe for in-situ determining the concentration of multi-elements in ocean sediments. The probe consists of Si-Pin X-ray detector with an electro-thermal colder, two isotope sources, essential electrical signal processing units and a notebook computer. More than 10 elements can be simultaneously determined at a detection limit of (10-200) x 10 -6 and precision of 5%-30% without liquid Nitrogen supply. tests show that the probe can perform the analytical tasks under the water at the depth of less than 1000 meters

  1. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  2. Extended finite element method and its application in heterogeneous materials with inclusions

    International Nuclear Information System (INIS)

    Du Chengbin; Jiang Shouyan; Ying Zongquan

    2010-01-01

    To simplify the technology of finite element mesh generation for particle reinforced material, enrichment techniques is used to account for the material interfaces in the framework of extended finite element method (XFEM). The geometry of material distribution is described by level set function, which allows one to model the internal boundaries of the microstructure without the adaptation of the mesh. The enrichment function is used to improve the shape function of classical finite element method (FEM) for the nodes supporting the elements cut by the interface. The key issue of XFEM including constructing displacement pattern, establishment of the governing equation and scheme of numerical integration is also presented. It is not necessarily matching the internal features of the inclusions using XFEM, so the generation of finite element mesh can be performed easily. Finally, a plate with multi-circular inclusions under uniaxial tension is simulated by XFEM and FEM, respectively. The results show that XFEM is highly effective and efficient.

  3. 5' Region of the human interleukin 4 gene: structure and potential regulatory elements

    Energy Technology Data Exchange (ETDEWEB)

    Eder, A; Krafft-Czepa, H; Krammer, P H

    1988-01-25

    The lymphokine Interleukin 4 (IL-4) is secreted by antigen or mitogen activated T lymphocytes. IL-4 stimulates activation and differentiation of B lymphocytes and growth of T lymphocytes and mast cells. The authors isolated the human IL-4 gene from a lambda EMBL3 genomic library. As a probe they used a synthetic oligonucleotide spanning position 40 to 79 of the published IL-4 cDNA sequence. The 5' promoter region contains several sequence elements which may have a cis-acting regulatory function for IL-4 gene expression. These elements include a TATA-box, three CCAAT-elements (two are on the non-coding strand) and an octamer motif. A comparison of the 5' flanking region of the human murine IL-4 gene (4) shows that the region between position -306 and +44 is highly conserved (83% homology).

  4. Comparing Experiment and Computation of Hypersonic Laminar Boundary Layers with Isolated Roughness

    Science.gov (United States)

    Bathel, Brett F.; Iyer, Prahladh S.; Mahesh, Krishnan; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Johansen, Craig T.

    2014-01-01

    Streamwise velocity profile behavior in a hypersonic laminar boundary layer in the presence of an isolated roughness element is presented for an edge Mach number of 8.2. Two different roughness element types are considered: a 2-mm tall, 4-mm diameter cylinder, and a 2-mm radius hemisphere. Measurements of the streamwise velocity behavior using nitric oxide (NO) planar laser-induced fluorescence (PLIF) molecular tagging velocimetry (MTV) have been performed on a 20-degree wedge model. The top surface of this model acts as a flat-plate and is oriented at 5 degrees with respect to the freestream flow. Computations using direct numerical simulation (DNS) of these flows have been performed and are compared to the measured velocity profiles. Particular attention is given to the characteristics of velocity profiles immediately upstream and downstream of the roughness elements. In these regions, the streamwise flow can experience strong deceleration or acceleration. An analysis in which experimentally measured MTV profile displacements are compared with DNS particle displacements is performed to determine if the assumption of constant velocity over the duration of the MTV measurement is valid. This assumption is typically made when reporting MTV-measured velocity profiles, and may result in significant errors when comparing MTV measurements to computations in regions with strong deceleration or acceleration. The DNS computations with the cylindrical roughness element presented in this paper were performed with and without air injection from a rectangular slot upstream of the cylinder. This was done to determine the extent to which gas seeding in the MTV measurements perturbs the boundary layer flowfield.

  5. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics

    International Nuclear Information System (INIS)

    Wyrwicz, Lucjan S; Koczyk, Grzegorz; Rychlewski, Leszek; Plewczynski, Dariusz

    2007-01-01

    The annotation of protein folds within newly sequenced genomes is the main target for semi-automated protein structure prediction (virtual structural genomics). A large number of automated methods have been developed recently with very good results in the case of single-domain proteins. Unfortunately, most of these automated methods often fail to properly predict the distant homology between a given multi-domain protein query and structural templates. Therefore a multi-domain protein should be split into domains in order to overcome this limitation. ProteinSplit is designed to identify protein domain boundaries using a novel algorithm that predicts disordered regions in protein sequences. The software utilizes various sequence characteristics to assess the local propensity of a protein to be disordered or ordered in terms of local structure stability. These disordered parts of a protein are likely to create interdomain spacers. Because of its speed and portability, the method was successfully applied to several genome-wide fold annotation experiments. The user can run an automated analysis of sets of proteins or perform semi-automated multiple user projects (saving the results on the server). Additionally the sequences of predicted domains can be sent to the Bioinfo.PL Protein Structure Prediction Meta-Server for further protein three-dimensional structure and function prediction. The program is freely accessible as a web service at http://lucjan.bioinfo.pl/proteinsplit together with detailed benchmark results on the critical assessment of a fully automated structure prediction (CAFASP) set of sequences. The source code of the local version of protein domain boundary prediction is available upon request from the authors

  6. Generation of a multi-photon Greenberger-Horne-Zeilinger state with linear optical elements and photon detectors

    International Nuclear Information System (INIS)

    Zou, X B; Pahlke, K; Mathis, W

    2005-01-01

    We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing

  7. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    International Nuclear Information System (INIS)

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N.; Helsby, W. I.

    2016-01-01

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  8. Overview of multi-element monolithic germanium detectors for XAFS experiments at diamond light source

    Energy Technology Data Exchange (ETDEWEB)

    Chatterji, S.; Dennis, G. J.; Dent, A.; Diaz-Moreno, S.; Cibin, G.; Tartoni, N. [Diamond Light Source Ltd, Oxfordshire (United Kingdom); Helsby, W. I. [STFC Daresbury Laboratory, Warrington (United Kingdom)

    2016-07-27

    An overview of multi-element monolithic germanium detectors being used at the X-ray absorption spectroscopy (XAS) beam lines at Diamond Light Source (DLS) is being reported. The hardware details and a summary of the performance of these detectors have also been provided. Recent updates about various ongoing projects being worked on to improve the performance of these detectors are summarized.

  9. On the trial functions in nested element method

    International Nuclear Information System (INIS)

    Altiparmakov, D.V.

    1985-01-01

    The R-function method is applied to the multidimensional steady-state neutron diffusion equation. Using a variational principle the nested element approximation is formulated. Trial functions taking into account the geometrical shape of material regions are constructed. The influence of both the surrounding regions and the corner singularities at the external boundary is incorporated into the approximate solution. Benchmark calculations show that such an approximation can yield satisfactory results. Moreover, in the case of complex geometry, the presented approach would result in a significant reduction of the number of unknowns compared to other methods

  10. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  11. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint

    International Nuclear Information System (INIS)

    Hou, Juan; Peng, Qunjia; Takeda, Yoichi; Kuniya, Jiro; Shoji, Tetsuo

    2010-01-01

    Research highlights: → High-angle misorientation at FB, type-II and type-I boundaries. → Highest residual strain and hardness in the zone between FB and type-II boundary. → Type-II and type-I boundaries had lower resistance to SCC growth than the FB. → Crack growth blunted by pitting at the FB. → Reactivation of crack growth from the pitting by oxidation along the grain boundary. - Abstract: Stress corrosion cracking (SCC) in the fusion boundary (FB) region of an Alloy 182-A533B low alloy steel (LAS) dissimilar weld joint in high temperature water doped with sulfate was studied following a microstructure characterization of the FB region. The microstructure characterization suggested the type-II and type-I boundaries in the dilution zone (DZ) adjacent to the FB had lower resistance to SCC growth than the FB. Crack propagating perpendicular to the FB in the DZ was observed to be blunted by pitting at the FB, followed by the reactivation from the pitting by localized oxidation along the grain boundary in LAS.

  12. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.

    Science.gov (United States)

    Gong, Yixiao; Lazaris, Charalampos; Sakellaropoulos, Theodore; Lozano, Aurelie; Kambadur, Prabhanjan; Ntziachristos, Panagiotis; Aifantis, Iannis; Tsirigos, Aristotelis

    2018-02-07

    The metazoan genome is compartmentalized in areas of highly interacting chromatin known as topologically associating domains (TADs). TADs are demarcated by boundaries mostly conserved across cell types and even across species. However, a genome-wide characterization of TAD boundary strength in mammals is still lacking. In this study, we first use fused two-dimensional lasso as a machine learning method to improve Hi-C contact matrix reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation score. We demonstrate that higher TAD boundary insulation scores are associated with elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that super-enhancers are preferentially insulated by strong boundaries. Furthermore, we demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-duplicated in cancer patients. Taken together, our findings suggest that super-enhancers insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to promote oncogenesis.

  13. Developing Boundary-Spanning Capacity for Regional Sustainability Transitions—A Comparative Case Study of the Universities of Augsburg (Germany and Linz (Austria

    Directory of Open Access Journals (Sweden)

    Gesa Pflitsch

    2018-03-01

    Full Text Available The potential of universities to become ‘change agents’ for sustainability has increasingly been highlighted in the literature. Some largely open questions are how universities get involved in regional sustainability transitions and how that affects their role in these processes. This paper argues that universities need to develop a boundary-spanning capacity, which enables them to transcend disciplinary as well as sectoral boundaries in order to adopt a developmental role in regional sustainability transitions. It is investigated how universities develop this capacity within a particular regional context, using the method of a transition topology. Comparing how the relationships of universities with their surrounding regions developed in Augsburg (Germany and Linz (Austria, the paper shows why these processes are place-specific. A university’s boundary-spanning capacity develops over time and differs according to the actors involved. The primarily bottom-up driven process in Augsburg was thematically quite broad and involved diverse actors. In Linz, the top-down initiated process was fragmented and more narrowly focused. Individual value-driven actors that made use of their personal networks played an important role in both regions.

  14. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.

  15. EPA Region 2 Draft NPL Site Contamination Area Boundaries as of February 2007 GIS Layer [EPA.R2_NPL_CONTAMBND

    Data.gov (United States)

    U.S. Environmental Protection Agency — This layer represents the contamination boundaries of all NPL sites located in EPA Region Region 2 (New York, New Jersey, Puerto Rico and the U.S. Virgin Islands)....

  16. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  17. Multi-scale characterization by FIB-SEM/TEM/3DAP.

    Science.gov (United States)

    Ohkubo, T; Sepehri-Amin, H; Sasaki, T T; Hono, K

    2014-11-01

    In order to improve properties of functional materials, it is important to understand the relation between the structure and the properties since the structure has large effect to the properties. This can be done by using multi-scale microstructure analysis from macro-scale to nano and atomic scale. Scanning electron microscope (SEM) equipped with focused ion beam (FIB), transmission electron microscope (TEM) and 3D atom probe (3DAP) are complementary analysis tools making it possible to know the structure and the chemistry from micron to atomic resolution. SEM gives us overall microstructural and chemical information by various kinds of detectors such as secondary electron, backscattered electron, EDS and EBSD detectors. Also, it is possible to analyze 3D structure and chemistry via FIB serial sectioning. In addition, using TEM we can focus on desired region to get more complementary information from HRTEM/STEM/Lorentz images, SAED/NBD patterns and EDS/EELS to see the detail micro or nano-structure and chemistry. Especially, combination of probe Cs corrector and split EDS detectors with large detector size enable us to analyze the atomic scale elemental distribution. Furthermore, if the specimen has a complicated 3D nanostructure, or we need to analyze light elements such as hydrogen, lithium or boron, 3DAP can be used as the only technique which can visualize and analyze distribution of all constituent atoms of our materials within a few hundreds nm area. Hence, site-specific sample preparation using FIB/SEM is necessary to get desired information from region of interest. Therefore, this complementary analysis combination works very well to understand the detail of materials.In this presentation, we will show the analysis results obtained from some of functional materials by Carl Zeiss CrossBeam 1540EsB FIB/SEM, FEI Tecnai G(2) F30, Titan G2 80-200 TEMs and locally build laser assisted 3DAP. As the one of the example, result of multi-scale characterization for

  18. Moho vs crust-mantle boundary: Evolution of an idea

    Science.gov (United States)

    O'Reilly, Suzanne Y.; Griffin, W. L.

    2013-12-01

    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  19. Pressure effect on grain boundary diffusion

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1997-01-01

    The influence of hydrostatic pressure on grain boundary diffusion and grain boundary migration in metallic materials is theoretically investigated. The model is suggested that permits describing changes in activation energy of grain boundary self-diffusion and diffusion permeability of grain boundaries under hydrostatic pressure. The model is based on the ideas about island-type structure of grain boundaries as well as linear relationship of variations in grain boundary free volume to hydrostatic pressure value. Comparison of theoretical data with experimental ones for a number of metals and alloys (α-Zr, Sn-Ge, Cu-In with Co, In, Al as diffusing elements) shows a qualitative agreement

  20. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake